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ABSTRACT 

At the time of this writing, JPEG2000 is the most recent standard for still image 

compression. One of the important features of the standard is region-of-interest (ROI) 

coding, which allows user-defined parts of an image to be coded with higher quality than 

parts in the "background" (BG). In fact, the ROI feature enables a general non-uniform 

distribution of quality for different parts of an image. 

There are two main types of applications for ROI coding. In many applications 

such as in medical images, a high quality or even lossless quality is needed for only a 

small part of an image. In these cases, with using ROI coding technique, there is no 

need to code the whole image with high quality. The image background is coded with 

moderate quality and as a result a higher compression ratio is achieved. The second 

type ui appii~aiiur~ is ill prvgressive irarisrriission over iow-capaciiy cnanneis. in inese 

cases, the ROI is transmitted before the background, and at each point during the 

transmission, the quality of the ROI is better than the BG. Therefore, once the desired 

image fidelity is provided at the receiver, transmission can be terminated. Also the 

relative quality between the ROI and BG regions can be selected during the coding 

process. 

The JPEG2000 standard only exists for the decoder side. Any algorithm can be 

used at the encoder as long as it is compatible with the standard's decoder. In this 

thesis, we propose a modification for the current JPEG2000 encoders in order to 

improve the compression performance of the ROI mode of the standard. ROI coding is 

accomplished in JPEG 2000 by de-emphasizing the wavelet coefficients associated with 

the non-ROI regions of the image. A number of extra bits appear below the least 

iii 



significant bit of the ROI samples after the shifting process. These bits need to be coded 

at the time of bit-plane coding, but they are discarded by the decoder. The usual 

procedure is for the current encoders to set these "don't care" bits to zero. In this thesis, 

we examine the possible strategies for setting these "don't care" bits and then propose a 

method that exploits the state of the JPEG2000 entropy coder to set the values of these 

bits in a more intelligent way. The method has been observed to reduce the number of 

bits required to represent ROI code-block by up to 7%, with the bit-stream remaining 

JPEG2000 compliant. 
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CHAPTER 1 
INTRODUCTION 

Introduction 

In the last couple of decades, we have been witnessing a revolution in the 

information technology, and this revolution has changed the way we communicate. The 

emergence and development of the internet and the growing number of mobile phones 

and digital TV users are part of this revolution. Data compression has definitely had a 

very important role in the development of the multimedia revolution [27]. In fact, without 

the current data compression techniques, the internet could not have the size and shape 

of what it has today, and the mobile phones and digital TV's could not be as widespread 

as what we see these days. The music stored in CD's, the movies stored in DVD's and 

the images stored in digital cameras are all compressed with a type of data compression 

standardlalgorithm. 

Data in the shape of an image is widely used in our daily communications. One 

can hardly find a page in the internet that does not contain at least one image. Also, if 

we could search the information in the computers around the world, maybe it would be 

difficult to find a computer without image files stored in it. 

Storing an uncompressed digital image needs a large memory space. As an 

example, a typical 500x500 pixel color image requires 750kB of memory (24bits/pixel), 

however, the image file can be compressed with a ratio of, say, 1 : lo,  and the 

reconstructed image cannot probably be distinguished from the original image by a 

human eye. Note, however, that in some applications such as medical images or 
i 

I preservation of artworks [28] the above-mentioned compression ratios cannot be 



achieved as in these cases, no distortion is tolerated in the reconstructed image. 

Furthermore, the image compression techniques are also used in most of the video 

compression algorithms and standards. In fact, in many video compression standards, 

an image compression technique is used to code some non-consecutive video frames 

and the frames between them are interpolated using motion compensation techniques 

[27] to exploit the dependency between the frames. 

The latest image compression standard is the JPEG2000, which compared to the 

previous standards, allows for both increased flexibility and performance. The main 

contribution of this thesis is a modification for the ROI mode of JPEG2000 coder to 

improve the compression performance. 

I .  I Thesis Outline 

The remainder of this thesis is organized as follows: 

Chapter 2 provides background information for the main building blocks of a very 

large group of image compression algorithms/standards including JPEG2000. Transform 

coding, quantization and entropy coding techniques are the main subjects discussed in 

this chapter. 

Chapter 3 starts with introducing the JPEG2000 standard features and the state- 

of-the-art compression technique utilized in this standard. The problem that is dealt with 

in this thesis is defined at the end of this chapter. 

Chapter 4 explains the complete details of the problem and continues with the 

way we approached it. Our suggested method for dealing with the problem wraps up this 

chapter. 



Chapter 5 reports the experimental results. Our designing experiment to test the 

suggested method is explained and the impr'ovements possible with our method over the 

usual procedure used in the current JPEG2000 coders are provided. 

Chapter 6 concludes the thesis and suggests future works. 

And finally the appendix reports more experimental results and reproduces the 

test images that are used for experiments throughout the thesis. 



CHAPTER 2 
IMAGE PROCESSING 

Introduction 

In this chapter we will briefly review the literature behind the current image 

compression algorithms and standards, and we will keep our focus on JPEG2000. Our 

goal here is to provide just enough information for a person with electrical engineering 

background to understand the research work explained in this thesis. For more in depth 

information, interested readers are referred to the references introduced throughout the 

chapter for each subject. 

A digital image is represented by a two dimensional array. Each member of the 

array is called a pixel, with the value of each pixel representing the intensity or 

brightness of the image at that location. In most images, the values of the neighboring 

pixels are highly dependent, and almost all of the common image compression 

standards and algorithms exploit this fact to compress the bitstream needed to store an 

image. 

The basic structure of many image compression algorithms and standards, 

including JPEG2000, is illustrated in Figure 2.1. The major building blocks are transform 

coding, quantization and entropy coding. In this chapter each of these techniques will be 

discussed in detail. Note that this block diagram belongs to the encoder part of a codec. 

In the decoder, these steps are simply reversed in order to construct a lossy or lossless 

version of the encoded image, depending upon the type of the compression technique. It 

is also worth mentioning that there exist other image compression methods that work 



based on different structures. However, as the focus of this thesis is the JPEG2000 

standard, we only explain the theory related to this standard. 

Figure 2.1. Building blocks of one category of image compression algorithms (coder) 

2.1 Entropy coding 

Entropy, first introduced by Shannon 1291, is a measure for information. There is 

high information in an event if the probability of occurring of the event is low and vice 

versa. As an example, suppose you receive a phone call in January from a friend of 

yours in the Northern Territories. He says the weather there is very cold. This sentence 

really does not carry much information, as at that time of the year you do expect the 

weather to be cold there. However, if a top seed tennis player is beaten by a Wimbledon 

wildcard in the first round of tournament, all the sports channels will talk about the 

unexpected news, as there is high information in it. 

Regarding the mathematical measurement of entropy, suppose we have a 

source, X ,  that generates a set of independent symbols xi, with pi the probability of 

occurring each symbol. The zeroth-order entropy associated with the source is then 

computed as follow, 

The parameter b, determines the unit of information. With b = 2 the unit is bit. 



Shannon showed that, theoretically, an ideal coding algorithm can code the 

independent symbols generated by a source: with an average number of symbols equal 

to the entropy of the source. The above argument holds when the source symbols are 

completely independent. In cases where there is dependency between different 

symbols, as in image coding, the dependency can be exploited in the coding process, 

and the resulting bit-stream can be lower than the zeroth-order entropy. The usual 

procedure utilized in image coding, and also in JPEG2000, is that the probability of each 

sample is estimated according to the neighboring samples or the sample's context [34] 

and during the coding process. This process will be discussed in the next section. 

The term entropy coding refers to the techniques used to losslessly encode the 

syrnbols generated by a source. As previously mentioned, the lower bound or the 

minimum achievable average rate for each memoryless source, is the entropy of the 

source. Several entropy coding techniques are available in the data coding literature. 

Tile main iaea benina aii oi the tecnnlques IS to code the more popular symbols in a 

sequence with shorter codes and vice versa. This manipulation will decrease the length 

of the codeword needed to represent the sequence in question. The entropy coding 

technique used in the JPEG2000 standard is called arithmetic coding and it will be 

discussed here in details. 

2.1.1 Arithmetic coding 

In arithmetic coding [I 9][34][27], every sequence of symbols is uniquely assigned 

a tag, which is a number in the interval [0,1). Infinite number of numbers exist in this unit 

interval, thus it is possible to generate a distinct tag for every possible sequence. 

The usual procedure is to use the cumulative distribution function (cdf), in order 

to map a sequence into the unit interval. Here the coding procedure is explained through 



an example. Suppose a source randomly generates sequences comprising the three 

symbols s,, s2, and s3, with probabilities equal to 0.6, 0.3 and 0.1 respectively. Now 

consider we want to code the sequence s3 sf s2. Table 2.1 can be drawn for this 

example. 

Table 2.1. Probabilities and intervals associated to three symbols of a source 

Symbol Probability Interval 

SI 0.6 [0,0.6) 

S2 0.3 [0.6,0.9) 

s3 0.1 [0.9,1 ) 

The tag lies in one of the above intervals depending upon the first symbol in the 

sequence, which is s3 in our example. Therefore. the tag resides in the interval [(! gal!, 

as shown in the Figure 2.2. Now, the interval [0.9,1) is divided into subintervals exactly in 

the same manner as the unit interval, and the rest of the unit interval is discarded. The 

resulting subintervals will be [0.9,0.96), [0.96,0.99) and [0.99,1). Now since the second 

symbol in the sequence is s,, this time the tag resides in the first subinterval, [0.9,0.96), 

and the other subintervals are discarded. This procedure is performed once again, as 

there is still another symbol in the sequence. This time the resulting subintervals will be 

[0.9,0.936), [0.936,0.954), [0.954,0.96), and the first and third subintervals will be 

discarded since the third symbol is s2. The tag is therefore restricted to the subinterval 

[0.936,0.954). Any number in this interval, say the middle point 0.945, combined with the 

probabilities of the source symbols uniquely represent the sequence. 



Figure 2.2. Formation of tag in coding the sequence s3s1s2 

In order to decode the tag, we simply reverse the above procedure. First, among 

the intervals [0,0.6), [0.6,0.9) and [0.9,1), we find the interval that contains the tag. Since 

the third interval [0.9,1) contains the tag, the first symbol is decoded as s3. Now further 

division of this interval results in the three subintervals [(1.9,0.96), [0 96,I! %I!, p.99,I !. 

This time the tag lies in the first subinterval, hence the second symbol decoded as s,. 

This time, the first subinterval is divided into three subintervals [0.9,0.936), 

[0.936,0.954), [0.954,1), and as the tag belongs to the second subinterval, the third 

symbol will be s2. 

Theoretically, arithmetic coding is performed based on the above procedure, 

however, for most practical purposes, the tag should be efficiently represented by a 

binary code. The binary code can be the binary representation of the tag, truncated in a 
i 
i way so that it still represents the tag uniquely. An algorithm [27] will be described here 
? 

that incrementally computes a unique binary representation of the tag during the coding 
I 
i process. 



