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ABSTRACT 

Measurement and analysis of traffic traces are important for better understanding 

of network behaviour. In this research, we collected traffic traces from a hybrid satellite- 

terrestrial network operated by Chinasat, a commercial satellite Internet service provider. 

We performed traffic analysis on packet, connection, protocol, and application 

layers. We investigated self-similar and long-range dependent characteristics of the 

collected traffic traces by employing various estimators. A traffic model on the TCP 

connection level was proposed. The relative fitness of various distributions functions was 

investigated. We concluded that Weibull and lognormal distributions are ideal for 

modelling the TCP inter arrival times and the number of downloaded bytes, respectively. 

We then used billing records data to obtain one-week traffic prediction using 

autoregressive integrated moving average model. We implemented and evaluated the 

predictability of the redundant wavelet transform and combined it with autoregressive 

model to perform short-term traffic prediction. 
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CHAPTER 1 INTRODUCTION 

1 .  Motivation and significance 

Internet has continued to grow and change over the last decade. This evolution 

has been accompanied by the growth of traffic volume, the development of new 

protocols, and a variety of new Internet access technologies. Network traffic 

measurements are useful for network troubleshooting, workload characterization, and 

network performance evaluation. In order to detect the invariants in a rather dynamic 

traffic structure, measurement and analysis of genuine network traffic traces play an 

important and continuing role. In general, there are three steps in traffic analysis: traffic 

collection, analysis, and synthesis or prediction, as shown in Figure 1.1. Our research 

encompasses all three steps. 

Deployed 
network 

0 

Trafic 
model C mechanisms 

0 

Models 
Synthesis and Prediction 

Figure 1.1 Methodology for traffic measurement and analysis. 

Collection and characterization of the terrestrial Internet traffic have received 

considerable attention during the past decade [20], [31]. Numerous Web sites offer 

collected samples of Internet traffic traces [30]. To the contrary, few traffic traces have 



been collected from wireless or satellite commercial sites. Models based on the past data 

may not accurately capture the current network behaviour. In addition, Internet traffic, 

which is constantly changing over time both in volume and in statistical properties, 

demands analysis that should be based on most recently collected data. In this research, 

we collected traffic from a hybrid satellite-terrestrial network that is operated by 

Chinasat, a commercial satellite Internet service provider. 

1.2 Objectives of this thesis 

The objective of this thesis is to analyze and model the collected traffic traces, to 

characterize the underlying statistical processes and distributions, to implement a newly 

proposed wavelet approach to perform traffic prediction, and to investigate the 

predictability of this wavelet combined predictor under various predictor lengths. 

1.3 Organization of the thesis 

This thesis is organized as follows: In Chapter 2, we briefly describe the DirecPC 

satellite system and the traffic trace collection. Chapter 3 presents the statistical analysis 

and results. Chapter 4 describes the self-similarity study. Chapter 5 introduces the TCP- 

connection model. In Chapter 6, we describe fitting ARIMA model to the billing records 

data. We also describe implementation of the redundant wavelet model and performance 

evaluation of the long and short-term traffic prediction. Finally, we conclude with 

Chapter 7. 



CHAPTER 2 TRAFFIC COLLECTION 

In this Chapter, we first introduce the DirecPC system and then describe the 

traffic trace collection. We also clarify the data format. 

2.1 Introduction to the DirecPC system 

The advantage of satellite systems is that they broadcast information to large 

geographical regions without a need to solve the last mile access problem. In this thesis, 

we analyze traffic from a system called DirecPC. DirecPC is a satellite one-way, 

broadcast system offering three types of services to Intel x86 or PentiumTM based servers 

and workstations. The system is designed and manufactured by Hughes Network System 

company (HNS), which is the largest satellite communication vendor in the world. 

DirecPC system operates worldwide. Bell Express-Vu provides this service in Eastern 

Canada. DirecPC's three services are: Turbo Internet, Digital Package Delivery, and PC 

Multicast. In this thesis, we consider only the Turbo Internet service. 

2.2 Turbo Internet system 

The Turbo Internet system is designed to provide high speed Internet access for 

homes or enterprises. Chinasat, the largest satellite communication service provider in 

China, operates DirecPC system to provide Internet access to over 200 Internet cafes 

across provinces. Each caf6 offers on average 40 PCs to its customers surfing the 

Internet. As shown in Figure 2.1, a proxy server enables the PCs to simultaneously share 

the Internet access through a single connection account. This system utilizes two special 

techniques: IP spoofing and TCP splitting. 



When a customer browses a website in the cafe, a request is sent through a 

terrestrial dial up modem to a local internet service provider (ISP). However, before the 

request leaves the customer's PC, the DirecPC software, which is installed on the proxy 

server, automatically attaches a "tunnelling header" (an electronic addressing mask) to 

the requested website so called unique resource locator (URL). This "tunnelling code" 

instructs the ISP to forward the URL request to the DirecPC Network Operations Centre 

(NOC) instead to the requested URL directly. Once the NOC receives the customer's 

request, the tunnelling header is removed and the request is forwarded by a high-speed 

link to the Internet. When the desired content is retrieved, the NOC sends the information 

to the DirecPC satellite that beams this information down to the DirecPC receiving 

system at the cafk7s network. This special routing technique is called IP spoofing. 

INTERNET CAFE 

Proxy server 

Figure 2.1 Elements of a hybrid satellite-terrestrial network with a monitoring location for traffic 
collection. 

The link delay from the hub to the receiving station is - 250 ms because the 

satellite is located in a geostationary orbit. This delay causes a large delay-bandwidth 

product. In satellite systems employing TCP, throughput is related to the TCP window 



size, which defines the number of packets that could be sent without being 

acknowledged. Hence, conventional TCP, with its relatively small window size, will 

exhibit poor performance in the case of networks with large delay-bandwidth product. 

The DirecPC system addresses this problem by employing a TCP splitting technique: the 

hub first acknowledges the downloaded packets from the Internet on behalf of the remote 

stations, and then it delivers these packets over the satellite links using a modified TCP 

with an enlarged window size [15]. 

The IP spoofing and TCP splitting techniques impose considerable memory 

requirements on edge routers. Whenever the hub sends downloaded data to the remote 

stations, a copy must be maintained in a retransmit buffer until acknowledgements from 

the remote stations are received. In this system, the available memory is shared equally 

among all connections. 

ChinaSat operates this system at 10 Mbps information rate, the modulated carrier 

has - 12 MHz bandwidth, which is approximately one third of a satellite Ku band 

transponder. This capacity can be expanded as the bandwidth requirement increases. The 

router at the hub acts as an edge router between the satellite network and rest of the 

Internet. The connection between the hub and the Internet is set to 10 Mbps because the 

maximum throughput of the system is limited by the satellite carrier. 

2.3 Traffic collection 

There are many traffic collection programs available [14]. Many previous traffic 

traces were collected using the tcpdump. Several analysis tools for tcpdump traces exist. 

Hence, we chose tcpdump as the traffic collecting tool. 



Both request and response information are re-routed through the satellite hub. 

Hence, the satellite hub is an appropriate location to collect traffic traces. The network 

topology and the measurement point (monitor) are shown in Figures 2.1 and 2.2. 

Traffic traces were collected using a Linux PC equipped with a 100 Base-T 

Ethernet adaptor. The network access point for the trace logging was a port on the 

primary Cisco router at the network operation centre (NOC). It provided access to the 

inbound or outbound packets sent between hosts on the NOC LAN using the 10 Mbps 

Internet connection. 

Internet cT7> 
10 Mbps connectioon 

DSU/CSU(s) 

I I... m m m m m  I ROUTER(s) 

I I I 
T 

Traffic to Satellite D 

rn 1~1 C O O  10 

1 
1D-J 

HYRRII) GI\ 16WAY INTERNET SERVER 
I- El 

Tcpdump TRACE MONITOR 

+ 
TOKEN RING I ETHERNET LAN 
SEGMENT (MUX LAN SEGMENT) 

Figure 2.2 Traffic collection point and four types of traffic at the NOC. 



We collected traffic traces A, B, and C as shown in Figure 2.2. The path between 

the hybrid gateway and the satellite gateway is a virtual LAN. We excluded traffic D 

from the port on the router. Each packet coming from a remote station is logged twice: It 

was first recorded as traffic A sent from Internet caf6 to the hybrid gateway. It was then 

recorded again as traffic B passing from the hybrid gateway to the Internet. Traffic C is 

the downloaded traffic from Internet hosts. In this study, we ignored the tunnelled 

packets A because they are identical to packets B. 

We continuously recorded traffic from 2002- 12- 14 1 1 :3O AM to 2003-0 1-06 

11 :00 AM. 128 dump files contain - 63 Gbytes of the data. 

