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Abstract 

Numerical simulation is an important contemporary tool used to investigate interfacial mo- 

tion in complex fluids. Even with increasing computer speed and memory, fast, efficient 

and highly accurate algorithms that are able to handle large-scale long-time simulations, 

are needed. 

We present a new robust numerical method for computing the motion of a two-dimensional 

bubble interface in a straining Stokes Flow laden with surfactants, which induce nonuni- 

form surface tension. This consists of evolving a convective-diffusive equation describing the 

surfactant dynamics, coupled with the interface motion equations. The interface velocity is 

found by solving an integral equation derived from the complex variable theory of the bihar- 

monic equation. The numerical method solving the integral equations is spectrally accurate 

and employs a Fast Multipole-based iterative method. We investigate an Implicit-Explicit 

time-stepping method to ease the stability constraint. By maintaining an equal arclength 

point spacing, we maximize the time-stepping scheme's efficiency. 
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Chapter 1 

Introduction 

Although their manifestation often goes unnoticed, bubbles play such a significant role in so 

many aspects of everyday events that it would not be an exercise in hyperbole to describe 

them as omnipresent. The ubiquity and importance of bubbles is clear as enhancers in 

sparkling beverages, in fermentation of food or in cooking processes. Their role however 

extends beyond the culinary aspects, and their understanding is paramount in as diverse 

fields as hydrocarbon seepage in ocean floors, aerosol chemical manufacturing, wave break- 

ing, bacteria transport, photosynthesis and even pulmonary functions. 

The study of bubbles has thus fascinated physicists and mathematicians for a long time 

and their evolution has been studied extensively. Some of the pioneering work in the study 

of bubble deformation in extensional, shear or straining, viscous flow was done by G.I. Tay- 

lor [23]. Some of his well-known hydrodynamics experiments feature a bubble or drop in 

the midst of four rotating cylinders that produce a straining-type flow, as shown in the 

Figure 1.1. The shear flow induced the bubble to stretch, and the resulting shapes were 

steady or unsteady depending on the strain parameters. The existence of steady or unsteady 

(bursting) bubbles observed in these experiments was confirmed in later studies [6]. Other 

phenomena were reported from the various experiments performed in the area, such as tip 

streaming, cusped bubble or other bubble deformation modes for different flow parameters 

[a]. It is believed that the non-uniform concentration of surfactant, or surface active agent, 

on the bubble surface affects these deformations and facilitates the bubble breakup or frac- 

ture if the strain in the flow is significant. For example, surfactant accumulates at the bubble 

tips in the Taylor straining-type flow in Fig. 1.1, and these surfactant caps are believed to 

be the culprit for different terminal bubble shapes obtained, e.g cusped/sigmoidal bubbles. 
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Figure 1.1: Strain flow and the non-uniform surfactant layer on the bubble: a) Taylor's 
strain-type flow driven by four rollers and the bubble in the midst. b) Surfactant is advected 
b y  the flow towards the bubble tips where it accumulates and eventually forms stagnant caps. 

1.1 Surfactants and their Importance 

What are surfactants and how do they figure out in practice? Surfactants, or surface active 

agents, are substances that have molecules with a hydrophobic and hydrophilic part. The 

hydrophobic part aligns itself to air, while the hydrophilic part aligns itself to water; thus 

surfactants tend to be found at interfaces. Dish-washing soap is a familiar surfactant, but 

many substances, including salt and fatty acids, can act as surfactants. They are active in 

detergents, emulsifiers, paints, adhesives, inks, alveoli, and play a critical role in numerous 

industrial and biomedical applications ranging from enhanced oil recovery to pulmonary 

functions. An important effect of surfactants is that they alter the surface tension, which 

alters the interface hydrodynamics; thus there exists ample interest in understanding them. 

Surfactants are convected and diffused along interfaces by the motion of the fluid and by 

molecular diffusion respectively. The surface tension depends on the surfactant distribution 

through an equation of state; regions of higher surfactant concentration have lower surface 

tension. Nonuniform surfactant concentration along an interface creates nonuniform normal 

and tangential forces in the fluid. This affects the fluid velocity, which in turn affects the 

surfactant distribution. For example, the convection of surfactant toward the stagnation 

points at the bubble's tip lowers the surface tension there and increases the bubble defor- 

mation. On the other hand, the tangential forces resist the convection of surfactant toward 

the bubble tip and so restrain the deformation of the bubble. Dilation/compression of the 

interface also results in a corresponding decreaselincrease in the surfactant concentration. 
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1.2 Background on the Mathematical Work 

It would be preferable to have mathematical solutions for a three-dimensional bubble inter- 

face problem for better understanding of the phenomena observed experimentally; however, 

these are difficult to obtain either analytically and computationally. The interface of the 

bubble is evolving together with the flow in the domains it separates, and this makes the 

problem intricate. Numerically computing the motion of interfaces with surfactant is even 

more challenging. The Navier-Stokes equations must be solved in a complex moving domain 

with prescribed jumps in the normal and the tangential stress across the interface separating 

the domains. The moving interface must be accurately simulated and topological transitions 

may occur as interfaces become ramified and break-up. Further, as surfactant is advected 

and diffused along the interface, there may be adsorption/desorption of surfactant from/to 

the bulk to/from the interface and this must be accurately accounted for. 

Significant work has been done on simplified models of two-dimensional drops and bub- 

bles. In most cases these two-dimensional models are found to behave similarly to the corre- 

sponding three-dimensional bubbles observed in experiments [2]. Tanveer and Vasconcelos 

[22] obtained some analytical solutions for the bubble interfaces with no surfactant by using 

the theory of the biharmonic equation into which the Stokes Equations in two-dimensional 

flows reduces. However, the solutions they present are for a certain class of polynomial 

initial bubble shapes, which restricts the scope of the investigations as the bubbles have 

certain symmetry. In particular, general bubble shapes and multiple bubble interactions 

cannot be studied by this approach. 

Kropinski [13, 141 overcomes both of these aforementioned limitations by numerically 

computing the evolution of bubble and drop interfaces in a clean, or no surfactant, flow. 

These computations use an accurate and efficient integral equation formulation of the prob- 

lem developed by Greengard, et a1 [lo]. The discretization of the integral equation is 

spectrally accurate and the matrix-vector products are computed using the Fast Multipole 

Method [7]. Another notable feature of these computations is the use of ideas presented 

in [ll] to remove the numerical stiffness from the evolution of the interface. By dynami- 

cally maintaining a mesh in which the marker points are equi-distributed, the time intervals 

are only linearly dependent on the space intervals. This implementation allowed long-time 

bubble simulations [13], as well as multiple particle computations [14]. 
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The computations in the above implementation are however limited in cases when the 

surface tension is constant, because surfactant is not involved. In the case where a bubble 

is coated with surfactant, the surface tension varies, and thus it alters the interface motion. 

Analytical solutions for surfactant-laden interfaces have been considered by Siege1 [20, 211 

and Gilmore [9], which use the afore-noted complex variable theory for a polynomial class 

of bubbles and investigate their steady-state or time-dependent surfactant concentration 

profiles. Numerical solutions to the time-dependent problem were also obtained among 

others by Milliken and Leal [16], Johnson and Borhan [12] and Pozrikidis [18], with the later 

employing an implicit finite-volume numerical method to the boundary-integral formulation 

of the problem. These approaches shed insight into the problem, but are not suited for 

simulating long- time, large-scale multiple interface interact ions. 

There was the need thus to develop efficient, robust, and highly accurate numerical 

methods for the varying surface tension case, of the kind developed for the no-surfactant 

flows in [13, 141, that can handle large-scale, long-time simulations. This motivated the 

incorporation of the surfactant concentration dynamics into the numerical model for the 

bubble interfaces in extensional flows. This algorithm would be most beneficial for large- 

scale problems consisting of a number of interfaces; however in this project we will only 

develop and analyze the single bubble interface problem, while laying the groundwork for 

the ideas to be used in further studies. 