A key part of this algorithm is the rescaling strategy. When arithmetic coding is 

used to code long sequences of symbols, thb tag interval shrinks to very small intervals. 

Representing this small interval requires higher precision as more number of symbols 

are coded. In order to avoid this problem, we rescale the interval during the coding 

process. If the interval is entirely in the lower half of the unit interval, as it will definitely 

stay there during the coding process, a 0 is sent to the decoder and the resulting interval 

is rescaled as follow, 

If the interval lies completely in the upper half of the unit interval, the binary bit 1 is sent 

and the interval is rescaled as, 

We can construct Table 2.2 for the above example. 

Table 2.2. Arithmetic coding the sequence s3s1s2 

symbol Operation 

choosing the third interval 

rescaling 

rescaling 

rescaling 

choosing the first subinterval 

choosing second subinterval 

interval Coded bit 



The final coding step is termination in which an arbitrary value inside the tag interval is 

added to the coded bitstream. In our example a straight forward choice is 0.5 as its 

binary equivalent is 0.1, which can be represented by one bit. Thus a 1 is coded in the 

last step. The final coded bitstream is therefore 0.1 11 1 which is equal to 0.9375 and lies 

in the subinterval [0.936,0.954) computed in Figure 2.2. 

In order to decode the bitstream, we should select a window of length, n, and 

start decoding with the first n bits of the coded bitstream. At each step the window is 

moved through the bitstream, the MSB bit is shifted out and a new bit is shifted in from 

the LSB side. The size of the window should be long enough to be able to represent the 

smallest tag interval belonging to the symbol with the lowest probability, in this case 0.1. 

Thus we need to use a window length four. We start decoding by reading the first four 

symbols 11 11, which corresponds to a value of 0.9375. This value lies in the interval 

[0.9,1) which shows that the first symbol of the sequence is s3. The interval [0.9,1) 

resides in the upper half of the unit interval, so we shift the window one bit to the left. 

Using (2.2), we need to map the tag interval to [0.8,1). Now we are dealing with the code 

11 10, which corresponds to a tag value of 0.875. We repeat the last step twice more, as 

the interval is still in the upper half of the unit interval. The resulting intervals will be 

[0.6,1) and [0.2,1) and the tag value 1100 and 1000. Now the tag value is 0.5 that lies in 

the first 60% of the interval [0.2,1). So the second symbol is decoded as s,, and the 

updated interval is [0.2,0.68) which is the first 60% portion of the [0.2,1). The tag, 0.5, is 

now between the 60%-90% portion of the interval [0.2,0.68), which implies that the third 

and final symbol should be s2. The information about the number of the encoded 

symbols need be provided to the decoder so that the decoding procedure terminates at 

the proper point. Here after decoding the third element, the decoder should stop 

decoding. The decoding procedure is summarized in Table 2.3. 



Table 2.3. Decoding the sequence s3slsz 

2.2 Quantization 

Quantization 1101 is the act of mapping a large set of different values to a smaller 

set, which is one of the basic ideas of lossy data compression. Figure 2.3 is an example 

of a scalar quantizer, where all the real values in the x axis are mapped into only six 

values in the yaxis. In this example the values that reside in the range [0, A ) are 

mapped into A 12, etc. 

interval 

[().%I) 

[0.8,1) 

Figure 2.3. Example of a uniform scalar quantizer 

Windowed bitstream 

1111 

1110 

tag 

0.9375 

0.875 

decoded symbol 

S3 



Usually, each of the values on the y axis is assigned a quantization index, and 

the indexes are entropy coded at the coder side. At the decoder, first the indexes are 

entropy decoded, and then since the exact values of the coded samples are not known, 

each index is mapped into a reconstruction value that in some sense, optimally 

represents the samples in that interval. This mapping of index to value is usually 

predetermined and the encoder uses this to decide on the quantization index. Also since 

the exact value of the sample cannot be recovered at the decoder, the resulting 

compression will be lossy. 

The design parameters in every scalar quantizer include the sizes of each 

interval in both of the x and y axis, the number of the quantization levels and the 

reconstruction values. The design, in turn, depends upon the statistics of the source 

samples, and the conditions and constraints that exist in each practical problem. In the 

end we mention that the quantizer utilized in the JPEG2000 standard is a scalar 

quantizer with deadzone [34], which will be explained in the next chapter. 

2.3 Transform coding 

In a typical image, the values of neighboring samples are highly correlated. 

Appropriate transforms can be applied to an image in order to reduce or ideally remove 

the correlation among the samples and come up with coefficients with higher energy 

compaction. The resulting signal consists of a large group of coefficients with a small 

variance, and only a small group of coefficients with large variance. Most of the energy 

of the original image lies in the group with large variance. A larger portion of the bit 

budget can be allocated to this group, and the group with small variance can be coded 

with a lower budget. This operation results in compression [5]. 



The concept of a useful transform for image compression can be better 

understood through a simple example [34]. In this example, image samples are 

partitioned into blocks of 2 x 2 .  The four samples in each block are represented with the 

average of the four samples in the block, and the differences between three of the 

samples with the average value. As shown in Figure 2.4, the four transformed samples 

consist of the average of the four image samples, 27, and the differences of the three of 

the image samples 28, 23 and 32 from the average value which will be 1, -4 and 5 

respectively. One of the transformed coefficients has a large value, while the other three 

have small values close to zero. 

image samples transformed samples 

Figure 2.4. A simple image transform example 

Mathematically, the transform for each block can be represented through the 

following equation, 

and the inverse transform through, 



~ ( 0 ~ 0 )  + ~ ( m ,  n) if m v n + 0  
i(m,n) = 

4(0,0) - ( 0 , l  - 1 ,  - (11) otherwise 

When this transform is applied to all of the blocks, the resulting average values, 

which consist of 25% of the total coefficients, will have a large variance while the other 

75% of the samples, the difference values, will have small values close to zero. Note 

that even if we discard the three difference values, we have compressed the image with 

almost a degree of four, and the reconstructed image samples will all be 27, which is 

relatively close to the original values. Note that in this case the compression type will be 

lossy. 

Most of the transforms that are used in image compression are linear transforms. 

A 1 -D linear transform is a transform that maps a vector of dimension n to a another 

vector of dimension m according to the following equation, 

where A is an n x m matrix. As we will discuss in the next chapter, most of the 

transforms used for image compression are non-expensive transforms, that is the 

dimensions of the input and output vectors are equal, or the transform will not produce 

more number of coefficients than the image samples. In this case, the inverse of the 

transform matrix is unique [34] and is equal to 

and the inverse transform can be written as, 

Note that the pth component of the output vector can be computed as, 



and the qth component of the input vector is related to the output through, 

where a , ,  and b,,, are the elements of the A and B matrices. 

The Discreet Fourier Transform (DFT) [20] is an example of a linear and non- 

expensive transform. In an n point DFT the transform matrix can be defined as, 
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Y 

and the inverse transform matrix is, 

A transform can be better understood by looking at the inverse matrix. Any input 

signal is decomposed as a linear combination of the rows of the matrix or the synthesis 

vectors. In the case of the DFT, the input is represented as a linear combination of 

complex exponential waveforms with frequencies equal to the multiples of 2nIn. This 

i transform is one of the important transforms in the DSP area, however, it is not common 



in image compression applications. The reason, as we will discuss in the next chapter, is 

that in DFT the input signal is extended periodically and this kind of extension might 

result in abrupt discontinuities in the image boundaries. In the Discrete Cosine 

Transform, DCT [27], the input sequence is extended symmetrically, which is more 

appropriate for image compression applications. As a result, the DCT is widely used in 

the image compression area, for example in the JPEG standard [21]. Furthermore, there 

is a fast algorithm to compute the DFT (and the DCT) which has helped the popularity of 

the transforms. 

The transforms utilized for image compression can be divided into two 

categories. In the first type, the block transform, the image is partitioned into different 

blocks and the transform is applied to each block separately. As an example, in the 

JPEG standard the image is partitioned into blocks of 8x8 samples, and the DCT is 

applied to each block. The advantage of the block transforms is that the amount of 

memory neeaea for impiementmg the transtorm is low. On the downside however, 

adjacent correlated image samples might lie in different blocks and as a result the 

transformed coefficients from adjacent blocks might still be highly correlated. Also 

partitioning an image into small blocks and treating each block independently causes 

artifacts at the block edges. 

The second transform type is the subband transform. As we mentioned earlier, 

signals with non-overlapping frequency responses are not correlated. In subband 

transforms [34][27], the whole image is transformed into different bands of frequency 

and the process results in decorrelation. Note that in practice, as the filters are of finite 

dimensions the subbands do overlap, so the utilized transforms should have orthogonal 

basis functions in order to remove the correlation. 



The procedure in a subband transform is that the image signal is filtered into 

components with separate bands of frequenby. The coefficients belonging to each band 

are down-sampled and then grouped together into so called subbands. Down-sampling 

results in aliasing, which will be cancelled during the reconstruction process (in the 

absence of quantization). The advantage of down-sampling is that it avoids an increase 

in the total number of resulting coefficients in all of the subbands, comparing to the 

number of image samples. In the case of lossy compression, the coefficients are 

quantized and then entropy coded in order to achieve a higher compression, while in the 

lossless compression, the quantization part is omitted. 

Although digital images are represented by two-dimensional matrices, usually 

separable 1 -D transforms are applied to the image samples, first on each row and then 

on each column or vice versa, and in order to reduce the complexity. In JPEG2000 the 

frequency decomposition is performed using wavelet transform, as discussed below. 

2.3.1 Wavelet transform 

Wavelet means "small wave". The advantage of wavelets is that they have their 

energy concentrated in time, and this property makes them a good choice for the 

analysis of non-stationary and time-varying signals [I 61. Maybe the most important 

property of the wavelet transform [4][32][39] in the image compression applications, as 

we will see later, is the multi-resolution property where a signal is represented by a 

coarse approximate version followed by a set of details. 

In the multi-resolution analysis in the 1 -D transform, the scaling function, ~ ( t ) ,  

and the mother wavelet, ~ ( t )  correspond to the low- and high-pass synthesis filters 

respectively. We will talk about the relationship between these two functions later in this 



section. The wavelet basis functions are obtained by just shifting and scaling the mother 

wavelet function as follows [27], 
I 

1 t - b  
yld.b(t) = - - . v ( ~ )  & 

where a and bare the scaling and shifting parameters. A popular choice for these two 

parameters is, 

where m and n are integers. Substituting these values, the wavelet basis functions can 

be expressed as, 

The one-dimensional scaling function can also be obtained from the scaling function in a 

similar way and through the following equation, 

As an example the Haar wavelet, which is a very simple wavelet, is defined by, 

1 O I t<0 .5  

-1 0 . 5 I t < l  

0  otherwise 

and the Haar scaling function as, 



1 O S t < l  

0  ' otherwise 

The idea behind the multi-resolution property of wavelets can be explained as 

follow. The scaling function has the property that if a function can be represented by the 

shifted versions of the scaling function at one resolution, it can also be represented by 

the shifted versions of the scaling function at a higher resolution. That is, if we can find 

an 's so that, 

then we can also find bnls such that, 

In other words, if y, = Span{pmo,n) and y,,, = SP~~{P,+I,~) then Y, c Y,,I. This 

property can be generalized to all scales of the scaling function, and thus by considering 

the higher resolutions of the scaling function, a wider range of signals are spanned. In 

order to widen the range of the spanned signals, instead of just using higher resolutions 

of the scaling function, a better way is to use also a different set of functions, lymVn(t), 

that spans the differences between the spaces spanned by the scaling function [4]. 

