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Abstract 

This thesis analyses the performance of hybrid diversity receivers which are essentially a hybrid 

of the three classical receivers: Selection Combining (SC), Equal Gain Combining (EGC) and 

Maximal Ratio Combining (MRC). 

The hybrid selectiodmaximal ratio combining (H-S/MRC) receiver uses channel statistical 

information (CSI) to select and combine only the strongest of the available diversity branches. 

The average output SNR of this receiver and the SEP are derived. Lower computational 

complexity expressions are derived to compensate for an A?-fold increase in complexity (N is the 

number of diversity branches) in receivers with unequal branch statistics. Furthermore, an 

asymptotical SEP expression valid at high SNR is derived which provides hrther insight into the 

factors affecting the asymptotic SEP of the H-S/MRC receiver. 

The selection combining (SC) and the double selectiodequal gain combining (2SlEGC) 

receivers which do not use CSI are analysed and exact expressions for their SEP are derived. 

Furthermore, asymptotic SEP expressions are derived which are enlightening about the factors 

affecting their SEP at high SNR. It is found that while uneven distribution of the branch signal 

powers affects the error floor of the receivers, uneven distribution of the branch noise powers 

affects the asymptotic area above the error floor. The hybrid selectiodequal gain combining (H- 

SIEGC) receiver which allows combining of an arbitrary number of selected branches is a 

generalization of the SC and 2SlEGC receivers. The asymptotic analysis of this receiver provides 

a closed form expression for the SEP and indicates that in some environments the asymptotic SEP 

may actually deteriorate with an increase in the number of combined branches. The asymptotic 

SEP of the H-SMRC receiver, on the other hand, is proven to always improve by the combining 

of additional diversity branches. 

A reduced complexity hybrid diversity receiver (RHDR) which tackles the problem of 

maintaining differential phase reference in selective diversity receivers at switch time is described 

and simulated. The RHDR uses two branches and achieves a SEP which is upper bounded by the 

SC receiver and lower bounded by the 2SlEGC receiver. 

iii 
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Chapter 1 

Introduction 

In the ever expanding world of wireless communications the engineer faces a myriad problems 

ranging from limited bandwidth to radio channel variations causing unreliable communications. 

In our research, we investigated proposed remedies to the unpredictability (or randomness) of the 

radio channel. Specifically, we analysed the performance of a range of hybrid diversity receivers 

(HDR) and in particular, receivers operating in radio channels with unknown statistical 

parameters having diversity branches with non-identical statistics. 

1 .  The Radio Channel 

The wireless communication medium is continuously varying, thus, making reliable 

communications difficult. Many factors cause the variations. To name a few: Moving receiver 

and/or transmitter, moving objects in the environment, large obstacles in the line of sight, 

reflections of the signal at large objects, random arrival delay of the reflected signals, etc [I]-[2]. 

A simple urban environment with a mobile receiver surrounded by high buildings and other 

objects is shown in Figure 1 .l. As can be seen in this picture, versions of the transmitted signal 

are reflected by objects in the environment of the mobile receiver and arrive at the receiver at 

slightly different times and with different phase. The direct path, shown as a solid line in Figure 

1 .I, is generally not available in urban areas because of the multitude of tall buildings and other 

obstacles in the line of sight. The result is a rapidly fluctuating signal, which is the superposition 

of the reflected replicas of the transmitted signal. The amplitude and phase variation is called 

fading and an example of a signal undergoing such fading is shown in Figure 1.2. In the interval 

shown in Figure 1.2 it is observed that the instantaneous power of the received signal varies fi-om 

about 4 times above average down to 0.003 times below average or a dynamic range of 

approximately 30dB. This is not an unusual occurrence in wireless communications where the 

receiver designer must accommodate large dynamic gains at the receiver. 



Figure 1.1 : An urban fading environment. 

1 o - ~  1 I I I I I I I I I 

0 100 200 300 400 500 600 700 800 900 1000 
Time (samples) 

Figure 1.2: A signal from a Rayleigh fading channel with normalized average power equal to 1 
and normalized fade rate f, = 0.01 . 



1.2 The Benefits of Diversity at the Receiver 

As already mentioned, the radio channel can be unreliable due to fading and, as a result, a lot of 

effort and energy has been expended over the years on ways to overcome the limitations of the 

medium. Many proposals have appeared which in some way remedy the situation such as, for 

example, the three classic methods of receiver diversity, which have been studied and been in use 

for decades. These are in order of increasing complexity and performance: Selection combining 

(SC), equal gain combining (EGC) and maximal ratio combining (MRC). The basic idea behind 

receiver diversity is that by capturing a number of independent versions of the transmitted signal 

the probability that at any one time all versions would be suffering from deep fading is very small 

and, thus, the signal-to-noise ratio at the receiver would be adequate for detection with low 

probability of error. 

