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ABSTRACT 

This thesis investigates the performance of a novel iterative soft inputlsoft output 

groupwise multiuser detector (MUD). In general, multiuser detectors improve 

performance by explicitly accounting for the interference when detecting all users 

together. In this thesis, the interference is assumed to be a product of users whose 

channel gains are known. The novel technique extends the group detector MUD with an 

iterative process, and is aptly named iterative MUD (IMUD). The success of IMUD is 

measured by how close it can get to the performance of the computationally prohibitive 

optimum technique (joint maximum likelihood MUD) with as little complexity as possible. 

To do this, IMUD was compared to existing MUDS in terms of complexity and 

performance. Since MMSE V-BLAST was seen as the best low complexity competitor, it 

is used as a performance reference. 

The results from IMUD with equal numbers of users and receivers were 

excellent. In a 12 user112 receiver system at an error rate of IMUD had a 2dB gain 

on MMSE V-BLAST and roughly equal complexity. In the case when there are more 

users than receivers, IMUD's gains are even more pronounced. In a 12 user18 receiver 

flat fading system at an error rate of IMUD had a 7dB gain on MMSE V-BLAST with 

roughly equal complexity. IMUD was also tested in a serially concatenated system in 

which all users employed convolutional codes. The results are promising. In a 6 user14 

receiver system at an error rate of lo", the IMUDlSlSO detector performs within 2dB of 

a single user coded system with the same number of antennas. With a rate 213 code, 

IMUDISISO performs within less than 2dB of a single user coded system. 
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INTRODUCTION 

Communications Engineering is focused on the transmission of information from 

point A to point B. For the past century, this transfer of information has become 

increasingly important in society. Communications research has always been driven by 

current applications: initially to communicate between cities and colonies separated by 

vast oceans and now for mobile voice, data, and video on demand. These new 

applications depend on high bandwidth systems. "High-bandwidth systems" usually 

denotes systems with significantly increased capacity compared with existing systems, 

allowing new applications to flourish. The digital revolution sparked this trend of catch- 

up, where engineers are constantly evolving current systems to meet tomorrow's 

demands. Integrated circuits and micro-processors have been a key catalyst in allowing 

designers to use complex algorithms in communications systems. These tools continue 

to allow awkward and complex theoretical communications systems that are born in 

universities and research labs to become reality. 

A solution to the high bandwidth problem is under investigation by the 

engineering community, but there are many complications. One of these complications 

is defined by society, not by engineering principles. The popularity of wireless systems 

has made the electromagnetic spectrum a hugely popular commodity. Hence, the 

engineer is constantly looking for ways to compress more information into smaller and 

smaller allocations of spectrum while keeping the integrity of the communications system 

intact. The term 'capacity' is used by engineers to refer to the amount of information 

transferred in a given bandwidth. It is measured in bitslsecondlHertz, and can be 

thought of as a normalized data rate, or a throughput for a certain bandwidth. To put it 



concisely, the study of how to maximize the capacity of a communications system while 

keeping within a finite bandwidth is the result of our need for high bandwidth systems. 

This is one of the primary goals of communications research today. 

Multiple antenna systems (commonly referred to as multiple-input multiple- 

output, or MIMO) are one of the techniques devised to address this problem of capacity. 

By using statistical properties of the wireless channel, multiple antennas can multiply the 

capacity of the original single antenna system. The trade-off comes in the form of 

physical space and the price of adding additional antennas versus that of bandwidth. 

Multiuser detection (MUD) is a subset of MIMO. In MUD systems, the users 

accessing the channel are allowed to interfere with each other. In a way, this 

interference can be used to increase the capacity of the system by placing more 

information in the same mobile channel. The detection of such a signal seems to be 

quite a challenge, given that the symbols become apparently irreversibly combined. 

Hi,i~ev~+t,  ci,lr! i1.1 ! I ~ ~ L I I ~  Q! ii!p m&+ cnerrrrei, S U C ~  2 system h35 cec:: p:svcn to be 

practical. The variety in the channel that each user experiences actually provides the 

information necessary to distinguish each user from each other. Without the diverse and 

variable nature of the mobile channel, MUD would not be possible. For example, in a 

line-of-sight satellite communications link, MUD with identical pulse shapes is not an 

option because of the lack of multipath. 

The technique documented in this thesis is a novel integration of various existing 

multiuser techniques. It improves on a groupwise technique that bridges the optimal and 

suboptimal techniques, allowing design engineers to trade off performance for 

computational complexity. The technique, called iterative MUD (IMUD), is novel in the 

way that it allows iterations between groups, and not in time as with most iterative 

processes. This iterative process proves to be of great value in increasing the 



performance with a linear increase in computations as opposed to the exponential 

increase apparent in the optimal technique. In fact, in an overloaded system that 

contains more users than receivers, the performance gains are even greater. Most other 

suboptimal techniques perform very poorly in this case because of their heavy reliance 

on linear estimation. 

Since the new MUD technique is effectively a soft-inputlsoft-output (SISO) block, 

it is also examined as part of a serially concatenated iterative system. Convolutional 

codes are used to provide channel memory and allow iteration of the calculated 

probabilities. 



BACKGROUND 

2.1 The Mobile Channel 

In this thesis, the term 'user' refers to a mobile transceiver and the term 'receiver' 

refers to a stationary transceiver. This study focuses on data transmission from the user 

to the receiver, also called the uplink, although in general the techniques described in 

the following chapters are viable for both the user and the receiver. A likely scenario 

could include a cellular phone customer, where the user is the handset and the receiver 

is the base station. 

A mobile channel links the user and receiver. The term 'mobile channel' is used 

to refer to a radio frequency channel that changes over time and distance. The 

mechanism behind the variation in the mobile channel is illustrated in Figure 1. The 

channel includes multiple reflected radio wave paths between the user and the receiver 

and either a weak or non-existent direct path. As the user moves relative to the 

scatterers (the reflective objects), all channel paths have the potential to change. 

Hence, a mobile communications system must be able to operate using only the 

reflections of the signal, collectively called multipath. The first step in dealing with 

multipath is to identify the state of the channel at each sampling time. The state of a 

channel is a mathematical value which represents the amplitude change and phase shift 

that a signal would experience. This is also commonly known as the channel state 

information (CSI). The CSI is used along with a specific detection scheme to reverse the 

effects of the multipath, allowing for effective reception of the transmitted signal. 



Figure 1: Multiple paths in a mobile communications system 

A communications system o~eratina in a mobile channel has to deal with a 

number of detrimental effects. First, since the multipath channel is constantly changing 

due to movement of the user or the scatterers, the channel is time-variant. The 

variability depends on the nature of the channel; in a busy downtown core with the 

mobile located in a moving vehicle, the channel changes frequently, but with the mobile 

located with a pedestrian on foot in the countryside, the channel may be static. In the 

case of the frequently changing channel, the communications system must track the CSI 

as the channel varies. 

Second, there is the possibility of a fade due to the reflections. A fade occurs 

when the signal strength or amplitude is reduced to below a useable threshold, where 

the usability is defined by an error rate. Fades are due to multipath with relatively equal 



amplitudes arriving at the receiver out of phase with each other. If they are close to half 

a wavelength off, they will effectively cancel out. 

Third, if the multipath signals are significantly delayed with respect to each other, 

the channel will exhibit frequency selectivity. The channel can then be depicted as 

having an impulse response, much like a finite impulse response (FIR) filter. An 

example of a channel impulse response is shown in Figure 2. Note how each 

transmitted pulse is effectively extended into multiple copies arriving at subsequent 

sample intervals. Also, the time variation is evident in the fact that after each symbol is 

transmitted, the channel is altered (notice the delayed copies of the signal are at 

different amplitudes). In an actual system, the channel impulse response is continuous, 

but it is normally presented as a discretized version to allow easy analysis. Many terms 

are used to describe these delay effects; delay spread and coherence bandwidth for 

example. Delay spread defines the average length of time it takes for all multipath 

s ipals to arrive at the recei \~~r .  In Figure 2, ?he ?\!orZ.;o & ! ~ y  sp:e& is 3 ;/, ;n;bc:s. 

Coherence bandwidth defines the bandwidth in which the channel response is highly 

correlated. The bandwidth can be used as a tool to reduce the delay spread in the 

system. If the signal is bandlimited to within the coherence bandwidth, the problem 

introduced by this signal spread may be averted, but at the cost of capacity. Making use 

of the Fourier transform, the delay spread is the inverse of the coherence bandwidth. 



Figure 2: Example of delay spread and channel variance over time 

Time 

Time 

So far the mobile channel can vary over time and exhibit frequency selectivity. 

Another aspect of time variation that is of importance is Doppler spread. Doppler refers 

to signal spread over the frequency band due to the relative velocity between the 

transmitter, the scatterers and the receiver. If the mobile channel is non-varying, there is 

no Doppler spread. If the mobile channel varies, the Doppler spread effectively spreads 

the transmitted signal by an amount determined by the Doppler frequency. The inverse 

of the Doppler frequency is called the coherence time, and is the best way to view the 

effects of the Doppler shift. The coherence time is the amount of time that the channel 

stays relatively correlated. If the coherence time is less than a symbol time, than there is 

a possibility that a fade may occur within the transmission of a symbol. The traditional 



"to expression for Doppler frequency is f, = - , where v is the velocity of the user, fo is the 
C 
, 

carrier frequency, and c is the speed of light. For the mobile channel, it is not as simple 

since the spread is due to a number of contributors, including the movement of other 

users and scatterers. In any case, this is only a brief description of the characteristics of 

the mobile channel. Our simulations will be making significant simplifications on the 

system. For a thorough discussion of multipath and all of its components, see [I]. 

For the study of the iterative multiuser detector, the simulated channel is 

relatively simple. The simulations take place in a channel that has no delay spread. 

Since the point of the simulations of the new multiuser detector is to determine how it 

performs relative to other detectors, the more complex channels are avoided for now. 

As justification, the coherence bandwidth of the system is assumed to be much greater 

than the signal bandwidth. The response of the system then becomes a single impulse, 

eliminating the delay spread. A system with no delay spread is termed flat-fading since 

there is no frequency selectivity. 

Various ways to model the flat-fading multipath channel have been studied and 

utilized in real systems. They all consist of expressing the channel gain experienced by 

the transmitted pulses as a single random variable. The most common for a non-line-of- 

sight system is the Rayleigh model. The Rayleigh model assumes that the incoming 

signals are numerous (Figure 3). All signals are assumed to have random phase. The 

Rayleigh model can be derived from a complex Gaussian model. In the mobile channel, 

the numerous received signals allow a complex Gaussian approximation to be made [I] .  

The probability distribution function (pdf) of the complex Gaussian amplitude turns out to 

be Rayleigh. A key feature is that the Gaussian assumption holds up even for less than 

10 incoming signals, allowing even simple mobile channels to match this model. Of 



course, this model is a major approximation. However, field tests have shown that these 

approximations generate channels with statistics that come very close to those of a 

measured mobile channel. Thus, we use the Rayleigh fading channel in our simulations. 

Figure 3: Equispaced incoming signals for the Gaussian assumption 

Our model now consists of two important points; our channel is Rayleigh fading 

with no delay spread. However, this information tells us nothing about the time variation 

of the channel. For that, we use the Jakes model [I ,2] to provide the time correlation 

introduced by movement of the user and scatterers. The Jakes model forces the 

correlation in time of the channel gains to match that of a channel with a specific Doppler 

frequency. This Doppler frequency is a product of the movement of the user and all the 

scatterers in the channel. For example, if the Doppler frequency were set to zero, the 



channel would be static, and if the Doppler were set to oo , the channel would be 

uncorrelated from one instant to the next. The model makes the assumption that the 

autocorrelation of the channel impulse response is a zeroth order Bessel function, 

J,, (22-f,T) . The product of Doppler frequency and symbol duration, fdT, is used to set 

the rate of channel change. A common value for a fast-fading channel is fdT = 0.01. 

Our complete model consists of a Rayleigh sample generator (which can be 

represented simply by a complex Gaussian random variable) and a Jakes filter to model 

the time variation. It is usually referred to as a frequency-non-selective slow-fading 

channel. In the Matlab simulation, the Jakes filter for larger delays becomes excessively 

lengthy. So, the technique as detailed in [2] is used, which allows for speedy 

computation. This technique combines the Jakes filter with a complex Gaussian sample 

generator. If we were to remove the Jakes filter so that the samples are uncorrelated 

from symbol to symbol, our system would be fast-fading. 

In either slow-fading or fast-fading cases, the gain is denoted as h ( k ) ,  where k  

denotes the symbol time. For the transmitted symbol b ( k )  , the received symbol prior to 

noise being added is simply the product, h ( k ) b ( k ) .  

In a multiple-input, multiple-output (MIMO) antenna system, we have a number of 

transmitted signals and we receive them with a number of antennas. If the antennas are 

sufficiently separated and if the users are sufficiently separated, the various Rayleigh 

channels are uncorrelated. Usually a half wavelength separation is enough to provide 

decorrelation at the mobile. At the base station, a significantly larger separation is 

normally required. However, except for some small oscillations in the autocorrelation 

function, the further apart the antennas, the more decorrelated the paths. The 

independence of the channels is needed for channel diversity. Diversity is a term used 

10 



to convey the fact that the signals arriving at different antennas experience difference 

depths of fade; the higher the diversity of a system, the higher the amount of information 

available at the receiver about the transmitted symbols 

Diversity and antenna separation can be intuitively seen in the following example. 

if the scattered signals are reflected close to the receiver, thus having a large angle of 

separation between the signals, then a small change in the location of the receiver will 

result in a large change to all the channels. Conversely, if the reflections occur from a 

far distance, creating a small angle of separation between the signals, the same change 

in location may result in virtually no change to the channel gains. The angle of arrival is 

the important factor. 