These functions are the wavelet functions and they are orthogonal to the scaling 

functions. The orthogonal property of a transform, as we will see in the next chapter, is 

very important in image compression applications, as it results in the Parseval's property 

that results in an easy computation of the signal's energy in the transform domain. 



The orthogonal complement of y, in y,,, is defined as w, [4]. If we start from 

, 
m = 0 ,  then we can write, 

Yl = Yo '0 0 0  (2.21) 

where O is the summation of two spaces. Therefore, we can further write the above 

equation as, 

y2 = yo O wo 0 Wl (2.22) 

and 

y, = yo OWo O W 1 . - O ~ , - ,  (2.23) 

This property is illustrated in Figure 2.5. 

Figure 2.5. The relationship of the spanned spaces (taken from [4]) 

Since yo c yl , any function belonging to yo also belongs to yl . A direct result of 

this statement is that ~ ( t )  which belongs to yo can be expressed as a function of the 

shifted versions of the 49(2t), 



Also as wo c y, , again ~ ( t )  can be represented by a weighted sum of the shifted 

versions of p(2t), 

With a change of variable, it is easy to verify that [4], 

Based on the above arguments, any signal, f(t) , belonging to the spanning set 

of a wavelet function, ~ ( t ) ,  and the corresponding scaling function, ~ ( t ) ,  can be 

expanded as follow, 

where the coefficients in the above expansion are the Discrete Wavelet Transform 

(DWT) coefficients. If the wavelet system is orthogonal, the coefficients can be 

calculated through the following two inner products, 

Since y,+, = y, O w, , then if f(t) E ym+, , we can write, 



and since also f ( t ) ~  y, O w, then, 

where c(m,n) can be computed with the following inner product, 

We can easily find the relationship between the coefficients in equations (2.29) and 

(2.30). Using equation (2.26), we can write, 

Comparing equations (2.31) and (2.32) we will have, 

And similarly, 

Therefore, if we know the wavelet transform coefficients in one resolution, we can easily 

compute the coefficients of a lower wavelet resolution. 

If we compare equations (2.33) and (2.34) with (2.35) 



we can see that in order to compute the coefficients in a lower resolution, the coefficients 

in the current resolution are filtered by h(-n) or h,(-n) , and then down-sampled by a 

factor of two as illustrated in Figure 2.6. It can be shown [4] that the filters represented 

by h(-n) and hi(-n) are FIR low- and high-pass filters respectively. 

Figure 2.6. Analysis filter bank 

Therefore, if we know the input set of coefficients, c(m),  for a signal in any 

resolution, we can easily compute the low- and high-passed filtered versions of those 

coefficients. Also the above analysis can be further continued, and the resulting low 

frequency coefficients can be further filtered into low and high frequency bands as 

shown in Figure 2.7. 

Figure 2.7. A three level decomposition 



The frequency bands of the resulting signals are illustrated in Figure 2.7. Note 

that the transition between each two set of cdefficients is not so sharp, as the filters 

h(-n) and h,(-n) are not ideal filters. So each signal has some energy in its 

neighboring bands too, however, as the basis vectors in a wavelet transform are 

orthogonal, the transform removes the correlation among the input samples. 

0 n18 n l 4  n12 n 

Figure 2.8. Frequency ranges of the coefficients in a three level decomposition 

The number of input coefficients is equal to that of the output at each level of 

decomposition because of down-sampling. This property is particularly useful for data 

compression applications. However, down-sampling results in aliasing and might result 

in loss of information. Fortunately, there exist methods [38] to undo the aliasing resulting 

from the low-pass filter in the high-pass filter and vice versa, and thus, by applying the 

inverse transform, we can have a perfect reconstruction of the original signal (in the 

absence of quantization). At the end, note that in order to apply a 1 -D transform to a 2-D 

image signal, the transform is first applied to the rows and then to the columns of the 

image or vice-versa. 

In this chapter we briefly introduced the main building blocks of a wide range of 

image compression algorithms. We will talk about the compression method used in 

JPEG2000 and the region of interest feature of the standard. 



CHAPTER 3 
AN OVERVIEW OF THE JPEG2000 STANDARD 

Introduction 

This chapter provides a brief overview of the JPEG2000 [33][34][35][13][14] 

standard, which is the latest image compression standard at the time of this writing. The 

standard is mainly based on an algorithm called independent Embedded Block Coding 

with Optimized Truncation of the embedded bit-streams (EBCOT) [35], introduced by D. 

Taubman. The acronym stands for "Joint Photographic Experts Group". 

Previous commercial image compression standards are generally used as an 

inputloutput filter [28]. Decisions on the quality, compression ratio and resolution (image 

dimensions) are made at the encoder side, and at the decoder, only a single image with 

a particular quality, compression ratio and resolution is recovered. There are exceptions 

to the above argument. As an example, the JPEG standard has a progressive mode in 

which the image can be decoded with different qualities, also the lossless mode of the 

JPEG standard exist, however, these modes have different structures and work with 

different algorithms. When an image is coded in each of the modes, the resulting bit- 

stream has only one particular property and cannot be decoded by another mode. 

Unlike these previous standards, JPEG2000 works more like an image 

processing system and it allows for both increased flexibility and performance. A single 

coded bitstream can be used to reconstruct many different versions of the coded image 

with different dimensions, qualities and colors, and the decisions on the characteristics 

of the image can be delayed until the decoding time. 



3.1 JPEG2000 Features 

Compression performance 

For lossy compression and in bit-rates lower than 0.25 bpp and higher than 1.5 

bpp, JPEG2000 performs significantly better than JPEG, and in moderate bit-rates from 

0.5 to 1.0 bpp, JPEG2000 compression performance is usually a few dB better in peak 

signal to noise ratio (PSNR) than JPEG, however, 

In the lossless case, JPEG2000 performs much better than the lossless mode of 

JPEG, but somewhat worse than JPEG-LS [ I  51, which is a new image compression 

standard for only lossless and nearly lossless compressions. A quantitative comparison 

for the JPEG2000 standard and different modes of the JPEG standard and JPEG-LS is 

provided in section 3.2.6 

Compress once, decompress many ways 

At the time of compression, only a few coding parameters are chosen such as 

the maximum image quality and the maximum resolution. Any image quality, size and 

resolution up to these maximums can be reconstructed from a single coded bit-stream. 

As an example, suppose an image is coded losslessly and with full resolution, 

resulting in a 100kb bit-stream. A lossy image can be constructed by locating and 

decoding, say, 10% of the coded bit-stream. Also by locating and decoding 15% of the 

coded bits, it's possible to reconstruct a smaller resolution version of the image. Finally 

this random access feature is also available for color components as well. Note that in 

each of the above cases, it is not necessary to decode the whole bit-stream. Also 

accessing arbitrary parts of an image is possible through the encoded bit-stream, and it 

is only a matter of locating and decoding the proper packets of the coded bit-stream. 



Progression 

JPEG2000 supports four types of progression: quality, resolution, spatial location 

and component, all in one single bit-stream [28]. 

Quality 

The first kind of progression is in quality. As more data is decoded, the image 

quality is enhanced up to the maximum that was initially chosen at the time of coding. 

The maximum quality can be chosen as lossless. The progression property is most 

useful when data is transmitted through a low capacity channel. 

Resolution 

The second type of progression is in resolution or image dimensions. By 

decoding the first few bytes, a thumbnail size of the picture is constructed, as the 

decoding process continues, the dimensions of the resulting image are doubled until the 

full size image is obtained. The number of these smaller size images is always one more 

than the number of the levels of wavelet transform performed at the time of 

compression. Note that the only available resolutions are (112)~ times the original image 

dimensions, where k is an integer in the range [0, m) and m is the number of the stages 

of the wavelet decomposition performed during the compression process. 

Spatial Location 

The third type of progression supported is in spatial location. In this type, the 

image can be decoded in, say, a stripe-based fashion starting from top of the image. 

This property has applications in low-memory printers and scanners. 



Component 

The final type of progression is in image components. Most digital images are 

represented by either one, three or four components, like grayscale, RGB and CMYK 

images respectively. Images with more than four components are usually from scientific 

instruments. JPEG2000 supports up to 16384 components. Data representing each 

component can be extracted and decoded separately from the coded bitstream. As an 

example, an image can be decoded to its grayscale version followed by its color 

components. 

Region-of-Interest (ROI) coding 

Another feature of the standard is the possibility to code some specific parts of 

an image with higher quality than the other parts or the background, at the compression 

time. For images that are coded with a region of interest, the ROI will be decoded before 

the background in the progressive decoding process. Thus, if the decoding process is 

terminated at any point, the ROI will have a better quality than the background. 

The relative quality between the ROI and the background, and choosing the 

region of interest are the parameters that can be picked by the user at the time of 

compression. This feature is useful for storage purposes as well as for data transmission 

over low-capacity channels. This property is the subject of this thesis and will be 

discussed in detail later in this chapter. 

3.2 The JPEG2000 algorithm 

The JPEG2000 standard only specifies the decoder's algorithm; however, for a 

better understanding of how the algorithm works, we will go through the coding 

procedure in this section. 



Tiles 

The first step in the coding procedure is to divide the image samples into non- 

overlapping rectangular tiles [34]. The samples from each component that lie in a tile are 

grouped as a tile-component. The main advantage of tiling is to reduce the amount of 

memory needed for implementing the encoder, as each of the tile-components are 

treated independently. The disadvantage of tiling is the boundary breaks that are the 

visually visible artifacts that appear on the boundaries of the tiles. These artifacts result 

from compressing each tile independently when the qualities of the adjacent samples 

reconstructed in two different tiles are not exactly the same. The effects of these breaks 

are alleviated in high bit-rates (high qualities) and large tiles. In situations where memory 

is not a big concern and the image dimensions are not too large, the tile size can be 

chosen to be equal to the image dimensions. 

Components 

Unlike grayscale images, color images are represented with multiple 

components. Each component is represented by a separate nl x n, matrix where nl and 

n, are the dimensions of the image. As an example, in a very well-known type of image, 

RGB, the three components that represent the image, correspond to the intensity of the 

colors red, green and blue respectively. In JPEG2000, a component transform is applied 

to the first three image components in order to remove the correlation between them and 

hence to improve the compression efficiency. After that, each transformed component is 

coded independently. 

Two types of transforms are supported by the JPEG2000. One is the RGB to 

YCbCr transform, where Y is the luminance component and can be decoded as the 



grayscale version of the image, and Cb and Cr are the blue and red color difference 

components. This transform is used for lossy compression applications, as it is an 

irreversible transform and is called the irreversible component transform (ICT). The 

forward and inverse transforms can be written as (3.1) and (3.2) respectively 1301. Note 

that the transform matrix has an inverse; however, it cannot be practically implemented 

as its elements are generally of infinite precision. 

