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ABSTRACT 

As shown in a recent study, cocoon-spinning larvae of the codling moth, Cydia 

pornoneNa L. (Lepidoptera: Olethreutidae) employ a pheromone that attracts or arrests 

pupation site seeking conspecific larvae. Such intraspecific communication signals are 

important cues for illicit receivers such as parasitoids to exploit. I tested the hypothesis 

that the specialist prepupal C. pornonella parasitoid Mastrus ridibundus Gravenhorst 

(Hymenoptera: Ichneumonidae) exploit the larval aggregation pheromone to locate host 

prepupae. In laboratory olfactometer experiments, female M. ridibundus were attracted 

to 3-day-old cocoons containing C. pornonella larvae or prepupae. Older cocoons 

containing C. pornonella pupae, or larvae and prepupae excised fi-om cocoons, were not 

attractive. In coupled gas chromatographic-electroantennographic detection (GC-EAD) 

analyses of bioactive Porapak Q extract of cocoon-derived airborne semiochemicals, ten 

compounds elicited responses fiom the antennae of female M. ridibundus. Comparative 

GC-mass spectrometry of authentic standards and cocoon-derived volatiles determined 

that compounds were 3-carene, myrcene, heptanal, octanal, nonanal, decanal, (E)-2- 

octenal, (9-2-nonenal, sulcatone, and geranylacetone. A synthetic 1 1 -component blend 

consisting of these ten EAD-active compounds plus EAD-inactive (+)-limonene (the 

most abundant cocoon-derived volatile) was as effective as Porapak Q cocoon extract in 

attracting both female M. ridibundus and C. pornonella larvae seeking pupation sites. 

Only three components [myrcene, (E)-2-nonenal, (+)-limonene] could be deleted fiom 

the 1 1 -component blend without diminishing its attractiveness for M. ridibundus which 



underlines the complexity of information conveyance during host foraging. Mastrus 

ridibundus obviously eavesdrop on the pheromonal communication signals of C. 

pomonella larvae that reliably indicate host presence. Whether the larval aggregation 

pheromone is as complex as the semiochemical blend attracting M. ridibundus is 

currently under investigation. 
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GLOSSARY 

Communication. The process in which one individual uses specially designed signals or 

displays to modify the behaviour of another (Krebs and Davies 1998). 

Eavesdrop. The interception and exploitation by a parasitoid of semiochemical signals 

from its host (Stowe et al. 1995). 

Fresh cocoon. Cocoon material collected within three days from the onset of cocoon- 

spinning activity by larvae. 

Gregarious parasitoid. A parasitoid species with one or more individuals developing in 

or on the same host (Godfray 1994). 

Illicit receiver. A parasitoid which exploits the communication signals produced by 

other organisms to find resources (Haynes and Yeargan 1998). 

Naive parasitoid. A parasitoid that has not had previous experience with a particular test 

stimulus. 

Non-responding insects. Experimental insects which did not show a positive response 

to either the treatment or the control stimulus, 

Parasitoid. The larva of an arthropod that feeds exclusively on the body of another 

arthropod, its host, eventually killing it (Godfray 1994). 



Semiochemical. Any chemical involved in communications among organisms (Pedigo 

1 999). 

xii 



1 .O. INTRODUCTION 

Host location by hyrnenopterous parasitoids has been reported to proceed in four 

steps: location of host habitat, location of host, acceptance of host, and determination of 

host suitability (Doutt 1959; Vinson and Iwantsch 1980; Vinson 1976, l984a,b, 1998). 

In many parasitoids, host habitat location seems mediated by semiochemicals from the 

food of the host (Vinson 198 1 ; Vet et al. 199 1 ; Vet and Dicke 1 992), whereas host 

location often is mediated by semiochemicals directly from the host insect (Stowe et al. 

1995, Haynes and Yeargan 1999). In many tritrophic communication systems, 

parasitoids respond to qualitative and quantitative changes in semiochemicals emanating 

from food plants fed on by host larvae (Turlings et al. 1991 ; Tumlinson et al. 1993; 

Albom et al. 1997; De Moraes et al. 1998; Mattiacci et al. 1999). To locate their hosts, 

parasitoids exploit diverse chemical cues that are produced directly or indirectly by 

potential hosts and reliably indicate their presence (Vet et al. 1995). These 

semiochemicals emanate from the host itself (moth scales; DeLury et al. 1999) or its 

metabolites (excrement, silk; Lewis and Jones 1971; Weseloh 1976; Mattiacci et al. 

1 999). 

In many systems, parasitoids are attracted to their host by semiochemicals emitted 

by their future "victims" (Stowe et al. 1995). Host foraging parasitoids are faced with a 

reliability-detectability problem. Semiochemicals from the first trophic level are highly 

detectable and direct parasitoids to host habitat but are poor indicators of host presence. 

Semiochemicals from the host itself, in contrast, are reliable indicators of host presence, 

but are scarcely detectable to parasitoids because host insects express a low 



semiochemical profile (Vet et al. 1991 ; Vet and Dicke 1992; Stowe et al. 1995). 

Parasitoids that learn to associate these highly detectable host-habitat derived 

semiochemicals with highly reliable host-produced semiochemicals enhance their 

foraging effectiveness and increase their Darwinian fitness (Vet and Dicke 1992; 

Hofheister and Roitberg 1997a,b; Geervliet et al. 1998; Hofheister et al. 2000). 