To reiterate, the effect of delay spread and the resulting interference from 

neighbouring symbols will not be included in the investigation of IMUD. We have 

decided to leave this for further study, and focus on the effects of our novel detector in a 

iela:ively iii?zsi?iplicated wireless tiha 111ei. nuwever, ii is worin noting ihat aeiay spread 

can be seen as a bonus in a mobile system. If the delayed symbols are detected in the 

optimal sense, they can be viewed as extra information for the past symbols arriving with 

the current symbols. One transmitted symbol is therefore spread between multiple 

channels, where these channels are separated in time instead of distance as is the case 

with MIMO. Thus, it would increase the dimensionality of our system in a beneficial way 

at the cost of the optimum detector complexity. The same argument could be made for 

systems that use spreading codes or asynchronous transmission. 

The simulations for IMUD are done with a frequency non-selective, fast-fading 

channel model. Since the multiuser detector operates on a symbol-by-symbol basis, any 

change to the correlation in channel samples will leave the simulation results 

unchanged. This fact allows the simulations to be run with totally uncorrelated channels 



(each symbol experiences a channel gain that is uncorrelated to the last). This also 

allows the results for IMUD to be generalized to any type of correlated channel, fast or 

slow. However, whether the channel is fast-fading or slow-fading does affect 

performance of a system that combines IMUD with memory dependent schemes, such 

as channel coding. 

2.2 Communications System 

For our investigation, we assume that we have N users (or N antennas at a 

transmitter array, see Figures 5 and 6) that are synchronous and transmitting 

independent data symbols. Each transmitter sends a binary phase shift keyed (BPSK) 

signal. The signals are received with equal power at an M element receiver array. 

The notations used in this thesis are as follows: an italicized lower case character 

denotes a scalar and may be indexed by time (ie. b ( k ) ) ,  a bold and lower-case 

character denotes a matrix (ie. X ), XT denotes transpose, Xt denotes a conjugate 

transpose, and XP denotes the pseudo-inverse. I, is an M x M identity matrix 

Figure 4: SlSO channel model 

Pulse shaping filter Matched filter 



From now on, the independent complex Gaussian random variable h ( t )  will be 

denoted for all M x N MlMO channels by the M x N time varying channel matrix H ( t ) .  

H ( t )  is also represented as N column vectors, H ( t )  = [h,  ( t )  h, ( t )  ... hN ( t ) ]  , where 

hi ( t )  is an M x 1 column vector that represents the channel gains from user i to all M 

receiver antennas. The receiver noise is shown as the length M vector n ( t ) .  Finally, 

the transmitted symbols from all N users will be shown as b ( k )  = [b, ( k ) - . . b N  ( k ) l T  , 

which is a length N vector consisting of BPSK symbols belonging to the set (-1, +1) . 

The received signals are matched filtered with p ( t ) ,  which is the transmit pulse shape. 

After sampling at the receiver, the channel gains and noise are denoted as H ( k )  and 

n ( k ) ,  respectively. They are stored in the length M vector y ( k ) .  y ( k )  is expressed as 

We have assumed symbol synchronous reception and no inter-symbol 

interference. For notational simplicity, we will neglect the discrete time reference on the 

vectors; H ( k )  , b ( k )  , and n ( k )  become H  , b , and n  , respectively. For the simulations 

involving convolutional codes and interleaving, the time dependency is assumed in the 

calculations. However, for the investigation of IMUD alone, the fact that IMUD is strictly 

symbol-by-symbol allows the channel gain to be modelled as independent from one 

symbol to the next. This helps speed up simulation time. Equation (1) then becomes 

The signal-to-noise ratio (SNR) of the single link is defined as follows. First, we 

use the knowledge that the system is symbol synchronous and flat-fading to allow each 

pulse to be considered separately. Each transmitted symbol is scaled by a value A. b, 



is then pulse shaped with p ( t )  before being transmitted. p ( t )  is set equal to a Nyquist 

pulse with unit energy for simplicity ( ~ l ~ ( t ) r  dt = 1). Each user transmits from a single 

antenna. For the channel from the nth user to the mth receive antenna, the transmitted 

signal power can be found by taking the expected value of the square of the transmitted 

signal. The symbols are transmitted at rate of % through the channel shown in Figure 

4. hn, and z, are complex Gaussian random variables with variance equal to K and No, 

respectively. bn is then pulse shaped with p  before being transmitted. For the channel, 

we set ~[lh,,,1~] = 1 so that the variance of h,, is equal to K as noted above. Then the 

received signal energy is 

The received signal is y, = A .  hn,bn + n, , where n, is the filtered noise term. 

Since we sample at a rate of X , the variance of n, is identical to the variance of z, . 

The received SNR from the nth user to the mth antenna is 

1 
E - A2 

SNR = S" - 2 
No l E [ l n m r ]  -- 

2 

For the rest of the document, A is set to unity and the SNR is based solely on the noise 

power No. 



Our multiuser MIMO system is depicted in Figure 5. An alternative system which 

has identical capacity is shown in Figuret6. It makes use of uncorrelated antennas at 

the same transmitter, and achieves capacity gains by transmitting multiple statistically 

independent streams. 

Figure 5: Multiuser system (MIMO) 
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Figure 6: Multistream system (MIMO) 
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2.3 Single-User Detection Techniques 

Traditional mobile systems with a single transmitter and receiver use a single- 

user detector with optimum results. In some multiple access techniques, such as time 

division or frequency division, the pulse shapes of each user are made orthogonal. This 

also allows for the use of a single-user detector. Without multiple interfering users, there 

is no need for multiple-user detection. However, there is still a possibility of past 

symbols interfering with current symbols; channels with delay spread are prime 

examples. But this is traditionally dealt by with equalizers, which use the knowledge of 

the channel's impulse response to remove the past symbols' effects. 

In a system with no delay spread, the single-user detector is greatly simplified. 

The optimum detector, given that all symbols are equi-probable, can be realized as the 

correlator receiver. This detector uses a method of ranking all possible transmitted 

symbols by the correlation between each possible symbol and the received signal. It is 

shown [I] that the correlation metric can be found as 



, 

where y is the received sample, h is the channel gain. b  is the hypothesized symbol 

sent and is one of m values for an m-ary constellation. This is derived for a known 

channel with Gaussian noise. A convenient way of viewing this technique is that of a 

'closest match'. D is essentially a distance metric between the received sample and the 

current hypothesis. Whichever hypothesis gives the smallest distance is the decision. 

In other words. 6 ,  the estimated symbol, is argmin D(y. 6 ) .  With that in mind, we can 
b 

view the detection via a plot of the constellation points and the received sample. The 

distance between each constellation point is simply bisected by a line, denoting the 

decision line. For BPSK, with {+I,-I) as possible symbols, this decision line is simply 

the y-axis. If our sample lies on the negative side of the x-axis, we decide the 

transmitted symbol was -1, and vice versa. 

-, 
! "e r l i i c ~ +  fcr inn scrreiaicr receiver csmes !:om the tsd that :he noise :ha: 

corrupts our transmitted signal is Gaussian. The metric falls from the likelihood function 

of y given a hypothesis b . Putting this in context of our communications system shown 

in the previous section, (2) is first reduced for a single user as y = hb + n . Since n is 

assumed to be Gaussian, and we have a hypothesis b, and channel measurement h, 

we can easily find p (y I h, b) as 

since the mean of y conditioned on b is hb and the variance of n is 0'. Since the 

symbols are equi-probable (maximum likelihood decisions), the pdf scaled with respect 

to b is equivalent to Pr (b) , which is the probability of a given symbol. Taking the natural 



log of this pdf results in a constant plus the distance metric in (5). Since the logarithm 

function is an invertible operation, the symbol that has the lowest value for (5) can be 

said to have the probability Pr (b) . 

This optimum technique changes if any a priori information is available about the 

symbols. The above formulation assumes that all possibly transmitted symbols are equi- 

probable. If they aren't, Bayes rule must be used to transform the above maximum 

likelihood (ML) technique into a maximum a posteriori (MAP) technique. The probability 

of the current hypothesis becomes Pr(bk) 

where Pr (b) is the a priori information and p(y) is for normalization. 

It's worth noting that for the single-user detector, the complexity is limited to the 

size ?he cc~s~eiia{isn. 

2.4 Multiple User Detection Techniques 

The optimum multiuser detection (MUD) technique is similar to the optimum 

single user detection technique, except the size of the constellation for the distance 

measure is proportionally larger to the number of users. We look at the extension to the 

single user detection in joint ML detection. A number of sub-optimum techniques are 

also examined due to their lowered complexity. 

2.4.1 Joint Maximum Likelihood Detection 

Joint maximum likelihood detection (JML) was first detailed by Verdu in the 

context of different user pulse shapes in 131. In [4], Grant et al. analyzed JML in the 



context of identical pulse shapes and developed a bound for this case. We focus on this 9 
paper since in our investigations we use'identical pulse shape for all users. 

JML makes a closest fit decision given the received samples from all M antennas 

and channel gains for all MN channels. It can be viewed as a multi-user equalizer, 

where all users are separated out in a similar fashion in the ML sequence estimator 

(MLSE). Just as MLSE in the presence of delay spread expands the constellation to 

deal with the past symbols and their channel gains, JML expands the constellation to 

encompass all users and their channel gains. An expression for the M x I received 

sample vector y is given in (2). As with the single user ML, the Gaussian model is 

assumed for the noise at the M antennas. y has a mean of Hb and a variance of R, . 

The U stands for 'undesired', and for now it will be taken to be noise. Considering that 

the variables are complex, the pdf of y conditioned on the channel gains and the 

transmitted symbols is 

If the undesired component of y is spatially white noise, then R, = NJ, . Then IR,( 

becomes NN, and R: becomes Ni'l, 

The likelihood function (8) is now evaluated for every possible combination of b. 

Just as in single user, (8) can be represented more conveniently in log form, and is 

referred to as the JML metric 

Since log(2iil~,I) is a constant for all b, it is disregarded in the metric. 



A bound for the performance of JML from [4] is used in the simulations. It is 

shown that for the nth user, the union bound of the probability of bit error is 

where pw is the kh pole of the characteristic function of a quadratic form, pi, is in the left- 

hand plane, pfl is in the right-hand plane, and i is taken over all possible error vectors ( i  

is incorrect and j is correct b vector). 

The complexity of implementing this algorithm is reliant on the size of b, and 

therefore the number of users. Using m-ary signalling and N users, our complexity 

grows in proportion to mN. For larger constellations and a few users, this quickly grows 

out of the computational limits for current systems. For example, with 16QAM and 8- 

user system, we will have to calculate the metric (9) for greater than four billion 

combina:ions of bl 

2.4.2 Joint Maximum A Posteriori Detection 

Joint maximum a posteriori detection (JMAP) incorporates any previous 

knowledge with the metric used in JML. This is similar to the MAP detection explained in 

the single user techniques previously. Again, just as in the single user case, if there is 

no a priori information (the incoming symbols are assumed to be equi-probable) then 

JMAP becomes JML. 

Instead of a searching for a metric to sort the likelihood of each possible vector, 

JMAP seeks the probability, Pr (b, 1 y) for the nth user. The hypothesis with highest 

probability is then chosen as the decision. JMAP calculates this conditional expression; 



the probability of the nth user symbol conditioned on the received samples. The result is 

similar to (7) in the single user case , 

The right-hand side of (1 1) is obtained by marginalizing over other symbols as 

bab,, =b 

p(y) in (1 1) is simply a normalization term, and can be expressed as 

Finally, combining (1 l ) ,  (12), and (13), the MAP probability becomes 

which is easily calculated given the a priori probabilities Pr (b) for all users and the 

likelihood values p(y I H,b) from (8). To finish the technique, the decision is made on 

this new conditional probability. 

The log form of the probabilities is appropriate for this technique and is used in 

the simulations of chapter 3 and 4. The accuracy of some of the joint probabilities is 

severely reduced in Matlab due to rounding errors. Any values that are below are 



approximated as zero, resulting in error floors. The log form can circumvent this 

problem. In log form, (14) becomes 

log ( ~ r  (bn = b ( H, y)) = log 

where all the a priori probabilities are log form and the conditional likelihood is from (8). 

The approximation problem in Matlab occurs in the sum of the exponentials. With log- 

form, the marginalization is done without taking the exponential of individual 

probabilities. This is done through with the use of the Jacobian algorithm, which also 

allows for complexity reduction. The reduction is in the form of a tabular approximation, 

explained below. This technique is known as log-MAP [5]. The Jacobian algorithm 

states that for log probabilities S 

log (e4 + e4 ) = max (6,,4 ) + log (I + e-14-41) (1 7) 

The first term, the maximization, is very simple and does not require any exponential 

function. The second term depends on the difference of the two terms; thus, if one of 

the terms is vanishingly small, the larger term will dominate and may prevent an 

approximation. It has been found that the second term can be approximated as a table 

of around 10 values without degrading the operation. Therefore, no exponential 

functions need to be evaluated in this algorithm. For more than two terms, the Jacobian 

is easily extended 



For the simulations, the use of a table instead of the second term was not 

investigated; the log and exponential functions were evaluated. The algorithm did 

remove the approximation problems in Matlab. For applications with limited 

computational power, it appears to be very straightforward to apply the tabular 

approximation 

2.4.3 Zero-Forcing 

Some of the original work in MUD was on linear techniques due to their 

simplicity. Decorrelation MUD, more commonly known as zero forcing (ZF), is the most 

straightforward of the linear techniques. Wolniansky et al. discuss ZF MUD and its 

application to the V-BLAST MUD covered in section 2.4.5. 

Zero forcing is essentially a well-known beam forming technique using the 

pseudo-inverse (detailed thoroughly in [7]). With knowledge of the channel state for all 

users, the zero-forcing MUD makes a decision on theth user by nulling out the N-I 

interferers. W, the zero-forcing filter, is the pseudo-inverse of H. The reason this 

solution works is demonstrated in the following simple derivation, where we start with (2) 

To use the filter to solve for the users, we simply take the product of the 

conjugate transpose of W and y 



which is the transmitted user symbols plus a filtered noise. For BPSK, we can then take 

the sign of (20) as our symbol estimate 

Although the linear techniques are simple, they have certain drawbacks. ZF forces 

contributions from all users except the current user under detection to zero (hence the 

term zero-forcing). If the users are collinear or have linearly dependent gain vectors, the 

nulling of certain unwanted users will reduce the SNR of the desired user. This is a 

problem in all linear techniques and referred to as noise enhancement. Noise 

enhancement is reduced in the next linear technique, minimum mean square error MUD. 