2.4 Trace and billing records format 

2.4.1 Trace format: 

The general format of tcpdump data is: 

timestamp src > dst: flags data-seqno ack window urgent options 

The following is an excerpt from the tcpdump trace file: 

1 l:30:39.256592 192.168.2.28.41728 > 6l.I72.254.l4O.4182O: P 
886861:886865(4) ack 4016227587 win 8192 (DF) 

11:30:39.257144 192.168.2.30.41236 > 61.187.55.40.ftp-data: . ack 3944213984 
win 0 

1 1:30:39.262198 210.5 1.9.247.~~~ > 192.168.1.242.40987: 
4208499036:4208500496(1460) ack 9307760 win 16427 (DF) 

11:30:39.262200 sina35-13.sina.com.cn.7002 > 192.168.1.164.46208: P 
3550870364:3550870404(40) ack 2771755 win 63672 (DF) 

11:30:39.263719 6l.l88.l77.ll4.7206 > 192.168.1.54.38329: . ack 718646 win 
16652 



11:30:39.265184 2 1 0 . 5 1 . 9 . 2 4 7 . ~ ~ ~  > 192.168.1.242.40987: . 1460:2920(1460) 
ack 1 win 16427 (DF) 

1 l:30:39.266887 192.168.1.164.43857 > 61.152.252.164.55901: . ack 
3826781594 win 8192 

Field name 

Timestamp 

Flags 

Description 

Indicates when tcpdump captured packet. 

Src 

Dst 

Data- 
seqno 

The source destination IP address and port. 

The destination IP address and port. 

Ack 

I Some combination of S (SYN), F (FIN), P (PUSH), or R (RST) or a 
I single "." (no flags). 

Describes the portion of sequence space covered by the data in this 
packet. Sequence numbers are of the form <first>: <last> 
(bytes). "This is interpreted as a packet containing octets for sequence 
numbers first up to but not including last, which is bytes of user data. 
For connection setup, the sequence numbers are absolute. After 
connection setup, the sequence numbers are relative to the sequence 
numbers established in connection setup" [29]. 

The sequence number of the next data expected in the opposite direction 
on this connection. 

Window 

We only examined traffic B and traffic C, which are the packets sent between the 

The numbers of bytes of receive buffer space available on the opposite 
direction in this connection. 

Urg 

hub and the Internet. Since the satellite hub strips the IP tunnelling header and re-sends 

the packet to the Internet, the source addresses of the re-sent requests are 192.168.*.* 

(which represents DirecPC terminal). The destination addresses is the requested websites 

addresses. 

Indicates that there is "urgent" data in the packet. 

Table 2.1 Tcpdump trace format 



When the Internet hosts respond to these requests, the packets flow back to the 

hub. The IP addresses of those response packets are 192.168.*.*, while source IP 

addresses are the websites addresses. 

The granularity of the time stamp is an important factor in traffic measurements. 

In our trace, timestamps have several milliseconds precision even though they seem to 

have the order of microsecond granularity because there are six decimal digits [24]. The 

following explains this discrepancy: the timestamp is generated by the Berkeley Packet 

Filter (BPF) driver from the Linux kernel. It is as accurate as the kernel's clock that has 

the granularity of microseconds. However, this is not the instance when the network 

interface of the monitor receives the packet from the network. There is a delay between 

the time when the packet arrives at the interface and the time when the kernel executes 

the "new packet arrives" session. Due to this difference, the granularity of the timestamps 

is limited to the order of several milliseconds [17]. To overcome this problem, specially 

designed network interface are developed to improve the accuracy of the timestamp. 

Patches are available to improve the system accuracy [18]. However, our monitoring 

machine was an online PC and we could not compile its Linux operating system without 

interfering with the system. 

2.4.2 Format of the billing records: 

In addition to the traffic trace, we also collected two months of billing records: 

from the 2002-11-01 to 2003-01-10. The billing system of the DirecPC system creates 

one file per hour, with a file name DDMMHHMM.BIL, where DD is the day of the 

month, MM is the month of the year, HH is the hour of the day, and MM is the starting 



minute within the hour (usually 00). The records within the file are not sorted by the 

starting time but rather by the user name. 

Field 
name 

Field 
length 

Description 

RecLen The length of the record including the new line character. 
Holds 00100. 

RecTyp It is fixed to 001 identifies this data as a Turbo Internet Call 
Record 

Identifies the subscriber by the unique nonchangable 
alphanumeric string. 

Starting time for this call record. Start 

Stop 

Cmin 

Stopping time for this call record. 

Number of active minutes. 

Bill Identifies whether the subscriber is using HNS 800 phone line 
or the subscriber's own Internet access provider: (1 = HNS 
phone line, 2 = subscriber's own Internet access provider). 

CTxByt The number of bytes transmitted over the space link during 
this call record. The subscriber is billed based on this field. 

CRxByt The number of bytes received from the subscriber. 

The number of IP packets transmitted over the space link 
during this call record. 

CTxPkt 

-- 

The number of IP packets received from the subscriber during 
this call record. 

CRxPkt 

Table 2.2 Billing records format. 

An example of the billing records: 



Since we are interested in the aggregate traffic, the traffic load information is 

obtained from billing records by aggregating data from individual users. The individual 

data were obtained from columns: Start, Stop CTxByt, CRxByt, CTxPkt, and CrxPkt. 

This aggregation generates traffic load information with granularity of one hour 

Statistical analysis in Chapter 3 and capacity planning in Chapter 6 are based on this data. 

In contrast, the tcpdump traces have much finer time resolution and contain additional 

packet header information, which permits a more detailed analysis in Chapters 3, 4, and 



CHAPTER 3 TRAFFIC CHARACTERIZATION 

The objective of traffic statistical analysis and modelling is to describe the 

complex traffic in a concise way. To achieve this goal, models need to capture statistical 

properties that have important impacts and ignore those that do not. One can categorize 

traffic on many levels: packet, connection, protocol, and application. In Section 3.1, we 

analyze the statistical properties of the billing records. We describe the distribution of 

traffic in terms of the protocols and applications in Section 3.2, analyze the WWW traffic 

on the TCP connection level in Section 3.3, and characterize packet size in Section 3.4. 

3.1 Analysis of billing records: traffic load 

We used aggregated billing records to describe the traffic load in the system. We 

found that traffic exhibits a diurnal cycle. The number of data packets over time is shown 

in Figure 3.1 (a). The numbers of uploaded and downloaded packets are almost identical, 

with the number of downloaded packets being slightly higher. The gap may be explained 

by the small contribution of User Datagram Protocol (UDP) packets. When the traffic 

load is expressed in terms of bytes, as shown in Figure 3.2 (b), there is a visible 

difference between the upload and download directions. This difference indicates the 

asymmetric characteristic of the transmission. 

Figure 3.2 illustrates the average traffic volume during a single day. The 

asymmetric pattern appears again. The network usage increases at 8:00 and reaches its 

maximum around 15:OO-16:OO. It gradually decreases during the night. This result 
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Figure 3.2 Average traffic volume over a day measured in packets (a) and bytes (b). 
Traff~c data was collected from 2002-12-09 to 2002-12-15. 



3.2 Protocols and applications 

All the packets in the collected traffic traces are IP packets. They were collected 

on the application and transport layers. Data are shown in Tables 3.1 and 3.2. 

ICMP 1 630,528 1 1.45 1 53,128,377 1 0.45 

Protocol 

TCP 

UDP 

Total 1 43,570,366 1 -100 1 11,885,432,923 1 -100 

Table 3.1 Protocols distribution of the collected IP traffic. Traffic data was collected on 2002-12-22. 

Packet 

36,737,165 

6,202,673 

Applications Connections % of connections Bytes % of bytes 

WWW I 304,243 1 90.06 1 10,203,271,455 1 75.79 

% of packets 

84.32 

14.24 

-- 

IRC I 2 , 3 5  1 0.69 1 120,873 1 0.008 

SMTP I 562 1 0.17 1 945,965 1 0.01 

Bytes 

11,231,147,530 

601,157,016 

POP3 115 0.03 2,326,374 0.02 

Telnet 70 0.02 280,286 0.002 

% of bytes 

94.50 

5.06 

Other 65 1 8.84 238,099,5 16 13.47 

Total 308,601 100 11,885,432,923 100 

Table 3.2 Application distribution of a traffic trace. Traffk data was collected on 2002-12-22. 

We extract TCP packets that are used to establish TCP connections between the 

source and the destination. Those packets have either their synchronizing sequence 

number flags (SYN) or their finishing flags (FIN) set in the TCP header. Since a packet 

with flag RST means that the connection is terminated for some special reason, we ignore 

those special packets, which are rare in the traces. Packets with SYN or FIN flags are 

then classified according to the applications that generated them. The application 



information is obtained from the port number. The contribution of major applications is 

shown in Table 3.2. Several well-known applications, such as POP3, are present, albeit in 

small proportions. Note that Web applications dominate the traffic. There are very few 

FTP-data connections, contributing with a large number of bytes. Category "Other" 

includes applications using a wide range of TCP and UDP port numbers. The most 

common port numbers in this category are 1755, 9065, 9013, and 9014. These non- 

standard ports are used by either new applications or unknown protocols. We suspect that 

they are most likely generated by online games that use unregistered fixed ports because 

playing computer games is very popular in Internet cafks. People rarely use POP3 and 

SMTP protocols to check and send their e-mail message from public machines. They now 

prefer to use the web-mail protocols. 