In a SC receiver there is, actually, no combining involved. The receiver simply compares the 

instantaneous signal-to-noise ratio (SNR) of all the branches and selects the branch with the 

largest value for detection. A demonstration of the operation of such a receiver is shown in Figure 

1.3, where a receiver with two diversity branches, each with average power normalized to 1, 

continuously monitors the magnitude of the signals fkom each branch and selects the branch with 

the largest instantaneous magnitude and, hence, power. In the example of Figure 1.3, the power of 

the selected signal does not fall below 60% of the average. 

In EGC and MRC receivers the signals from all diversity branches must be cophased, to 

ensure that the phase contamination due to fading is removed, and weighted to provide a linear 

combination of the signals from all the diversity branches. This ensures that all received branches 

contribute to the resulting signal. MRC provides the maximum combined SNR and on average 

performs better than the other two methods. The performance improvement of MRC comes, 

however, at the cost of higher complexity since knowledge of the instantaneous SNR at each 

branch is required. This knowledge ensures that branches with stronger SNR contribute more to 

the combined signal sent to the detector. Branches with weaker signals have lower SNR and, 

therefore, are assigned lower weight. 

When using one of the three diversity methods described above an increase in the number of 

diversity branches normally improves the error performance of the diversity receiver. The 

improvement, however, comes at the cost of increased power consumption and more expensive 

implementation while at the same time the benefit from each additional branch diminishes [3]. To 
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Figure 1.3: Demonstration of 2-branch selection diversity reception in a fast Rayleigh fading 
channel with normalized fade rate f, = 0.03 . 

address this issue, a new, hybrid method has recently been proposed to limit the diversity 

branches used for detection to those branches that produce the maximum benefit, for example, the 

branches with the maximum SNR or signal plus noise (SPN) power. This method ensures that the 

branches with the strongest SNR, SPN, or any other criterion, are used in the combining process 

whereas the weaker branches are ignored. 

The effect of the omission of the weaker signals should be obvious. In the case of MRC 

receivers, these signals would have very low weights so their effect in the combined signal would 

be very small, almost negligible. In the case of EGC receivers, where no weighting is performed, 

the inclusion of the weaker branches may even be detrimental to the performance of the receiver. 

As we see in Chapter 5, diversity receivers with no channel statistical information (noCSI) 

operating in hybrid mode and employing EGC with fewer than the maximum number of branches 

could result in better average error rates than classical EGC (Also see [4]). 



1.3 Classical and Hybrid Diversity Receivers - A Historical Overview 

1.3.1 Classical Diversity Receivers 

The classical diversity receivers employing SC, EGC and MRC have been studied extensively 

over the years even though in many particular cases there are still no closed-form expressions for 

their average SEP. As Schwartz in [I] describes: "it was first discovered that the fading 

fluctuations of the signal received on two antennas placed sufficiently far apart were 

independent.. . It was then suggested that a switch to the strongest antenna signal at each instant 

would greatly reduce the fading depth.. . EGC and MRC can also be used as linear combinations 

of all available signals and other methods of obtaining diversity such as frequency, angle, 

polarization, time and multipath can be used.. ." An overview of the early work in diversity is 

provided in the paper by Eng et a1 [4] where they refer to early papers by Van Wambeck and 

Ross [5], Kahn [6] and others. The paper by Brennan [7] is also a classic reference for 

introduction to classical diversity techniques. 

The performance of coherent versions of many diversity receivers is easier to calculate and it 

is documented by many researchers. The unrealistic coherent receivers have knowledge of the 

exact fading gain at each instant and use this value to cophase and optimally combine the 

diversity signals. It was found that MRC provides the best performance of the three techniques 

followed by EGC and SC in descending order of performance [I]. However, MRC is limited to 

channels with good estimates of both the phase and the magnitude of the fading since co-phasing 

and optimum weighting of each diversity signal is very important. EGC on the other hand only 

requires estimation of the phase and SC, in fact, does not perform combining but still requires 

estimation of the fading phase when angle modulations are used. 