While maintaining a low semiochemical profile is generally advantageous to 

hosts, they cannot completely avoid emitting semiochemicals such as those that may 

serve as intraspecific signals to attract mates, mark oviposition sites, or defend territories 

(Stowe et al. 1995, Hedlund et al. 1996). As such, these intraspecific communication 

signals may become important cues for illicit receivers to exploit (Stowe et al. 1995; 

Haynes and Yeargan 1999). 

Mastrus ridibundus (Gravenhorst) (Hymenoptera: Ichneumonidae) is an 

introduced gregarious ectoparasitoid specialising on late instarlprepupal codling moth, 

Cydia pomoneNa L. (Lepidoptera: Olethreutidae), an exotic pest of apples and other 

pome h i t s  in North America (Pedigo 1999; Bezemer and Mills 200 1). In its native 

Kazakhstan, M. ridibundus may parasitize t 60% of overwintering C. pomonella 

prepupae. 

Observations (Tom Unruh, USDA-Agricultural Research Station, Wapato, 

Washington; personal communication) suggested that female M. ridibundus are attracted 

to semiochemicals emanating from cocoon-spinning C. pomonella larvae and prepupae. 

Moreover, Duthie et al. (2003) provided evidence that cocoon-spinning C. pomoneNa 

larvae produce an aggregation pheromone that mediates aggregationlarrestment of 

pupation site seeking larvae in a microlocation. This aggregation pheromone is produced 



and detectable, respectively, in the cocoon-spinning larval and prepupal stage but not in 

the pupal stage (Duthie et al. 2003). Conceivably, M. ridibundus may eavesdrop on the 

intraspecific communication of C. pomonella larvae by exploiting the larval aggregation 

pheromone as a reliable and detectable host derived semiochemical. 

My objectives were: 1) to test the hypothesis that semiochemicals from cocoon- 

spinning C. pomonella larvae attract host foraging female M. ridibundus; 2) to determine 

the semiochemical source and longevity; 3) to identify the semiochemicals; and 4) to 

investigate whether M. ridibundus eavesdrop on pheromonal communication by cocoon- 

spinning C. pomonella larvae. 



2.0. LIFE HISTORIES 

2.1. Cydia porn onella 

Cydia pomonella (Figure 1 a) peak flight occurs just prior to and after sunset and, 

under favourable conditions, may last for up to 2 hr (Dolstad 1985; Howell et al. 1990). 

Optimal temperatures for flight range from 12-33"C, above and below which flight 

activity ceases (Dolstad 1985). At dusk, females call potential mates by releasing a long- 

range sex pheromone blend comprising (E, E)-8,lO-dodecadienol (Roelofs et al. 197 I), 

the primary component, and secondary components (E,Z)-8,lO-dodecadienol, (E)-9- 

dodecanol, dodecanol, and tetradecanol (El-Sayed 1999). At close range, females may 

rely on visual stimuli in accepting a mate (Weissling and Knight 1994). Gravid and 

mated females oviposit eggs on or near fruit during sunset and may deposit an epideictic 

pheromone after oviposition (Thiery et a1 1995). 

Mated females deposit 30-50 eggs (Geier 1963; Pedigo 1999; Unruh and Lacey 

2000) singly directly on the apple, pear, or walnut fruit or near the h i t  on host foliage 

(Summerland and Steiner 1943; Thiery et al. 1995; Landolt et al. 1999). The freshly laid 

egg is white and convex, and appressed closed to the substrate (Dolstad 1985). As the 

embryo develops, the egg darkens following melanization and a red ring surrounds the 

developing insect. Finally, 1-2 days prior to hatching, the head capsule of the larva 

becomes visible through the egg as a black spot (Dolstad 1985). Neonate larvae hatch 5- 

15 days after oviposition and commence foraging for fruit within a few hours (Pedigo 

1999). 



Figure 1 Life cycle of (a) the codling moth, Cydia pomonella, and (b) its prepupal 

parasitoid, Mastrus ridibundus. 
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Larvae complete five instars before pupating. The white first instar larva is ca. 

1.5 rnrn in length with a black head capsule, whereas the mature fifth instar is ca. 20 mm 

in length with a brown head capsule and cervical shield, and a pinkish body (Dolstad 

1985). 

Neonate larvae rely partially on semiochemicals from apple skin to guide them to 

the fruit within a few hours post-hatching (Dolstad 1985; Landolt et al. 1999). Once an 

apple fruit is located, larvae burrow in through the calyx leaving a sting mark, and 

continue to feed on the flesh of the fruit until they reach the core within which they attack 

the seeds (Dolstad 1985; Unruh and Lacey 2000, Higbee et al. 2001). The number of 

larvae per fruit is limited due to aggressive interactions between third instar larvae. 

Mature fifth instars burrow out of the apple, usually causing a second sting mark, and 

seek cryptic and protective microhabitats, such as cracks or crevices within the tree's 

bark, ground litter, or in other shelters, where they will spin a cocoon and pupate in 

aggregations (Geier 1963; Unruh and Lacey 2000; Duthie et al. 2003). The time from 

larval hatching to pupation takes 14-35 days (Geier 1963). Pupae are dark brown in 

colour, and the pupal period lasts 8-30 days (DeLury 1998). 

Cydia pomoneNa are protandrous. Adult males eclose up to 2 days prior to 

females (Duthie et al. 2003). The moths are 6-7 mm long with an average wingspan of 

19 mrn (Dolstad 1985). They are mostly grey with copper coloured spots lying distally 

on the forewing. A buff coloured variant is light brown in colour (Dolstad 1985; Pedigo 

1999). At rest, the wings are held roof-like over the body (Dolstad 1985). Adult moths 

live for 14-2 1 days in the wild (Pedigo 1999). 