1.3 Overview of the Thesis 

The focus nf this project is te develop a sex method that eficicnt!y computes niiimrica! 

solutions for the variable surface tension, or surfactant-laden, single bubble interface in a 

highly viscous strain flow. Incorporating surfactant dynamics into the problem involves an 

additional term in the stress balance boundary condition on the interface [20], and solving a 

convective-diffusive partial differential equation for the evolution of surfactant concentration 

[24]. For simplicity, in this project we focus on the case of insoluble surfactant where the 

surfactant remains bound to the interface and its flux into the flow is zero; however, the 

model can be modified to account for a non-zero surfactant flux. We will elaborate on the 

case of a single bubble interface in pure strain flow, though the model can be adapted for a 

variety of extensional flows, as well as heavier malleable particulates (drops). 
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In Chapter 2 of this thesis, we summarize the mathematical model of time-evolving bub- 

bles with surfactant in a slow viscous flow. First, the governing Stokes7 Flow equations are 

derived from the more general Navier-Stokes equations. The boundary conditions particular 

to the variable surface tension, hence surfactant, case are defined and the partial differen- 

tial equation for the surfactant concentration evolution is explained. The complex variable 

theory for the biharmonic equation is employed to derive the boundary integral equations 

that describe the interface velocity and thus bubble interface evolution, in a linear strain 

flow. 

In Chapter 3, we look at a new formulation of the problem that enables equal spacing 

for the marker points describing the bubble interface. This approach aims to side-track 

numerical stiffness, since the Lagrangian description of the interface is prone to point clus- 

tering in high-curvature regions and makes long-time numerical computations expensive. 

We next modify the partial differential equation for the surfactant concentration to fit this 

new formulation, as well as explain the parametrization of the integral equations. 

In Chapter 4 we examine in some detail the numerical implementation of the problem, 

how the equations are discretized and explain their suitability and efficiency. We investigate 

the integration methods chosen for the interface and the surfactant evolutions. The nature 

of the equations requires specific numerical methods to be used for the interface and the 

surfactant, and we explain the reasons behind the choices. 

In Chapter 5, we look at the accuracy, stability and convergence of the algorithm and 

check that the model behaves as expected. The analytical solutions of Siege1 [20, 211 and 

Gilmore [9] are used as test cases to validate our model. Next, we check the accuracy of 

the nu=erica! methods. The immerical stability of the algorithm is discussed last, as well 

as the high wave-number instabilities encountered and ways to alleviate them. 

In Chapter 6 we look at some examples to show the versatility of the numerical model in 

investigating some interesting physical problems. One inquiry is the formation of surfactant 

caps as the strain gets larger. We note some differences between surfactant-laden and 

clean flows. Another investigation is the role that surfactants play on bubble instability, or 

bursting. To show some advantages of the new model, we present as well time-evolutions of 

bubbles with non-uniform initial surfactant layers. 

In the last chapter we present a summary of our results and draw some conclusions on 

the work. We outline as well some problems to be tackled in future research. 



Chapter 2 

The Mathematical Model 

In this chapter, we present the equations and boundary conditions in the mat hematical 

model for the surfactant-laden bubble interface considered in our study. We follow closely 

the models presented in [22, 13, 141 for the constant surface tension case and [20, 211 for the 

variable surface tension problem case. In the first section we describe the equations governing 

the slow viscous flow. In the second section we present the equation governing the surfactant 

distribution. Next, we elaborate on the problem reformulation in the complex-variable 

theory of the biharmonic equation and the suitable boundary integral representations. 

2.1 Governing Equations for the Bubble Interface 

The equations for slow viscous flow are a special case of the Navier-Stokes equations. If we 

assume the fiow is incompressible, we have 

v . u = o ,  (2.2) 

where u is the velocity, p is the pressure, p  is density, p  is viscosity, and v = p/p  is the 

kinematic viscosity. Suppose that U and L are characteristic values of velocity and length. 

Equation (2.1) can be non-dimensionalized with the following substitutions: 

UP - L - u = uii, x = Lx, p =  y p ,  t = Gt. 



CHAPTER 2. THE MATHEMATICAL MODEL 

(2.1) now appears as 

where 

is the Reynolds number, and spatial derivatives are taken to be non-dimensional. R is 

the ratio of inertial forces to viscous forces and the value of this number characterizes the 

nature of the flow. When R is small (R << I), the inertial terms become negligible and the 

viscous and pressure terms dominate the flow. Low Reynolds number flow is also known 

as slow viscous flow, or creeping flow, and is described by the Stokes Equations, which in 

non-dimensional form are ' 

With the governing equations of slow viscous flow, we now consider the problem of an 

infinite cylindrical bubble placed in a two-dimensional flow of this type. Motion in the fluid 

will interact with the fluidlbubble interface causing it to deform. 

From now on, general vector notation is taken to be two-dimensional, i.e. x = (x, y, 0) 

and u(x, y) = (u, v; 0). We assume that we are dealing only with bubbles; i.e. the interface 

encloses a gas with negligible viscosity. The fluid domain is therefore exterior to the bubble. 

The case of a drop deformation, in which the interface is a barrier between two viscous 

fluids, is outside the scope of this thesis. 

Figure 2.1 illustrates the two-dimensional fluid domain and the bubble interface C. The 

unit normal n points out of the fluid domain, or into the bubble interior, and the unit 

tangent s is in the clockwise direction. The ang!e tangent to the bubble interface C is called 

9 and the local curvature is given by K = Bs. 
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Figure 2.1: A bubble in a n  infinite viscous fluid expanse and the domain geometry. T h e  
interface is  denoted by C ,  the uni t  normal n points in the interior and the uni t  tangent s i s  
i n  the  clockwise direction. T h e  tangent angle t o  C is  denoted by 8 and the local curvature 
i s  given by K = 8, 

The boundary conditions for this problem are given on the bubble interface C and in 

the far-field, as 1x1 approaches infinity. 

We consider the far-field conditions first. We assume that far from the bubble the 

velocity of the incident flow is linear. The velocity far-field condition appears as 

where 

Here wo is the vorticity of the far-field flow, while cxo and Po characterize its strain rate. For 

a pure strain flow, we have Po = O,wo = 0 and hence u, = $ (cxox, -cxoy). On the other 

hand, the pressure far-field condition is 

where the far-field pressure term p,, is a constant determined as part of the solution. 
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The bubble surface evolves in time making this a moving or free boundary value problen~. 

On the bubble surface we must ensure a balance of stresses, which is written as: 

-pn + 2pEn = a n n  + V , a  (2-9) 

where E is the rate of strain tensor whose j, k component is given by 

Indices j and k can take on the values 1 or 2 corresponding to the x or y-directions. Here, 

V ,  = ( I -nnt ) .V  is the surface gradient, which in two dimensions is a derivative with respect 

to arclength V ,  = sg. The curvature is denoted by n,  while a represents the non-uniform 

surface tension and is non-dimensionalized by ao, which is chosen to be a characteristic 

value for the surface tension, usually that used in the clean flow case. It is through a that 

the surfactant concentration influences the interface motion. Note that the model presented 

here does not account for a surfactant flux of surfactant to/from the exterior fluid domain. 

We can determine the velocity u in the exterior domain, particularly on the bubble 

interface, from the Stokes Equations. But this is a steady-state solution; how is the time- 

evolution of the bubble interface determined? This is done by using the kinematic boundary 

condition, which says that material point x on the interface advances according to the normal 

fluid velocity at that point, or 

We complete the problem description by presenting the non-dimensionalizat ion of the 

boundary conditions. We now choose the characteristic value U to be 

This choice conveniently removes characteristic values from the stress interface condition 

which after dropping the bars becomes: 



CHAPTER 2. THE MATHEMATICAL MODEL 

We now non-dimensionalize pressure, time, and the strain tensor by 

The appearance of the far-field condition (2.6) remains unchanged; however, we non-dimensionalize 

the far-field velocity by 

- um=9( 1 (Po - wo)/oo ) . 
(Po + wo)/ao -1 

where the quantities Po/ao and wo/ao are dimensionless, and we have introduced the 

Capillary number Q 

in terms of which we will characterize the flows investigated in this project. The Capillary 

number Q represents the ratio of the viscous forces to the surface tension forces. 

In the case of the pure strain flow, the shear parameter is zero, Po = 0 and so is the fluid 

vorticity parameter wo = 0; hence the far-fluid velocity is 

If case we wish to study the zero surface tension case, these choices in characteristic 

quantities for non-dimensionalization will not work, since there will be division by zero. It 

may be preferable to leave the problem in dimensional form. 
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2.2 The Surfactant Partial Differential Equation 

The non-uniformity of surface tension arises from its dependence on the surfactant con- 

centration r. This is given by an equation of state of the form 0 = @'). Though more 

complicated equations of state may be used [16, 211, we assume a linear relationship, best 

for dilute insoluble surfactant concentrations [16]: 

where p is a parameter that controls the degree of sensitivity of the surface tension to 

changes in the concentration of surfactant. This linear equation of state is simple, widely 

used [9, 16, 201, and it can be changed without re-modifying the model presented. 