ZF MUD can achieve decent results in systems where there are at least as many 

receive antennas as users. These are termed overdetermined systems, where N I M . 

In this case, ZF MUD exhibits diversity order equivalent to (M - N) + 1. If there are 

e q ~ a l  receive a n t e n n s s  znrl ~ ~ o r s ,  fho RER ccp.re zith 2 !3g ! 3 ~  S C ~ ! C  :':ill ~ S V E  B 81~pe 

of 1, or a decade reduction in BER per 10dB increase of SNR due to the diversity. For 

every extra receive antenna added, an order of diversity will be gained. In overloaded 

cases (also called underdetermined) where N < M, ZF falls short since it does not have 

the ability to completely null out all interferers. As seen in the overdetermined case, it 

takes one antenna to null out one user. After all users have been nulled, the remaining 

antennas can be used to add diversity to the system. For the overloaded case, all users 

cannot be nulled; the matrix HtH is singular and not invertible. 

2.4.4 Minimum Mean Square Error 

In 161, Winters examines the minimum mean square error (MMSE) technique with 

users of equal and varying power levels. In our analysis, we have equi-power users, all 

of which are desired. MMSE is the most practical linear technique devised. It reduces 

24 



the noise enhancement problem encountered in ZF MUD by including the noise power in 

the filter calculations. At the least, this avoids the singularity encountered by the ZF filter 

in overloaded cases. 

MMSE is based on the classic error minimization calculation, shown commonly 

as the Weiner-Hopf equations. From [7], we see the Weiner-Hopf equation as the basis 

of the MMSE filter, expressed as 

where W is our M x N MMSE filter matrix, y is our received samples and H is our 

channel state matrix. Solving for the expected values, we get 

where 

The inclusion of the noise power is evident in (23), with a power of No 

As mentioned above, the SNR knowledge allows MMSE MUD to minimize the 

sum of the noise and the interference variances, so it doesn't focus on either variance 

exclusively. Therefore, MMSE MUD does not try to null out the smallest interferers; it 

prevents noise enhancement by scaling the matrix inverse. In ZF, the desired user gain 

is normalized to 1. This normalization can also enhance the noise. The inclusion of the 

noise power in MMSE acts as a weight; if the noise is very large compared to the 

channel information in (23), it reduces W proportionately. This removes the 

normalization of the desired user, but keeps the SNR from being further reduced. The 

effect is evident as a shift of the BER curve. 



MMSE MUD has the same diversity effect as ZF MUD; it performs poorly in 

overloaded systems, and has an asymototic diversity order of (M - N) + 1 when N 2 M. 

2.4.5 Vertical BLAST 

Vertical BLAST (Bell Labs Space-Time) was first examined in [8*]. Usually 

referred to as V-BLAST, it is essentially an extension of the linear methods detailed 

above. V-BLAST introduces two techniques: decision feedback and channel dependent 

decision ordering. 

In ZF and MMSE MUD, there is no order to the users detection; all users are 

detected simultaneously through the filter matrix W. The idea behind V-BLAST is to use 

existing knowledge about the reliability of a users decision to improve the MUD process. 

The users are detected in a specific order, with the 'best' user detected individually and 

then effectively removed from the received samples with hard interference cancellation 

(IC). The 'hard' in hard IC refers tn the fact t k t  3 symhn! rln~izic:: IS ~ s d c  3;;d 

used to remove that user's contribution to the vector y. The criterion for 'best' is up for 

debate, and depends on performance and complexity. 

[8] used ZF MUD and the SNR as a way of determining the best user. 

Wolniansky et at. first ranked all the users based on their SNR. First, the zero-forcing 

filters for all users is calculated. The SNR for all users is determined with the filter. Next, 

a hard decision is found with the filter for the user with the highest calculated SNR. The 

decision is then removed from y. For theih user, the modified received samples 

becomes 



where y(') is the received samples used in detection of t h e p  user, hj is the channel 

gain vector for theth user, and i j is the hard decision made for t h e p  user. The 

remaining users are re-evaluated to determine which, in the absence of the previous 

user(s), has the highest SNR. The filter is recalculated, and the SNR's compared. The 

process is repeated until all users are detected. Other ordering strategies include signal 

to interference and noise ratio (SINR), reliability [9], log-likelihood ratio [ lo]  and error 

variance. 

The main complexity in V-BLAST is focused in the ordering technique. The 

ordering technique can be relatively complex due to matrix inverses. However, if the 

channel is quasi-static (the channel states are the same for a number of symbol 

intervals) or static, then the ordering only needs to be accomplished at the beginning of 

the current static block. This lowers the complexity of V-BLAST to something 

comparable to ZF or MMSE MUD; the difference is in the decision cancellation. 

2.4.6 Group Detection 

Group detection is a combination of the optimum ML or MAP technique with that 

of a linear technique. The term 'group' comes from the fact that all N users are 

separated into N, groups, each with G users. A group is detected by suppressing all 

the other NG - 1 groups with a linear technique. Then, the JML or JMAP is applied to 

the group users with the filtered received samples. 

Fain and Varanasi first examined group detection in a narrow-band system with a 

ZF filter for group suppression in [ I  I ] .  Fain and Varanasi noted that group detection 

spans the performance and complexity space between JML and ZF MUD. If NG = N , ZF 

MUD results; conversely, if N, = 1, the group detection becomes JML MUD. Increasing 



the number of groups in group detection decreases the performance and increases the 

complexity, since it is more complex to calculate ZN metrics than it is NG2G. For 

example, for 6 users with 3 groups of 2 users, JML needs to calculate Z6 = 64 metrics 

while group detection only calculates 3 22 = 12 metrics. 

The formulation of the ZF group detector is straightforward. The ZF filter for all N 

users is calculated from (19). The M x N W matrix contains a filter for all N users. The 

filter matrix that contains the filters for the/ih group of users is denoted as Wi. The 

filtered received sample is simply 

x, is a G x 1 column vector that is formed from the users in the fh group of x, and xi 

consists of all other users. Since the received samples are changed, so are some of the 

assumntions made d~rrinr~ the fnrrn~~latinn nf the _Ih/ll_. The j+f hiL d e ~ i ~ i z ~  2:s zs;.: 

made on x, instead of y. The mean in (8) changes to 

Segmenting H into sub-matrices for both the users in group j and for all other users, 

H = [H, I Hi]. the variance for the ZF group detector becomes 



So, for ZF group detection the JML metric becomes 

t 
bj = arg min(x, - b,) ~ j '  (x, - b,) 

"i 

for each group. 

In [9], Ng and Sousa replaced the ZF filter with an MMSE filter. For the MMSE 

filter, xj , W, and Q, for thefh group can be formed independent of the other groups. 

W, and x, become 

where H, is an M x G matrix of the channel gains from thefh group of G users to all M 

antennas. a: is the variance of the transmitted symbols, and for BPSK is equal to 1. 

Q, becomes 



since the transmitted symbols are uncorrelated with unit variance. The metric for MMSE 

group detection becomes 

ti, = arg min(x, - w,!H,~,)' Q;' (x, - w:H,~~) 
b, 

(32) 

Ng and Sousa 191 also investiaated the use of interference cancellatinn hpt~lyppy! 

groups. Ng and Sousa used a metric termed the 'reliability metric' to order the groups 

with respect to one another. The metric is formed by summing the JML metrics (8) for all 

possible user symbol combinations. Each group's reliability, which is the sum of the JML 

metrics, is then compared. The group with the lowest sum is detected first. This is 

unlike V-BLAST, which orders the users individually. Once a group is detected, the hard 

decisions are used to remove the group's contribution to the received samples. After 

detection of thefh group, the modified received samples become 

where y(" is the received samples used in detection of thefh group, Hi is the channel 

matrix for the users in t h e p  group, and 6 ,  is the hard decisions made for thefh group. 



The Ng and Sousa technique, which uses GD with interference cancellation between 

groups and the reliability metric for ordering, observed gains of a few dB over MMSE 

MUD. From this point on, any reference to group detection, or GD, will be made to the 

MMSE and hard interference cancellation version of Ng and Sousa. 

2.5 lterative Detection Techniques 

lterative techniques have become quite popular in recent years due to the advent 

of Turbo codes. Turbo codes are actually conventional convolutional codes used in a 

novel, iterative manner. They have brought communications system tantalizingly close 

to the Shannon limit, the theoretical capacity limit of communications system. Turbo 

codes achieve these amazing feats through an iterative technique involving the transfer 

of symbol probabilities from iteration to iteration. The idea is simple in its basic form, 

and is covered in detail in [5]. A summary is as follows: two convolutional codes are 

used at the encoder. One encodes the original data stream, while the second encodes 

an interleaved version. Both streams are multiplexed and transmitted. The encoder is 

shown in Figure 7. The receiver starts detection by de-multiplexing the streams. The 

first stream is decoded on the appropriate code trellis using the BJCR algorithm [I 21. 

The BCJR outputs a posteriori probabilities (APP). However, the only information 

forwarded to the next stage of the decoder is that termed extrinsic information; extrinsic 

information is a product of the redundancy of the convolutional codes used. These 

extrinsic APPs are interleaved in the same manner as at the transmitter. They are then 

used in the second code trellis with the second received coded sequence as a priori 

information. Again, the second BCJR algorithm outputs extrinsic APPs, which are then 

de-interleaved. That ends the first iteration of the Turbo code; the structure for the 

decoder is shown in Figure 8 below. For the second iteration, the extrinsic APPs from 

the second decoder are used in the first decoder as a prioris. This process continues 



until a decision is desired, where the decision is made on the de-interleaved output 

APPs from the second decoder. I 

Figure 8: Turbo decoder 
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The idea of transferring APPs in an iterative fashion has been successfully used 

in other applications than Turbo codes. Tirbo codes are parallel concatenated codes, 

where each code works on the same data, only in a different order. Serially 

concatenated codes have also been decoded in an iterative fashion with good results. 

Benedetto and Montorsi [ I  31 showed that the serially concatenated codes can actually 

outperform the parallel concatenated Turbo codes. 

An extension of both Turbo and serially concatenated codes is Turbo 

equalization, where the second code is replaced by the multi-path channel. Tuchler et 

al. review current techniques for Turbo equalization in [14]. The multipath channel is 

used as a channel dependent "code" with its own trellis. The data stream from the 

transmitter can be viewed as being serially encoded with the channel. The structure of 

the receiver is shown in Figure 9 below. 

The SlSO equalizer acts as the outer decoder, using the multipath for detection. 

Next, any interleaving done at the transmitter to avoid error clustering is de-interleaved. 

A SlSO decoder (covered in Section 4) uses the information from the soft equalizer to 

decode the transmitter's convolutional code. 

Lk") 

The information passed between the blocks in all of these iterative techniques 

are referred to as log-likelihood ratios (LLR) and are equivalent to the symbol 

lnterleaver r 



probabilities. For simplicity, only BPSK systems are covered here. The LLR of a symbol 

b is denoted , 

and the LLR of a symbol b conditioned on a received sample y is denoted 

In Figure 9 above, L, (s,) refers to the extrinsic LLR of s, , the coded and interleaved 

c, symbols. The concept of extrinsic LLR is examined in detail in Section 3.8.5. After 

the de-interleaver, this LLR becomes L(c,) , which refers to the LLR of the coded 

symbols in their proper order. 

Finally, exploration of the combination of iterative and MUD techniques is also 

iiiidei-way. A recal~i ar k i e  by Poor i15j reviews the current state of the art. The 

structure that Poor presents is very similar to the Turbo equalizer above, where the 

multiuser detector is used as an inner decoder instead of the convolutional code. The 

MUD is converted to allow for soft-inputlsoft-output. Its output is then de-interleaved and 

each user's detected symbols are fed to their respective SlSO decoder. 



ITERATIVE MULTIUSER DETECTION 

The focus of this thesis is the investigation of a new multiuser detection 

technique, referred to as iterative multiuser detection or IMUD. IMUD is an extension of 

the groupwise detector, using interference cancellation, user ordering, and iterative 

techniques. These techniques were introduced in chapter 2. 

The novel features of IMUD include user interleaving and soft decisions between 

groups and iterations. Most iterative techniques interleave symbols in time, since the 

memory in the system is achieved through using two separate encoders or one encoder 

and a multipath channel in the case of turbo equalization; the interleaving between the 

memory components breaks any correlations that exist between the APPs of each 

component, allowing the next to work on uncorrelated symbols. The transference of the 

a posteriori probabilities (APPs) between the components allows the information gained 

in the current component and iteration to be used in the next. In IMUD, group detection 

separates the users into groups, which are each then detected in succession with the aid 

of linear suppression of the remaining users. Since IMUD is a symbol-by-symbol 

detector, there is no time dependence, thus a time oriented interleaver is useless. 

However, the APP extraction of each group adds correlation to the group's soft decision. 

Through the use of random interleaving of users between iterations, the information 

gained from the past iteration will experience a different correlation in the next. The 

information gained from each iteration of different user combinations allows the 

technique to achieve a better performance than a group detector. 

IMUD will first be introduced as a groupwise APP extraction block, shown in 

Figure 10. This block is not iterative itself, but it will be used to show how the iterative 



detection technique is formed. For the first iteration, IMUD is equivalent to GD using 

joint APP extraction (JMAP without a decision) with soft interference cancellation and 

EVM user ordering. For subsequent iterations, IMUD uses the probabilities from the last 

iteration as a prioris and the groups are randomly reformed. 

The inputs necessary to use IMUD are similar to the previous multiuser 

detectors. Since IMUD is SISO, it also makes use of any a priori information available. 

This allows IMUD to be incorporated easily into a serially concatenated scheme similar 

to Turbo equalization or Turbo MUD from chapter 2. In log-likelihood form, the outputs 

of IMUD correspond to the soft-output MUD in [I 51, and will be referred to as L,,,, . 