The other transform is the reversible color transform (RCT) [I I ] ,  which has 

similar properties to the YCbCr transform. The only important difference between the two 

transforms is that the RCT results in components with integer values, making it 

appropriate for lossless compression. The amount of improvement in the compression 

efficiency is different for the two types of transforms and for different images. Table 3.1 

provides the compression performances for coding a test image with and without 

performing the component transform. The ICT and the RCT are employed for the lossy 

and lossless cases respectively. 



Table 3.1. The effect of component transform on compression performance of the ski 
image (taken from [30]) 

I1 1 Without component I With component 

I ~ossless compression 1 16.88 blp 1 14.78 b/p 

I ~ o s s y  compression at I 25.67 dB 1 26.49 dB 

Hereafter, we will focus on coding a tile-component, as the tile-components in an 

image are literally coded independently and separately, and the bit-streams are put 

together only after each of them is completely coded. From this section, when we 

mention "tile", we actually mean "tile-component". 

3.2.2 Wavelet Transform 

The wavelet transform is utilized to decorrelate the image samples. One other 

advantage of the wavelet transform is that it results in energy compaction among the 

image samples. It can be shown that signals with non-overlapping frequency 

components are uncorrelated [36]. Therefore, the approach in JPEG2000 is to 

decompose the image samples into subbands with approximately separate bands of 

frequency. Although images are represented by two dimensional signals, the usual 

approach in the image compression literature, and also JPEG2000 is to implement a 2-D 

transform by applying a separable 1 -D transform to the rows and then to the columns of 

the image [27]. Thus, we will only discuss 1 -D wavelet transforms in this section. 

The general form of a 1 -D wavelet transform is illustrated in Figure 3.1. In each 

transform level, the input is decomposed into two signals with equal frequency bands 

using a low-pass and a high-pass filter, and then each signal is decimated by a factor of 



two in order to maintain the critical sampling and to avoid an increase in the number of 

resulting coefficients. 

Level 2 I 
I 
I 

Figure 3.1. Illustration of a multi-level I-D wavelet decomposition 

Applying a one level decomposition to the 2-D image signal, results in four 

subbands: LL, LH, HL and HH. The first letter represents the frequency band of the 

subband row and the second letter represents the frequency of the subband column. As 

an example, the HL subband contains the high-pass filtered samples of the image rows 

and the low-pass filtered samples of the image columns. The decomposition can be 

further continued through decomposing the LL, subband as shown in Figure 3.2. Note 

that for a third level decomposition the LL2 subband should be decomposed. 



Figure 3.2. A one-level (left) and a two-level (right) 2-D wavelet transform of the image 
signal 

In Figure 3.3, a two level 2-D wavelet transform is applied to the Lena image. 

Figure 3.3. A two-level wavelet transform of the Lena image 

The original wavelet transforms were implemented using orthogonal wavelets 

[37]. Orthogonal transforms project the input signal to orthogonal basis vectors. Using 

orthogonal transforms in image compression applications is important as it results in 

decorrelation between the transformed samples despite the overlap in the frequency 

bands of different subbands. The orthogonal wavelets satisfy the following conditions: 



where h(n) and h,(n) are the impulse responses of the low-pass and high-pass filter 

respectively. Note that the above wavelet filters are also normalized, which yield a 

transform that is energy preserving. Mathematically speaking, for a signal x(n) of length 

N, and its wavelet transform w(n) of length L, this property, which is the equivalent 

version of the Parseval property [20] in the Fourier transform, can be written as, 

The energy preserving property is important because for such transforms, the 

distortion caused by quantizing the transformed coefficients is equal to the distortion of 

the reconstructed coefficients after the inverse transform. As a result, the JPEG2000 bit 

allocation can be done in the transform domain, a matter of great practical importance. 

The filters used in the image compression literature are somewhat different from 

filters used in other areas of signal processing. Actually, the image compression filters 

with the expansion method utilized in them are used exclusively in this area [31]. In the 

practical filters used in other signal processing areas, the number of the coefficients of 

the output is generally larger than the number of the coefficients of the input signal. The 

amount of the increase in the number of the coefficients at the output depends on the 

number of the filter taps. The reason comes from the fact that convolving two signals 



with lengths n, and n, , results in a signal with length n, + n, - 1, in a linear convolution. 

This expansion is not a problem for most other applications, like speech signals, where 

the signal length is practically infinite compared to the filter taps; but this is not the case 

for image signals, which typically have modest dimensions. 

One solution to this problem is to design filters that perform circular convolution 

with periodically extending the input signal rather than performing linear convolution. The 

circular convolution results in periodic outputs with the same period as the input; 

however, there are two drawbacks for this type of filters [34]. One problem is that there 

will be sudden jumps at the two boundaries of the signal when the input signal is 

periodically extended. These jumps correspond to large high frequency coefficients in 

the frequency domain and, in case of an image signal, the artifacts resulting from the 

quantization errors at one side is correlated to those of the other side. The result is 

disturbing especially for images where the pixel intensities at the opposite boundaries 

differ largely. The other practical drawback is that circular convolution requires extra 

memory to buffer the first few coefficients of each sequence in order to filter the samples 

at the end of the sequence. One solution to these two drawbacks is to extend the input 

signal symmetrically. In this case the jumps will be eased and the extra buffer is no 

longer needed; however, in order to come up with periodic outputs, we will have to use 

filters with linear phase [31]. There are other reasons for liking linear phase filters, 

specifically, the distortion is less visible. We know from the signal processing theory that 

linear phase filters have impulse responses that are either symmetric or anti-symmetric 

WI. 

From the above argument, we would conclude that one good choice for 

implementing the wavelet transform is to use the symmetric extension method combined 

with linear phase filters. In the case of wavelet transforms, there is again a problem here, 



and that is the only orthogonal filter to have linear phase is the Haar filter, which is not a 

useful wavelet for the purpose of image compression [37]. For this reason, a set of more 

general type of wavelets has been developed that are called biorthogonal wavelets. This 

group of wavelets are different from the orthogonal filters in a sense that although their 

filters have some sort of orthogonality between them, they actually project the input 

signal to the basis vectors that are not orthogonal and as a result, the transform will not 

be energy preserving. Fortunately, this type of wavelet can be designed so that the filter 

coefficients are very close to being orthogonal, and two sets of these biorthogonal filters 

are utilized in the JPEG2000 standard. 

The first type is the KDF 917 wavelet which is used for lossy compression. This 

irreversible type of wavelet filter has a floating point impulse response of length 9 and 7 

for the low-pass and high-pass filters respectively. The analysis low- and high-pass 

filters are given by, 

And the low- and high-pass synthesis filters relate to the analysis filters through the 

following equations [34], 

go [n] = a-' (-1)" hl [n] 

g,[n] = a-I(-l)"h0[n] 



Where a is a factor to compensate for the gain of the analysis filters, and its value is 

implementation dependent. The subband analysis and synthesis, are performed through 

the following time-varying convolutions, 

The reversible (5,3) DWT has the following low- and high-pass filters. This transform 

maps integer image samples to integer wavelet coefficients and is used for lossless 

compression. The implementation of this type of filter, however, is performed through 

non-linear equations that are approximations of the main linear inputloutput filter 

equations, in order to efficiently map integers to integers. 

In the end, we mention that the performance of the KDF 917 wavelet is better 

than the 513 wavelet when they are both used to code an image with a particular quality. 

3.2.3 Code-blocks and Quality Layers 

After the wavelet transform on the tile, the subbands are partitioned into so called 

code-blocks. Typical dimensions of the code-blocks are 32x32 or 64x64, except possibly 

for the code-blocks adjacent to the subband borders. Each of these code-blocks is 

quantized and then entropy coded independently. After the entropy coding, each code- 

block is represented by a quality-progressive embedded bit-stream. The entropy coding 

method will be discussed in details in the next section, but for now, assume that all the 



code-blocks in the entire image are coded, each with an embedded bit-stream as in 

Figure 3.4. 

embedded bit-stream for code-block 1 

embedded bit-stream for code-block 2 

. . . 

Figure 3.4. Representation of code-blocks with embedded bit-streams, note that all the 
subbands are partitioned into code-blocks and each will be represented by a separate 

embedded bitstream 

Although each code-block is represented by an embedded bit-stream, it does not 

guarantee that the whole image is quality progressive. In order to come up with an 

efficiently scalable bit-stream, we need to determine the optimum point to truncate each 

code-block's bit-stream in relation to the others, in order to code the image with a 

specific quality. This manipulation is performed by introducing the concept of quality 

layers. As shown in Figure 3.5, each layer contains an incremental contribution from all 

of the code-blocks in the image. The vertical bars in this figure represent the embedded 

bitstream corresponding to each code-block of the tile. Thus the first layer contains those 

parts of each code-block that are shaded in the dark color. In the second layer, the parts 

in the light shade are also added to the data from the first layer and so on. 



block 1 block 8 
bitstream bitstrean 

4 4 4 4 4 4 4 4  

Figure 3.5. Formation of the quality layers (taken from [33]) 

Basically, the important code-blocks in specific ranges of frequency will have 

more contributions in the final bit-stream. Hence, even empty contribution from one or 

more code-blocks is permitted in a quality layer. The truncation point for each code-block 

is determined during the compression process, and in a manner that the bit-stream 

representing the quality layers from 1 to n, form an optimal rate-distortion representation 

of the image. The term "optimum" here means that the rate-distortion characteristics of 

the embedded bit-stream are very close and comparable to the situation where the 

image at the first place is coded with quantization step-sizes associated with an efficient 

non-embedded bit-stream. This manipulation is performed using the post-compression 

rate-distortion (PCRD) optimization algorithm. Explanation of this method is beyond the 

scope of this thesis and will not be discussed here, refer to 1341 for details. 

3.2.4 Embedded Block Coding 

As mentioned above, the coefficients in each code-block are quantized and 

coded independently and are represented by an embedded bit-stream. That is, there are 



a large number of optimum truncation points available in the coded bit-stream at which 

the decoding process can be stopped. Continuing the decoding process from each 

truncation point to the next, results in improving the quality of the decoded image. In this 

part, the main idea behind the progressive coding property of JPEG2000 will be 

reviewed. 

Quantization 

The wavelet coefficients in each code-block are first quantized and then coded 

as an embedded bit-stream. JPEG2000 utilizes scalar quantization with a deadzone at 

zero as shown in Figure 3.6. 

Figure 3.6. Structure of a scalar quantizer with deadzone 

Deadzone quantization has an important role in the progression property of the 

standard. The central quantization bin is twice as large as the other bins and the input 

values that lie in that range are quantized to zero. For an input sample, z, and a 

quantizer with step size, A ,  the output, q, is computed as, 



and at the decoder, the decoded sample 9 is estimated as, 

where 8 is a selectable parameter, usually chosen as 112. 

