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ABSTRACT

In recent years, several methods to solve the colour constancy problem have been
introduced and studied. Colour constancy is an important area in machine vision: it provides
a visual system with the capability to compensate for the effect of illumination in a scene.
The colours we humans perceive are not easily expressible by a physical apparatus, which is
in fact mote sensitive to changes in illumination conditions. The human visual system is able
to make several compensations and adjustments to ambient illumination conditions, so that

we perceive illuminant-independent descriptors of the scene.

This thesis represents a seties of experimental approaches to the colour constancy

problem. An important part focuses on discussions and concrete implementations of the

well-known and controversial Retinex model for human vision and application of the
method on real images and choosing its parameters. The Retinex theory of human vision
represents an important contribution in colour vision with strong implications in the colour
constancy problem. Although’the theory has been around for more than three decades, the
lack of an efficient implementation and analysis of the effect of its parameters has raised
many discussions and scepticism. This part of the thesis provides some common ground in

further investigations into the Retinex theory.

A novel method for acquiring a large database for colour constancy research is
presented, along with direct applications with improvements to the colour by correlation
method. A large image database for colour constancy provides sufficient data to compute

some meaningful statistics with respect to the interaction between the colours observed in
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the world and the actual measured illuminants in which these colours are recorded. The use
of these statistics in the Bayesian approach improves the performance of the colour by
correlation method for colour constancy. Another application is in the form of testing the
effectiveness on real images of a recently introduced theory for colour constancy using the

redness-luminance correlation in scenes.
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INTRODUCTION AND THESIS OVERVIEW

This thesis presents several approaches to colour constancy from an experimental
perspective. Colour constancy theories fill a gap between illuminant characterization in real
scenes and colour appearance. The colour constancy problem is defined as the ability of a
visual system to discard the effects of the illumination in a scene. In computational colour
constancy — also referred to as illuminant estimation — we would like to achieve an
llumination-invariant image: an image that appears to be taken under a canonical lluminant
for which the visual system is adapted. Over the years, this problem has proven to be quite
hard, even if further simplifying assumptions are considered such as the existence of a single
— global illuminant for the scene along with the absence of specular reflections. In essence,
the difficulty of the colour constancy problem comes from its under-constrained nature.
This veiy aspect yields ihe problem naturally to staistical approaches rather than to simpie
naive methods. Ultimately, the main obstacle in designing an efficient method for colour
constancy lies in our limited knowledge and understanding of the human visual system. In
contrast to the computational approach to colour constancy, there is ample evidence that the
human visual system is equipped with some local adaptation mechanisms that explain
phenomena such as simultaneous contrast. These adaptation mechanisms are simulated by

the Retinex model of human vision, which aims to predict human sensations, thus putting

the colour constancy phenomena in a different, psychological perspective.

In the thesis, several advances in different related colour constancy theories are
proposed: a method to compute chromatic adaptation transforms for perceived lluminant

change in simple scenes, a way to characterize the well-known Retinex theory for dealing



with real images. Based on a large colour constancy database, other advances include ways to
improving illumination estimation in real scenes based on colour-by-cotrelation method, and
investigating a new hypothesis for illumination estimation and its robustness in treal images.
All of these are different approaches to colour constancy and their reference to colour

constancy 1s outlined below.

The first two chapters describe the colour constancy problem and how it relates to
the problem of recovering reflectance and the chromatic adaptation transforms. An

overview of computational models for colour constancy is presented in Chapter 2.

In Chapter 3, a method of using the full spectral information in the chromatic
adaptation transforms is introduced. Chromatic adaptation transforms ate typically emplosfed
by any colour appearance model and they essentially quantify our incomplete colout
constancy effects in simple viewing conditions — not complex real scenes. Existing chromatic
adaptation transforms compute a universal transformation, based on the CIE tisthmulus
values of the two illuminants involved. However, with the widespread availability of
spectroradiometers, we can compute the real spectra of the two illuminants involved, and
using a white-point preserving sharpening method we can tune this transformation for each
pair of illuminants, thus potentially achieving better results. Unfortunately, most current
colour appearance experiment documenting observers’ subjective evaluations do not include

full spectral information of the illuminants involved, and therefore teal-wotld testing of this

proposed method is still limited.

Chapters 4, 5 and 6 focus on providing concrete implementations of the well-known
and controversial Retinex model of human vision and discussions on application of the

method on real images and choosing the parameters for the model. The Retinex theoty



represents an important contribution to human colour vision with strong implications in the
colour constancy problem. Although the' theory has been around for several decades, the
lack of an efficient implementation and analysis of the effect of its parameters has raised
many discussions and scepticism. While the Retinex theory is often being classified as a
method for illumination estimation, its scope goes beyond colour constancy, by trying to be
a simplified model for the human visual system, or to estimate visual appearance in complex
scenes. While Chapter 4 provides conctete implementations for two of the Retinex methods,
chapters 5 and 6 focus on tuning the model’s parameters to deal with real scenes, based on

psychophysical experiments.

In Chapter 7, a novel method for a acquiring a large database for colour constaﬁcy
research is presented, along with applications and improvements to the colour by cotrelation
method. A large image database for colour constancy provides sufficient data to compute
some meaningful statistics with respect to the interaction between the colours observed in
the wotld and the actual measured illuminants in which these colours are recorded. Using
these statistics in the Bayesian approach improves the petformance of the colour by

correlation method for colout constancy.

Finally, Chapter 8 presents a study on the effectiveness on real images of a recently
proposed method for illumination estimation based on luminance-redness correlation in a
scene. This method is interesting because it relates simple methods like gray wotld with more
advanced techniques such as gamut mapping or colour-by-correlation. However, testing the
method on a more diverse hyperspectral database and on real images shows that the

proposed correlation is not a robust llumination estimation method.
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CHAPTER ONE
INTRODUCTION - COLOUR CONSTANCY

Definition of colour constancy

Colour constancy 1s defined as the ability of a visual system to diminish — or in the ideal case
discard — the effects of the illumination in a scene. With this property, a visual system is able
to perceive descriptors of certain objects that are independent of the ambient i]luminzition,
such as the objects’ surface reflectance. There is good evidence® > that humans exhibit
colour constancy to a relatively high degree and it is believed that the mechanism of colour
constancy in the human visual system is part of an evolutionaty process. Indeed, if we
believe that colour plays an important part in object recognition* — given the great variety of
natural and man-made illuminants — the human visual system benefits greatly from the
mechanism of colour constancy. For instance, a banana appears yellow in vatious types of

llumination, even though the flux of energy reaching our eyes from the fruit will be very

s
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mechanisms, we humans usually associate colours with certain natural objects, even though

the light energy is different across the illumination conditions.

With the recent advances in imaging systems, colout constancy is becoming a more
prevalent problem for the colour imaging devices. We can easily become aware of the colour
constancy mechanisms in the human visual system by comparing device outputs of the same
scene under different types of illumination. The simple fact that typical photographic film
renders accurate colours outdoors in daylight but is problematic in indoor scenes without
flash is a direct consequence of our own colour constancy: indoor scenes are mote red-
yellowish due to the different power distribution of tungsten illumination as opposed to that
of daylight for which the film has been calibrated. This aspect has motivated the use of
different colour filters in traditional film cameras or camcorders that compensate for the

colour cast introduced by vatious llumination types.



It is difficult to predict the colour appearance of objects in complex scenes, which makes
accurate colour reproductions a challenging task. Advances in understanding the
mechanisms for colour constancy and compensating for the colour of the illuminant would

contribute directly to improvements in the quality of cross-media colour reproductions.

Colour constancy in the human visual system

In the current state of research there is no general consensus on the type of neural activity in
our brains that leads to the sensation of colout. Important experifnental findings about the
organization of the primary visual cortex are provided by Hubel and Wiesel.’ It is believed
that monkeys exhibit the same types of colour sensations that we humans do, although this
is more of a speculation. Zeki’s studies’ provide some clues regarding the mechanisms of
colour constancy present in monkeys that are in accordance to expetiments on hurnans.’
Little is known about colout constancy in other species other than goldﬁsh7’ 8 honeyb.eres9

and some buttetflies.'’

Given the limited knowledge about the intrinsic neurological
mechanisms of colour vision and colour constancy in humans, most of what is known

comes from experimental studies on the subjective colout appearance.

There is evidence that humans do not compensate fully for the colout of the

illuminant.'* 2

Quantifiable measures of human colour constancy are based on asymmetric
colour matching experiments. Brainard and Wandell ™ initially reported that in laboratory
conditions, subjects’ petformance on colour constancy is pretty consetvative, compensating
for about half of the true illumination change. More recently, Brainard and Brunt’s
psychophysical exmperiments® > show that in near-natural scenes, colour constancy in
humans is aCtually quite good. Unfortunately, a real analysis on human colour constancy in

complex, natural scenes is not yet available, partly because this process is tedious and not

easily quantifiable.

Not only is the colout constancy mechanism in humans imperfect, it sometimes fails
completely. An example is provided is the case of low-pressure sodium street lighting'® —
practically‘a monochromatic light source — under which scenes appear to be characterized
only by lightness, as in black-and-white imaging. In these scenes a strong yellowish cast is

still noticeable. Another example is provided by Maximov’s shoeboxes'® in which observers
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are asked to report the colours in a collage of papers viewed in a shoebox. Two versions of
the same atrangement of coloured papers were prepared; the reflectances of the papers in
the second display differ from the ones of the first by a systematic amount. If the second’
display is illuminated by a different light source that is carefully chosen to compensate for
the systematic differences in two displays, the two collages appear identical. A simpler
argument for the non-absolute definition of colour constancy itself is the very case of a
single surface occupying the whole visual field, illuminated uniformly by an unknown light
source. Such limiting case is unsolvable from the colour constancy petspective, for humans,
and for any imaging device in fact. We need several sutfaces in a scene for the colour
constancy problem to be even well posed. This limiting case emphasizes an impotrtant aspect
in the quest to solving for the strongly underdetermined problem of colour constancy: the
inherent statistical nature of the problem itself. In the following sections, we will investigate

computational models exploiting this vety aspect.

Colour constancy, recovering reflectance and metamerism

In a simplified two-dimensional world of matte surfaces illuminated uniformly, the following
equation describes the response of a device captuting the physical surface-illuminant

interaction:

£ = [R®(1)-E()-S™ (M)A (1)

Here, RY (L) gives the spectral sensitivity function of the k-th sensor, E(A) is the spectral
power distribution of the illuminant, and S*(A) is the surface reflectance as a function of
wavelength. Applied to all pixels (x, y) in the scene, the equation describes the problem of
recovering reflectance: recover S(A), given the set of observed sensor responses r™. The
problem can be reformulated as recovering E()), the illuminant spectral power distribution,
from the sensor responses r*. Considering n distinct surfaces in the scene and the typical

case of k=3 sensor classes, the set of equations have 3n knowns, in the form of sensor

responses. In the discrete case of s samples, the equation becomes:
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In this form we can easily see the under-constrained nature of the problem."” We have kxn

knowns (the set of sensor responses for each surface) and nxs (the set of reflectances) + s
knowns (the lluminant power distribution). Given that the typical number of sensor classes
k is much lower than the number of samples required to characterize surface reflectances
and illuminants, we must use additional knowledge about the illuminants and surfaces in
order to solve for this problem. This set of equations are the core of a model of linear
methods for colour constancy,”® based on a reduced dimensionality of reflectances and
lluminants — which will be presented further. For s = 3, the problem of recovering
reflectance is reduced to the colour constancy problem, which still remains underdetermined.
Because the human visual system has only three cone receptor classes, we can only hope to
achieve colour constancy for the three-samples case. The discrete sampling of the
continuous space of surface reflectances and spectral power distributions of illuminations in
three classes gives rise to a well-known phenomena in colour science called “metamerism’:
the possibility of perceiving the same colour from different surface reflectances under a
particular illaminant In particular, two metameric samples may appear to have the samc
colour under a certain illumination, yet will look different under another illumination

condition.

The dichromatic reflection model

The light reflected from a surface is the result of an interaction of different physical
processes and the full model of reflectance is rather complex. The dichromatic reflection
model due to Shafer”” is a simple model that explains several important aspects of the
physics involved in light reflecting off dielectric sutfaces — non-conducting materials.
Dielectrics are characterized by a clear substrate covering the colorant particles. Through the

reflection process, incident light is transformed in three forms of energy:

) hght reflected from the interface;
b) light reflected from the body;

c) heat absorbed by the material.



Once the rays of light arrive at the interface, they get reflected off the clear substrate in the
form of interface reflection. The remaining energy enters the material, where it is scattered
between the material particles and eventually comes out in the form of body reflection.
Depending on the material, some of the energy will also be transformed into heat. Light
reflected from the interface i1s concentrated around a small angular cone. Interface
reflections are also called specular reflections. These types of reflections can only be seen
under certain viewing angles, when the viewer is situated in their angular cone. Another
interesting property of specular reflections is that, because they reflect light equally from all
wavelengths, they provide important cues about the colour of the lluminants. However, very
often these are not a reliable source of information about the illuminants either because they
are not necessarily visible from the camera’s perspective or, in cases where they are available,

their brightness often exceeds the dynamic range of the capturing device.

In contrast with interface reflection, body reflection is diffuse and usually emerges
equally in all directions. Surfaces that do not exhibit interface reflection are called matte, they

are characterized by body reflection only, which is independent of the viewing angle and that

of the incident light.
intetface reflection
incident light
) body reflection
body reflection 4 body reflection
clear substrate b ‘ <

’
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The dichromatic reflection model states that the total radiance of light reflected off a
dielectric sutface is roughly the sum of the radiance in the form of interface reflection plus
the radiance as body reflection. The dielectric modcl does not apply to metals and
fluorescent sutfaces. Fluorescent materials have a rather particular property, in that they

absorb energy at lower wavelengths and emit it at higher wavelengths.

The diagonal model of illumination change

In the quest for illumination-invariant scenes, computational models of colour constancy

typically consist of two chained processes:

a) estimate the scene illumination;
b) correct for the scene illumination such that an illumination-invariant image is

obtained

While it is true that estimating the scene illumination is the hardest problem of the two,

finding a suitable model for illumination change has an interesting history.

A simple form of modeling illumination change represents a linear transformation, which,

. . 20
for a three-sensor device can be written as follows:

1
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@, M, §’) and (L, M, S) represent the device response for the same physical location (pixel)
under the two different illuminants. It turns out that the simple linear model is quite good at
modeling illumination change and is justified by the simple laws of additive colour mixture.
A general transformation is represented by a full 3 x 3 matrix, but by restricting the
transformation matrix to be diagonal we obtain an even simpler form in which only three

parameters ate to be estimated:”
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In this form the model is known as the von-Kries adaptation rule” and the diagonal terms
are well-known as von-Kries coefficients. Von Kries suggested that in the human vision
system, the visual pathways have a mechanism of adjusting to the illumination by scaling the
signals individually on each of the short, medium and long cones. While challenged at times
(Burnham, Wassef), the rule has continued to be adopted as a general law of expressing

llumination change.

'The diagonal model is preserved in a perspective chromaticity space:”
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Worthey and Brill® # have explored the limitations of the diagonal model and the
conditions under which it holds. The diagonal model of illumination change works quite well
in the case of narrow-band and non-ovetrlapping sensors. This is easily understandable
because in the extreme case of sensors being modeled by delta functions at different
wavelengths the diagonal model would hold perfectly. Based on this observation, Finlayson

et al®

have proposed a method of transforming the sensor functions by means of a linear
transformation in which the diagonal model of illumination change holds more exactly. This
method is called “spectral sharpening”. Therefore, to the extent of the diagonal model, the
resulting sharpened sensors are optimal for colour constancy. Three methods for spectral

sharpening are proposed in*":

a)" sensor based sharpening proposes to find the linear transformation such that the
sensors are optimally narrow; this transformation is only function of the sensors

functions themselves
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b) database shatpening finds the optimally linear transformation for a given set of
reflectance data and a set of illuminants
c) petfect sharpening is a formulation in a world of two-dimensional illuminant

spectra and three-dimensional reflectance spectra

Given the current performance of colour constancy algorithms, the diagonal model of
illumination change gives good enough approximation and, from a practical perspective,
there is little to be gained by considering alternate models. Where available, spectral

sharpening gives equivalent results to using a full 3 x 3 linear transformation.

A practical aspect of the diagonal model 1s that it reduces the problem of colour cotrection
to the problem of having a good white (hence the notion of white balance in imaging
devices). The colour of a standard white reflectance present in the scene is usually sufficient
information for determining the illuminant colour. This very aspect is at the root of coléur

appearance models.””*

Chromatic adaptation transforms

]
]
+

Chromatic a ation tiansfoiins inodel ilummaiion change in simpie viewing condidons.
More specifically, they relate the change in cone tristimulus values (XYZs) for a certain patch
when viewed under a different, “reference” light from a “test” light. The “reference” and
“test” lights are specified in terms of tristimulus (XYZ) values, as is the corresponding patch.
We can think of chromatic adaptation transforms as the consequence of the human visual
system’s limitations in achieving perfect colour constancy: chromatic adaptation transforms

predict percetved llumination change.