Figure 10: IMUD detection block 
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Use of IMUD as an iterative system is straightforward. LA are the a priori probabilities 

provided by the other iterative component in the detector; in IMUD's case, this is either 

the previous iteration of IMUD or another SISO block, such as a convolutional decoder. 

The output APPs, L,,,, , is used as a prioris in the next step. Issues regarding the 

feedback of the APPs are detailed near the end of this chapter. Further detail for 

concatenated systems is given in chapter 4. As mentioned briefly in chapter 2, L,,,, (b) 

is the log-likelihood ratio of all symbols in b. Each component is calculated as 



Pr (b, = +I I y) 
L,M"D (4  = log Pr (b, = -1 I y) 

3.1 Formulation of IMUD Groups 

The IMUD group detection is MMSE GD with joint APP extraction on each group. 

Joint APP extraction is simply JMAP without making a decision on the output 

probabilities. The soft-output is simply the probabilities found in (14). 

The MMSE suppression is altered to an equivalent method that has the potential 

to be computationally less expensive. An equivalent to group detection with MMSE filter 

suppression is a group joint technique with the assumption that all undesired users are 

Gaussian noise. We call this technique group JML (GML) or group APP extraction 

(GAPP) for hard and soft outputs, respectively. In the following, we will demonstrate the 

equivalence with a simple derivation for GML. First, we reform (2) showing the current 

decision or desired group, group j, and all undesired groups. 

where y, refers to H,b, , the current desired decision group, and y, refers to the sum of 

all other groups and the receiver noise. If we use the assumption that y, is 

approximately Gaussian, we can fit this to a likelihood function p(y 1 H,bj) just as in (8). 

Now we are looking only for b, instead of the entire user set and our noise has the 

undesired users added. The mean of y in (37) for thefh group is 



The covariance of y is 

i t j  i ? j  i #  j  

since the users are uncorrelated with each other and with the noise. In (8), it was 

assumed that R, was simply a diagonal matrix since the only undesired quantity was 

the Gaussian noise and our users are uncorrelated. (39) shows how it is extended to 

,np~, ,dm I ,eee- -- r-- .  :-&-&----- 
I ,  IWUUC. ULI 1-1 U G ~ I  a a3 uauaa~al I 11 llel IGI el a. 

Putting (38) and (39) together, we show the likelihood function as 

(40) can be reduced to the log-form metric and decision method 

t -1 b, = arg min(y - H,bj) R, (y - H,b,) 
b, 

To show the equivalence between GML and the MMSE GD in [9], the following 

derivation is presented. 



t;, = arg min(x, - w;H,~,)~ Q;' (x, - w,W,b,) 
"i 

1 

= arg min (W,?y - w;H,~,)' Qjl (W;Y - w;Hib,) 
bj 

= arg mini( y - H,b, )' w,)Q;' (w; (Y - Hjbj)) 
", 

=argmin((y -~,b,)t w,)(w~ (R,)w,)-'(w,? (Y - ~ , b , ) )  
"i 

= arg min (( y - H,~I , )' W, ) ( W, )' Ru-' (w;)-' ( W; ( Y  - ~ , b , ) )  
"i 

t 
= arg min(y -H,b,) Ru-' (y -Hjbj) 

"I 

The simplified decision structure in (42) turns out to be identical to that of GML in (41). 

Next, consider the IC component of IMUD. Between groups and iterations, IMUD 

removes what is known of previously detected symbols from the measurement vector y. 

For thefh group and yth iteration, the modified measurement vector is denoted as y(lvY) 

(60) and its covariance matrix is RisY) (61). They are derived in Section 3.4 below. The 

{ - I ~ W  :ikeiii~~-~r-~r-i ;t-~~!r;iir-w! is sirr~ni\/ 
r ' J  

changing the log-likelihood to 

To change the GML into GAPP, the same marginalizations used to form JMAP 

are used but (8) is replaced with (43). Section 3.2 provides the details. 

We now have two formulations of MMSE GD; both GD with an MMSE filter and 

GML make a joint decision on a group of G users while suppressing the other N-G 

users. For IMUD, either technique converted to give soft outputs would be equally 



effective. However, as shown in Section 3.7, GMLIGAPP is less computationally 

complex due to the number of inverses needed. 

To summarize, the group techniques are tabulated in table 1. 

Table 1: Feature comparison of groupwise techniques 

Groupwise Technique 

- -- 

Group Detection (GD) 

Group ML (GML) 

Group MAP (GMAP) 

Group APP Extraction (GAPP) 

Characteristics 

- Hard decision 

- Uses explicit MMSE filter 

- No a priori information 

- Hard decision 

- Uses implicit MMSE filter 

- Uses a priori information 

- Soft decision 

- Uses implicit MMSE filter 

- Uses a priori information 



3.2 Group APP Extraction 

The group technique used in IML)D was created to meet two demands: it must be 

soft-output and it must be computationally inexpensive. The first criterion is met with a 

soft-output version of the GD shown in Section 2.4.6. However, as shown in Section 

3.1, an equivalent method with less computational complexity (Section 3.7) is realized 

with the group APP extraction technique. 

Pr (b, = k) is the a priori probability for the nth user symbol at the beginning of 

each iteration, where k is +I for BPSK. The goal of the APP extraction is to use the joint 

probabilities found with (43) and the a prioris to find new APPs that will be used for either 

decisions or to create new LLRs for further iterative processing. The channel knowledge 

H is assumed and left out of the following derivation. 

The final APP for the fh user of thefh group is denoted by the conditional 

probability ~r (b, 1 y(ip')) . where j refers to the group and y refers to the yth iteration 

of IMUD. Using the mixed Bayes rule, it can be expressed as 

(b, = b, y(~s'))  
- 

(b, = b, y(jsy)) 
b=?l 

The joint pdf comprises the conditional pdf or likelihood values (43) and the a priori 

information, as in 



where p(y(',y) I b,) is from (43) and includes IC from previous groups and iterations. 

, 

Pr (b,) is the a priori probability of the kh user of b, . The product of the a priorh is the 

equivalent to Pr (b,) since the symbols are independent and identically distributed. 

3.3 User ordering 

Before forming groups for GAPP in IMUD, the users are ordered with respect to 

the error variance minimization (EVM) criterion. The ordering has a significant effect on 

the performance of IMUD (see the performance comparison in Section 3.8.4). All users 

are ordered before each group detection takes place, as in V-BLAST [8]. 

EVM is formulated with the assumption that the decisions are made with MMSE 

MUD (Section 2.4.4). This is suboptimum, but allows us to develop an analytical and 

computationally simple expression for the error variance. Minimizing the error has 

proven to be more effective than strict SNR ordering like that used in [8! It is shown tn 

be a more reliable metric than other techniques tested (Figure 26, Section 3.8.4). 

The error variance minimization technique is as follows. First, all users that have 

not been detected so far are seen as residing in a 'pile'. The error between the 

transmitted symbols and the symbols as detected by MMSE MUD is expressed as 

where b is found from (21) using the MMSE filter. The preceding vectors only consist of 

users in the pile; the previously detected users are removed. With the MMSE filter W 

defined in (30), the error variance Re, of each user in the pile is 



=E[W -b6' -6bt + 6 6 7  
1 

= €[bbt - bytW - W'yb' + ~ ' y y ' ~ ]  

where 

and 0: is the variance of the transmitted symbols. For BPSK, 0; = 1 for an undetected 

form the next detection group, the G users with the lowest error variance are used. 

These G users are removed from the pile and detected with the technique in Section 3.2. 

After a group is detected, its gain vectors are removed from the H matrix before 

recalculation of (48). Expressing H as a matrix of group channel states 

H = [H, I H, I I HNG 1, the channel state for thefh group is 

When calculating Ryy (49). H(') is also used in place of H. This can also be thought of 

as setting the user's variance 0; to 0 for the detected users, since we assume they 

were detected correctly. Therefore, Re, becomes smaller, and only reflects the error 



variance of the remaining users as the algorithm proceeds through the groups. The 

EVM technique for thelh group is then 

Between iterations, H is reset to include all users. It should be remembered that 

as the users are sorted into groups, the columns of H must be permuted to match. Also, 

the group ordering must be completed between each group detection. 

3.4 Interference Cancellation between Groups 

Between groups, IMUD uses soft IC to remove the information that we have 

determined from the last group's results. The soft IC is accomplished with the use of the 

mean and variance of each user symbol, which are derived from the APPs in the 

following paragraphs. Unlike the hard IC techniques used in [8] and [9], soft IC does not 

make nard canceiiaiion errors, in which subtraction ot erroneous symbol decisions 

actually doubles the interference contribution instead of removing it. If the detector is 

uncertain and returns an APP of 0 (a probability of '/z for either BPSK symbol), then the 

mean of that symbol is 0 and no IC takes place. 

To further improve the performance of the system, the symbol variance is used 

for the detection procedure, and is used to weight the channel states appropriately. If 

the detection for a user was completely uncertain, then our resulting mean will be zero 

and there will effectively be no IC for that user. Our use of the detected user APPs 

(denoted as Pr (b = k) for all N users or ~r (b, = k) for the fh  user of the group) is 

derived next. As mentioned previously, lMUD is derived for a BPSK system. However, 

conversion of the BPSK IMUD to an MPSK system would be straightforward. 



The mean for the rh user of theth group is 

= (+l)Pr [b, = +1] + (-1)Pr [b, = -11 

= ~ r [ b ,  = +I] -(I - Pr [b, = +I]) 
=2Pr[b, =+I ] -1  

Using (52), the variance of the user is 

0,' = ~ [ ( b ,  - ~ [ b ~ ] ) ~ ]  = E[~,']-E' [b,] 

= k2Pr[b,  = k ] - ~ ' [ b ~ ]  
k=-l,+l 

= Pr[b, = +I] + Pr [b, = -11 - E2 [b,] 

- 2 - 1 - p.. 
!I 

For the soft IC, we use the mean of the APP from the previous group in place of a 

decision. After detecting thefh group, the sample vector for the next group becomes 

where pj is 

y('+'r') is then used in the GAPP detection for the next group. 

The variance of the fh user of the/'" group is used in GAPP as follows. 0; for the 

current group is put into a diagonal matrix, 1, 



Note that for users that have not yet been detected, 1, = I,. This variance matrix for the 

first iteration (which does not include the covariances since we calculated the statistics 

of the users individually) modifies (39) as follows 

I .  \ 

s;nce y""' is ZeiG-iXeZri (the iiieGiiS of aii tile deiecied users nave been removetij and 

X i  for undetected groups is the identity matrix. For subsequent iterations, all symbols 

have means and variances from the previous iteration and therefore the second term of 

the third line in (57) is non-existent. 

To incorporate the previous iteration's means and variances into the notation for 

group mean and variance, the vector notation is altered slightly. Denote the previous 

iterations means as 



where y references the iteration and pi, is the th user of thefh group of the new random 

ordering. Keep in mind that in each iteretion, the user denoted by 4 is different since 

users are reordered between iterations. Similarly, for the variances, 

For the yth iteration, the matrices P(~-') and z(~-') are used initially as the means and 

variances for all the users in equations (54) and (57) with one exception. The current 

group under detection does not have its mean removed from the measurement vector y, 

nor are the users symbol variances used in the GAPP detection. It is detrimental to the 

receiver to cancel the group under detection; we simply want to remove the interference 

as much as possible to allow for a good decision. After the detection is complete, the 

new means and variances nf that c~rnllp rep!?ce the pr3vlcfis rxans  a;;d variafiees iii 

$Y) and z(Y). For the next group, the updated values are used in the mean subtraction 

and group MAP detection. This effectively changes (54) to 

and (57) to 

As mentioned above, the covariances between detected symbols are not 

determined since the symbols are treated as independent in every iteration. The EVM 

technique described above uses MMSE suppression as a way of determining error 



variance. It is ineffective in finding the covariances since each user symbol variance is 

found by suppressing all other users. IF ML were to be used, the covariances could be 

found; however, that would undermine the point behind IMUD, which is a technique with 

fewer computations than the optimum JML. 

3.5 Iterations 

The performance improvement of IMUD between iterations is due primarily to the 

interleaving of the users. For a single iteration of IMUD, gains over the group detection 

of Ng and Sousa [9] are a result of the user ordering and soft interference cancellation. 

However, if the same ordering were to be used for every iteration, there would be no 

benefit. This is because there would be no source of added information for the detector; 

the groups are identical, with the a priori information duplicating the APPs out of the 

detector. Therefore, interleaving of the users between iterations is necessary. It is a 

means for any disadvantaged users from the previous iteration to have a second 

opportunity to be included in more favourable groups. The users will experience 

different correlations. 

As introduced in chapter 2, LLRs are used throughout much of the literature in 

Turbo and serially concatenated codes. However, because IMUD uses the probabilities 

of the symbols to compute the mean and variance, and the symbol probabilities are 

necessary for the marginalization in GAPP, it is simpler in IMUD to use symbol 

probabilities. It is straightforward to convert LLRs to symbol probabilities (36) to allow 

easy interconnection between decoder. 

3.6 The IMUD Process 

The IMUD process is summarized here: 



1. Set p to an zero length N vector and E to an N x N identity matrix 

I 

2. Initialize j and y to 1 

3. For y = 1:iter , 

3.1 For j =l:N,, 

3.1 .1 If y = 1, sort all undetected users with EVM sort using (51) and form group j 

3.1.2 Find group j users joint APP values with (43) using (60) and (61) 

3.1.3 Calculate the APPs ( Pr (b, I y ) ) from group j with (45) 

3.1.4 Calculate the means and variance for group j with (52) and (53), respectively 

3.1.5 Update $) and ~j') 

3.1.6 Calculate y(i'Y) with (60) 

3.2 Randomize the user order 

4. Make hard decision for each user using the APPs 

The first stage of IMUD detection begins as follows. All users are initially sorted 

with (51). The top G users (the G with the lowest error variance) make up the IS' group. 