Although the deadzone increases distortion compared to simple uniform scalar 

quantizers, it has two main advantages. The first important advantage is that the 

quantization interval is embedded within a coarser interval. That is, if 9 is the output of a 

quantizer with step-size A, and if p of the least significant bits of the output q are not yet 

known to the receiver, then the output of the quantizer is the same as if in the first place, 

quantization was performed with the step size 2P.A. As an example, suppose in Figure 

3.7 the input value lies in the interval [2A,3A), resulting in the output of the quantizer to 

be equal to two, or equivalently 01 0 in a three bit binary quantization. Now if we decode 

only the first MSB bit of the quantizer output, then p = 2 and it is the same as if at the 

first place quantization was performed with the step size 4A and hence the quantizer 

output is 0. Now assume we receive the next MSB bit of the quantizer output, which is 1. 

Then p is one, the virtual quantization step size is 2A and the quantization output is 

equal to one. 



Figure 3.7. Illustration of the embedded property of a deadzone quantizer 

Therefore at the decoder side, receiving the MSB bit of each wavelet coefficient 

is sufficient for reconstructing that coefficient with a coarse approximation. Receiving 

and decoding more of the LSB bits results in a better approximation of the original value. 

Regarding the second advantage of deadzone quantizers, we note that the 

wavelet coefficients in the high-frequency subbands of most of the usual images tend to 

have small values close to zero, except the samples in the neighborhood of sharp 

edges. Therefore, quantizing the samples whose values are mostly close to zero with a 

deadzone quantizer, results in more zero samples, which can improve the compression 

performance. 

Bit-plane coding 

In order to achieve an efficient embedded bitstream, the coding process is 

performed bit-plane by bit-plane, starting from the most significant plane for each 

sample. A bit-plane is a binary array consisting of one bit from each sample. The MSB 

bits of all the samples in one code-block are coded first, followed by the second and third 

MSB bits etc., with the procedure continuing until the last bit-plane is reached. This 

situation is illustrated in Figure 3.8, where n, and n, are the image dimensions and 



each small cube represents a single bit. All the vertical bits in one location (n,, n,) 

represent a single image pixel, with the top bit representing the MSB bit. A bit-plane 

includes all the bits in a horizontal plane. 

MSB Bit-plane 

LSB Bit-plane 

Figure 3.8. Formation of bit-planes for the entropy coding in JPEG2000 

After decoding only a small portion of the encoded code-block bitstream, i.e. at 

least one bit-plane, we will be able to reconstruct all the wavelet coefficients in the code- 

block with a rough approximation. Then, by decoding more number of the bit-planes, the 

quantization step size becomes finer and the decoded values get closer to the original 

values. The ability to truncate the resulting code-block bit-streams part way through 

coding is the key to the quality progressive feature of the JPEG2000 standard. 

The wavelet coefficients in each code-block are coded utilizing a context- 

dependent binary arithmetic coder. The coefficients are coded using a sign magnitude 

format. That is, for a wavelet coefficient, z and quantizer step size A we have, 



Therefore, the signs are represented as one separate bit-plane. The scanning pattern of 

the coefficients in each bit-plane is illustrated in Figure 3.9. 

code-block width 

Figure 3.9. The scanning pattern used for bit-plane coding in JPEG2000 

The coefficients in each code-block are divided into stripes of four rows, with the 

possible exception of the last stripe in the block, and the samples are scanned column 

by column from left to right. Also note that each stripe contains all of the columns in a 

code-block. The MSB bit-plane is coded first, and after coding the last bit in the bottom 

right corner of a bit-plane, the process proceeds from the top left bit in the next MSB bit- 

plane. 

Conditional entropy coding 

Image subband samples show common statistical properties that are exploited in 

the JPEG2000 entropy coding process in order to increase the coding performance. We 

will discuss these properties later in this section. Here, we will introduce some notation 



and define some important parameters, which will be used to explain the entropy coding 

procedure in JPEG2000. 

Let q[n] = q[n,, n,] represent the quantized wavelet coefficient in column n, and 

row n2 of a given code-block, also ~ [ n ]  = sign(q[n]) and v[n] = Iq[n]l. Also let vp[n] 

denote the binary bits of the coefficient an],  with p=O representing the LSB bit, p=l the 

next LSB bit, etc. Furthermore, an important parameter, the "significance state", is 

defined for each coefficient, which is denoted by a[n] . This parameter is initialized to 

zero at the beginning of the coding process for all the quantized coefficients, and is set 

to one right after the first non-zero magnitude bit is encountered for coefficient q[n] . 

When the significance state of a sample is set to one, it remains unchanged until the last 

bit-plane is coded. 

Each bit is coded with an arithmetic coder using a conditional probability 

histogram that is estimated using the previous coded bits. Ideally, all of the previously 

coded bits need be considered to estimate the new histogram; however, the sizes and 

the number of the distinct contexts are usually limited because of practical restrictions. 

The coding process is performed in three different stages based on the 

significance state of each sample. If a[n] = 0 , then the bit is coded in the significance 

coding stage. If the sample becomes significant in this stage, the sign coding stage is 

utilized immediately. For those samples that have already become significant in the 

previous bit-planes, the magnitude refinement stage is invoked in order to code the next 

MSB bit of the non-zero sample, which is equivalent to refining the quantization step- 

size. Estimates for the probability distributions associated with the possible contexts are 

updated after each coding operation. 



Significance coding 

As mentioned above, a bit is initially coded in the significance coding stage. This 

coding stage works in two separate modes: normal mode and run mode. 

Normal mode 

Experimental results [33] show that the significance of a sample at any bit-plane 

depends heavily on the significance of the eight immediate neighboring samples. As a 

result, the bits coded in this mode are processed based on the significance of their eight 

neighboring samples, as shown in Figure 3.10. 

current sample 

0 0 0, 
- -A 

context window 

Figure 3.1 0. Context for significance coding 

For coding a sample located at n = (nl,n,) in this mode, the nine contexts are 

selected according to the values of three secondary parameters: 

~ " [ n ]  = a[n, - 1, n,] + a[nl + 1, n,] 



Any neighboring sample that lies outside of the code-block is considered insignificant for 

the purpose of computing the above parameters. The context number, ~ ~ ' ~ [ n ]  , is 

selected according to Table 3.2. 

Table 3.2. Context selection in significance coding 

These contexts have been designed based upon extensive experiments 

performed on various types of images; although, some modifications have been done in 

order to make the implementation procedure more efficient, both in terms of hardware 

and software. We mention here that, as soon as a symbol 1 is coded in this coding 

stage, i.e. the sample becomes significant, then the sign of the sample is immediately 

coded. After the sign coding, the next symbol in the scanning pattern will be coded. 



Run mode 

When a run of successive insignificant samples are encountered, all the 

insignificant samples are coded with a single binary bit. This situation happens more 

often during the early stages of the bit-plane coding process, when the MSB bit-planes 

are coded. The purpose of designing this mode is mainly to reduce the number of binary 

bits which need be coded by the arithmetic coder. This mode also results in 

improvement in compression performance. More specifically, in order to enter the run- 

coding mode, all these three conditions must hold: 

1. Four vertically consecutive samples should be insignificant in the current bit- 

plane, i.e. o[n, + r, n,] = 0 for 0 5 r < 4.  

2. All four vertically consecutive samples should have insignificant neighbors in the 

current bit-plane, or ~ ~ ' ~ [ n ,  + r, n,] = 0 for 0 5 r < 4 .  

3. The four vertically consecutive insignificant samples should all reside in a single 

stripe of the scanning pattern shown in Figure 3.9. 

In run mode, a single binary "run interruption" bit is coded to identify whether the group 

of four insignificant samples all remain insignificant in the current bit-plane or not. A "0" 

symbol indicates that they remain insignificant, while 1 shows that at least one of the 

four samples becomes significant. A separate context, K"'" = 9 ,  is allocated to code the 

run interruption bit. If at least one of the four insignificant samples become significant in 

the current bit-plane, say the sample in location [n, + r, n,] , the "run length", r, is also 

coded using two bits. Right after that, the sign of the first significant bit is also coded. 

The coding process is then resumed to code the significance of the next sample in the 

scanning pattern, i.e. location [n, + r + 1, n,] or [n,, n, + 11 if r = 3 , in the normal 



significance coding mode. The run length parameter, r, is coded in two bits starting with 

the MSB, using a non-adaptive uniform context, that is, zero and one have the same 

probability in this context throughout the coding process. 

Sign coding 

The sign coding stage is utilized once for each sample as soon as it becomes 

significant. The exception happens when the bits in a sample location are zero in all of 

the bit-planes, meaning that the sample never becomes significant at any bit-plane. The 

sign information is coded in five different contexts according to a few intermediate 

parameters called "net sign bias" that are defined as follow: 

These two parameters lie in the range [-2,2]. Using the following equations, the values of 

the parameters are truncated in order to change their range to [-1 ,l]: 

The context number, ~ ~ ' ~ " [ n ] ,  and sign-flipping factor, fiP[n] , are both 

determined using the information shown in Table 3.3. The binary symbol which is finally 

coded will be 0 if ~ [ n ] . ~ " ' ~ [ n ]  = 1 and 1 if X[n].Xf''p[n] = -1. 



Table 3.3. Context selection for the sign coding stage 

Magnitude refinement coding 

The magnitude refinement, MR, coding stage is performed for samples that have 

already become significant in one of the previous bit-planes, i.e. when a[n] = 1. This 

information is used at the decoder to refine the quantization index, producing a decoded 

value closer to the encoded sample. 

The symbols are coded in one of the three different contexts allocated to this 

coding stage. The MR coding context, ~ " ' ~ ~ [ n ] ,  is chosen as shown in Table 3.4. The 

parameter 6[n] is the significance state of the symbol being coded delayed by one bit. 

This quantity is initialized to zero for each symbol and remains zero until one bit-plane 

after the first non-zero magnitude bit is coded, at which point it is set to one. Thus, it is 



set to one, one bit-plane after the significance state. The ~ ~ ' ~ [ n ]  parameter is derived 

from the significance state of the neighboring eight samples: it is zero if all the eight 

neighboring symbols are insignificant in the current bit-plane, and greater than zero 

otherwise (the actual values of ~ ~ ' ~ [ n ]  are not needed here). 

Table 3.4. Context selection for the magnitude refinement stage 

Coding passes and fractional bit-planes 

With the coding scheme explained in the last sections, the only natural truncation 

points in the coded bit-stream are the bit-planes end-points. These points correspond to 

the encoded coefficients quantized with step-sizes equal to 2P.A,  where p is the bit- 

plane number at which the bit-stream is truncated. If the bit-stream is truncated at a point 

other than the bit-planes end-points, a portion of the samples will have larger 

quantization step-sizes than the rest, and this is not good in terms of rate-distortion 

characteristics [34]. 