Historically, Lam was the first to provide a chromatic adaptation transform, also
known as the Bradford transform. In his experiment” he used 58 wool samples to model
the various degrees of colour constancy in the context of illuminant change from standard
D65 illuminant to standard illuminant A. Lam used a memory matching experiment, in
which he asked the observers to describe the appearance of the samples in the Munsell

coordinate system. He then transformed the Munsell values in the CIE tristimulus

11



coordinates. Lam devised a chromatic adaptation transform that would explain the change in

tristimulus values, based on the following assumptions:

1) the transformation preserves achromatic constancy for neutral samples;
2) the transformation is the same for different pair of illuminants;
3) the transformation is reversible: going from one illuminant to another and back

should leave the result unchanged.

The Bradford transform is still at the root of colour appearance rhodels, that aim to predict

colour sensations under more complex viewing conditions.
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CHAPTER TWO
OVERVIEW OF COMPUTATIONAL MODELS FOR COLOUR
CONSTANCY

Linear models for colour constancy

As previously shown, the colour constancy problem is underdetermined. The fact that
bumans seem to be pretty good at recovering illuminant-independent descriptors from the
product of reflectance, lluminant and sensor response functions is evidence that there must
be something about the actual interplay between the surfaces and illuminants that is
exploited by our vision system. In particular, there is wide evidence that the spectral
reflectances lay in a finite-dimensional space. Cohen’s measurements™ of the set of Munsell
chips argued that the first three of the principal component decomposition support over
99% of the variation in the data. Krinov has continued reflectance measurements” on a
selection of natural reflectances. Based on Krinov’s data, Dannemiller’® concluded that a
number of three functions renresent natural reflectances accurately. Howcever, further
analysis by Brown indicates that Krinov has not actually measured natural reflectances, but
rather large tetrains. Further analysis” concludes that the dimensionality of natural
reflectances could be as high as five. Maloney™ fitted a large number of surface reflectances
including the ones measured by Krinov and Cohen and found that the a linear model of five

to six dimensions can represent them accurately.

Maloney and Wandell have exploited the finite-dimensionality of illuminants and
reflectances in a linear approach to solving colour constancy.'® * They show that for a
number N of photoreceptors, if the djmensionah{y of iluminants is N-1 and the
dimensionality of reflectances is N, solving for colour constancy is transformed into a
determined problem. Unfortunately, for the typical case of N=3 classes of photoreceptors,

the method is not very successful, as the dimensionality of reflectances is usually higher.
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Gray world

The gray wortld is probably the simplest'of the colour constancy algorithms. It wotks by
computing the statistics of the scene and then comparing these statistics with some
predetermined values, followed by adjustment of the scene such that the new statistics match
the predetermined ones. One of the simplest statistics is the average device (R, G, B) of the

scene. The gray world algorithm makes two implicit assumptions about the real world:

a) all scenes propetly colour balanced have the same “normal” statistics
b) the deviation from the actual statistics of the scene to the normal statistics is due to

the scene llumination

The simplest form of the gray world approach assumes that each scene should have an
average (R, G, B) of 50 % gray. As an algorithm for colour constancy, the scene illuminant is
characterized by the ratio of the actual average found in each of the (R, G, B) channels
versus the expected average (50%), using the diagonal model for illumination change. In its
initial formulation, the idea is due to Buchsbaum,” based on an “adaptation level theory”

introduced by Helson.

Buchsbaum postulates: “the system arrives at the illuminant estimate assuming a certain
standard common spatial average for the total field. It seems that arbitrary natural everyday
scenes composed of dozens of colour sub-fields, usually none highly saturated, will have a
certain, almost fixed spatial spectral reflectance average. It is reasonable that this average will

be some medium gray, which comes back to Helson’s principle”.

Gershon et al.*

further improved on the method in several ways. The choice of gray
has been derived statistically from natural occurrences of reflectances and illuminants in the
world. Because the algorithm works on sensor responvses directly, it is more efficient when
the “normal” gray is computed through the device or using the device sensor spectral
sensitivity functions. Another aspect of Gershon’s extension is the introduction of
segmentation as a pre-processing step in the gray world estimate of the scene. The purpose

of the segmentation is to compute descriptors of surfaces as opposed to descriptors of

pixels, which are inherently less representative of the actual surfaces present in the scene.
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However, as it is well known, segmentation in itself is a hard problem and not very robust

on real scenes. \

While certainly very appealing for its simplicity, the gray world algorithm is
essentially naive, as its two main assumptions are flawed for many natural scenes: the actual
departure from the “normal” gray in properly balanced scenes is not necessarily due to an
illuminant cast, as is the case for many scenes depicting deep-blue sky or predominantly
greenery, autumn foliage, etc. In practice, the gray world algorithm has the tendency to

artificially de-saturate colours in natural scenes in order to achieve the “normal” gray.

Retinex and lightness models

The Retinex theory was introduced by Land” as a model of human vision after a series of
experiments with colour appearance led him to believe that something 1s inherently wrong
with the general idea of how colour is perceived. Land was surprised to notice that in certain
circumstances there is almost no correlation between the incident flux of light coming from
certain areas in his experimental displays and the perceived colour — which in turn seems to
be highly correlated with the reflectance of the coloured patches. His experiments represent
rather a confirmation of the mechanism of colour constancy in the human visual system, and
they do not necessarily undermine the classical laws of colour mixture and colour appearance
as Land has originally thought.38 Land’s theory 1s called “Retinex”, from “retina” and

“cortex”, where most of the human visual processing takes place.

There are several important components of the theory that are based on
experimental obsetvations: First of all, the theory embraces the von Kries adaptation rule of
illumination change. The motivation for this essential part of the method was given by
experiments that support cortrelation between colour appearance and the so-called scaled
integrated reflectance of a given studied area. The scaled integrated reflectance is defined as
the ratio of integrated radiance of a certain patch and the integrated radiance of the white
patch in the scene. Another important aspect on which the theory relies on is the smooth
spatial variation of the illumination in real scenes. Retinex discounts the illumination based
on this spatially smoothness constraint. In its first formulation,” the algotithm computes

random paths in the scene. Along eaéh of these paths the algorithm compute ratios of
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adjacent pixels that are then propagated along by a multiplicative operation. Any given ratio
product is reset to 1 if it becomes supra unitary (Retinex reset operation) or is simply ignored
if its value falls behind a certain threshold (Retinex threshold operation). For a certain pixel,
ratio products along paths from several directions are then averaged together to give the
final pixel value. The reset operation implements the scaling on each independent
photoreceptor class and the threshold operation implements the smoothness constraint on

lumination spatial variation.

In later irnplementaﬁons,”’ .16 Tand and his colleagues discarded the threshold
operation. Interestingly, with this simplification, it is only the choice of paths that makes this
algorithm worthwhile. For infinite paths, the Retinex process becomes the simple approach
of scaling each photoreceptor channel by the maximum. In this particular case, the Retinex

model essentially becomes the white-patch algorithm.

Retinex differs from many colour constancy methods in that it does not aim to find a
single chromaticity for the scene illumination. Instead, it adjusts the image colouts in a non-
global manner as is necessary since the model attempts to match human visual response.ﬁI/t is
a theory for the human visual system processing rather than simply a computational method
for colour constancy. Supported by a seties of experiments,” '° the theory rejects the idea of
any correlation between colour appearance and scene average, therefore coming in

opposition to the gray wotld algorithm and favouring the von Kries model.
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In a detailed analysis, Brainard and Wandell” show that in certain circumstances the
Retinex model predicts pootly. The method was also extended” *> * and recently
teformulated as an optimization problem.® Historically, the model has been quite
controversial and because of different variants and control patameters the possibility of a

concrete experience with the algorithm in real scenes has been limited.

As an alternative method aimed at recovering lightness Horn® proposes to
differentiate the logarithm of the image, ignote small gradients, and then integrate to obtain
the “lightness image” up to a constant of integration. For reasons of simplicity we illustrate
the process in 1-D, but processing a two dimensional image is similar, except for the

integration. Integration in 2-D is less straightforward.*
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Figure 2. Horn’s lightness method of recovering reflectance
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Gamut mapping

The gamut mapping approach to colour constancy is due to Forsyth.”” The algorithm
exploits the fact that for a particular imaging device — characterized by its sensor response
functions — only certain pixel values are realizable under certain illuminants, given real
surfaces. For mnstance, under a reddish illuminant, a very saturated blue or green are hardly
achievable. The algorithm is based on the idea that the shift in the observed colours due to
an unknown illuminant is reflected by a related transformation on the colour gamut. The
gamut of an image 1s defined as the collection of all its pixels. It is easy to show that the
collection of all realizable pixels under a certain illuminant is a convex set. Indeed, if two
pixels P, and Py are present in an image under illuminant L, then it is possible to observe the
pixel whose value is a linear combination of the two: tP,+(1-t)-Py, for t € [0, 1]. It follows
that the image gamut — taken under an unknown illuminant — is a subset of the image convex
hull, which is further a subset of the convex hull that would be obtained under all possible
reflectances viewed under the same unknown illuminant. After introducing the notion of
canonical gamut — the convex hull of all possible surfaces observable through the imaging
device under a canonical illuminant, the colour constancy problem is then solved in two
steps: 1) identifying the solution set: finding all possible linear mappings M such that the
image convex hull can be transformed into the convex hull of the canonical illuminant and
2) choosing a solution from the solution set. There are a variety of strategies for choosing
the possible linear mapping. One possibility is to choose the one that maximizes the new
gamut. This is justified by the observation that in the majority of the propetly balanced
scenes, the gamut is maximal. Any colour cast would further reduce the gamut in some way.
The most practical implementation of the gamut mapping algorithm uses diagonal

transformations for reasons of simplicity.

Forsyth’s otiginal gamut mapping algorithm Wérks in the (R, G, B) space. Finlayson

et al. propose to work in a chromaticity space™ »

and reports better results. A chromaticity
space makes the algorithm more robust to varying illumination. The choice of chromaticity
space chosen is important because it preserves convexity: (R/G, G/B). The soluton is
further improved by placing additional constraints on the illuminant set, based on some a

ptioti knowledge about the probability to be encountered in the real world.
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The method was further generalized49 by considering varying illumination which

in turn poses additional constraints on the,solution set.

Bayesian colour constancy

This method was introduced by Brainard and Freeman™ and is based on having some a
ptiori knowledge about the distributions of illuminants and treflectances in teal scenes. At the

core of the method lies the Bayesian framework:

p(y [ x)-p(%) ©

p(x|y)= )

p(x|y) denotes the posterior probability of observing x given y, p(x) is the ptior probability
of x alone, p(y) is the prior probability of y alone, and p(y |x) is the probability of observing y
given x. The authors formulate the Bayesian approach using a finite dimensional model of
surfaces and illuminants. Although interesting, the proposed Bayesian apptoach is far too
complex to be used successfully in real scenes because the dimensionality of the solution is
linearly dependent with the number of surfaces in the scene. Another practical limitation of
Sl

PRPILUR IR S s ~1 M 1 4 .
e apofitiin is the feduitcineni O1 naving 4 properiy segmented image,
S

Colour by correlation

A more practical statistical-based method is colour by correlation.”” In essence, the algorithm
is a discrete formulation of the Bayesian method by Brainard and Freeman and combines
elements from the gamut mapping approach. At the core of the method lies the notion of a
correlation matrix that expresses the interdependence between illuminants and chromaticities
in the form of probability distributions computed according to Bayes’ rule. Based on
observed chromaticities in the image, the illuminant estimation is thus reduced to a voting
scheme, in which an illuminant gets a vote from each chromaticity that has a non-zero entry

for it (that is observable undet the given illuminant).

The correlation approach simplifies Bayes’ rule, by assuming that all illuminants and

all chromaticities are equally likely.
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In this equation, p(E) and p(c) represent the prior probabilities of observing the
illuminant E and the chromaticity ¢ alone. Therefore, with the further assumptions
mentioned above, the probability that the illuminant is E given that we obsetve chromaticity
c p(E|c) is the same as p(c|E), the probability that we see the chromaticity ¢ under

illuminant E.

The above formula applies to each chromaticity observed in the cutrent scene, for
which the illuminant E is to be determined. An important further assumption is being made
in the computation of the joint probability p(E |C,,), the probability that the illuminant is E

when we obsetve the set of chromaticities C,, in the image:

p(E|C,)=k- [ [p(c| E) ©)

ceCyy

The joint probability is computed as a product of all separate probabilities, assuming
independency. Tn reality, we expect that the probahilities of chromaticies to be non-

independent in real scenes. This is an important limitation of the model.

Recent experiments’ have showed that working in the full (R, G, B) space as
opposed to the (r, g) chromaticity space leads to better estimations. A unique and useful
feature of the colour by correlation algorithm with tespect to illuminant estimation is an

estimate of the confidence in the solution, as justified by the probability correlation-matrix.

Given its simplicity, the colour by correlation algorithm is fast, as it is based on a
look-up-table. However, its accuracy can be improved by computing actual prior
probabilities and further more, by including models of joint probabilities in the computation
of the overall probability that the scene illuminant is E, p(E|C,).

Neural network for colour constancy

Good results have been reported by a neural network approach to colour constancy.’® *>*

An immediate advantage of a neural network approach is the possibility of modelling non-
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linear formulations of the colour constancy problem. The neural network is fed with a binary
version of the chromaticity histogram of the scene to be colour corrected. The network is
trained on a number of calibrated images in which the illuminant is documented, typically by
using a photographic gray card carefully placed in the scene. In the absence of a large
calibrated dataset, an alternative method is also proposed in which images are colour
corrected by the means of a simple gray world algorithm and then used as a training dataset.
For this purpose, selected images that include a large number of objects and colours are

used, for which the simple gray world assumption holds and the algotithm works propetly.

An important aspect of the method is the fact that, by feeding the network with
image histograms, a model of joint probabilities is inherently included, unlike in the colout-

by-correlation approach.

Methods using higher-order statistics

. 7
Recent expenments55’ 36, 5

suggest that the human visual system uses some higher-order
statistics inferred from the cutrent scene in order to compensate for the colour of the
flluminant and achieve colour constancy. Second-order statistics of the scene such as the
mterplay between surtaces and illuminants could yield additional information about the
flluminant chromaticity. Simple statistics such as the ones employed by the gray world
assumption could not distinguish between a reddish room in white illumination and a white
room under reddish illumination. The redness-luminance correlation computed across all
pixels in the scene could be a distinguishing factor between the two scenes. Because of the
distribution of the natural illuminants on the red-blue axis (often referred to as “warm” for

reddish versus “cold” for bluish illuminants), a redness component of the illumination would

account for most of its variation in chromaticity for natural light sources.

In probability theory, the correlation (or correlation coefficient) between two
variables is defined as the ratio of their covariance by the product of their standard deviation.
The cotrelation can vary from 1 i case of an increasing linear relationship to -1 in case of a
decreasing linear relationship. A zero correlation indicates that the two variables are

independent.
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In essence, the redness-luminance correlation is supposed to give insight as to the
colour of the illuminant, much the same as the gamut of observable colours under the
current scene gives clues about the departure from the canonical gamut.58 In fact, Mausfeld
and Andres’ propose that the mean and the covariance matrix, as first and second-order
statistics respectively, may give valuable information about the shape and form of this gamut.

*>%6 indicate that the luminance-redness correlation could

Experiments by MacLeod and Golz
be used, together with the mean of the sensor responses across the image, to disambiguate

between reddish scenes under white light and white scenes under reddish light (Figure 3).

A luminance-tedness

correlation
red illuminant scenes
(\\ V////////////////////A/

white illjiminant scenes

-

— - mean redness

ambiguity from mean alone

Figure 3. Redness-luminance cortelation used in conjunction with the mean redness to determine the
illuminant redness

In a two-dimensional space defined by the luminance-redness correlation and the mean
image redness, the probability distribution of the white illuminant scenes can actually be
distinct from the probability distribution of the red illuminant scenes. On the mean redness

axis alone, thete is a region where the two probability distributions overlap.
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Methods based on specular reflections

The algorithms presented so far assume that the scenes are composed of matte surfaces, that
is, that the spectral reflectance of the objects is independent of the incident angle of
illumination — or the interface component can be neglected. This is usually a safe
assumption, although occasional specularities present in scenes can raise problems. For these
algorithms, specular reflections are treated as noise, simply because they do not cortelate well

with the body reflectance alone.

In real scenes, specular reflections are encountered, and can even provide important
cues to the nature of the illuminants. A simple approach to colour constancy based on
specular reflections was introduced by Lee.” At the heart of Lee’s method lies the
dichromatic model of reflectance and the obsetvation that the set of possible chromaticities
due to a certain surface that are visible in a scene can be expressed as a linear combination of
the chromaticity of the body reflection and that of the intetface teflection. Furthermote, in a
chromaticity space, each distinct dielectric surface in a scene is defined by a line segment.
One end of each of these line segments is defined by the chromaticity of the interface
reflection — which is in fact the illuminant chromaticity. The success of the method relies in
finding the intersection of the light segments corresponding to dielectric surfaces, much like
the Hough transform. Geometrically, two unique surfaces can identify the illuminant, unless
the two cotresponding line segmenfs are collinear. In practice, more surfaces are desired

because of inherent noise.

The method is inherently dependent on correctly identifying the sutfaces that
contain specular reflections. The idea of finding specular reflections in order to infer the
colour of the illuminant is first mentioned by Judd.” Other authors®™ ® have proposed

algorithms for colour constancy based on specular highlights.