The first group's likelihoods are calculated with (43), where y('p') is the same as the initial 

measurement vector y. RE,') is found with (61). Using the APPs generated with (454, 

the means and variances from (52) and (53) are calculated. y('.') is formed with (60), 

using the new means p?) for group 1. The means for all other users are still zero. The 

detected groups channels are removed from the H matrix used for ordering, and the 

remaining users are sorted with (51). The process continues with the detection of the 

2nd group and the formation of Y(~,'), and continues until the detection of all N, groups is 

complete. The process for the first iteration is shown in Figure 11. 
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Figure 11 : First iteration of lMUD 

For the second iteration of IMUD (Figure 12), there are a few key changes from the first 

iteration. First, the EVM ordering is replaced with a random ordering. As long as the 

user order is different (the user group are significantly different) than the original EVM 

sort, there IS no observable difference in performance, as shown in Section 3.8.4. The 

soft IC is still done and the previous iteration's means p(*-') and variances E(*-') are 

used as a starting point. At the beginning of the Jh iteration, the means and variances 

are preset so that p(*) = p(y-') and I(') = I(*-') . 



Figure 12: Subsequent iterations of IMUD 

, ,,(Qo) = ,,(~4Jo-') 

'-+ 
APPs 

3.7 Complexity 

The complexity of the MUD techniques covered so far can be split into two 

categories: complexity of the detection and of the ordering. The complexity for JML, 

MMSE, GD, group ML, MMSE V-BLAST and IMUD will be compared. 

As mentioned in Section 2, the channel gains must be updated frequently in a 

fast fading channel. This translates to the need to recalculate filters as the channel 

changes. Since the IMUD simulations use a fast fading channel, it is assumed that the 

channel gains are updated every symbol. However, in a quasi-static channel, the 

channel gains, and thus the filters, are valid for many symbols. The following analysis 

focuses on the fast fading channel; Table 2 in section 3.7.8 shows the difference in 

complexity for the techniques between the fast and quasi-static channel. 



First, a few commonalities for the analysis of complexity are reviewed. The unit 

used to represent complexity is that of a single complex multiply and add procedure 

(CMA), common to microprocessors. For example, when taking the product of Hb 

where H is M x N and b is N x I ,  the processor would need to compute MN CMAs. 

Also, the complexities derived for each of the techniques can contain many terms due to 

all the matrix operations. When reporting the complexity of a technique, the lower order 

terms are neglected. 

A common procedure used in the MUD techniques is that of a matrix inversion. 

Using standard row reduction to compute the matrix inverse, the complexity of inverting 

an M x M matrix is approximately equal to M 3 .  For further computational savings, 

updates to the inverse can be accomplished using Woodbury's Identity [7]. The matrix 

update can be accomplished between groups or between users, when the contribution of 

the a group or user needs to be removed from the inverse. Users and groups can also 

he added ~jcjnrj fhp \b!nndbu?;-;I'~ !tf~:tit;: i & ~ ;  f ~ i -  iii-liiesi!rc_i ~ ~ y l r i l n c e  ma:rix 

R, , where groups are both added and removed between APP extractions. The 

complexity is as follows: for all groups in a groupwise system, the covariance inverse 

update is M3 + GM (NG - 1)(2M + I ) ,  where the first term is for the initial inverse and the 

following term is for all subsequent group updates. The computational savings for a 12 

user and 12 antenna system using groups containing 2 users is 4728 CMAs compared 

to 10368 CMAs without matrix updates. For single user removal or addition, the 

complexity is M3 + M (N - 1)(2M + I )  . With modifications to allow for the specifics of 

each technique, these complexity terms are used throughout section 3.7 

Since most of the detection and ordering techniques depend on the inverse of 

the covariance of the measurement vector, the complexity is derived here. R, is from 



(24) for MMSE V-BLAST and GD, and requires M2N CMAs. R, is from (39) for IMUD, 

and requires M2 ( N  - G) CMAs. Both cbvariance matrices are M x M , so they require 

approximately M3 CMAs for an inversion. 

Finally, for the techniques that use interference cancellation, the channel gain 

matrices shrink as users are removed from the system. This affects the ordering 

techniques. Instead of H being a static M x N matrix, it becomes dependent on the 

group or user under detection, as shown in H(') (50). Therefore, when computing a 

matrix multiplication such as H(')H(')+, the complexity for all NG groups is not M2NNG but 

M2 (N - kG) . For the single user ordering techniques used for V-BLAST, such a [:: 1 
computation would change from M2N2 to M~ . These summations will be 

referred to as 

for group ordering and 

for single-user ordering. The final group or user inverse does not need to be calculated 

since the outcome is obvious (there are only G users left for the last group). The last 

summation, S,, is used to calculate the computational load of evaluating R, for the 

Group Detection technique. 



Notice that for the last group, the complexity for the inverse is 0 (the summation is 0). 

This is because there are no interferers,*and thus the covariance matrix is simply the 

identity matrix. 

Summations S, through S, have simple closed forms. For this discussion 

however, it is clearer to leave them as explicit summations. 

3.7.1 Joint Maximum Likelihood MUD Complexity 

For JML, there is no ordering complexity since all user decisions are made 

simultaneously. Hence the complexity is only due to the joint detection. Using the 

expression for JML from (9), 

Hb -+ MN CMAs) 
for all comb. of b  

( y - ( ~ b ) ) f  ( y - ( ~ b ) ) - + M  CMAs 1 
for a total complexity of 2 N ( ~ + ~ ~ )  

TL ----I -. .:A. . - - .- n NI~ a n 
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b. This comes from being able to update y  - Hb for the bit that is different between 

each successive b  by simply adding the appropriate channel. The reduced complexity 

of Gray coding will be used for JML and the group techniques. Considering that the 

covariance matrix is not diagonal for the group techniques, the complexity of joint 

detection becomes 

3.7.2 MMSE MUD Complexity 

The linear techniques are the most computationally least expensive out of all the 

MUDS. The highest complexity in MMSE MUD lies in the formation of the filter. For 

MMSE MUD, the complexity using (21) and (23) is 



R; -+ M2N + M3 CMAs 1 filter calculation 
R i H  -+ M2N CMAs 

Wi y + MN CMAS} includes all users 

total complexity of M(M'+~MN+N) 

3.7.3 MMSE Group Detection MUD Complexity 

For the MMSE GD of Ng and Sousa [9], the complexity for the GD and filtering 

will now be examined in the following. The interest in discovering the complexity of 

MMSE GD is in its comparison to GML. Therefore, the use of the reliability metric 

(detailed in [9]) is not examined, only the detection itself. Using the expressions from 

(30), (31) and (32) and including hard IC between groups, the complexity of MMSE GD 

R i  -+ M2N + M3 + GM (NG -1)(2M + 1) CMAs 
for all groups 

Q,' = (w,!R,w,)-I + M2S3 + (N, - I)(GM~ + G2M + G3) CMAs 

total complexity of - ( M ~ N + M ~ + ~ G M ' ( N ~ - ~ ) ) + ( M ' S ~ + ( N ~ - ~ ) ( G M ' + G ~ M + G ~ ) ) ~  G N ~ ( M ~ + G M + ~ M + ~ ~ " G )  

.-. - - I . .  -. -7  w, = K,,,Jl, + tiM- CMAS 

W ~ H ,  + G ~ M  CMAS 

y(~+l) = ( I )  - H b -+ GM CMAs Y j i  

x, = W,!y(j) + GM CMAs 

(x, - w;H,b,)f Q;'(x, - W;Hjb,) (65) + zG+' (G' + G) CMAs 

Similar to JML, Gray coding is used to remove some of the complexity associated with 

the calculation of (w,H,)bj for every b,. Since hard IC is used after a group is 

detected, the users of that group does not appear in subsequent groups. This means 

that the inverse of R, must be updated for every group. For Q, , the update is more 

complex since R, is multiplied by W, but as groups are detected, the complexity of the 

inverse does get smaller. If IC were to be removed, R z  would only need to be 

(68) 

.once per group 



calculated once per symbol since the user channel gains would no longer be removed 

from the H matrix during recalculation; however, Q;' would not reduce in complexity as 

the groups are detected. 

3.7.4 MMSE Group ML MUD Complexity 

The BER performance of MMSE GML is identical to MMSE GD, as discussed 

previously. The complexity is similar to MMSE GD, except for the complexity of the 

matrix inverses. From (38), (39), and (41), the complexity is found as 

R;' + M2 ( N  - G)  + M3 + GM (N, - 1)(2M + 1) CMAS) includes all groups 

, , once per group 

(y - Hibi)' R;' (y - Iiibj) (65) -+ zG+' ( M ~  + M )  CMAS 1 

H,b, is not included in the complexity since Gray coding is used. The GML computes 

this allows for a significant computational savings over GD. Intuitively, this savings can 

be seen in the fact that even though GD and GML have the same results, GD must 

calculate a filter for every group, increasing the computational load. This is why the soft- 

output version of GML is used in IMUD. The computational difference between GML 

and GAPP is negligible in comparison to the matrix computations necessary in this 

BPSK system. GAPP only requires extra additions of the log probabilities. With larger 

constellations, the complexity of GAPP may be significantly increased to complete the 

marginalization. 



3.7.5 Ordering Complexity 

The ordering complexity will be calculated separately for V-BLAST and IMUD. 

For random ordering, the complexity is thought of as free in these simulations, but in a 

real system, some sort of randomizing algorithm must be used and included in 

complexity calculations. The three non-random ordering schemes compared include the 

SNR sort, LLR sort and the EVM sort. Each is derived in Section 3.8.4 during the 

performance discussion. 

3.7.5.1 SNR Ordering 

For ordering by SNR, the ZF filter is used to suppress all other users. The ZF 

filter is calculated just as in (19). From (75) 

WWt -r S,M2 CMAs I single-user, for all users 
.---.+ ^ . -1 -- - - 
ww -\ .\ nn- I - n n u c  

I 
' 2 ' "  ""' '" J 

It should be noted that for some of these techniques, the complexity can be shared 

among the components. For example, if using ZF V-BLAST with SNR sorting, the filter 

for each user's detection is already calculated during the sorting algorithm. 

3.7.5.2 LLR Ordering 

For log-likelihood ratio (LLR) ordering, (78), the detection depends on a ZF filter 

implicitly. The only difference is that the SNR calculated by the ZF filter is scaled by 

I R ~  (w' y)l . The complexity is 



complexity for groupslusers from (69) 
groupwise, for all groups 

Wty + SIM CMAs 
single-user, for all users 

Wty -+ S,M CMAs 

$ +s: 2M+.S,(M2 +M) for groups 
total complexity of - 

s ~ + s ~ ~ M + s ~ ( M ~ + M )  for users 

3.7.5.3 EVM Ordering 

Finally, EVM ordering; notice that R, is updated with the Woodbury Identity. 

From (51), the complexity is 

R i  + M2N + M3 + GM (NG - 2)(2M + 1) CMAs 

R i  -+ M2N + M3 + M (N - 2)(2M + 1) CMAs 

( R ~ ) H ( ' )  -t M2Sl CMAs 

( R ~ ) H ( ' )  + M2S2 CMAs 

H(J)' ( R ~ H ( J ) )  + MS: CMAs 
t includes all groups 

includes all users 

3.7.5.4 Ordering Technique Comparison 

The ordering techniques are similar for both sorting in groups and users. The 

exception is that when computing the inverse, it must be done nearly N - N, more times 

for the single user case ( N  - 1 inverses calculated for single user ordering, NG - 1 

inverses calculated for group ordering). A comparison of the sorting techniques for 

groups and for users in shown in Figure 13. 



Figure 13: Comparison of the approximate complexity for ZF, LLR and EVM ordering 
techniques for 12 user112 receive antenna system 

same complexity. In fact, EVM is slightly less complex than SNR and LLR ordering 

since it uses the linear filter implicitly and does not need to actually calculate the filter. 

EVM ordering also uses the Woodbury Identity to update the covariance matrix. As 

expected, the total complexity for group ordering is less than that of user ordering. Also, 

as the group size increases, the group order complexity reduces. This is due to the 

matrix inverse complexity; for more groups of smaller sizes, the number of total matrix 

inverses is large. The complexity of doing more inverses is more than that of doing 

larger inverses in this case. 

3.7.6 MMSE V-BLAST MUD Complexity 

MMSE V-BLAST was chosen as a technique to compare against IMUD because 

of its popularity and performance. For MMSE V-BLAST with EVM sorting, the 



complexity is essentially that of MMSE MUD plus the EVM ordering technique and the 

recalculation of R, for each user. The'complexities in the fast fading and quasi-static 

cases are quite different; for MMSE V-BLAST in a static channel, the filter and the 

ordering need only be calculated once. The complexity using (21), (23), (25), and (72) is 

R ; - - + M 2 ~ + M 3 + M ( N - 2 ) ( 2 M + 1 )  CMAs 
filter creation for all users 

R;H -+ M ~ N ~  CMAS 

EVM ordering for 
MS: + M2S2 CMAS] 

all users (without R;) 

v 

total complexity of - ( M ~ N + M ~ + ~ M ~ ( N - ~ ) + M ~ N ~ ) + ( M S ~ + M ~ S ~ )  

3.7.7 IMUD Complexity 

IMUD combines GAPP (45) and the EVM sort (72). Using (72), (44), (60), and 

(61), the complexity for IMUD in a fast fading channel is 

EVM ordering - M2N + M3 + 2GM2 (N, - 2) + MS: + M~S,) 
includes all groups 

R;' --+ (N, - I)(GM~ + 2GM (2M + 1)) + M3 CMAS} includes all group (74) 

, . 
once per group 

(y  - Hjb,)' R;' (y - H,bj) (65) --+ 2,+' ( M ~  + M) CMAs] 
-r - - -  

total complexity of - ~ ~ ~ ~ [ ( M ~ N + M ~ + ~ G M ~ ( N , - ~ ) + M S ~ + ~ M ~ S , ) + ( ~ G M ~ ( N ~ - ~ ) + M ~ ) + M N ~ ( G + ~ ~ "  M)] 

For R:, there is a noticeable increase in complexity over that over GML; there are twice 

as many matrix inverse updates as before. This is due to the use of the symbol 

variances (Section 3.4) in GAPP. The actual complexity will most likely be less than that 

shown in (74) when variances are very small, but this is used as an upper bound. For 

BPSK, there are - G2, adds and table-lookups (from marginalization of the probabilities 

and the Jacobian algorithm) that are neglected in the above complexity. For higher 



density constellations, these MAP computations become relevant. Also, note that the 

entire complexity must be taken over the number of iterations run, referred to as iter. 

