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ABSTRACT 

In recent years, several methods to solve the colour constancy problem have been 

introduced and studied. Colour constancy is an important area in machine vision: it provides 

a visual system with the capability to compensate for the effect of illumination in a scene. 

The colours we humans perceive are not easily expressible by a physical apparatus, which is 

in fact more sensitive to changes in illumination condtions. The human visual system is able 

to make several compensations and adjustments to ambient illumination conditions, so that 

we perceive illuminant-independent descriptors of the scene. 

This thesis represents a series of experimental approaches to the colour constancy 

problem. An important part focuses on discussions and concrete implementations of the 

well-known a n d  rnntt-nv&a! R_&n~u mc&1 fcr h1lrn.l~ S&r_ ocd  o~pl;r_n_f;,~r, r\f the 

method on real images and choosing its parameters. The Retinex theory of human vision 

represents an important contribution in colour vision with strong implications in the colour 

constancy problem. Although the theory has been around for more than three decades, the 

lack of an efficient implementation and analysis of the effect of its parameters has raised 

many discussions and scepticism. This part of the thesis provides some common ground in 

further investigations into the Retinex theory. 

A novel method for acquiring a large database for colour constancy research is 

presented, along with direct applications with improvements to the colour by correlation 

method. A large image database for colour constancy provides sufficient data to compute 

some meaningful statistics with respect to the interaction between the colours observed in 



the world and the actual measured illuminants in which these colours are recorded. The use 

of these statistics in the Bayesian apprdach improves the performance of the colour by 

correlation method for colour constancy. Another application is in the form of testing the 

effectiveness on real images of a recently introduced theory for colour constancy using the 

redness-luminance correlation in scenes. 
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INTRODUCTION AND THESIS OVERVIEW 

This thesis presents several approaches to colour constancy from an experimental 

perspective. Colour constancy theories f d  a gap between duminant characterization in real 

scenes and colour appearance. The colour constancy problem is defined as the ability of a 

visual system to discard the effects of the illumination in a scene. In computational colour 

constancy - also referred to as illuminant estimation - we would like to achieve an 

illurnination-invariant image: an image that appears to be taken under a canonical illurninant 

for whch the visual system is adapted. Over the years, this problem has proven to be quite 

hard, even if further simplifymg assumptions are considered such as the existence of a single 

- global illuminant for the scene along with the absence of specular reflections. In essence, 

the difficulty of the colour constancy problem comes from its under-constrained nature. 

naive methods. Ultimately, the main obstacle in designing an efficient method for colour 

constancy lies in our limited knowledge and understanding of the human visual system. In 

contrast to the computational approach to colour constancy, there is ample evidence that the 

human visual system is equipped with some local adaptation mechanisms that explain 

phenomena such as simultaneous contrast. These adaptation mechanisms are simulated by 

the Retinex model of human vision, which aims to predict human sensations, thus putting 

the colour constancy phenomena in a different, psychological perspective. 

In the thesis, several advances in different related colour constancy theories are 

proposed: a method to compute chromatic adaptation transforms for perceived illurninant 

change in simple scenes, a way to characterize the well-known Retinex theory for dealing 



with real images. Based on a large colour constancy database, other advances include ways to 

improving illumination estimation in real s'cenes based on colour-by-correlation method, and 

investigating a new hypothesis for illumination estimation and its robustness in real images. 

All of these are different approaches to colour constancy and their reference to colour 

constancy is outlined below. 

The first two chapters describe the colour constancy problem and how it relates to 

the problem of recovering reflectance and the chromatic adaptation transforms. An 

overview of computational models for colour constancy is presented in Chapter 2. 

In Chapter 3, a method of using the full spectral information in the chromatic 

adaptation transforms is introduced. Chromatic adaptation transforms are typically employed 

by any colour appearance model and they essentially quanti$ our incomplete colour 

constancy effects in simple viewing conditions - not complex real scenes. Existing chromatic 

a d a n t a t i n n  t _ r p n g f n - ~ - g  t-~--~~t~ O, 11pj~,yYm2! ~ ~ r , ~ f ~ : ~ ~ ~ ~ ~ ,  Lsscd cr, CIE eis~&ii-&s 

values of the two illuminants involved. However, with the widespread availability of 

spectroradiometers, we can compute the real spectra of the two illuminants involved, and 

using a white-point preserving sharpening method we can tune this transformation for each 

pair of illuminants, thus potentially achieving better results. Unfortunately, most current 

colour appearance experiment documenting observers' subjective evaluations do not include 

full spectral information of the illuminants involved, and therefore real-world testing of this 

proposed method is still limited. 

Chapters 4, 5 and 6 focus on providing concrete implementations of the well-known 

and controversial Retinex model of human vision and discussions on application of the 

method on real images and choosing the parameters for the model. The Retinex theory 



represents an important contribution to human colour vision with strong implications in the 

colour constancy problem. Although the' theory has been around for several decades, the 

lack of an efficient implementation and analysis of the effect of its parameters has raised 

many discussions and scepticism. While the Retinex theory is often being classified as a 

method for illumination estimation, its scope goes beyond colour constancy, by trying to be 

a simplified model for the human visual system, or to estimate visual appearance in complex 

scenes. Whde Chapter 4 provides concrete implementations for two of the Retinex methods, 

chapters 5 and 6 focus on tuning the model's parameters to deal with real scenes, based on 

psychophysical experiments. 

In Chapter 7, a novel method for a acquiring a large database for colour constancy 

research is presented, along with applications and improvements to the colour by correlation 

method. A large image database for colour constancy provides sufficient data to compute 

some meaningful statistics with respect to the interaction between the colours observed in 

the world and the actual measured illuminants in which these colours are recorded. Using 

these statistics in the Bayesian approach improves the performance of the colour by 

correlation method for colour constancy. 

Finally, Chapter 8 presents a study on the effectiveness on real images of a recently 

proposed method for illumination estimation based on luminance-redness correlation in a 

scene. T h s  method is interesting because it relates simple methods like gray world with more 

advanced techniques such as gamut mapping or colour-by-correlation. However, testing the 

method on a more diverse hyperspectral database and on real images shows that the 

proposed correlation is not a robust illumination estimation method. 
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CHAPTER ONE 

INTRODUCTION - COLOUR CONSTANCY 

Definition of colour constancy 

Colour constancy is defined as the ability of a visual system to dimimsh - or in the ideal case 

discard - the effects of the illumination in a scene. With this property, a visual system is able 

to perceive descriptors of certain objects that are independent of the ambient illumination, 

such as the objects' surface reflectance. There is good evidence1, 23 that humans exhibit 

colour constancy to a relatively high degree and it is believed that the mechanism of colour 

constancy in the human visual system is part of an evolutionary process. Indeed, if we 

believe that colour plays an important part in object recognition4 - given the great variety of 

natural and man-made illuminants - the human visual system benefits greatly from the 

mechanism of colour constancy. For instance, a banana appears yellow in various types of 

illumination, even though the flux of energy reaching our eyes from the fruit will be very 
I' r r  . 

U l L e r e r l l  f ~ r  v a ~ - i ~ ~ . ~ ~  f i gh~g  reIl$eGfiS. AS 2 reSl>t 0 1 ~  v nrrrm w 11 LVIVLU re'---u LUIIJ L~LIGY 

mechanisms, we humans usually associate colours with certain natural objects, even though 

the light energy is different across the illumination conditions. 

With the recent advances in imaging systems, colour constancy is becoming a more 

prevalent problem for the colour imagmg devices. We can easily become aware of the colour 

constancy mechanisms in the human visual system by comparing device outputs of the same 

scene under different types of illumination. The simple fact that typical photographic film 

renders accurate colours outdoors in daylight but is problematic in indoor scenes without 

flash is a direct consequence of our own colour constancy: indoor scenes are more red- 

yellowish due to the different power distribution of tungsten illumination as opposed to that 

of daylight for which the film has been calibrated. This aspect has motivated the use of 

different colour filters in traditional film cameras or camcorders that compensate for the 

colour cast introduced by various illumination types. 



It is difficult to predict the colour appearance of objects in complex scenes, which makes 

accurate colour reproductions a chaqenging task. Advances in understanding the 

mechanisms for colour constancy and compensating for the colour of the iUuminant would 

contribute directly to improvements in the quality of cross-media colour reproductions. 

Colour constancy in the human visual system 

In the current state of research there is no general consensus on the type of neural activity in 

our brains that leads to the sensation of colour. Important experimental findings about the 

organization of the primary visual cortex are provided by Hubel and ~ i e s e l . ~  It is believed 

that monkeys exhibit the same types of colour sensations that we humans do, although this 

is more of a speculation. Zeki's studiesG provide some clues regarding the mechanisms of 

colour constancy present in monkeys that are in accordance to experiments on humans.' 

Little is known about colour constancy in other species other than goldfish7, ', honeybees9 

and some butterflies.1•‹ Given the limited knowledge about the intrinsic neurological 

mechanisms of colour vision and colour constancy in humans, most of what is known 

comes from experimental studies on the subjective colour appearance. 

m1 
Lnere is evidence i%at humans do not compensate M y  i'or the colour of the 

illuminant.", " Quantifiable measures of human colour constancy are based on asymmetric 

colour matching experiments. Brainard and wandell13, l4 initially reported that in laboratory 

conditions, subjects' performance on colour constancy is pretty conservative, compensating 

for about half of the true illumination change. More recently, Brainard and Brunt's 

psychophysical exrnperimentsZ3 show that in near-natural scenes, colour constancy in 

humans is actually quite good. Unfortunately, a real analysis on human colour constancy in 

complex, natural scenes is not yet available, partly because this process is tedious and not 

easily quantifiable. 

Not only is the colour constancy mechanism in humans imperfect, it sometimes fails 

completely. An example is provided is the case of low-pressure so&um street lighting15 - 

practically a monochromatic light source - under which scenes appear to be characterized 

only by lightness, as in black-and-white imaging. In these scenes a strong yellowish cast is 

still noticeable. Another example is provided by Maxirnov's shoeb~xes '~ in which observers 

5 



are asked to report the colours in a collage of papers viewed in a shoebox. Two versions of 

the same arrangement of coloured papers were prepared; the reflectances of the papers in 

the second display differ from the ones of the first by a systematic amount. If the second 

&splay is illuminated by a different light source that is carefully chosen to compensate for 

the systematic differences in two displays, the two collages appear identical. A simpler 

argument for the non-absolute definition of colour constancy itself is the very case of a 

single surface occupying the whole visual field, illuminated uniformly by an unknown light 

source. Such limiting case is unsolvable from the colour constancy perspective, for humans, 

and for any imaging device in fact. We need several surfaces in a scene for the colour 

constancy problem to be even well posed. This limiting case emphasizes an important aspect 

in the quest to solving for the strongly underdetermined problem of colour constancy: the 

inherent statistical nature of the problem itself. In the following sections, we will investigate 

computational models exploiting this very aspect. 

Colour constancy, recovering reflectance and metamerism 

In a simplified two-dimensional world of matte surfaces illuminated uniformly, the following 

equation describes the response of a device ca~turine - the ~hvsical * ,  surface-illuminant 

interaction: 

Here, RN (1) gives the spectral sensitivity function of the k-th sensor, E(h) is the spectral 

power distribution of the dluminant, and P Y ( l )  is the surface reflectance as a function of 

wavelength. Applied to all pixels (x, y) in the scene, the equation describes the problem of 

recovering reflectance: recover PY(h), given the set of observed sensor responses rN. The 

problem can be reformulated as recovering E(h), the illuminant spectral power distribution, 

from the sensor responses rN. Considering n distinct surfaces in the scene and the typical 

case of k=3 sensor classes, the set of equations have 3n knowns, in the form of sensor 

responses. In the discrete case of s samples, the equation becomes: 



In this form we can easily see the under-constrained nature of the problem.17 We have kxn 

knowns (the set of sensor responses for each surface) ahd nxs (the set of reflectances) + s 

knowns (the illuminant power distribution). Given that the typical number of sensor classes 

k is much lower than the number of samples required to characterize surface reflectances 

and illuminants, we must use additional knowledge about the illuminants and surfaces in 

order to solve for h s  problem. This set of equations are the core of a model of linear 

methods for colour constancy>8 based on a reduced dimensionality of reflectances and 

illuminants - which will be presented further. For s = 3, the problem of recovering 

reflectance is reduced to the colour constancy problem, which still remains underdetermined. 

Because the human visual system has only three cone receptor classes, we can only hope to 

achieve colour constancy for the three-samples case. The discrete sampling of the 

continuous space of surface reflectances and spectral power distributions of illuminations in 

three classes gives rise to a well-known phenomena in colour science called "metamerism'y: 

the possibility of perceiving the same colour from different surface reflectances under a 
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colour under a certain illumination, yet will look different under another illumination 

condition. 

The dichromatic reflection model 

The light reflected from a surface is the result of an interaction of different physical 

processes and the full model of reflectance is rather complex. The dichromatic reflection 

model due to Shaferlg is a simple model that explains several important aspects of the 

physics involved in light reflecting off dielectric surfaces - non-conducting materials. 

Dielectrics are characterized by a clear substrate covering the colorant particles. Through the 

reflection process, incident light is transformed in three forms of energy: 

a) light reflected from the interface; 

b) light reflected from the body; 

c) heat absorbed by the material. 



Once the rays of light arrive at the interface, they get reflected off the clear substrate in the 

form of interface reflection. The remaining energy enters the material, where it is scattered 

between the material particles and eventually comes out in the form of body reflection. 

Depending on the material, some of the energy will also be transformed into heat. Light 

reflected from the interface is concentrated around a small angular cone. Interface 

reflections are also called specular reflections. These types of reflections can only be seen 

under certain viewing angles, when the viewer is situated in their angular cone. Another 

interesting property of specular reflections is that, because they reflect light equally from all 

wavelengths, they provide important cues about the colour of the illuminants. However, very 

often these are not a reliable source of information about the illuminants either because they 

are not necessarily visible from the camera's perspective or, in cases where they are available, 

their brightness often exceeds the dynamic range of the capturing device. 

In contrast with interface reflection, body reflection is diffuse and usually emerges 

equally in all directions. Surfaces that do not exhibit interface reflection are called matte, they 

are characterized by body reflection only, which is independent of the viewing angle and that 

of the incident light. 

interface reflection 

clear substrate 



The achromatic reflection model states that the total radiance of light reflected off a 

dielectric surface is roughly the sum of @e radiance in the form of interface reflection plus 

the radlance as body reflection. The dielectric modcl does not apply to metals and 

fluorescent surfaces. Fluorescent materials have a rather particular property, in that they 

absorb energy at lower wavelengths and emit it at hgher wavelengths. 

The diagonal model of illumination change 

In the quest for illumination-invariant scenes, computational models of colour constancy 

typically consist of two chained processes: 

a) estimate the scene illumination; 

b) correct for the scene illumination such that an illumination-invariant image is 

obtained 

While it is true that estimating the scene illumination is the hardest problem of the two, 

finding a suitable model for illumination change has an interesting history. 

A simple form of modeling illumination change represents - a linear transformation, which, 

for a three-sensor device can be written as follows:20 

(L', Myy S') and (I,, M, S) represent the device response for the same physical location (pixel) 

under the two different illuminants. It turns out that the simple linear model is quite good at 

modeling illumination change and is justified by the simple laws of additive colour mixture. 

A general transformation is represented by a full 3 x 3 matrix, but by restricting the 

transformation matrix to be diagonal we obtain an even simpler form in which only three 

parameters are to be estimated:21 



In this form the model is known as the von-Ices adaptation rulez2 and the diagonal terms 

are well-known as von-Kries coefficients. Von I h e s  suggested that in the human vision 

system, the visual pathways have a mechanism of adjusting to the illumination by scaling the 

signals individually on each of the short, medium and long cones. While challenged at times 

(Burnham, Wassef), the rule has continued to be adopted as a general law of expressing 

illumination change. 

The diagonal model is preserved in a perspective chromaticity space:23 

Worthey and  rill'^, 25 have explored the limitations of the diagonal model and the 

conltions under which it holds. The diagonal model of Amination change works quite well 

in the case of narrow-band and non-overlapping sensors. This is easily understandable 

because in the extreme case of sensors being modeled by delta functions at different 

wavelengths the diagonal model would hold perfectly. Based on this observation, Finlayson 

et alZ6 have proposed a method of transforming the sensor functions by means of a linear 

transformation in which the diagonal model of illumination change holds more exactly. This 

method is called "spectral sharpeningy'. Therefore, to the extent of the diagonal model, the 

resulting sharpened sensors are optimal for colour constancy. Three methods for spectral 

sharpening are proposed inz6: 

a) sensor based sharpening proposes to find the linear transformation such that the 

sensors are optimally narrow; this transformation is only function of the sensors 

functions themselves 



b) database sharpening finds the optimallj~ linear transformation for a given set of 

reflectance data and a set of ill-ants 

c) perfect sharpening is a formulation in a world of two-dunensional illuminant 

spectra and three-dimensional reflectance spectra 

Given the current performance of colour constancy algorithms, the diagonal model of 

illumination change gives good enough approximation and, from a practical perspective, 

there is little to be gained by considering alternate models. Where available, spectral 

sharpening gives equivalent results to using a full 3 x 3 linear transformation. 

A practical aspect of the diagonal model is that it reduces the problem of colour correction 

to the problem of having a good white (hence the notion of wlute balance in imaging 

devices). The colour of a standard white reflectance present in the scene is usually sufficient 

information for determining the illuminant colour. This very aspect is at the root of colour 

appearance models."~ 28 

Chromatic adaptation transforms 
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More specifically, they relate the change in cone tristimulus values (XYZs) for a certain patch 

when viewed under a different, "reference" light from a "test" light. The "reference" and 

"test" lights are specified in terms of tristimulus (XYZ) values, as is the corresponding patch. 

We can think of chromatic adaptation transforms as the consequence of the human visual 

system's limitations in achieving perfect colour constancy: chromatic adaptation transforms 

predict perceived illumination change. 

Historically, Lam was the first to provide a chromatic adaptation transform, also 

known as the Bradford transform. In his experiment2' he used 58 wool samples to model 

the various degrees of colour constancy in the context of duminant change from standard 

D65 illuminant to standard illuminant A. Lam used a memory matching experiment, in 

wluch he asked the observers to describe the appearance of the samples in the Munsell 

coordmate system. He then transformed the Munsell values in the CIE tristimulus 



coordinates. Lam devised a chromatic adaptation transform that would explain the change in 

tristirnulus values, based on the following psumptions: 

1) the transformation preserves achromatic constancy for neutral samples; 

2) the transformation is the same for different pair of illurninants; 

3) the transformation is reversible: going from one illurninant to another and back 

should leave the result unchanged. 