In JPEG2000, the coded bit-stream of a code-block has many more useful 

truncation points than just bit-planes endpoints. This property is achieved by coding the 

symbols in each code-block in three consecutive passes. In each pass, the entire bit- 

plane is scanned with the pattern shown in Figure 3.9, however, only a portion of the 

symbols are coded; and at the end of the third pass, all of the bits in the code-block are 



coded. The first pass only codes the significance of the samples that are likely to 

become significant in the current bit-plane, abd this information is likely to result in the 

most reduction in the distortion relative to the coding cost. Also in the third pass, those 

symbols are coded that are likely to have the least effect in the overall distortion relative 

to coding cost. Each pass chooses its members dynamically, and according to the 

significant state of each symbol's neighboring coefficients, as explained below. 

Figure 3.1 1 shows the rate-distortion characteristics of the bit-streams resulting 

from the two situations; once a typical code-block is coded in one pass, and the other 

time in three passes. As shown in the figure, the distortion corresponding to the bit- 

stream coded in three passes is almost always lower than the bit-stream coded in one 

pass. The exceptions are, of course, the code-block end-points. 

Distortion 

4 

I \  7 representing a code-block, coded in one pass 

I \\ bit-plane endpoints 

rate-distortion diagram for a bit- 
stream representing a code- 
block, coded in three passes -'---- pass end-points 

Truncation length 

Figure 3.1 1. Rate-distortion characteristics of the bit-streams resulting from two 
situations; once a code-block is coded in one pass, and the other time in three passes 



Significance propagation pass 

A sample is a member of this pass if it is insignificant and has at least one 

significant neighbour; i.e., a[n] = 0 and ~ ~ ' ~ [ n ]  > 0 .  The name of this pass comes from 

the fact that when a sample is coded in this pass, it causes its four neighboring samples 

to be coded in this pass if they are insignificant. 

Magnitude refinement pass 

A sample belongs to this pass, if it has become significant in a previous bit-plane. 

In this pass the next magnitude bit of the sample is coded. 

Cleanup pass 

Those samples that have not been included in the first two passes are coded in 

the cleanup pass. Consequently, a sample belongs to this pass if it is insignificant, and 

has no significant neighbors. Also note that the conditions for run length coding, can only 

hold in this pass. 

3.2.5 Region of Interest coding 

Region-of-interest (ROI) coding allows user-defined parts of an image to be 

coded with a higher quality than other regions, and the subject of this thesis is related to 

this feature. In JPEG2000, ROI coding can be implemented by de-emphasizing wavelet 

coefficients not associated with the ROI reconstruction, based on the bit-plane by bit- 

plane coding scheme discussed in the last section. In other words, the "background" 

coefficients are shifted down towards the least significant bits, prior to the bit-plane 

coding utilized in the JPEG2000 coding scheme. This manipulation results in the R01 

coefficients being coded before those of the background. The decoder can easily 



reverse the scaling provided that it knows which coefficients are in the ROI and the 

amount of scaling that has been done. 

If the coded bit-stream is truncated, or the decoding process is terminated at any 

point before the decoding process is complete, then the ROI will have a better quality 

than the background, as the ROI will be reconstructed with a greater number of bit- 

planes. If the entire bit-stream is decoded, the whole image can be reconstructed in full 

quality. The full quality is actually the maximum quality that is chosen at the coding time. 

Two types of ROI coding methods are supported by the JPEG2000 standard: the 

Scaling-Based method and the Maxshift method. 

Scaling-Based method 

In the Scaling-Based (SB) method [I 41, any scaling value, s, is permitted, since 

the ROI shape information is included in the coded bit-stream for the decoder. The 

scaling value controls the relative quality between the ROI and background qualities 

during the progressive decoding, and it is added as side information to the coded bit- 

stream. A mask is generated both at the encoder and decoder specifying the wavelet 

coefficients that belong to the ROI. The coding process is performed through the 

following five steps: 

1. Apply wavelet transform and compute wavelet coefficients of the image 

2. Derive the ROI mask. The mask specifies which wavelet coefficients in each 

subband participate in the ROI reconstruction 

3. Quantize the wavelet coefficients 

4. Downshift the background coefficients by s bit-planes 



5. Perform the bit-plane by bit-plane entropy coding 

At the decoder, the samples are entropy decoded, the mask is derived and the 

background coefficients determined by the mask are shifted up. The "don't care" bits are 

removed and finally the dequantization and the inverse wavelet transform steps are 

applied. 

As illustrated in Figure 3.1 2, scaling results in extra "don't care" bits appearing in 

the LSB region of the ROI coefficients. These bits are marked with an "xu in the figure 

and can be set arbitrarily by the encoder: they are simply discarded after the background 

samples are shifted back to their original places. Despite their "don't care" status, these 

bits must be encoded for compatibility with the standard coder, and their values affect 

the bit rate; setting them appropriately in order to reduce the coding cost of the code- 

block is the problem that is dealt with in this thesis. 

sign MSB 
exira biis 
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Figure 3.12. Illustration of the Scaling-Based method 

Mask generation is necessary in both encoder and decoder side. In order to 

generate the mask, we introduce the following function, 

.,={; if ( i , . h ) i  
otherwise 



where j = [j,, j,] is a vector that indexes samples in the image. Now, we start performing 

the wavelet transform. After doing the first step, which is decomposition of the image into 

two subbands, M(j,, j,) is updated line by line and column by column for all j's 

belonging to the image dimensions. If the sample in location (j,, j,) is needed to 

reproduce one of the ROI coefficients in the composition process of two subbands into 

one, then M(j,, j,) is set to one, and it is set to zero otherwise. The next step is the 

decomposition of two subbands into four. Once again the function is updated, and this 

time the values of those locations that participate in reproducing the ROI sample in the 

composition of two subbands onto four, are set to one. This process is repeated for all of 

the subband decomposition stages, as illustrated in Figure 3.1 3. Also note that mask 

derivation is a function of ROI shape, length of the wavelet filters and also the number of 

decomposition levels in the wavelet transform. 

Figure 3.13. Illustration of mask generation 

As mentioned earlier, the ROI shape information must be added to the coded bit- 

stream; however, adding shape information results in two major issues. Firstly, it 

increases the bit-rate and thus reduces compression performance, and secondly, it 

increases the coder and decoder complexities as a result of the need for deriving a 

mask. Both of these problems are alleviated by restricting the shape of the ROI to 

specific geometrical shapes such as rectangles and ellipses. In these cases, only the 

locations and dimensions of the ROI, which can be coded with a very small number of 

bits, are included in the coded bit-stream. Also a fast algorithm [7] has been introduced 



for deriving the mask for these shapes, which significantly reduces the coder and 

decoder complexities. 

Maxshift method 

The Maxshift (MS) method [13] is a special case of the SB method, where the 

scaling value, s, is so large that there is no overlap between the ROI and any of the 

background bit-planes in all of the code-blocks. This situation is illustrated in Figure 3.14. 

In this case, there is no need to send the shape information to the decoder, since the 

ROI samples can be recognized at the decoder via comparing to the threshold 2'. If the 

sample is larger than the threshold it belongs to ROI, otherwise it is a background 

sample and should be shifted up after decoding. As a result, there is no need for mask 

generation at the decoder. As shown in Figure 3.14, again the shifting process results in 

extra bits in the LSB side of the ROI samples. These bits also need be coded at the 

coder side, and are discarded by the decoder. As we will see in the next chapter, there 

are restrictions in choosing the values of these bits and these bits are better set to zero. 

MSB magnitude extra bits 
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Figure 3.14. The shifting process in the Maxshift method 

Both of these two ROI coding methods have advantages and disadvantages. In 

the SB method, any scaling value is permitted, and any relative quality between the ROI 

and background is feasible. However, adding the shape information to the coded 

bitstream reduces the compression performance. We saw that the problem could be 



alleviated by restricting the ROI to particular shapes like rectangles or ellipses; however, 

in some cases we might be interested in ROl's associated with specific objects in an 

image, which generally have arbitrary shapes. On the other hand, in the MS method no 

shape information is needed at the decoder, thus any arbitrary ROI shape is permitted; 

on the downside however, there is no control over the relative quality between the ROI 

and background, as the scaling value is fixed to the extreme case. Hence, in the 

progressive decoding process, there will be no information from the background before 

the R01 is decoded in full quality. The techniques used in the two R01 methods are 

illustrated in Figure 3.1 5. 
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Figure 3.1 5. ROI coding in JPEG2000 

Finally it is worth mentioning that, coding an image with an ROI increases the file 

size since there is a greater number of bit-planes to be coded in this case compared to 

the image without an ROI. The amount of increase depends on the size of the ROI, the 

coding method that is used and also the scaling factor. Experiments [6] show that, in 

lossless coding of an image with a rectangular R01 of the size 25% of the original 

uncompressed image, the bit-rate increases for about 1-8% in the MS method and 0.5- 



4% in the SB method. Figure 3.1 6 shows an example of R01 coding applied to the 

Barbara image. 

Figure 3.16. ROI coding implemented on Barbara image 

3.2.6 JPEG2000 compression performance 

In an experiment In Figure 3.1 7, the bike image has been compressed using the 

JPEG2000 and JPEG standards. For the JPEG2000 case, the KDF 917 wavelet is used, 

and the bit-stream has seven quality layers. Note that increasing the number of quality 

layers degrades the compression performance. 



Figure 3.17. Compression performances of JPEG2000 and JPEG standards on a test 
image, bike. (part of a graph in [28]) 

In the lossless case as shown in Table 3.5, JPEG2000 performs much better 

than JPEG, but somewhat worse than JPEG-LS. 

Table 3.5. Lossless compression performance of three standards 

Images 

Aerial2 Bike Barbara 

I JPEG 1 5.589 bpp 1 4.980 bpp 1 5.663 bpp 1 

I JPEG2000 I 5.467 bpp I 4.562 bpp I 4.823 bpp 11 
JPEG-LS 

In this chapter we introduced the features and a brief overview of the JPEG2000 

standard. Also, the problem that will be dealt with in this thesis was defined at the last 

I 

5.286 bpp 4.356 bpp 4.863 bpp 



part of the chapter. In the next chapter, the problem will be completely defined in 

complete details and our approach to choose the values of the "don't care" bits in both 

ROI methods will be discussed. 



CHAPTER 4 
SELECTING THE DON'T CARE BITS 

Introduction 

Two types of ROI coding methods are supported by JPEG2000, the Scaling- 

Based method and the Maxshift method. As illustrated in Figure 3.12 and Figure 3.14, 

the shifting process in the scaling-based method results in extra "don't care" bits 

appearing in the LSB region of the ROI coefficients. These bits are shown in white 

background in the figures and can be set arbitrarily by the encoder. Despite their "don't 

care" status, these bits must be encoded and their values affect the bit-rate; setting them 

appropriately is the subject that will be discussed in this chapter. 

4.1 Don't care bits in the Maxshift method 

In the Maxshift method, there are restrictions in choosing the extra bits values. In 

fact, if the value of an ROI sample is zero and one of the extra bits is set to one, then 

that coefficient will be wrongly considered as a background coefficient and will be shifted 

up by the decoder [ I  21. Thus, the extra bits should always be set to zero with this ROI 

strategy. 