Integrative theories

Thete is surprisingly limited work in combining several different approaches to
computational colour constancy: A recent method for illuminant estimation based on
multiple cues in the scene has been proposed by Maloney.” The basic assumption of an

integrative method to colour constancy is that the human visual system may be using
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different cues in determining the illuminant, with different weights associated to each of
these cues that reflect their usefulness in actually determining the illuminant colour in a given
scenc. For instance, in a scene without speculat highlights, the visual system would set the
weight to such cortesponding cue to zero, trying to extract useful information from other
cues. A mechanism for cue promotion and dynamic re-weighting of cues is provided in the
model. Although some expetimental studies are presented on synthetic images, the results
presented by the author are not vety convincing that this is in fact the way the human visual

system performs illuminant estimation.

24




CHAPTER THREE"
CHROMATIC ADAPTATION TRANSFORMS WITH TUNED
SHARPENING

Traditionally, the chromatic adaptation transforms used in colour appearance models are
calculated from the tristimulus values of the reference and test illuminants. However, with
modern spectroradiometers it is just as easy to measure the spectral power distributions of
the illuminants as their tristimulus values so there is no reason to restrict the input
parameters to trstimulus coordinates. In this chapter we propose a new method of
calculating chromatic adaptation transforms based on using the extra information available
in the illuminants’ spectral power distributions. The new method gives comparable results to
the current tristimulus-based chromatic adaptation transforms in most cases, and better

results in some specific situations such as the McCann-McKee-Taylor experiment.'

Introduction

While existing chromatic adaptation transforms™**** start with the CIE XYZ tristimulus
values of the test and reference lluminants as input, the first processing step is a change of
basis to a new coordinate system. One such change of basis is the Bradford transform
empirically derived by Lam® and another is the spectral sharpening transform derived from
Lam’s data® by Finlayson and Siisstrunk® using white-point preserving sharpening. In either
case, the same change of basis is applied no matter what the illuminants happen to be. If,
instead of restricting the description of the illuminants to the tristimulus values, we describe
them in terms of their spectral power distributions, we then can detive an illuminant-specific
sharpening transformation. The hypothesis is that tﬁning the change of basis for each
particular illuminant pair will lead to smaller errors in the final chromatic adaptation

transform.

*This chapter also appeats as a published papet: Brian Funt and Florian Ciufea, “Chromatic Adaptation
Transforms with Tuned Sharpening”, in Proc. Fitst Eutopean Conf. on Color in Graphics, Imaging and Vision,
148-152, 2002, Poitiers, France.
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Description of the method

Using the 336 Kodak™® database of spectral surface reflectances which includes 102 DuPont
paint chips, 64 Munsell chips (matte collection) and 170 natural and man-made objects, we
compute the tristimulus values for each reflectance in the database, under the test and

reference illuminants in the standard manner:

101 X(A;)
Y |= K3 B(,)-S()-| (ko) |, where k=— 100 N
Z i1 Z(A;) ZE(M)'V(%)

The sampling has been performed over 101 wavelengths A, in the range from 380 nm to 780
nm in 4 nm intervals. E(A) denotes the spectral power distribution of the illuminant and

S(M) represents the sutface reflectance at wavelength A..

We find the best transformation T mapping the tristimulus values obtained under the test
flluminant to the corresponding tristimulus values under the reference illuminant using the
white-point preserving algorithm described by Finlayson and Siisstrunk.”® This
transformation can be used to predict the corresponding tristimulus values DGR Gl
under the reference illuminant from the tristimulus values X, Y, Z*™" under the test

flluminant using the chromatic adaptation transformation model:

Xref R::f/R::St O O Xtest
Yref — T-—1 0 G:f/G::St O T Ytest (1 O)
Zref O O B::f/B::st Ztest

where the RGB ordinates of the reference and test dluminants are computed respectively as:

R:st X:st /Y:St R:f X::f /Y‘;ef
G |=T:| Y™ /Y™ | and |G |=T:| Y /Y 1)
B;c:st ' Z::st /Y:St B::f Z‘r:f /Y‘;ef

The white-point preserving least-squares regression used in® was introduced by Finlayson

and Drew®® and is summarized below:
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Let us denote S the 336x3 matrix of 336 XYZ values under the reference fluminant and P

the 336*3 matrix of 336 XYZ values under the test illuminant. The transformation T is

obtained through eigenvector decomposition of the general matrix M that best maps P to S.
To preserve achromatic colours, M is derived using:
M=D+Z-N (12)

where Z is 2 3x2 matrix of any two vectors orthogonal to XYZ,,, D is XYZ,,/XYZ

test

diagonal matrix of the ratio of the two white point vectors) and N is given by:
g p g Yy
N=[z"-p".p.z]" [z . P" .5-2" .P" .P.D| (13)

The main difference between the approach proposed here and that of Finlayson and
Siisstrunk® is that we tune the sharpening transform T for each illuminant pait. We compute
XYZ values from illumination spectral information and the database of 336 natural
reflectances as opposed to computing a generic transformation T using the XYZ values of

the 58 samples reported by Lam.

Testing the model

To the our knowledge, most existing corresponding colour appearance expetiments™*""" do
not document the actual spectral power disttibution of the test and reference illuminants.
One exception is the McCann-McKee-Taylor expetiment’ in which 5 illumination conditions
were provided by thtee projectors with natrow-band filters (630 nm, 530 nm and 450 nm,
tespectively) having a bandwidth of 10 nm at half-height. Given that the rest of our
computations were based on a 4-nm sampling interval, we modeled each peak in the
McCann-McKee-Taylot spectra by a simple rectangular signal with a width of 8 nm (2
intervals). The relative power distribution of each illuminant was then computed to accord
with the ratios of the reported triplet of tadiances from the Munsell white paper for that
illuminant. This presumes the Munsell white paper had a uniform surface spectral

reflectance.
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In most of the other experiments the only information available about the light is the
lluminant type (.e. CIE A, CIE D65, Phi]ips.TL84) and its chromaticity. Our proposed
method depends on having the actual spectra of the two illuminants, not just their
chromaticities. In the present circumstances, the best we can do is to estimate of the actual
spectra of the illuminants used in each experiment. We started with the spectral power
distributions of the standard sources used to simulate the ideal illuminant spectra A and
D65, and measured the Philips TL84 with a PhotoResearch PR650 spectrophotometer. We
then modified these spectra to match the chromaticities reported for the lluminants actually

used in the experiments, as described below.

To obtain the least distortion in the illuminant spectral power distribution when matching

the chromaticity, we solve the following under-determined system with (E°—E') as unknown:

101
> X(h;) (B —E}) =X, -X|
i=1
101

| LT (EL-ED=Y] -V, (19
3. 7h)- B0 ~ED =20 - 2!

L =t

E’ is the spectral power distribution at wavelength A, of the measured illuminant with
tristimulus values X°, Y°,, Z° , and E', is the cotresponding spectral power distribution of

the similar illuminant that has the tristimulus values X', Y',, Z',, as reported in the

w2
corresponding experiment. When we solve the under-determined system above using the
pseudoinverse method we obtain the solution having the smallest norm, thus having the

least deviation from the measured spectral power distribution E”.

Results on corresponding colour datasets

We have used the cotresponding colour datasets accumulated by Luo and Hunt, available

online from the University of Derby.”” Table 1 summarizes the experimental conditions.
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Data set Num_ber of _ _Test ‘ . Re_ference Experimental
‘ specimens lllgmlnant type | illuminant type method
Helson 59 A D65 Memory
Lam & Rigg 58 A D65 Memory
Lutchi (A) 43 A D65 Magnitude
Lutchi (D50) 44 D50 D65 Magnitude
Lutchi (WF) 41 WF D65 Magnitude
Kuo & Luo (A) 40 A D65 Magnitude
Kuo & Luo (TL84) 41 TL84 D65 Magnitude
Breneman 1 12 A D65 Magnitude
Breneman 2 12 PROJECTOR D55 Magnitude
Breneman 3 12 PROJECTOR D55 Magnitude
Breneman 4 12 A D65 Magnitude
Breneman 6 11 A D55 Magnitude
Breneman 8 12 A D65 Magnitude
Breneman 9 12 A De5 Magnitude
Breneman 11 12 D55 GREEN-B Magnitude
Breneman 12 12 D55 GREEN-B Magnitude
Braun & Fairchild 1 17 D65 D65 Matching
Braun & Fairchild 2 16 D65 D65 Matching
Braun & Fairchild 3 17 D33 D65 Matching
Braun & Fairchild 4 16 A D65 Matching
McCann "blue" 17 BLUE GREY Haploscopic
McCann "green” 17 GREEN GREY Haploscopic
McCann "grey" 17 GREY GREY Haploscopic
McCann "red" 17 RED GREY Haploscopic
McCann "yellow" 17 YELLOW GREY Haploscopic

Table 1. Experimental conditions for each corresponding colour experiment data set
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The results are presented in the following tables:

Mean AE RMS AE
Data set l\ﬁl:;n sﬁi';‘;’ Spectrg * IE;VI rr? sAhiLrar? Spectr:;ab
sharp sharp
Helson 53 6.4 6.1 7.6
Lam & Rigg 4.4 5.8 5.1 6.8
Lutchi (A) 6.8 8.5 7.6 9.6
Lutchi (D50) 6.3 6.6 6.8 71
Lutchi (WF) 7.8 5 8.7 5.8
Kuo & Luo (A) 6.9 7.7 7.7 8.5
Kuo & Luo (TL84) 4.3 4.4 4.7 4.9
Breneman 1 10.5 11.2 10.8 121
Breneman 2 71 7.8 7.4 8.1
Breneman 3 12 13.8 14.2 16
Breneman 4 12.3 15.7 14.9 17.6
Breneman 6 7.9 9.6 8.3 104
Breneman 8 12 15.5 14 16.8
Breneman 9 17.9 22.1 20.7 24.7
Breneman 11 7.4 6.8 8.2 7
Breneman 12 8.9 9.6 9.1 10.2
Braun & Fairchild 1 3.8 34 4 3.8
Braun & Fairchild 2 5.9 6 6.6 6.6
Braun & Fairchild 2 71 7.2 7.2 7.3
Braun & Fairchild 4 59 6.3 6.5
McCann "blue" 21.4 18.7 22.2 19.8
McCann "green" 27.7 23.2 29.7 244
McCann "grey" 101 101 11.2 11.2
McCann "red" 16.9 20.2 17.8 21.6
McCann "yellow" 26.2 19.4 29.6 21
average value 10.5 10.8 11.5 11.8

Table 2. Mean and RMS AEr,, error of the full spectra method compared to the sharpening method
based on Lam data. Student’s t-test significance is 0.85 for the average of mean AEr, and 0.89 for the

average RMS AEqrp, so the differences in the results ate not statistically significant.
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Data set Mean Mean RMS RMS
AEcmct:1) AEcme(r:ny AEcmc(1:1) AEcmc(1:1)
Helson 4.4 4.9 55 6.2
Lam & Rigg 3.7 4.7 4.6 55
Lutchi (A) 47 55 5.2 6.1
Lutchi (D50) 42 4.5 47 49
Lutchi (WF) 5.2 3.2 5.7 3.6
Kuo & Luo (A) 4.9 5.8 54 6.3
Kuo & Luo (TL84) 3.2 3.5 3.7 4
Breneman 1 7.2 8 7.8 9.1
Breneman 2 49 51 55 5.8
Breneman 3 7.5 8.4 9.4 10.1
Breneman 4 8.6 10.7 10.7 12.2
Breneman 6 58 6.7 6.2 7.3
Breneman 8 8.2 10.1 9.7 11.3
Breneman 9 12.3 14.6 141 16.1
Breneman 11 5.1 5 5.6 54
Breneman 12 6 6.6 6.7 7.6
Braun & Fairchild 1 3.5 3.2 39 3.8
Braun & Fairchild 2 6.4 6.4 7.9 7.7
Braun & Fairchild 3 5.7 5.6 6.1 6
Braun & Fairchild 4 52 53 54 5.6
McCann "blue” 12.7 11.6 13.2 12.3
McCann "green" 18 16 202 184
McCann "grey" 71 7.1 8.6 8.6
McCann "red" 13 139 14.5 15.2
McCann "yellow" 15.8 147 17.4 17.7
average value 7.3 7.6 8.3 8.7
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Table 3. Mean and RMS AEcmc(t1) etror of the full spectra method compared to the sharpening
method based on Lam data. Student’s t-test significance is 0.78 for the average of mean AEcmcny and
0.77 for the average RMS AEcmc(1, so the differences in the results are not statistically significant.




Mean AEC|Eg4

Mean AEC|Eg4

RMS AEcigss

RMS AEcigss

Data set Lam sharp Spectra Lam sharp Specira
sharp sharp
Helson 3.5 3.8 - 4.1 4.5
Lam & Rigg 2.9 3.8 34 4.3
Lutchi (A) 3.9 5.2 4.4 5.9
Lutchi (D50) 3.5 37 3.9 4.1
Lutchi (WF) 4.1 3.1 4.4 3.5
Kuo & Luo (A) 4.2 5.1 4.5 5.5
Kuo & Luo (TL84) 2.7 3 29 3.3
Breneman 1 58 6.8 6.2 7.3
Breneman 2 3.9 42 4.3 46
Breneman 3 58 6.5 7.3 7.8
Breneman 4 7 8.6 84 9.7
Breneman 6 4.7 58 49 6.2
Breneman 8 6.7 8.2 76 9
Breneman 9 9.5 11.3 10.8 12.3
Breneman 11 42 41 46 44
Breneman 12 4.6 5.2 5.1 5.7
Braun & Fairchild 1 2.8 27 3.1 3
Braun & Fairchild 2 45 45 5.1 5.2
Braun & Fairchild 3 4.6 4.6 48 4.8
Braun & Fairchild 4 42 4.2 4.3 4.3
McCann "blue” 11.3 10.5 12 11.3
McCann "green” 14.5 2.8 i5.6 4.3
McCann "grey" 6.1 6.1 7.1 7.1
McCann "red" 10.6 11.3 11.4 12
McCann "yellow" 13.7 124 14.9 13.8
average value 6.0 6.3 6.6 7.0

Table 4. Mean and RMS AEcigy ertor of the full spectra method compated to the sharpening method
based on Lam data. Student’s t-test significance is 0.72 for the average of mean AE ks and 0.73 for

the average RMS AEcisy, so the differences in the results are not statistically significant.

methods are not statistically significant. '
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For most of the data sets, our method, denoted as “spectra sharp”, performs almost as well
as the sharpening method by Finlayson and Siisstrunk® based on Lam data (noted here as
“Lam shatp”) which is considered to give among the best results on these data sets.” For the
Lutchi (WF), Breneman 11, Braun and Fairchild 1 and McCann “blue”, McCann “green”
and McCann “yellow” data sets, our new method gives more accurate predictions. We have
used three different error metrics: ABrs , ABcwcasy and AEges to evaluate the predictions.

Student’s t-tests for the samples conclude that the differences in the results of the two




We speculate that the somewhat better ovetall results obtained with the full spectra
method on the McCann data sets are due to the fact that it contains the actual spectral power
distribution of the 5 rather unusually narrow-banded illuminants which differ substantially
from the illuminants in the Lam experiment. For the other cases, the full spectra method
petforms almost as well as the Lam-based sharpening. In fact, given the significant noise in
experimental data, which is based on memory matches, magnitude estimation and
halposcopic matching, the performance difference between the models is probably not
significant. Furthermore, it must be remembered that we have only an imprecise

specification of the required illuminant spectra.

We also considered the possible effect of incomplete adaptation® by solving for the optimal
value of the incomplete adaptation factor, D. While the errors for both methods dropped
slightly, the overall results found were qualitatively similar to those in Table 2, Table 3 and
Table 4.

Conclusions

The main hypothesis of this chapter is that a better chromatic adaptation transform could be
developed if it weie to be computed from the spectra of the iliuminants rather than simply
from their tristimulus values. In the proposed method, the spectral power distribution of the
tluminants is used to derive a sharpening transformation that is specific to the adapting
tluminant pair. This contrasts with the fixed transformation approach inherent in either the
Bradford transform or the Finlayson-Sisstrunk sharpening as it is applied in most current
chromatic adaptation transforms. The new full spectra illumination-specific sharpening
method performs better on the McCann-McKee-Taylor data, which is the main case where
we should definitely expect some improvement. Many of the other expetiments involve the
same luminant pairs (A and D65) as used in the Lam-based sharpening or ones similar to

them.

Two exceptions are the Kuo & Luo TL84-D65 pair and the Lutchi D65-WF. In the former,
the errors are both very small relative to the experimental noise; in the latter, the full spectra
method does slightly better. These results indicate, but do not prove, the potential of using

the full spectra of the illuminants as input parameters for a better chromatic adaptation
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transform. Since chromatic adaptation transforms are a crucial part of all colour appearance
models, this could also lead to improved, predictions of colour appearance. Unfortunately,
information about the actual spectral power distribution of the illuminants is lacking for
most of the existing experiments. This means that at this point, it is difficult to evaluate
conclusively the relative petformance of the method. Still, future expetiments to obtain
cotresponding colours under different illuminants should definitely include a record of the

spectra of the illuminants involved.
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CHAPTER FOUR"
RETINEX IN MATLAB™

Many different descriptions of Retinex methods of lightness computation exist. This chapter
provides concise MATLAB™ implementations of two of the spatial techniques of making
pixel comparisons. The code is presented along with test results on several images and a
discussion of the results. We also discuss the calibration of input images and the post-

Retinex processing required to display the output images.