The Bradford transform is still at the root of colour appearance models, that aim to predict 

colour sensations under more complex viewing conditions. 
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CHAPTER TWO 

OVERVIEW OF COMPUTATIONAL MODELS FOR COLOUR 

CONSTANCY 

Linear models for colour constancy 

As previously shown, the colour constancy problem is underdetermined. The fact that 

humans seem to be pretty good at recovering illurninant-independent descriptors from the 

product of reflectance, illuminant and sensor response functions is evidence that there must 

be something about the actual interplay between the surfaces and illuminants that is 

exploited by our vision system. In particular, there is wide evidence that the spectral 

reflectances lay in a finite-dimensional space. Cohen's  measurement^^^ of the set of Munsell 

chips argued that the first three of the principal component decomposition support over 

99% of the variation in the data. IQinov has continued reflectance measurements3' on a 

selection of natural reflectances. Based on I(rinov7s data, ~ a n n e m i l l e r ~ ~  concluded that a 

n l ~ r n h ~ r  nf three fijnr&ns rcprcscr_t n2t,'+zl rup_fler_tzzr_e:: n_r_r_-~a:::$. H~-;c-;c;, f-&&c; 

analysis by Brown indicates that I h o v  has not actually measured natural reflectances, but 

rather large terrains. Further analysis33 concludes that the dimensionality of natural 

reflectances could be as high as five.  alone^^^ fitted a large number of surface reflectances 

including the ones measured by I h o v  and Cohen and found that the a h e a r  model of five 

to six dimensions can represent them accurately. 

Maloney and Wandell have exploited the finite-dimensionality of illuminants and 

reflectances in a linear approach to solving colour constancy.18* 20 They show that for a 

number N of photoreceptors, if the dimensionality of duminants is N-1 and the 

dimensionality of reflectances is N, solving for colour constancy is transformed into a 

determined problem. Unfortunately, for the typical case of N=3 classes of photoreceptors, 

the method is not very successful, as the dimensionality of reflectances is usually higher. 



Gray world 

The gray world is probably the simplest'of the colour constancy algorithms. It works by 

computing the statistics of the scene and then comparing these statistics with some 

predetermined values, followed by adjustment of the scene such that the new statistics match 

the predetermined ones. One of the simplest statistics is the average device (R, G, B) of the 

scene. The gray world algorithm makes two implicit assumptions about the real world: 

a) all scenes properly colour balanced have the same "normal" statistics 

b) the deviation from the actual statistics of the scene to the normal statistics is due to 

the scene illumination 

The simplest form of the gray world approach assumes that each scene should have an 

average (R, G, B) of 50 % gray. As an algorithm for colour constancy, the scene illurninant is 

characterized by the ratio of the actual average found in each of the (R, G, B) channels 

versus the expected average (50%), using the diagonal model for illumination change. In its 

initial formulation, the idea is due to ~uchsbaurn,35 based on an "adaptation level the~ry" 

introduced by Helson. 

Buchsbaurn postulates: "the system arrives at the duminant estimate assuming a certain 

standard common spatial average for the total field. It seems that arbitrary natural everyday 

scenes composed of dozens of colour sub-fields, usually none highly saturated, will have a 

certain, almost fixed spatial spectral reflectance average. It is reasonable that this average will 

be some medium gray, which comes back to Helson's principle". 

Gershon et al.36 further improved on the method in several ways. The choice of gray 

has been derived statistically from natural occurrences of reflectances and illuminants in the 

world. Because the algorithm works on sensor responses directly, it is more efficient when 

the "normal" gray is computed through the device or using the device sensor spectral 

sensitivity functions. Another aspect of Gershon's extension is the introduction of 

segmentation as a pre-processing step in the gray world estimate of the scene. The purpose 

of the segmentation is to compute descriptors of surfaces as opposed to descriptors of 

pixels, which are inherently less representative of the actual surfaces present in the scene. 



However, as it is well known, segmentation in itself is a hard problem and not very robust 

on real scenes. , 

While certainly very appealing for its simplicity, the gray world algorithm is 

essentially naive, as its two main assumptions are flawed for many natural scenes: the actual 

departure from the "normal" gray in properly balanced scenes is not necessarily due to an 

illurninant cast, as is the case for many scenes depicting deep-blue sky or predominantly 

greenery, autumn foliage, etc. In practice, the gray world algorithm has the tendency to 

artificially de-saturate colours in natural scenes in order to achieve the "normal" gray. 

Retinex and lightness models 

The Retinex theory was introduced by Land3' as a model of human vision after a series of 

experiments with colour appearance led him to believe that something is inherently wrong 

with the general idea of how colour is perceived. Land was surprised to notice that in certain 

circumstances there is almost no correlation between the incident flux of light coming from 

certain areas in his experimental displays and the perceived colour - which in turn seems to 

be highly correlated with the reflectance of the coloured patches. His experiments represent 

rather a c o n h a t i o n  of the mechanism of coiour constancy in the human vlsual system, and 

they do not necessarily undermine the classical laws of colom mixture and colour appearance 

as Land has origmally Land's theory is called "Retinex", from "retina" and 

"cortex", where most of the human visual processing takes place. 

There are several important components of the theory that are based on 

experimental observations: First of all, the theory embraces the von ICries adaptation rule of 

illumination change. The motivation for this essential part of the method was given by 

experiments that support correlation between colour appearance and the so-called scaled 

integrated reflectance of a given studied area. The scaled integrated reflectance is defined as 

the ratio of integrated radiance of a certain patch and the integrated radiance of the white 

patch in the scene. Another important aspect on which the theory relies on is the smooth 

spatial variation of the illumination in real scenes. Retinex discounts the illumination based 

on this spatially smoothness constraint. In its first  formulation^' the algorithm computes 

random paths in the scene. Along each of these paths the algorithm compute ratios of 



adjacent pixels that are then propagated along by a multiplicative operation. Any given ratio 

product is reset to 1 if it becomes supra uqitary (Retinex reset operation) or is simply ignored 

if its value falls behind a certain threshold (Retinex threshold operation). For a certain pixel, 

ratio products along paths from several directions are then averaged together to give the 

final pixel value. The reset operation implements the scaling on each independent 

photoreceptor class and the threshold operation implements the smoothness constraint on 

illumination spatial variation. 

In later implernentations~" l6 Land and his colleagues discarded the threshold 

operation. Interestingly, with this simplification, it is only the choice of paths that makes this 

algorithm worthwhile. For infinte paths, the Retinex process becomes the simple approach 

of scalmg each photoreceptor channel by the maximum. In this particular case, the Retinex 

model essentially becomes the white-patch algorithm. 

Retinex differs from many colour constancy methods in that it does not aim to find a 

single chromaticity for the scene illumination. Instead, it adjusts the image colours in a non- 

global manner as is necessary since the model attempts to match human visual response. It is 

a theory for the human visual system processing rather than simply a computational method 

for colour constancy. Supported by a series of experiments:, l6 the theory rejects the idea of 

any correlation between colour appearance and scene average, therefore coming in 

opposition to the gray world algorithm and favouring the von IGes model. 



In a detailed analysis, Brainard and wandel14' show that in certain circumstances the 

Retinex model predcts poorly. The method was also extended42, 43' 44 and recently 

reformulated as an optimization problem.45 Historically, the model has been quite 

controversial and because of different variants and control parameters the possibility of a 

concrete experience with the algorithm in real scenes has been limited. 

As an alternative method aimed at recovering lightness ~ o r n ~ '  proposes to 

dfferentiate the logarithm of the image, ignore small gradents, and then integrate to obtain 

the "lightness image" up to a constant of integration. For reasons of simplicity we illustrate 

the process in 1-D, but processing a two hens iona l  image is similar, except for the 

integration. Integration in 2-D is less 

log E log I 

Figure 2. Horn's lightness method of recovering reflectance 



Forsyth's original gamut mapping algorithm works in the (R, G, B) space. Finlayson 

et al. propose to work in a chromaticity space48, 23 and reports better results. A chromaticity 

space makes the algorithm more robust to varying illumination. The choice of chromaticity 

space chosen is important because it preserves convexity: (R/G, G/B). The solution is 

further improved by placing additional constraints on the illuminant set, based on some a 

priori knowledge about the probability to be encountered in the real world. 

Gamut mapping 

The gamut mapping approach to colouk constancy is due to ~ o r s ~ t h . ~ '  The algorithm 

exploits the fact that for a particular imagmg device - characterized by its sensor response 

functions - only certain pixel values are realizable under certain illuminants, given real 

surfaces. For instance, under a reddish illuminant, a very saturated blue or green are hardly 

achievable. The algorithm is based on the idea that the shift in the observed colours due to 

an unknown illurninant is reflected by a related transformation on the colour gamut. The 

gamut of an image is defined as the collection of all its pixels. It is easy to show that the 

collection of all realizable pixels under a certain illurninant is a convex set. Indeed, if two 

pixels PA and P, are present in an image under illuminant I,, then it is possible to observe the 

pixel whose value is a linear combination of the two: tPA+(l-t).P,, for t E [0, I]. It follows 

that the image gamut - taken under an unknown illurninant - is a subset of the image convex 

hull, which is further a subset of the convex hull that would be obtained under all possible 

reflectances viewed under the same unknown illurninant. After introducing the notion of 

canonical gamut - the convex hull of all possible surfaces observable through the imagmg 

device under a canonical illuminant, the colour constancy problem is then solved in two 
. . 
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image convex hull can be transformed into the convex hull of the canonical illuminant and 

2) choosing a solution from the solution set. There are a variety of strategies for choosing 

the possible linear mapping. One possibility is to choose the one that maximizes the new 

gamut. This is justified by the observation that in the majority of the properly balanced 

scenes, the gamut is maximal. Any colour cast would further reduce the gamut in some way. 

The most practical implementation of the gamut mapping algorithm uses diagonal 

transformations for reasons of simplicity. 



The method was further generalized49 by considering varying illumination which 

in turn poses additional constraints on the,solution set. 

Bayesian colour constancy 

This method was introduced by Brainard and   re ern an^' and is based on having some a 

priori knowledge about the distributions of illuminants and reflectances in real scenes. At the 

core of the method lies the Bayesian framework: 

p(x 1 y) denotes the posterior probability of observing x given y, p(x) is the prior probability 

of x alone, p O  is the prior probability of y alone, and p(y I x) is the probability of observing y 

given x. The authors formulate the Bayesian approach using a finite dimensional model of 

surfaces and illuminants. Although interesting, the proposed Bayesian approach is far too 

complex to be used successfully in real scenes because the dimensionality of the solution is 

linearly dependent with the number of surfaces in the scene. Another practical limitation of 
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Colour by correlation 

A more practical statistical-based method is colour by correlation." In essence, the algorithm 

is a discrete formulation of the Bayesian method by Brainard and Freeman and combines 

elements from the gamut mapping approach. At the core of the method lies the notion of a 

correlation matrix that expresses the interdependence between illuminants and chromaticities 

in the form of probability distributions computed according to Bayes' rule. Based on 

observed chromaticities in the image, the illuminant estimation is thus reduced to a voting 

scheme, in which an illuminant gets a vote from each chromaticity that has a non-zero entry 

for it (that is observable under the given illuminant). 

The correlation approach simplifies Bayes' rule, by assuming that all illuminants and 

all chromaticities are equally likely. 



In this equation, pQ and p(c) represent the prior probabhties of observing the 

illurninant E and the chromaticity c alone. Therefore, with the further assumptions 

mentioned above, the probability that the illuminant is E given that we observe chromaticity 

c p(El c) is the same as p(clE), the probability that we see the chromaticity c under 

illuminant E. 

The above formula applies to each chromaticity observed in the current scene, for 

which the illuminant E is to be determined. An important further assumption is being made 

in the computation of the joint probability p(E I C,J, the probability that the duminant is E 

when we observe the set of chromaticities C, in the image: 

The joint probability is computed as a product of all separate probabilities, assuming 

independent in real scenes. This is an important limitation of the model. 

Recent experiments5' have showed that working in the full (R, G, B) space as 

opposed to the (r, g) chromaticity space leads to better estimations. A unique and useful 

feature of the colour by correlation algorithm with respect to illuminant estimation is an 

estimate of the confidence in the solution, as justified by the probability correlation-matrix. 

Given its simplicity, the colour by correlation algorithm is fast, as it is based on a 

look-up-table. However, its accuracy can be improved by computing actual prior 

probabilities and further more, by including models of joint probabilities in the computation 

of the overall probability that the scene illuminant is E, p(E I C,J. 

Neural network for colour constancy 

Good results have been reported by a neural network approach to colour constancy. 52, 53, 54 

An immediate advantage of a neural network approach is the possibility of modelling non- 
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linear formulations of the colour constancy problem. The neural network is fed with a binary 

version of the chromaticity histogram of ,the scene to be colour corrected. The network is 

trained on a number of calibrated images in which the illuminant is documented, typically by 

using a photographic gray card carefully placed in the scene. In the absence of a large 

calibrated dataset, an alternative method is also proposed in which images are colour 

corrected by the means of a simple gray world algorithm and then used as a training dataset. 

For this purpose, selected images that include a large number of objects and colours are 

used, for which the simple gray world assumption holds and the algorithm works properly. 

An important aspect of the method is the fact that, by feeding the network with 

image histograms, a model of joint probabilities is inherently included, unlike in the colour- 

by-correlation approach. 

Methods using higher-order statistics 

Recent experimentss5, 563 " suggest that the human visual system uses some higher-order 

statistics inferred from the current scene in order to compensate for the colour of the 

illuminant and achieve colour constancy. Second-order statistics of the scene such as the 

interpiay between surfaces and dummants could yield additional information about the 

illuminant chromaticity. Simple statistics such as the ones employed by the gray world 

assumption could not distinguish between a reddish room in white illumination and a white 

room under reddish illumination. The redness-luminance correlation computed across all 

pixels in the scene could be a distinguishing factor between the two scenes. Because of the 

distribution of the natural illuminants on the red-blue axis (often referred to as "warm" for 

reddish versus "cold" for bluish illuminants), a redness component of the illumination would 

account for most of its variation in chromaticity for natural light sources. 

In probability theory, the correlation (or correlation coefficient) between two 

variables is defined as the ratio of their covariance by the product of their standard deviation. 

The correlation can vary from 1 in case of an increasing linear relationship to -1 in case of a 

decreasing linear relationship. A zero correlation indicates that the two variables are 

independent. 



, 
In essence, the redness-luminance correlation is supposed to give insight as to the 

colour of the illuminant, much the same as the gamut of observable colours under the 

current scene gives clues about the departure from the canonical gamut.58 In fact, Mausfeld 

and Andres5' propose that the mean and the covariance matrix, as first and second-order 

statistics respectively, may give valuable information about the shape and form of this gamut. 

Experiments by MacLeod and indicate that the luminance-redness correlation could 

be used, together with the mean of the sensor responses across the image, to disambiguate 

between reddish scenes under white light and white scenes under reddish light (Figure 3). 
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Figure 3. Redness-luminance correlation used in conjunction with the mean redness to determine the 
illuminant redness 

In a two-dimensional space defmed by the luminance-redness correlation and the mean 

image redness, the probability distribution of the white illuminant scenes can actually be 

distinct from the probabihty distribution of the red illuminant scenes. On the mean redness 

axis alone, there is a region where the two probability distributions overlap. 



Methods based on specular reflections 

The algorithms presented so far assume that ;he scenes are composed of matte surfaces, that 

is, that the spectral reflectance of the objects is independent of the incident angle of 

illumination - or the interface component can be neglected. This is usually a safe 

assumption, although occasional specularities present in scenes can raise problems. For these 

algorithms, specular reflections are treated as noise, simply because they do not correlate well 

with the body reflectance alone. 

In real scenes, specular reflections are encountered, and can even provide important 

cues to the nature of the illuminants. A simple approach to colour constancy based on 

specular reflections was introduced by ~ e e . ~ '  At the heart of Lee's method lies the 

dichromatic model of reflectance and the observation that the set of possible chromaticities 

due to a certain surface that are visible in a scene can be expressed as a linear combination of 

the chromaticity of the body reflection and that of the interface reflection. Furthermore, in a 

chromaticity space, each distinct dielectric surface in a scene is defined by a line segment. 

One end of each of these line segments is defined by the chromaticity of the interface 

reflection - which is in fact the illuminant chromaticity. The success of the method relies in 

finding the intersecuon of the light segments corresponding to dielectric surfaces, much like 

the Hough transform. Geometrically, two unique surfaces can identify the illuminant, unless 

the two corresponding line segments are collinear. In practice, more surfaces are desired 

because of inherent noise. 

The method is inherently dependent on correctly identifying the surfaces that 

contain specular reflections. The idea of finding specular reflections in order to infer the 

colour of the illuminant is first mentioned by ~udd." Other authorsb0' have proposed 

algorithms for colour constancy based on specular highlights. 

Integrative theories 

There is surprisingly limited work in combining several different approaches to 

computational colour constancy: A recent method for illuminant estimation based on 

multiple cues in the scene has been proposed by   alone^.^' The basic assumption of an 

integrative method to colour constancy is that the human visual system may be using 
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different cues in determining the illuminant, with different weights associated to each of 

these cues that reflect their usefihess in actually determining the iUuminant colour in a gven 

sccnc. For instance, in a scene without specular highlights, the visual system would set the 

weight to such corresponding cue to zero, trying to extract useful information from other 

cues. A mechanism for cue promotion and dynamic re-weighting of cues is provided in the 

model. Although some experimental studies are presented on synthetic images, the results 

presented by the author are not very convincing that this is in fact the way the human visual 

system performs illuminant estimation. 



CHROMATIC ADAPTATION TRANSFORMS WITH TUNED 

SHARPENING 

Traditionally, the chromatic adaptation transforms used in colour appearance models are 

calculated from the tristimulus values of the reference and test illurninants. However, with 

modern spectroradiometers it is just as easy to measure the spectral power distributions of 

the dluminants as their tristimulus values so there is no reason to restrict the input 

parameters to tristimulus coordinates. In this chapter we propose a new method of 

calculating chromatic adaptation transforms based on using the extra information available 

in the itluminants' spectral power distributions. The new method gves comparable results to 

the current tristimulus-based chromatic adaptation transforms in most cases, and better 

results in some specific situations such as the McCann-McKee-Taylor experiment.' 