The analysis of the classical SC, EGC and MRC diversity receivers is abundant and we do 

not attempt to enumerate here the accomplishments of all the researchers. In fact much of the 

analysis appears in textbooks such as [I], [2] and [8]. In general, however, the performance of 

non-coherent versions of these receivers has not been as thorough and some systems do not have 

easy to understand solutions. Neasmith and Beaulieu in 191 provided an analysis of a SC system 

using signal-plus-noise, as opposed to signal-to-noise ratio, as the selection criterion for coherent, 

differentially coherent and non-coherent diversity receivers in a uniform signal profile. Zhang has 

studied the MRC and non-coherent EGC receiver operating in Rayleigh and Rice channels with 

correlated branches in various papers. (e.g. [lo]-[Ill) In general, Zhang uses hypergeometric 

functions for EGC, or gives efficient ways to calculate integral expressions. Lombardo also 



investigated in 1121 the bit error rate MRC using differential phase shiR keying (DPSK) and 

correlated diversity branches. 

1.3.2 Hybrid Diversity Receivers 

The, so called, hybrid diversity schemes which select the L strongest branches out of N 

available and then combine them using either MRC (H-SIMRC) or EGC (H-SIEGC), can be 

thought of as generalized diversity combining schemes with SC, MRC and EGC being special 

cases. Hybrid diversity receivers (HDR), as we refer to them in this thesis, began appearing in the 

literature in the mid 1990s with an early paper appearing in 1994 by Erben et a1 [13]. This new 

hybrid technique was named "hybrid selection combining/maximal-ratio combining" by Erben 

and was analysed in the case of a RAKE receiver which uses a subset of the strongest signal paths 

out of all possible RAKE "arms" (fingers) in the combining. As was discussed in this paper, the 

"classical RAKE receiver consisting of fixed branch delay time differences" is not optimal since, 

in order to keep the RAKE receiver practical, the number of fingers is limited to some number N, 

with the possibility of omitting branches arriving with delays outside of that range. In [13] the 

hybrid SCIMRC 2DPSK RAKE receiver in a spread spectrum system, which monitors and selects 

the N strongest signal paths was analysed and an expression for the mean bit error rate (BER) 

was derived. The branches were assumed to have equal average SNR and the authors used a 

probability density function (pdf) for the combined SNR to arrive at rather long expressions for 

the average BER. Furthermore, the effect of the observation time in estimating the multipath 

intensity profile was investigated. It was argued that longer observation times produce better 

estimates due to the effect of the noise and the synchronization times. 

Kong, Milstein et al, initially used the name "selection combining scheme" as it applied to 

the RAKE receiver. In [14] they derived expressions for the BER of this scheme for selection of a 

subset of the available branches in a uniform and exponential multipath intensity profile (MIP) 

and compared its performance to the SC receiver. In [4] they investigated receivers selecting 2 

(SC2) or 3 (SC3) branches and then combining the signals using MRC in coherent 

communications or EGC in noncoherent communications. Their results were compared with SC, 

MRC and EGC receivers operating in similar environments. One interesting conclusion from 

their results was that the SC2 and SC3 receivers operating non-coherently performed in some 

cases better than the EGC receiver did. In later papers, Kong et a1 renamed this type of receiver 

"generalized selective combining" (GSC) scheme and concentrated their efforts in obtaining 

expressions for the average output SNR of the GSC. The rationale was that the average SNR is 

directly linked to the error performance of the receivers. For example, in [15] they derived a 



generalized expression for the average SNR of a coherent GSC system consisting of branches 

with unequal average branch SNR. In the latest paper, [16], Kong derives an expression for the 

average Signal-to-Interference-plus-Noise Ratio under similar conditions. The expressions 

arrived at by Kong, Milstein et a1 were, in general, very long except for the special case of 

uniform SNR profile. 

Alouini et al, in addition to their work in the classical diversity receivers (e.g. [17]-[18]), 

made significant contributions in the HDR area. They referred to the HDR as the "hybrid 

selective combining/maximal-ratio combining" (hybrid SCMRC). As an example of Alouini and 

Simon's contribution to the analysis of HDRYs, the performance of 2 specific coherent receivers 

in Nakagami fading channels employing hybrid SCMRC was compared with that of SC and 

MRC in [19]. In general, Alouini et a1 investigated coherent receivers operating in channels with 

general power profiles and performing SCMRC. Their results are usually in the form of a 

confluent hypergeometric functions which, although compact, are not very enlightening [19]. 

Annamalai et a1 produced many papers mainly for the classical diversity receivers but they 

also have a contribution in the HDR area. Their efforts were concentrated in deriving frameworks 

for obtaining expressions for many different diversity receivers. Like the other researchers, their 

expressions involved hypergeometric functions or were too complex for any usefbl conclusions. 