3.3 WWW traffic on the TCP connection level 

With the current growth of the WWW, Web proxy caching has been widely 

implemented in Web server. Collected Web data has been used to acquire the frequency- 

rank relation of client's requests. Most traces in the past [ 5 ] ,  [8] were collected in a local 

or a campus settings, either from Web server logs or from Web proxies. Therefore, it is 

also of interest to examine the frequency-rank relation of requests for connections in 

traffic data collected from a geographically broad region. Our traffic trace includes end- 

users' requests in Internet cafks that are located across provinces in China. While past 

work mainly examined the frequency-rank relation of client's requests, we examine here 

frequency-rank relation of the number of connections by analyzing traffic distribution 

among the Web servers. This approach provides valuable information for traffic analysis 



and traffic modelling on the connection level. Our work provides a unique empirical 

study of the frequency-rank relation of client's connections based on genuine traffic data. 

We extracted the HTTP information from the traffic trace based on TCP 

connections. These traffic data usually exhibit rather skewed behaviour: few websites are 

very popular while most websites are seldom visited. Hence, common statistic 

parameters, such as mean, median, and variance, could not characterize these traffic data. 

We used Zipf distribution for their description because this distribution has been used in 

the past to describe skewed data [8]. Zipf's law states that the number of requests 

(frequency) is inversely proportional to its rank among the requests (the largest number 

of request corresponds to rank 1). The generalized Zipf distribution is defined as: 

where fr is the number of requests and r is the rank of the website in terms of the number 

of requests. Its log-log plot is linear, with slope 0 that is typically a constant less than 1. 

We examined various segments in the collected traffic trace, during various periods of a 

day or a week, and found that the frequency-rank relation of connections does not follow 

the Zipf distribution. As shown in Figure 3.3 (a), the Zipf distribution fits the mid range 

of the curve well while it exhibits top concavity [6]. This phenomenon appears frequently 

in multiple tests of sub-traces. We attribute this phenomenon to the practice that most 

browsers in the Internet cafks support HTTPJI. 1 (rather than HTTPl1.0) because of the 

increased usage of Internet Explorer 6.0 and Netscape 7. An HTTPl1.1 connection can be 

kept open to transfer multiple Web pages from the same server, resulting in multiple 

requests per connection. Hence, the frequency-rank of client's connections will further 

deviate from linear relation as the number of persistent connections increases. 



We found that collected traffic data follow the Discrete Gaussian Exponential 

(DGX) [6], as shown in Figure 3.3 (b). The DGX distribution is a discrete version of the 

continuous lognormal distribution: 

A(P,  0) (Ink -,LL)~ p ( x  = k )  = --- ~ x P [ -  I, k = l , 2  ,..., 
k  20' 

where 

is a normalization constant that depends on parameters p and a .  Parameters p and 

aa re  estimated using the maximum likelihood estimation. 

We also examined the top ten most loaded websites. It was surprising that they 

are all registered under the Asia Pacific Network Information Centre (APNIC). They 

account for 60.23% of the entire traffic load. The heaviest loaded is a Chinese search 

engine website. This result indicates that traffic is non-uniformly distributed among the 

Internet hosts and that language and geographical factors are important for content 

delivery networks and caching proxy designs. 
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Figure 3.3 Frequency vs. rank of client's connections. Zipf distribution curve fit (a) and DGX curve 
fit (b). Traffic data was collected on 2002-12-22. 



3.4 TCP packet sizes 

Packet size statistic is shown in Figure 3.4. Packet size distribution is bimodal: 

there are numerous small acknowledgement packets and many large packets for bulk data 

file transfer type applications. There are very few in between. Ten most common packet- 

sizes are listed in descending order: 1,460, 40, 1,500, 80, 88, 576, 48, 55, 250, and 1,462 

bytes. The maximum packet-size of 1,460 bytes is difficult to explain: a possible 

explanation may be a default buffer size in routers. Many 1,500-byte packets result from 

the limit imposed on maximum packet size in IP networks. Packets of 80 and 88 bytes are 

UDP packets. A large presence of 576-byte packets reflects TCP implementations 

without "path MTU discovery" using packets of 536 bytes (plus 40-byte 

acknowledgements) as the default Maximum Segment Size (MSS). This also explains the 

lack of the common 552-byte packets in the collected trace. The smallest packets, 40 

bytes in length, are mainly TCP packets with ACK, SYN, FIN, or RST flags. 
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Figure 3.4 Relative frequency of packet sizes (a) and their cumulative distribution (b). 
Traffic data was collected from 2002-12-21 22:08 to 2002-12-23 3:28. 

The cumulative distribution function showed in Figure 3.4 (b) shows that 50% of 

the packets are smaller than 300 bytes. They are mainly TCP acknowledgement packets 

and short HTTP click requests. More than 50% of the bytes are carried in 1,460-byte 

packets. This is due to the massive transfers of data in the down-stream path. In 

conclusion, most bytes are sent in large packets, and packet size distribution is bimodal. 

This concurs with results reported in previous studies [20]. 
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Figure 3.5 Cumulative distribution function of TCP packet sizes: downloaded traffk (a) uploaded 
traffic (b). Traffic data was collected from 2002-12-21 22:08 to 2002-12-23 3:28. 

Figure 3.5 shows that most of the uploaded TCP packets are of small size, while most 

downloaded TCP packets are of large size. More than 85% of the uploaded TCP packets 

are 40 bytes long. They contain only header without any data. Most uploaded packets are 



acknowledgements and simple requests. This is the cause of the asymmetric HTTP 

transmission pattern. 



CHAPTER 4 ESTIMATION OF SELF-SIMILARITY AND 
LONG-RANGE DEPENDENCE 

Self-similarity and long-range dependence have been well documented in traffic 

studies over the past decade [19]. They provide key concepts in analyzing traffic data. In 

this chapter, we first give an introduction to self-similarity and to five different 

estimators. We then address some practical considerations when using these estimators 

and present estimate result. 

4.1 Stationary random processes 

We are interested in the traffic volume measured in bytes, packets, or connections 

at time instance t. Traffic volume can be regarded as a discrete time stochastic process. 

For traffic modelling proposes, it is convenient to consider this process to be stationary. 

A random process X ( t )  is said to be stationary if the statistical properties of the process 

do not vary over time. Strict stationary processes are difficult to find in the natural 

phenomena. Hence, researches generally investigate wide-sense stationarity (WSS), 

which require that the first and the second order statistical properties, namely the mean p 

and variance o\ not to vary over time. 

4.2 Self-similarity and long-range dependence 

4.2.1 Introduction to self-similar processes 

With the assumption that the processes we investigate are stationary, we are now 

ready to begin our discussion of self-similarity and long-range dependence. In literature, 

various definitions of self-similarity have been used. In this section, we follow closely the 



definition of W. Willinger [19] because it is appropriate in the context of standard time 

series. First, we define the aggregate process X 'In) of X at aggregation level m as 

The idea of aggregation is to equally divided X into blocks of length m and to use i to 

index the averaged blocks. "If X is the increment process of a self-similar process, that 

is X(i) = Y(i + 1) - Y(i) , then for all integers m, the condition for self-similarity is 

If a stationary sequence X = { X ( i ) ,  i 2 1) satisfies equation (4.2) for all aggregation 

levels m, then it is called exactly self-similar. It is said to be asymptotically second-order 

self-similar if equation (4.2) holds as m + - . Similarly, a covariance-stationary sequence 

is called exactly second-order self-similar if m'-H X'"' has the same variance and 

autocorrelation as X " [2]. The autocorrelation of the second-order self-similar process 

can be described as: 

where c > 0 and /? = 2 - 2H. This implies that the autocorrelation function decays 

hyperbolically. It decays so slowly that its sum is not summable. This property is in 

contrast to traditional models, all of which have the property that the correlation structure 

of their aggregated process decays exponentially as k increases. Self-similarity indicates 

that the aggregated process X'"" is indistinguishable from X with respect to their first and 

second order properties. In the case of engineering applications, it has been shown that 



the first and the second moments have physical meaning. Thus, the second-order self- 

similarity has been a dominant framework for modelling network traffic. 

Figure 4.1 is derived from the collected traffic trace in order to observe the self- 

similar characteristics of the traffic. Each finer time scale observation is a zoom-in result 

of the first 10% samples of the previous coarser time scale. It indicates that the scaled 

counts of packet or byte arrivals look approximately the same regardless of the time 

scales. 