Introduction 

W e  existing chromatic adaptation  transform^^^^^^^^^ start with the CIE XYZ tristimulus 

values of the test and reference illurninants as input, the first processing step is a change of 

basis to a new coordinate system. One such change of basis is the Bradford transform 

empirically derived by Lamzg and another is the spectral sharpening transform derived from 

Lam's dataz9 by Finlayson and siisstrunkG5 using white-point preserving sharpening. In either 

case, the same change of basis is applied no matter what the illurninants happen to be. If, 

instead of restricting the description of the illuminants to the tristimulus values, we describe 

them in terms of their spectral power distributions, we then can derive an illurninant-specific 

sharpening transformation. The hypothesis is that tuning the change of basis for each 

particular illuminant pair will lead to smaller errors in the final chromatic adaptation 

transform. 

* This chapter also appears as a published paper: Brian Funt and Florian Ciurea, "Chromatic Adaptation 
Transforms with Tuned Sharpening7', in Proc. First European Conf. on Color in Graphics, Imaging and Vision, 
148-152,2002, Poitiers, France. 



Description of the method 

Using the 336 ~ < o d a k ~ ~  database of spectril surface reflectances which includes 102 DuPont 

paint chips, 64 Munsell chips (matte collection) and 170 natural and man-made objects, we 

compute the tristimulus values for each reflectance in the database, under the test and 

reference illuminants in the standard manner: 

X - 
x(Li 1 

Y = k x ~ ( h ~ )  - s (h i )  - y(hi) , where k = ,,, 100 [J : [I(hi)i ~ E ( A ~ ) - ~ ( A ~ )  i=l 

The sampling has been performed over 101 wavelengths h, in the range from 380 nm to 780 

nm in 4 nm intervals. E(hJ denotes the spectral power distribution of the illuminant and 

S(hJ represents the surface reflectance at wavelength hi. 

We find the best transformation T mapping the tristimulus values obtained under the test 

iLluminant to the corresponding tristimulus values under the reference illuminant using the 

white-point preserving algorithm described by Finlayson and ~i iss t runk.~~ This 

transformation can be used to predict the correspondmg tr~stimulus values Yi, Zre' 

under the reference illuminant from the tristimulus values Xtest, Yt, Ztest under the test: 

illuminant using the chromatic adaptation transformation model: 

where the RGB ordinates of the reference and test illuminants are computed respectively as: 

The white-point preserving least-squares regression used in65 was introduced by Finlayson 

and ~ r e w ~ ~  and is summarized below: 

26 



Let us denote S the 336x3 matrix of 336 X'YZ values under the reference illuminant and P 

the 336x3 matrix of 336 XYZ values under the test illuminant. The transformation T is 

obtained through eigenvector decomposition of the general matrix M that best maps P to S. 

To preserve achromatic colours, M is derived using: 

where Z is a 3x2 matrix of any two vectors orthogonal to XYZ,,,, D is XYZ,,/XYZ,,, 

(diagonal matrix of the ratio of the two white point vectors) and N is given by: 

The main difference between the approach proposed here and that of Finlayson and 

~ i i s s t runk~~ is that we tune the sharpening transform T for each illuminant pair. We compute 

XYZ values from illumination spectral information and the database of 336 natural 

reflectances as opposed to computing a generic transformation T using the XYZ values of 

the 58 samples reported by Lam. 

Testing the model 

29,67-71 To the our knowledge, most existing corresponding colour appearance experiments do 

not document the actual spectral power distribution of the test and reference illuminants. 

One exception is the McCann-McKee-Taylor experiment1 in which 5 illumination conditions 

were provided by three projectors with narrow-band filters (630 nm, 530 nm and 450 nm, 

respectively) having a bandwidth of 10 nm at half-height. Given that the rest of our 

computations were based on a 4-nm sampling interval, we modeled each peak in the 

McCann-McKee-Taylor spectra by a simple rectangular signal with a width of 8 nm (2 

intervals). The relative power distribution of each illuminant was then computed to accord 

with the ratios of the reported triplet of radiances from the Munsell white paper for that 

illurninant. This presumes the Munsell white paper had a uniform surface spectral 

reflectance. 



In most of the other experiments the only information available about the hght is the 

illuminant type (i.e. CIE A, CIE D65, P m p s  TL84) and its chromaticity. Our proposed 

method depends on having the actual spectra of the two illuminants, not just their 

chromaticities. In the present circumstances, the best we can do is to estimate of the actual 

spectra of the illuminants used in each experiment. We started with the spectral power 

distributions of the standard sources used to simulate the ideal illuminant spectra A and 

D65, and measured the Philips TL84 with a PhotoResearch PR650 spectrophotometer. We 

then modified these spectra to match the chromaticities reported for the illuminants actually 

used in the experiments, as described below. 

To obtain the least distortion in the illuminant spectral power distribution when matching 

the chromaticity, we solve the following under-determined system with (EO-E') as unknown: 

EO, is the spectral power distribution at wavelength h, of the measured illuminant with 

tristimulus values x0, Y",, ZO,, and E', is the corresponding spectral power distribution of 

the similar illurninant that has the tristimulus values X1, Y',, Z',, as reported in the 

corresponding experiment. When we solve the under-determined system above using the 

pseudoinverse method we obtain the solution having the smallest norm, thus having the 

least deviation from the measured spectral power distribution EO. 

Results on corresponding colour datasets 

We have used the corresponding colour datasets accumulated by Luo and Hunt, available 

online from the University of ~ e r b ~ . ' ~  Table 1 summarizes the experimental conditions. 



Data set 1 Number of Test 1 Reference 
specimens illuminant type illuminant type 

I 

Experimental 
method 

Helson 
Lam & Rigg 
Lutchi (A) 

Lutchi (D50) 
Lutchi (WF) 

Kuo & Luo (A) 
Kuo & Luo (TL84) 

Breneman 1 
Breneman 2 
Breneman 3 
Breneman 4 
Breneman 6 
Breneman 8 
Breneman 9 
Breneman 11 

Table 1. Experimental conditions for each corresponding colour experiment data set 

59 
58 
43 
44 
41 
40 
41 
12 
12 
12 

Breneman 12 
Braun & Fairchild 1 
Braun & Fairchild 2 
Braun & Fairchild 3 
Braun & Fairchild 4 

McCann "blue" 
McCann "~lreen" 
McCann "grey" 
McCann "red" 

McCann "yellow" 

12 
11 
12 
12 
12 

A 
A 
A 

D50 
WF 
A 

TL84 
A 

PROJECTOR 
PROJECTOR 

12 
17 
16 
17 
16 
17 
17 
17 
17 
17 

A 
A 
A 
A 

D55 

D65 
D65 
D65 
D65 
D65 
D65 
D65 
D65 
D55 
D55 

D55 
D65 
D65 
D93 
A 

BLUE 
GREEN 
GREY 
RED 

YELLOW 

Memory 
Memory 

Magnitude 
Magnitude 
Magnitude 
Magnitude 
Magnitude 
Magnitude 
Magnitude 
Magnitude 

D65 
D55 
D65 
D65 

GREEN-B 

Magnitude 
Magnitude 
Magnitude 
Magnitude 
Magnitude 

GREEN-B 
D65 
D65 
D65 
D65 

GREY 
I GREY 

GREY 
GREY 
GREY 

- 
Magnitude 
Matching 
Matching 
Matching 
Matching 

Haploscopic 
, Haplnscnpir, 

Haploscopic 
Haploscopic 
Haploscopic 

I 



The results are presented in the following tables: 

I 

Data set 

Helson 
Lam & Rigg 
Lutchi (A) 

Lutchi (D50) 
Lutchi (WF) 

Kuo & Luo (A) 
Kuo & Luo (TL84) 

Breneman 1 

Mean AELab 
Lam sharp 

5.3 
4.4 
6.8 

I I I I 

6.3 
7.8 
6.9 
4.3 
10.5 

Breneman 2 
I I I I - .  . 

Mean 
Spectra 
sharp 

6.4 
5.8 
8.5 

Breneman 3 
I I I I 

6.6 
5 

7.7 
4.4 
11.2 

7.1 

Breneman 4 
Breneman 6 
Breneman 8 
Breneman 9 
Breneman 11 

RMS AELab 
Lam sharp 

6.1 
5.1 
7.6 

12 

I I I I 

RMS AELab 
Spectra 
sharp 

7.6 
6.8 
9.6 

6.8 
8.7 
7.7 
4.7 
10.8 

7.8 

12.3 
7.9 
12 

17.9 
7.4 

Breneman 12 
I I I I . - .- 

7.1 
5.8 
8.5 
4.9 
12.1 

13.8 

Braun & Fairchild 1 I 3.8 
Braun & Fairchild 2 
Rrm In R_ Fzj-rhi!d 3 

I -.--.. 
Braun & Fairchild 4 

7.4 

15.7 
9.6 
15.5 
22.1 
6.8 

8.9 

McCann "blue" 
McCann "green" 

8.1 
14.2 

3.4 
5.9 
?.? 

5.9 

McCann "grey" 
McCann "red" 

16 
14.9 
8.3 
14 

20.7 
8.2 

9.6 

21.4 
27.7 

I McCann "yellow" I 
I I I I 

Table 2. Mean and RMS A E L ~ ~  error of the full spectra method compared to the sharpening method 
based on Lam data. Student's t-test significance is 0.85 for the average of mean A E L ~ ~  and 0.89 for the 

average RMS A E L ~ ~ ,  SO the differences in the results are not statistically significant. 

17.6 
10.4 
16.8 
24.7 

7 

4 
6 

7.2 
6.3 

10.1 
16.9 
26.2 

I I I 
~ - 

I 

9.1 

3.8 

18.7 
23.2 

average value 

10.2 

6.6 
7.2 
6 

10.1 
20.2 
19.4 

6.6 
7.3 
6.5 

22.2 
29.7 

10.5 

19.8 
24.4 

11.2 
17.8 
29.6 

11.2 
21.6 
21 

10.8 11.5 11.8 



Data set 

Helson 
Lam & Rigg 
Lutchi (A) 

Lutchi (D50) 
Lutchi (WF) 

Kuo & Luo (A) 
Kuo & Luo (TL84) 

Breneman 1 
Breneman 2 
Breneman 3 

Mean 
AECMC(I 1 )  

4.4 
3.7 
4.7 
4.2 
5.2 
4.9 
3.2 

Breneman 4 
Breneman 6 

7.2 
4.9 
7.5 

Breneman 8 
Breneman 9 
Breneman 11 
Breneman 12 

Braun & Fairchild 1 

Mean 
, AEc~c(r 1 )  

4.9 
4.7 
5.5 
4.5 
3.2 
5.8 
3.5 

8.6 
5.8 

Braun & Fairchild 2 
Braun & Fairchild 3 

8 
5.1 
8.4 

8.2 
12.3 
5.1 
6 

3.5 

Braun & Fairchild 4 
McCann "blue" 

Table 3. Mean and RMS AEc~c(1:i) error of the full spectra method compared to the sharpening 
method based on Lam data. Student's t-test significance is 0.78 for the average of mean AEc~c(l.1) and 

0.77 for the average RMS AEcM~I:~), SO the differences in the results are not statistically significant. 

RMS 
AEcuc(1 I )  

5.5 
4.6 
5.2 
4.7 
5.7 
5.4 
3.7 

10.7 
6.7 

6.4 
5.7 

McCann "areen" 
McCann "grey" 
McCann "red" 

McCann "yellow" 
average value 

RMS 
AEcMc(~ 1 )  

6.2 
5.5 
6.1 
4.9 
3.6 
6.3 
4 

7.8 
5.5 
9.4 

10.1 
14.6 

5 
6.6 
3.2 

5.2 
12.7 

9.1 
5.8 
10.1 

10.7 
6.2 

6.4 
5.6 

18 
7.1 
13 

15.8 
7.3 

. -. . 

12.2 
7.3 

9.7 
14.1 
5.6 
6.7 
3.9 

5.3 
11.6 

11.3 
16.1 
5.4 
7.6 
3.8 

7.9 
6.1 

16 
7.1 
13.9 
14.7 
7.6 

- - 

7.7 
6 

5.4 
13.2 

5.6 
12.3 

, 
I 

711 7 

8.6 
14.5 
17.4 
8.3 

, 186 
8.6 
15.2 
17.7 
8.7 



Data set 

Helson 
Lam & Rigg 
Lutchi (A) 

Lutchi (D50) 
Lutchi (WF) 

Kuo & Luo (A) 

Mean AEcl~94 
Lam sharp 

3.5 
2.9 
3.9 

I Kuo & Luo (TL84) I 
I I I I 

3.5 
4.1 
4.2 
2.7 

I I I - - 
I 

Mean AEc1E94 
, Spectra 

sharp 

3.8 
3.8 
5.2 

Breneman 1 
I I I 

3.7 
3.1 
5.1 
3 

Breneman 2 
Breneman 3 
Breneman 4 
Breneman 6 
Breneman 8 

RMS AECIEQ4 
Lam sharp 

4.1 
3.4 
4.4 

5.8 

I I I 

RMS AECIEQ~ 
Spectra 
sharp 

4.5 
4.3 
5.9 

3.9 
4.4 
4.5 
2.9 

3.9 
5.8 
7 

4.7 
6.7 

Breneman 9 
I I I . - I 

4.1 
3.5 
5.5 
3.3 

6.8 

Breneman 1 1 
I I I 

4.2 
6.5 
8.6 
5.8 
8.2 

9.5 

Breneman 12 
Braun & Fairchild 1 
Braun & Fairchild 2 

6.2 

4.2 

Braun & Fairchild 3 
Braun & Fairchild 4 

Table 4. Mean and RMS AEcIE~~ error of the full spectra method compared to the sharpening method 
based on Lam data. Student's t-test significance is 0.72 for the average of mean AEcIE~~ and 0.73 for 

the average RMS AEcIE~~, SO the differences in the results are not statistically significant. 

7.3 
4.3 
7.3 
8.4 
4.9 
7.6 

11.3 

4.6 
2.8 
4.5 

For most of the data sets, our method, denoted as "spectra sharp", performs almost as well 

4.6 

7.8 
9.7 
6.2 
9 

4.1 

4.6 
4.2 

I 

as the sharpening method by Flnlayson and ~ i i s s t runk~~  based on Lam data (noted here as 

10.8 

5.2 
2.7 

4.5 

10.5 
40 n 
I L.O 

6.1 
11.3 
12.4 
6.3 

McCann "blue" 

"Lam sharp") which is considered to give among the best results on these data sets.73 For the 

12.3 

4.6 

4.6 
4.2 

11.3 

Lutchi (WF), Breneman 11, Braun and Fairchild 1 and McCann "blue", McCann "greeny7 

4.4 
5.1 
3.1 
5.1 

12 
- 

A ?  n 
I a.0 

7.1 
11.4 
14.9 
6.6 

I n A ~ P m n n  "r.vrrnn" I 
l V l V V L l l  ll l yl 1 

4 A  c I - t .J  

McCann "grey" 6.1 
McCann "red" 10.6 

McCann "yellow" 13.7 
average value 6.0 

and McCann "yellow" data sets, our new method gives more accurate predictions. We have 

5.7 -. . 

3 
5.2 

4.8 
4.3 

11.3 
.. 14.3 
7.1 
12 

13.8 
7.0 

used three different error metrics: A E L ~ ~  , AECMC(I:I) and AEcIE~~ to evaluate the predictions. 

. ~- 

4.8 
4.3 

Student's t-tests for the samples conclude that the differences in the results of the two 

methods are not statistically significant. 



We speculate that the somewhat better overall results obtained with the full spectra 

method on the McCann data sets are due tp the fact that it contains the actual spectral power 

distribution of the 5 rather unusually narrow-banded illuminants which differ substantially 

from the illuminants in the Lam experiment. For the other cases, the full spectra method 

performs almost as well as the Lam-based sharpening. In fact, given the significant noise in 

experimental data, which is based on memory matches, magmtude estimation and 

halposcopic matching, the performance difference between the models is probably not 

significant. Furthermore, it must be remembered that we have only an imprecise 

specification of the required illuminant spectra. 

We also considered the possible effect of incomplete adaptation63 by solving for the optimal 

value of the incomplete adaptation factor, D. WMe the errors for both methods dropped 

slightly, the overall results found were qualitatively similar to those in Table 2, Table 3 and 

Table 4. 

Conclusions 

The main hypothesis of this chapter is that a better chromatic adaptation transform could be 

developed if it WGK iu tt: cu~xq~uieci from &e specrra of h e  iiiuminants rather than sirnpiy 

from their tristirnulus values. In the proposed method, the spectral power distribution of the 

duminants is used to derive a sharpening transformation that is specific to the adapting 

illuminant pair. This contrasts with the f ~ e d  transformation approach inherent in either the 

Bradford transform or the Finlayson-Siisstrunk sharpening as it is applied in most current 

chromatic adaptation transforms. The new full spectra illumination-specific sharpening 

method performs better on the McCann-McKee-Taylor data, which is the main case where 

we should definitely expect some improvement. Many of the other experiments involve the 

same illuminant pairs (A and D65) as used in the Lam-based sharpening or ones similar to 

them. 

Two exceptions are the ICuo & Luo TL84-D65 pair and the Lutchi D65-WF. In the former, 

the errors are both very small relative to the experimental noise; in the latter, the full spectra 

method does slightly better. These results indicate, but do not prove, the potential of using 

the full spectra of the illuminants as input parameters for a better chromatic adaptation 



transform. Since chromatic adaptation transforms are a crucial part of all colour appearance 

models, this could also lead to improved,predictions of colour appearance. Unfortunately, 

information about the actual spectral power distribution of the illuminants is lacking for 

most of the existing experiments. This means that at this point, it is difficult to evaluate 

conclusively the relative performance of the method. Still, future experiments to obtain 

corresponding colours under different illurninants should definitely include a record of the 

spectra of the illurninants involved. 



RETINEX IN MATLABTM 

Many different descriptions of Retinex methods of lightness computation exist. This chapter 

provides concise MATLABTM implementations of two of the spatial techniques of making 

pixel comparisons. The code is presented along with test results on several images and a 

discussion of the results. We also discuss the calibration of input images and the post- 

Retinex processing required to display the output images. 