As the exterior fluid moves about the bubble, surfactant will be spread across the bubble 

in a non-uniform layer. Other effects, like diffusion and interface motion change the surfac- 

tant distribution as well. An equation for the evolution of surfactant must be coupled with 

the slow flow equations to complete our mathematical model. 

Wong et al. [24] show that the partial differential equation governing the surfactant 

concentration r on the bubble interface C is: 

where ( u - s ) s  = Ss is the tangential interface velocity component, ( u . n ) n  = Un the normal 

component, x the local curvature and Ds the diffusivity constant. The term 1 denotes 
C 

the partial time derivative of the surfactant concentration on the interface C. 

The second term in equation (2.16) describes the influence of the bubble interface motion 

on the surfactant; it is where the Lagrangian description of the interface is accounted for. 

The third term describes the convection due to the external fluid with velocity u, motion 

tangential to the interface, hence the appearance of the S velocity component. The fourth 

term describes the curvature-driven motion which is perpendicular to the interface, hence 

the U velocity component, and last is the diffusion term. 

The boundary conditions for the surfactant concentration are intuitive: the surfactant 

is 2~-periodic since the interface C is 2~-periodic. 

Surfactant concentration is expressed in units of mass of surfactant per unit of interfa- 

cial length and is non-dimensionalized with the uniform concentration of surfactant in the 
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absence of flow, ro. We have 

aoro d x  v,r - -V, roao . (r (ii . s)s)) - -I'(V, roao - n)( i i .  n )  + - Dsro v:r 
Lp df LP LP L2 

where Pe, is the surface Peclet number, a parameter controlling the surfactant diffusion 

aoL Pe, = -. 
PDS 

The fluid velocity on the interface is u = Un + Ss, where U = u . n is the normal 
a velocity component and S = u . s  is the tangential velocity component. Using V ,  = sz and 

a V ,  f = s - Ef, and the Frenet Formula = Kn and = -KS we simplify the terms in 

equation (2.17) : 

Reassembling the terms, we obtain the surfactant equation in the arclength s element 

1 a2r 
KUF + -- 

Pe, as2 ' 

Non-dimensionalization does not change the general appearance of the equation of state 

a = 1 - PI'. We note that since the surface tension a cannot be a negative value, the 

equation of state gives bounds for the surfactant concentration, namely 0 5 r 5 g. This 

is a valuable insight, useful as a gauge of accuracy to discard non-physical solutions that 

might be obtained by inaccurately computed surfactant values. 

The surfactant-laden bubble interface problem in a viscous strain flow is now character- 

ized by the three dimensionless parameters Q, Pe, and P. 
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2.3 The Biharmonic Equation Theory 

It is well-known that the two-dimensional Stokes Flow problem specified in the equations 

(2.4, 2.5) can be recast in terms of a stream function 9 ( x ,  y) defined as u = alkldy, 

v = -d9/dx  so that 9 ( x ,  y) , and u = u + iv is the complex velocity. 9 ( x ,  y) relates to the 

fluid vorticity w(x, y) through 

and so obeys the Biharmonic Equation 

There is a complex variable theory for the biharmonic equation that can be exploited 

to derive analytical solutions [22, 201 or numerical methods [13, 141. According to it, any 

plane biharmonic function 9 ( x ,  y) can be expressed by the Goursat formula as follows: 

where 4(z) and ~ ( z )  are analytic functions of the complex variable z = x + iy, and the bar 

denotes complex conjugation. Re(f) denotes the real part of the function f ,  while Im(f) 

denotes its imaginary part. We define $(z) = xl(z),  and the analytic functions +(z) and 

$(z) are known as the Goursat Functions. 

Since u = (Qy, -9,), we can use (2.19) and (2.4) to find out that 

so w and p satisfy the Cauchy-Riemann Equations and w + ip is an analytic function. 

We define the complex quantity kV (x, y) = Z$(z) + ~ ( z )  = 9 (x, y) + i@ (x, y) . Then W 

satisfies the Biharmonic equation 0 = V2W = v29(z, y) + iv2@(x,  y), and it can be shown 
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But from (2.19), v2w = -w+iv2+(x,y)  =, so -v2+ is the harmonic conjugateofw, 

and thus we must have 

Since v2w = -(w + zp) = 44'(z), the pressure in terms of the Goursat Functions is 

We can find expressions for all the relevant physical quantities in terms of these Goursat 

Functions [15]. The velocity term is 

i(u + iv) = i(\Ey - i S X )  

while the stress term is 

The above notations allow for a reduction of the interface boundary-value problems in 

Stokes Flow to problems in analytic function theory. That is, we have to find appropriate 

harmonic functions q5 and $ that satisfy the boundary conditions. 
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First, we look at the stress interface condition. Let ( be a point on the boundary, 

n = nl + inn the inward normal, and s = sl + is2 the clockwise tangent unit vector, as 

shown in the Figure 2.1. Then we can write the stress boundary condition (2.11) as 

In terms of the Goursat functions the left hand side is 

Consider a point ( on the boundary of the domain (see figure 2.1). We know n = -i(, 

where s is the arclength traversed in the clockwise direction, so for a point ( on the boundary, 

the right hand side becomes 

We now substitute E n  = (,, and s = cs into (2.27) and use (2.28) as a point z tends to a 

point ( on the interface from above ( in direction opposite to n) to obtain: 

or simply 

We can integrate (2.29) w.r.t. s and without loss of generality put the constant to zero: 

- - 1 
lim (4  - z4' - +) = --oCs. 

z+(+ 2 

Both 4 and $I, for which we need to find suitable representations, must satisfy (2.30). 

On the other hand, these Goursat functions must capture the boundary conditions for 

the velocity and the pressure as lzl -+ m, as explained in [22]. From (2.24) in this limit it 
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follows that 

where the functions p, and B(t)  are determined as part of the solution, zC is an arbitrary 

point inside the bubble, and we define the function 4, as 

We note that according to the equations (2.25) and (2.24) the choice of B(t)  does not 

affect the velocity or pressure fields. 

Using the equations (2.25) , (2.31) and the far-field velocity (2.12) we can find 

where the function $, is 

Again, we state that 4, and $, are suitably cliosen analytic functions that according 

to (2.25) satisfy 

and u,, the far-field velocity is 

Q u, + iv, = - ( ( 1  + 
2 

For a pure straining flow, the strain parameters are Po = 0, wo = 0. This gives us the 

following far-field values 

Q- u, + iv, = -2 
2 
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2.4 The Sherman-Lauricella Integral Equations 

Greengard et al. [lo] use the Sherman-Lauricella equation to formulate integral equation 

methods for solving a variety of boundary-value Stokes Flow problems. Kropinski [13] uses 

these integral equations for researching interface problems in Stokes Flow, in bounded or 

unbounded fluid domains. 

We outline here a derivation of the integral equation that is associated with interface 

problems in Stokes Flow in unbounded domains, since it is the problem at hand. The $(z) 

and $(z) Goursat functions that satisfy the boundary conditions of our problem are assumed 

[lo, 13, 141 to have the following integral representations: 

where w (t, t) is an. unknown complex density on the boundary C,  and fc is used to denote 

principal value integrals. 

If we let z tend to a point C on the interface C, when substituting the representations 

(2.35) into the equation (2.30) , and use the formula for the limiting values of Cauchy-type 

integrals, we obtain the Sherman-Lauricella integral equation 

The pressure 

well-conditioned, 

term representations must be chosen so that 

so the far-field pressure p,(t) is chosen to be 

the integral equations are 

(2.37) 

where z, is an arbitrary point inside the bubble. The above fixes a value for the pressure at 

(an arbitrarily chosen) value for z,. The gas pressure inside the bubble then is 
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For the fluid velocity on the interface, when substituting (2.35) into the kinematic con- 

dition (2.25), we have the integral representation 

The value of the complex weight w(C, t)  is found from the solution of the Sherman- 

Lauricella equation (2.36), and then it is used to find the velocity according to (2.38). The 

velocity is in turn used to evolve the interface via the kinematic condition (2.10). 

To find the value of w((, t)  from (2.36), the equation needs to be invertible and this 

seems a daunting task, given that the integral kernels are singular. However, it is a possible 

task, as was demonstrated in [13] when substituting the simple case t - c = re2". Assuming 

the contours C are themselves smooth, the integral equation ensuing after the substitution 

is a Fredholm equation of the second kind with smooth kernels, hence the Fredholm alter- 

native applies and the equation is invertible for w(C, t). We will not elaborate here on the 

invertibility of the general case of (2.36), but a complete proof of it can be found in [17]. 