3.7.8 Comparison of MUD Complexity 

Table 2 shows the complexity of each of the preceding techniques. The 

expressions for complexity in a quasi-static fading channel are the results from the fast 

fading case with all unnecessary inverse computations removed. Some inverses are 

unnecessary since the channel is static between symbols, and therefore the MMSE 

filters and the order of users will stay the same between symbols. 2 iterations of IMUD 

are run since the performance curves of Figure 26 show that this is enough to allow the 

technique to converge. Comparing the above equations for fast fading systems with 12 

and 24 antennas and various group sizes, we get the following complexity graph in 

CMAs. 



Figure 14: Comparison of the approximate complexity for GD, GML, MMSE V-BLAST, 
IMUD(2) and JML for 12 user112 receiver system in a fast fading channel 

+ MMSE V-BLAST EVM 

complexity comparable to IMUD and MMSE V-BLAST. This is a benefit of the Gray 

coding; without it, the JML complexity is almost a magnitude higher. However, JML's 

exponential growth makes its complexity far higher that that of the other techniques in 

the 24 user system of Figure 15. Another interesting point is that IMUD has more 

complexity than MMSE V-BLAST for certain system configurations. For example, in the 

24 user system the group techniques exhibit a parabolic characteristic such that IMUD 

performs with more complexity with a group size of 12. 

It is somewhat intuitive to think that IMUD will perform with lower complexity with 

smaller groups due to the smaller size of the GAPP detection. However, due to the 

complexity of the matrix inversion, this is not always true. In the 12 antenna system, the 

lowest IMUD complexity is attained with groups of 4 users, which corresponds to a lower 
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complexity (Figure 13) but higher performance (Figures 18 and 19) than IMUD with 

groups of 3 users. In the 24 antenna syktem, the minimum IMUD complexity is achieved 

with groups of 4 users. 

Figure 15: Comparison of the approximate complexity for GD, GML, MMSE V-BLAST, 
IMUD(2) and JML for 24 user124 receiver system in a fast fading channel 

-#- MMSE 
4- GD 

GML 
+ MMSE V-BLAST EVM + IMUD 

For the overloaded case where there are 12 users but only 8 receive antennas, 

the complexity difference between IMUD and MMSE V-BLAST is increased. Figure 16 

shows the results. 



Figure 16: Comparison of the approximate complexity for GD, GML, MMSE V-BLAST, 
IMUD(2) and JML for 12 user18 receiver system in a fast fading channel 
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Table 2: Complexity expressions for MUD techniques 

Technique 

Joint Maximum 

Likelihood (2.4.1, 

131 

MMSE MUD 

(2.4.4, 161) 

MMSE Group 

Detection wlhard 

IC (Section 2.4.6, 

141) 

MMSE V-BLAST 

(2.4.59181) 

Complex MultiplieslAdds 

(Fast Fading) 

- iter [(M'N + M3 + ... 
2GM2(NG -2 )+  MS: +-- .  
2M2s1) + (5GM2 (N, - 1) +-.- 
M 3 ) +  MN, (G +.-. 

+2," M )  

Complex MultiplieslAdds 

(Quasi-Static Fading) 

- GN, (2M + 2," 6 )  

- iter (5GM2 (N, - I )  + . . . 

M3 + MNG (G + 2,+' M) )  



It is interesting to note that a major portion of IMUDs complexity is due to the 

ordering technique. Possibilities of further complexity reduction may lie in finding a less 

complex solution to the user order. 

3.8 Performance 

Bit error rate (BER) curves were compiled to aid in the investigation of the 

performance of IMUD. The techniques discussed in chapter 2 (MMSE in Section 2.4.4, 

JML in Section 2.4.1, V-BLAST in Section 2.4.5, and GD in Section 2.4.6) were 

simulated with system parameters as described in chapter 1. An analytical upper bound 

on BER [4] was used for JML due to the length of simulations. This section begins with 

an investigation of the performance of IMUD as explained in Section 3.6. Then, the 

results of simulations used to determine the most effective interference cancellation, 

ordering, and feedback techniques are reported. The details are covered in Section 

3.8.3, 3.8.4, and 3.8.5, respectively. 

From this point on, a MlMO system with N users separated into NG groups of G 

users transmitting to a receiver with M antennas will be referred to as a (M,NG,G) 

system. IMUD will be referred to as IMUD(iter), where iter is the number of iterations 

completed. 

3.8.1 IMUD with Equal Numbers of Users and Receivers (M = N) 

The performance of IMUD with equal numbers of users and receivers will be 

examined next. 

Figure 17 shows a (4,2,2) system with BER curves from MMSE, GD, IMUD and 

the JML bound. It demonstrates the benefit of IMUD compared with that of GD, and 

demonstrates the use of MMSE and JML as upper and lower bounds. Since IMUD is 



still a groupwise technique, it can do no worse than MMSE (if G = 1) and no better than 

JML (if G = N). Notice that after 1 iteration of IMUD, the performance is less than 0.5dB 

poorer than JML at a BER of 10". The GD depicted in Section 2.4.6 includes the 

reliability sorting technique and hard IC as reported in [9]. IMUD is denoted as 

IMUD(iter), where iter is the number of iterations completed. 2 iterations were found to 

be sufficient for IMUD to converge in the systems tested (Section 3.8.3). 

Figure 17: (4,2,2) system 
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SNR (dB) 

Figure 18 through 21 shows a 12 antenna system with 12 users in four possible 

group configurations. In a (12,2,6) configuration and at a BER of lo", IMUD 

outperforms MMSE V-BLAST by 2 dB. It also requires a similar computational 

complexity as MMSE V-BLAST as shown in the complexity graph of Figure 14. 
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Figure 29: (1 2,4,3) system 
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As noted in [ l l ] ,  the performance of the group techniques increases as the group 

size increases. However, the gain itself is never commented on in [ I  11; the performance 

shift is monotonic, but not necessarily consistent with the size of the group. For IMUD, 

the shift in the BER curve as the group size increases is not as great as for GD, but the 

overall performance is much closer to JML. For a BER of IMUD shifts less than 1 

dB while GD shifts around 2 dB. This difference is magnified by the diversity present in 

the systems, since each technique has a different BER curve slope. This diversity 

difference is hypothesized to be a product of the soft interference cancellation. The soft- 

interference cancellation benefits are discussed in Section 3.8.3. 

For JML, the diversity order of any system is equal to M [4]. For the M = 12 

systems, the full diversity of the JML system is not achieved until the lower BER rates 

are achieved, but the increasing slope of the BER curve is observable. For the BER 

curves above, the diversity level of IMUD improves for larger groups. With the largest 

. , g;~:p size of 6. I:V:UD'S &v~isi t?; is i ia~i i j i  equal tcj ;:-I& i,; .lGl Titis c_:c-w!!p?ris~n !s ncne 

based on the slope of the BER curves, and further high SNR simulations should be 

completed to verify the diversity level. 

As a comparison of capacity for each technique, a plot of users versus SNR was 

compiled for the various techniques at a BER of in Figure 24. For lMUD and GD, 

the systems are (2,1,2), (4,2,2), (6,2,3), and (12,2,6). Delta SNR is the difference 

between the SNR of JML and the given technique. 



Figure 22: SNR penalty versus number of users at BER of l o 3  with M=N 

Number of Users 

This figure is best examined from a design perspective; it depicts the extra SNR 

necessary for a technique to match the performance of JML for a given number of users. 

The linear technique MMSE requires the most SNR boost to match JML. Just like in the 

performance case where the group techniques are upper-bounded by the linear 

technique, it can be viewed here as a penalty bound. In this case, the linear technique 

shows the maximum excess SNR necessary to provide similar performance to JML. GD 

and MMSE V-BLAST with EVM sorting follow each other closely. IMUD(2) with EVM 

sorting is the closest to JML, with the SNR difference being slightly less than 0.3 dB. 

3.8.2 IMUD with More Users than Receivers (M < N) 

In overloaded systems where there are more users than receivers, the linear 

techniques fail. In ZF MUD, the covariance matrix is not invertible because of a 



singularity. MMSE MUD counteracts the singularity with the addition of the noise power, 

but its performance is still severely affected. Figure 23 shows a (4,3,2) system and 

Figures 24 and 25 show (8,6,2) and (8,2,6) systems, respectively. For JML in an 

overloaded system, it is known [4] that the diversity level should stay the same, with a 

shift in the BER curve. For the group techniques, it is expected that they will be 

adversely affected along the same lines as the linear techniques, since they make use of 

linear suppression. 

The overloaded performance of IMUD is excellent compared to the other 

techniques that use linear suppression. Comparing JML to IMUD in a (8,2,6) 

configuration comes up with startling numbers; at a BER of IMUD comes within I d 9  

of JML and with less complexity (Figure 16). Moreover, IMUD provides soft output, 

unlike JML. With smaller groups, IMUD is shifted and loses diversity, but still manages 

to outperform the other techniques. 

Figure 23: (4,3,2) system 
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Figure 24: (8,6,2) system 
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Figure 25: (8,2,6) system 
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3.8.3 Interference Cancellation 

The first component of IMUD investigated was the benefit of the soft interference 

cancellation. In IMUD, IC is used between groups and between iterations. Initial 

investigations focused on IC between groups within an iteration (not between iterations) 

and found that it increased the slope of the BER curve, effectively increasing the 

diversity of the system (Figure 26). The IMUD(iter) no IC EVM curves refer to IMUD with 

no IC between groups or iterations. This result was somewhat expected, since in other 

systems with hard IC (V-BLAST), it is the IC that provides the performance gain over the 

basic linear technique. In overloaded systems, where there are more users or data 

streams than receive antennas (M < N) the IC also lowered the error floor (Figures 24 

and 25). 

Figure 26: (12,3,4) system with and without IC between group, no IC between iterations 



IC between iterations as well as between groups demonstrated that while the IC 

between iterations does not increase the BER performance of IMUD, it does allow faster 

convergence. The plot in Figure 27 shows that with using only IC between groups, 

IMUD converges in about 4 iterations; with IC between groups and iterations, lMUD 

converges in 2 iterations. This can easily be explained by the fact that the soft 

information available to the second iteration removes the known interference from all 

other users not in the current group. Then, the GAPP technique makes a decision with a 

greatly reduced interference level starting from the beginning of the second iteration by 

using $') and E('). This is unlike the first iteration where only the groups detected in that 

iteration are removed. The information in p(') and E(') is available to all subsequent 

iterations, with and without IC, in the form of the a prioris. However, without IC between 

iterations, this information is not used to its maximum benefit. The removal of the known 

means and variances allow the technique to converge at a faster rate (Figure 27). 

Figure 27: (12,4,3) system with and without IC between iterations 
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3.8.4 Ordering Techniques 

The contribution of user detection order to the performance of IMUD is discussed 

next. The V-BLAST technique in [8] uses an ordering technique based on post-filtering 

SNR. It has since been shown that other ordering techniques allow for better 

performance. One such technique is the log-likelihood ratio (LLR) [I 01, which bases 

reliability on the magnitude of the LLR of the soft decisions. For IMUD, the following 

ordering criteria were tested for the first iteration: random ordering, SNR, LLR, and error 

variance minimization (EVM). It should be remembered that IMUD uses random 

ordering after the first iteration. Justification for the use of randomization of user order 

after the first iteration is shown in Figure 29. 

The post-filtering SNR sort is taken from [8]. Since only the SNR is of concern 

(not including the interference), a ZF filter (19) is used to suppress the other users. It 

should be noted that in the case of overloaded arrays, this technique will not work, since 

+ha , t t I - -  : A :  L - * n - 1 -  - 4h .. .,., .su,ut . v v g t t  uG 1  a"! { - I t  t v c l  uulc. I I I= a w n  CJI  11 I- I t . 1 5 y  k f:?!k?JiE!ied ~EF, 

Wty as 

then the SNR is 
'L"i"i J - 

~ [ w : n n ~ w ~ ]  - N~ llw:wil( 

Since No is the same for all users, the user with the highest SNR is the one with the 

highest value for (75). The ordering technique is to find the users with the lowest value 

for I Iw~w~ 11. 

The LLR sort is from [lo]. The method used with IMUD is actually a simplified 

version, referred to as envelope-based ordering. The LLR, introduced in (34), is derived 

in [I 01 for BPSK and MPSK systems. Like SNR, it uses linear suppression to derive the 



metric. It is therefore subject to the same problem of a singular matrix in overloaded 

cases. For BPSK, the LLR is I 

pr(b,  =+ l l  x,) 
A, = In 

pr (b, = -I I x , )  

where x, = (H'H)-' h,y = wiy is the ZF filtered sample for the ?' user of thefh group. 

The LLR magnitude is all that is needed, since it represents the certainty of the decision 

(high certainty of +1 is +a, high certainty of -1 is -a). The decision itself is not 

important. Using x, and the channel model, the magnitude of the LLR becomes 

As pointed out in [lo], (77) has some similarity to (75). The expected value of (77) is 

LLR sort and the SNR sort is that the LLR includes the instantaneous measurement, 

giving more information about the current channel state. The metric for the LLR sort can 

be simplified by removing the constant terms. 

EVM is covered in Section 3.3, with the metric being derived in (48). The 

ordering is based on the users with the lowest value for the mean square error after the 

suppression of other users. To accommodate previously detected users, (48) is 

modified in (51). 



The results for each technique in a (12,3,4) system are shown in Figure 27. As 

detailed in Section 3.6, the second iteration for all techniques is based on a randomized 

order. 