2.2. Mastrus ridibundus 

Mastrus ridibundus (Figure lb) was originally collected in Kazakhstan in 1994 

and released into North America in 1995 (Unruh 1997; Kuhlmann and Mills 1999). 

Mastrus ridibundus is a gregarious ectoparasitoid specialising on cocooning late 

instarlprepupal C. pornonella larvae. Female M. ridibundus primarily attack C. 

pornonella, and only rarely attack congeneric hosts (Kuhlmann and Mills 1999) or 

Grapholita prunivora (Walsh) (Dhalsten 1994), which is also a minor pest in apple 

orchards. 

Female M. ridibundus deposit 1-1 0 eggs on the integument of the host insect after 

stinging and paralyzing it (Abdullaev 1974; Makarov 1983; Dhalsten 1994). Parasitoid 

larvae hatch 1-3 days after oviposition (personal observation) and continue for 4-7 days 

to feed on the C. pornonella host until only the host's head capsule and integument 

remains (personal observation). Final fifth instar M. ridibundus proceed to spin their 

cocoons within the cocoon of their C. pornonella host before pupating. Depending upon 

whether host larvae are overwintering (diapausing) or not, M. ridibundus will spin light- 

dark brown cocoons and thin white cocoons, respectively (Abdullaev 1974; Dhalsten 

1994). Non-diapausing adults eclose within 10- 14 days after pupating, whereas 

diapausing adults eclose the following spring. The sex ratio of adult parasitoids is 

typically 1 : 1 (Tom Unruh, personal communication). 

Male M. ridibundus eclose 2-3 days before females. Adults are 5-6 rnrn in length 

with a black head and thorax, and orange legs and abdomen. The antennae are ca. 3 mm 

long, and the wings are transparent and shaded light brownlgrey. Females with their 

protruding 3 mrn long ovipositor can easily be distinguished from males. Although there 



is much variation in adult size, most likely reflecting the number of larvae per host, 

(Horstmann 1990), adult females generally tended to be larger than adult males (personal 

observation). 

Females and males live for 14-2 1 days at 22-24OC (Isankalova 1972; Abdullaev 

1974) and may mate shortly after emergence from cocoons. Females do not exhibit any 

kind of calling behaviour prior to mating (personal observation). Mastrus ridibundus are 

arrhenotokous; impatemate males develop from unfertilized eggs, whereas females 

develop from fertilized eggs. 



3.0. METHODS AND MATERIALS 

3. I .  Experimental Insects 

Cydia pomonella. Larvae reared on artificial diet were shipped from the Sterile 

Insect Release Program in Osoyoos, British Columbia, Canada. The colony has been 

maintained since 1991 with periodic introductions of wild individuals, the last 

introduction occurring in 2001. Trays containing ca. 1000 larvae were kept in a glass 

aquarium (60 x 3 1 x 3 1 cm) and stored at 15OC under a photoregime of 16L:gD. To 

generate a test stimulus for bioassay experiments, five final instars were removed fiom 

the diet and allowed to cocoon on a corrugated cardboard strip (2.5 x 2.5 cm) (0.46 m x 

76 m single face corrugated cardboard; Shippers Supply Inc., British Columbia, Canada) 

placed in a 35 mm plastic Petri dish. If the test stimulus consisted of cocoons, larvae 

were excised from their cocoons -1.5 hr prior to bioassays. 

Mastrus ridibundus. Cydia pomonella hosts parasitized with M. ridibundus were 

shipped in corrugated cardboard rolls from the USDA-Agricultural Research Station, 

Wapato, Washington, USA. The colony has been maintained since 1996. Shipments 

included both diapausing and non-diapausing M. ridibundus. 

Rolls with non-diapausing M. ridibundus were kept in a partially meshed 

Plexiglass cage (40 x 30 x 30 cm) maintained at 20-23OC, 30-50% RH, and a 16L:gD 

photoperiod. Adult parasitoids emerged fiom the rolls during a 5-d period, and were 

sustained with a 10% honey-water solution and a water-soaked cotton wick ad libitum. 

All insects used in bioassays were allowed a minimum two-day pre-oviposition period 

(Tom Unruh; personal communication) and were between 3-14 days old at the time of the 



experiment. Rolls with diapausing M. ridibundus were stored at 3OC in complete 

darkness. Diapause was broken by exposing insects to a 16L:8D photoperiod and 20- 

23•‹C. Parasitoids began to emerge after 17-20 d. 

Female parasitoids were transferred to a small wooden cage (1 3 x 18 x 18 cm) 

with a sliding Plexiglass front and a meshed back one day prior to experiments, and 

transferred singly to plastic cups (4 x 4 cm) 1 hr prior to experiments to allow 

acclimation. Nalve parasitoids were used in all bioassay experiments and each insect was 

tested only once. Although mating status was not confirmed, females spent three or more 

days with males and were very likely mated (personal observation). 

3.2. Acquisition of Volatiles 

To solvent-extract C. pornonella cocoons, 460 late instar larvae were allowed to 

cocoon in a SparkleenTM washed glass aquarium (60 x 3 1 x 3 1 cm) for three days. Three 

hr before bioassays, larvae were excised from cocoons, and cocoons removed from the 

aquarium and extracted in methanol (MeOH). Twenty cocoon extract equivalents (20 

CEE = 230 p1 of methanol extract from 20 C. pornonella cocoons) were tested per 

replicate. 