Introduction 

The Retinex model' for the computation of lightness was introduced by Land and 

~ c ~ a n n . ~ ~  Since that time Land and his colleagues have described several variants on the 

original m e t h ~ d . ~ , ~ ~ , ~ " ~ ' ~  The variants on Retinex mainly aim to improve the computational 

efficiency of the model while preserving its basic underlying principles. 

n-&: ---- - - l - - - l -  . 1' 1 C *. 1 w . .  
1 ~ b - i ~ ~  L ~ I C L U ~ ~ ~ O I ~ S  u l l  ULCUILI I I I C  W T I W  )rv rt-'qnonw QI K m n m P c c  13 1mnnrMfif 

J L ---I ------- 
to distinguish between physical reflectance, the sensation of lightness, and perceived 

reflectance, which are three distinct entities. A single model can attempt to calculate only one 

of the three - the Retinex goal is to calculate the sensation of lightness. Consider the case of 

two faces of a white cube, one in direct sunhght and the other in shadow. Physical 

reflectance is a measure of a property of the cube's surface relating its radiance to its 

irradiance. 

The reflectances of the two faces are identical. Sensations, on the other hand, are the 

appearances of the faces of the cube in the sun and the shade. To create the same 

appearances in a painting, a fme arts painter would mix white with a little yellow to make the 

* This chapter also appears as a published paper: Brian Funt, Florian Ciurea, John McCann, "Retinex in 
Matlab", Journal of the Electronic Imaging, Vol. 13, No. 1,48-57,2004. 
+ McCann refers to these models as Ratio-Product-Reset-Average, but for simplicity here we call these 
operations the Retinex model. Frankle and McCann34 provide complete FORTRAN code for their algorithm 
with extensive discussion of image processing steps that follow spatial comparisons. 
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sunny face, but use white with blue and a little black to reproduce the appearance of the 

shadowed face. These samples of different coloured paints are measures of sensation. Here 

the two faces are different.75 In comparison, the question of the perceived reflectances of the 

cube's surfaces involves cognition. It asks the observer to recognize the paint on the cube. 

Asked to repaint the cube, the observer is not confused by sun and shade, and would simply 

apply white paint. In terms of perception, the two faces of the cube are identical. In contrast, 

Retinex calculates lightness sensations - it cannot be used to calculate physical reflectances 

or perceived reflectances. 

The first model designed to calculate hghtness was described in Land's Ives Medal 

Address to the Optical Society of America in 1968 and later published.37 This lecture 

included a working demonstration of a primitive electronic Retinex camera. This was 

followed by publications and patents with additional details and improvements.3g~76~77 

McCann McKee and ~aylor '  described a study of human colour constancy that included 

colour-matching experiments, the details of the hghtness model and successful results of 

modelltng the experimental data. This result was further developed to show that there is no 

effect of cone pigment adaptation in colour constancy.78 The Retinex operators were selected 
. . C,,+ +- -.-.- L:-1-2--  -..- ~ 1 -  ' r  . ' 1 
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obtain spatial interactions. 

Dynamic range compression of real images was described in a patent by Frankle and 

M~Cann.~'  his implementation used specialized hardware (International Imagmg Systems 

12S image processor with scrollable 8-bit image planes) for efficient image calculation. It 

described the idea that information from 2 pixels is accumulated after n steps of the 

process. This patent also described the multi-resolution approach to Retinex calculation used 

for computer applications.'6~7g 

Appropriate Input Data 

For quantitative testing of the Retinex model it is crucial that the data be calibrated in the 

sense that the image digital values must be a logarithmic function of scene radiance and they 

must be represented with sufficient precision. ~ c ~ a n n "  used a slope 1.0 photographic film 

to capture real images (Ektachrome 5071 slide duplicating film). He was able to measure an 



in-camera dynamic range of 3.5 log units. The importance of the logarithmic function 

follows from Wallach's experiments on aRpearance.81 He showed that equal radiance ratios 

generate equal lightness differences. A pair of papers, i.e., a 20% gray paper and a 100% 

white paper, have the same lightness difference in sun and shade. The pair also has a log,, 

edge difference of 0.7, regardless of illumination. If the input image data deviates from 

logarithmic, then the log,, edge difference for these papers will change with illumination, and 

the calculated lightness difference of the pair will change. For Retinex to work well, edge 

ratios, or log,, differences, within an object must be independent of illumination. Accurate 

logarithmic calibration guarantees this to be the case. 

Scene Log Illumination Paper Log Quantized Quantized Quantized 
Radiance Radiance Log Digit Linear Digit Digit 

Sun White 

Light Gray 1 

Gray 2 

Mid Gray 3 

Dark Gray 4 

Black 

Shade White 

Light Gray 1 

Gray 2 

Mid Gray 3 

Dark Gray 4 

Black 

Table 5. Preparing input images for Retinex processing 

Table 5 describes the care one must take in preparing input images. The data comes from 

the image of two test targets: one in sun, the other in shade (See Figure 4). The shade 

reduced the illumination such that white paper in the shade sends the same radiance to the 

eye as the black paper in the sun. Columns four and five demonstrates the digitization of raw 

image data as equally spaced log,, increments. In other words, convert the scene into log 



radiance and then quantize to 8 bit (0 to 255) digits (log then quantize). The first column 

specifies either sun or shade illumination., The second column describes the papers in the 

gray scale. The third column lists the Scene Radiance from the two identical gray scales in 

sun and in shade. Note that the radiance from the black in the sun is equal to that from the 

whte in the shade. The fourth column lists Log Radiances of Scene Radiance values (column 

3). The fifth lists the eight-bit Quantized Log Digits for the values in column four scaled in 

the 0-255 range. Column four now represents equal log increments with constant difference 

of 0.35 log units in radiance. Columns six and seven demonstrate the problems arising from 

quantizing before converting to log. The sixth column lists the eight-bit Quantized Linear 

Digit (from values in column three scaled in the 0-255 range). The seventh column lists the 

Log Quantized Digit. Here, values are computed by first rescaling values in the sixth column 

to the range of radiances in column three, taking the log and then rescaling to the 0-255 

range, similarly to how the fifth column is computed. The consequence of the quantization 

prior to taking the logarithm is that, in column seven, all radiance values for Black, Dark 

Gray 4 and Mid Gray 3 are all represented by the same digit, 0. In other words, quantizing 

the log input image shows poor use of digits. Following quantization with a log,, transfarm 

does not improve the image. Representing radiances of the input image as Log Quantized 
- .  
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images. Using Log Quantized Digits (quantize then log) makes a highly undesirable input 

image. One cannot take an existing 8-bit image, apply a log to it and have meaningful input 

image data for quantitative testing the Retinex model. 

Nevertheless, Retinex often enhances random images that have unknown and 

unknowable radiances for inp~ts.39,82,83 The process improves the visibility of dark objects 

while maintaining the visual discrimination of the light areas. Unlike lookup tables, which 

improve one range of radiance at the expense of others, Retinex improves visual 

differentiation in all ranges of ralances. The danger is that artefacts such as noise create 

artificial edge information that is enhanced by Retinex processing. The ability to bring out 

shadow detail is limited by image noise. 
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Figure 4. The role of number of iterations and post-LUT in Retinex processing 

Figure 4 is due to John McCann and demonstrates the role of number of iterations and 

postluts. The first column shows the effect of spatial comparisons (ratio-product-reset- 

average). The second column is the histogram of the images in the first column. The h d  

column shows images that have been stretched by a different postlut for each number of 

iterations. The first row shows the input log,, image scaled so that 3.5 log,, units covers O- 

255. The sun half of the image is on the right and the shade half is on the left. The shade 

image is a lower radiance copy of the sun image. The hstogram of this image is in the 

second column. The thud column image is the same as first column, illustrating that it has a 

slope 1.0 postlut. Output equals input. The second row shows an output image using one 

iteration, with its histogram. Here the output dynamic range has been compressed into the 

top 25% of the 0-255 digit range. A slope 4.0 linear postlut will stretch the first column 



image to render contrast in the sun properly. It is very steep and generates artefacts. The 

third row shows the output for four iteqtions, and its histogram. Here the range data has 

been compressed from 3 log units to 1.5. A slope 2.0 postlut has only to expand the data 

from 128 to 0. The fourth row shows the output for 128 iterations and its histogram. There 

is only a 25% compression. A slope 1.5 postlut will be very gentle; however, the 

improvement of the shadow detail in the third column output image is minimal. In this 

figure we used simple linear postluts to illustrate how calibration, number of iterations and 

postlut work together. To optimize the image these postluts should be shaped so as to take 

into account the response of the output device and the tone reproduction curve desired. (See 

Appendm I1 & I11 of Frankle and McCann for details3?. 

Retinex Operators 

The original Land and McCann paper37 described four steps for each iteration of a Retinex 

calculation: ratio, product, reset and average (seea4 for details). With the exception of reset4' 

these operators have remained the same over the years. These operators are iteratively 

applied to an image, but the manner in which they are applied has varied. The focus of this 

chapter is to list specific details of how these four operators are applied - - to the image. - 

A fundamental concept behind Retinex computation of lightness at a given image 

pixel is the comparison of the pixel's value to that of other pixels. The main difference 

between the Retinex algorithms is the way in which the other comparison pixels are chosen, 

including the order in which they are chosen. They use the same calculations but have 

dramatically different computational efficiencies in dealing with large real images. The 

original way of defining comparisons is by following a path, or set of paths, from pixel to 

neighbouring pixel through the image.37 Lightness estimates are accumulated along the path 

in a "sequential product" SF. SP starts as 1 and then is modified by multiplying it with the 

ratio of the next pair of pixels along the path. In the case of path following, path length 

affects the results substantially. Short paths mean the comparison is made only to others in a 

spatially locaked group of pixels. Intermediate path lengths are to be used when modeling 

human vision. Infinite path lengths result in a degenerate case in which the output image is 

simply a scaled version of the input image. Infinite path lengths should not be used to model 

v i s i ~ n . ~ ' , ~ ~  
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made the SP is tested; if it exceeds 1.0, it is reset to 1.0. In this case, the value 1.0 becomes 

the current lightness estimate. A third aspect of Retinex is the way in which lightness 

estimates obtained from different paths to a pixel are combined. In earlier versions, Retinex 

also included a "thresholding" step; however, it is not included in later  version^'^ and is not 

part of the MATLABm implementations presented. The fourth step averages present values 

of the Product with previous ones. 

Implementations 

We have chosen two versions of Retinex to implement. The first is a computer-based 

version described by ~ c C a n n , ' ~  which we wiU refer to as McCann99 Retinex. The second is 

an older specialized-hardware which we will call Frankle-McCann Retinex. The 

two versions both replace path following with more computationally efficient spatial 

comparisons. McCann99 Retinex creates a multi-resolution pyramid from the input by 

averapg image data. It begins the pixel comparisons at the most highly averaged or top 

level of the pyramid. After computing lightness on the image at a reduced resolution, the 

resulting lightness values are propagated down, by pixel replication, to the pyramid's next 

level as initial lightness estimates at that level. Further pixel comparisons refine the lightness 

estimates at the higher resolution level and then those new lightness estimates are again 

propagated down a level in the pyramid. This process continues until New Products have 

been computed for the pyramid's bottom level. 

In comparison, Frankle-McCann Retinex uses single pixel comparisons with variable 

separations. An important hfference between this method and that described in Land and 

~ c ~ a n n ~ '  is that there are no paths. A single pixel eventually averages different products 

from all other pixels. The advantage of this structure, and also for the multi-resolution 

approach, is that long distance interactions are propagated with fewer comparisons. 

McCann99 Multi-Level Retinex Details 

For this implementation the input images must be of dimension w.2" by h.2, where w 2 h 

and w and h are integers in the range [1..5]. This constraint arises from the fact that each 
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level of the image pyramid differs from previous levels by a factor of 2 in each dimension. It 

is not a serious limitation in practice. 
% 

The algorithm assumes that input digits are proportional to the logarithm of scene 

radiance and are of meaningful precision. Using logarithms simplifies the computation of 

radiance ratios, which become simple differences. It also implies that when results from 

different spatial comparisons are averaged, the averaging is in log space and hence equivalent 

to a geometric mean. 

In the first step, the log image is averaged down to the lowest resolution level, which 

depending on the input dimensions will be of the size l x l , l x 2 ,  l x 3 , 2 ~ 3 , 3 ~ 4 , 3 x 5 , 4 ~ 5  or 

5x5. At each step the resolution level d be doubled. The number of layers in the pyramid 

depends on the size of the input image. The number of layers will be the greatest power of 2 

dividing both the width and height of the input images as calculated by the function 

Computesteps. 

When the results (called "New Products") at one level of dunension n-by-m have 

been computed, the values are then replicated to form an "Old Product" image of 

dimension 2n-by-2m. In our implementation, we pad the Old Product image with zeroes to 

simplify handling boundary conditions. These extra pixels are discarded at the end of the 

computation. 

At all levels the New Product, a precursor of calculated lightness, for each pixel is 

computed by visiting each of its 8 immediately neighbouring pixels in clockwise order. Each 

visit involves a ratio-product-reset-average operation,16 which is implemented by the 

function CompareWithNeighbor. It subtracts the neighbour's log luminance (the ratio step) 

and then adds the result to the old product (the product step). If the result exceeds the 

maximum defined by Maximum, it is reset to Maximum (the reset step). Finally, the new 

product for the pixel obtained by comparison to its neighbour is averaged with the previous 

old product. 

A crucial parameter to the McCann99 algorithm is the number of times a pixel's 

neighbours are to be visited. In the code, this is set by nIterations. It controls the number of 



times the neighbours are cycled through, which as a result affects the distance at which pixels 

influence one another. This occurs becaus,e the New Product values for all pixels are being 

computed in parallel, so that after one iteration aU neighbouring pixels have had their New 

Products values updated. Hence, in the second iteration these new values involve 

information propagated from beyond a pixel's immediate neighbours. In the limiting case of 

an infinite number of iterations, the algorithm converges to produce an output image that is 

simply the input image scaled by the image's maximum value. A practical value for the 

number of iterations is 4. The final step is to scale the New Product values to make an 

estimated lightness (see Section "Scaling of Retinex output to desired media and purposey'). 

In the case of colour images, the function Retinex-mccann99 must be applied to each of the 

colour channels independently. 

The code is based on MATLABTM 5 (Version 5.1.0.421). For the reader unfamiliar 

with MATLABTM, the statement IP(1P > Maximum) = Maximum, which sets all values in 

matrix IP that are greater than Maximum to Maximum, demonstrates an important feature 

of the language; namely, that most of the functions and operators work on whole matqices 

applying the given function to all matrix elements. 

Frankle-McCann Retinex 

As in McCann99 Retinex, Frankle-McCann Retinex computes long-distance interactions 

between pixels first and then progressively moves to short-distance interactions. In Frankle- 

McCann, the spacing between the pixels being compared decreases with each step. The 

direction between pixels also changes at each step, in clockwise order. At each step, the 

comparison is implemented using the Ratio-Product-Reset-Average operation. The process 

continues until the spacing decreases to 1 pixel. 

The origmal algorithm assumed the input image to be 512x512. This followed the 

hardware design of the 12S. As a result, the initial spacing between pixels started at 256. We 

have generalized the algorithm slightly so that our implementation will work on an image of 

arbitrary size. In this case, the initial spacing (as encoded by the variable 'shifty) is computed 

as the largest power of 2 smaller than both of the input image dimensions. 



The function CompareWith(s-row, s-col) updates the current lightness estimate for 

a pixel using the ratio-product-reset-aveqage operation described above. In the case of 

Frankle-McCann, it is based on the pixel located at a distance of s-row, s-col. The square 

spiral path structure in this implementation means that when this function is called, one of 

the two parameters will always be zero. The original Frankle and ~ c ~ a n n ~ ~  implementation 

had the option of either square or 8-direction comparisons. 

Retinex Parameters 

All spatial operators use variable parameters to appropriately match their effects to input 

images. For example, this is true of unsharp masking, jpeg and Retinex spatial operators. 

The purpose of unsharp masking is to change the spatial content in the image, 

particularly in the high-spatial-frequency components. When successfully used the image 

looks sharper and free of artefacts. With inappropriate parameters the process will generate 

artefacts that are visible to the observer. If we compare the effects of a particular unsharp 

mask on same-size prints of a 256-by-256 digital image with the effects on an 2k-by-2k 

image, we see that they act very differently. A sharpening filter that is appropriate for the 

small image will have no effect on iarge images, whiie an appropriate fiter for the iarge 

images will introduce artefacts in small ones. Given a print size and a viewing distance, one 

can optimize the shape of the filter kernel. The choice of sharpening kernel is selected so as 

to keep artefacts below visual threshold, which is a function of both spatial frequency,86 size 

of the display8' and light intensity of the display.88 

An analogous spatial dependence is found in jpeg compression where knowledge of 

human sensitivity to spatial information is used to reduce the number of bits for rendering a 

visually similar image.89 when we select a quality factor, we are controlling an underlying 

array of coefficients that filter the data so as to reduce the data needed to recreate the image. 

To make two same-size prints from a 256-by-256 versus a 2k-by-2k image requires different 

jpeg coefficients. Any reduction in information will likely be visible in the small number-of- 

pixel image, while the larger image might well be compressed by factors of 10:l or 20:l 

without noticeable effect. The difference arises because the size and viewing distance control 

what information the observer can see in the final prints. Large digital files often contain 
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Iscards. As with unsharp masking the yser specifies the spatial parameters to optimize 

performance and avoid artefacts. 

Retinex has parameters that are responsive to both spatial frequency and dynamic 

range of the input data. The number of iterations, as specified in the MATLABm code by 

'nIterationsY, controls the amount of dynamic range compression and sets the stage for a 

different level of post-processing by a postlut. The term "postlutyy derives from historical use 

of image processing hardware using a lookup table. Postlut processing simply refers to the 

application of a function f applied uniformly to every image pixel, I(x,y)=f(I(x,y), for all 

image locations (x,y). The effect of the number of iterations can be seen in Figure 4. 