The random order is the worst performer, as expected. However, even with 

random ordering, IMUD(2) performs with a BER of 10" at an SNR of -2d0, which couid 

be acceptable in many systems. In the case that the complexity of the sort algorithm is 

seen as excessive, Figure 28 gives evidence that even with random ordering for the first 

iteration, IMUD has decent performance. The SNR sort is a big improvement in both the 

first and second iterations. In fact, it is interesting to note that the difference at a BER of 

10" for SNR, LLR and EVM sort is a fraction of a dB. There is a difference in the 

effective diversity however, since the slopes of the curves are different. The difference 

between LLR and EVM is minimal. With all the techniques, the spread for the 2"d 

iteration is less than that after the 1 iteration. 



Figure 28: (12,3,4) system comparison of ordering techniques 
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Another aspect of ordering investigated was that of ordering between iterations. 

The reasoning behind the iterative procedure in IMUD is that between each iteration, the 

groups are changed such that the correlations between users are altered. This allows 

the dependencies generated in one iteration to be exploited by the subsequent iteration 

with the transfer of the a prioris. To do this, IMUD is designed to use the best 

performing initial detection order (EVM), and randomly order the users in all subsequent 

iterations. 

However, the EVM ordering can be modified to accept a priori information, 

specifically the variance of the user symbols. This updated EVM was tested as a 

replacement for the random sort between iterations in hopes that it would deliver better 

results. In (48), if we replace ~ [ b b ' ]  with the variance matrix I(') (56) for the yt" 

iteration instead of using the transmitted symbol variance estimate of oil, it becomes 



, 

where R, is R, from (57). This reordering after the first iteration is compared to that of 

a random reordering in Figure 29. 

Figure 29: (12,3,4) system comparing random sort to EVM sort between iterations 
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The figure shows that the performance is actually degraded when using the updated 

EVM sort. A plausible reason could include the fact that the user orderings between the 

first and second iteration are too correlated. 

3.8.5 Information Transfer between Iterations 

In IMUD, the APPs are passed from iteration to iteration to facilitate the evolution 

of the symbol probabilities. In initial investigations, it was hypothesized that the proper 

feedback information would be the extrinsic APPs. The extrinsic information is that 



which is gained from the detection and decoding process. It is essentially the APPs with 

all a priori information removed [S] .  

In coded systems (Turbo codes), the channel information is also removed since it 

can be easily separated from the extrinsic probabilities. The channel information is a 

product of the detection algorithm, excluding the decoder; usually, the channel 

information is simply the likelihood metric from (8). The results from the detection 

algorithm only serve as a guide for the decoder; once the decoder has developed its 

output, the channel information can be removed to prevent any feedback. Observe that 

for any subsequent iteration, the channel information will be identical to the first since the 

detector itself will be using the same channel measurements. The extrinsic information 

is thus dependent only on the code. 

However, in IMUD, the channel information is MMSE filtered, and is integral to 

the iterative process. In fact, the channel information is the extrinsic information since 

I L  - 
LI I W ~ :  is lirj oiilw source io account for tne evoiving nPPs. From now on, APPs refer to 

output LLRs L,M, and a prioris refer to input LLRs L A .  

The expression for the APPs at the output of the Sh iteration of IMUD is 

Using extrinsic APP feedback, LA (y + 1 )  would be simply L,, ( y ) .  Using full APP 

feeback, LA ( y  + 1 )  would be LA ( y )  + L,,, ( y )  . 

IMUD with no IC between iterations and with extrinsic APP feed-back exhibited 

an error floor. The fact that the error floor occurs after the second iteration points to the 

problem in the extrinsic APPs. For the first iteration, the symbols are equiprobable, and 

thus the APP using either the extrinsic or full APPs is simply L,, (1). However, for the 



second iteration, the APPs differ. Figure 29 shows the performance in a (4,3,2) system 

for IMUD(5) with no IC between iterations with both feedback probabilities. 

Figure 30: (4,3,2) system with no IC between iterations 

This is the reverse of what is expected based on the use of extrinsic APPs in 

Turbo codes. A hypothesis to explain this phenomenon is as follows. Most of the 

knowledge of the user symbols is extracted in the first iteration. For the next iteration 

(iterations are still denoted with y  ), L, ( y  + 1)  will be almost equal to LA ( y  + 1) . This is 

because the a priori knowledge LA ( y  + 1) = L, ( y )  . This may cause a positive 

feedback, thus creating an error floor. The error floor only occurs after the correlation 

between the LLRs becomes high enough. 

In Turbo codes, the problem is the reverse. The output APP LLR is defined as 

LA,. The feedback problem occurs when using the full APP, 

LAPP (7 )  = LA ( y )  + Lchan ( y )  + Le, ( y )  . The second iteration results in 



LA (2) = Lchan (1) + L, (1) due to equiprobable symbols. Continuing this process, the 

third iteration results in LA (3) = (L,,, (1) + L, (I)) + (L,, (2) + L, (2)) . Led will evolve 

over time to a steady-state, but the LC,,, will not since it is straight from the channel 

measurements. Since L,,, steadily accumulates, an error floor results. 

The solution is to limit the APP somehow. Most of the literature in Turbo codes 

solves this problem by removing all of the known information and feeding back only the 

extrinsic. In this case, the second iteration LA is simply L,, from the last, so 

LA (2) = L,, (1). Now, when the a priori and channel LLR is removed from LAPP (2), we 

are only left with LA (3) = L,, (2). Another way that this correlation or positive feedback 

can be disrupted is to use a weighted removal of the APPs 1181. The weighting factor is 

denoted by a . For Turbo codes, LA (y) = LA, ( y  - I) - a (L,, ( y  - 1) + LA ( y  - I)). In the 

above discussion, using the APPs as a prioris is the same as setting a = 0 ,  and using 

the extrinsic APPs is the same as setting a = 1. In [I 81, it is shown that for the method 

of updating the a prioris, the optimum value of a is 1 ,  corresponding to the feedback of 

only the extrinsic APPs. 

The possibility of a different optimum value of a for IMUD was explored next. 

The expression for the a priori is LA (y) = LAPP ( y  - 1) - a (L, (Y - 1)) . Figure 30 shows 

the results for a of 0, 0.5, 0.9 and 1 for without IC between iterations. Even with only 

10% of the previous a prioris included in the next iteration, the error floor is eliminated. 

This seems to point to the idea that the correlation between the a prioris and the 

extrinsic information is easily broken. 



Figure 31: (4,3,2) system no IC between Iterations 

SNR per bit (dB) 

The above discussion of information transfer between iterations considered the 

case of no IC between iterations. However, in IMUD, soft IC is used between iterations. 

Haykin [I61 make use of it in a SlSO MRC MUD concatenated with a SlSO convolutional 

decoder. In IMUD's case, it is hypothesized that the removal of the mean values 

changes the measurement vector enough so that L,, (1) and L, (2) are generated 

under much different conditions. Thus, they are uncorrelated enough to allow 

convergence with any value of a .  Figure 31 extends the results from Figure 30 to 

include IC between iterations. It turns out that a changes nothing in this system; the IC 

is enough. 



Figure 32: (4,3,2) system, IC between Iterations 
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3.8.6 Summary 
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system of equal numbers of users and receivers is capable of performance within 1dB of 

the optimum MUD technique with less complexity (Section 3.7). There are further 

possible methods to reduce complexity of IMUD as well, including more efficient ordering 

techniques and matrix inverse updates. 

Figures 24 and 25 also show that in the overloaded case, IMUD outperforms 

MMSE V-BLAST, which is seen as the closest competitor. Complexity in these systems 

is similar to the equal user to receiver case. 



4 ITERATIVE MULTIUSER DETECTION IN A 
CONCATENATED SYSTEM 

IMUD is capable of being a stage in a concatenated system as well as a stand- 

alone multiuser detector. This is due to IMUD's soft input and output. One realization is 

a two-stage serially concatenated system, where (MUD is the initial multiuser detector at 

the receiver. In this case, the transmitter consists of one non-systematic convolutional 

encoder per user or stream, followed by one interleaver for each encoder. The receiver 

consists of the IMUD detector followed by the respective de-interleavers for each user or 

stream, then the respective SlSO decoders. If the multiuser channel were replaced by a 

channel with delay spread, the detector becomes a SlSO equalizer; this is the much 

studied Turbo Equalizer [14]. 

TL-  f - 1 1  -. . -1.- . 
I I lt: IU I IUWI I I~  sdiuris  4. i - 4.3 iay out the iiviuu/SIsO concatenated system in 

detail. Results are reported in Section 4.4. The notation for the IMUDISISO 

concatenated system is an extension of what was used before. Time is now relevant for 

the SlSO block, since the probabilities at the output are based on the encoder memory, 

unlike the symbol-by-symbol decisions in IMUD. u, (t) is the uncoded multi-bit symbol 

and c, (t) is the coded multi-bit symbol for user n at time t. The number of bits in a 

symbol depends on the specific code that is used (Section 4.2). L(') (c, (t)) refers to the 

LLR for symbol c, (t) for the rth iteration, L(') (c,) refers to a vector of LLRs for symbol 

c, for the entire block at the rth iteration, and L(') (c) refers to a vector of LLRs for 

symbol c for the entire block and all users. The length of the convolutionally encoded 

blocks is denoted as d, and for the simulations d = 500. 



4.1 System Description 

Figure 33: Concatenated SlSO system 
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Figure 33 shows the structure of the concatenated system. For the nth user, the 

uncoded data stream un ( t )  is independently encoded with a convolutional code and is 

output as cn ( t )  . Each coded stream is then bit interleaved, with the interleaver denoted 

as I l ( n ) .  The output of the interleaver is sn ( t )  . The code can be the same for each 

user if each user has a unique interleaver. Each interleaver does two tasks. First, it 

breaks up channel fades that last longer than the constraint length of the code. Second, 

the different interleavers also add insurance for the MUD in the case of mutually 

correlated channels. By making the fades for each user independent, if one user 

experiences a fade during a symbol, the other users may not. MUD depends on users 

with good channels to aid in detection of users with bad channels. This is an important 

issue, since the last detected users in IMUD are normally in a faded channel, and are 

dependent on the correct decisions of the initially detected users. 

The interleaved and coded bits sn ( t )  are then transmitted over the MIMO 

channel and received by the concatenated detector as y, ( t )  . The detector is explained 

in Figure 34. 



Figure 34: Concatenated detector 

The detector is made up of the IMUD block running two iterations, and N 

interleavers, de-interleavers and SlSO decoders, one for each user or stream. The 

superscript r is used to denote the iterations of the entire concatenated decoder. Keep 

in mind there are now two effective iterative Processes: the IMUD iterative process, 

which has iterations denoted with y , and the concatenated decoder, which has 

iterations denoted with T. However, IMUD(2) will be treated here as a black box and 

the inner workings of IMUD as reviewed in Section 3 will not be an issue. It will input the 

received samples y(t)  and continue with symbol-by-symbol detection. The LLRs at the 

output of IMUD(2) are buffered until the entire block has been received. The flow of the 

rest of the detector is similar to other serial concatenated schemes. The coded symbol 

LLRs L $ ~ ~  (s,) are input to the deinterleavers. The deinterleaved LLRs L(zUD (c,) are 

then detected with the SlSO convolutional decoder, which is defined in Section 4.3. The 

decoder outputs two soft decision streams; one for the coded symbols. L(rl) (c,) , and 

one for the uncoded symbols, c") (u,) . The new LLRs for the coded symbols are 



updated with the redundant information of the code. These LLRs are then fed back to 

the IMUD block after being re-interleaved as LC;~ (s,) . The next iteration then has 

updated a prioris to work with. Decisions are made on LZ~L (u,). The notation for LLRs 

for all users and all time is (u). 

4.2 Encoder 

Convolutional coding is a method in which redundant information is introduced 

into the data stream. The existing information is augmented in such a way as to allow 

some level of error correction. A convolutional code is traditionally implemented as a 

shift register with taps to modulo-2 adders. Using the notation from [I], ko bits are 

entered every symbol time into the shift register with K serially connected stages for a 

total shift register length of koK symbols. K is referred to as the constraint length of the 

code, and is the number of cycles that a given symbol affects the output of the coder. At 

the output of the encoder, no bits are shifted out every cycle. For the simulated 

concatenated system, the input block consists of d clock cycles, or d . ko input symbols. 

The convolutional code is left in an undetermined state instead of being returned to a 

known state. It is possible to have sections with varying constraint length, however the 

largest section sets the constraint length for the system. 

The convolutional codes used in the simulated concatenated system are taken 

from [I]. The codes are expressed as vectors of octal numbers, known as generators. 

Each input path has its own vector. The octal number denotes the taps on the shift 

register that are summed to produce the outputs. Convolutional codes are also 

described with a rate, which is the number of input bits, ko ,  for the number of output bits, 



no, for a code rate of k0 . There are then no generator vectors of length ko . Figure X 
35 below shows a generic convolutional encoder. 

Figure 35: Rate nolko convolutional encoder 
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The octal vectors represent which locations in each stage are summed to 

produce a certain output bit. The octal number starts with the first input location as the 

LSB. In the simulations to follow, a rate 113 and rate 213 code is simulated. For the rate 

213 code with generators (2,7), (7,5), and (7,2),  no = 3 ,  ko = 2 ,  and K = 3 .  The data 

symbols are multiplexed into two streams and input into the encoder. The output is then 

de-multiplexed for symbol-by-symbol BPSK transmission over the mobile channel. The 

encoder for the rate 213 code is depicted in Figure 35. 



Figure 36: Rate 213 non-systematic convolutional encoder 

Note how the tap positions from the generator vectors match up with Figure 36. For 

example, the vector for the third output is (7,2). After conversion from octal to binary, 

they correspond to all three memory locations from the first input summed together or 

(1,1 ,I) and a single tap from the second memory location from the second input or 

(0,1,0). 

For systems with memory of finite length, a trellis representation can be formed. 

The states are defined with the constraint length K and the number of input bits k,, . For 

an m-ary constellation, each code has a trellis with mkO(K-') states. For the rate 213 code 

above, the trellis contains 2"') = 16 states. The trellis is shown in Figure 37. 