To collect airborne volatiles from cocoon-spinning larvae, three-hundred 5" instar 

larvae were removed from the diet, placed in a cylindrical Pyrex@ glass chamber (1 5.5 

ID x 20 cm high), and aerated for -72 hr. A water aspirator drew charcoal-filtered air at 

2 litreslmin through the chamber and a downstream glass column (1400 x 10.1 mm ID) 

filled with Porapak Q (50-80 mesh, Waters Associates, Inc., Milford, Massachusetts 

01757). Volatiles were eluted from the Porapak Q with 3 ml of solvent [redistilled 

pentane:ether (95:5)]. The eluent was concentrated to 1 ml adjusting the volatile extract 



so that 1 p1 was equivalent to 10 cocoon-spinning larvae hour equivalents (10 CSLHE = 

volatiles released from 10 cocoon-spinning C. pornonella larvae during 1 hr). 

3.3. Analyses of Volatiles 

Aliquots of 20 CSLHE of Porapak Q extract were subjected to analysis by 

coupled gas chromatographic-electroantennagraphic detection (GC-EAD) (Am et al. 

1975) employing a Hewlett Packard (HP) 5890A gas chromatograph equipped with a 

fused silica column (30 m x 0.25 or 0.32 mm ID) coated with DB-5, DB-210, or DB-23 (J 

& W Scientific, Folsom, California, USA). For GC-EAD recordings, the proximal end of 

a severed female M. ridibundus antenna was placed into the opening of a glass capillary 

electrode (1 $0 x 0.58 x 100 mm) (A-M Systems, Inc., Carlsborg, Washington, USA) filled 

with saline solution. The distal end with its tip removed by spring microscissors (Fine 

Science Tools Inc., North Vancouver, British Columbia, Canada) was placed into the 

recording capillary electrode (Gries et al. 2002). 

Full scan electron impact (EI) mass spectra of EAD-active compounds were 

obtained by GC-mass spectrometry (MS), using a Varian Saturn 2000 Ion Trap GC-MS, 

and a HP 5985B GC-MS, respectively, each fitted with the DB-210 or DB-5 column 

referred to above. 

3.4. Olfactom eter Bioassays 

3.4.1. Y-tube Olfactometer Bioassays 

Anemotactic responses of nayve female M. ridibundus to test stimuli were 

bioassayed in a vertically oriented Y-tube Pyrex@ glass olfactometer (ID 23 rnrn; stem 25 

cm; arms 20 cm at a 120' angle) at 20-25OC and 40-70% RH. Air drawn through the 

apparatus at -1.2 Llmin with a water aspirator carried volatiles from each arm of the Y- 



tube olfactometer toward upwind traveling parasitoids released individually into the stem. 

For each replicate, the position of the odour source was randomly assigned to Y-tube 

arms. A parasitoid that penetrated 210 cm into one arm within 15 min was classified as a 

responder. All non-responding insects were excluded fiom statistical analyses. Each 

replicate employed a new odour source, Y-tube, and parasitoid. During bioassays, a 

single light source composed of one fluorescent "daylight" tube (F40D Hb58; Osrarn 

Sylvania Ltd., Ontario, Canada) and one "wide spectrum" grow light (F40GRO WS6 

H568; Osram Sylvania Ltd., Ontario, Canada) was centered -20 cm above the 

olfactometer. Y-tubes were washed between replicates with SparkleenTM and dried at 

125•‹C for 2 30 min. 

Experiments 1-3 (Table 1) tested potential sources of semiochemicals 

(larvaelprepupae, cocoon) derived from C. pomonella working under the hypothesis that 

M. ridibundus females are attracted to semiochemicals emanating from C. pomonella 

cocoons. Taking into account that semiochemical attractiveness resided with the 

cocoons, experiments 4-9 (Table 1) explored whether the age of cocoons affects their 

semiochemical attractiveness hypothesizing that aged cocoons will be less attractive than 

fiesh cocoons due to cessation of production and degradationldissipation of the 

semiochemical respectively. Experiments 10- 1 1 (Table 1) then tested whether 

semiochemicals could be solvent extracted fiom cocoons (experiment lo), whether aging 

of extracts affected their attractiveness (experiment 11) and whether solvent washed 

cocoons still maintained attractiveness (experiment 12). Experiments 1 3- 1 5 (Table 1) 

explored whether Porapak Q extracts of airborne cocoon-derived semiochemicals are 

attractive (experiment 1 3), and whether dose (experiment 14) or age (experiment 1 5) of 



extracts affected their attractiveness. Considering the strong attraction of M. ridibundus 

to Porapak Q extract of cocoon semiochemicals (experiment 13), experiments 16-2 1 

(Table 1) explored which semiochemicals were essential for blend attractiveness by 

testing specific blends lacking classes of organic chemicals (saturated aldehydes, 

unsaturated aldehydes, ketones, or monoterpenes). Follow-up experiments 22-32 (Table 

1) determined which individual compounds were essential components of the 

semiochemical blend. Experiments 33-34 (Table 1) tested the 8-component 

semiochemical blend lacking all non-essential components [(E)-2-nonenal, myrcene, and 

(+)-limonene] versus Porapak Q cocoon extracts and versus the 1 1 -component 

semiochemical blend respectively. 