Introduction

The Retinex model” for the computation of lightness was introduced by Land and
McCann.” Since that time Land and his colleagues have described several variants on the
original method."'****™ The variants on Retinex mainly aim to improve the computational

efficiency of the model while preserving its basic undetlying principles.
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to distinguish between physical reflectance, the sensation of lightness, and perceived
reflectance, which are three distinct entities. A single model can attempt to calculate only one
of the three — the Reﬁnex goal is to calculate the sensation of lightness. Consider the case of
two faces of a white cube, one in direct sunlight and the othet in shadow. Physical
teflectance is a measure of a property of the cube’s surface relating its radiance to its

irradiance.

The reflectances of the two faces are identical. Sensations, on the other hand, are the
appearances of the faces of the cube in the sun and the shade. To create the same

appearances in a painting, a fine arts painter would mix white with a little yellow to make the

*'This chapter also appeats as a published paper: Brian Funt, Florian Ciurea, John McCann, “Retinex in
Matlab”, Journal of the Electronic Imaging, Vol. 13, No. 1, 48-57, 2004.

* McCann refets to these models as Ratio-Product-Reset-Average, but for simplicity here we call these
operations the Retinex model. Frankle and McCann34 provide complete FORTRAN code for their algorithm
with extensive discussion of image processing steps that follow spatial comparisons.

35



sunny face, but use white with blue and a little black to reproduce the appearance of the
shadowed face. These samples of different coloured paints are measures of sensation. Here
the two faces are different.” In comparison, the question of the perceived reflectances of the
cube’s surfaces mvolves cognition. It asks the observer to recognize the paint on the cube.
Asked to repaint the cube, the observer is not confused by sun and shade, and would simply
apply white paint. In terms of perception, the two faces of the cube are identical. In contrast,
Retinex calculates lightness sensations — it cannot be used to calculate physical reflectances

or perceived reflectances.

The first model designed to calculate lightness was described in Land’s Ives Medal
Addtess to the Optical Society of America in 1968 and later published.” This lecture

included a working demonstration of a primitive electronic Retinex camera. This was

39,76,77

followed by publications and patents with additional details and improvements.
McCann McKee and Taylor' desctibed a study of human colour constancy that included
colour-matching experiments, the details of the lightness model and successful results of
modelling the experimental data. This result was further developed to show that there is no
effect of cone pigment adaptation in colour constancy.” The Retinex operators were selected
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obtain spatial interactions.

Dynamic range compression of real images was desctibed in a pateﬁt by Frankle and
McCann.” This implementation used specialized hardware (International Imaging Systems
I*S image processor with scrollable 8-bit image planes) for efficient image calculation. It
described the idea that information from 2¢ pixels is accumulated after n steps of the
process. This patent also desctibed the multi-resolution approach to Retinex calculation used

for computer applications.'®”

Appropriate Input Data

For quantitative testing of the Retinex model it is crucial that the data be calibrated in the
sense that the image digital values must be a logarithmic function of scene radiance and they
must be represented with sufficient precision. McCann® used a slope 1.0 photographic film

to capture real images (Ektachrome 5071 slide duplicating film). He was able to measure an
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in-camera dynamic range of 3.5 log units. The importance of the logarithmic function
follows from Wallach’s experiments on appearance.”’ He showed that equal radiance ratios
generate equal lightness differences. A pair of papers, ie., a 20% gray paper and a 100%
white paper, have the same lightness difference in sun and shade. The pait also has a log,,
edge difference of 0.7, regardless of illumination. If the input image data deviates from
logarithmic, then the log,, edge difference for these papers will change with illumination, and
the calculated lightness difference of the pair will change. For Retinex to work well, edge
ratios, or log, differences, within an object must be independent of illumination. Accurate

logarithmic calibration guarantees this to be the case.

Sun White 3162 3.50 255 255 255
Light Gray 1 1412 3.15 229 114 229
Gray 2 631 2.80 204 51 204 y
Mid Gray 3 282 2.45 178 23 179
Dark Gray 4 126 2.10 153 10 152
Black 56 1.75 127 5 131
Shade White 56 1.75 127 5 131
Light Gray 1 25 1.40 102 2 102
Gray 2 11 1.05 76 1 80
Mid Gray 3 5 0.70 51 0
Dark Gray 4 2 0.35 25 0
Black 1 0.00 0 0 0

Table 5. Prepating input images for Retinex processing

Table 5 describes the cate one must take in preparing input images. The data comes from
the image of two test targets: one in sun, the other in shade (See Figure 4). The shade
reduced the illumination such that white paper in the shade sends the same radiance to the
eye as the black paper in the sun. Columns four and five demonstrates the digitization of raw

image data as equally spaced log,, increments. In other wotds, convert the scene into log
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radiance and then quantize to 8 bit (0 to 255) digits (log then quantize). The first column
specifies either sun or shade illumination, The second column describes the papers in the
gray scale. The third column lists the Scene Radiance from the two identical gray scales in
sun and in shade. Note that the radiance from the black in the sun is equal to that from the
white in the shade. The fourth column lists Log Radiances of Scene Radiance values (column
3). The fifth lists the eight—bit.Quantized Log Digits for the values in column four scaled in
the 0-255 range. Column four now represents equal log increments with constant difference
of 0.35 log units in radiance. Columns six and seven demonstrate the problems arising from
quantizing before converting to log. The sixth column lists the eight-bit Quantized Linear
Digit (from values in column three scaled in the 0-255 range). The seventh column lists the
Log Quantized Digit. Here, values are computed by first rescaling values in the sixth column
to the range of radiances in column three, taking the log and then rescaling to the 0-255
range, similarly to how the fifth column is computed. The consequence of the quantization
prior to taking the logarithm is that, in column seven, all radiance values for Black, Dark
Gray 4 and Mid Gray 3 are all represented by the same digit, 0. In other words, quantizing
the log input image shows poor use of digits. Following quantization with a log;, transform
does not improve the image. Representing radiances of the input image as Log Quantized
itable input iimage for studying mgh dynamic range
images. Using Log Quantized Digits (quantize then log) makes a highly undesirable input
image. One cannot take an existing 8-bit image, apply a log to it and have meaningful input

image data for quantitative testing the Retinex model.

Nevertheless, Retinex often enhances random images that have unknown and
unknowable radiances for inputs.””*** The process improves the visibility of dark objects
while maintaining the visual discrimination of the light areas. Unlike lookup tables, which
improve one range of radiance at the expense of others, Retinex improves visual
differentiation in all ranges of radiances. The danger is that artefacts such as noise create
artificial edge information that is enhanced by Retinex processing. The ability to bring out

shadow detail is limited by image noise.
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Figure 4. The role of number of itetations and post-LUT in Retinex processing

Figute 4 is due to John McCann and demonstrates the tole of number of iterations and
postluts. The first column shows the effect of spatial compatisons (tatio-ptoduct-reset-
average). The second column is the histogram of the images in the first column. The third
column shows images that have been stretched by a different postlut for each number of
iterations. The first row shows the input log,, image scaled so that 3.5 log,, units covers 0-
255. The sun half of the image is on the right and the shade half is on the left. The shade
image is a lower radiance copy of the sun image. The histogram of this image is in the
second column. The third column image is the same as first column, illustrating that it has a
slope 1.0 postlut. Output equals input. The second row shows an output image using one
iteration, with its histogram. Here the output dynamic range has been comptressed into the

top 25% of the 0-255 digit range. A slope 4.0 linear postlut will stretch the fitst column
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image to render contrast in the sun propetly. It is very steep and generates artefacts. The
thitd row shows the output for four iterations, and its histogram. Here the range data has
been compressed from 3 log units to 1.5. A slope 2.0 postlut has only to expand the data
from 128 to 0. The fourth row shows the output for 128 iterations and its histogram. There
is only a 25% compression. A slope 1.5 postlut will be very gentle; however, the
improvement of the shadow detail in the third column output image is minimal. In this
figure we used simple linear postluts to illustrate how calibration, number of iterations and
postlut work together. To optimize the image these postluts should be shaped so as to take
into account the response of the output device and the tone reproduction curve desired. (See

Appendix IT & IIT of Frankle and McCann for details™).

Retinex Operators

The original Land and McCann paper’’ described four steps for each iteration of a Retiﬁex
calculation: ratio, product, reset and average (see® for details). With the exception of reset®
these operators have remained the same over the years. These operators are iteratively
applied to an image, but the manner in which they are applied has vatied. The focus of/ thls

chapter is to list specific details of how these four operators are applied to the image.

A fundamental concept behind Retinex computation of lightness at a given image
pixel is the comparison of the pixel’s value to that of other pixels. The main difference
between the Retinex algorithms is the way in which the other comparison pixels are chosen,
including the order in which they are chosen. They use the same calculations but have
dramatically different computational efficiencies in dealing with large real images. The
original way of defining comparisons is by following a path, or set of paths, from pixel to
neighbouring pixel through the image.”’ Lightness estimates are accumulated along the path
in a “sequential product” SP. SP starts as 1 and then is modified by multiplying it with the
ratio of the next pair of pixels along the path. In the case of path following, path length
affects the results substantially. Short paths mean the comparison is made only to othets in a
spatially localized group of pixels. Intermediate path lengths are to be used when modeling
human vision. Infinite path lengths result in a degenerate case in which the output image is
simply a scaled version of the input image. Infinite path lengths-should not be used to model
vision.** ‘
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A “reset” step is a second important feature of Retinex. Each time a comparison is
made the SP is tested; if it exceeds 1.0, it is reset to 1.0. In this case, the value 1.0 becomes
the current lightness estimate. A third aspect of Retinex i1s the way in which lightness
estitnates obtained from different paths to a pixel are combined. In earlier versions, Retinex
also included a “thresholding” step; however, it is not included in later versions' and is not
part of the MATLAB®™ implementations presented. The fourth step averages present values

of the Product with previous ones.

Implementations

We have chosen two versions of Retinex to implement. The first is a computer-based
version described by McCann,'® which we will refer to as McCann99 Retinex. The second is
an older specialized-hardware version,” which we will call Frankle-McCann Retinex. The
two versions both replace path following with more computationally efficient spaﬁal
comparisons. McCann99 Retinex creates a multi-resolution pyramid from the input by
averaging image data. It begins the pixel comparisons at the most highly averaged or top
level of the pyramid. After computing lightness on the image at a reduced resolution, ‘the
resulting lightness values are propagated down, by pixel replication, to the pyramid’s next
level as initial lightness estimates at that level. Further pixel comparisons refine the lightness
estimates at the higher resolution level and then those new lightness estimates are again
propagated down a level in the pyramid. This process continues until New Products have

been computed for the pyramid’s bottom level.

In comparison, Frankle-McCann Retinex uses single pixel comparisons with variable
separations. An important difference between this method and that described in Land and
McCann” is that there are no paths. A single pixel eventually averages different products
from all other pixels. The advantage of this structure, and also for the multi-resolution

approach, is that long distance interactions are propagated with fewer comparisons.

McCann99 Multi-Level Retinex Details

For this implementation the input images must be of dimension w*2" by h-2", where w 2 h

and w and h are integers in the range [1..5]. This constraint arises from the fact that each
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level of the image pyramuid differs from previous levels by a factor of 2 in each dimension. It

is not a serious limitation in practice.

4

The algorithm assumes that input digits are propotrtional to the logarithm of scene
radiance and are of meaningful precision. Using logarithms simplifies the computation of
radiance ratios, which become simple differences. It also implies that when results from
different spatial comparisons are averaged, the averaging is in log space and hence equivalent

to a geometric mean.

In the first step, the log image is averaged down to the lowest resolution level, which
depending on the input dimensions will be of the size 1x1, 1x2, 1x3, 2x3, 3x4, 3x5, 4x5 or
5x5. At each step the resolution level will be doubled. The number of layers in the pyramid
depends on the size of the input image. The number of layers will be the greatest power o{f 2
dividing both the width and height of the input images as calculated by the function

ComputeSteps.

When the results (called “New Products”) at one level of dimension n-by-m have
been computed, the values are then replicated to form an “Old Product” image of
dimension 2n-by-2m. In our implementation, we pad the Old Product image with zeroes to
simplify handling boundary conditions. These extra pixels are discarded at the end of the

computation.

At all levels the New Product, a precursor of calculated lightness, for each pixel is
computed by visiting each of its 8 immediately neighbouring pixels in clockwise order. Each
visit involves a ratio-product-reset-average operation,' which is implemented by the
function CompareWithNeighbor. It subtracts the neighbour’s log luminance (the ratio step)
and then adds the result to the old product (the product step). If the result exceeds the
maximum defined by Maximum, it is reset to Maximum (the reset step). Finally, the new
product for the pixel obtained by comparison to its neighbour is averaged with the previous

old product.

A crucial parameter to the McCann99 algorithm is the number of times a pixel’s

neighbours are to be visited. In the code, this is set by nlterations. It controls the number of
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times the neighbours are cycled through, which as a result affects the distance at which pixels
influence one another. This occurs because the New Product values for all pixels are being
computed in parallel, so that after one iteration all neighbouring pixels have had their New
Products values updated. Hence, in the second iteration these new values involve
information propagated from beyond a pixel’s immediate neighbours. In the limiting case of
an infinite number of iterations, the algorithm converges to produce an output image that is
simply the input image scaled by the image’s maximum value. A practical value for the
number of iterations is 4. The final step is to scale the New Product values to make an
estimated lightness (see Section “Scaling of Retinex output to desired media and purpose”).
In the case of colour images, the function Retinex_mccann99 must be applied to each of the

colour channels independently.

The code is based on MATLAB™ 5 (Version 5.1.0.421). For the teader unfamiliar
with MATLAB™, the statement IP(P > Maximum) = Maximum, which sets all values in
matrix IP that are greater than Maximum to Maximum, demonstrates an important feature
of the language; namely, that most of the functions and operators work on whole matrices

applying the given function to all matrix elements.

Frankle-McCann Retinex

As in McCann99 Retinex, Frankle-McCann Retinex computes long-distance interactions
between pixels first and then progressively moves to short-distance interactions. In Frankle-
McCann, the spacing between the pixels being compared decreases with each step. The
direction between pixels also changes at each step, in clockwise order. At each step, the
comparison is implemented using the Ratio-Product-Reset-Average operation. The process

continues until the spacing decreases to 1 pixel.

The original algorithm assumed the input image to be 512x512. This followed the
hardware design of the I?S. As a result, the initial spacing between pixels started at 256. We
have generalized the algorithm slightly so that our implementation will work on an image of
arbitrary size. In this case, the mnitial spacing (as encoded by the variable ‘shift’) 1s computed

as the largest power of 2 smaller than both of the input image dimensions.
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The function CompareWith(s_row, s_col) updates the current lightness estimate for
a pixel using the ratio-product-reset-average operation described above. In the case of
Frankle-McCann, it is based on the pixel located at a distance of s_row, s_col. The square
spiral path structure in this implementation means that when this function is called, one of
the two parameters will always be zero. The original Frankle and McCann® implementation

had the option of either square or 8-direction comparisons.

Retinex Parameters

All spatial operators use variable parameters to appropriately match their effects to input

images. For example, this is true of unsharp masking, jpeg and Retinex spatial operators.

The purpose of unsharp masking is to change the spatial content in the image,
particularly in the high-spatial-frequency components. When successfully used the image
looks sharper and free of artefacts. With inappropriate parameters the process will generate
artefacts that are visible to the observer. If we compare the effects of a particular unsharp
mask on same-size prints of a 256-by-256 digital image with the effects on an 2k-by-2k
image, we see that they act very differently. A sharpening filter that is appropriate for the
small 1mage will have no effect on large images, while an appropriate filter for the large
images will introduce artefacts in small ones. Given a print size and a viewing distance, one
can optimize the shape of the filter kernel. The choice of sharpening kernel is selected so as
to keep artefacts below visual threshold, which is a function of both spatial frequency,86 size

of the display” and light intensity of the display.”

An analogous spatial dependence is found in jpeg compression whete knowledge of
human sensitivity to spatial information is used to reduce the number of bits for rendering a
visually similar image.” When we select a quality factor, we are controlling an underlying
array of coefficients that filter the data so as to reduce the data needed to recreate the image.
To make two same-size prints from a 256-by-256 versus a 2k-by-2k image requires different
jpeg coefficients. Any reduction in information will likely be visible in the small number-of-
pixel imagé, while the larger image might well be compressed by factors of 10:1 or 20:1
without noticeable effect. The difference arises because the size and viewing distance control

what information the obsetrver can see in the final prints.' Large digital files often contain
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more information than can be seen in a small print. This is the information that jpeg
discards. As with unsharp masking the yser specifies the spatial parameters to optimize

performance and avoid artefacts.

Retinex has parameters that are responsive to both spatial frequency and dynamic
range of the input data. The number of iterations, as specified in the MATLAB™ code by
‘nlterations’, controls the amount of dynamic range compression and sets the stage for a
different level of post-processing by a postlut. The term “postlut” detives from historical use
of image processing hardware using a lookup table. Postlut processing simply refers to the
application of a function f applied uniformly to every image pixel, I(x,y)=f(I(x,y), for all

image locations (x,y). The effect of the number of iterations can be seen in Figure 4.

As we can see the effect of the number of iterations (nlterations) is to reduce the
contrast of the images as demonstrated by the smaller range in the histograms. The proc.ress
moves the entire image into a smaller dynamic range, with smaller digit differences
representing edge ratios. With very few iterations, the range of output digits is small. The
postlut expansion (stretching of the image intensities) must be large to regenerate edge raﬁos
appropriate for a print. With more iterations the range of output digits is larger. The postlut
expansion will be moderate to regenerate edge ratios. With a very large number of iterations
the range of output digits is large, approaching that of the input image. The postlut
expansion must be small to none to regenerate edge ratios. The amount of postlut

expansion and its shape will vary with the amount of dynamic range compression.