We can further simplify the singular kernels of the integrals by noting that 

The Sherman-Lauricella integral equations now become 

+ u, + iv,, (2.40) 

and this is the form we will use for the remainder of this thesis. 
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The Equal Arclength Frame 

Many interface tracking methods, (e.g. see 1181) follow the time integration of the equations 

we described in the last chapter. However, the Lagrangian description of the problem, in 

which the interface marker points are advected by the fluid velocity, leads to point clustering 

at regions of high curvature, or inadequate interface resolution; hence it is not the best 

method for long-time interface simulations. The stability constraint on the time-step is 

At  = O(A3), where AS = min(As) is the smallest distance between the marker points 1131. 

A remedy to the problem was proposed by Hou et al. in 1111. They noted that since the 

shape of the interface is determined solely by the normal component of the velocity U = u.n 

in the kinematic condition (2.10), a tangential component which bears no consequence in 

the motion itself can be introduced: 

dx - 
dt  

= U n  + Ts.  

The component T is chosen so that it dynamically maintains the marker points at equal 

arclength spacing. This is called the equal arclength frame. The formulation resolves the 

issue of grid point clustering and eases the stability constraint. 

When non-constant surface tension is involved, the surfactant equation has to be solved 

as well. The convective-diffusive surfactant equation is stiff and a linear stability analysis 

gives a At = O((AS)~)  time-stepping restriction for explicit methods. To integrate the 

equation, we use Implicit-Explicit methods [3, 41, which treat the stiff terms implicitly. The 

time-stepping for it is then linear with respect to the mesh. The linearity is reinforced by the 

choice of T, and the time step is At  = O(As) since As is uniform throughout the interface. 
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3.1 The Interface Motion 

We explain here in detail how Kropinski in [13, 141 successfully applied the equal arclength 

frame to the Stokes Flow problem in two dimensions. 

A clockwise parametrization on the interface is introduced, as in figure 2.1, so that the 

interface is described by the variable ((a, t) = x(a, t )  + iy(a,  t )  where a E [O, 2x1. The 

normal and the tangent are then given by: 

where s is the arclength, O the angle tangent to the interface and s, = I(,). One can then 

rewrite (3.1) as: 

In terms of the arclength s and the tangent angle, we have C, = s,eie. Differentiating 

with respect to t ,  we obtain 

The derivative of (3.2) with respect to a is 

dCa -- - (UO, + ~ , ) e ~ '  + (TO, - ~,) ie" .  
dt 

Equating the right-hand sides of the two above equations, one obtains the evolution equa- 

tions for s, and O 

For an  equal arclength spacing, s, needs to be uniform throughout the curve, thus 

which is the average over a period. 



CHAPTER 3. THE EQUAL ARCLENGTH FRAME 21 

The equal arclength frame is reinforced by a particular choice of T. This T is found by 

differentiating (3.4) and using (3.3) 

If s, satisfies (3.4) initially, then the choice of T above ensures the equal arclength constraint 

in time. 

The evolution equation for s, in equal-spacing can be 

ds, - 1 2" 
- UOa~dal. 

now recast as 

3.2 Modification of the Surfactant Equation 

We previously explained that the surfactant dynamics on the bubble interface is governed 

by the following non-dimensional partial differential equation 

where < is a point on the interface. 

We noted in the last chapter that the velocity on the interface is computed by solving 

the integral equation (2.36). This complex velocity is written as u + i v  = U n  + Ss, where 

U = u n is the normal component and S = u .s is the tangential component. On the other 

hand we have equation (3.1) that describes the kinematic condition in the new formulation, 

namely 2 = U n  + Ts. We substitute these in the equation for the surfactant 

ar q r s )  
= ( U n + T s ) . s -  - -- 

1 d 2 r  
K U ~  + -- as as Pe, ds2 ' 

The second term can be simplified to 

d r  d r  
(Un + Ts)  .s- = T- as as ' 

hence the surfactant equation in the s element now becomes 
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For the a-parametrization of the equation we substitute $ = && and rc = 88 as = 1" s, a, 

and modify the terms of the surfactant equation as 

The interface is equi-parametrized and s,, = 0, so the last surfactant term is 

Assembling all the terms, we obtain the surfactant equation in its final form 

where I? = r ( a ,  t) ,  s, = s,(t), T = T(a ,  t), U = U(a, t)  and S = S ( a ,  t). 

The above equation is now solved together with the interface evolution equations de- 

scribed in the previous section. 

The surfactant 2~-periodicity boundary condition is 

Since we are interested in the insoluble surfactant problem, i.e zero surfactant flux into 

the outside fluid, the total amount of surfactant on the bubble surface is fixed. Hence the 

total amount of surfactant on the interface is not changing in time 

This is a rather 

numerical solutions. 

useful constraint and will be utilized to check the accuracy of the 
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3.3 The Parametrization of the Integral Equations 

For completeness, we describe how the Integral Equations transfer to the a-parametrization. 

The complex weight w(<, t) featuring in the integral equations is found at every point 

<(a ,  t)  on the interface and we write w((, t)  = w(a, t). The Sherman-Lauricella integral 

equation (2.39) is written as 

where we remind the reader that the far-field pressure term is 

and we recall the values of $, and $I, from (2.34) for the pure strain flow to find 

We parametrize the complex velocity integral equation (2.40) in a similar way, and we 

obtain 

+ u, + iv, (3.13) 

where the far field velocity for pure strain flows (2.34) is 

Q- u, + iv, = -<(a, t). 
2 
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For simplicity, we will write the Sherman-Lauricella integral equation (3.10) and the 

complex velocity integral equation (3.13) as 

w(al, t ) ~ ;  (((a, t ) ,  ( (a l , t ) )  da' + i (S(a,t) ,  C(d, t ) )  da' 

where we have suitably defined the integral kernels K1, K2 and K; to be 

Finally, we remind the reader how the velocity components U and S are obtained from 

the complex velocity u + iv by 

therefore, 

These velocity components can now be used in the computation of the other quantities, 

for example interface position ( from (3.2), the equi-parametrization velocity T from (3.5), 

the geometry variables s, and 0 from (3.3), the surfactant concentration I' from (3.8) and 

the surface tension a from (2.15). 
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3.4 The System of Time Evolution Equations 

We summarize here all the equations for the bubble in a linear strain flow. 

ds, 1 2" 
- = - 1 Ue,.dal 
dt 27r 

S = Re -(u + iv) (;: ) 
2= - 

w(al) K; ( ( (a ) ,  ( (a ' ) )  da' + i  1 w(d)K2 ( ( (a) ,  ((a'))  d d  + !$ (3-24) 

w + lZn w(a1)K1 (( (a) ,  ((a'))  da' + Lr w((.'>K~ ( ( (a) ,  ((a')) da' + Ws,dd 

where C' = ( (a ,  t ) ,  s ,  = s,(t), 0  = B(a, t ) ,  T  = T(a,  t ) ,  U = U(a, t ) ,  S  = S(a, t ) ,  u + iv = 

(u + iv)(a, t ) ,  w = w(a, t ) ,  p, = p,(t), u  = u(a, t ) ,  and I' = r (a ,  t ) .  

We have to supply ( (a ,  0 ) ,  r (a ,  0 ) ,  P ,  Q ,  Pe,, zc, and the rest of the quantities can be 

evolved in time according to the above equations. 
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The Numerical Implementat ion 

In this chapter we explain how to numerically implement the problem of a bubble in a 

pure strain flow described by the equations (3.19-3.28). The first section explains how 

the spatial derivatives are numerically discretized. The second explains how the integral 

equations are discretized. The third section explains the numerical integration methods for 

the interface equations, while the final section deals with the numerical integration method 

for the surfactant concentration. 

4.1 Spectral Description of the Functions 

We start with an initial bubble interface, specified at N even points. The Equi-arclength 

Parametrization of the marker points on the interface is obtained by following the procedure 

outlined in [ll], which involves solving, by Newton's Method, a sequence of nonlinear equa- 

tions for the N marker points a t  equal arclength intervals. Then the interface position C is 
uniformly discretized in a ,  where A a  = 2 ~ l N  is the mesh spacing, aj = 2 ~ j / N ,  1 < j I N 

and fj is a function's value at the marker point. 