4.2 Don't care bits in the Scaling-Based method 

Unlike in the Maxshift method, in the scaling-based method the ROI samples are 

distinguished from the BG coefficients using the encoded shape information. Thus, there 

are no restrictions in choosing the values of the "don't care" bits. In the current 

JPEG2000 coders, the don't care bits are all set to zero for simplicity [12]. Our goal is to 

select the values of the "don't care" bits in a way that results in the smallest possible 



coded bit-stream representing code-blocks containing ROl's. To start with, it is important 

to note that the "don't care" bits in the scalin&based method can be divided into two 

categories: 

Category #l .  The "don't care" bits belonging to the ROI symbols with non-zero 

values; 

Category #2. The "don't care" bits that belong to the zero-valued ROI 

coefficients. 

Note that we are interested in the values of the symbols after they are quantized. 

As we shall see, the frequency of zero-valued coefficients in a code-block will 

affect the gains possible with our approach. This frequency depends on factors such as 

the quantization step size, the subband level, the subband type, the image 

characteristics and the type of the wavelet transform. As an example, however, the 

number of these symbols in a "typical" 32x32 code-block drawn from a three-level 

subband decomposition of the Barbara image is shown in Table 4.1. The wavelet 

transform utilized is the KDF 9/7 kernel, which is supported in part 1 of the JPEG2000 

standard, and the quantization step size is 11256, which is the default value in the 

JPEG2000 implementation in [34] when the wavelet coefficients are normalized to the 

range -0.5 to 0.5. Based on many similar experiments, we expect around 25% of the 

symbols in a code-block to be zero, unless the block is from the low-pass subband. One 

of the reasons that results in high number of zero-valued samples is the specific type of 

quantizer that is used in JPEG2000, which has a deadzone on the zero area. 



Table 4.1. Popularity of the zero-valued symbols in a sample 32x32 code-block (Barbara). 
And the percentage of the zero valued samples of the total 1024 samples in a code-block 

II subband 

I numberof zerosamples 1 207 1 296 1 261 1 253 1 407 1 
percentage 

The don't care bits in category #1 belong to the samples that have already 

become significant in the previous bit-planes and are therefore coded in the three 

contexts allocated to the MR coding; i.e. contexts 15, 16 and 17 as shown in Table 3.4. 

The majority of the bits in category #I are coded in context 17, owing to the fact that 

most ROI coefficients become significant in the earlier bit planes. Figure 4.1 gives an 

example, where the sample becomes significant in the third bit-plane and thus the bits in 

the 4th-1 5th bit-planes are coded in MR contexts. t[n] toggles to one after the 4th bit is 

coded and so this parameter is equal to one for the bits in the bit-planes 5 to 15. As a 

result, only the bit located in the fourth bit-plane is coded in either context 15 or 16 

depending on the significance of the neighboring samples. All the bits located in the 5th- 

1 5th bit-planes are then coded in context 17 and there is no dependence on the 

neighboring samples in this context situation. 

Number of zero samples 
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Figure 4.1. An example of a non-zero ROI sample after the scaling process 
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The only exception to the above happens when the absolute value of an ROI 

sample is equal to one, in which case t in ]  is zero for the first don't care bit, and only this 

bit is coded in either context 15 or 16. The other don't care bits are all coded in context 

17. 

In order to select the values with the lowest coding cost for the "don't care" bits in 

category #1, first we look at the pdf function of the wavelet coefficients. According to our 

experiments, also mentioned in [34], the pdf function of the wavelet coefficients in a 

typical image is heavily skewed toward zero. The histogram of the wavelet coefficients 

found in a typical 64x64 code-block of the Barbara image is shown in Figure 4.2. As we 

can see, the histogram is almost symmetric and hence independent of the sign of the 

sample. In addition, the histogram is monotonically decreasing in either sides of zero, 

therefore, given that the value of a coefficient lies in a specific range, say between four 

and seven, there is a better chance that the sample has a smaller value in that range; 

i.e., the value is more likely to be close to four. Equivalently, if a sample becomes 

significant at any bit-plane, then it is more likely that each of the following bits are "Ons, 

rather than "1"s. This property results in the histograms of the three magnitude 

refinement contexts, i.e. 15, 16 and 17 being biased toward zero. Recall that all the 

magnitude bits of an already significant sample are coded using the MR contexts, which 

implies that the best way of choosing the values of the category #1 "don't care'' bits is to 

set them to zero. 



Figure 4.2. Histogram of a 64x64 code-block in Barbara 

Regarding the bits in category #2, the zero-valued symbols never become 

significant in any bit-plane prior to the first extra bit's bit-plane, and the first extra bit is 

always coded using one of the first 10 contexts reserved for significance information. 

Subsequent "don't care" bits are also coded using these same 10 contexts unless a 

previous "don't care" bit for this coefficient has been set to one. 

Taking a closer look at how category #2 bits are coded, we recall from the last 

chapter that the run significance coding mode is used when there are four consecutive 

insignificant samples in the scanning pattern, each with insignificant neighbors. We have 

observed that this condition rarely happens for the "don't care" bits, once the BG 

coefficients begin to be coded in the middle stages of the coding process. This 

observation can be explained by noting the fact that the run mode is usually utilized for 

coding significance information of the samples in the early bit-planes when significance 

is not common among the samples. Furthermore, the ROI samples tend to cluster 

together and an ROI sample is unlikely to be isolated among eight background samples. 

Hence, there are at least a few ROI samples in the neighborhood of an ROI sample and 

some of those ROI samples are likely to be significant at that stage. For these reasons, 



almost all of the "don't care" bits that belong to a zero-valued ROI symbol are coded 

using the normal significance coding mode, or contexts 0-8. 

The contexts in this mode are selected according to Table 3.2, where it can be 

observed that the higher index contexts occur when there are a higher number of 

significant neighbors and thus we normally expect that the "don't care" bits in the second 

category tend to be processed using contexts with indices in the upper level of the range 

0-8. 

As discussed in [34], the histograms of these nine contexts are skewed toward 

zero. However, as shown in Figure 4.3, our experiments show that the skew reduces as 

the context index increased. This effect is expected since the symbols coded in these 

contexts come from neighborhoods where significance is more common and symbols 

are more likely to be significant. In these cases, the two possibilities are almost 

equiprobable and setting the first "don't care" bit to "1" will not increase total cod in^ cost 

significantly. The advantage of this strategy is that the subsequent "don't care" bits will 

now be coded in the three MR contexts, and as we will discuss later, these contexts are 

more skewed than those used for significance coding in the code-blocks with ROI 

scaling. The result is an overall improvement in the performance. 
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Figure 4.3. Histograms of the first nine contexts of a 32x32 code-block in Barbara. The 
skew toward zero decreases in higher-level contexts. 

4.3 The proposed method 

In this section, we discuss the technique that we propose for setting the "don't 

care" bits for the category #2 symbols, those whose value is zero after quantization. As 

discussed above, the "don't care" bits of the category #1 are simply set to zero. 

We start by setting the first "don't care" bit of each of the zero-valued ROI 

symbols to "1" and the remainder to "On, as shown in Figure 4.4. In this case, the first 

extra bit is coded using one of the significance coding contexts and, as a result, the 

sample becomes significant. The following "don't care" bits are then arithmetically coded 

using the MR contexts, which are coded more efficiently than the significance coding 

contexts due to their high skew. Indeed, as illustrated in Figure 4.5, for the code-blocks 

that include ROI samples, the MR context histograms, and especially the histogram for 

context 17, become hugely skewed toward zero and a zero is coded with very little cost. 

This result is because the "don't care" bits in the first category have been set to zero, 

thus increasing the skew of these histograms even further. 
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Figure 4.4. Illustration of the proposed method 
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Figure 4.5. Histograms of the MR contexts in a sample 32x32 code-block in the HL, 
subband in Lena. Part (a) shows the histograms without ROI scaling. In part (b) all of the 

samples in the same code-block as part (a) are considered to belong to the ROI. The 
scaling factor is six and the samples are represented by seven magnitude bits 

The sign information of a coefficient is coded immediately after it becomes 

significant - and this is new information that doesn't need to be coded when both a 

coefficient and its "don't care" values are zero. However, although the cost of sign 

coding slightly increases the total bit-rate, the improvement resulting from coding the 

"don't care" bits using the MR contexts usually well-compensates for this extra cost, as 

shown in Table 5.1. The exception is the case where the scaling factor is very small, as 

illustrated in Table 5.2. In addition, this sign is actually an additional "don't care" quantity, 



since the real value of the sample is zero. As a result, the sign coding cost can be 

alleviated by choosing appropriate values foi the signs, as discussed below. 

Choosing a set of low-cost signs 

As mentioned in the previous chapter, the signs of the samples are coded using 

five contexts according to Table 3.3. In order to choose a low cost sign for the newly 

significant sample, we are actually interested in the sign that is more popular in the 

"don't care" sign's context. However, in some cases the current sample has one or more 

category #2 ROI samples in the neighborhood and therefore, there is flexibility in 

choosing the context that the current sign is coded. In these cases, it might be useful in 

terms of the total coding cost, to flip some of the neighboring "don't care'' signs so that 

the current sample is coded in a more skewed context. Also we should keep in mind that 

each sample might lie in the context of some more samples and thus the minimization 

task should be performed globally. 

The skew of the sign contexts are different in the low-pass and high-pass 

subbands. According to [35], in LH (vertically high-pass) subband of a typical image, 

horizontally adjacent samples tend to have the same signs; while vertically adjacent 

samples tend to have opposite signs. In HL subbands, the skew is the other way around. 

In these subbands, the horizontally adjacent samples tend to have opposite signs and 

the vertically adjacent samples tend to have the same signs. The histograms of the sign 

contexts in a sample code-block in the HL subband of Barbara are shown in Figure 4.6. 



context number 

Figure 4.6. Histograms of the sign contexts in a sample code-block from an HL subband in 
Barbara. The histogram of each context is provided independently and based on the signs 

that are coded using that context 

The above argument is verified by these histograms as the context 12 has the 

most skewed histogram. Based on Table 3.3, this sign context has one of the formations 

shown in Figure 4.7. In part (a) of the figure, both the horizontal and vertical neighbors 

act in favor of a negative sign for the current symbol, while in part (b) the horizontal and 

vertical neighbors are in favor of a positive sign. Note that in part (a), f h [ n ]  = 1, 

~ - ' [ n ]  = -1 and ~ ~ ' ~ ~ [ n ]  = 1 and thus a negative sign, which is the more probable sign, is 

coded with "I", while in part (b) a positive sign, or the more probable sign, is coded with 

"1" since in this case X-h[n] = -1, ~ - ' [ n ]  = 1 and Xf'iP[n] = -1 . Also, other configurations 

of this context are also possible, i.e. one of the vertical (or horizontal) neighbors can be 

insignificant. 



Figure 4.7. Two possible formations of the context #12 

The histograms of the other sign contexts are usually less skewed and more data 

dependent since in some cases the contexts contain non-significant samples and some 

cases the vertical and horizontal neighbors are in favor of opposite signs, thus making 

the histograms less skewed. The above argument implies that if we have the choice to 

choose the signs of the surrounding samples, we should try to code as many signs as 

possible using the context 12, which is more skewed. Also note that if non of the four 

neighboring symbols of the current "don't care" sample are zero-valued ROI sample and 

thus have fixed signs, then the context number cannot be changed. In this case the 

choice of the "don't care" sign is straightforward, as we need to choose the sign that is 

more popular in the current context. 