4.2.2 Long-Range Dependence 

One important property of the self-similar process is long-range dependence 

(LRD), which implies correlations across large time lags. When the autocorrelation 

function r ( k )  satisfies: 

we call the corresponding stationary process X(t) long-range dependent. X(t) is short- 

range dependent if the autocorrelation function is summable. Since autocorrelation is also 

used to define for second-order self-similarity, the term (exactly or asymptotically 

second-order) self-similarity and long-range dependence are sometimes used 

interchangeably because both definitions are essentially equivalent: they both describe 

the tail behaviour of the autocorrelation function. Nevertheless, these two terms are not 

equivalent. Self-similarity is usually used to describe the scaling behaviour of continuous 

or discrete process, while LRD focus on the tail behaviour of the autocorrelation of a 

stationary time series. 



The attractive feature of the self-similar traffic models is that a single Hurst 

parameter can be used to describe the degree of self-similarity. For self-similar process 

with long-range dependence, 0.5 < H < 1 .  As H approaches 1, the degree of both self- 

similarity and long-range dependence increases. 

t m ,  , . , , , , , , , , 
lime Unlt = [I 1 Second) 

- m ,  r ,  r , ,  , , , , , T~me Unn = 10 Seconds 

Figure 4.1 Self-similar characteristics of byte traffic (left) and packet traffic (right). The time scales 
from top to bottom are 10 seconds, Isecond, 0.1 second, and 0.01 second respectively. 

4.3 ONIOFF model and heavy-tailed distributions. 

It is known that self-similar processes are generated by aggregating multiple 

ONIOFF sources. The distinctive features of those ONIOFF periods are heavy-tailed 

distributions with infinite variance [9]. An ONJOFF source model describes how the 

traffic fluctuates between a source/destination pair. During the ON state, the source 

continuously sends data at the constant data rate. During the OFF state, the source is 



silent. As shown in Figure 4.2, ONIOFF states can be represented by random process Xn 

and Yn, respectively. 

Figure 4.2 ONIOFF source model. 

Xn 
ON period 

L 

M. E. Crovella and A. Bestavros [9] found that the Web and FTP file sizes follow 

"heavy-tailed" probability distribution, thus leading to the heavy-tailed distribution of 

transmission duration as well. Therefore, the self-similar traffic model has good physical 

explanations. Heavy-tailed distribution means the probability of a given variable 

decreases very slowly as the variable increase, as opposed to the exponential distribution 

where the rate of decay is much faster. The contribution of the tail part for such type of 

distributions cannot be ignored. This is the reason for calling them "heavy". We say that 

a random variable X follows a heavy-tail distribution if 

A special feature of this distribution is that its variance is infinite. The variance shows the 

spread of data around the mean. For finite variance distribution, increasing the 

granuarility of the horizontal scale will make distribution appear smooth, clustered 

around the mean [13]. However, for infinite variance distribution, measuring the signal 

on different scales will not change the central tendency of the data. This property relates 

infinite variance to the self-similar behavior. 

Yn 
OFF period 

v 



4.4 Estimating Hurst parameter in collected network data 

Several methods are commonly used for estimating the long-range dependence in 

network traffic. To estimate the self-similarity in the collected traffic data, we employed 

the following methods: Rescaled Range (R/S), VarianceITime Plot, Periodogram Whittle 

Estimator, and Wavelets analysis [ l ] ,  [2]. 

4.4.1 R/S method 

R/S method was first introduced by Hurst when he studied how to regularize the 

flow of Nile river [28]. This method can be described as follow: Let X ( k ) ,  where k= 1 ,2 ,  

. . . , n be a set of n observations that have an expected value (sample mean) E[ X (k) 1. The 

scaled and adjusted range is given by: 

where S(n) is the standard deviation and for each k: 1, 2, . . . , n, and Wk is given by 

Wk = (XI + X2 + ... + Xk) - kE[X(k)] ,  k= 1, 2, ..., n. (4.6) 

The Hurst parameter has the following relation with R(n)/S(n): 

where c is a constant value. By taking logarithms on both sides, we get: 

log(R(n) l S(n)) - log c + H log n . (4.8) 

Therefore, the slope of a fitted straight line to a plot log(R/S) vs. log (n) is the Hurst 

parameter, as shown in Figure 4.3(a). 



4.4.2 Variance-Time method 

Let X(k) be a series of observations for k=l, . .., n. This method utilizes a 

property of long-range dependent processes that the variance of the sample mean 

converges to zero slower than the reciprocal of the sample size (llm). It can be shown 

that 

Therefore, the slope of a plot of log(Var [X(m)]) vs. log(m) is 2 H  - 2 .  Hence, the Hurst 

parameter can be found as H= 1 + slopel 2 ,  as shown in Figure 4.3(b). 

4.4.3 Periodogram method 

This method considers the squared magnitude of the Fourier transform of the time 

series and computes the power spectral density as: 

l N  
I. ,  (v) = - ,, 1; 

where v is the frequency and N is the length of the time series. The periodogram of LRD 

series is proportional to v ' - ~ " .  Therefore, Hurst parameter can be estimated by fitting a 

straight line to a log-log plot of the periodogram vs. frequency. The slope of the line is 1- 

2H, as shown in Figure 4.3(c). 

4.4.4 Whittle method 

Whittle method is based on periodogram of the time series. The estimator is 

defined as the value that minimizes the likelihood function [2]. It estimates H and 

provides confidence intervals. It does not produce a graphical output. 



4.4.5 Wavelet method 

4.4.5.1 Wavelet theory 

Wavelet transform operates in a similar manner as the Fourier Transform (FT). 

Instead of approximating the underlying signal using sine or cosine waves, wavelet 

transforms use some special design functions that transform the data (via dilation and 

translation) into approximation and detail components. It does not only decompose the 

signal into different frequency or scale but it also easily relates frequency information to 

the time or position [ll]. Wavelets, therefore, offer great flexibility to analyze random, 

chaotic, and noisy signals that are not well approximated by the FT. Though a set of 

wavelet filters, Wavelet transform can examine the signal on local as well as global 

features. Therefore, Wavelet transform is an ideal tool to examine self-similar processes. 

A signal will be adaptively approximated by estimating shift and dilating 

parameters of orthogonal wavelets. The wavelets are defined as: 

where ~ , , , ( t )  is the daughter wavelet, ~ ( t )  is the mother wavelet, a is the (dilations) 

scale factor, and b is the (time location) shift factor. 

It is convenient in practical applications, such as traffic modelling, that the 

parameters a, b corresponding to wavelets are sampled at powers of two (so called 

"dyadic") in the frequency-scale plane. A common definition of such discrete wavelets is 



The discrete wavelet transform (DWT) maps the vector of n discrete signal f = ( f l ,  $2, . . . 

,fiz)' to a vector of n wavelet coefficients w = (wl, w2, ... wn)'. The DWT is 

mathematically equivalent to multiplication by an orthogonal matrix W: 

In Chapter 6, we discuss a faster "pyramid" algorithm to calculate DWT. 

4.4.5.2 Wavelet based estimator 

It is shown [8] that a spectral estimator of X(n) at frequency 2-'v, can be obtained 

by computing the time average of the wavelet coefficients w,,, at the scale j: 

where n ,  is the number of wavelet coefficients at scale j. The wavelets coefficients are 

shown to be quasi-decorrelated. Thus, the signal X(n) that is highly correlated in the time 

domain becomes quasi-decorrelated in the wavelet domain. This is one of main reasons 

why wavelet transforms are used for analyzing self-similar and LRD signals. When X (n) 

is a wide sense stationary process, it has been shown that the signal energy at different 

scale j has the following property [I]: 

An estimation of H is given by fitting a straight line to a log-log plot of the energy vs. 

scale j. The slope of the line is approximately 2H - 1 ,  as shown in Figure 4.3(d). 
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Figure 4.3 Four graphical estimators of the Hurst parameters. 

4.4.6 Estimation of self-similarity 

4.4.6.1 Examining the stationarity 

Self-similar traffic models are based on the assumption of wide sense stationarity. 

Hence, it is important to examine the stationarity before characterizing data using various 

estimators [35].  Note that traffic traces generated from synthetic Fractional Gaussian 



Noise (FGN) processes [IS)] are stationary. In genuine traffic traces, there is a visible 

level shift and trend in the traffic load. This phenomenon can usually be observed in low- 

bandwidth networks, such as satellite networks, as shown in Figure 4.4(a). Testing 

stationarity is rather difficult [35]. An alternative approach is to decompose a trace into 

small sub-traces to eliminate the trend and the effect of level shifts [8]. In practice, this 

approach may result in short samples, which leads to unreliable estimates. Hence, a trade- 

off between finding stationary samples and the small size is advised. 