The examples of unsharp masking and jpeg compression demonstrated the need for
selecting the right parameters to match viewing size and viewing distance. Analogously, the
viewing distance, the viewing size, the dynamic range and noise level of the input image, the

number of iterations, and the postlut are all important to make artifact-free Retinex images.

Scaling of Retinex output to desired media and purpose

As shown in Figure 4, the contrast of the output is controlled by the number of iterations.
This parameter can vary the output from radical to no dynamic range compression. The

input data also plays a major role. The total dynarnic range of input data determines the
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magnitude of radiance ratio associated with each digit. The final parameter is the postlut that
matches the final new product with the output media. That media can be a printer, a
monitor, 2 LCD display, a system profile, a 3-D plot of output at each pixel (output cqual
height), a pseudocolour image. The essential idea is that the input calibration controls the
correlation between digital differences and radiances in the world. The number of iterations
controls the degtee of compression. The postlut controls the rendition of New Product
digital differences in the output media. All three parameters (input dynamic range, number
of iteration and postlut) ate crucial to the process. All three share the control of the output

image. They can be used only as well designed sets. They are not randomly interchangeable.

Results on Test Images

Figure 5 through Figure 8 illustrate the behaviour of the two algorithms. Figure 5 shows the
behaviour when the input is a simple square at the very centre of the image. A slight
asymmetry can be seen in both the McCann99 (using 4 iterations compating 8 nearest

neighbours) and Frankle-McCann (using 4 iterations of 4 directions) outputs.

| @ ©

Figure 5. Effect of McCann99 and Frankle-McCann processing on input of a single bright square
against a black background. No post-LUT has been applied to enhance the visibility effect

In the limiting case of the square being a single pixel, this is analogous to the point spread
function for the algorithm. It must be noted that because of the reset step, the shape of this
function varies depending on direction of individual comparisons the image content.
Frankle-McCann used different pattetns of spatial comparisons to minimize these effects.
From left to right we have: input image, McCann99 4-iteration output, Frankle-McCann 4-

iteration output.
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The calculations in Figure 5 used the same pattern of spatial compatisons for each
size of compatrisons. The otiginal Frankle and McCann calculation changed the order of the
ditection of comparisons in each size of spatial separation. This sequence of the spatial
ptocess was controlled by a lookup table of compatison directions. Such randomization of
the compatison process minimizes the directonal gradients shown in Figure 5.
Alternatively, one can change the averaging process controlling the Old Product. If all the
reports from different direction were averaged before changing the value of the Old
Product, then these calculated spatial asymmetries are not observed. The use of postluts and
motre complex sequences of spatial compatisons all contribute to reducing the magnitude

visibility of asymmetries.

Input : ! Output

5 i iMaunsn rwr e ~ 1L L T ey N e T
Figure 6, Logvinenke cubes patters illusion. As shown on the left, the input values of the cube iops

are equal despite the fact that we see them as unequal. McCann99 4-iteration Retinex output values
are shown on the right.

Figure 6 shows Logvinenko’s gradient experiment, which generates a large lightness
change between the diamonds. A vertical sinusoidal gradient in non-diamond areas creates
the illusion. The numbets on the left side of Figure 6 show that the input digits for the light
and the dark diamond faces ate both 139. The numbers on the right show the output from
the cortesponding faces to be 152 and 163 after McCann99 4-iteration processing. McCann'®
reports that “Retinex models can predict appearances that were previously attributed to
cognitive behaviour.” Despite the fact the upper cube faces on alternating rows appear to
differ in intensity, the top faces of all the cubes are in fact both uniform and equal. In the
output, however, the top faces of the cubes are no longer equal nor are they completely

uniform.
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Figure 7. Pseudo-colour reptesentation of a portion of the Logvinenko cubes input (left) and
McCann99 4-iteration output (right).

Figure 7 shows pseudo-colour renditions of input (left) and output (right) of the Logvinenko
illusion. The diamond shaped tops of the cubes are equal on the left and unequal on the

right. Note that the upper faces of the output cubes are not uniform.

Figure 8 shows the effect of McCann99 applied to a colout image with a substantial
blue colour cast. The algorithm has been applied to each of the colour channels
independently. Clearly, in this case the colour cast has been removed. Retinex differs from
many colour constancy methods in that it does not aim to find a single chromaticity for the
scene illumination as is the case, for example, in the neural network™ and colour by
correlation'” methods. Retinex instead adjusts the image colours in a non-global manner as is
necessary since the model attempts to match human visual response. Some effects of this
can be seen in the way that in Figure 8B some of the green bleeds into the white area
surrounding the “C” in “Compiler,” and the way the blue is darkened near the white lettering
on the right-hand blue book.



Figute 8C

Figure 8. (A) Input with blue colour cast created by scene illumination for which the cameta was not
balanced; (B) Output from the McCann99 4-iteration; (C) Output from the Frankle-McCann 4-
: iteration. -

Note that both the input and output images have been adjusted with postluts for printing.
The actual Retinex input image is in log space. The image also has extended dynamic range

obtained by frame averaging.

Discussion

This work describes the basic Retinex algorithms in MATLAB™ code. It provides the
starting point for many different implementations fotr many possible vatiations. This code is
the basis of making spatial compatisons in a very efficient manner. In carefully calibrated
situations it can be used as the basis for a model of human colour appearance. This requires
accutate calibration in both the luminance and spatial frequency domains. Numbers of
iterations for each pixel separation ot level of pyramid processing must match human spatial
frequency data.”'*™ Alternatively, it can be used to enhance images of unknown calibtations
in digitization. In an uncalibrated mode it is more limited. The system works by enhancing
edges. If poor calibration introduces edges from noise, the process will enhance the noise.
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Nevertheless, uncalibrated input images generally appear better with Retinex processing than

without it. ,
As in many image-processing operations,” there are three sequential steps :

1. Taking the raw input and transforming the information into an image space appropriate

for the process.
2. Performing the process

3. Scaling the output result into a space appropriate for end use. In this particular case, the
input converts the captured digits into a space in which constant scene edge ratios have
constant differences in digits. With an appropriate output scaling, this property can be used

by the process to model visual appearance.

The process assumes that the visual system uses edges to synthesize appearance. The
Retinex algorithms provide an image processing engine that synthesizes sensation images
from spatial comparisons of radiance inputs. The meaningful parameters in McCann99 are
the pyramid level and the number of iterations. In Frankle and McCann it is senaration and
number of iterations. In McCann, McKee and Taylor it is path length and number of paths.
A number of studies expetimentally measuted the appearance of a variety of achromatic and
colour constancy experiments. Using this quantitative data it is possible to experimentally

optimize the parametets of the model."”

The details of this aspect are found in Chapter 6
and in McCann and Savoy.” All of these studies indicate that the human visual system is
neither local, nor global with regard to spatial interactions. Neither local centre-surround
operators, nor global gray world models can account for psychophysical results. The spatial
frequency filter applied by human vision is image dependent.** The effect of maxima have an

effect over large distances, but varies with distance and enclosure.”

In the examples described above, we used constant values for number of iterations
for all levels of pyramid. Although efficient, this is not the best set of parameters for
modeling human vision. An obvious vatiation is to have different numbers of iteration for
each size. Franke and McCann used. diffetent numbet of ‘iterations for each size of

separation. They also changed the pattern of directions to remove the pattern found in
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Figure 5. The 1, 4, and 128 iteration images in Figure 4 could be desctibed by their spatial-
frequency content. The difference between the input and output images describes a spatial
filter. That filter can be resolved into a two-dimensional spatial filter, or set of spatial filters.
Since the work of Campbell and Robson, and Hubel and Wiesel, human visual processing
has been regarded as sets of spatial channels.” As demonstrated in Figure 4, the number of
iterations controls the strength of the filter. The greater the number of iterations the weaker
the filter. The size of the separation or the pyramid level controls the spatial frequency of the
response. The number of iterations at that level controls the strength of the filter at that
frequency. Just as human vision requires models using multi-channel with different filter

strengths, the Retinex models should have the same spatial frequency tuning.

Sobol™ has desctibed variations to the Retinex process that uses lookup tables to
control the magnitude and shape of edges at different spatial separations. This algoritbm
produces dramatic images. The ability to control different spatial frequencies adds

considerable power to the algorithm. In addition it makes the model more like human vision.

An important final variation is the use of the spatial comparison engine for garﬁut
mapping problems. Examples are found in*. The principle is straightforward. If displays and
printers had the same colour spaces then tristimulus matches would be able to successfully
transform display/print images. However, they occupy only half of theit combined physical
colour space. Using strict colorimetric matches creates problems with extra-gamut colours.
All of the variation between the gamut of the smaller space is represented by the gamut
value. This clipping of local detail produces undesirable artefacts. Many algorithms
systematically distort the colotimetric matches to achieve an image with a better appearance.
All the transforms increase the colotimetric etrors.**”

The Retinex approach uses two different sets of RGB input images. One image
(Goal) has digits representing the colour space values of the large gamut desired image. The
other image (Best) has digits representing the colour space values of the best colorimetric
reproduction possible in the smaller gamut media. The RGB Goal images are used to supply
the ratios. The Best image is used to supply the reset values. The rest of the process is the
same as described above. The colour gamut calculation provides an excellent example of
using the Retinex spatial-compatison process to generate hew sensation images that have
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very similar appearance with different radiances at each pixel. Experiments have shown that
human spatial processing is key to undegstanding colour constancy, high dynamic range
sensations and transparency.97 Further, spatial comparisons can be used to simplify gamut
mapping algorithms. As long as spatial comparisons are constant, near constant appearances

can be made from very different stmuli.

Conclusions

This chapter presents new, very concise MATLAB™ irnplementat{ons** of two of the main
practical Retinex algotithms. Our hope is that this will eliminate much of the varability in
what is meant when different researchers refer to Retinex and thereby facilitate further
rigorous testing and discussion of the method. For modelling human vision these
MATLAB™ programs depend on calibrated input data. Although these MATLAB™
programs provide the details of how pixels are compared and processed during the ratio-
product-reset-average steps of Retinex processing, they do not provide details on the
selection of an appropriate postlut for a particular output device. The problem of adjusting

the postlut is addressed in Chapters 5 and 6.

*The MATLAB™ code and figures are also available electronically at http://www.cs.sfu.ca/research/
groups/ Vision/
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CHAPTER FIVE*
CONTROL PARAMETERS FOR RETINEX

s In the previous chapter we provided Matlab implementations of the Retinex algorithm,
which has free parameters for the user to specify. The parameters include the number of
iterations to petrform at each spatial scale, the viewing angle, image resolution, and the
lookup table function (post-lut) to be applied upon completion of the main Retinex
computation. These parameters were specifically left unspecified since the previous
descriptions of Retinex upon which the new Matlab implementations were based do not
define them. In this chapter we determine values for these parameters based on a best fit to

the experimental data provided by McCann et. al.’

Introduction

The Retinex model for the computation of lightness was introduced by Land and McCann’’
in 1971. Land and his colleagues later desctibed additional improvements to the original
method."***"* These further refinements were mainly designed to improve computational
efficiency while preserving the Retinex principle of comparing pixel values from different
spatial locations. Matlab code for two of the main Retinex algorithms is provided in the

Appendices.

Even though the Retinex algorithm is well documented, there are still many things
which need to be specified before it can be used as a model of human colour or lightness
perception. In particular, there are parameters which are sensitive to both the spatial
frequency and the dynamic range of the mput image. We estimate values for these
parameters based on fitting the experimental data obtained by McCann, McKee and Taylor.!
We will refer to their study as the MMT (McCann-McKee-Taylor) experiment. A central part

of the MMT experiment involves haploscopic matching of Munsell papers arranged in a

*This chapter also appears as a published paper;vBﬁan Funt and Florian Ciurea, “Control Parameters for
Retinex”, in Proc 9th Congress of the International Color Association, 287-290, 2001, Rochester, NY.
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Mondrian display.! Our procedute is to reconstruct digital images corresponding to the cone
responses of the standard observer, and then run the Retinex algorithm on that data while
varying the algorithm’s parameters to find those for which the program’s output best

matches the MMT corresponding colour data.

Preparing Retinex Input Data

Our goal is to determine the values of the free Retinex parameters which make Retinex work
as accurately as possible as a model of colour appearance in complex visual scenes. In the
MMT experiment,' subjects alternately viewed a Mondrian with one eye and a Munsell chip
with the other eye. For each colouted area in the Mondtian, the subjects chose a matching
Munsell chip. The experiment was repeated under 5 different combinations of three
narrowband illuminants. The results in' are reported in tetms of the designators of the
matching Munsell chips. In this paper we rely on the corresponding CIE tristimulus values

estimated by Nayatani et. al.”®

Our first step was to construct an LMS image of the Mondrian used in the MMT
experiment as it would be under each of the 5 illuminants. The layout of the colour patches

o~ ol LY.
L

in the Mondiiain is given in MMT'. We convert the corresponding XYZ of each patch as

estimated by Nayatani” to cone quanta catch values using the following transformation:”

L 0.38971  0.68898 0.07868 | | X
M |=]-022981 1.18340 0.04641|-1Y (15)
S 0 0 1 Z

Similarly, the XYZs of the matching Munsell chips are converted to LMS. The natural
logarithm of each L, M, S value is then taken since the Matlab Retinex implementations
require the logarithm of the image as mput. Retinex is run on each of the L, M and S

channels independently.

Post Retinex processing

The post-Retinex processing consists of four stages: exponentiation, scaling to white,

conversion to Munsell Value scale, and compensation for differences in overall illumination
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intensity. Exponentiation of the Retinex output simply compensates for the logarithm which
was applied to the input data. Scaling to white is required because the Retinex algorithm
normalizes each of the LMS channels to 1. After Retinex processing an ideal white patch will
result in (1,1,1); however, the LMS value of the Munsell white (MMT area K) under the
‘white’ illumination in the MMT experiment is (92.55, 72.84, 49.23). Hence, we scaled the
Retinex output values to make the Retinex white equal the MMT white. The three scaling
factors, one for each channel, were then held constant across the 5 MMT illumination

conditions.

The second post-Retinex stage is to convert to Munsell Value scale, which is required

because McCann et. al. compare the colours in the Mondrian to the matching Munsell chips

using it. They convert integrated reflectance p (e.g., L/Lwhite) to Munsell Value using the

: : 100
approximation:

V =2.539p" —1.838, for p > 0.384% (16)

The third stage is to compensate for differences in overall illumination intensity between the
test and match conditions based on the data in Figure 8 of MMT. McCann et. al. found that
overall intensity affected subjects’ matches. Hence, we incorporated their correction factor
as a function of the ratio of overall illumination between the two scenes. By analyzing MMT
Figure 8, we computed the cortection to be added to the Retinex output converted to

Munsell Value, based on the scene radiances E at 630-nm, 530-nm and 450-nm as:

Cotrection® =1.53xlog,,(Bee . /ES Y+0.04
Correction®™ =1.19xlog, B . /ED )+0.11 (17)
Correction™ =0.93xlog,, B/ Eae ) +0.01

Results on choosing the parameters

To establish the optimum choice for the number of Retinex iterations, we ran Retinex with
the number of iterations (parameter nlterations in the Matlab implementation) varying from
1 to 500. The post-Retinex processing described above was then applied in each case. For

each iteration setting, we computed the difference between the final Retinex prediction and
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the matching Munsell chip data found in the MMT experiment. The image difference

measure is the RMS over all pixels of the following single pixel difference measure:

d; R 1)~ M@ 1)) =\/ 2 REGH)— MG )’ (18)
c=L,M,S

R®(3, j) denotes the pixel value at channel ¢ for Retinex output including post-processing;

M*(4, j) denotes the pixel value at channel ¢ for an image of the Mondrian made up of

Munsell matching chips.

We found that for each of the five different MMT expetimental set-ups—*“gray”,
“red”, “blue”, “green” and “yellow”— different numbers of iterations were required to give
the best match to the matching Munsell data. Although the number of iterations varied

across the cases, 33 iterations gave the best overall result.

Image resolution 1s another variable which must be considered. To determine how

the optimum number of iterations might be affected by image resolution, we constructed

images of otherwise identical Mondrians at resolutions of 128x128, 256x256, 512x512 and

optimum number of Retinex iterations required as a function of image resolution.