3.4.2. Petri-dish Pitfall Olfactometer Bioassay 

Responses of pupation site seeking 5" instar C. pornonella larvae were tested in 

binary choice Petri dish pitfall olfactometers (Duthie et al. 2003). Test stimuli were 

randomly assigned to one of two 4 mL "pitfall" vials (Table 1) equipped with modified 

Eppendorf tubes to prevent contact of the experimental insects with a test stimulus. For 

each replicate, one fifth-instar larva was placed in the centre of the olfactometer, and its 

pupation site was recorded 18-24 hr later. All non-responding insects were excluded 

from statistical analyses. Olfactometers were kept at 2 1 -26OC in complete darkness. 

Experiment 35 (Table 1) tested attractiveness/arrestment of 200 CSLHE (see 

above) of a complete blend of synthetic semiochemicals versus that of a pentane control 

to determine if the same semiochemicals utilised by M. ridibundus females in host 

location also serve as an aggregation pheromone for C. pornonella larvae seeking 

pupation sites. 



Table 1 Details on experimental insects and stimuli tested in olfactometer bioassays. 



Y-tube olfactometer 
Experiment No. Q M. ridibundus 

( 4  Arm 1 Arm 2 

1 36 Cocoon 

Cocoon + cardboard (CBa) 

Prepupa + CB 

Cocoon + prepupa + CB 

3-d-old cocoon + larval 
prepupa + CB 

7-d-old cocoon + pupa 
+ CB 

13-d-old cocoon + pupa 
+ CB 

3-d-old cocoon + larva/ 
prepupa + CB 

3-d-old cocoon + larva/ 
prepupa + CB 

MeOH cocoon extract 
at 20 C E E ~  (I-hr-old) 

MeOH cocoon extract 
at 20 CEE (8-d-old) 

20 MeOH washed 
cocoons 

Porapak Q extract 
(1 CSLHEc, 5-d-old) 

Porapak Q extract 
(1 CSLHE, 17-d-old) 

Porapak Q extract 
(50 CSLHE) 

Synthetic blend (SBe) 

No stimulus 

CB 

CB 

Cocoon + CB 

CB 

7-d-old cocoon + pupa 
+ CB 

13-d-old cocoon + pupa 
+ CB 

MeOH 

MeOH 

No stimulus 

Solvent 

Solvent 

Solvent 



Table 1 continued 

Y-tube olfactometer 
Experiment No. Q M. ridibundus 

(n) Arm 1 Arm 2 

17 20 SB minus all aldehydes 

SB minus unsaturated 
aldehydes 

SB minus saturated 
aldehydes 

SB minus ketones 

SB minus rnonoterpenes 

SB minus decanal 

SB minus nonanal 

SB minus octanal 

SB minus heptanal 

SB minus (E)-2-nonenal 

SB minus (E)-2-octenal 

SB minus geranylacetone 

SB minus sulcatone 

SB minus 3-carene 

SB minus myrcene 

SB minus (+)-lirnonene 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Solvent 

Porapak Q extract 
(5 CSLHE) 

8-component blend 



Table 1 continued 

Petri Dish Pitfall Olfactometer 

Experiment No. C. pomonellag 
(n) 

Pitfall 1 Pitfall 2 

35 35 SB Solvent 

a insects were allowed to cocoon on an open fluted cardboard (CB) strip 2.5 cm2; 
CEE = cocoon extract equivalents; 
CSLHE = cocoon-spinning larvae hour equivalents; 
solvent consisted of redistilled pentane:ether (955) or pentane; 
SB = decanal, nonanal, octanal, heptanal, (E)-2-nonenal, (E)-2-octenal, geranylacetone, sulcatone, 3- 

carene, myrcene, (+)-limonene; 
' 8-component blend consisted of SB minus (E)-Znonenal, myrcene, (+)-limonene; 
male and female 5' instar larvae 



3.5. Statistical Analyses 

Proportions of M. ridibundus adults and C. pornonella larvae responding to 

treatment and control stimuli in olfactometer bioassays were compared using the Chi- 

square goodness of fit test using Yates correction for continuity (a = 0.05) to determine 

whether observed frequencies deviated significantly from expected frequencies under the 

null hypothesis that experimental insects did not have a preference for either treatment or 

control stimuli (Zar 1996). 



4.0. RESULTS 

4.1. Identification of Semiochemicals 

GC-EAD analyses of Porapak Q extracts of airborne cocoon-derived 

semiochemicals revealed 10 volatiles that elicited responses from female M. ridibundus 

(Figure 2). EAD active compounds, plus an 1 lth compound which was most abundant in 

the Porapak Q extract, were further subjected to GC-MS, and their identification 

confirmed by comparative GC, GC-MS, and GC-EAD analyses of C. pomonella 

produced and authentic standards. These 11 compounds were identified as: heptanal, 6- 

methyl-5 -hepten-2-one [sulcatone] ,7-methyl-3 -methylene- 1,6-oct adiene [myrcene] , 

octanal, 3,7,7-trimethylbicyc10[4.1 .O]hept-3-ene [3-carene], 1 -methyl-4-(1 - 

methyletheny1)-cyclohexene [(+)-limonene], (E)-2-octenal, nonanal, (3)-2-nonenal, 

decanal, and trans-6,10-dimethyl-5,9-undecadien-2-one [geranylacetone] . 

4.2. Bioassay Experiments with Natural and Synthetic Semiochemicals 

Observations by Tom Unruh (personal communication) suggested the possibility 

that M. ridibundus may become entrained to cardboard odours upon emergence fiom 

codling moth cocoons in cardboard rolls. Unpublished experiments (Jumean) tested the 

attractiveness of cardboard versus no stimulus in Y-tube olfactometers revealing that 

nai've M. ridibundus females are not preferentially attracted to clean cardboard. This 

indicated that cardboard odours did not affect the parasitoids' decision and that cardboard 

could be used as a control stimulus. 