In order to reduce the effect of non-stationarity, we first decomposed daily traffic 

trace into 24 non-overlapping sub-traces. Each sub-trace was then tested for the second 

order or wide sense stationarity. The sub-traces were first visually inspected to locate 

visible tendencies that imply non-stationarity. Each sub-trace was then divided into equal 

blocks. We examined the mean, variance, and Hurst parameter of each block by 

employing various statistical tests [32]. We found that one-hour traces may be treated as 

stationary, with the exception of sevcral afternoon sub-traces. These afternoon sub-traces 

were further decomposed into smaller sub-traces, while keeping a sufficient number of 

samples. 

4.4.6.2 Estimating the Hurst parameter 

Figure 4.4 (b) shows the Hurst parameter estimated using various estimators. As 

expected, estimators produced different Hurst parameters. This is because the processes 

have different effects on the estimators [16]. Nevertheless, estimated Hurst parameters 

exhibit similar trend with traffic data. In our experiment, more weight was given to the 

wavelet estimator because it may help avoid the effects of non-stationarity [I] .  To some 

degree, the wavelet curve also reflects the traffic fluctuation shown on Figure 4.4(a). 



Nevertheless, we cannot conclude 

increases, as observed elsewhere [ 

characterization might not capture 

hat the Hurst parameter increases as the traffic load 

91. This also suggests that a single-parameter traffic 

the complexity of the network traffic variability. It 

remains an open question how to test the stationarity and estimate self-similarity in 

genuine traffic traces. 
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Figure 4.4 Non-stationarity in daily traffic (a) and variation of the Hurst parameter (b). 
Traffic data was collected on 2002-12-09. 
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CHAPTER 5 MODELLING OF TCP CONNECTION 

In Chapter 4, we showed that the collected traffic traces are long-range dependent 

(second order self-similar) and that they can be modelled as the aggregation of Heavy- 

tailed distributions. Hence, we used distributions with heavy-tailed characteristics to 

create a traffic model. 

5.1 Fitting four distributions to the collected traces: 

TCP splitting technique described in Section 2.2 may improve the efficiency of a 

hybrid wired-wireless system. It imposes considerable memory requirements on the edge 

routers. Hence, it is important to model downloaded traffic on a TCP connection level in 

such hybrid systems. Collected traffic traces can be used to extract individual or 

aggregate TCP connections. The connection information is obtained from TCP headers 

(SYN and FIN flags). We modelled two important parameters: the number of 

downloaded bytes per TCP connection and TCP connection inter-arrival times. Suppose 

that the data are sent at a constant rate. We can relate downloaded data with ON periods. 

We consider the inter-arrival time as OFF periods since there is no data transferred during 

this period. We examined three distributions with heavy-tailed characteristic and used 

exponential distribution for comparison. Tables 5.1 and 5.2 [12] show the definitions of 

various distributions and the maximum likelihood estimators for their parameters, 

respectively. 



Distribution Probability density I Cumulative probability 

Exponential 

Weibull 

Pareto 
( k  > 0, a > 0; x  2 k )  

Lognormal 

Probability 
distribution 

Exponential 

Weibull 

Pareto 

Lognormal 

ak" 
f ( x )  = - 

( x )  k + l  

No closed form 

Table 5.1 Definition of probability distributions. 

Maximum likelihood estimator 

Table 5.2 Maximum likelihood estimators for probability distributions. 



After we estimated the parameters of each distribution, we use inverse function to 

generate the random variables that follow the heavy-tailed distribution. For example, 

lognormal inter-arrival times and downloaded data were generated by transforming 

normal samples u - randn(n,l) via inverse function of lognormal distribution: x = e" . 

Figures 5.1 and 5.2 indicate that all distributions are good fits. Hence, a more 

rigorous statistical analysis is needed to select the best candidate. 

Figure 5.1 Downloaded data distribution fit vs. empirical cumulative distribution function. 
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Figure 5.2 Inter-arrival time distribution fits vs. empirical cumulative distribution function. 

5.2 Evaluation of different distributions 

To evaluate and quantify the performances of various distributions, we employed 

goodness of fit tests or discrepancy measurements to evaluate the fitness of the models. 

In this research, we chose the Kolmogorov-Smirnov goodness of fit and X' discrepancy 

tests. 

5.2.1 Kolmogorov-Smirnov goodness of fit test 

The goodness of fit test is usually described as the hypothesis test. It helps to 

decide whether to accept or reject a hypothesis that samples of a dataset follows a 

specific distribution [lo]. The concept of significance level a is introduced to describe 



the probability of rejecting a hypothesis w h e n  true. It can also be interpreted that the 

probability of accepting the hypothesis when true is (1 - a ) .  Usually, a is set to 5%. The 

~olmogorov-Smirnov test compares the cumulative frequency of the observations with 

the cumulative frequency of the expected number generated by the specified distribution. 

The test uses the maximum difference over  all values as a statistic. The value of this 

statistic is called P-value. If the P-value is greater than the significance level a ,  then the 

hypothesis can be accepted with (I - a)  certainty. 

A common problem when using goodness-of-fit tests is that results depend on the 

sample size [23]. Test will always reject the  hypothesis when it is applied on large data 

sets, such as our traffic data. In this thesis, we apply the Kolmogorov-Smirnov test on 

randomly chosen subsets of the entire dataset [26]. Five series of Kolmogorov-Smirnov 

tests were applied to 200 randomly chosen samples from both downloaded data set and 

connection inter-arrival time data. 

As shown in Table 5.3, all P-values of lognormal distribution are greater than 0.05 

and are higher than the P-vahes for the other candidates. These results suggest that 

hypothesis that downloaded data Per connection follows the lognormal distribution can 

be accepted with 0.95 certainty. Similarly, as shown in Table 5.4, we can accept the 

hypothesis that inter-arrival time fo lbvs  the Weibull distribution with 0.95 certainty. 

Table 5.3 P-value for downloaded data distribution. 

Model 

Exponential 

Lognormal 

Weibull 

1 

2.5 x 

0.16417 

2 

6.1 x 

0.29098 

s . s x ~ o - " . ~ x ~ o - ~  

3 

2.7 x lo-''' 
0.36853 

3.32x10-3 

4 

5.1~10-" 

0.2744 1 

8 . 4 3 x l o - ~ 1 . 5 4 x 1 0 - 3  

5 

3 .5x10-~~ 

0.20459 



Table 5.4 P-value for inter-arrival time distribution. 

5.2.2 x2 discrepancy measure 

x2 discrepancy is used to measure how close the real observations is related to a 

certain distribution [23]. It gives us a quantitative measure of the goodness of fit of a 

proposed model. First, n real observations are divided into N bins, and let Yl to be 

observed samples falling into ith bin. Then, n samples that follow the Z distribution are 

also divided into N bins. Each bin has a probability p, and it is proportion to the expected 

number falling into ith bin. The conclusion is made based on the magnitudes of the 

discrepancies between what is observed and what is expected. The ideal candidate should 

have the smallest discrepancy value. More precisely, let: 

1. Y is the random variable we want to evaluate 

2. Z is the candidate distribution 

3. n is the number of observation of Y 

4. N is the number of bins 

5. pl is the expected probability Z for the ith bin 

6. Y, 's are the number of the observed samples falling into the ith bin. 

The discrepancy measure is defined as 

Model 

Exponential 

Lognormal 

Weibull 

1 

6.2 x 

6.1 x lo-" 

0.17523 

2 

7.2 x lo-' 

6.2 x lo-' 

0.73357 

3 

2.5 x lo-' 

7.7 x lo-' 

0.61562 

4 

1.1 x 

4 . 8 ~  lo-' 

0.75264 

5 

3.7 x lo-' 

5 . 9 ~  lo-' 

0.24156 



" X '  " (y -np , ) '  
X - = - ,  where X ' = z  

n ! = I  nPI 

The results of the X' discrepancy tests are shown in Table 5.3. The discrepancy of 

lognormal for downloaded data and the discrepancy of Weibull for inter-arrival time are 

minimum in their categories. These results concur with the results from Kolmogorov- 

Smirnov test. 

I inter-arrival 1 4,103,846 1 3,779,695 1 680,707 

Model 

Downloaded byte 

Table 5.5 Discrepany test for various distributions. 

5.2.3 Conclusion 

The Pareto distribution is unique among the four distributions. Historically, the 

Pareto distribution has been used to fit the upper tail of the trace rather than the entire 

body [23]. Therefore, we used Pareto distribution to fit part of the traffic data and did not 

use it to model the entire dataset. We selected to fit the Pareto distribution to the upper 

90% of the data set. 