As mentioned before, changing the sign of each "don't care" symbol affects the 

sign coding cost of its four neighboring samples, as it actually lies in their context 

windows. Some of those neighboring samples might in turn, be category #2 ROI 

samples and will thus also have "don't care" signs. As a result, signs of the "don't care" 

samples should be chosen globally and in a way to minimize the overall coding cost of 

the sign bit-plane. Unfortunately, it is not feasible to examine the cost of all of the 

possible sign configurations in a code-block. Recall that there are roughly -250 zero- 

valued wavelet coefficients in a 32x32 code-block in a typical image subband and thus 



we need to compute the coding cost of 2250 possible sign patterns if doing a full search. 

Alternative methods are clearly needed. 

In order to find a reasonable set of sign values, we used simulated annealing 

(also called the Metropolis algorithm [ I  71) for the search method. In this approach, we 

start with an initial set of signs for the "don't care" samples and compute the coding cost 

of the code-block. In the next step, each "don't care" coefficient is assigned an equal 

probability and one of these coefficients chosen by random selection. The sign of the 

chosen coefficient is flipped and the coding cost is computed again. If the second cost, 

G, is lower than the initial cost, C,, then the change is accepted. Otherwise, if the 

change results in an increase in the total cost, then the change is only accepted with a 

probability equal to 

where T is temperature in the Metropolis method. Also in order to reduce 

complexity and computation, it suffices to compute only the sign bit-plane cost of the 

code-block rather than the entire code-block with magnitude bit-planes, since all of the 

samples become significant in some point and therefore all of the signs are eventually 

coded. 

In high temperatures, the exponential probability increases and thus more 

changes will be accepted. In lower temperatures, however, few of the changes that 

increase the cost will be accepted. Working in high temperatures is useful in a sense 

that it avoids being trapped in a local minimum and results in jumping over the local 

minima. The best strategy for our problem is to start with a high temperature, say 0.5-1, 

and decrease it linearly to a value of around 0.01 with every sign flip attempt during the 



search to a minimum. We observed that the cost converges to a reasonable minimum if 

we run the algorithm for about 1000 to 5000 (rials as illustrated in Figure 5.1. The 

temperature values have mostly been picked through trial and error, and considering the 

fact that each sign flip attempt results in the cost function to fluctuate 0.5-2 bits on 

average. 

In order to further reduce the computations in our search for a set of low-cost 

signs, we note that since in each iteration in the Metropolis method, only the sign of one 

ROI sample is flipped, this change only affects the sign coding cost of just a few samples 

in the neighboring area of the current sample. More accurately, as shown in Figure 4.8, 

the change only affects the coding cost of the current sample as well as the horizontally 

and vertically adjacent samples to the current sample. Suppose in this figure the sign of 

the sample at location (3,4) is flipped. In this case, the coding cost of the sample (3,4) is 

obviously changed. Also, the coding cost of the samples at locations (3,3), (3,5), (2,4) 

and (4,4) w~l l  also change as the sample at (3,4) is within the context windows that are 

used to code these four samples. 

Figure 4.8. Flipping the sign of each sample affects the coding cost of only five samples 



Thus, in each step in the Metropolis method and in order to compute the new cost, we 

need to flip one sign and compute the sign coding cost of only the current sample and its 

four neighbors and compare the result to the case where the sign is not flipped. This 

operation reduces the computation and the complexity to a very reasonable amount. 

In this chapter, we examined the possible strategies for setting the "don't care" 

bits in both of the scaling-based the Maxshift ROI coding methods. We saw that the best 

choice for the "don't care" bits in the Maxshift method is to set them to zero. We also 

proposed a method that exploits the state of the JPEG2000 entropy coder to set the 

values of the "don't care" bits in the scaling-based method. In the next chapter, we will 

show the improvements possible with our proposed method versus the default all-zero 

method. 



CHAPTER 5 
RESULTS 

lntroduction 

The goal here is to identify the improvements possible with our proposed method 

for choosing the "don't care" bits compared to the all-zero method used in the current 

JPEG2000 coders. The bit-rate improvement associated with our technique is a function 

of several parameters. More specifically, it depends upon the size of the region of 

interest, the scaling factor, as well as the number of zero symbols in the quantized 

"detail" subbands. The number of zeros, in turn, is affected by the image itself. In this 

chapter we will provide some results to demonstrate the effectiveness of our method. 

5.1 Codec design 

The JPEG2000 standard was first introduced as the JPEG2000 part 1 [I 31, and 

four extension parts were added to it afterwards. The ROI scaling-based method 

belongs to the second part of the standard. Unfortunately, as far as the author is aware, 

only the source code of the first part of the standard has been released to the public, and 

therefore, we had to implement our own codec in order to test the method. 

As the image code-blocks are quantized and entropy coded independently, we 

only implemented a codec to code and decode an image code-block. In our codec, the 

image is first partitioned into different subbands using a wavelet transform. We used the 

KDF 9/7 wavelet in our implementation, which is one of the two types of wavelets 

supported [34] by the JPEG2000 standard. In the next step, the subbands are 

partitioned into code-blocks of 32x32 samples and then the codec processes one code- 

block at a time. 



The entropy coding method of the codec, including the quantization method, 

formation of the contexts, coding passes, etd., is exactly the same as what has been 

explained in the third chapter. The arithmetic coder that is used in the codec is the 

famous escape coder implemented in [9]. The quantization step size is 11256, which is 

the default value in the JPEG2000 implementation in [34] when the wavelet coefficients 

are normalized to the range -0.5 to 0.5. 

We ran some experiments on the 51 2x51 2 Barbara image by selecting 32x32 

code-blocks from different parts of the nine "detail" subbands after a 3-level subband 

decomposition. There were seven magnitude bit-planes and, for simplicity, all bits in the 

test code-blocks were declared to be in the ROI, which used a scaling factor of six. The 

number of bits needed by the arithmetic coder is given in Table 5.1, in comparison with 

the default strategy of always setting the "don't care" bits to "0. The results for all of the 

code-blocks in Barbara are provided in the appendix. Note that if some of the samples in 

a code-bioc~ beiong to the BG, then the improvements with our method should be less, 

since, statistically, some of the zero-valued samples will belong to the BG in this case. 

Table 5.1. Number of bits to code sample 32x32 code-blocks in Barbara 

method 

alwayszero 

proposed 

improvement 

subband (subscript indicates the subband level) 

HHI 

5,899 

5,781 

2% 

LH1 

4,611 

4,270 

7.4% 

HH2 

4,098 

4,059 

1% 

HLI 

4,507 

4,436 

1.6% 

LH;! 

4,442 

4,287 

3.6% 

HL2 

4,565 

4,422 

3.2% 

HH3 

7,478 

7,411 

0.9% 

LH3 

6,715 

6,588 

2% 

HL3 

7,387 

7,262 

1.7% 



As mentioned previously, our method works better with higher scaling factors. 

This situation results from the cost of coding'the signs of the "don't care" samples. As 

shown in Table 5.2, the coding cost for our method is higher than the "always zero" 

strategy for scaling factors of one and two. However, after the third extra bit-plane is 

coded, the increase in the cost will be alleviated in our method because of the more 

skewed MR contexts. 

Table 5.2. Coding cost of a sample 32x32 code-block with different scaling factors and 
seven magnitude bit-plane (Barbara) 

Setting the first don't care bits belonging to the category #2 samples to one, 

usually results in a small decrease in the bit-rate cost of the code-block. Then after each 

sign flip in the Metropolis method, the cost decreases to a smaller value, and after a few 

thousand iterations it will reach to an almost constant value as shown in Figure 5.1. The 

coding cost of this code-block in the Barbara image with the always zero method is 

5531. After setting the MSB of the category #2 don't care samples to one, the cost 

reduces to 5433. Note that in the Metropolis method, we need to start with an arbitrary 

set of signs for the "don't care" samples and we used all positive signs in this 

experiment. The cost value decreases to 5200 after 1300 iterations and to 51 85 after 



4500 iterations. The initial value for the temperature here is 0.5 and it is decreased 

linearly to 0.01 with every sign flip attempt. 

51 501 , , I I 

0 1000 2000 3000 4000 5000 
number of iterations 

Figure 5.1. The coding cost reduction with the metropolis method (a sample code-block in 
Barbara) 

In this chapter, we ran some experiments on different code-blocks of the 

512x512 Barbara image as a demonstration of the effectiveness of our method. A more 

comprehensive set of results is provided in the appendix of the thesis. In the next 

chapter, we will wrap up the thesis and suggest some future work. 



CHAPTER 6 
CONCLUSIONS 

In this thesis we examined the possible strategies to choose the "don't care" bits 

in JPEG2000 ROI coding. We showed that in the scaling-based method, the all-zero 

method which is used in the current JPEG2000 coders is not the best choice in terms of 

the coding cost of the image code-blocks. We proposed a method to exploit the state of 

the JPEG2000 entropy coder to choose the values of the bits in a more intelligent way. 

The benefits of our method are two fold: the bit-rate is reduced for a given set of 

block truncation points and, more subtlety, a rate-distortion optimized search for the best 

set of code-block truncation points may now be able to find a better operating point. 

6.1 Future work 

As we did not have access to the part 2 of the JPEG2000 source code, we had 

restrictions in testing the exact improvements possible with our method for different 

images and ROI shapes. Apart from the ROI shape and image type there are other 

parameters that affect the performance of our method. These parameters include the 

type of the wavelet transform, the value of the scaling factor and the quantization step- 

size. The effects of all these parameters can be measured by implementing the method 

on the part 2 of the JPEG2000 source code. 

The other important future work is to try to reduce the amount of computation 

needed to find the set of optimum signs for the "don't care" samples. We proposed the 

simulated annealing, also known as the Metropolis method for this purpose. We saw in 

the last chapter that the coding cost of five signs needs to be computed a few thousand 



times so that the overall cost converges to a reasonably low value. For some 

applications such as in battery-powered devices like digital cameras, this increase in the 

complexity and computation might be undesirable. There might be some ways to reduce 

this added complexity. One interesting possibility is to use the deterministic annealing 

[23] for choosing the signs. 
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APPENDIX A 
EXPERIMENTAL RESULTS 

In the tables in this section, the code-blocks in each image subband are 

numbered like matrix coefficients as shown in Figure A.1. 

Figure A.1. Numbering method of code-blocks in an image subband in this section 

a.z.: always zero method 

prop.: proposed method 

imp.: improvement 

Table A.1. Coding cost of 32x32 code-blocks in the LH, subband of Barbara 





average improvement: 3.3% 



APPENDIX B 
IMAGES IN THE EXPERIMENTS 

Figure 6.1. Barbara 51 2x51 2 

Figure 6.2. Lena 51 2x51 2 

88 
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Figure B.3. Bike (2048x2560) 

Figure B.4. Aerial (256x256) 



Figure B.5. Ski (720x576) 