As we can see the effect of the number of iterations (nIterations) is to reduce the 

contrast of the images as demonstrated by the smaller range in the histograms. The process 

moves the entire image into a smaller dynamic range, with smaller digit differences 

representing edge ratios. With very few iterations, the range of output digits is small. The 

postlut expansion (stretching of the image intensities) must be large to regenerate edge ratios 

appropriate for a print. With more iterations the range of output digits is larger. The postlut 

expansion will be moderate to regenerate edge ratios. With a very large number of iterations 

the range of output digits is large, approaching that of the input image. The postlut 

expansion must be small to none to regenerate edge ratios. The amount of postlut 

expansion and its shape will vary with the amount of dynamic range compression. 

The examples of unsharp masking and jpeg compression demonstrated the need for 

selecting the right parameters to match viewing size and viewing distance. Analogously, the 

viewing distance, the viewing size, the dynamic range and noise level of the input image, the 

number of iterations, and the postlut are all important to make artifact-free Retinex images. 

Scaling of Retinex output to desired media and purpose 

As shown in Figure 4, the contrast of the output is controlled by the number of iterations. 

T h s  parameter can vary the output from ralcal to no dynamic range compression. The 

input data also plays a major role. The total dynamic range of input data determines the 



maptude  of radiance ratio associated with each digit. The final parameter is the postlut that 

matches the final new product with the,output media. That media can be a printer, a 

monitor, a LCD display, a system profde, z 3-D plot of output at each pke! (output cqua! 

height), a pseudocolour image. The essential idea is that the input calibration controls the 

correlation between hgital differences and radiances in the world. The number of iterations 

controls the degree of compression. The postlut controls the rendition of New Product 

& g a l  differences in the output media. All three parameters (input dynamic range, number 

of iteration and postlut) are crucial to the process. All three share the control of the output 

image. They can be used only as well designed sets. They are not randomly interchangeable. 

Results on Test images 

Figure 5 through Figure 8 illustrate the behaviour of the two algorithms. Figure 5 shows the 

behaviour when the input is a simple square at the very centre of the image. A slight 

asymmetry can be seen in both the McCann99 (using 4 iterations comparing 8 nearest 

neighbours) and Frankle-McCann (using 4 iterations of 4 directions) outputs. 

muu 
Figure 5. Effect of McCann99 and Frankle-McCann processing on input of a single bright square 

against a black background. No post-LUT has been applied to enhance the visibility effect 

In the limiting case of the square being a single pixel, this is analogous to the point spread 

function for the algorithm. It must be noted that because of the reset step, the shape of this 

function varies depending on direction of individual comparisons the image content. 

Frankle-McCann used lfferent patterns of spatial comparisons to minimize these effects. 

From left to right we have: input image, McCann99 4-iteration output, Frankle-McCann 4- 

iteration output. 



The calculations in Figure 5 used the same pattern of spatial comparisons for each 

size of comparisons. The origmal Frankle and McCann calculation changed the order of the 

direction of comnparisons in each size of spatial separation. This sequence of the spatial 

process was controlled by a lookup table of comparison directions. Such randomization of 

the comparison process minimizes the directional gradients shown in Figure 5. 

Alternatively, one can change the averagmg process controlling the Old Product. If all the 

reports from different hection were averaged before changmg the value of the Old 

Product, then these calculated spatial asymmetries are not observed. The use of postluts and 

more complex sequences of spatial comparisons all contribute to reducing the magnitude 

visibility of asymmetries. 

Input ; ' Output 

k p - e  5. Leg,?zez!r= czbes pattrrr, i!hsion. As sk%= on :hc kft, the &piit v&es of i k  ciibc iups 
are equal despite the fact that we see them as unequal. McCann99 4-iteration Retinex output values 

are shown on the right. 

Figure 6 shows Logvinenko's gradient experiment, whch generates a large lightness 

change between the diamonds. A vertical sinusoidal gradient in non-diamond areas creates 

the illusion. The numbers on the left side of Figure 6 show that the input digits for the light 

and the dark diamond faces are both 139. The numbers on the right show the output from 

the correspondmg faces to be 152 and 163 after McCann99 4-iteration processing. ~ c ~ a n n ' '  

reports that "Retinex models can predict appearances that were previously attributed to 

cogrutive behaviour." Despite the fact the upper cube faces on alternating rows appear to 

differ in intensity, the top faces of all the cubes are in fact both uniform and equal. In the 

output, however, the top faces of the cubes are no longer equal nor are they completely 

uniform. 



I,, 
255 248 239 232 223 216 207 200 191 184 175 168 162 152 149 147 145 142 120 104 95 88 

Figure 7. Pseudo-colour representation of a portion of the Logvinenko cubes input (left) and 
McCann99 Qiteration output (right). 

Figure 7 shows pseudo-colour renditions of input (left) and output (right) of the Logvinenko 

illusion. The diamond shaped tops of the cubes are equal on the left and unequal on the 

right. Note that the upper faces of the output cubes are not uniform. 

Figure 8 shows the effect of McCann99 applied to a colour image with a substantial 

blue colour cast. The algorithm has been applied to each of the colour channels 

independently. Clearly, in this case the colour cast has been removed. Retinex drffers from 

many colour constancy methods in that it does not aim to find a single chromaticity for the 

scene illumination as is the case, for example, in the neural network54 and colour by 

~orrelation'~ methods. Retinex instead adjusts the image colours in a non-global manner as is 

necessary since the model attempts to match human visual response. Some effects of this 

can be seen in the way that in Figure 8B some of the green bleeds into the white area 

surrounding the "C" in "Compiler," and the way the blue is darkened near the white lettering 

on the right-hand blue book. 



Figure 8C 

Figure 8. (A) Input with blue colour cast created by tecene illumination for which the camera was not 
balanced; (B) Output from the McCann99 4-iteration; (C) Output from the Frankle-McCann 4- 

iteration. 

Note that both the input and output images have been adjusted with postluts fox printing. 

The actual Retinex input image is in log space. The image also has extended dynamic range 

obtained by frame averaging. 

Discussion 

This work describes the basic Retinex algorithms in MATLABTM code. It provides the 

starting point for many different implementations for many possible variations. This code is 

the basis of making spatial comparisons in a very efficient manner. In caefully calibrated 

situations it can be used as the basis for a model of human colour appearance. This requires 

accurate calibration in both the luminance and spatial frequency domains. Numbers of 

iterations for each pixel separation or level of pyramid processing must match human spatial 

frequency Alternatively, it can be used to enhance images of unknown calibrations 

in digitization. In an uncalibrated mode it is more limited. The system works by enhancing 

edges. If poor calibration introduces edges from noise, the process will enhance the noise. 
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Nevertheless, uncalibrated input images generally appear better with Retinex processing than 

without it. , 

As in many image-processing operations," there are three sequential steps : 

1. Taking the raw input and transforming the information into an image space appropriate 

for the process. 

2. Performing the process 

3. Scaling the output result into a space appropriate for end use. In this particular case, the 

input converts the captured digits into a space in which constant scene edge ratios have 

constant differences in digits. With an appropriate output scaling, this property can be used 

by the process to model visual appearance. 

The process assumes that the visual system uses edges to synthesize appearance. The 

Retinex algorithms provide an image processing engine that synthesizes sensation images 

from spatial comparisons of radiance inputs. The meaningful parameters in McCann99 are 

the pyramid level and the number of iterations. In Frankle and McCann it i s  scpnratinn z ~ d  

number of iterations. In McCann, McI<ee and Taylor it is path length and number of paths. 

A number of studies experimentally measured the appearance of a variety of achromatic and 

colour constancy experiments. Using this quantitative data it is possible to experimentally 

optimize the parameters of the model.'," The details of this aspect are found in Chapter 6 

and in McCann and Savoy." All of these studies indicate that the human visual system is 

neither local, nor global with regard to spatial interactions. Neither local centre-surround 

operators, nor global gray world models can account for psychophysical results. The spatial 

frequency filter applied by human vision is image dependent.84 The effect of maxima have an 

effect over large distances, but varies with distance and enclosui-e.94 

In the examples described above, we used constant values for number of iterations 

for all levels of pyramid. Although efficient, this is not the best set of parameters for 

modeling human vision. An obvious variation is to have different numbers of iteration for 

each size. Franke and McCann used different number of iterations for each size of 

separation. They also changed the pattern of directions to remove the pattern found in 



Figure 5.39   he 1, 4, and 128 iteration images in Figure 4 could be described by their spatial- 

frequency content. The difference betweeq the input and ourput images describes a spatial 

filter. That filter can be resolved into a two-dimensional spatial filter, or set of spatial filters. 

Since the work of Campbell and Robson, and Hubel and Wiesel, human visual processing 

has been regarded as sets of spatial channels." As demonstrated in Figure 4, the number of 

iterations controls the strength of the filter. The greater the number of iterations the weaker 

the filter. The size of the separation or the pyramid level controls the spatial frequency of the 

response. The number of iterations at that level controls the strength of the filter at that 

frequency. Just as human vision requires models using multi-channel with different filter 

strengths, the Retinex models should have the same spatial frequency tuning. 

Sobolg4 has described variations to the Retinex process that uses lookup tables to 

control the magnitude and shape of edges at different spatial separations. This algorithm 

produces dramatic images. The ability to control different spatial frequencies adds 

considerable power to the algorithm. In addition it makes the model more like human vision. 

An important final variation is the use of the spatial comparison engine for gamut 

mapping problems. Examples are found in84. The principle is straightforward. If displays and 

printers had the same colour spaces then tristimulus matches would be able to successfully 

transform display/print images. However, they occupy only half of their combined physical 

colour space. Using strict colorimetric matches creates problems with extra-gamut colours. 

All of the variation between the gamut of the smaller space is represented by the gamut 

value. T h s  clipping of local detail produces undesirable artefacts. Many algorithms 

systematically distort the colorimetric matches to achieve an image with a better appearance. 

All the transforms increase the colorimetric  error^.*^,^' 

The Retinex approach uses two different sets of RGB input images. One image 

(Goal) has digits representing the colour space values of the large gamut desired image. The 

other image (Best) has %its representing the colour space values of the best colorimetric 

reproduction possible in the smaller gamut media. The RGB Goal images are used to supply 

the ratios. The Best image is used to supply the reset values. The rest of the process is the 

same as described above. The colour gamut calculation provides an excellent example of 

using the Retinex spatial-comparison process to generate new sensation images that have 



very similar appearance with different radiances at each pixel. Experiments have shown that 

human spatial processing is key to understanding colour constancy, high dynamic range 

sensations and transparency.g7 Further, spatial comparisons can be used to simplify gamut 

mapping algorithms. As long as spatial comparisons are constant, near constant appearances 

can be made from very different stimuli. 

Conclusions 

This chapter presents new, very concise MATLABm implementations** of two of the main 

practical Retinex algorithms. Our hope is that h s  will eliminate much of the variability in 

what is meant when different researchers refer to Retinex and thereby facilitate further 

rigorous testing and discussion of the method. For modelling human vision these 

MATLABTM programs depend on calibrated input data. Although these MATLABTM 

programs provide the details of how pixels are compared and processed during the ratio- 

product-reset-average steps of Retinex processing, they do not provide details on the 

selection of an appropriate postlut for a particular output device. The problem of adjusting 

the postlut is addressed in Chapters 5 and 6. 

** The MATLABTM code and figures are also available electronically at http://www.cs.sfu.ca/research/ 
groups/Vision/ 



CHAPTER FIVE* 

CONTROL PARAMETERS FOR RETINEX 

>,In the previous chapter we provided Matlab implementations of the Retinex algorithm, 

which has free parameters for the user to specify. The parameters include the number of 

iterations to perform at each spatial scale, the viewing angle, image resolution, and the 

lookup table function (post-lut) to be applied upon completion of the main Retinex 

computation. These parameters were specifically left unspecified since the previous 

descriptions of Retinex upon which the new Matlab implementations were based do not 

define them. In this chapter we determine values for these parameters based on a best fit to 

the experimental data provided by McCann et. al.' 

Introduction 

The Retinex model for the computation of lightness was introduced by Land and ~ c ~ & r f n ~ '  

in 1971. Land and his colleagues later described additional improvements to the origmal 

iiiefiiLd. I.IO.W.4U.  14 -1 
J. ruse further refinements were mainiy designed to improve computationai 

efficiency while preseming the Retinex principle of comparing pixel values from different 

spatial locations. Matlab code for two of the main Retinex algorithms is provided in the 

Appendices. 

Even though the Retinex algorithm is well documented, there are still many things 

which need to be specified before it can be used as a model of human colour or lightness 

perception. In particular, there are parameters which are sensitive to both the spatial 

frequency and the dynamic range of the input image. We estimate values for these 

parameters based on fitting the experimental data obtained by McCann, McI<ee and Taylor.' 

We wdl refer to their study as the MMT (McCann-McKee-Taylor) experiment. A central part 

of the MMT experiment involves haploscopic matching of Munsell papers arranged in a 

* This chapter also appears as a published paper: Brian Funt and Florian Ciurea, "Control Parameters for 
Retinex", in Proc 9th Congress of the International Color Association, 287-290,2001, Rochester, NY. 
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Mondnan display.' Our procedure is to reconstruct digital images corresponding to the cone 

responses of the standard observer, and +en run the Retinex algorithm on that data while 

varying the algorithm's parameters to find those for which the program's output best 

matches the MMT corresponding colour data. 

Preparing Retinex Input Data 

Our goal is to determine the values of the free Retinex parameters which make Retinex work 

as accurately as possible as a model of colour appearance in complex visual scenes. In the 

MMT experiment: subjects alternately viewed a Mondrian with one eye and a Munsell chip 

with the other eye. For each coloured area in the Mondrian, the subjects chose a matching 

Munsell chip. The experiment was repeated under 5 different combinations of three 

narrowband illurninants. The results in' are reported in terms of the designators of the 

matching Munsell chips. In this paper we rely on the corresponding CIE tristimulus values 

estimated by Nayatani et. al." 

Our &st step was to construct an LMS image of the Mondnan used in the MMT 

experiment as it would be under each of the 5 illurninants. The layout of the colour patches 
T- 7- II the Monckan is glvai hi M?vIT1. We cowerr h e  corresponding A Y  L of each patch as 

estimated by Nayatanig8 to cone quanta catch values using the following transf~rmation:~~ 

Similarly, the XYZs of the matchmg Munsell chips are converted to LMS. The natural 

logarithm of each L, M, S value is then taken since the Matlab Retinex implementations 

require the logarithm of the image as input. Retinex is run on each of the L, M and S 

channels independently. 

Post Retinex processing 

The post-Retinex processing consists of four stages: exponentiation, scaling to white, 

conversion to Munsell Value scale, and compensation for differences in overall illumination 
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intensity. Exponentiation of the Retinex output simply compensates for the logarithm which 

was applied to the input data. Scaling to ,white is required because the Retinex algorithm 

normalizes each of the LMS channels to 1. After Retinex processing an ideal white patch will 

result in (1,1,1); however, the LMS value of the Munsell white (MMT area I<) under the 

'white' illumination in the MMT experiment is (92.55, 72.84, 49.23). Hence, we scaled the 

Retinex output values to make the Retinex white equal the MMT white. The three scaling 

factors, one for each channel, were then held constant across the 5 MMT illumination 

conditions. 

The second post-Retinex stage is to convert to Munsell Value scale, which is required 

because McCann et. al. compare the colours in the Mondrian to the matching Munsell chips 

using it. They convert integrated reflectance p (e.g., L/Lwhite) to Munsell Value using the 

approximation:'00 

The third stage is 

V = 2.539 pl" - 1.838, for p > 0.384% (1 6) 

to compensate for differences in overall illumination intensity between the 

test and match conditions based on the data in Figure 8 of MMT. McCann et. al. found that 

overall intensity affected subjects' matches. Hence, we incorporated their correction factor 

as a function of the ratio of overall illumination between the two scenes. By analyzing MMT 

Figure 8, we computed the correction to be added to the Retinex output converted to 

Munsell Value, based on the scene radiances E at 630-nm, 530-nrn and 450-nrn as: 

correction 630 = 1.53 x log,o (E::,,,, / E ~ ~ ~ , , ,  ) + 0.04 

= 1.19 x log,, (Ez:ndrian / E ~ ~ , , , ,  ) + 0.1 1 

= 0.93 x log,, + 0.01 

Results on choosing the parameters 

To establish the optimum choice for the number of Retinex iterations, we ran Retinex with 

the number of iterations (parameter nIterations in the Matlab implementation) varying from 

1 to 500. The post-Retinex processing described above was then applied in each case. For 

each iteration setting, we computed the difference between the final Retinex prehction and 



the matching Munsell chip data found in the MMT experiment. The image difference 

measure is the RMS over all pixels of the following single pixel difference measure: 

F(i,  j) denotes the pixel value at channel c for Retinex output including post-processing; 

Mc(i, j) denotes the pixel value at channel c for an image of the Mondrian made up of 

Munsell matching chips. 

We found that for each of the five different MMT experimental set-ups-"gray", 

"red", "blue", "green" and ccyellow"- different numbers of iterations were required to give 

the best match to the matching Munsell data. Although the number of iterations varied 

across the cases, 33 iterations gave the best overall result. 

Image resolution is another variable which must be considered. To determine how 

the optimum number of iterations might be affected by image resolution, we constructed 

images of otherwise identical Mondrians at resolutions of 128~128,256~256,  512x512 and 

I l l ' > A v l l \ ' J A  ,&t,,,, t, ,,,h,e ,.,hc l., ,,--,-4,A ,,., L-..,A ,I,,-& ,, ,I--,-- 
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optimum number of Retinex iterations required as a function of image resolution. 

The following graphs dustrate how the number of iterations affect the distance between the 

Retinex prediction and the actual image as seen by the observers, for each experiment. For 

these tests we ran Retinex with input images of 256x256 pixels. 
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Figure 9. MMT "gray" experiment. The accuracy of Retinex as a model measured by the RMS 
difference between the Retinex output and the corresponding colour data as a function of the number 

of Retinex parameter n~teiations. 
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Figure 10. MMT "red" experiment. The accuracy of Retinex as a model measured by the RMS 
difference between the Retinex output and the corresponding colour data as a function of the number 

of Retinex parameter nIterations. 
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"blue" experiment 
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Figure 11. MMT "blue" experiment. The accuracy of Retinex as a model measured by the RMS 
difference between the Retinex output and the corresponding colour data as a function of the number 

of Retinex parameter nIterations. 

1 8 15 24 45 76 121 191 261 331 401 471 

Number of iterations 

Figure 12. MMT "green" experiment. The accuracy of Retinex as a model measured by the RMS 
difference between the Retinex output and the corresponding colour data as a function of the number 

of Retinex parameter nIterations. 