Exponential 

1,26 1,263 

From the results of Kolmogorov-Smirnov and X* discrepancy tests, we can 

conclude that the Weibull distribution yields a suitable model for the inter-arrival times, 

while lognosmal distribution is suitable to model the number of downloaded data per 

TCP connection. It is interesting to note that the exponential model underestimates both 

the small and the large values in both datasets. 

Lognormal 

113,620 

Weibull 

1,37 1,293 



CHAPTER 6 PREDICTING NETWORK TRAFFIC 

Prediction plays a critical role in business planning. Traffic prediction is 

necessary for network managements such as resource allocation, buffer management, and 

congestion control. In this Chapter, we first use linear time series model to make long- 

term traffic prediction. We then use a wavelets based linear approach to make short-term 

prediction. We also evaluate the performance of these predictions. 

6.1 Introduction 

Time series modelling is one of the major prediction techniques used in practice. 

In time series prediction, historical data are collected and analyzed in order to develop a 

model that captures the underlying relationships among time series observations. The 

model is then used for forecasting to extrapolate the time series into the future. There are 

a wide variety of time series forecasting models. In general, they are divided into linear 

models and nonlinear models. In this thesis, we only consider the linear predictors. 

The issue of predicting is a learning task. Assume that we are given a set of L past 

samples x(n), x(n-1)  .. ., x(n-L) that are usually uniformly spaced in time. The requirement 

is to predict sample x(n+k). x(n+k) can be represented as: 

where L is the prediction length, k is the prediction horizon, and f is the prediction 

function. In general, the design of this function involves two phrases: training and testing. 

In the training period, part of the time series X (t) is used for training. In the testing 



period, the remaining part of the series is used to evaluate the performance of the 

prediction. 

In this thesis, we use the normalized mean squared error (NMSE) to measure the 

performance of a predictor. It is given by: 

l N  
NMSE = - (x(k) - ~ ( k ) ) '  , 

0 2 ~  k = ,  

where x(k) is the true value of the time series data, F(k) is the prediction, and o2 is the 

variance of the true sequence over the testing set. NMSE can be viewed as a noise to 

signal ratio. The smaller the NMSE; the better the predictor. 

6.2 Using linear time series models to predict long-term traffic volume 

Time series are usually modelled as stochastic processes. Linear models have 

good physical explanation and they are very easy to understand and implement. Classical 

linear techniques for time series analysis include moving average model (MA), 

autoregressive model (AR), and their mixture Autoregressive Integrated Moving Average 

(ARlMA) model. They have been predominant forecasting tools for more than 50 years. 

The ARIMA forecasting methodology is widely used in the financial markets to predict 

daily stock price and long-term exchange rate. Here, we are interested in overall traffic 

volume for capacity planning purposes. Hence, our historical data is obtained by 

aggregating billing records of individual users. The billing data recorded hourly 

customer's usage of the system. Hence, to obtain the overall hourly traffic we aggregated 

the individual usage. In this section, we first introduce AR, MA, and ARIMA models. 

We then describe how to use these models and give the results of the prediction. 



6.2.1 Autoregressive process 

Autoregressive process AR (p) was invented by Yule when he worker on 

prediction of the annual number of sunspots [7]. The AR model has become one of the 

most used linear time series models. Formally, AR (p) model can be written as: 

where X (t) is a linear combination of the past observations X (t-l), . . ., X (t-p). Z, can be 

deterministic input or noise. Parameters can be estimated by the Yule-Walker 

equation [7]. 

6.2.2 Moving average process 

The moving average process MA (q) can be written as follows: 

Equation 6.4 describes the MA model of order q, where p is the mean of the MA (q) 

process and e(t -9)  represents the past disturbances. The disturbance terms represent 

noise and uncertainty. The idea behind this method is to eliminate the influence of shorter 

term fluctuations. Parameters 8, can be estimated through the maxim likelihood 

estimation [7] 

6.2.3 Autoregressive integrated moving average (ARIMA) model 

Although the MA or AR models can capture the complex structure of the time 

series, the length of the model may be relatively long. In order to use parsimonious model 



with relatively few parameters, we use combination of MA and AR models to construct 

autoregressive moving average (ARMA) model [36]: 

ARMA model is based on the assumption that the behaviour of the time series 

remains stationary. In practice, many non-stationary time series can be transformed into 

stationary series through differencing. The first order differencing data can be obtained 

by y,  = x, -x,+, . The autoregressive integrated moving average (ARIMA) model is 

developed to analyze the non-stationary time series data. If the first differenced data is 

stationary, ARMA models can be employed for further analysis. 

If the data has a seasonal component, the regular differencing cannot remove the 

seasonal effect. For example, for the hourly billing data collected over several weeks, 

data from a particular hour would not only related to the immediately preceding hours 

and but will also relate to the same hour in preceding week. To deal with such an effect, a 

seasonal form of the ARIMA model can be used. It is named ARIMA 

( p , d , q ) ~ ( p , D , Q ) ~  where s is the period of the seasonal pattern, and p, d, q are the 

orders of the autoregressive, differencing, and moving average, respectively. The P, D, Q 

are the orders of the seasonal autoregressive, seasonal differencing, and seasonal moving 

average, respectively. The time series data within a season is modelled with ( p , d , q ) ,  

while the seasonal effect of the data is modelled with (P,  D,Q) based on data not within 

the season but s units apart. 



6.2.4 Identification methodology for ARIMA model 

6.2.4.1 A utocorrelation (A CF) and Partial autocorrelation (PA CF) 

ACF and PACF are used to determine the parameters of ARIMA model. The 

autocorrelation measures the dependencies between observation pairs, y(t) and y(t+k), 

separated by k time periods (lags). The sample autocorrelation coefficient r, can be 

computed as: 

In addition to measuring the correlation between y(t) and y(t+k), partial 

autocorrelations consider the effect of intervening observation y(t+l) and y(t+k-1). P A W  

can be considered as the correlation between yr - E(Y, I y,-,, ..-, Yr-,+, ) 

and Yr-, - E(Y,-, I Y,-I , ... , Y,-,+, ) . PACF value @,, measures the correlation between y(t) 

and y(t+k) after removing the effects of y(t+l), y(t+2), . . . , y(t+k-1) as: 

In summary, the ACF and PACF have different patterns with different underlying 

meanings. ACF measures the correlation between observation pairs while PACF 

measures their partial correlation. 

6.2.4.2 Choice of the differencing order d 

Most non-stationary data can be transformed to stationary by using differencing 

once. In case where the first difference is still non-stationary, we consider second 

difference on the first differenced data. 



6.2.4.3 Choice of the order of p (autoregressive) and q (moving average) 

After a time series has been transformed to a stationary one by differencing, the 

next step in fitting an ARIMA model is to determine the AR or MA terms. Box and 

Jerkin [7] introduced a method consisting of checking the ACF and PACF plots, shown 

in Table 6.1: 

Process / Autocorselation plot 

Dominated by either damped 

Partial autocorrelation plot 

ARMA(p,q) 

The lag beyond which the value 
cuts off is order p 

Dominated by damped 
exponentials and sine waves 

Exponential or sine wave decay 
after lag (q-p) 

Exponential or sine wave decay 
after lag (p-q) 

Table 6.1 Characteristics in ACFs and PACFs of stationary processes. 

6.2.4.4 Choice of the seasonal order (P, D, Q)s 

If the series has a strong and consistent cycle pattern, we need to consider a 

seasonal model. The seasonal period s can be observed from ACF plot or Fourier 

transform. Seasonally differencing is used to remove the seasonal effects. The seasonal 

differencing data can be obtained by finding y, = x, - x,->. The order D is usually set to 

one. Similarly to defining orders p and q in Table 6.1, P and Q values can be evaluated 

from ACF and PACF plots of the seasonally differenced series. The difference between 

estimating p, q and estimating P, Q, is that spikes in the plot should be examined s units 

apart. 

6.2.5 Billing records: fitting ARIMA model 

The first seven weeks of billing records were used to train the ARIMA model. 

The eighth week of data was used to test the performance of prediction data. 



Figure 6.1 ACF of the billing records. The ACF coefficients do not decay but rather have a periodic 
pattern. The data was collected from 2002-11-01 to 2002-12-13. 

6.2.5.1 Determine the regular differencing, seasonal differencing, and seasonal 
length 

The difference order needs to be defined first. Figure 6.1 shows that there is no 

sign of a slow decay but rather a periodic pattern. Hence, we need to implement seasonal 

differencing (D=l). The ACF plot indicates daily cycles (24 hours) and weekly cycles 

(168 hours). Based on our experience and intuition the weekly cycle has stronger 

influence on traffic volume variations. Hence, we choose periodic length s = 168. 

6.2.5.2 Finding pattern for the seasonal component 

Figure 6.2 (a) shows that the ACF has a large spike at lag 168 below the x axis, 

while Figure 6.2 (b) shows that PACF decays to zero, alternating between lags 168 and 

336. As a result, the seasonal components can be modelled as an MA (1) process, with P 



0 100 200 300 400 
Lao 

Figure 6.2 ACF (a) and PACF (b) of the seasonal differenced traffic. The data was collected from 
2002-11-01 to 2002-12-13. 