The following graphs illustrate how the number of iterations affect the distance between the

Retinex prediction and the actual image as seen by the observers, for each experiment. For

these tests we ran Retinex with input images of 256x256 pixels.
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Figure 9. MMT “gtray” experiment. The accuracy of Retinex as a model measured by the RMS
difference between the Retinex output and the corresponding colour data as a function of the number
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of Retinex parameter nlterations.
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Figure 10. MMT “red” experiment. The accuracy of Retinex as.a model measured by the RMS
difference between the Retinex output and the corresponding colour data as a function of the number

of Retinex parameter nlterations.
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"blue” experiment
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Figure 11. MMT “blue” experiment. The accuracy of Retinex as a model measured by the RMS
difference between the Retinex output and the corresponding colour data as a function of the number
of Retinex parameter nlterations.
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Figure 12. MMT “green” expetiment. The accuracy of Retinex as a model measured by the RMS
difference between the Retinex output and the corresponding colour data as a function of the number
of Retinex parameter nlterations.
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Figure 13. MMT “yellow” experiment. The accuracy of Retinex as a model measured by the RMS
difference between the Retinex output and the corresponding colour data as a function of the number
of Retinex parameter nlterations. -

Conclusions

For the MMT experiments we have been able to solve for the parameters needed in the
Retinex algorithm, based on a best fit with the experimental data. We have found that if we
run either of the Matlab Retinex algorithms, the optimum results can be obtained by
choosing the number of iterations to be 33. An interesting finding was that the image
resolution has very little effect on the accuracy of prediction. Details of the post-Retinex
processing step were also established. Although we have established parameters for the
Retinex computation based on the available MMT data, it would be helpful to have more

extensive experimental data to improve the reliability of the results.
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CHAPTER SIX*
TUNING RETINEX PARAMETERS

The goal of this chaptet is to understand how the Retinex parameters affect the predictions
of the model. A simplified Retinex computation is specified in the MATLAB™
implementation provided in Chapter 4; however, there remain several free parameters which
introduce significant variability into the model’s predictions. Here we extend previous work
started in Chapter 5 on specifying these parameters. In particular, instead of looking for
fixed values for the parameters, we establish methods that automatically determine values for
them based on the input image. These methods are tested on the McCann-McKee-Taylor
asymmetric matching data' along with some previously unpublished data that include

simultaneous contrast targets.

Introduction

The Retinex MATLAB™ implementations presented in Chapter 5 have three important
mput parameters: the number of iterations the algorithm performs at each level of its multi-
level computation, the “post-lut” output lookup table function, and the input image size.

The modeD’s final output depends strongly on the values chosen for the parameters.

The Retinex model aims to predict the sensory response of lightness. In Chapter 5
we suggested values for the parameters based upon fitting the model’s predictions to the
data originally desctibed over 35 years ago by McCann, McKee and Taylor." This fit led to
the conclusion that 33 iterations had the lowest global average of the differences between
observer data and computed values, assuming that the number of iterations was constant for
all levels of the multi-resolution computation. However, McCann" felt that 33 was too high a
number, and would not lead to a good model of simultaneous contrast. Hence, together we

began the cutrent series of experiments by including previously unpublished data from

" This chapter also appears as a published paper: Flotian Ciurea and Brian Funt, “Tuning Retinex Parameters”,
Journal of the Electronic Imaging, Vol. 13, No. 1, 58-64, 2004.

* John McCann, personal communication

60



lightness matching expetiments with simultaneous contrast targets. We also added other
unpublished data for targets containing a,fixed set of patches of various shades of gray

appeatr on a background that varied from black to gray to white.

For the simultaneous contrast data, we indeed did find that a much smaller value is
required for the iteration parameter in order to make a good fit. However, we could no
longer find a universal value for the number of iterations that simultaneously would
minimize the etror for the combined data from the MMT (McCann-McKee-Taylor), SB
(fixed scale of grays on different backgrounds), SC (simultaneous conttrast) and GW (gray on
white). This led us to consider a method of automatically calculating how many iterations to
use based on how the computation was proceeding. As described in the Chaptet 5, the post-
lut processing needs to change as a function of the number of iterations, so this led to a

method of automatically calculating the appropriate post-lut.

Number of Iterations

The two MATLAB™ implementations (see Appendices) ate refetred to as McCann99
Retinex and Frankle-McCann Retinex. For brevity, we concentrate hete only on McCann99
Retinex, but the tesuits are similar for both versions. McCann99 Retinex creates a muiti-
resolution pytamid from the input by averaging image data. It begins the pixel comparisons
at the most highly averaged, or top level of the pyramid. After computing so called New
Products (precursors to the final lightness estimates) on the image at a teduced resolution,
the resulting New Product values are propagated down, by pixel replication, to the pyramid’s
next level as initial estimates at that level. Further pixel comparisons refine the estimates at
the higher resolution level and then those new estimates are again propagated down a level
in the pyramid. This process continues until values have been computed for the pyramid’s

bottom level.

At each level, the basic step is the compatison of each pixel to each of its immediate
neighbors.  The number of iterations refets to the number of times all the immediate
neighbors are cycled through before moving down to the next level in the pyramid. Since
pixels are only directly compared to immediate neighbors, compatisons to more distant

pixels at the current pyramid level are only made implicitly by propagation of information
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from pixel to pixel during these iterations. Hence, increasing the number of iterations
increases the spatial distance across which pixels are related during the computation.
McCann99 Retinex uses the same number of iterations at all levels and so thete is only a
single iteration parameter to specify and have limited this paper to considering a single value

for all levels.

Post-lut processing

Postlut processing refers to applying a function f uniformlyv to every image pixel,
I(y9)=f1(x)), for all image locations (x,y) immediately after the main Retinex computation.
The term “postlut” derives from historical use of image processing hardware using a lookup
table (lut) as a final post-processing step. Post-lut processing is important in bringing the
final result into the approptiate dynamic range, compensating for differences in overall
fllumination intensity between test targets, and in converting to the coordinates of Munsell
Value scale used in recording the expetimental data. Although all these factors can be

thought of separately, they are all eventually combined into a single post-lut function.

The first post-lut step adjusts the dynamic range. Retinex output from the pyramidal
spaiial comparison stage, falis in the [0,1] range. Because the value 1 represents ‘white’ and
Retinex assumes thete is at least one white pixel in every image, the value 1 necessarily arises
in the output. However, the lowest output value depends on the image content and varies
with the number of iterations used. The fewer the iterations, the more local the spatial
compatisons will be, and therefore, the less the likelihood of big intensity differences being
found. As a result, the fewer the iterations, the higher the minimum Retinex output value
(Figure 4 illustrates this effect). The first purpose of the post-lut is to stretch the Retinex
output to a reasonable range. Since the amount of stretching needed depends on the number
of iterations, and we vary the number of iterations in our experiments, we decided to always
lineatly scale the Retinex output to the full [0, 1] range. This stretch does not correct for the
fact that the number of iterations performs a non-linear compression of the image. The
post-lut is not fixed, but rather depends on the input image and number of iterations used.
This decision effectively means that we are assuming that there is at least on black location in
the test target. While this assumption need not be true for images in general and could lead
to etrors in Retinex predictions, it is true for all the test targets subjects viewed.
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After scaling to the [0,1] range, the post-lut then converts the Retinex output values,
p, to the lightness scale used for recording.subject’s matches. For the MMT data set, the

conversion is to Munsell Value scale V'* described in Equation 16.

For the SB, SC and GW data sets, the conversion is to a lightness scale described by Stiehl
et. al.'” Based on a fit to the raw data, we use the following function to convert the log

luminance to the lightness scale values, L:
L=129.6-p"® -132.45 (19)

The final post-lut component compensates for differences in overall illumination intensity
between the test and match conditions. Only the MMT experiments involved such intensity
differences. The compensation is based on data from Figure 8 of McCann, Land and

Tatnall.”? Generally, the effect of this correction is slight. Details are provided in Chapter 5.

Lightness Matching Data

The experimental technique for the MMT matching expetiments was reported a long time

: 2 2 - To~
ere 18 based on expertments by Mclann, which wWcre aiso

ap0.” The “new’ data we report h
conducted earlier, but not previously reported in the literature. These experiments involve
transparent greyscale targets lit from behind with uniform illumination. Subjects were asked
to report the lightness of each patch in the target display using a standard lightness
transparency display as a reference. The standard lightness display consists of 25 squares of
different lightness values against a white surround. The squares are atranged in a serpentine
path such that the change in lightness from any of the 25 squares to the next is constant'"".
In the resulting lightness scale, 1.0 corresponds to an opaque area and 9.0 to the brightest
area. The experiments were based on 4 to 7 subjects, which each subject tepeating the

matches on 3 different occasions.

The matching procedure was set up such that in the normal viewing position, the
subject saw the test display as the only thing in the field of view. By turning 90 degrees to the
right, the subject would see instead the standard lightness display as the only thing in the

field of view. Subjects were allowed to look back and forth between viewing the test display
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and the standard display as many times as desited without a time constraint.”® The test

display and the standard lightness display had the same level of luminance.

Figure 14, Figure 15, Figure 17, Figure 19, Figure 20 and Figure 22 illustrate the
targets along with the corresponding luminance, pixel value for each patch as input to the
Retinex algorithm, and average observed lightness reported for each patch. All the patches
have uniform luminance. It should be noted that the figures atre intended only to illustrate
the corresponding targets. They are not accurate reproductions of the targets. Their printed

appearance is not the same as under the controlled experimental conditions.

Match | Sl | Calc. | Cale-

nance value dev Match

G 1001 255 8.75 0.15 9.01 -0.26
E 595 236 7.55 0.20 7.66 -0.11

Figute 14. “Scale on White” tatrget along with patch identification, the luminance values measured in
the original display, the digit representing log luminance, the mean and standard deviation of
observer matches in Munsell Value units. The sixth column lists the calculated Lightness for all
iterations above 3. The seventh column lists the eftors between Obsetved and Calculated Lightness.



The calculated lightness for the “Scale on White” display are nearly constant with changes in
“Number of Iterations”. In a solid white surround all gray patches have a constant value
after the third iteration. As shown in the table in Figure 14 the calculated lightness values
(sixth column) are close to the observer matches (fourth column). There are residual errors
(seventh column) with an average value of 0.42 + 0.2. Since the white surfound is the
control case that establishes the shape of the lookup table, the lack of perfect cotrelation is
due to experimental and lookup table error. These errors have no effect on the analysis of

number of cycles, but contribute to any global average.

Figure 15. “Scale on Gray” target along with patch identification, the luminance values measured in
the original display, the digit representing log luminance, the mean and standard deviation of
observet matches in Munsell Value units and the calculated values for the best fit to observer match.
The iterations column list the numbet of itetations for best fit for Calculated to Observed Lightness.
The average number of iterations for best fit from Areas E, I, C, J, H, and D is 26.33 * 2.88, while the
avetage that included ateas G and F is 26.13 * 13.32. The best fit for “Scale on Gray” is 26 iterations.
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Figute 16. “Scale on Gray” calculated lightness as a function of “Number of Iterations”. In a gray
surround all gray patches except white decrease with increase of number of iterations. The number of
iterations has significant effect on the calculated values of grays. Area E, the lightest gray has a
calculated lightness equal to white up until 20 iterations. Areas E, I, C, H, D, and F show different
degrees of hon-monitonic dectease in calculated Munsell Lightness. The datkest gray, Area F, and
mid-gray, Area [, both show sécond phase starting at 20 iterations. A slightly lighter gray, Area C,

shows a similar change in slope at 35 iterations.
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Figure 18. “Scale on Black” calculated lightness as a function of “Number of Iterations”. In a black
surtound all gray patches except white decrease with increase of number of iterations. Area E, the
lightest gray has a calculated lightness equal to white, up until 30 iterations. Areas I calculated
lightness begins to fall at 25 iterations. C and J calculated lightness begin to fall at 12 iterations. The
darkest grays begin to fall at 5 iterations.
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Figure 19. “Gray on White” tatget along with patch identification, the luminance values measured in
the original display, the digit representing log luminance, the mean and standard deviation of
observer matches in Munsell Value units. There is no significant change in calculated values for
white and gray. Black values vary fot iterations of 1 to 7. The best fit is 3 iterations with a calculated
value of 1.16, while observed value is 1.13. The calculated asymptotes are 1.00, 6.29 and 9.01.

Lumi- | Poeel | ppen | seddev
nance value
I C 1001 255 8.85 0.18
| D 321 213 6.16 0.40

Figure 20. “Simultaneous Contrast” tatget along with patch identification, the luminance values
measured in the original display, the digit representing log luminance, the mean and standard
deviation of observer matches in Munsell Value units,
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Figure 21. The best fit is 6 iterations for Gray on White and 8 for Gray on Black.
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Figure 22. “Simultaneous Contrast - Strip”. Best fit is 6 iterations for Gray on White and 8 iterations
for Gray on Black.



Discussion of Results

The principle effect of selecting the number of iterations is to establish the degree of local
vs. global influence from spatial comparisons. As seen in the above data, it has no effect on
grays in a white surround and significant effect on grays in a black surround. Using a very
large number of iterations so as to have the lightness asymptote to the limit of the
calculation makes the output approach the input.”® That special case setves no purpose.
Human observers make matches consistent with mechanisms that ate between local and
global. McCann, McKee and Taylor' reported good fit from their experimental data using a
path algorithm of length 200 hops, a moderately global process. In Chapter 5, we reported
33 iterations for experiment that applied the same number of iterations for all spatial
channels. In these experiments it is clear that an intermediate number gives the best results
for the “Scale on Gray” target (Figure 15) and “Scale on Black” target (Figure 17). In
addition, the best fit to observer data is with very few iterations with larger gray patches.in

the Simultaneous Contrast series. Seven iterations gave the best fit.

The displays that requited the fewest iterations had large uniform surrounds. The
scale displays had slightly smaller test patches and there were many more of them. The
Mondrians had many more patches with smaller angular subtends. This, combined with

02 suggest that different number of iterations in each

results of other recent e:xpe:rim(=,nts,94’l
spatial channel will give the best overall fit to experimental data. Frankle and McCann used a

table to control the number and direction of comparisons for each spatial channel.

Larger simple displays generate large signals in the low spatial frequencies or highest
levels of the image pyramid. These channels need few spatial comparisons. Scales displays
generate signals with higher spatial-frequency information and these channels best fit the
observer data with mote iterations. The colour Mondrians have the most high spatial-

frequency information and these channels need the highest degree of spatial comparisons.

Automatic Selection of the Number of Iterations

To investigate the advisability of automatic processes to measure the optimal number of
iterations (i.e., cycles of comparing a pixel to its neighbours at each pyramid level), we

plotted the RMS (root mean square) etror between the mean lightness values reported by
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human subjects and those predicted by Retinex as a function of the number of iterations.
The variation in error is shown in Figure 20 for the case of the SC and GW data from Figure
17 through Figure 20.

Since subjects reported a single lightness value for each patch, we calculate the
Retinex lightness of a patch as the mean of the Retinex lightness values for all pixels from
the patch. The Retinex prediction error for a patch, therefore, reflects the difference between
the Retinex lightness estimate and the mean across all subjects of the lightness of the
matches made for that patch. The overall prediction etror for a target is the simply the RMS

of the errors for the individual patches it contains.

For the simultaneous contrast targets (SC), the minimum target prediction error
occurs when the number of iterations is small, as can be seen from Figure 23. The’ line
labelled “GW”” shows the average RMS error of Retinex predictions in lightness units for tl;e
case of a target (Figure 19) in which there are three areas: the gray centre, the white surround
and the black background. At one iteration, with a linear post-lut that expands the dynamic
range of the raw Retinex output to [0..1], the RMS value is 0.9. That is much larger than ti;e
standard deviation of observer results of 0.52, 0.23 and 0.13. Increasing the number of
iterations to 10 causes a drop in RMS values to 0.2 units. From 10 to 50 iterations the values
drop from 0.2 to 0.1. For this target, any number of iterations over 5 does reasonably well at

matching the observer data.
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Simultaneous Contrast

Figutre 23. Simultaneous Contrast (SC) and Gray on White (GW) targets: RMS error measuring the
difference between Retinex lightness predictions and subjects’ reported matching lightness as a
function of the number of iterations.

The thin line labelled “double” represents the data from Figure 20. In this

simultaneous contrast tatget the prediction error (average etror over all patches) is at a

within the datk gray sutround ate very sensitive to the number of iterations. This target is of
patticular interest because the two central grays have different perceived lightness values
although the patches have the same luminance. With too few iterations the calculated value
for the gray in black is too high. At the point of minimum error, the calculation renders the
gray-in-black one lightness unit higher than the gray-in-white. This actually conforms to the
obsetvet’s predictions for this target. When the number of iterations is increased beyond 7,
Retinex repotts that the two grays are almost identical in lightness. This means that with too

many iterations the simultaneous contrast effect is no longer predicted correctly.

Figure 24 shows the average error for the targets from the combined MMT, SB, SC
and GW data sets versus the number of iterations. The minimum error now occuts when the
number of iterations is quite large; although, the curve is quite flat so the minimum is also

not very distinct.
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Figure 24. RMS error in Retinex lightness prediction averaged actoss MMT, SB, SC, GW experiments
as a function of the number of iterations. For each choice of the number of iterations parameter, the
same choice is then used for Retinex for all targets.

From Figure 15, Figure 17, Figure 21, Figure 23 and Figure 24 it is clear that there 1s
no single optimal choice for the number of iterations based on minimizing the RMS error
measurement alone. The numher of iterations required to minimize the error for one target
does not necessarily minimize the error for other targets. Therefore, a stopping condition
providing a method of adjusting the number of iterations automatically on a case-by-case
basis is required. Note that the stopping condition cannot be based on minimizing the RMS

error directly, since the subjects’ matches are not available to Retinex — the lightness matches

are, after all, what Retinex is supposed to be predicting.

We introduce and test two possible stopping conditions: one based on the relative

18 the second based on the average brightness of the Retinex

change in Retinex output,
output. We will refer to them as the change-based and brightness—based stopping conditions.
The change-based condition measures the change in Retinex output as the number of
iterations is increased from # to #+7 and stops when the change becomes small. Although
this is analogous to the situation of numerical solution of a typical optimization problem
where the minimization process is iterated until the change becomes small enough, it is not

precisely the same. The difference is in the meaning of the term ‘iteration’. In the

optimization case, the entire process is repeated until convergence; whereas, in the Retinex
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case, the processing is not being repeated in its entirety. Here the number of iterations
denotes the number of times the process pf cycling through the neighbours is repeated at

each level.