Figure 37: Trellis of rate 213 convolutional code shown in Figure 36 



4.3 Decoder 

Figure 38: Non-systematic SlSO decoder block 

The soft-input soft-output (SISO) block [ I  71 is a derivative of the BCJR algorithm 

[12]. Both are optimum decoders for memory based systems, and can be used for 

equalizers or convolutional decoders. It uses the redundant information introduced by 

the channel or code to improve the symbol probabilities. 

Adapting the notation from [ I  71, the SlSO detector is used as follows. As shown 

in Figure 37, the SlSO block has two soft inputs and two soft outputs. The inputs are 

used as a prioris for both the coded and uncoded bits (c and u). The outputs are 

updated within the SlSO decoder and output as probabilities. 

The updated probabilities are extrinsic APPs. Following the discussion in 

Section 3.8.5 about APPs, the output LLRs for the coded bits will be examined. They 

are 

L':+" (c) = LA (c) + L, (c) 

= Ly (c) + L, (c) 

= (L(;' (y = 2) + L(:ia, (y = 1)) + L, (c) 

(81) shows the LLR at the output of the SlSO decoder as a sum of the a priori into the 

decoder (the a prioris into the IMUD block plus the channel LLRs developed during the 2 

iteration IMUD) and the extrinsic information developed during the decoding process. 

Remember, the extrinsic information in IMUD is the channel information, and since 



IMUD is run for 2 iterations and no a prioris are removed, both iterations channel 

measurements are included. The difference between the SlSO APPs and the IMUD 

APPs is that the extrinsic information in the SlSO block is not the channel information; in 

fact, the channel information is not directly included at all since the SlSO block only 

works on existing probabilities, LA ( c )  . These a prioris include the channel 

measurement left from the IMUD(2) block, as well as the redundant code information. 

After the SlSO has produced its APPs, the a priori information must be removed to 

prevent any feedback. This is unlike the IMUD block, where they are included to weight 

the probabilities to avoid correlation between iterations. It should be noted that while the 

input LLRs for the uncoded symbols c) (u) are equi-probable for every iteration of 

IMUDISISO, the output of each iteration L(F1) (u) evolves so that it may be used for the 

final decision. 

The SlSO block is run over the entire coded symbol block, which consists of 

d . ko input and d . no output symbols. As with IMUD, the calculations within the SISO 

block will be done with the probabilities and not the LLR's. 

Since our system consists of a code that is of rate ko , each code trellis branch X 
corresponds to an input symbol consisting of no bits and an output symbol consisting of 

ko bits, shown in Figure 37. Since the bits in these symbols are co-dependent because 

of the code trellis branches, the a priori notation is changed to Pr, ( c y t ) )  and 

Pr, (uK ( t ) ) ,  where in refers to the fact that the probabilities are a priori, 7 references the 

coded bits 1.. .no, and K references the data bits 1.. . ko . t  runs from 1 to d, and 

references the clock cycle. 



Because of interleaving, the coded bits on each branch are assumed to have 

undergone independent fades, and thus have independent input probabilities. For user 

n, the input probability for an entire branch at time t  is then 

"0 
Pr, (cn ( t )  = C) = nPr,  (c: ( t )  = c" where C = (cl I 1 cnO) and 

q=l 

ko 

Prjn (un ( t )  = U )  = n Pr, (u," ( t )  = uK) where U  = (ul 1 I uko ) refer to no and ko bit length 
~ 4 1  

symbols, respectively. In the following equations, st refers to the trellis state at time t, 

and the variables a and P are from the BCJR algorithm [12]. 

Using the technique from [I I], the output probabilities for the coded bits are 

Pr, (c: ( t )  = c) = Hc: - PrLut (c: ( t )  = c) 

/ 

and the output probabilities for the uncoded bits are 

Pr, (u," ( t )  = u) = HUE - Prd, (u," ( I )  = u) 

The symbols c' and u' are dependent on the current branch being enumerated. Note, 

for example, that cv = c ,  and is not included in the product of a prioris in (82). H and 
c: 

H are normalization values that are defined as 
0," 

H = 
Prd, (c: ( f  ) = c) 

prLut (c: ( t )  = c) 
C 



and 

To make (82) and (83) more straightforward to understand, they are broken into the 

terms used in the BCJR. This is where the terms a ( s t )  and P(s t )  stem from, and are 

termed the forward and backward terms for time t and state st , respectively. Rewriting 

(82) with BCJR and log terms 

where 

and 

The term G is basically the likelihood ratio scaled by the a priori information. The reason 

behind having three different G's is that (89) and (90) are used to form the extrinsic 



APPs for c and u, while (91) is used to form A and B in (87) and (88). When 

programming this algorithm, it is simple to first build G(st-,,st) for every branch for the 

transition then remove the probability for the specific symbol whose APP is being 

calculated. However, you must be sure that no rounding occurs. For example, if the a 

priori is very large (very possible for the later iterations or for high SNR), platforms like 

Matlab may approximate it as cx, . This is why the a priori for the rlth coded bit or K' 

uncoded bit is not included in the first place. It is important to remember to remove 

these probabilities, since if they aren't removed, the positive feedback mentioned in 

Section 3.8.5 will limit the system. 

A and B are the forward and backward probabilities from the BCJR, calculated 

with G and the past transitions A and B. Since A and B are calculated recursively, a 

starting point is necessary. Since t refers to each symbol transmitted from 1 to d, t 

references the state transitions. In the same way, t can reference the states themselves, 

with the difference that the states start at t = 0.  Since a ( s t )  = ~r(c , ,  (1,2,-.at - I),st,), 

for the starting state at t = 1, a(s , )  = Pr (so)  . For a convolutional encoder that starts in 

its first state, this corresponds to a(s l  = 1) = 1 and a(s1 # 1 )  = 0 ,  or A(sl = 1) = 0 and 

A (s, + 1) = -a. For the backward probabilities, the same approach can be taken where 

the final state is fixed. However, it would require extra transmitted symbols to insure that 

the trellis was in a fixed state at the end of the block. To avoid this extra complexity, 

equal probability can be applied to all of the states without affecting the performance of 

the decoder [5]. Also, scaling for A and B is arbitrary, as long as the relative levels are 

correct. Appropriate starting values for B used in the upcoming simulations are 

B(s, = s )  = 0 for all s. 



4.4 Performance 

The concatenated receiver of IMUD and a SlSO decoder operating on a 

multiuser channel was first simulated with 6 users and 4 receive antennas (N = 6, M = 4) 

with non-systematic rate 113 and 213 codes. The rate 113 code has generator vectors of 

(4), (5), and (7) and K = 3, and the rate 213 code has generator vectors of (2,7), (73) 

and (7,2) and K = 3.  The chosen block length was d = 500, which was chosen to 

match block sizes in existing communications standards. The larger block also allows 

for large interleavers, especially when compared to the constraint length of the codes. 

This way, fades in the channel are broken up, and error bursts are less likely. The 

fading rate for the system is fdT = 0.01 . 

Figures 39 and 40 show the results for the rate 113 and rate 213 code, 

respectively. The notation in the graphs are 

R =no I k, (IMUDISISO iter, IMUD iter) fdT , where iter refers to the number of 

iterations run for either within IMUD or within the IMUDlSlSO detector. A lower bound is 

included in the form of a single user with the same code operating in a system with 4 

receive antennas. Since the single-user case does not require a multiuser detector, it 

only requires one pass of the SlSO decoder. It is denoted in the graphs as SU. 



Figure 39: (4,3,2) IMUDlSlSO concatenated system with rate 113 code 

I 

SNR (dB) 

Figure 40: (4,3,2) IMUDlSlSO concatenated system with rate 213 code 

SNR (dB) 



The results are encouraging. Like many iterative techniques, the biggest gain is 

achieved by the second iteration. However, unlike IMUD, the concatenated system 

continues to improve. The 4th and 5th iterations for the rate 113 code allow this 

observation; similar tests have not been run for the rate 213 code due to time constraints. 

This means that the APPs are still evolving after the first few iterations (Figures 41 and 

42). Since these simulations only reveal the results after a few iterations are run, there 

is a possibility that a Turbo cliff region may appear after more iterations. However, 

longer block sizes may be necessary to uncover this phenomenon. 

As further evidence of improvement with successive iterations, Figure 41 shows 

a histogram of the evolution of the LLRs at the output of the IMUD detector in a block of 

100 coded symbols at an SNR of -7dB. 

Figure 41: Concatenated IMUDlSlSO system, IMUD APP evolution at -7dB, rate 113 code 

- IMUD 1 
MUD 2 
MUD 3 
MUD 4 
MUD 5 
MUD 6 

LLR 



100 symbols were transmitted with the rate 113 code, creating 300 LLR values 

total. A stream of -1 symbols were transmitted from the first user on the (4,3,2) system 

and is used to show how the APPs evolve over each iteration. All other users are 

transmitting a random stream. The ideal LLR for a + I  is ot, and for a -1 is -oo , so the 

decision boundary is at 0. To scale the plots, 800 was set as the maximum value for 

positive or negative value. Examining the first iteration (blue) of the IMUDlSlSO system, 

it is seen that a few symbols are in error. However, with the next iteration (green), all the 

APPs are pulled closer to the ideal value of LLR. Again, for the third iteration (red), the 

LLRs are even further spread from the decision boundary. Figure 42 shows the same 

system at -10dB SNR. Some of the LLRs at this SNR are detected incorrectly, as seen 

in the positive LLRs at IMUD iterations 5 and 6. The BER plot in figure 39 is stated as 

evidence that the LLRs are not simply being pushed in the direction of the symbol that 

was initially detected 



Figure 42: (4,3,2) concatenated IMUDlSlSO system, IMUD APP evolution at -10dB, rate 113 
code 
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CONCLUSIONS 

The topic of this thesis was to develop and assess a new multiuser detection 

(MUD) technique: Iterative Multiuser Detection (IMUD). IMUD was designed with 

influences from the optimum joint maximum likelihood (JML) MUD, the suboptimum 

linear V-BLAST MUD and group detection MUD. The novel developments in IMUD 

include the use of randomized groups with an iterative process and soft interference 

cancellation (IC) between groups and iterations. Through the testing of various 

parameters including ordering technique, probability feedback, and interference 

cancellation, the current performance of IMUD was maximized. This includes using 

error variance minimization for the ordering technique, strict a posteriori probability 

feedback between iterations, and interference cancellation between groups and 

iterations iii FdUD. 

The goal of IMUD was to perform as close as possible to the computationally 

prohibitive optimum MUD with complexity similar to existing suboptimum techniques. 

The performance of the IMUD simulation has been incredibly encouraging. In systems 

in which the number of single-antenna transmitting users equalled the number of receive 

antennas at the base station (Section 3.8.1), IMUD run with two iterations consistently 

outperformed both V-BLAST and the group detector with complexity in the same order of 

magnitude. For larger group sizes, this is of special interest since the optimum joint 

maximum likelihood technique quickly becomes prohibitive, with complexity many orders 

of magnitude above the suboptimal techniques. Even more impressive is IMUD's 

performance in an overloaded system (Section 3.8.2), where there are more transmitting 

users than receive antennas. Traditionally, the optimum JML technique has been the 



only MUD to keep its order of diversity in an overloaded system. The suboptimal 

techniques develop error floors, making the techniques unusable in some cases. 

Although IMUD still exhibits this error floor, it is much lower than in other techniques. 

IMUD also preserves most of the diversity order (evident by the slope of the BER curve). 

The use of IMUD can be extended beyond that of a stand-alone MUD, since the 

soft inputlsoft output nature of IMUD allows easy insertion in a serially concatenated 

system, similar to the equalizer in Turbo equalization. The IMUDISISO system consists 

of users transmitting independent symbol streams that are encoded and interleaved, and 

a receiver consisting of an IMUD detector followed by a de-interleaver and decoder for 

each user or stream. This IMUDISISO concatenated system was tested with 6 users 

and 4 receive antennas (Section 4.4). Rate 113 and rate 213 non-systematic codes were 

used. The resulting BER curves show that IMUDISISO with 6 users and a rate 113 code 

can match an error rate of 10" of a single user system that has the same number of 

receive antennas, requiring an increase of only around 2dB in the SNR. Further tests 

are needed to understand how the error floor of the overloaded IMUD affects that of the 

IMUDISISO system. However, for the simulated SNR range, the BER curve slope of the 

single-user and the 6 user IMUDISISO system are nearly identical. For the rate 213 

code, the difference between the 6 user case and the single user case is closer to IdB. 

5.1 Suggestions for Further Research 

Since IMUD can be summarized simply as a soft inputlsoft output multiuser 

detector, there are many possible ways of utilizing it. For example, some immediate 

extensions of IMUD in a concatenated system include pairing it with space-time block 

codes, a macrodiversity system, or perhaps an OFDM system. All of these possibilities 

have potential for new innovations, especially the space-time system, where it uses the 

diversity of the channel in possibly complementary ways to IMUD. 



Further investigation into IMUD itself will also be undertaken. Specifically, it is 

thought that the order of detecting users could be improved in two ways. First, there is 

the possibility of searching for an optimum ordering technique analytically, as well as via 

simulation. Second, the computational complexity should be examined, since from the 

plots in Section 3.7, it is evident that a major part of the complexity in IMUD is derived 

from the ordering technique. 

For the convergence of IMUD, extrinsic transfer information (EXIT) charts may 

prove to be very useful [19]. EXIT charts are plots that show how mutual information is 

traded between components of iterative decoders. They can show how fast or even if 

the iterative system will converge to a final solution. In the IMUDISISO case, the 

detector components for the EXIT chart would include IMUD and the SlSO decoders. 

Another bonus in using EXIT charts is that they allow convergence of serial and parallel 

concatenated codes to be examined on a per iteration basis, without need to run Monte 

 car!^ BE!? si!x!aticns. !? is hcped thst s ~ h  chz?s czn be ccmpl!ed fc: diffz:c~t ! ? A X  

systems, allowing convergence to be analyzed between IMUD and various convolutional 

codes without the need for direct simulations. 
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