The interface C is 2~-periodic, and so are the velocities U, T, S, the arclength element 

s,, angle 8, and the surfactant concentration I?. The geometry of the problem naturally sug- 

gests the use of Fast Fourier Transforms in computations. By representing the distribution 

of these functions in Fourier space, computing spatial derivatives is reduced to multiplica- 

tion. Next we explain how the methods of Fourier Diferentiation and Fourier Integration 

are numerically implemented. 
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Let the function f be discretized at the N marker points aj, and denote these points by 

fj. Let its Discrete Fourier Transform be 

N 
N N 

f IC - - x fje-"aj, for k = -- + 1, ..., - 
j=1 

2 2 '  

Derivatives of order m, denoted by D r  fj, are given at the marker points as follows 

1 
f j  = 0;fj = - C jke"aj 

N 
for j = 1, ..., N, 

k=-N/2+l 

m 1 N/2 
8, f j  = D r  fj  = - N x (ik)mfke"aj for j = 1, ..., N, 

k=-N/2+l 

while the integrals, with the integration constant denoted as Fo, are computed as 

The Fast Fourier Transform is a computationally efficient way to calculate the Discrete 

Fourier Transform and its inverse as given above with N a power of two, with a O ( N  logz N) 

cost. The computations are spectrally accurate, meaning convergence is exponential. They 

can therefore be used to produce highly accurate computations. 

We must note however that accuracy is lost as a function becomes more complex. In 

long-time computations, a function may become underresolved. In that case, we double 

the number of points using the Fourier Interpolation Method, which effectively pads the 

spectrum with N zeros as outlined below: 

N 2fk+N/2 for k = -N + 1, ..., -T, 

Gk = 0 N N for k = -T + 1, ..., p, 
N 2fk-N/2 for k = T + 1, ..., N, 

Now g is f is effectively interpolated at 2N points, with a spectrally accurate calculation. 
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4.2 Discretization of the Integral Equations 

We mentioned before that to discretize Sherman-Lauricella integral equations we will follow 

the approach used by Kropinski in [13, 141. We briefly outline here the main points of the 

approach and explain how it is achieved numerically. 

First, the number of points on the interface is doubled to N' = 2N and the step length 

is defined as h = 2n/N1. At each point Cj, we have to find the associated wj, by solving the 

equations. Let denote the pseudospectral derivative of < w.r.t. a. The discretization 

of the Sherman-Lauricella integral equation then reads 

where 

The kernels Kl (Cj, Ci) and K2 (Cj, Ci) are given by 

When Cj = Ci, K1 and K2 should be replaced by the limits, as explained in [lo, 131, 

where K is the curvature, calculated pseudospectrally using 
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The equation (4.1) for w results in a linear system for w 

where [Kl], [K2] and [HI denote N' x N' matrices with the entries [K1Im1 = K1 ((1, C,) and 

[K2Iml = K2 ((1, Cm), [HIml = hsa, while C denotes the complex conjugation operator. 

The system is solved iteratively using the Generalized Minimum Residual Method, or 

GMRES, until subsequent iterations are within a certain specified tolerance. We stress that 

the iterations are numerically convergent as the Sherman-Lauricella integral equations are 

F'redholm Integral equations of the Second Kind; and in fact, the number of iterations are 

guaranteed to be bounded independently of N 110, 131. 

The matrices [K1] and [K2] are dense; the most computational work in each iteration 

is done when multiplying the full matrix to vectors. A straightforward multiplication takes 

0 ( N 2 )  steps and is expensive. The products are instead computed in O(N) time using 

the Fast Multipole Method, or FMM, developed by Carrier et al. [?I. This brings the total 

computational time of the iterative solver down to O(N) from the 0 ( N 2 )  that GMRES 

takes to iteratively solve full linear systems, or 0 (N3)  that a direct solver would need. 

Once the solution for w j  is found, we calculate the complex interface velocity (u + iv), 

where K2 (Cj, Ci) was defined previously and, similarly as in [lo, 131, 

- 
h [Cali [Cali +-) K I G ,  6 )  = -211(C,-C, 

C, - C, 

In vector notation, with the matrix [Ki] defined from [Kilml = Ki(C1, Cm) and with C 

denoting the complex conjugation operator, the discretized velocity equation reads 
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The quadrature rule used for the velocity calculation is spectrally accurate. However if 

only N points are used in the velocity calculations, we would start to see the growth of the 

modes near the Nyquist frequency when the curves become significantly deformed. These 

high-wavenumber instabilities are usually suppressed with high-order filters. Baker and 

Nachbin analyze in [5] these instabilities in the vortex sheet motion context and through a 

linear stability analysis show that they arise from the velocity not being adequately resolved. 

They further show a spectrally-accurate mid-point discretization results in a more stable 

method. To deal with the high-wavenumber instability, Kropinski in [13, 141 calculates the 

velocity at  twice the number of points in physical space using an alternating point  trapezoid 

rule and then truncates the spectrum to the original size. The resulting method appears to 

be stable, as the spectrum is effectively padded in all the velocity calculations. We employ 

the same quadrature, the alternating point trapezoid rule, for the velocity calculations at 

double the number points, but acknowledge a more thorough stability analysis is needed. 

4.3 Time Integration Methods for the Interface 

First we look at the interface evolution equation 

The time integration method used to evolve the above is the Explicit Midpoint method, a 

two-step second order Runge-Kutta method. Denoting by n the time step so that tn = nAt 

we have 

I"+' = (" + AtM [("+1, p+i 'I . 

We emphasize that all the quantities, the interface position (, velocities U, S, T, angle 8, 

curvature a = B,/s, and so on are evaluated at time tn+t = (n+  ; ) a t  in the above process, 

as well as at  tnS1 = (n + 1)At. They will be needed in evolving in time the other quantities 

involved, for example arclength element s, or the surfactant concentration I?. 
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Next, we look at the arclength element s,. Since T, = - U0, + & ~,2' UB,,dal, 

For the s, update, we use the second-order Explicit Midpoint Runge-Kutta as well. 

Denoting with n the time-step, so that t = nAt, the update is: 

The above update is written to emphasize that s, and other interface variables are 

computed at time-step n + $. Their use will be clearer in the surfactant evolution update. 

The time-integration scheme for s, has to be fully explicit, because it is an element 

used in the surfactant evolution equation. However, the scheme for the interface evolution 

need not be; indeed a n  explicit-implicit approach has been often taken in similar interface 

problems. A Small-Scale Decomposition [ll] of the problem can be done to identify the stiff 

terms in the interface evolution equation and treat them implicitly. This would lead to a 

less restrictive stability condition for the time step. Implicit-Explicit, or IMEX methods, as 

in [3], would then be the time-integration schemes to use, as they allow for a larger step size. 

This approach is taken by Kropinski for [13, 141 in the clean-flow problem. She compares the 

performance of fourth-order IMEX methods and that of the fourth-order Explicit Runge- 

Kutta methods for the interface evolution and notes that the stability requirement of the 

former appears similar to the Runge-Kutta method and the scheme still does not achieve 

the same accuracy. Thus exploit here only explicit Runge-Kutta schemes for the interface 

evolution. Moreover, they have added bonuses since they are self-starting and easy to use. 

The Fourier spectrum of the interface is checked during the computations and if the 

modes near the Nyquist frequency rise above the round-off, the number of marker points N 

is doubled to keep the calculations well-resolved. To maintain a stable step size, the time 

step is then updated according to 
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4.4 Time Integration Methods for the Surfactant 

The time integration scheme we use for the surfactant evolution is the second-order Implicit- 

Explicit (IMEX) Midpoint method, a two-step Runge-Kutta scheme investigated in [4]. 

IMEX methods are a natural choice for these stiff convection-diffusion PDEs. One might 

ask why a more well-known method, like SBDF or CNAB [3], was not chosen, and the 

reason is the backward-differencing-formula type methods are best for equations where the 

diffusive part plays the most important role. In our surfactant convection-diffusion equation, 

especially for a large Peclet number, the surfactant dynamics is dominated mostly by the 

transport due to the fluid movement. Ascher et al. in [4] explain that in these cases the 

Implicit-Explicit Runge-Kutta methods might be a better choice, since they have a wider 

stability region and are self-starting. Moreover, the scheme we choose, other than having 

nice properties (symmetric), coincides with our choice of the integrator for the interface 

equations, which have to be solved simultaneously. We can thus utilize the same function 

evaluations and values at  each step. 

We explain in detail here the process of solving the surfactant equation with the IMEX 

Midpoint method. We can divide the convective and diffusive parts of the equation as 

1 1 d 2 r  
G(F, t)  = --- 

Pe, s: da2  ' 

Taking a Discrete Fourier Transform of the surfactant partial differential equation, 

where k denotes the wavenumber and the F and G denote the discrete Fourier transform of 

the functions F and G respectively. 