"yellow" experiment 
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Figure 13. MMT "yellow" experiment. The accuracy of Retinex as a model measured by the RMS 
difference between the Retinex output and the corresponding colour data as a function of the number 

of Retinex parameter nIterations. 

Conclusions 

For the MMT experiments we have been able to solve for the parameters needed in the 

Retinex algorithm, based on a best fit with the experimental data. We have found that if we 

run either of the Matlab Retinex algorithms, the optimum results can be obtained by 

choosing the number of iterations to be 33. An interesting finding was that the image 

resolution has very little effect on the accuracy of prediction. Details of the post-Retinex 

processing step were also established. Although we have established parameters for the 

Retinex computation based on the available MMT data, it would be helpful to have more 

extensive experimental data to improve the reliability of the results. 



CHAPTER SIX* 

TUNING RETINEX PARAMETERS 

The goal of this chapter is to understand how the Retinex parameters affect the predictions 

of the model. A simplified Retinex computation is specified in the MATMBm 

implementation provided in Chapter 4; however, there remain several free parameters which 

introduce significant variability into the model's predictions. Here we extend previous work 

started in Chapter 5 on specifying these parameters. In particular, instead of looking for 

fmed values for the parameters, we establish methods that automatically determine values for 

them based on the input image. These methods are tested on the McCann-McKee-Taylor 

asymmetric matching data1 along with some previously unpublished data that include 

simultaneous contrast targets. 

Introduction 

The Retinex MATLABTM implementations presented in Chapter 5 have three important 

input parameters: &e number or' iterations the aigorithm performs at each ievei of its muiti- 

level computation, the "post-lut" output lookup table function, and the input image size. 

The model's final output depends strongly on the values chosen for the parameters. 

The Retinex model aims to predict the sensory response of lightness. In Chapter 5 

we suggested values for the parameters based upon fitting the model's predictions to the 

data origmally described over 35 years ago by McCann, McICee and Taylor.' This fit led to 

the conclusion that 33 iterations had the lowest global average of the differences between 

observer data and computed values, assuming that the number of iterations was constant for 

all levels of the multi-resolution computation. However, McCann' felt that 33 was too high a 

number, and would not lead to a good model of simultaneous contrast. Hence, together we 

began the current series of experiments by including previously unpublished data from 

* This chapter also appears as a published paper: Florian Ciurea and Brian Fwt,  "Tuning Retinex Parameters", 
Journal of the Electronic Imaging, Vol. 13, No. 1, 58-64,2004. 
+John McCann, personal communication 



lightness matching experiments with simultaneous contrast targets. We also added other 

unpublished data for targets containing a,fixed set of patches of various shades of gray 

appcar on a background that varied from black to gray to white. 

For the simultaneous contrast data, we indeed &d find that a much smaller value is 

required for the iteration parameter in order to make a good fit. However, we could no 

longer find a universal value for the number of iterations that simultaneously would 

minimize the error for the combined data from the MMT (McCann-McKee-Taylor), SB 

(fzed scale of grays on different backgrounds), SC (simultaneous contrast) and GW (gray on 

white). This led us to consider a method of automatically calculating how many iterations to 

use based on how the computation was proceeding. As described in the Chapter 5, the post- 

lut processing needs to change as a function of the number of iterations, so this led to a 

method of automatically calculating the appropriate post-lut. 

Number of Iterations 

The two MATLABTM implementations (see Appendices) are referred to as McCann99 

Retinex and Frankle-McCann Retinex. For brevity, we concentrate here only on McCann99 

Retinex, but the resuits are simiiar for both versions. ivicCann99 Retinex creates a muiti- 

resolution pyramid from the input by averaging image data. It b e p s  the pixel comparisons 

at the most highly averaged, or top level of the pyramid. After computing so called New 

Products (precursors to the final lightness estimates) on the image at a reduced resolution, 

the resulting New Product values are propagated down, by pixel replication, to the pyramid's 

next level as initial estimates at that level. Further pixel comparisons refine the estimates at 

the higher resolution level and then those new estimates are again propagated down a level 

in the pyramid. This process continues untd values have been computed for the pyramid's 

bottom level. 

At each level, the basic step is the comparison of each pixel to each of its immediate 

neighbors. The number of iterations refers to the number of times all the immediate 

neighbors are cycled through before moving down to the next level in the pyramid. Since 

pixels are only directly compared to immediate neighbors, comparisons to more distant 

pixels at the current pyramid level are only made implicitly by propagation of information 



from pixel to pixel during these iterations. Hence, increasing the number of iterations 

increases the spatial Qstance across wkch pixels are related during the computation. 

McCann99 Retinex uses the same number of iterations at all levels and so there is only a 

single iteration parameter to specify and have IImited this paper to considering a single value 

for all levels. 

Post-lut processing 

Postlut processing refers to applying a function f uniformly to every image pixel, 

I(x,yl=fP(xg)), for all image locations (xJ immediately after the main Retinex computation. 

The term ccpostlut" derives from historical use of image processing hardware using a lookup 

table (lut) as a final post-processing step. Post-lut processing is important in bringing the 

final result into the appropriate dynamic range, compensating for differences in overall 

illumination intensity between test targets, and in converting to the coordinates of Munsell 

Value scale used in recording the experimental data. Although all these factors can be 

thought of separately, they are all eventually combined into a single post-lut function. 

The first post-lut step adjusts the dynamic range. Retinex output from the pyramidal 

spa ual ~ u ~ ~ i ~ a r i s o n  stage, falls in h e  [O,i j  range. Because the vaiue i represents 'whitei and 

Retinex assumes there is at least one white pixel in every image, the value 1 necessarily arises 

in the output. However, the lowest output value depends on the image content and varies 

with the number of iterations used. The fewer the iterations, the more local the spatial 

comparisons will be, and therefore, the less the likelihood of big intensity differences being 

found. As a result, the fewer the iterations, the higher the minimum Retinex output value 

(Figure 4 illustrates this effect). The first purpose of the post-lut is to stretch the Retinex 

output to a reasonable range. Since the amount of stretching needed depends on the number 

of iterations, and we vary the number of iterations in our experiments, we decided to always 

hearly scale the Retinex output to the full [0, 11 range. This stretch does not correct for the 

fact that the number of iterations performs a non-linear compression of the image. The 

post-lut is not fixed, but rather depends on the input image and number of iterations used. 

This decision effectively means that we are assuming that there is at least on black location in 

the test target. While this assumption need not be true for images in general and could lead 

to errors in Retinex predictions, it is true for all the test targets subjects viewed. 
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After scaling to the [0,1] range, the post-lut then converts the Retinex output values, 

p, to the lightness scale used for recording~subject's matches. For the MMT data set, the 

conversion is to Munsell Value scale VZoo described in Equation 16. 

For the SB, SC and GW data sets, the conversion is to a lightness scale described by Stiehl 

et. al.lO' Based on a fit to the raw data, we use the following function to convert the log 

luminance to the hghtness scale values, L: 

The final post-lut component compensates for differences in overall illumination intensity 

between the test and match conditions. Only the MMT experiments involved such intensity 

differences. The compensation is based on data from Figure 8 of McCann, Land and 

~atnal l .~ '  Generally, the effect of this correction is slight. Details are provided in Chapter 5. 

Lightness Matching Data 

The experimental technique for the MMT matching experiments was reported a long time 
92 r r i 

a p .  I rlr rlrw c12m we repnrr  bere is &PA 92 experkects by I\.lcCann, -;;.?~ch wcrc also 

conducted earlier, but not previously reported in the literature. These experiments involve 

transparent greyscale targets lit from behind with uniform illumination. Subjects were asked 

to report the lightness of each patch in the target display using a standard hghtness 

transparency display as a reference. The standard lightness display consists of 25 squares of 

different lightness values against a white surround. The squares are arranged in a serpentine 

path such that the change in lightness from any of the 25 squares to the next is c~nstant'~'. 

In the resulting lightness scale, 1.0 corresponds to an opaque area and 9.0 to the brightest 

area. The experiments were based on 4 to 7 subjects, which each subject repeating the 

matches on 3 different occasions. 

The matching procedure was set up such that in the normal viewing position, the 

subject saw the test display as the only thing in the field of view. By turning 90 degrees to the 

right, the subject would see instead the standard lightness display as the only thing in the 

field of view. Subjects were allowed to look back and forth between viewing the test display 



and the standard display as many times as desired without a time constraint." The test 

display and the standard hghtness display had the same level of luminance. 

Figure 14, Figwe 15, Figure 17, Figure 19, figure 20 and Figure 22 illustrate the 

targets along with the corresponding luminance, pixel value for each patch as input to the 

Retinex algorithm, and average observed lightness reported for each patch. All the patches 

have uniform luminance. It should be noted that the figures are intended only to illustrate 

the correspondmg targets. They are not accurate reproductions of the targets. Their printed 

appearance is not the same as under the controlled experimental conditions. 

Match Std 
Calc, Calc- 

name value dev Match 
G 1001 255 8.75 0.15 9.01 -0.26 
E 595 236 7.55 0.20 7.66 -0.11 

Figure 14. "Scale on White" target along with patch identification, the luminance values measured in 
the original display, the digit representing log luminance, the mean and standard deviation of 

observer matches in Munsell Value units. The sixth column lists the calculated Lightness for all 
iterations above 3. The seventh column lists the errors between Observed and Calculated Lightness. 



The calculated hghtness for the "Scale on White" display are nearly constant with changes in 

"Number of Iterations". In a solid white ,surround all gray patches have a constant value 

after the third iteration. As shown in the table in Figure 14 the calculated hghtness values 

(sixth column) are close to the observer matches (fourth column). There are residual errors 

(seventh column) with an average value of 0.42 k 0.2. Since the white surround is the 

control case that establishes the shape of the lookup table, the lack of perfect correlation is 

due to experimental and lookup table error. These errors have no effect on the analysis of 

number of cycles, but contribute to any global average. 

Figure 15. "Scale on Gray" target along with patch identification, the luminance values measured in 
the original display, the digit representing log luminance, the mean and standard deviation of 

obsenier matches in Munsell Value units and the calculated values for the best fit to observer match. 
The iterations column list the number of iterations for best fit for Calculated to Observed Lightness. 
The average number of iterations for best fit from Areas E, I, C, J, H, and D is 26.33 + 2.88, while the 
average that included areas G and F is 26.13 f 13.32. The best fit for "Scale on Gray" is 26 iterations. 
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Figure 16. "Scale on Gray" calculated lightness as a function of "Number of Iterations". In a gray 
surround all gray patches except white decrease with increase of number of iterations. The number of 

iterations has significant effect on the calculated values of grays. Area E, the lightest gray has a 
calculated lightness equal to white up until 20 iterations. Areas E, I, C, H, D, and F show different 
degrees of mn-monitogic decrease in calculated Munsell Lightness. The darkest gzay, Area F, and 
mid-gray, Area J, both show second phase starting at 20 iterations. A slightly lighter gray, Area C, 

shows a similar change in slope at 35 iterations. - 
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Figure 18. "Scale on Black?' calculated lightness as a function of &'Number of Iterations". In a black 
surround all gray patches except white decrease with increase of number of iterations. Area E, the 

lightest gray has a calculated lightness equal to white, up until 30 iterations. Areas I calculated 
lightness begins to fall at 25 iterations. C and J calculated lightness begin to fall at 12 iterations. The 

darkest grays begin to fall at 5 iterations. 



Match Std dev 

1.13 0.13 

Figure 19. "Gray on White" target along with patch identification, the luminance values measured in 
the original display, the digit representing log luminance, the mean and standard deviation of 

observer matches in Munsell Value units. There is no si@cant change in calculated values for 
white and gray. Black values vary for iterations of 1 to 7. The best fit is 3 iterations with a calculated 

value of 1.16, while observed value is 1.13. The calculated asymptotes are 1.00,6.29 and 9.01. 

Lumi- 

Figure 20. "Simultaneous Contrast" target along with patch identification, the luminance values 
measured in the original display, the digit representing log luminance, the mean and standard 

deviation of observer matches in Munsell Value units. 
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Figure 21. The best fit is 6 iterations for Gray on White and 8 for Gray on Black 

Figure 22. MSimultaneous Contrast - Strip". Best fit is 6 iterations for Gray on White and 8 iterations 
for Gray on Black. 
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Discussion of Results 

The principle effect of selecting the numbkr of iterations is to establish the degree of local 

vs. global influence from spatial comparisons. As seen in the above data, it has no effect on 

grays in a white surround and significant effect on grays in a black surround. Using a very 

large number of iterations so as to have the lightness asymptote to the limit of the 

calculation makes the output approach the input.85 That special case serves no purpose. 

Human observers make matches consistent with mechanisms that are between local and 

global. McCann, McKee and Taylor1 reported good fit from their experimental data using a 

path algorithm of length 200 hops, a moderately global process. In Chapter 5, we reported 

33 iterations for experiment that applied the same number of iterations for all spatial 

channels. In these experiments it is clear that an intermediate number gives the best results 

for the "Scale on Gray" target (Figure 15) and "Scale on Black" target (Figure 17). In 

addition, the best fit to observer data is with very few iterations with larger gray patches in 

the Simultaneous Contrast series. Seven iterations gave the best fit. 

The displays that required the fewest iterations had large uniform surrounds. The 

scale displays had slightly smaller test patches and there were many more of them. The 

Mondrians had many more patches with smaller angular subtends. This, combined with 

results of other recent e~~er iments , "~ . '~~  suggest that different number of iterations in each 

spatial channel will give the best overall fit to experimental data. Frankle and McCann used a 

table to control the number and direction of comparisons for each spatial channel. 

Larger simple displays generate large signals in the low spatial frequencies or highest 

levels of the image pyramid. These channels need few spatial comparisons. Scales displays 

generate signals with higher spatial-frequency information and these channels best fit the 

observer data with more iterations. The colour Mondrians have the most high spatial- 

frequency information and these channels need the highest degree of spatial comparisons. 

Automatic Selection of the Number of Iterations 

To investigate the advisability of automatic processes to measure the optimal number of 

iterations (i.e., cycles of comparing a pixel to its neighbours at each pyramid level), we 

plotted the RMS (root mean square) error between the mean lightness values reported by 
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human subjects and those predicted by Retinex as a function of the number of iterations. 

The variation in error is shown in Figure 20 ,for the case of the SC and GW data from Figure 

17 through Figure 20. 

Since subjects reported a single lightness value for each patch, we calculate the 

Retinex lightness of a patch as the mean of the Retinex lightness values for all pixels from 

the patch. The Retinex prediction error for a patch, therefore, reflects the difference between 

the Retinex hghtness estimate and the mean across all subjects of the lightness of the 

matches made for that patch. The overall prediction error for a target is the simply the RMS 

of the errors for the individual patches it contains. 

For the simultaneous contrast targets (SC), the minimum target prediction error 

occurs when the number of iterations is small, as can be seen from Figure 23. The line 

labelled "GW shows the average RMS error of Retinex predictions in lightness units for the 

case of a target (Figure 19) in which there are three areas: the gray centre, the white surround 

and the black background. At one iteration, with a linear post-lut that expands the dynamic 

range of the raw Retinex output to [O..1], the RMS value is 0.9. That is much larger than the 

standard deviation of observer results of 0.52, 0.23 and 0.13. Increasing - the number of 

iterations to 10 causes a drop in RMS values to 0.2 units. From 10 to 50 iterations the values 

drop from 0.2 to 0.1. For this target, any number of iterations over 5 does reasonably well at 

matching the observer data. 



Simultaneous Contrast 
I 

Figure 23. Simultaneous Contrast (SC) and Gray on White (GW) targets: RMS error measuring the 
difference between Retinex lightness predictions and subjects' reported matching lightness as a 

function of the number of iterations. 

The thin line labelled "double" represents the data from Figure 20. In this 

simultaneous contrast target the prediction error (average error over all patches) is at a 
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within the dark gray surround are very sensitive to the number of iterations. This target is of 

particular interest because the two central grays have different perceived lightness values 

although the patches have the same luminance. With too few iterations the calculated value 

for the gray in black is too high. At the point of minimum error, the calculation renders the 

gray-in-black one lightness unit higher than the gray-in-white. T h s  actually conforms to the 

observer's predictions for this target. When the number of iterations is increased beyond 7, 

Retinex reports that the two grays are almost identical in lightness. This means that with too 

many iterations the simultaneous contrast effect is no longer predicted correctly. 

Figure 24 shows the average error for the targets from the combined MMT, SB, SC 

and GW data sets versus the number of iterations. The minimum error now occurs when the 

number of iterations is quite large; although, the curve is quite flat so the minimum is also 

not very distinct. 



Average RMS error (fixed number of iterations) 

Number of iterations 

Figure 24. RMS error in Retinex lightness prediction averaged across MMT, SB, SC, GW experiments 
as a function of the number of iterations. For each choice of the number of iterations parameter, the 

same choice is then used for Retinex for all targets. 

From Figure 15, Figure 17, Figure 21, Figure 23 and Figure 24 it is clear that there is 

no single optimal choice for the number of iterations based on minimizing the RMS error 

meawrement  n l n n ~  The  nijm-her ef &reti_ens rpy-pd t~ minirnke +e err=: fez CZP tzrgct - 

does not necessarily minimize the error for other targets. Therefore, a stopping condition 

providmg a method of adjusting the number of iterations automatically on a case-by-case 

basis is required. Note that the stopping condition cannot be based on minimizing the RMS 

error directly, since the subjects' matches are not available to Retinex - the lightness matches 

are, after all, what Retinex is supposed to be predicting. 

We introduce and test two possible stopping conditions: one based on the relative 

change in Retinex output,lo3 the second based on the average brightness of the Retinex 

output. We will refer to them as the change-based and brightness-based stopping conditions. 

The change-based condition measures the change in Retinex output as the number of 

iterations is increased from n to n + l  and stops when the change becomes small. Although 

this is analogous to the situation of numerical solution of a typical optimization problem 

where the minimization process is iterated until the change becomes small enough, it is not 

precisely the same. The difference is in the meaning of the term 'iteration'. In the 

optimization case, the entire process is repeated until convergence; whereas, in the Retinex 
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case, the processing is not being repeated in its entiuety. Here the number of iterations 

denotes the number of times the process pf cycling through the neighbours is repeated at 

each level. 