6.2.5.3 Finding pattern for the non-seasonal component 

The procedure used in Sections 6.2.5.1 and 6.2.5.2 was applied to examine the 

patterns at the beginning of ACFs and PACFs within a season. ACF shown in Figure 

6.2(a) has a exponential decay, while the PACF shown in Figure 6.2(b) displays a single 



spike at lag 1 suggesting an AR (1) process for its non-seasonal components, with p = 1 

and q = 0. 

Finally, an ARIMA ( p , d , q ) x ( P , D , Q ) ,  model was identified by combining 

results from the above three steps described in Sections 6.2.5.1 to 6.2.5.3. For the 

analyzed billing records, the model is (1,0,0) X (0,1,1) ,,, . 

6.2.6 Traffic prediction 

After the order of the model has been determined, the parameters @ and 0 in 

equation (6.5) can be obtained by using a maximum likelihood estimation. An one-step 

ahead forecast based on equation (6.5) is : 

The n-step ahead predictions can be bootstrapped by incrementally stepping 

forward n time steps. Splus [25] maximum likelihood function and forecast function were 

used to obtain the parameter estimation and forecast [36], and to obtain the results shown 

in Table 6.2. The prediction performances for the uploaded and downloaded bytes are 

very different. As shown in Figure 3.1, the uploaded and downloaded traffic expressed in 

terms of packets are almost identical, which explains the similar prediction performance. 

Since capacity planning does not use packets to describe the traffic bandwidth, we 

focus on analysis of traffic in terms of uploaded and downloaded bytes. Figure 6.3 shows 

that the predictor cannot capture the bursts of the downloaded byte traffic. This is 

because the traffic is highly asymmetric when examined in terms of bytes. The highly 

bursty downloaded traffic (in byte) makes prediction more difficult compared to the 

uploaded traffic (in byte). 



I Traffic type I Uploaded 1 Downloaded I Uploaded I Downloaded I 

Table 6.2 Prediction performance for the different traffic. The data was collected from 2002-12-14 to 
2002-12-20. 

NMSE 

(Mbytes) 

0.3653 

(Mbytes) 

0.5988 

(packets) 

0.5268 

(packets) 

0.5244 



Billing data 

Time (hours) 

(a> 

Time (hours) 

(b) 

Figure 6.3 One week ahead prediction for uploaded bytes (a) and downloaded bytes (b). The data 
was collected from 2002-12-14 to 2002-12-20. 



6.3 Using wavelet-linear method to predict short-term traffic volume 

6.3.1 Introduction to short-term prediction 

With the increase of multimedia application, a significant amount of reserved 

bandwidth is required in order to support real-time quality of service (QoS). Most 

problems are related to the signalling at per connection level. In early 1990, new 

mechanisms such as resource reservation protocols (RSVP) have been designed. They are 

designed for signalling requirements of an application to the network and setting up 

resource reservation along the path. Such types of signalling are usually initiated by the 

end system. To achieve the specified QoS, the edge router on the road will implicitly 

establish dedicated connections through the network. Similar concept and mechanism 

were also incorporated in multi protocol label switch (MPLS) networks. 

In Chapter 5 ,  we have shown that the TCP connection arrival process follows a 

heavy-tailed distribution. This implies that the connection arrival process is self-similar. 

The burst arrival process consumes large amount of network and central processing unit 

(CPU) resources necessary to execute the routing algorithm. As we described in Chapter 

2.2, IP spoofing and TCP splitting techniques make the primary router of NOC an edge 

router, which has considerable memory requirement. If the traffic demand can be 

predicted ahead of the application, it will help the design of the primary edge router such 

as admission control, buffer management and the caching setup of the proxy server. 

Finally, it will help the system archive the desired QoS, reduce response time, and better 

balance the load. For this purpose, short-term prediction for TCP connection is highly 

valuable. 



We employed a recently proposed wavelets related prediction method [3] ,  [22] . 

The signal is first decomposed into different frequencies by employing redundant wavelet 

transform. We then apply linear prediction on each component and finally obtain the 

overall prediction by recombined those separate predictions. Intuitively, different 

components capture different characteristics of the signal. Finer scale or high frequency 

coefficients can be used to predict the short-term trends (near future), while coarser scale 

corresponds to low frequency coefficients can be used to predict the long-term trends. 

This approach utilizes the wavelets' ability to reveal features on the individual scales, 

which are hidden in the signal. Therefore, it is easier for predictor to predict periodic 

information on individual scales. 

Unlike long-term prediction, short-term prediction usually requires fast 

algorithms because they are performed on a small time scale. In this thesis, we predict the 

traffic at 10 seconds resolution. As shown in Figure 6.4, the AR (autoregressive) model is 

selected as the linear prediction model because it is the simplest linear model. 

Time-series signal Detail 1 

Detail 2 

Detail n 1 

Approximation n 

Predicted 
time-series signal 

Figure 6.4 Combined wavelet-linear prediction method. AR linear predictors are applied to 
decomposed coefficients. The overall prediction is the aggregation of separate 

predictions. 

5 6 



6.3.2 Redundant wavelet 

In network traffic modelling, the signal is discrete by default. Hence, Discrete 

Wavelet Transform (DWT) is usually used to analyze traffic data. As described in 

Section 4.4.5.1, calculating DWT expansions directly by matrix inversion is 

computationally intensive. In the mid-1980s, Mallat introduced his remarkably fast 

pyramid algorithm [I I]. This algorithm is performed by passing the signal through a 

series of low pass and high pass filters, with discarding of one sample of every two, as 

shown in Figure 6.5 [27]. The DWT has many advantages in the area of signal 

compression. With DWT technique, a large proportion of the coefficients of the 

transform can be set to zero without loss of information. 

Figure 6.5 DWT pyramid algorithms. L indicates the low pass filter. H indicates the high pass filter. 
Filters are followed by a down-sampling operation. 

When DWT is applied to multi-resolution time series analysis, it poses certain 

difficulties. First, it is somewhat difficult to graphically relate information at a given time 

instance at the different scales, as shown in Figure 6.6 (left). As we examine the 

decomposed signal from the finer to coarser scales, we become less certain about where 

the signal occurs in time because there are fewer coefficients. Second, DWT suffers from 

a lack of shift invariance [3]. By down sampling, the resulting wavelet coefficients 

become highly dependent on which coefficients remain. Therefore, a small change of the 



input signal will finally lead to large changes for the coarser coefficients and possibly 

large changes in the reconstructed waveforms. At the expense of a greater storage 

requirement, this problem can be solved by employing a non-decimated or redundant 

wavelet transform. 

The non-decimated (or redundant) wavelet is a non-orthogonal variant of the 

classical DWT. Using the decimated DWT, one can end up with n coefficients from n 

sampled signal. Unlike the classical DWT, which has fewer coefficients at coarser scales, 

each scale for the non-decimated DWT has n coefficients. Hence, there are (m+l)*n 

coefficients overall when redundant transformation is performed on m scales. Therefore, 

information at each resolution scale is directly related at each time point, as shown in 

Figure 6.6 (right). 



idwt 

d l  

d2 

d3 

d4 

d5 

d6 

s6 

Figure 

idwt 

w 

6.6 Comparison of decimated transforms (left) and non-decimated transforms (right). idwt: 
original signal, dl-d6: detail coefficients of five scales, s6: approximation coefficients at 
scale 6. TCP connection traffic data was collected between 15:00 and 19:10 on 2002-12- 
22. 

6.3.3 Atrous Algorithm 

An alternative non-decimated wavelet transform is given by the "atrous" ("black 

hole") algorithm [3], [34]. There are four steps for atrous transform: 

Step 1: The finest scaling coefficients so (k) are defined by y(k) , which is the the 

time series sample at time k: 

Step 2: Calculate the other scaling coefficients as follow: 

I=- 

s ,  ( k )  = h(l)s , - ,  (k + 2'-' 1) . 



A diagram of atrous transform is shown in Figure 6.7 for three levels of wavelet 

decomposition. The distance between s;-, used for computing s, ( k )  increases as the scale 

increases. This distance between samples of s,-, that are used for computing s; ( k )  can be 

visualized as holes created between them, hence the name "atrous" algorithm comes. A 

1 1 3 1  1 .  
B, spline, (-,-,-,-,-) is used for the low-pass filterlz in equation (6.10). As shown 

16 4 8 4 16 

in equation (6.9) and Figure 6.7 indicates that there is a boundary effect when calculating 

s, ( N )  for time series up to time N. so ( N  + 1 )  and so ( N  + 2) are needed in order to 

calculate the s, ( N ) .  Since we only have samples up to time N, those two samples need to 

be predicted. At this stage, we use a general boundary handling by employing the mirror 

treatment, where y(N - k )  = y(N + k )  [17].  