We discretize this equation with a two-step IMEX Midpoint rule. It treats the convective 

part with an explicit Midpoint rule and the diffusive part with an implicit Midpoint rule. 
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We obtain the following updates, with n denoting the time step 

We note that since s, = s,(t), the Discrete Fourier transform of the diffusive part G is, 

hence the updates look like 

from which we solve for Pn+' and via a Discrete Inverse Fourier Transform get rn+'. The 

convective term F is found explicitly in space, then a Discrete Fourier Transform is taken 

to obtain F to be used in the above solver for the surfactant. 
1 n+ 5 

In the above surfactant update, s, , s;+' are previously evaluated, so the arclength 

element needs to be updated with explicit methods. The choice time-integrating schemes 

for the interface and arclength element need to agree with the scheme for the surfactant . 
All the methods involved in the calculations are second order; therefore, the overall 

method accuracy is second order. Fourth-order Runge-Kutta methods could be used in a 

similar way, but for our purposes second order is sufficient. 

The Fourier spectrum of the surfactant variable is checked during the computations and 

the modes near the Nyquist frequency rise above the round-off, the number of points N 

doubled to keep the calculations well-resolved. The time step is then updated using 

Furthermore, the surfactant computation is prone to high-wavenumber instabilities be- 

cause of the presence of the nonlinear terms in it involving the velocity. Again, we calculate 

the explicit part F ( r ,  t)  at double the number of points, just as with the velocity calculation. 



Chapter 5 

Accuracy, Stability, Convergence 

In this chapter we investigate the accuracy, stability and convergence of the algorithm and 

look for ways to  validate our numerical scheme. The first section compares our results to 

the analytical solutions for a certain class of polynomial bubbles. In the second section we 

look at the order of convergence. The last section investigates the numerical stability of 

the algorithm. The algorithms here have been implemented in Fortran, the tolerance for 

GMRES iterations is set to 10-lo, and the simulations are run in a PowerMac G5 computer. 

5.1 Comparisons to Analytical Solutions 

Tanveer and Vanconcelos [22] exploit the complex variable theory to derive analytical solu- 

tions for a polynomial class of time-evolving bubbles in two-dimensional Stokes flow with 

constant surface tension. Siege1 in [20, 211 and later Gilmore in [9] modify these solutions 

to include non-uniform surface tension and surfactant dynamics. We use their analytical 

solutions as a validity test for our model. Although the analytical solutions in [20] are 

for different polynomial bubble shapes, we concentrate here on bubble profiles that are 

symmetrical with respect to the x-axis and have (N + 1)-fold symmetry. 

We consider a bubble in a strain flow, undergoing no expansion/contraction; thus the 

area remains constant. The initial bubble shape is described by 

where a(O), bN(0) are real positive, and the bubble area is A(t) = r[a2(t)  - ~ b % ( t ) ]  = A(0). 
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As argued in [22], [20], the bubble will continue to evolve according to 

and the evolution of the parameters a(t), bN(t) are found [20] through 

d(ablv) -- 
dt - - (N  + l ) a b ~ I o ( a ,  b ~ )  + Qa26~+2,3, (5.2) 

and for the varying surface tension a(v, t)  = 1 - pr(v ,  t)  we have 

The second integral in (5.3) vanishes because 

where we have also used the insolubility of surfactant, ~f~ r(vl)  1 Z,I (v') ldv' = 271.. 

Using (5.1) we see that IZ,I (v', t )  I = [a2 + N2b& - 2NabN cos(2v1)] 'I2, and for (5.3) we 

obtain, similar to [13] and [9], 

and K is a complete elliptic integral of the first kind [I], defined by 

K ( f )  = 1'12 (1 - f sin2 (0))-'12dri 

Of course the above computes only the interface evolution. In this frame of reference, 

the surfactant will evolve according to the following equation, as found in [20], [9]: 
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where 

Here X is the Hilbert transform, a skew-symmetric linear operator, diagonalizable by the 

Fourier Transform, hence effectively computed in Fourier space using 

The analytical solutions for the surfactant-laden bubble interface now consist of solving 

the equations (5.2) and (5.4) given initial bubble and surfactant profiles, as well as the 

parameters defining the flow and surfactant evolution, ,6, Q and Pe,. 

The simplest case to check is that of an initially circular bubble profile with radius 1. 

In this case the parameters are N = 1? a(0) = 1 and bN(0) = b(0) = 0: and the equations 

defining problem become 

1 a 4ab 
lo(a' b, = -aK [(a + b)2] 

We integrate this system of equations using a fourth order Explicit Runge-Kutta method 

to achieve the highest accuracy we can afford in the analytical solutions z(v, t) and r(v,  t). 

To compare with our numerical model, in which the interface <(a,  t)  has equi-arclength 

spacing, we have to equi-parametrize the analytical solution z(v, t)  for the interface and get 

z(al,  t). This is achieved by following the procedure outlined in [Ill. Next we use Fourier 

Interpolation to find the surfact ant values F(al,  t)  from the values r (v, t). 
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For the following comparison the parameters are P = 0.1, Q = 0.15, Pe, = lo3, the 

spatial mesh has N = 128 points and and the time-step is At  = 0.001. (For the analytical 

solutions, the integrating method is explicit, so we need At  = 0(1/N2)) .  We compare the 

bubble profiles z ( d ,  t )  and z(a,  t )  and plot the difference in Fig. 5.1, and do the same for 

the analytical surfactant solution I?(al, t )  and our numerical solution I?(&, t )  in Fig. 5.2. 

According to the analysis in [20], for these parameters, the bubble will evolve to a steady- 

state, and so will the surfactant concentration I?. The flow advects the surfactant toward the 

bubble tips, where it accumulates and eventually forms surfactant caps, or areas of non-zero 

concentration, whereas the other interface parts are left devoid of surfactant. 

Figure 5.1: Comparison with the analytical solution: the bubble profiles for the analytical 
solution z(al) and the numerical solution z(a) .  The second plot shows their differences. 
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Figure 5.2: Comparison with the analytical solution: the surfactant profiles for the analytical 
solution r(al) and the numerical solution r(a). The second plot shows their differences. 

We notice that both for the bubble interface z(a)  and for the surfactant r(a) the relative 

error to the analytical solution is 0(1oP6), or ~ ( ( n t ) ~ ) .  This can be seen in table 5.1, where 

we write the results for Ilz(al) - z(a)II, and Ilr(al) - I'(a)lJ,, or the maximum errors 

between the solutions. 

The area of the bubble in the analytical solutions, namely 

can also be compared to the numerically computed bubble area in our solutions. Another 
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Table 5.1: Comparison with the analytical solution: the errors at time T=074,8, ... ,3Z. 

( a )  - ( a )  

variable whose value we can predict for the analytical solutions is the maximum curvature 

1 . 0 0 0 0 ~ 1 0 ~ ~  / 7 .4219~  1 7 . 3 3 3 4 ~ 1 0 ~ ~  1 l . 0 0 5 1 ~ 1 0 ~ ~  I 

( a )  - ( a )  
( a ' )  - ( a )  

K,,,, as shown in [13], computed according to 

so we use this information to compare the accuracy of the curvature in the numerical calcu- 

lations as well. Table 5.2 shows the errors in Iz(a)l, r(a) , area A and maximum curvature 

K,,, for a few different initial time steps Ato. 

The simulations are run for the same parameters as in the previous example, namely 

/3 = 0.1, Q = 0.15, Pe, = lo3, up to time T = 1. Comparisons are made to the analytical 

solutions which are computed using an explicit Runge-Kutta method of order four. 

T = 20 

9.2326x10-~ 
8.0755x10-~ 

T = 24 

4.8201 x 
1.0723xlO-~ 

T = 28 

9 .4566~  lop6 
9 .6307~ lop6 

Similar comparisons for cases with different parameters P, Q, Pe, can be shown, but they 

T = 32 J 
6 .8305~  
6.9850xlO-~ 

Table 5.2: Comparison with the analytical solution: the errors for diferent At .  

all confirm what we see in this example: our numerical solutions are convergent and accurate 

to 6 ( ( A t ) 2 )  for this polynomial class of bubbles. This comparison with the analytical 

solutions validates our model. We can go further to infer that numerical solutions for non- 

Ato 
0.001 
0.0005 
0.00025 

0.000125 

polynomial bubble profiles are going to be convergent and second order accurate as well. 