Figure 2 Flame ionization detector (FID) and electroantennographic detector (EAD: 

female Mastrus ridibundus antenna) responses to aliquots of 10 CSLHE of 

Porapak Q extract of airborne volatiles from Cydia pomonella cocoons 

(I-3-d-old). Note: 1) 10 CSLHE (cocoon-spinning larvae hour equivalents = 

volatiles released from 10 cocoon-spinning C. pomoneNa larvae during 1 hr of 

cocoon-spinning activity); 2) antenna1 responses to 3-carene and myrcene (two 

additional candidate semiochemicals) not visible in the depicted trace; 3) 

although (+)-limonene was not EAD-active, it was the most abundant chemical 

in Porapak Q extracts and as such was included in behavioural experiments. 



FID 
nonanal 

geranylacetone 

I I I I I I I I 

Retention time (min) 



In separate experiments, cocoons (3-d-old) but not larvae or prepupae of C. 

pornonella attracted female M. ridibundus (Figure 3; experiments 1-3). Attractiveness of 

cocoons was not enhanced by the presence of prepupae (Figure 3; experiment 4), and 

depended upon the age of cocoons. Three-day-old cocoons containing late 

instarlprepupal C. pornonella were attractive (Figure 4; experiment 5) but 7- or 13-day- 

old cocoons containing C. pomonella pupae were not (Figure 4; experiments 6,7). 

Similarly, 3-day-old cocoons were more attractive than 7- and 13-day-old cocoons 

(Figure 4, experiments 8,9) in separate experiments although the former was not 

statistically significant. 

Fresh (2 hr-old), unlike aged (8-d-old) MeOH extracts of 3-day-old cocoons 

attracted M. ridibundus (Figure 5; experiments 10, 11). Methanol washed cocoons were 

not attractive to M. ridibundus (Figure 5; experiment 12). Both 5- and 17-day-old 

Porapak Q extracts of airborne cocoon volatiles at aliquots of 1 CSLHE attracted M. 

ridibundus, whereas aliquots of 50 CSLHE did not (Figure 5; experiments 13-15). 

The complete blend of 11 synthetic candidate semiochemicals (highlighted on 

figure 2) at 1 CSLHE strongly attracted M. ridibundus (Figure 6; experiment 16). The 

blend lacking either all aldehydes (experiment 17), unsaturated aldehydes (experiment 

18), saturated aldehydes (experiment 19), ketones (experiment 20), or monoterpenes 

(experiment 21) was as unattractive as a pentane control. Deleting a single component 

fiom the 1 1-component blend in experiments 22-32 (Figure 7) determined that an 8- 

component blend (heptanal, octanal, nonanal, decanal, (Q-2-octenal, sulcatone, 

geranylacetone, and 3-carene) is required to strongly attract M. ridibundus. Neither 

Porapak Q cocoon extracts nor the 8-component semiochemical blend differentially 



Figure 3 Anemotactic response of female Mastrus ridibundus in Y-tube olfactometer 

experiments 1-4 to test stimuli consisting of either five Cydia pomonella 

cocoons (1 -3-d-old), five larvaelprepupae excised from cocoons or both. 

Strips of corrugated cardboard (CB) served as pupation site. Number of 

insects responding to each stimulus given within bars; number of insects not 

responding in each experiment given in parentheses; asterisks indicate a 

significant response to a particular treatment; 2 test with Yates correction for 

continuity; *P<O.OO5. 



EXP. 1 I 

EXP. 3 
Prepupa + CB 

Test stimuli Number of insects responding 



Figure 4 Anemotactic response of female Mastrus ridibundus in Y-tube olfactometer 

experiments 5-9 to test stimuli consisting of five Cydia pornonella cocoons 

each containing either a larvalprepupa or pupa, with or without corrugated 

cardboard strips (CB) that had served as pupation site. Number of insects 

responding to each stimulus given within bars; number of insects not 

responding in each experiment given in parentheses; asterisks indicate a 

significant response to a particular treatment; 2 test with Yates correction for 

continuity; *P<O.OZ. 



EX'- 13-d-old cocoon 
+ pupa + CB (9 1 

3-d-old cocoon 
+ larvalprepupa + CB 

7-d-old cocoon 
+ pupa + CB 

3-d-old cocoon 
+ larvalprepupa + CB 

1 3-d-old cocoon 
+ pupa + CB 

Test stimuli Number of insects responding 



Figure 5 Anemotactic response of female Mastrus ridibundus in Y-tube olfactometer 

experiments 10-15 to MeOH cocoon extracts, MeOH extracted cocoons, or 

Porapak Q extracts of airborne cocoon-derived volatiles. Number of insects 

responding to each stimulus given within bars; number of insects not 

responding in each experiment given in parentheses; asterisks indicate a 

significant response to a particular treatment; 2 test with Yates correction for 

continuity; *P<0.05; **P<0.01; ***P<0.005. Note: 1) cocoons were 1-3 days 

old at the time of extraction or aeration but MeOH cocoon extracts or Porapak 

Q extracts were tested before and after aging to determine stability of 

semiochemicals; 2) the amount of stimulus tested was equivalent to 20 CEE 

(cocoon-extract equivalents = MeOH extract of 20 Cydia pomonella cocoons), 

and 1 or 50 CSLHE (cocoon-spinning larvae hour equivalents = 

semiochemicals produced by 1 or 50 cocoon-spinning C. pomoneNa larva(e) 

during 1 hr of cocoon-spinning activity); 3) the same amount of solvent was 

applied to treatment and control stimuli. 