Let R be the Retinex output at location x when Retinex’s iterations parameter has
been set to #. The change-based Retinex stopping condition for an image of IN pixels and

threshold ¢ can be expressed as:

\/Z (RI™ = RI)

N

IA
I

(20)

Using this stopping condition, the number of Retinex iterations will vary with the mnput
target. What 1s the optimal value of & We determined an optimal value for it by brute ‘force
search. In other words, we chose an initial high value for ¢, ran Retinex on all the test targéfs
and calculated the RMS prediction error, decreased ¢ by a small amount and repeated the
process. A minimum occurs at ¢ = 0.015. The average prediction error drops to 0.62. In
comparison, the minimum average error for any fixed choice of the number of iterations,(/as

shown in Figure 24) was 1.71.

The second brightness-based stopping condition is based on the observation that
Retinex reaches an optimal solution for bright targets (ones for which the average of all
image pixel values is high) at fewer iterations than for dark ones. This effect can be seen in
the “Scale on White”, “Scale on Gray” and “Scale on Black” targets (Figure 14, Figure 15,
Figure 17). The “Scale on White” target, a quite bright one, requires just 3 iterations. On the
other hand, the darker “Scale on Gray” and “Scale on Black” targets require 28 iterations
and 30 iterations, respectively. These are the individual number of iterations for each target
that would give the best correlation with the observer matches. Intuitively, the cotrelation
between average brightness and the optimal number of iterations is to be expected because
Retinex proceeds by subtracting from white, which has the highest average brightness. At 0
iterations, the Retinex output consists of a white image (all pixels set to 1). After each
successive iteration, the average brightness of the image goes down. At an infinite number of
iterations, the Retinex output image would equal the input image scaled by the maximum
value in each channel. ‘
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As with the change-based stopping condition, we run the Retinex algorithm at 7, 2,
...z iterations untl the stopping condition is reached. The brightness-based stopping
condition is reached when the current average brightness of the Retinex output image
exceeds 110% of the average brightness of the input scaled by its maximum value. The
110% value was determined empirically. The resulting slight increase in the overall image
brightness can be compensated for in the Retinex post-lut. Since scaling the input by its
maximum value is equivalent to the Retinex output in the limit as the number of iterations
approaches infinity, the stopping condition in essence is comparing the average lightness

estimate at 7 iterations to what it would converge to at an infinite number of iterations.

This new brightness-based stopping condition yields better results than the previous
incremental-change-based stopping condition'” in that the Retinex lightness estimates
cotrelate better with the observer predictions. The average prediction error drops to 0.51
(brightness-based) from 0.62 (change-based). Either stopping condition error is substantially
less than the 1.71 obtained in the optimal fixed-iteration case. If we look at each target
individually and manually choose number of iterations yielding the best prediction, we get an
average etror of 0.39. This gives a lower bound on the etror that we could obtain with a
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Conclusion

Our goal has been to study the effects of number of iterations in the special case where all
spatial channels use the same number of iterations. Further this study uses the same pattern
of spatial compatisons. However, Retinex requires the parameters ‘postlut’ and ‘number of
iterations’ be set. In this paper, we introduce methods for setting these parameters
automatically. Using these methods, Retinex yields an average RMS prediction error of only
0.51 units on a 1-to-9 lightness scale in predicting the available psychophysical data. By
comparison, optimization for a fixed setting for the number of iterations resulted in an
overall average RMS error of 1.71, so the new automatic-stopping-condition technique
constitutes a significant improvement over a single choice for the number of iterations. Since
the method changes only Retinex’s mput parameters, the Retinex model itself has not
changed. However, the advantage of using the Retinex model in conjunction with automatic

parameter selection is that it can be applied in a hands-off manner without requiring further
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mntervention. Future work will include modifying Retinex to employ different numbers of

iterations automatically at each pyramid level.
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| CHAPTER SEVEN"
A LARGE DATABASE FOR COLOUR CONSTANCY RESEARCH

We present a study on various statistics relevant to research on colour constancy. Many of
these analyses could not have been done before simply because a large database for colour
constancy was not available. Our image database consists of approximately 11,000 images in
which the (R, G, B) colour of the ambient illuminant in each scene is measured. To build
such a large database we used a novel set-up consisting of a digital video camera with a
neutral gray sphere attached to the camera so that the sphere always appears in the field of
view. Using a gray sphere instead of the standard gray card facilitates measurement of the
variation in lumination as a function of incident angle. The study focuses on the analysis of
the distribution of various illuminants in the natural scenes and the correlation between the
rg-chromaticity of colours recorded by the camera and the rg-chromaticity of the ambient
flluminant. We also investigate the possibility of improving the petformance of the naive
gray world algorithm by considering a sequence of consecutive frames instead of a single
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constancy algorithms.

Introduction

Several image databases for colour constancy research exist '**''2. While the complex
calibration procedures involved in building such databases in which the ambient illumination
is propetly measured and controlled represents an asset, we are often faced by the immediate
limitation of this set-up: the number of images in such a database is typically small. In some
cases we would prefer to have a much larger image dataset at the expense of having a less
rigorously controlled illumination. For practical considerations, it is often sufficient to

measure the camera (R, G, B) of the dominant illuminants present in a scene.

* This chapter also appears as a published paper: Flotian Ciurea and Brian Funt, “A Large Image Database for
Color Constancy Research”, in Proc. Eleventh Color Imaging Conference, 2003, 160-164, Scottsdale, AZ.
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We construct the database using a digital video camera with a neutral gray sphere attached to
the camera so that the sphere is always maintained in the field of view. Using a gray sphere
instead of the standard gray card facilitates measurement of the vatiation in illumination as a
function of incident angle. The simplicity of this set-up also facilitates recording images in
locations where a conventional spectrometer would be impractical. Similatly, we can record a
lot of images with relative ease. This large database with the illumination measured separately
for every image allows us to study the statistics of illuminants and colours arising in a wide

range of common scenes.

Setup of capture system

The database of approximately 11,000 images are of a variety of indoor and outdoor scenes,
including many with people in them, shot using a Sony VX-2000 digital video camera. The
outdoor scenes were taken in two locations that differ significantly in geography and climate:
Vancouver, British Columbia and Scottsdale, Arizona. The images are still frames extracted
from video clips captured in progressive scan mode to avoid video interlacing. In progressive
scan mode, the camera generates 15 unique frames per second. When extracting the still
images from the acquired video clips, we used at most 3 frames from any second of video in

order to keep from having almost identical images in the database.

All the camera settings were fixed with the exception of automatic focus and automatic
exposure. Although it would be preferable to hold the aperture and shutter speed constant,
this is not practical because of the large range of average scene brightness relative to the
camera’s limited dynamic range. The camera’s white balance setting was set to “outdoors”
and held that way whether or not the scene was an outdoor scene or an indoor one. With
this setup, the colour balance of the images taken outdoors is pretty good; those taken

indoors generally have a yellow-orange colour cast.

The scene illumination was measured using a smooth, small sphere connected to the video
camera by means of 2 monopod leg as shown in Figure 25. The sphere is 4.8 centimetres in
diameter and spray painted with CIL Dulux 00NN20/000 matte paint. The paint is a
spectrally neutral gray of Munsell Coordinates N4.75/ and has 18% reflectance (Figure 26).

The sphere is positioned so that it appears in the video image at all times.
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For each image, the scene illuminant is measured in terms of the RGB values of the pixels

such 2s CIE ttistimulus values, this is not easily accomplished. Firstly, it would require

difficulties, we decided to settle for using the camera’s native coordinates for all

Figure 25. Camera with gt :re attached

o

Figure 26. Reflectance spectra of gray sphere (solid line) and Munsell chip N 4.75/ (dotted line)



Figuré 27. A discarded image: the sphere is in the shadow, while the scene is in direct sunlight

The image database

We have recorded approximately 2 houts of digital video from which we have validated

more than 11,000 images. The following images are examples of validated frames.

Figure 28, Database image (Vancouver, BC)
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igure 29. Database image (Apache Ttail, Arizona)

Figure 30. Database image (Scottsdale, Arizona)

Statistics of illuminants
e |

In general, the gray ball can be seen to have two main illuminants falling on it. For example,
in Figure 29 there is a bright sunlit region and a shadow region. Hence, for each image we
computed the rg-chromaticity of the two illuminants that appear on the gray sphere. The
first, the dominant illuminant, is the one having the biggest impact on the scene. We
determine this illuminant from the brightest region of the gray sphere. The secondaty
luminant is present in the form of shading on the gray sphere. For outdoor scenes, the first

illuminant is sunlight, while the second illuminant is skylight. For indootr scenes, the



figures show the distribution of the first and second illuminants, respectively, in rg-

chromaticity cootdinates.

Figure 31. Probability distribution of dominant illuminant

Figure 32. Probability distribution of secondary illuminant

\

)

Most discriminatory colours

We conducted an analysis to find the colours whose presence in a scene reveals the most
information about the illuminant. We call these the most discriminatory colours. For this
putrpose we built a correlation matrix'’ relating the rg-chromaticity of image colours to the

domiinant scene illaminant, The rg—chrdmaticity space was divided into 30x30 bins. In this



The probability that the chromaticity of the dominant illuminant of a scene was illum

given that we obsetve a cettain chromaticity ¢olout is computed from Bayes’ rule:

P(illum | colour) = (01 p|<ﬂlulm; ')P<an>
All the terms in the right-hand side are computed from the image database. P(colour | illum)
is the probability of observing the given colour under the particular illuminant illum.
P(colout) is the probability of observing the particular colour in any scene and P(illum) is the
probability that the scene was observed under illuminant illum. For a given colour we then
compute the degtee of discriminability as the maximum probability of any given illuminant

relative to the average probability of all illuminants that correlate with the colour:

max(P(itlum | colour) for all illum

Discriminability(colour) = 2
© avg(P(illum | colour)

(22)
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Figure 33. Probability distribution of the illuminants for a discriminatory colour

Figute 34. Probability distribution of the illuminants for a less discriminatory colour

Figure 33 and Figure 34 show the probability distribution of the illuminants for a colour
with a high degree of discriminability and for a colour with a low degree of discriminability
respectively. The followmng figure shows the discriminatory colours and the less
disctiminatory colours in the tg-chromaticity space. It is intetesting to see that the colours
that are far from white are more discriminatory than the neutrals. This means that when
trying to infet the colour of the scene illuminant, the colours farther from white are the ones

that contain mote information about the illuminant.

Figure 35. Distribution of discriminatory colours in the rg-chromaticity space
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Gray world over time

Since the image database is derived from video sequences it means we can study colour
constancy over time. Groups of frames that are close temporally in a video sequence may
reveal more information about the ambient illumination than a single frame. One possibility
is that the gray world method of estimating the illuminant may converge to a better answer if

the average is computed over more frames.

From the database, we extracted clusters of sequential frames for which the scene illuminant,
as measured from the gray calibration sphere, remains unchanged. The intent in clusteting
frames in this way is to find automatically clips in which the camera points at different parts

of the same basic scene.

Gray wotld assumes that the average world is gray35 and estimates the illuminant in
the image by computing the departure of the current average RGB in the scene from that of
the defined RGB of gray in the world. We simply extend the notion of a scene to a frame
cluster and compute the average (R, G, B) over this set of images. Our defined gray in the
world is the average (R, G, B) over the whole dataset. To measute how gray world
performance might vary with time, we extract frame clusters based on video clips of 1.5, 3, 6

and 15 seconds. We use the following error measure:

Error(rest > gest > ract ’ gact) = \/(rest - ract )2 + (g est gact )2 (23)

Where (f., 8> (Tuw Zu represent the rg-chromaticity of the estimated and actual

(measured) illuminant respectively. The results are summarized in the following table:

1 frame | 1.5sec. | 3sec. | 6sec. | 15 sec.

Gray world avg. error | 0.049 0.048 | 0.047 | 0.045 | 0.044

Gray world max. error | 0.331 0.333 | 0.309 | 0.309 | 0.309

Table 6. Gray world over time

Our experience with this error measure indicates that an etror of 0.02 - 0.03 in the illuminant

estimation is hardly noticeable. The above tesults confirm .that while gray world performs
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reasonably well on average; however, it also fails badly in certain cases. The results also show
that for the gray wotld, little is gained from.an extended exposure to the scene. This concurs

with previous experiments on adaptation to the scene average.16

Conclusion

We have assembled a database of more than 11,000 images in which the illuminants are
measured in terms of camera RGB coordinates. This large database allows several studies on
the distribution of colours in everyday scenes, the distribution of illuminants colours in
everyday scenes and their mutual correlation. The database is publicly available and can also
be used as a colour constancy database (with the images un-corrected for different
flluminations) or as a properly white-balanced database (with the images properly colour

corrected based on the illumination data).
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CHAPTER EIGHT
COLOUR BY CORRELATION WITH REAL IMAGES

In this chapter we present an extension to the colour by correlation method inspired from

the database introduced in Chapter 7.

A limitation of the colour by cotrelation method for colour consfancy as described in'’ is
that it assumes that, in the Bayesian framewortk, all illuminants are essentially equally likely
and all colours (chromaticities) are equally probable. This assumption was primarily based on
the fact that the actual statistics of colours and illuminants in the wotld is either not known,
or not easily measurable. The large colour constancy database presented in the previous
chapter allows gathering of such statistics that could be used to improve the effectiveness of

the method on real images.

Introduction
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P(colout | llum) - P(illum)
P(colour)

P(illum | colour) = = P(colour | illum)  (24)

These assumptions further lead to the conclusion that the probability that the scene
flluminant was illum given that we observe the chromaticity colour P(illum|colour) is the
same as the probability of observing the chromaticity colour given that the scene illuminant
is fllum: P(colour | illum). In reality, these probabilities are not equal, as not all illuminants are
equally likely. With additional information derived from our large database of images and the
corresponding illuminants, we expect to obtain better results using colour by correlation,

even if only for the camera used to capture the image database.
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We used the “gamut” program for colour constancy developed at Simon Fraser University,
which is publicly available.” The rg-chromaticity space is divided in 50 % 50 bins for both the
colouts in the image and the illuminant colour. We count each colour appearing in any given
image in the database only once and we make a note of all colours “observed” under a
certain illuminant. For example, a given chromaticity will be counted five times if it appears

in five distinct images of the database.

Results using real images

Table 7 illustrates the results for using the actual statistics derived from the large colour
constancy database, as well as the results of the colour by correlation method trained on the
same image data but without the additional statistics. The columns “C-by-C synthetic data”
and “C-by-C synthetic data w. statistics” represent the variant in which the colour by
cotrelation look-up table is constructed from a set of reflectances and illuminants, raflier

than actual images. For comparison, we also include the performance of the gray world

algorithm.
MNerms lall YN ol c-by.c C-by-C -by-C
Uy MY I R PRy Y MR P Y R T P Py
fed! Udlid. bylll.ll (A V° by IHICLU Udla
world | real data w. statistics data w. statistics
Avg. RMS error 0.054 0.055 0.050 0.109 0.059
Median RMS error | 0.039 0.052 0.035 0.096 0.047

Table 7. Iluminant estimation (RMS error in rg-coordinates) on the large database for colour by
correlation with real data statistics. For comparison, we include results for “colour by correlation
without statistics” and the cortesponding colour by cortelation variants using synthetic data.

It should be noted that, from subjective experience, an RMS error (see Equation 22) in rg-
illuminant estimation of around 0.03 is hardly noticeable and so an improvement from 0.05

to 0.035 is arguably significant.

* http://vision.cs.arizona.edu/kobus/research/programs/colour_constancy/index.html
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Conclusion

These results indicate that using actual statistics detived from a large colour constancy
database improves the petformance of the algorithm. The limitation of the proposed setup
resides in the fact that the actual statistics are only valid for the camera used for image
capture. Future work includes computing joint probabilities for observable chromaticities
under certain lights. Under the current framework, these probabilitiés are assumed to be

independent and we know that this is hardly a realistic assumption.
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| CHAPTER NINE
HIGHER ORDER STATISTICS ON REAL IMAGES

This section continues the applications to the large database of images proposed in Chapter
7. We found this idea interesting but not very thoroughly tested. In particulat, tests on real
images were limited to scenes made up artificially from hyperspectral data,'” spectral power
distributions of various daylight illuminants, and the human cone sensitivity functions. The
Ruderman database'” of hyperspectral images is also quite peculiar because it consists of a
small number of images of mostly foliage. Our experiments show that for scenes composed
from a more diversified hyperspectral database combined with real lluminant spectra, the
predicted cotrelation tutns out to be very weak. For digital camera images, the redness-

luminance correlation becomes unidentifiable.