Error in Iz(a) 1 
7.02567 x 
9.00000 x 
2.11794 x lo-' 
8.33482 x lo-' 

Error in A 

1.74881 x 
4.37092 x lo-' 
1.09210 x lo-' 
2.73145 x 10-lo 

Error in r(a) 

6.00921 x 
9.21277 x lou7 
4.57183 x lo-' 
4.00948 x lo-' 

Error in nmaX 

9.01516 x 
1.13516 x l0W7 
5.27671 x lo-' 
6.32970 x lo-' 
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5.2 The Order of Temporal Convergence 

We can check the numerical accuracy of the calculations in several ways. The easiest two 

ways are to check the area of the bubble and the total amount of surfactant on the bubble. 

They should remain constant in time, the first because we assumed the bubble is non- 

shrinking and non-expanding and the later because we assumed the surfactant is insoluble. 

We verify the accuracy of our surfactant calculations by checking the error in the total 

amount of surfactant. The total should remain fixed, i.e. the surfactant flux into the outside 

fluid is zero. However when numerically computing the values, we expect the accuracy of the 

numerical integration schemes to be reflected in the surfactant total difference A ( r  Total), 

because 

,t 12= r (a', t) S, (t)dal 0 = A ( r  Total) = - 

and I? and s, are 0 ( (At )2 )  accurate. Thus we expect the difference in the total amount of 

surfactant to be 0( (At)2) .  

FourierIntegration is used to compute the integrals involved in the flux, and we calcu- 

late the difference between the surfactant total values at time-steps n and n + 1 

Similarly for the bubble area, the error in time should be zero. The area difference AA 

in each time-step is 

Figure 5.3 shows how the surfactant total and the bubble area are changing in time. 

Figure 5.4 shows how the numerical surfactant flux and the area are changing with respect 

to At for a simulation with the same parameters used in the previous section at the final 

time T = 1. In the same figure we have plotted the error in the interface ( (a) ,  the error in 

the surfactant r(a), the error in the area A and the error in the maximum curvature Kmaz 

at time T = 1, because, as we discussed in the previous section, we can check these values 

for the flow parameters used in the simulation. 

From figure 5.4 we can now infer that the overall accuracy of the solutions is  at)^). 
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Figure 5.3: The errors i n  the bubble area (left) and surfactant total (right) for four diflerent 
time-steps. Notice that the errors do not fall much below O(10 - lo ) ,  the tolerance set for the 
GMRES iterations. The  errors start to  level at o ( ( A ~ ) ~ )  for each of the A t - s  here, and 
that is the numerical scheme's accuracy. 

Figure 5.4: The numerical accuracy i n  the calculation of the bubble area, total amount  
of surfactant, interface position and surfactant concentration. W e  notice from the errors' 
slopes, which are all two as seen i n  the comparison with the c ( A ~ ) ~  line, that second order 
convergence is achieved i n  the computations. 
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5.3 The Numerical Stability of the Schemes 

We mentioned in the previous chapter that the velocity needs to be calculated in double the 

number of points to suppress the high-wavenumber instabilities that would usually arise in 

such computations. We do the same with the explicit part of the surfactant equation, since 

the presence of the velocity terms there is suspected to cause high-wavenumber instabilities 

in the surfactant evolution. These can be seen in the figure 5.5 from the surfactant variable's 

Fourier Transforms for an unpadded and a padded simulation of a time-evolving bubble. 

We investigate the stability of the scheme by checking the eigenvalues of the Jacobian 

matrix of the interface equation and surfactant equation (3.8) 

The entries of the ( N  x N )  Jacobian matrices are calculated as follows: 

where A is a "sufficiently small" number, which for our purposes we take to be lop6. The 

eigenvalues of the Jacobian matrices 3 5  and 3r are then computed and plotted. 

In figures 5.6 - 5.8 we show the pseudo-eigenspectra of 3 5  and 3r for an initially circular 

bubble expanding in a flow with parameters Q = 0.02, Pe, = lo3, ,B = 0.1 at time T = 0.5. 

The eigenspectra plots look similar for computations with other stable flow parameters. 

From the plots, we notice that the unpadded computations appear unstable, whereas the 

padded ones are stable. As N increases, we see an appearance of the real positive eigenvalues 

in the unpadded interface and surfact ant computations. These eigenvalues' magnitudes grow 

with increasing N.  The eigenspectrum plot of the interface in Fig. 5.6 is truncated and 

the largest negative eigenvalues are not shown, but they increase linearly in N ,  suggesting a 

stable time-step of 0(1 /N) .  This is more clear with the surfactant spectrum in Fig.5.7, since 

we have rescaled the plots to make evident that the eigenvalue magnitudes grow linearly 

with N. This confirms a stable time-step size of 0 ( 1 / N )  for the surfactant calculation. 
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Figure 5.5: The Fourier transforms log(Pk) of the evolution of an initially circular bubble 
with parameters Q = 0.51, Pe,  = lo3,  ,!3 = 0.1 at times 0:0.5:1 in  an unpadded (top) and 
padded (bottom) computation. The upper plot shows high-wavenumber instabilities arising, 
while the bottom plot shows a simulation where the surfactant variable I' is well-resolved. 
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Figure 5.6: The instantaneous eigenvalues of the Jacobian Matrix for the interface (. 
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Figure 5.7: The instantaneous eigenvalues of the Jacobian Matrix for the surfactant I?, scaled 
by 1/128, 1/256 and 1/512 respectively to display the full spectrum and the modes linear 
growth. 
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Figure 5.8: Local plot of the instantaneous eigenvalues of the Jacobian Matrix for the sur- 
factant I' scaled by 1/128, 1/256 and 1/512 respectively for comparison. 
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Various Numerical Investigations 

In this section we present a few numerical calculations to show what our numerical model 

is capable of doing, as well as look into the various physical phenomena that occur when 

surfactants are present on the bubble interface. The first case looks at the formation of 

surfactant caps. Section two compares the surfactant-laden interfaces to the clean interfaces. 

The third investigation aims to show how surfactant affects the bubble shapes in high 

Capillary number flows, and in particular how it affects bubble breakups. The last section 

looks at the deformation of bubbles with a non-uniform initial surfactant layer. 

6.1 Surfactant Caps on Bubbles 

Siege1 in [20] provides a detailed analysis to determine the parameters ,8, Pe, and Q for 

which the bubble interface is stable, reaches a steady state, and so does the surfactant con- 

centration. Moreover, he provides an analysis to show for which parameters the surfactant 

caps are formed. Caps are the areas on the bubble where there is non-zero surfactant layer, 

when the rest are bare of it. In this section we look at a few cases of terminal surfactant 

shapes for various parameters, in particular surfactant caps. 

The first plot in Fig. 6.1 shows the settling of the bubble interface and surfactant 

concent.ration for p = 0.1, Pe, = lo3 and Q = 0.15. The second figure looks at the 

surfactant caps occurrences when Q is doubled. Here the caps are more obvious. The 

last example in Fig.6.1 is with Q beyond the critical Capillary number for surfactant cap 

formation (Q = 0.40 for this ,8 and Pe, from [20]), although for these examples steadying 

of the interface and surfactant profiles still happen. 
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6.2 Comparisons for Diminishing Surfactant Influence 

A question many may ask is "How do the surfactants affect the bubble interface profile and 

how does the surfactant-laden flow differ from the clean flow?". We address this question 

in this section, by comparing the bubble interface and surfactant profiles for diminishing 

surfactant effects, i.e. for ,B = 0.1,0.05,0.025 and ,B = 0, the clean flow case. 

We run tests with Capillary number Q = 0.41, Peclet number Pe, = lo3 for an initially 

circular bubble with I'(a,O) = 1. The bubble is expected to remain elliptical in shape 

throughout its time-evolution [20]. We introduce the deformation parameter D 

D = Rmax - Rmin 

&ax + &in 

where Rmax and Rmin are the maximum and minimum radial distances of an interface point 

from the bubble center. We compare D, the maximum and minimum of the surfactant and 

the surface tension on the interface for the various cases in tables 6.1 and 6.2. 

Table 6.1: Comparisons of diminishing surfactant effects o n  the bubble interface at T = 2. 

With diminishing surfactant effects (diminishing ,B), the bubble deforms less and the 

results approach those of the clean flow, ,B = 0.0. The surfactant accumulation at the 

bubble tips lowers the surface tension and increases motility in those areas, as seen in figure 

6.2. This can be seen from the tables 6.1, 6.2 and plots in figure 6.2, where for higher 

surfactant effects (increasing ,B) the bubble deformation tends to be higher, for the same 

flow strain (specified by Q) and the surfactant diffusion (specified by Pe,). 