EXP. 10 I 
MeOH cocoon extract 

(91 .A 

MeOH cocoon extract 
(8-d-old) 

MeOH 

EXP. 12 I 
MeOH washed cocoons 

No stimulus 
- 

EXP. 13 
Porapak Q extract 

(1 CSLHE, 5-d-old) (I) *** 
Solvent control , 

EXP. 14 
Porapak Q extract 

( I  CSLHE, 17-d-old) 
Solvent control , 

EXP. 15 
Porapak Q extract 

(50 CSLHE) 
Solvent control 

Test stimuli 
4 6 8 I 0  12 14 16 

Number of insects responding 



Figure 6 Anemotactic response of female Mastrus ridibundus in Y-tube olfactometer 

experiments 16-2 1 to a 1 1 -component blend of synthetic candidate 

semiochemicals (SB), or SB lacking groups of organic chemicals. Number of 

insects responding to each stimulus given within bars; number of insects not 

responding in each experiment given in parentheses; asterisks indicate a 

significant response to a particular treatment; 2 test with Yates correction for 

continuity; *P<0.0 1. Note: 1) SB consisted of 3 monoterpenes [(+)-limonene, 

3-carene, myrcene], 4 saturated aldehydes [heptanal, octanal, nonanal, 

decanal] , 2  unsaturated aldehydes [(I?)-2-octenal, (9-2-nonenal] , and 2 

ketones [sulcatone, geranylacetone]; 2) aliquots of 1 CSLHE (see caption of 

figure 2) were tested; 3) the same amount (5 pl) of pentane was applied to 

treatment and control stimuli. 



EXP. 16 
SB 

Solvent control 

I EXP. 17 I 
SB minus all aldehydes 

Solvent control 

EXP. 18 
SB minus 

unsaturated aldehydes 
Solvent control 

EXP. 19 
SB minus 

saturated aldehydes 
Solvent control 

I EXP. 20 I 

Solvent control 

EXP. 21 
SB minus 

monoterpenes 
Solvent control 

Test stimuli Number of insects responding 



Figure 7 Anemotactic response of female Mastrus ridibundus in Y-tube olfactometer 

experiments 22-32 to a 1 1-component blend of synthetic candidate 

semiochemicals (SB; see also caption of figure 6) or SB lacking individual 

components. Number of insects responding to each stimulus given within 

bars; number of insects not responding in each experiment given in 

parentheses; asterisks indicate a significant response to a particular treatment; 

2 test with Yates correction for continuity; *P<0.025; **P<0.01. Note: 1) 

Aliquots of 5 CSLHE (see caption of figure 2) were tested; 2) the same amount 

(5 p1) of pentane was applied to treatment and control stimuli. 



EXP. 22 I 
SB minus decanal 

Solvent control 

EXP. 23 I 
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Solvent control 

EXP. 24 

SB minus heptanal 

Solvent control 

I EXP. 26 I 

EXP. 27 
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EXP. 28 
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Solvent control 

EXP. 29 
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Solvent control 

I EXP. 30 I 

I EXP. 31 I 
Solvent control rm$ 

EXP. 32 
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Test stimuli Number of insects responding 



attracted M. ridibundus over the complete 1 1 -component semiochemical blend (Figure 8; 

experiments 33,34). 

The 1 1-component synthetic semiochemical blend tested at 200 CSLHE 

attractedlarrested pupation site seeking fifth instar C. pomonella (Figure 9; experiment 

35). 



Figure 8 Anemotactic response of female Mastrus ridibundus in Y-tube olfactometer 

experiments 33-34 to test stimuli consisting of either the 11-component blend 

of synthetic candidate semiochemicals (SB; see also caption of figure 6), 

Porapak Q extracts of airborne cocoon-derived volatiles, or the 8-component 

blend of semiochemicals. Number of insects responding to each stimulus 

given within bars; number of insects not responding in each experiment given 

in parentheses. Note: 1) the 8-component blend consisted of one monoterpene 

[3 -carenel, four saturated aldehydes [heptanal, octanal, nonanal, decanal] , one 

unsaturated aldehyde [(a-2-octenal], and two ketones [sulcatone and 

geranylacetone]; 2) aliquots of 5 CSLHE (see caption of figure 2) were tested. 
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Figure 9 Response of 5th instar Cydia pornonella larvae in Petri dish pitfall olfactometer 

(Duthie et al. 2003) experiment 35 to either a 1 1 -component blend of 

semiochemicals (SB; see caption of figure 6) or a solvent (pentane) control 

stimulus. Number of larvae responding to each stimulus given within bars; 

number of larvae not responding in experiment 35 given in parentheses; 

asterisks indicate a significant response to a particular treatment; test with 

Yates correction for continuity; *P<0.001. Note: the same amount (25 p1) of 

pentane was applied to treatment and control stimuli. 
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DISCUSSION 

My data support the hypothesis that semiochemicals from cocoon-spinning C. 

pornonella larvae attract host-foraging M. ridibundus. This conclusion is based on the 

findings that M. ridibundus were attracted to a) cocoons containing C. pornonella late 

instar larvae or prepupae (Figure 3; experiment 1); b) fresh MeOH cocoon extract (Figure 

5; experiment 10); and c) Porapak Q extract of cocoon-derived airborne semiochemicals 

(Figure 5; experiments 13, 14). 