Introduction

We want to test whether such a method 1s robust enough so that it can work effectively on
redness correlation on real images. Experiments 1-4 are done on images synthetically
generated from real hyperspectral data and full spectral information of illuminants. For
experiment 5 we use real images from the SFU dataset'”’ and for experiment 6 we used real
images from the large database described in Chapter 7. In all the cases, we compute the
redness-luminance correlation for each image of a scene under a certain ilumination
condition and then the correlation of the whole cluster of images under any given

llumination (see figures below).
- Experiment 1

For this experiment, images were generated using the hyperspectral database collected by
Ruderman et al."”’ under standard illuminants D40, D55, D85 and D200. This is a replication

of the experiment on real data reported by Macleod and Golz.”
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Expetiment 2

In this experiment, images were constructed from the hyperspectral database'"* collected by

Nascimento et al. and standard illuminants D40, D55, D85 and D200.
Experiment 3

For this experiment we used the Ruderman hyperspectral database and the following three
illuminants from the SFU calibrated database'””: Philips Ultralume Tube (PH-ULM), Sylvania
Cool White Tube (SYL-CWEF), Sylvania Warm White Tube (SYL-WWF) and Solux 4700K
with full Blue 3202 filter (Solux).

Experiment 4

In this case the images were constructed from the hyperspectral database by Nascimento et
al"* and the following three illuminants from the SFU calibrated database'”: Philips
Ultralume Tube (PH-ULM), Sylvania Cool White Tube (SYL-CWF), Sylvania Warm White
Tube (SYL-WWEF) and Solux 4700K with full Blue 3202 filter (Solux).

Experiment 5

We used real images of 8 scenes from the “Mondrian” set of the calibrated database of
images from the SFU dataset'”’ acquired with the Sony DXC-930. These indoot scenes wete
taken under controlled laboratory conditions in which the spectral power distribution of the
illuminant is measured. The “Mondrian” set consists of images with minimal specular
reflecions. We used the same set of three illuminants as in the previous experiments using

the SFU dataset.
Experiment 6

In this experiment we tested the redness-luminance correlation on the real images in the
large database acquired with the Sony VX-2000 video camera. These images represent
mostly natural scenes, both indoor and outdoor. As described in Chapter 7, this database
contains a description of the chromaticity of the lluminant in each of the scenes, given in

camera RGB coordinates. Unlike in the first five experiments, here we do not have the same
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scene available under multiple illuminants. We simply make two large classes of illuminants
labelled “red” and “neutral” based on the information about the illuminant chromaticity

available from the gray ball present in every scene.

Results on real images

The first expertment consists of reproducing the results on the Ruderman hyperspectral
database under illuminants D40, D55, D85 and D200 using the human cone sensitivities. We
see a strong correlation between redness-luminance correlation and mean redness of the
scene. The values for the cotrelations are respectively: -0.56, -0.65, -0.65, -0.55 and ate in
accordance to the values repotted by Macleod and Golz.>® These values are significantly
different from zero and so they indicate a strong correlation. Figure 37 illustrates the results

of experiment 1, while Figure 36 shows the Ruderman database of hyperspectral images.

We believe that the dataset chosen for the original expetiments by Macleod and Golz
was somewhat limited and biased towards scenes with mostly foliage. In the second
expetiment, we used the 8 images from the hyperspectral database by Nascimento et al.,""*
which is more balanced in the types of scenes used. In this case, we obtain lower correlation
scotes for each cluster of images. The values are -0.40, -0.25, -0.09 and 0 respectively for the
flluminants D40, D55, D85 and D200. The results are illustrated in Figure 39. Expetiments 3
and 4 are similar with experiments 1 and 2 respectively, with the exception that four real
lluminants have been used instead of the ideal daylight sources proposed by Macleod and
Golz. For experiment 3, the results are illustrated in Figure 40. The values for the
correlations are -0.62, -0.47, -0.31, -0.20. While the pattern of cotrelation is still visible in
experiment 3, this pattern is hardly visible in experiment 4 (see Figure 41). In this case, the
correlation values are much lower: 0.28, 0.18, -0.01, 0.12 and in this case the redness-

luminance cotrelation is virtually unidentifiable.

Experiments 5 and 6 are based on real images. Eight scenes from the SFU

107

database™' have been used in experiment 5, under each of the four chosen illuminants. In

this case, the correlation values are even lower: 0.11, 0.19, -0.03, 0.21 (see Figure 42). For
this experiment we also note that the redness-luminance cotrelation is unidentifiable. The

final experiment is based on the large database of images introduced in Chapter 7.
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Figure 36. Hyperspectral database of 12 images by Ruderthan ét al.



Figure 37, Experiment 1in redness-luminance cortelation. The 12 images ate teptesented by black
diamonds (illuminant D40), blue triangles (D55); pink circles (D85) and red squares (D200). For a
given illuminant, the cotrelation for the cluster of images is around —0.55 and so the redness-
luminance correlation (the Y axis) is able to explain some of the variation.



Figure 39. Experiment 2 in tedness-luminance cotrelation. The 8 images are represented by black
diamonds (D40), blue triangles (D55), pink citcles (D85) and red squates (D200). For a given
illuminant, the correlation now varies from —0.40 to 0.00

Figute 40. Experiment 3 in luminance-redness correlation. The 12 images are represented by black
diamonds (PH-ULM), blue triangles (Solux), pink circles (SYL-CWF) and red squares (SYL-WWF).
The correlations now range from —0.62 to —0.20.



0.25 02
Mean image redness

Figure 41. Experiment 4 in luminance-redness correlation. The 8 images are teptesented by black
diamonds (PH-ULM), blue triangles (Solux), pink circles (SYL-CWF) and red squares (SYL-WWF).
The correlations are poot, ranging from —0.01 to 0.28

Figure 42. Experiment 5 in redness-luminance correlation. These are real images of the same scene
. under different illuminants. The 8 images are represented by black diamonds (PH-ULM), blue
triangles (Solux), pink circles (SYL-CWF) and red squares (SYL-WWF).There is no pattern in this

figute, with the values for the cortelations ranging from —0.03 to 0.21.



Figure 43. Experiment 5. The 8 scenes from the SFU database viewed under a canonical white
illuminant.
The sixth experiment is different from experiments 1-5 in that it is not based on having the
same scene viewed under different illuminants. Here, we are simply interested in the

probability distribution of scenes under “reddish” or “neutral” illuminant.

Figure 44, Experiiient 6. The probability-distribution of scenes under neutral illuminant (black
crosses) and the probability distribution of scenes under reddish illuminant (red stars) in a two-
dimensional space of mean image redness and luminance-redness cotrelation.



A “reddish” illuminant is defined as having: the r chromaticity component greater than 0.4. A
“neutral” illuminant is defined as having the r chromaticity component less than 0.3. It is
worth mentioning that, as shown in Figure 31, the major variability in the illuminant
chromaticity is expressed by the red-blue component (r chromaticity for instance). The
probability distribution is shown in Figure 44. Here, we are looking for the pattern shown in
Figure 3, which represents the ideal probability distribution in order for the redness-
luminance correlation to be effective in illuminant estimation. Instead, the correlation values
are —0.10 and 0.19 respectively. These results indicate that the redness-luminance cotrelation

1s again unidentifiable.

Conclusion

We have devised a set of experiments to test the redness-luminance correlation hypothesis
on real data. This theory is interesting in that it relates the gray wotld approach which is
based on the scene average alone with the more advanced algotithms for illuminant
estimation such as gamut mapping and colour by correlation. But, unlike in the results
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weak measure in the case of real images. Even on a different dataset of hypetspectral images,
this cotrelation is lower. Furthermore, when adding real illuminants whose specttal powet

distribution 1s not a smooth, ideal function - this correlation is even less pronounced. In the

case of real images where noise is inherent, the correlation becomes unidentifiable.
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CONCLUSION

The colour constancy problem is undet-constrained by nature. The most successful and
complex methods try to attack the problem by reducing its complexity. Linear models like
those introduced by Maloney and Wandell assume a reduced dimensionality of the surface
reflectances and of the illuminants. Statistical based methods such as the gamut mapping
approach, colour-by-correlation and neural-network colour constancy have proven to be the
most successful implementations to date in scenes whete specular reflections are either not
present or difficult to identify. The success of these algorithms seems to suggest that
statistical approaches to colour constancy are desitable, given that this is usually the way the
colour constancy problem is regarded. A common denominator of these approaches is that
they do not make use of the spatial information present in the scene, and rather rely solely
on colour image histograms as a good descriptor for the scene illuminant. These methods
also assume a single illuminant in the scene, and usually set out to find the chromaticit;ﬁfﬂof
this dominant illuminant. The Retinex model is a somewhat different approach, in that it
exploits the spatial interactions in a scene and in that it computes the illuminant and
reflectance component at each location (pixel). An interesting aspect of Retinex is that it
goes beyond colour constancy — being proposed as a model of human colour vision — and

trying to explain vision perception phenomena such as simultaneous contrast.

The work presented hete introduces a series of advances in the area of colour
constancy and colour appearance based on expetimental data and real images. The first
contribution is in the form of a series of experiments on chromatic adaptation transforms.
Traditionally, at the core of chromatic adaptation transforms there is the same fixed
transformation matrix that is used regardless of the two illuminants involved in adaptation.
Based on the belief that this approach has been historically motivated by the use of
colorimeters that could only measure tristimulus values for the two illuminants involved, a
new method is proposed that could be used in the case whete the full spectral power
distribution of the two illuminants is available or can be measured. In this case, the

transformation is tuned for the particular illuminant pair, thus possibly improving the
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performance. Indeed, under some particular cases in which the spectral power distribution

of the illuminants is atypical, the method performs better.

The second important contribution is the work towards characterizing the Retinex
model such that it can be used, without intervention, on real images as a model for the
human visual system. The Retinex model has been quite controversial over the years mainly
because its authors have not provided a very clear implementation and an explanation of the
influence of the models’ parameters and a discussion of how these parameters should be
chosen for a specific application. Even though the model is essentially computational, its
way of application has been historically somewhat mysterious. One would often hear in the
colour community that the Retinex model has failed under certain citcumstances just
because of the users’ lack of knowledge in choosing or tweaking the parameters. The study
presented here provides a clear implementation of two of the most successful Retinex
variants, along with a discussion on choosing the parameters. A second patt of the study has
been devoted to finding values for these parameters in a practical manner for a specific
application. Finally, a method for automatic choosing the parameters is also included, which
finally provides a hands-off approach to the Retinex model. In this context, new
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Another important contribution is represented by a novel setup that permits the
acquisition of a large database for colour constancy research. Using a spectrally neutral gray
sphere attached to a video camera, we can capture a large number of images for which the
illumination conditions are documented within the camera cootdinates. Traditionally,
databases for colour constancy research have been limited in the number of images available
because of the complex calibration procedures involved in measuring the full spectral power
distribution of the illumination sources. Also, these scenes are usually restricted to indoor
composition. With the proposed mobile setup — at the expense of a less tigorous
measurement of the illumination — we can capture a seties of scenes and their illumination
conditions under many natural conditions. Additional statistics on the illuminants have been
obtained from such a large database of over 11,000 images. Furthermore, using such a large
database of real images allows the testing and improvement of several existing methods for

colour constancy.
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The fourth contribution is in the form of application of the large colour constancy
database of images, an improvement in, the estimation of one of the currently most
successful algorithms for colour constancy, “colout by correlation”. In the lack of real prior
probabilities about the distribution of illuminants and colours in the world, the cutrent
implementation assumes that all illuminants and surfaces are equally probable. Another
aspect is the fact that in the original version, the correlation matrix, which is at the core of
the algorithm, has been computed based on synthetically generated images, as opposed to
using real data. Using real images and therefore providing real probabilities improves the
performance of the method.

Finally, the fifth contribution is represented by the study of the application of a yet
another method for colour constancy based on higher-order statistics present in images. This
method has not been studied on real images and, unless tested in this manner, cannot be
used effectively in estimating the scene illuminant. Several sets of experiments for testing the
effectiveness of the method on real data have been devised, consisting of a) a large database
of real images in which the illuminant is known; b) a smaller calibrated database of images
that contains multiple views of the same scene under different illuminants and c) a more
diversified database of hyperspectral images. Even though the method involving the redness-

luminance correlation in scenes is appealing both conceptually and for its simplicity, it

proves to be of little use in the context of real images.
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APPENDICES

Matlab implementation of McCann99 Retinex

L: logarithmic input image

nlterations:  number of iterations for each pixel

nLayers: number of pyramid layers

OP: matrix of Old Products for all pixels

RR: mput radiance

NP: matrix of New Products for all pixels

OPE: OP padded with zeros for doing all computations at once

RRE: RR padded with two additional columns and two additional rows -
IP: Intermediate Product computed with the Ratio-Product

function Retinex = Retinex mccann99 (L, nIterations)

global OPE RRE Maximum

[nrows ncols] = size(L); % get size of the input image
nLayers = Computelayers (nrows, ncols); % compute the number of pyramid layers
nrows = nrows/ (2"nLayers) ; % size of image to process for layer 0
ncols = ncols/(2%nLayers);
if (nrows*ncols > 25) % not processing images of area > 25

error(‘invalid image size.’) % at first layer
end
Maximum = 1; % maximum colour value in the image
OP = Maximum*ones ( [nrows ncols]) ; % initialize 0ld Product
for layer = 0O:nlLayers

RR = ImageDownResolution(L, 2" (nLayers-layer)); % reduce input to required layer size

OPE = [zeros(nrows,l) OP zeros(nrows,1l)]; % pad OP with additional columns

OPE = [zeros({l,ncols+2); OPE; zeros(l,ncols+2)]; % and rows

RRE = [RR(:,l) RR RR(:,end)]; % pad RR with additional columns

RRE = [RRE(1,:); RRE; RRE(end,:)}; % and rows

for iter = l:nIterations ‘

CompareWithNeighbor (-1, 0); % North
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CompareWithNeighbor (-1, 1); % North-East
CompareWithNeighbor (0, 1); % East
CompareWithNeighbor (1, 1); s % South-East
CompareWithNeighbor (1, 0); % South
CompareWithNeighbor(l, -1); % South-West
CompareWithNeighbor (0, -1); % West
CompareWithNeighbor (-1, -1)}; % North-West
end
NP = OPE(2:(end-1), 2:(end-1));
OP = NP(:, [fix(1:0.5:ncols) ncols]); %$%% these two lines are equivalent with
OP = OP([fix(1:0.5:nrows) nrows], :); %$%% OP = imresize (NP, 2) if using Image
nrows = 2*nrows; ncols = 2*ncols; % Processing Toolbox in MATLAB
end

Retinex = NP;

function CompareWithNeighbor (dif row, dif col)

global OPE RRE Maximum
% Ratio-Product operation
IP = OPE(2+dif_row: (end-1+dif_row), 2+dif_col: (end-1+dif_col)) +
RRE(2: (end-1),2: (end-1)) - RRE(2+dif_row: (end-1+dif_row), 2+dif_col: (end-1+dif col});

IP(IP > Maximum) = Maximum; % The Reset step

% ignore the results obtained in the rows or columns for which the neighbors are undefined

if (dif_col == -1) IP(:,1) = OPR(2:(end-1).2): end

if (dif_col == +1) IP(:,end) = OPE(2: (end-1),end-1); end

if (dif_row == -1) IP(1l,:) = OPE(2, 2:(end-1)); end

if (dif_row == +1) IP(end,:) = OPE(end-1, 2:(end-1)); end

NP = (OPE(2:(end-1),2:(end-1)) + IP)/2; % The Averaging operation
OPE (2:(end-1), 2:(end-1)) = NP;

function Layers = ComputeLayers(nrows, ncols)

power = 2°fix(log2 (gcd(nrows, ncols))); % start from the Greatest Common Divisor
while (power > 1 & ((rem(nrows, power) ~= 0) | (rem(ncols, power) ~= 0)))

power = power/2; % and find the greatest common divisor
end % that is a power of 2

Layers = log2(power) ;

function Result = ImageDownResolution(a, blocksize)

[rows, cols] = size(A); % the input matrix A is viewed as
result_rows = rows/blocksize; % a series of square blocks
result_cols = cols/blocksize; % of size = blocksize

Result = zeros([result_rows result_cols]);

for crt_row = l:result_ rows % then each pixel is computed as
for crt_col = l:result_cols % the average of each such block
Result (crt_row, crt_col) = mean2(A(1+(crt_row—l)*bloéksize:crt_row*blocksize,

1+ (crt_col-1) *blocksize:crt_col*blocksize)) ;
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end

end

Matlab implementation of Frankle-McCann Retinex

function Retinex = Retinex frankle mccann(L, nIterations)

global RR IP OP NP Maximum
RR = L;

Maximum = 1;
ncols] =

[nrows, size (L) ;

shift = 2”7 (fix(log2 (min (nrows, ncols)))-1);
OP = Maximum*ones (nrows, ncols)

while (abs{shift) »>= 1)
l:nIterations
shift);
CompareWith(shift, 0);

for i =

CompareWith (0,

end
shift = -shift/2;
end

Retinex = NP;

function CompareWith(s_row, s_col)
global RR IP OP NP Maximum
ID = O;

if (s_row + s_col > 0)

OP(1:

IP{(s_row+l):end, (s_col+l):end)

RR((s_row+l):end, (s_col+l):end) -

else

IP(1:(end+s_row), 1:(end+s_col))

RR(1: (end+s_row) ,1: (end+s_col))

end

IP(IP > Maximum) = Maximum;
NP = (IP + OP)/2;

OP = NP;
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(end-s_row), 1:

RR(1l: (end-s_row), 1:

OP((1-s_row) :end,

% maximum colour value in the image

% initial shift

% initialize 0l1d Product

% horizontal step

% vertical step

% update the shift

(end-s_col)) +

(end-s_col)) ;

(1~s_col) :end) +

- RR{(1-s_row):end, (1l-s_col):end);

% The Reset operation

% average with the previous 0ld Product

% get ready for the next comparison
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