Table 6.2: Comparisons of diminishing surfactant e$ects on  the bubble interface at  T = 7. 

gmin ] 
0.6139 ,B=O.lOO 

,B=O.lOO 
,B = 0.050 
,B=O.O25 
,B = 0.000 

Rmax 

1.6439 

omin 

0.4966 
0.6426 
0.7544 
1.0000 

Rmax 

1.7769 
1.6725 
1.6246 
1.5744 

rmin 

0.1812 
0.1616 
0.1516 
0.0000 

gmaz 

0.9819 
0.9919 
0.9962 
1.0000 

Rmin 

0.6083 

Rmin 

0.5628 
0.5979 
0.6155 
0.6352 

rmax 

3.8613 

D 

0.4598 

D 

0.5189 
0.4733 
0.4505 
0.4251 

rmin 

0.3303 

rmax 

5.0339 
7.1477 
9.8252 
0.0000 

gmax 

0.9670 
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Notice in figure 6.2 how the interface dynamics has in turn affected the time-evolution 

for the surfactant concentration: for lower ,B the surfactant evolution is more advanced. 

One reason is that the interface is moving slower and thus the normal velocity U is smaller. 

The bubble is less deformed, so the curvature K is also smaller. The term (-FUK) in the 

surfactant equation (3.8) is bigger, hence dF/dt is bigger and F increases faster. 

6.3 Surfactant and Bubble Breakup 

Some analysis is done to determine the parameters ,B, Pe, and Q for which the bubble 

interface is stable and reaches a steady state, and for which it is unstable and continues to 

evolve and stretch indefinitely [6, 16, 211 . This is known in literature as bubble bursting. 

It is widely believed that the surfactant layer on the interface affects the breakup state. 

Figure 6.3 shows bubbles fracturing for a large strain Q = 0.80 and large diffusivity 

Pe, = 10 at time T = 7. The figure shows the cases with ,B = 0.2, ,B = 0.1 and ,G' = 0.0, the 

clean flow. The presence of surfactants in the "bubble belt" (see figure 6.4), has lowered 

the surface tension there, increased motility and thus is facilitating the bubble pinching. 

The linear equation of state has its drawbacks, e.g. numerical negative surface tension 

artefacts, so other equations of state need to be considered. This is future work. 

6.4 Bubbles and Non-Uniform Surfactant 

For completeness, we present the evolution of bubbles with initially non-uniform surfactant 

layers on them and see how the interface motility is affected. 

The first example in figure 6.5 shows the evolution of an initially-circular bubble with 

surfactant profile I'(cr, 0) = 1 + cos(cr)/2 to time T = 7. We can see that the surfactant 

distribution has affected the bubble evolution: its position is no longer symmetric about 

the y-axis. This is an occurrence that our model is able to accurately simulate, while the 

analytical solutions of Siege1 [20, 91 cannot quite capture this, given the imposed symmetry 

on the interface from the parameters a and bN (refer to the equations in section 5.1). 

The evolution of an initially-circular bubble with initial surfactant profile F(a, 0) = 

1 + sin(a)/2 in figure 6.5 shows the bubble has a terminal position which is not symmetric 

about the x-axis. This happens because of the non-uniformity in the surfactant, hence non- 

uniformity in the surface tension. The parameters used are Q = 0.15, ,B = 0.1, Pe, = lo3. 
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Figure 6.1: Surfactant cap occurrences for /3 = 0.1, Pe,  = lo3. The first two examples, with 
Q = 0.15 and Q = 0.30 respectively, are cases when surfactant caps form. The last example, 
with Q = 0.45 is beyond the threshold for surfactant cap formation. 
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Figure 6.2: Superimposed plots of the interface (top), surfactant (middle) and surface tension 
(last) profiles at T = 7 for diminishing ,8 values. 
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Figure 6.3: Bursting bubble profiles at time T = 7 for parameters Q = 0.40, Pe,  = 10 
and different surfactant influence ,B = 0.0,O.l and 0.2. The third plot is horizontally com- 
pressed to show the bubble neck widths, as the the bubbles are very stretched. In the third 
plot, the (horizontally) outermost profile is ,B = 0.2, the middle profile is ,B = 0.1 and the 
(horizontally) innermost profile is ,B = 0.0, the clean flow. 
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Figure 6.4: Bubble bursting, the surfactant profiles for P = 0.2 and P = 0.1. 

Figure 6.5: Eflects of non-uniform initial surfactant profiles on initially circular bubbles. 
The top plots show the bubble profile and the surfactant profile for an initially circular bubble 
with I'(a, 0) = 1 + cos(a)/2. The bottom plots show the bubble profile and the surfactant 
profile for an initially circular bubble with I?(&, 0) = 1 + sin(a)/2. 
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Conclusion and Future Work 

In this project, we present a new numerical method to calculate the motion of a bubble 

interface in a strain Stokes Flow with non-uniform surface tension. This consists of evolving 

the surfactant equation alongside the interface motion equations. The surfactant dynamics 

is incorporated into a formulation that uses equal-arclength spacing of the interface marker 

points to maintain a low-order stability constraint. We exploit the complex variable theory 

of the biharmonic equation to derive the equations for the problem, as well as recent advances 

in fast numerical algorithms for the computations. 

Our numerical method has five major advantages to previous approaches on this problem. 

First, it has spectral accuracy. The interface and surfactant are described on a spectral 

mesh and pseudospectral calculations are used throughout, for example when solving for 

the velocity at the marker points from the integral equations. Second, the solution of the 

integral equations is achieved in O ( N )  steps using a fast iterative method, where N is the 

number of marker points. This approach is a necessity for deformed interface or surfactant 

profiles, where a rather large N is needed to properly resolve the variables. Moreover, this 

makes the method a fast and efficient tool worthy to consider for large-scale, long-time 

simulations. Third, by exploiting an Implicit-Explicit scheme for the time-integration of the 

numerically stiff surfactant equation, we ease the stability constraint on the time-step to 

linear with respect to the mesh spacing. Fourth, by maintaining an equal arclength spacing 

of the marker points on the interface, we reinforce the low-order stability constraint. Last, 

by computing the velocity at double the number of marker points, we ensure the calculations 

are not prone to high wave-number instabilities that would otherwise arise. We discuss some 

of these advantages in the context of a few evolving surfactant-laden bubble examples. 
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7.1 Future Work 

In this thesis, we mainly focused in deriving the equations, investigating the numerical 

algorithm and its stability, and validating the model by comparing it to known test cases or 

simple scenarios considered in previous works in the area. We were however underpinning 

the model for future uses of the algorithm. The numerical method we developed is best 

suited for general bubble shapes and large-scale, long-time simulations of multiple bubble 

interfaces under surfactant influence. This is the main goal of our next investigation. 

An immediate future study following this project is investigating globules where the 

density of the fluid enclosed by the interface is higher than the density of the surrounding 

ambient fluid. These are known as drops, and investigating them entails solving the Stokes 

equations inside the drop as well as outside it. This modification can be done easily and 

without disrupting the model presented here much. The analysis done in the bubble case 

can easily carry over. The same can be said for the multiple drop interfaces case. 

Future work includes researching the outcomes of using non-linear equations of state in 

the model, e.g. a logarithmic dependence as seen in the work of Siege1 [21]. These other 

types of surface tension-surfactant dependency relations can give particular insights into 

various cases of terminal bubbleldrop shapes. For example, the logarithmic dependence 

was used in [21] to study cusped bubbles. This is a case where the linear equation of state 

we considered in this project breaks down, since in the simulations the surface tension risks 

becoming negative, a non-physical numerical artifact of the problem. 

Another problem of interest is investigating the behavior of shrinkinglexpanding bub- 

bles/drops in quiescent flows. Our numerical model can be easily modified to account for 

the change in bubbleldrop area. The analytical solutions for polynomial bubbles in the 

surfactant-laden flows [20, 91 and the numerical studies in the clean flow case [13] can be 

used as benchmarks to ascertain the results in simple scenarios. Our model can go further 

in looking at general shapes and multiple interfaces of such bubblesldrops. 

Similarly, the model can be adjusted to consider the case of soluble surfactant, i.e. when 

there is a surfactant flux to/from the surrounding fluid. This is a more realistic physical 

model for the interfaces in extensional flows, and can lead to interesting insights into the 

various phenomena observed experimentally, e.g. tip streaming. Our model can be adjusted 

for this, but a more rigorous analysis needs to be performed to guarantee high accuracy in 

capturing the surfactant flux. This is future research. 
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