Moreover, attraction of M. ridibundus to C. pornonella cocoons (Figure 3; 

experiments 1,3), equal attraction to cocoons with or without insects inside, and no 

attraction to excised C. pomonella prepupae (Figure 3, experiments 2,4), all strongly 

suggest that the semiochemicals are associated with the cocoon. 

Attractiveness of cocoons containing C. pornonella late instar larvae or prepupae, 

and lack of attractiveness of cocoons containing pupae (Figure 4; experiments 5-7) 

Wher  indicate that the prepupal parasitoid M. ridibundus exploit host semiochemicals 

not only to locate hosts, but also to locate hosts in the stage of development suitable for 

parasitism. While cocoon-derived semiochemicals have been implied as contact host 

recognition cues for parasitoids (Weseloh 1977, 198 1 ; Bekkaoui and Thibout 1993; 

Benedet et al. 1999), my data show that cocoon-derived airborne semiochemicals serve 

as long-range attractants to M. ridibundus. 

Some constituents of this semiochemical blend have also been reported to elicit 

antennal or behavioural responses by other parasitic wasps. Heptanal elicits antennal 



activity by the braconid parasitoid Microplitis croceipes (Cresson) (Li et al. 1992), and 

nonanal and geranylacetone attract the clothes moth parasitoid Apantales carpatus to host 

habitat (Takacs et al. 1997). Further, octanal, nonanal, and decanal derived fiom stink 

bug abdominal glands may serve as semiochemicals for parasitic Tachinids (Diptera) and 

Scelionids (Hymenoptera) (Aldrich 1 995). Finally, heptanal, octanal, nonanal, and 

decanal emanating from scales of C. pomonella serve as semiochemicals to A. 

quadridentata, a braconid egg parasitoid of C. pomonella (DeLury et al. 1999). 

Response of C. pomonella larvae seeking pupation sites to the 1 1-component 

semiochemical blend (Figure 9; experiment 35) reveals that one or more of these 

semiochemicals serve as an aggregation pheromone (Duthie et al. 2003) for C. pomonella 

larvae. Obviously, female M. ridibundus eavesdrop on the pheromonal communication 

of cocoon-spinning C. pomonella larvae to locate host prepupae. The pheromone is 

effective, and most attractive to M. ridibundus, during the larval cocoon-spinning stage 

(Duthie et al. 2003; this study) but remains detectable in the prepupal stage (Figure 4; 

experiments 8,9). Degradation or dissipation of the pheromone within 3 days after 

cocoon-spinning activity has ceased appears adaptive to both C. pomoneNa larvae and 

female M. ridibundus. If pheromone-based aggregation of C. pomonella larvae is a 

strategy to procure and synchronize development of hture mates (Duthie et al. 2003), 

fading attractiveness of aging cocoons prevents continued attraction of larvae and 

asynchronous eclosion of potential mates. This characteristic of the semiochemical 

signal also makes it a reliable indicator of host presence. Mastrus ridibundus as a 

specialist of cocoon-spinning C. pomonella larvae (Isankalova 1972; Abdullaev 1974; 



Kuhlman and Mills 1999) seem to use these temporal dynamics of the semiochemicals to 

determine the proper late instarlprepupal stage of the host. 

Semiochemicals also facilitate foraging in patches with high probability of host 

encounter (Chiri and Legner 1982, 1986). If the semiochemical concentration is 

proportional to host density, M. ridibundus may estimate host density, and thus patch 

profitability, even before encountering a host insect (van Alphen and Vet 1986; Geervliet 

et al. 1998; Wertheim et al. 2003). Moreover, if foraging females can detect variation in 

host density on trees, hosts on trees supporting high densities of C. pomoneNa larvae are 

at a greater risk of being discovered and parasitized by M. ridibundus (Bezemer and Mills 

2001). 

For C. pomonella larvae, pheromone-based aggregation may represent a trade-off 

between procuring future mates (Duthie et al. 2003), and the risk of attracting 

parasitoids. For example, Bezemer and Mills (2001) provided evidence that female M. 

ridibundus search and oviposit more frequently on trees with high rather than low host 

densities. Similarly, Roitberg and Lalonde (1 991) demonstrated that female rosehip flies, 

Rhagoletis basiola, oviposit on and mark the rosehips with semiochemicals which in turn 

facilitates egg location and increases the risk of egg parasitism by the pteromalid wasp 

Halticoptera rosae. However, if M. ridibundus females are egg-limited (Bezemer and 

Mills 2001), then the probability of parasitism may be lower for C. pomonella larvae 

cocooning in aggregates than for those cocooning singly. 

Information conveyance plays an important role in host-parasitoid interactions. 

Female M. ridibundus seem to have solved the reliability-detectability challenge of host 

signals by eavesdropping on the pheromonal communication of host larvaelprepupae. 



Host pheromones are most suitable signals for foraging parasitoids because pheromones 

tend to be detectable and reliable indicators of host presence (Wiskerke et al. 1993; 

Wertheim et al. 2003). The reliability of the cocoon-derived signal seems to be based on 

its complexity. Eight compounds from four classes of organic chemicals were required to 

elicit a strong behavioural response of M. ridibundus (Figure 6, experiments 17-2 1). It 

will now be intriguing to investigate whether the aggregation pheromone of C. pornonella 

larvae comprises an equally complex signal. 
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