Let IS: be the Retinex output at location x when Retinexys iterations parameter has 

been set to n. The change-based Retinex stopping condition for an image of N pixels and 

threshold E can be expressed as: 

Using this stopping conltion, the number of Retinex iterations will vary with the input 

target. What is the optimal value of E? We determined an optimal value for it by brute force 

search. In other words, we chose an initial high value for E, ran Retinex on all the test targets 

and calculated the RMS prediction error, decreased E by a small amount and repeated the 

process. A minimum occurs at E = 0.015. The average prediction error drops to 0.62. In 

comparison, the minimum average error for any fsed  choice of the number of iterations (as 

shown in Figure 24) was 1.71. 

The second brightness-based stopping condition is based on the observation that 

Retinex reaches an optimal solution for bright targets (ones for which the average of all 

image pixel values is high) at fewer iterations than for dark ones. This effect can be seen in 

the "Scale on White", "Scale on Gray" and "Scale on Black" targets (Figure 14, Figure 15, 

Figure 17). The "Scale on White" target, a quite bright one, requires just 3 iterations. On the 

other hand, the darker "Scale on Gray" and "Scale on Blackyy targets require 28 iterations 

and 30 iterations, respectively. These are the individual number of iterations for each target 

that would give the best correlation with the observer matches. Intuitively, the correlation 

between average brightness and the optimal number of iterations is to be expected because 

Retinex proceeds by subtracting from white, which has the highest average brightness. At 0 

iterations, the Retinex output consists of a white image (all pixels set to 1). After each 

successive iteration, the average brightness of the image goes down. At an infinite number of 

iterations, the Retinex output image would equal the input image scaled by the maximum 

value in each channel. 
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As with the change-based stopping condition, we run the Retinex algorithm at 1, 2, 

... n iterations until the stopping condition is reached. The brightness-based stopping 

condition is reached when the current average brightness of the Retinex output image 

exceeds 110% of the average brightness of the input scaled by its maximum value. The 

110% value was determined empirically. The resulting slight increase in the overall image 

brightness can be compensated for in the Retinex post-lut. Since scaling the input by its 

maximum value is equivalent to the Retinex output in the limit as the number of iterations 

approaches infinity, the stopping condition in essence is comparing the average lightness 

estimate at n iterations to what it would converge to at an infinite number of iterations. 

This new brightness-based stopping condition yields better results than the previous 

incremental-change-based stopping conditionlo3 in that the Retinex lightness estimates 

correlate better with the observer predictions. The average prediction error drops to 0.51 

(brightness-based) from 0.62 (change-based). Either stopping condition error is substantially 

less than the 1.71 obtained in the optimal fixed-iteration case. If we look at each target 

individually and manually choose number of iterations yielding the best prediction, we get an 

average error of 0.39. This gives a lower bound on the error that we could obtain with a 

--.. r--L - L  -.-- :.-- - -  - J : L :  - - 
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Conclusion 

Our goal has been to study the effects of number of iterations in the special case where all 

spatial channels use the same number of iterations. Further this study uses the same pattern 

of spatial comparisons. However, Retinex requires the parameters 'postlut' and 'number of 

iterations' be set. In this paper, we introduce methods for setting these parameters 

automatically. Using these methods, Retinex yields an average RMS prediction error of only 

0.51 units on a 1-to-9 hghtness scale in predicting the available psychophysical data. By 

comparison, optimization for a faed setting for the number of iterations resulted in an 

overall average RMS error of 1.71, so the new automatic-stopping-condition technique 

constitutes a significant improvement over a single choice for the number of iterations. Since 

the method changes only Retinex's input parameters, the Retinex model itself has not 

changed. However, the advantage of using the Retinex model in conjunction with automatic 

parameter selection is that it can be applied in a hands-off manner without requiring further 
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intervention. Future work will include moQfying Retinex to employ different numbers of 

iterations automatically at each pyramid level. 



A LARGE DATABASE FOR COLOUR CONSTANCY RESEARCH 

We present a study on various statistics relevant to research on colour constancy. Many of 

these analyses could not have been done before simply because a large database for colour 

constancy was not available. Our image database consists of approximately 11,000 images in 

which the (R, G, B) colour of the ambient illuminant in each scene is measured. To build 

such a large database we used a novel set-up consisting of a digital video camera with a 

neutral gray sphere attached to the camera so that the sphere always appears in the field of 

view. Using a gray sphere instead of the standard gray card facilitates measurement of the 

variation in illumination as a function of incident angle. The study focuses on the analysis of 

the distribution of various duminants in the natural scenes and the correlation between the 

rg-chromaticity of colours recorded by the camera and the rg-chromaticity of the ambient 

illurninant. We also investigate the possibility of improving the performance of the naive 

gray world algorithm by considering a sequence of consecutive frames instead of a single 

iC~ge. The set cf i z z ~ e s  - is p.~bEc!y - z-,-&k!c. ziid czii Zc iised as * =Lcit.;;Labc CCJI ic>i;xlt: LC )ur 

constancy algorithms. 

Introduction 

104-112 Several image databases for colour constancy research exist . While the complex 

calibration procedures involved in building such databases in which the ambient illumination 

is properly measured and controlled represents an asset, we are often faced by the immediate 

limitation of this set-up: the number of images in such a database is typically small. In some 

cases we would prefer to have a much larger image dataset at the expense of having a less 

rigorously controlled illumination. For practical considerations, it is often sufficient to 

measure the camera (R, G, B) of the dominant illuminants present in a scene. 

* This chapter also appears as a published paper: Florian Ciurea and Brian Funt, "A Large Image Database for 
Color Constancy Research", in Proc. Eleventh Color Imaging Conference, 2003,160-164, Scottsdale, AZ. 
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We construct the database using a digital video camera with a neutral gray sphere attached to 

the camera so that the sphere is always maintained in the field of view. Using a gray sphere 

instead of the standard gray card facilitates measurement of the variation in illumination as a 

function of incident angle. The simplicity of this set-up also facilitates recordmg images in 

locations where a conventional spectrometer would be impractical. Similarly, we can record a 

lot of images with relative ease. T h s  large database with the illumination measured separately 

for every image allows us to study the statistics of illurninants and colours arising in a wide 

range of common scenes. 

Setup of capture system 

The database of approximately 11,000 images are of a variety of indoor and outdoor scenes, 

including many with people in them, shot using a Sony VX-2000 digital video camera. The 

outdoor scenes were taken in two locations that differ significantly in geography and climate: 

Vancouver, British Columbia and Scottsdale, Arizona. The images are still frames extracted 

from video clips captured in progressive scan mode to avoid video interlacing. In progressive 

scan mode, the camera generates 15 unique frames per second. When extracting the still 

images from the acquired video clips, we used at most 3 frames from any second of video in 

order to keep from having almost identical images in the database. 

All the camera settings were fixed with the exception of automatic focus and automatic 

exposure. Although it would be preferable to hold the aperture and shutter speed constant, 

this is not practical because of the large range of average scene brightness relative to the 

camera's limited dynamic range. The camera's white balance setting was set to "outdoors" 

and held that way whether or not the scene was an outdoor scene or an indoor one. With 

&IS setup, the colour balance of the images taken outdoors is pretty good; those taken 

indoors generally have a yellow-orange colour cast. 

The scene illumination was measured using a smooth, small sphere connected to the video 

camera by means of a monopod leg as shown in Figure 25. The sphere is 4.8 centimetres in 

diameter and spray painted with CIL Dulux 00NN20/000 matte paint. The paint is a 

spectrally neutral gray of Munsell Coordinates N4.75/ and has 18% reflectance (Figure 26). 

The sphere is positioned so that it appears in the video image at all times. 



Por each image, the scene illUmin9fit i s  m w w d  in txmn1 sf tlte RGB d g e s  af the pig& 

such as CIE ttishulus values, tius is not easily accomplished. Firstly, it would r~gwSr,e 

difficultie~, we deeded to settle for using the camera's native coordinates foe all 

Figure 25. Camera with gr :re attached 
, I L I  

Figure 26. Reflectance spectra of gray sphere (solid line) and Munsell chip N 4.75/ (dotted line) 



PTgure 27. A Zscarded image: the sphere is in the shadow, while the scene is in direct sunlight 

The image database 

We have recorded approximately 2 hours of dqgtal video from which we have validated 

more than 11,000 images. The following images are examples of validated frames. 

Figure 28. Database image (Vancouver, BC) 

8 1 



5gure 29. Database image (Apache Trail, Arizona) 

Figure 30. Database image (Scottsdale, Arizona) 

Statistics of illurninants 
-3!! 

In general, the gray ball can be seen to have two main illuminants falling on it. For example, 

in Figure 29 there is a b q h t  sunlit region and a shadow region. Hence, for each image we 

computed the rg-chromaticity of the two illwinants that appear on the gray sphere. The 

first, the dominant illuminant, is the one having the biggest impact on the scene. We 

determine this illunzinant from the brightest region of the gray sphere. The secondary 

illuminant is present in the form of shading on the gray sphere. For outdoor scenes, the first 

illuminant is sunlight, while the second illuminant is skylrght. For indoor scenes, the 

coordinates of the first and second illuminants are usually very similar. The following two - - -  - - .  - 
% ' I  , .. 1 - G - ,  i 1 .  4 '  a ,  , , 1. 



figures show the &sttibution of the hrsr ar+d second ilhninants, mespectividy, in rg- 

chromaticity coordinates. 

Figure 31, Probability distcibution of dominant illuminant 

Figure 32. Probability distribution of secondary illuminant 
, 

1 

Most discriminatory colours 

V e  conducted an analysis to End Qe cdours whose presence in a scene reveals the most 

information about the illuminant. We call these the most discriminatory colours. For this 

purpose we built a correlation matrix" relating the rg-chromaticity of image colours to the 

dominant scene illuminant. The rg-chromaticity space was divided into 30x30 bins. In this 



The probability that the chromaticiq ~i +e dominant ill-t of a scene was illum 

given that we observe a certain chromaticity colour is computed from Bayes' rule: 

P(c0lour 1 illum). P(illum) 
P(illum I colour) = 

P(c0lour) 

All the terms in the right-hand side are computed from the image database. P(co1our 1 illum) 

is the probability of observing the given colour under the particular illufninant i l l u .  

P(co1our) is the probabiliq of observing the particular colour in any scene and P ( h )  is the 

probability that the scene was observed under illuminant illum. For a given colour we then 

compute the degree of discriminability as the maximum probability of any given illuminant 

relative to the average probability of all illuminants that correlate with the colour: 

m~xfP(if1um I colour) 
Discriminabilitp(co1our) = , for all illum (22) 

avg(P(il1um I colour) I_ 



Figure 33. Probability distribution of the illuminants for a discriminatory colour 

Figure 34. Probability distribution of the illuminants for a less discriminatory colour 

Figure 33 and Figure 34 show the probability distribution of the illuminants for a colour 

with a high degree of discriminability and for a colour with a low degree of discriminability 

respectively. The following figure shows the discriminatory colours and the less 

discriminatory colours in the rg-chromaticity space. It is interesting to see that the colours 

that are far from white are more discriminatory than the neutrals. This means that when 

trying to infer the colour of the scene illuminant, the colours farther from white are the ones 

that contain more information about the illuminant 

Figure 35. Distribution of discriminatory colours in the rg-chromaticity space 
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Gray world over time 
I 

Since the image database is derived from video sequences it means we can study colour 

constancy over time. Groups of frames that are close temporally in a video sequence may 

reveal more information about the ambient illumination than a single frame. One possibility 

is that the gray world method of estimating the illuminant may converge to a better answer if 

the average is computed over more frames. 

From the database, we extracted clusters of sequential frames for which the scene illuminant, 

as measured from the gray calibration sphere, remains unchanged. The intent in clustering 

frames in this way is to find automatically clips in which the camera points at different parts 

of the same basic scene. 

Gray world assumes that the average world is gray35 and estimates the illurninant in 

the image by computing the departure of the current average RGB in the scene from that of 

the defined RGB of gray in the world. We simply extend the notion of a scene to a frame 

cluster and compute the average (R, G, B) over this set of images. Our defined gray in the 

world is the average (R, G, B) over the whole dataset. To measure how gray world 

pcrl'ur~~ra~lce mighr vary wirh time, we exrracr frame ciusrers based on video ciips of i.5, 3, 6 

and 15 seconds. We use the following error measure: 

Where (re,,, ge,J, (r,,,, gacJ represent the rg-chromaticity of the estimated and actual 

(measured) illuminant respectively. The results are summarized in the following table: 

I Gray world avg. error 1 0.049 / 0.048 / 0.047 1 0.045 1 0.044 1 
1 frame 

/ Gray world max. error 1 0.331 / 0.333 1 0.309 / 0.309 1 0.309 1 
Table 6. Gray world over time 

1.5 sec. 

Our experience with this error measure indicates that an error of 0.02 - 0.03 in the illuminant 

estimation is hardly noticeable. The above results confirm that while gray world performs 

3 sec. 6 sec. 15 sec. 



reasonably well on average; however, it also fails badly in certain cases. The results also show 

that for the gray world, little is gained from,an extended exposure to the scene. This concurs 

with previous experiments on adaptation to the scene average.16 

Conclusion 

We have assembled a database of more than 11,000 images in which the illuminants are 

measured in terms of camera RGB coordinates. This large database allows several studies on 

the distribution of colours in everyday scenes, the distribution of illuminants colours in 

everyday scenes and their mutual correlation. The database is publicly available and can also 

be used as a colour constancy database (with the images un-corrected for different 

illuminations) or as a properly white-balanced database (with the images properly colour 

corrected based on the illumination data). 
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CHAPTER EIGHT 

COLOUR BY CORRELATION WITH REAL IMAGES 

In this chapter we present an extension to the colour by correlation method inspired from 

the database introduced in Chapter 7. 

A limitation of the colour by correlation method for colour constancy as described in" is 

that it assumes that, in the Bayesian framework, all illuminants are essentially equally likely 

and all colours (chromaticities) are equally probable. This assumption was primarily based on 

the fact that the actual statistics of colours and illurninants in the world is either not known, 

or not easily measurable. The large colour constancy database presented in the previous 

chapter allows gathering of such statistics that could be used to improve the effectiveness of 

the method on real images. 

Introduction 

P(c0lour I illum). P(illum) 
P(illum I colour) = E P(c01our I illum) (24) 

P(c0lour) 

These assumptions further lead to the conclusion that the probability that the scene 

illuminant was illum given that we observe the chromaticity colour P(illum 1 colour) is the 

same as the probability of observing the chromaticity colour given that the scene illuminant 

is illum: P(co1our I illum). In reality, these probabilities are not equal, as not all illuminants are 

equally likely. With additional information derived from our large database of images and the 

correspondmg duminants, we expect to obtain better results using colour by correlation, 

even if only for the camera used to capture the image database. 



We used the "gamut" program for colour constancy developed at Simon Fraser University, 

which is publicly available.* The rg-chromaticity space is divided in 50 x 50 bins for both the 

colours in the image and the illuminant colour. We count each colour appearing in any given 

image in the database only once and we make a note of all colours "observed" under a 

certain illuminant. For example, a given chromaticity will be counted five times if it appears 

in five distinct images of the database. 

Results using real images 

Table 7 illustrates the results for using the actual statistics derived from the large colour 

constancy database, as well as the results of the colour by correlation method trained on the 

same image data but without the additional statistics. The columns "C-by-C synthetic data" 

and "C-by-C synthetic data w. statistics" represent the variant in which the colour by 

correlation look-up table is constructed from a set of reflectances and illurninants, rather 

than actual images. For comparison, we also include the performance of the gray world 

algorithm. 

Table 7. Illuminant estimation (RMS error in rg-coordinates) on the large database for colour by 
correlation with real data statistics. For comparison, we include results for "colour by correlation 

without statistics" and the corresponding colour by correlation variants using synthetic data. 

I , I 0 , P I C-by-C I C-by-C I C-by-C I 
I W ' U Y  I v U Y  I - - - #  A-4- 1 -..- & L - L : -  1 -..-A#--&:- 2 - A -  1 

It should be noted that, from subjective experience, an RMS error (see Equation 22) in rg- 

illuminant estimation of around 0.03 is hardly noticeable and so an improvement from 0.05 

to 0.035 is arguably sigmficant. 

3y1  III IGLIL 

data 

0.109 

0.096 

rear uara. 

w. statistics 

0.050 

0.035 

Avg. RMS error 

Median RMS error 

3y1 ILI I ~ L I C ;  udla 

w. statistics 

0.059 

0.047 

world 

0.054 

0.039 

real data 

0.055 

0.052 



Conclusion 

These results indicate that using actual stdtistics derived from a large colour constancy 

database improves the performance of the algorithm. The limitation of the proposed setup 

resides in the fact that the actual statistics are only valid for the camera used for image 

capture. Future work includes computing joint probabilities for observable chromaticities 

under certain lights. Under the current framework, these probabilities are assumed to be 

independent and we know that this is hardly a realistic assumption. 



I 

CHAPTER NINE 

HIGHER ORDER STATISTICS ON REAL IMAGES 

This section continues the applications to the large database of images proposed in Chapter 

7. We found this idea interesting but not very thoroughly tested. In particular, tests on real 

images were limited to scenes made up artificially from hyperspectral data,'13 spectral power 

distributions of various daylight illuminants, and the human cone sensitivity functions. The 

Ruderman database113 of hyperspectral images is also quite peculiar because it consists of a 

small number of images of mostly foliage. Our experiments show that for scenes composed 

from a more diversified hyperspectral database combined with real illurninant spectra, the 

predicted correlation turns out to be very weak. For digital camera images, the redness- 

luminance correlation becomes unidentifiable. 

Introduction 

We want to test whether such a method is robust enough so that it can work effectively on 

reai images. 'we have devised severai sets of experiments in which to measure the iummance- 

redness correlation on real images. Experiments 1-4 are done on images synthetically 

generated from real hyperspectral data and full spectral information of illuminants. For 

experiment 5 we use real images from the SFU dataset107 and for experiment 6 we used real 

images from the large database described in Chapter 7. In all the cases, we compute the 

redness-luminance correlation for each image of a scene under a certain illumination 

condition and then the correlation of the whole cluster of images under any gven 

illumination (see figures below). 