Figure 6.7 The scaling coefficients are calculated from the previous coefficients. The distance 
between previous coeffkients increases as the scale increases. 

Step 3: The wavelet coefficients that contain the detail are obtained as: 

Step 4: Continue the Steps 2 and 3 until i reaches the specified scale level. 



The inverse transform is given by 

Figure 6.8 illustrates that the scale coefficients become smoother as scale 

increases. Low-pass filtering of a traffic trace also improves the predictability because it 

removes rapid fluctuations of the signal around mean value. Hence, we can expect that 

we will get better predictability at coarser scales. 

Original trace 

s2 approximation 

s4 approximation 
,' 

- J l  

: ! 

sl approximation 1 

s3 approximation I 

10000 
s5 approximation 

Figure 6.8 Inverse atrous transform. The approximation coefficients become smoother as the scale 
increases. sl-s5 are approximation coefficients from scale 1 to scale 5. The packet traffic 

data was collected from 12:00-13:40 on 2002-12-22. 



6.4 Evaluate the prediction of short-term traffic 

6.4.1 Performance of the prediction 

Three-step ahead prediction for five scales is shown in Figure 6.9. AR predictor 

performs differently at the five scales. The sub-trace get more bursty from (a) to (e). 

Analysis in Section 6.3.2 indicates that the performance gradually improves on coarser 

scale. The original trace and its three-step ahead prediction are shown in Figure 6.10. 
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Figure 6.9 NMSE for coefficients on various scale. From the finest time scale (a) to the coarsest time 

scale (e), the performance of prediction greatly improves. TCP connection traffic data 
was collected during 12:00 to 12:17 on 2002-12-22 with the 10-second granularity. 



Figure 6.10 Prediction using AR+atrous method. TCP connection traff~c was collected during 12:00 
to 12:17 on 2002-12-22 with the 10-seconds granularity. 

Table 6.3 shows NMSE for various scales. The combined method performs much 

better than the direct AR method. 

Table 6.3 NMSE for different scales obtained by combined method and AR predictor. 

As shown Figure 6.12, different scale coefficients capture different underlying 

characteristics of the data; coarser scale coefficients capture long-dependent 

characteristic from data. Figure 6.6 indicates that computing the last element of s, ( k )  in 

Predictor 

AR+atrous 

AR 

s5 

5.3e-006 

- 

signal 

0.4261 

1.2654 

D l  

0.9854 

- 

d2 

0.371 1 

- 

d5 

1.43e-004 

- 

d3 

0.0380 

d4 

0.0019 

- 



equation (6 .10 )  requires s , ( k  - 2 )  , s , ( k )  requires s, ( k  - 2 ' )  , and s , ( k )  requires 

knowledge of s, ( k  - 2 ' )  . The coarser scale coefficients are calculated, the larger number 

of previous finer scale coefficients are required. For example, at time k, predicting one- 

step ahead value x ( k + l )  requires predicting from s, ( k  + I) to d l  ( k  + 1 )  and finally 

combining them. If the prediction length is 15, s ,  ( k  - I S ) ,  s ,  ( k  - 14), . . . and s ,  (k - 1 )  

need to bc included in order to predict s , ( k  + 1 )  . s , (k  - 15) will depend 

o n s , ( k - 1 5 - 2 ' ) ,  while s 4 ( k - 1 5 - 2 ' )  will furtherdependons,(k-15-2 '2j) .  Thus 

s , ( k - 1 5 )  will depend on s , ( k - 1 5 - 2 5 - 2 4 - 2 ~ 2 2 ? - 2 1 ) = s , ( k - 7 7 ) = x ( k - 7 7 )  . 

This explains why coarser coefficients can capture longer dependence from the data. 

Therefore, B, spline atrous transform with AR prediction length of 15 implies that i t  

utilizes the information up to 77 previous samples. To the contrary, direct implementation 

of AR of length 15 only includes information from the past 15 observations. This is the 

reason why the combined method has better performance. 

n 10 20 312 JO 50 HI 7n 8n 90 Inn 
Lag 

Figure 6.11 ACF of the different scale coefficients. 



6.4.2 Performance of the predictor versus the length of the predictors 

Although the combined AR+atrous method can improve the predictability, its cost 

is additional storage. The longer the predictor length is, the more storage is needed. 

Therefore, it is important to investigate the influence of prediction length. We employed 

linear AR predictor with and without atrous transform and calculated the NMSE for 

various predictor lengths. 

The performance of the two predictors with varying lengths of the predictor is 

shown in Figure 6.12. The predictability does not improve significantly after certain 

predictor length. In the collected traffic trace, the ideal predictor length is approximate 

15. This implies that including more historical traffic data does not necessarily improve 

the performance of NMSE. To improve the predictability, only a certain amount of past 

data is required to be stored. This result also concurs with previously reported 

performance of the linear AR predictor for self-similar traffic [21]. 

+ AR [one-step ahead) 
+ P P  w ~ t h  Plrous (three-step ahead) 

AP w ~ t h  P l ro l~s  (one step ahead) 

0 8 

" 1 , b i b d . a s b i p l ; : m  
Length of predictor 

Figure 6.12 Performance of the predictors versus the length of the predictor. 



CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusion 

In this thesis, we followed three steps in traffic measurement and analysis: traffic 

collection, traffic characterization and modelling, and traffic prediction. 

7.1.1 Traffic collection 

Collecting traffic is an important part of traffic engineering. Choosing suitable 

collection tools and finding the suitable collecting location are essential. Traffic 

collection procedure is time consuming. The data requires large storage and need 

powerful database server to be processed. The granularity of the trace is critical factor for 

further analysis. In this thesis, we describe the traffic collection from a DirecPC system. 

One month of traffic trace was collected by tcpdump software from the primary router at 

the network operation center, and two month of billing records were collected from 

billing system. 

7.1.2 Traffic characterization and modelling 

We first analyzed the billing records. The traffic data show a diurnal circle and a 

highly asymmetric traffic transmission pattern. The collected traffic traces were then 

characterized based on application, protocol, connection, and packet levels. The Web 

application and TCP protocols dominate the traffic. We further investigated the 

frequency-rank relation of client's connections in the collected traffic trace. We found 

that this relation can be modelled by the DGX distribution. We also explained why the 

known Zipf law failed. This result indicates that traffic is non-uniformly distributed 

among the hosts. We concluded that the language, geographic, and commercial elements 



greatly influence the distribution of traffic data. Our analysis shows that packet size 

distribution is bimodal and. most bytes are sent in large packets. 

We estimated the Hurst parameter using various estimators and under different 

link utilizations. We also addressed the issue of non-stationarity in investigations of the 

self-similar behaviour of traffic traces. Because the DirecPC system utilizes the TCP 

splitting technique, we modelled the traffic on the TCP connection level. After evaluating 

the fitness of the models, we concluded that Weibull and lognormal distributions are ideal 

for modelling the TCP inter-arrival times and the number of downloaded bytes, 

respectively. 

7.1.3 Traffic prediction 

In this thesis, we also performed long-term and short-term traffic prediction 

through different approaches. We used ARIMA model to predict long-term traffic. The 

result shows that downloaded traffic have more difficult to predict than to predict 

uploaded traffic because downloaded traffic have larger volume and is more bursty. By 

combining wavelet with AR model, we performed short-term traffic prediction for the 

TCP connection data. This approach greatly improved the prediction performance. 

Finally, we investigated the predictability of this approach and concluded that the 

prediction performance does not improve beyond certain prediction length. 

7.2 Future work 

One possible future direction of this work is to simulate the hybrid satellite- 

terrestrial network, use the derived TCP-connection model as input trace, and compare 



the throughput and queue size with the collected traffic trace as input. It would be of 

interest to investigate the effects of various parameters on the system performance. 

In this thesis, only wavelet-linear predictor was implemented for short-term traffic 

prediction. However, the linear models may be overly simplified for some traffic data. It 

would be ideal to use nonlinear models to describe more complex observations. The 

neural network is a promising approach to model and predict the nonlinear and non- 

stationary data. The idea of neural network is to mimic how human brains process the 

information. The brain is a multi layer structure that works as a parallel computer. The 

neuron receives information through a number of inputs nodes. Those inputs are then 

multiplied by the weights that are adjusted through the data training. The outputs of 

neural networks can model very complex system. The parallel and hierarchical 

characteristics of neural networks make them ideal for implementation using VLSI 

technology. Therefore, we can expect that neural network related approaches may be 

implemented for real-time application such as signal processing and short term 

prediction. 

Researchers are combing wavelet transform and neural network approaches to 

perform prediction on time series data. Wavelet packet [33] and time delay recurrent 

network [4] are promising approaches in this direction. 
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