Experiment 1 

For this experiment, images were generated using the hyperspectral database collected by 

Ruderman et al.li3 under standard illuminants D40, D55, D85 and D200. This is a replication 

of the experiment on real data reported by Macleod and ~ 0 1 2 . ~ ~  



Experiment 2 

I 

In this experiment, images were constructed from the hyperspectral databaseH4 collected by 

Nascimento et al. and standard illuminants D40, D55, D85 and D200. 

Experiment 3 

For this experiment we used the Ruderman hyperspectral database and the following three 

illuminants from the SFU calibrated databaseio7: Philips Ultralume Tube (PH-ULM), Sylvania 

Cool White Tube (SYL-CWF), Sylvania Warm White Tube (SYL-WWF) and Solux 4700K 

with full Blue 3202 filter (Solux). 

Experiment 4 

In this case the images were constructed from the hyperspectral database by Nascimento et 

a ~ . " ~  and the following three illuminants from the SFU calibrated databaseio7: Philips 

Ultralume Tube (PH-ULM), Sylvania Cool White Tube (SYL-CWF), Sylvania Warm White 

Tube (SYL-WWF) and Solux 4700K with full Blue 3202 filter (Solux). 

Experiment 5 

We used real images of 8 scenes from the "Mondrian" set of the calibrated database of 

images from the SFU datasetlo7 acquired with the Sony DXC-930. These indoor scenes were 

taken under controlled laboratory conditions in whch the spectral power distribution of the 

illuminant is measured. The "Mondrian" set consists of images with minimal specular 

reflections. We used the same set of three illuminants as in the previous experiments using 

the SFU dataset. 

Experiment 6 

In this experiment we tested the redness-luminance correlation on the real images in the 

large database acquired with the Sony VX-2000 video camera. These images represent 

mostly natural scenes, both indoor and outdoor. As described in Chapter 7, this database 

contains a description of the chromaticity of the illuminant in each of the scenes, given in 

camera RGB coordmates. Unlike in the f ~ s t  five experiments, here we do not have the same 
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scene available under multiple illuminants. We simply make two large classes of illuminants 

labelled "red" and "neutral" based on the information about the duminant chromaticity 

available from the gray ball present in every scene. 

Results on real images 

The first experiment consists of reproducing the results on the Ruderman hyperspectral 

database under duminants D40, D55, D85 and D200 using the human cone sensitivities. We 

see a strong correlation between redness-luminance correlation and mean redness of the 

scene. The values for the correlations are respectively: -0.56, -0.65, -0.65, -0.55 and are in 

accordance to the values reported by Macleod and G01z.~~ These values are significantly 

different from zero and so they indicate a strong correlation. Figure 37 illustrates the results 

of experiment 1, while Figure 36 shows the Ruderman database of hyperspectral images. 

We believe that the dataset chosen for the origmal experiments by Macleod and Golz 

was somewhat limited and biased towards scenes with mostly foliage. In the second 

experiment, we used the 8 images from the hyperspectral database by Nascimento et al.,114 

which is more balanced in the types of scenes used. In this case, we obtain lower correlation 

scores for each cluster of images. The values are -0.40, -0.25, - 0  and O respectively for the 

illuminants D40, D55, D85 and D200. The results are dustrated in Figure 39. Experiments 3 

and 4 are similar with experiments 1 and 2 respectively, with the exception that four real 

illuminants have been used instead of the ideal daylight sources proposed by Macleod and 

Golz. For experiment 3, the results are illustrated in Figure 40. The values for the 

correlations are -0.62, -0.47, -0.31, -0.20. While the pattern of correlation is still visible in 

experiment 3, this pattern is hardly visible in experiment 4 (see Figure 41). In this case, the 

correlation values are much lower: 0.28, 0.18, -0.01, 0.12 and in this case the redness- 

luminance correlation is virtually unidentifiable. 

Experiments 5 and 6 are based on real images. Eight scenes from the SFU 

database1'' have been used in experiment 5, under each of the four chosen illuminants. In 

this case, the correlation values are even lower: 0.11, 0.19, -0.03, 0.21 (see Figure 42). For 

this experiment we also note that the redness-luminance correlation is unidentifiable. The 

final experiment is based on the large database of images introduced in Chapter 7. 



Figure 36. Hyperspectral database of 12 images by Rudeman et al. 



Figure 37. Experiment 1 in redness-luminance correlation. The 12 images are represented by black 
diamonds (illuminant D40), blue triangles @55), pink circles @85) and red squares (D200). For a 

given illuminant, the correlation for $he cluster of images is around -0.55 and so the redness- 
luminance correlation (the Y axis) is able to explain some of the variation. 

gure 38. Hyperspectral database of 8 images by Nascimento et al. 
1 



Mean imaae redness 

Figure 39. Experiment 2 in redness-luminance correlation. The 8 images are represented by black 
diamonds (D40), blue triangles (D55), pink circles (D85) and red squares (D200). For a given 

illuminant, the correlation now varies from -0.40 to 0.00 

0 3 

Mean 

Figure 40. Experiment 3 in luminance-redness correlation. The 12 images are represented by black 
diamonds (PH-ULM), blue triangles (Solux), pink circles (SYL-CWF) and red squares (SYL-WWF). 

The correlations now range from -0.62 to -0.20. 
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Mean image redntast 

Figure 41. Experiment 4 in luminance-redness correlation. The 8 images are represented by black 
diamonds (PH-ULM), blue triangles (Solux), pink circles (SYL-CWF) and red squares (SYL-WWF). 

The correlations are poor, ranging from -0.01 to 0.28 

Figure 42. Experiment 5 in redness-luminance correlation. These are real images of the same scene 
under different illurninants. The 8 images are represented by black diamonds (PH-ULM), blue 

triangles (Solux), pink circles (SYL-CWF) and red squares (SYL-WWF).There is no pattern in this 
figure, with the values for the correlations ranging from -0.03 to 0.21. 



Figure 43. Experiment 5. The 8 scenes from the SFU database viewed under a canonical white 
auminant. 

The sixth experiment is different &om experiments 1-5 in that ft is not based on having the 

same scene viewed under different illuminants. Here, we are simply interested in the 

probability distribution of scenes under "reddish" or "neutral'' illuminant. 

Figure 44. Experiment 6. The probability distribution of scenes under neutral illurninant (black 
crosses) and the probability distribution of scenes under reddish illkinant (red stars) in a two- 

dimensional space of mean image redness and luminance-redness correlation. 
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A "reddish" illuminant is defined as having the r chromaticity component greater than 0.4. A 

"neutral" illuminant is defined as having the r chromaticity component less than 0.3. It is 

worth mentioning that, as shown in Figure 31, the major variability in the illuminant 

chromaticity is expressed by the red-blue component (r chromaticity for instance). The 

probability distribution is shown in Figure 44. Here, we are looking for the pattern shown in 

Figure 3, which represents the ideal probability distribution in order for the redness- 

luminance correlation to be effective in illurninant estimation. Instead, the correlation values 

are -0.10 and 0.19 respectively. These results indicate that the redness-luminance correlation 

is again unidentifiable. 

Conclusion 

We have devised a set of experiments to test the redness-luminance correlation hypothesis 

on real data. This theory is interesting in that it relates the gray world approach which is 

based on the scene average alone with the more advanced algorithms for illuminant 

estimation such as gamut mapping and colour by correlation. But, unlike in the results 
r ,  r? 
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weak measure in the case of real images. Even on a different dataset of hyperspectral images, 

this correlation is lower. Furthermore, when adding real illurninants whose spectral power 

distribution is not a smooth, ideal function - this correlation is even less pronounced. In the 

case of real images where noise is inherent, the correlation becomes unidentifiable. 



CONCLUSION 

The colour constancy problem is under-constrained by nature. The most successful and 

complex methods try to attack the problem by reducing its complexity. Linear models like 

those introduced by Maloney and Wandell assume a reduced dimensionality of the surface 

reflectances and of the illuminants. Statistical based methods such as the gamut mapping 

approach, colour-by-correlation and neural-network colour constancy have proven to be the 

most successful implementations to date in scenes where specular reflections are either not 

present or difficult to identify. The success of these algorithms seems to suggest that 

statistical approaches to colour constancy are desirable, given that this is usually the way the 

colour constancy problem is regarded. A common denominator of these approaches is that 

they do not make use of the spatial information present in the scene, and rather rely solely 

on colour image histograms as a good descriptor for the scene illuminant. These methods 

also assume a single illuminant in the scene, and usually set out to find the chromaticity of 

this dominant illuminant. The Retinex model is a somewhat different approach, in that it 

exploits the spatial interactions in a scene and in that it computes the illuminant and 

reflectance component at each location (pixel). An interesting aspect of Retinex is that it 

goes beyond colour constancy - being proposed as a model of human colour vision - and 

trying to explain vision perception phenomena such as simultaneous contrast. 

The work presented here introduces a series of advances in the area of colour 

constancy and colour appearance based on experimental data and real images. The first 

contribution is in the form of a series of experiments on chromatic adaptation transforms. 

Traditionally, at the core of chromatic adaptation transforms there is the same fixed 

transformation matrix that is used regardless of the two illuminants involved in adaptation. 

Based on the belief that this approach has been historically motivated by the use of 

calorimeters that could only measure tristimulus values for the two illuminants involved, a 

new method is proposed that could be used in the case where the full spectral power 

distribution of the two duminants is available or can be measured. In this case, the 

transformation is tuned for the particular illuminant pair, thus possibly improving the 
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performance. Indeed, under some particular cases in which the spectral power distribution 

of the illuminants is atypical, the method performs better. 

The second important contribution is the work towards characterizing the Retinex 

model such that it can be used, without intervention, on real images as a model for the 

human visual system. The Retinex model has been quite controversial over the years mainly 

because its authors have not provided a very clear implementation and an explanation of the 

influence of the models' parameters and a discussion of how these parameters should be 

chosen for a specific application. Even though the model is essentially computational, its 

way of application has been historically somewhat mysterious. One would often hear in the 

colour community that the Retinex model has failed under certain circumstances just 

because of the users' lack of knowledge in choosing or tweaking the parameters. The study 

presented here provides a clear implementation of two of the most successful Retinex 

variants, along with a discussion on choosing the parameters. A second part of the study has 

been devoted to finding values for these parameters in a practical manner for a specific 

application. Finally, a method for automatic choosing the parameters is also included, which 

finally provides a hands-off approach to the Retinex model. In this context, new 
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Another important contribution is represented by a novel setup that permits the 

acquisition of a large database for colour constancy research. Using a spectrally neutral gray 

sphere attached to a video camera, we can capture a large number of images for which the 

illumination conditions are documented within the camera coordinates. Traditionally, 

databases for colour constancy research have been limited in the number of images available 

because of the complex calibration procedures involved in measuring the full spectral power 

distribution of the illumination sources. Also, these scenes are usually restricted to indoor 

composition. With the proposed mobile setup - at the expense of a less rigorous 

measurement of the illumination - we can capture a series of scenes and their illumination 

conditions under many natural conditions. Additional statistics on the illuminants have been 

obtained from such a large database of over 11,000 images. Furthermore, using such a large 

database of real images allows the testing and improvement of several existing methods for 

colour constancy. 



The fourth contribution is in the form of application of the large colour constancy 

database of images, an improvement in, the estimation of one of the currently most 

successful algorithms for colour constancy, ''colour by correlation". In the lack of real prior 

probabilities about the distribution of illuminants and colours in the world, the current 

implementation assumes that all illuminants and surfaces are equally probable. Another 

aspect is the fact that in the origmal version, the correlation matrix, which is at the core of 

the algorithm, has been computed based on synthetically generated images, as opposed to 

using real data. Using real images and therefore providing real probabilities improves the 

performance of the method. 

Finally, the fifth contribution is represented by the study of the application of a yet 

another method for colour constancy based on higher-order statistics present in images. This 

method has not been studied on real images and, unless tested in h s  manner, cannot be 

used effectively in estimating the scene illuminant. Several sets of experiments for testing the 

effectiveness of the method on real data have been devised, consisting of a) a large database 

of real images in which the illuminant is known; b) a smaller calibrated database of images 

that contains multiple views of the same scene under different illuminants and c) a more 

diversified database of hyperspectral images. Even though the method involving the redness- 

luminance correlation in scenes is appealing both conceptually and for its simplicity, it 

proves to be of little use in the context of real images. 
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APPENDICES 

Matlab implementation of McCann99 Retinex 

L: 

nIterations: 

nlayers: 

OP: 

RR: 

NP: 

OPE: 

RRE: 

IP: 

logarithmic input image 

number of iterations for each pixel 

number of pyramid layers 

matrix of Old Products for all pixels 

input radiance 

matrix of New Products for all pixels 

OP padded with zeros for doing all computations at once 

RR padded with two additional columns and two adltional rows 

Intermediate Product computed with the Ratio-Product 

function Retinex = Retinex_rnccann99(L, nIterations) 

global OPE RRE Maximum 

[nrows ncolsl = size (L) ; % get size of the input image 

nLayers = ComputeLayers(nrows, ncols); % compute the number of pyramid layers 

nrows = nrows/(2"n~ayers) ; % size of image to process for layer 0 

ncols = ncols/ (2*nLayers) ; 

if (nrows*ncols > 25) % not processing images of area > 25 

error('inva1id image size.') % at first layer 

end 

Maximum = 1; % maximum colour value in the image 

OP = Maximum*ones([nrows ncolsl); % initialize Old Product 

for layer = 0:nLayers 

RR = Image~ownResolution(L, 2"(n~a~ers-layer)); % reduce input to required layer size 

OPE = [zeros (nrows, 1) OP zeros (nrows, 1) 1 ; % pad OP with additional columns 

OPE = [zeros(l,ncols+2); OPE; zeros(l,ncols+2)1; % and rows 

RRE = [RR(:,l) RR RR(:,end)l; % pad RR with additional columns 

RRE = [RRE(l,:); RRE; RRE(end,:)]; % and rows 

for iter = 1:nIterations 

Compare~ithNeighbor(-1, 0) ; % North 



CompareWithNeighbor (-1, 1) ; 

CompareWithNeighbor (0, 1) ; 

CompareWithNeighbor(1, 1); 

CompareWithNeighbor (1, 0) ; 

CompareWithNeighbor (1, -1) ; 

CompareWithNeighbor (0, -1) ; 

CompareWithNeighbor (-1, -1) ; 

end 

NP = OPE (2: (end-1) , 2: (end-1) ) ; 

OP = NP(:, [fix(l:0.5:ncols) ncolsl); 

OP = OP([fix(l:0.5:nrows) nrowsl, : ) ;  

nrows = 2*nrows; ncols = Zxncols; 

end 

Retinex = NP; 

% North-East 

% East 

% South-East 

% South 

% South-West 

% West 

% North-West 

% % %  these two lines are equivalent with 

% % %  OP = imresize(NP, 2) if using Image 

% Processing Toolbox in MATLAB 

function CompareWithNeighbor(dif-row, dif-col) 

global OPE RRE Maximum 

% Ratio-Product operation 

IP = OPE(2+dif-row:(end-l+dif-row), 2+dif-col:(end-l+dif-col)) + . . .  
RRE(Z:(end-1),2:(end-1)) - RRE(2+dif-row:(end-l+dif - row), 2+dif-col:(end-l+dif-col)); 

IP (IP > Maximum) = Maximum; % The Reset step 

% ignore the results obtained in the rows or columns for which the neighbors are undefined 

if (dif-col == -1) IP(:,lI = OPE(>: f e n d - 1 )  ; ? )  : end 

if (dif-col == +1) IP ( : ,end) = OPE (2: (end-1) , end-1) ; end 

if (dif-row == -1) IP(1, : )  = OPE(2, 2: (end-1) ) ; end 

if (dif-row == +1) IP (end, : ) = OPE (end-1, 2: (end-1) ) ; end 

NP = (OPE (2 : (end-1) ,2 : (end-1) ) + IP) /2; % The Averaging operation 

OPE (2 : (end-1) , 2 : (end-1) ) = NP; 

function Layers = ComputeLayers(nrows, ncols) 

power = 2*f ix (log2 (gcd (nrows, ncols) ) ) ; % start from the Greatest Common Divisor 

while (power > 1 & ( (rem(nrows, power) -= 0) / (rem(ncols, power) -= 0) ) ) 

power = power/2; 

end 

Layers = log2 (power) ; 

function Result = ImageDownResolution(A, blocksize) 

[rows, colsl = size (A) ; % 

result-rows = rows/blocksize; % 

result-cols = cols/blocksize; % 

Result = zeros([result-rows result-colsl) ; 

for crt-row = 1:result-rows % 

for crt-col = 1:result-cols % 

Result (crt-row, crt-col) = mean2 (A (l+ (crt-row 

and find the greatest common divisor 

that is a power of 2 

the input matrix A is viewed as 

a series of square blocks 

of size = blocksize 

then each pixel is computed as 

the average of each such block 

l)*blocksize:crt~row*blocksize, . . .  



end 

end 
, 

Matlab implementation of Frankle-McCann Retinex 

function Retinex = Retinex-frankle-mccann(L, nIterations) 

global RR IP OP NP Maximum 

RR = L; 

Maximum = 1; % maximum colour value in the image 

[nrows, ncolsl = size (L) ; 

shift = 2^(fix(log2 (min(nrows, ncols))) -1) ; % initial shift 

OP = Maximum*ones(nrows, ncols) % initialize Old Product 

while (abs(shift) >= 1) 

for i = 1:nIterations 

CompareWith (0, shift) ; 

CompareWith (shift, 0 )  ; 

end 

shift = -shift/2; 

% horizontal step 

% vertical step 

% update the shift 

end 

Retinex = NP; 

function CompareWith(s-row, s-col) 

global RR IP OP NP Maximum 

I? = n m .  "- I 

if (s-row + s-col > 0) 

IP((s-row+l) :end, (s-col+l) :end) = OP(1: (end-s-row), 1: (end-s-col)) + . . .  
RR( (s-row+l) :end, (s-col+l) :end) - RR(1: (end-s-row) , 1: (end-s-col) ) ; 

else 

IP (1 : (end+s-row) , 1 : (end+s-col) ) = OP ( (1-s-row) :end, (1-s-col) :end) + . . . 
RR (1 : (end+s-row) , 1 : (end+s-col) ) - RR ( (1-s-row) :end, (1-s-col) :end) ; 

end 

IP (IP > Maximum) = Maximum; % The Reset operation 

NP = (IP + OP)/2; % average with the previous Old Product 

OP = NP; % get ready for the next comparison 
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