In [20], for example, they considered coherent, differentially coherent and noncoherent EGC 

systems over various fading channels including Rayleigh and Nakagami fading channels and 

provided closed-form expressions using the Appell hypergeometric function. Another area 

relevant to this thesis in which Annamalai et a1 contributed is analysis of diversity receivers with 

Gaussian channel estimation errors. In [21] and [22] they analysed receivers with Gaussian errors 

in their channel estimates. Their expressions, although useful to produce plots, do not help in 

gaining understanding of the factors influencing the receivers' behaviour. 

For the research described so far, the effort was concentrated on deriving a probability 

density function for the combined SNR and then proceeding to derive an expression for the 

average SEP of the receiver. While this is a good technique it did not help to produce simple, 

concise expressions for the SEP, and in many cases resulted in expressions, which were just as 

cryptic as the problem itself. Instead, Win and Winters avoided deriving the pdf of the sum by 

expressing the output SNR as the sum of the individual branch SNR's. The problem of the 

ordered variables, which arises from the need to sort the branches according to their instantaneous 

signal magnitude or power, was tackled by a simple linear transformation resulting in a set of 

independent variables. Consequently, the integration with variable limits was transformed into 



integration with the constant limits [0,=) . Their results were more presentable and could be used 

to extract meaningful information, such as what is the effect of unequal mean signal and/or noise 

powers in the diversity branches. 

Papers by Win and Winters began appearing in 1999 (e.g. 1231-[24]) in which the authors 

were using the "virtual branch technique" to analyse coherent hybrid diversity systems in which 

the exact fading gain was available at the receiver. The diversity receivers were employed in 

channels with both uniform and non-uniform average SNR profiles. The SNR profile was in 

effect decided by the arriving average signal powers because the noise power in each branch was 

considered to be uniform in all cases. They also tackled the problem of correlated branches for 

the HDR in Nakagami fading in [25]. 

Polydorou and Ho initially investigated in [26] the hybrid selection maximal ratio combining 

(H-SIMRC) receiver operating in a Rayleigh fading environment. The H-SIMRC uses minimum 

mean squared error (MMSE) channel estimation. Annamalai et a1 later investigated a similar 

receiver in 1211 and 1221. Polydorou and Ho provided closed form expressions for the SEP as well 

as lower complexity bounds and an asymptotic expression for high SNR. Polydorou and Ho later 

investigated in [27] the SC receiver operating in a Rayleigh fading channel without CSI and using 

DPSK. The SC receiver was operating in an environment with general signal and noise power 

profiles, an environment not considered previously for the SC receiver. The effect of the signal 

and noise profiles was evaluated by comparing the performance of this receiver and its coherent 

equivalent. Later, in [28], Polydorou and Ho, also analysed the double selection equal gain 

combining (2SlEGC) receiver operating in a similar environment as the SC from 1271. An exact 

expression for the SEP was derived and asymptotic analysis was performed to extract meaningful 

information on the factors affecting its performance. 

From this discussion it should be apparent that a common application for the hybrid receiver 

is a CDMA receiver with a RAKE demodulator. The RAKE demodulator is used in a frequency 

selective channel to take advantage of the time dispersive nature of this channel by combining the 

time delayed despread replicas of the transmitted signal. While such a receiver may have a large 

number of possible replicas at its disposal, practical considerations limit the number that it can 

combine. Such a RAKE demodulator is modelled as a hybrid diversity receiver which is able to 

select a subset of the available replicas and combine them using appropriate weights. 



1.4 Goals and Contributions of this Thesis 

The goal of this thesis is to evaluate the performance of diversity receivers which are as general 

as possible and are operating in an environment which is as realistic as possible. A unique feature 

of our work is the analysis of the receiver performance with respect to different power andlor 

noise power profiles. Furthermore, we aim to derive expressions, which help us understand the 

factors affecting the performance of these receivers and not to merely replace integration with 

equally cryptic infinite hypergeometric series. In cases where an exact descriptive expression was 

not possible, we derived approximate, asymptotic expressions. The asymptotic expressions have 

the additional advantage of more clearly identifjmg the factors affecting the receiver 

performance due to their simplicity. Apart fi-om the theoretical analysis of the hybrid diversity 

receivers we developed a reduced complexity hybrid diversity receiver (RHDR) which only 

requires the signals from two of the branches to be demodulated. 

In Chapter 3 we investigate the effect of using linear MMSE channel estimation in hybrid 

selection maximal ratio combining (H-SIMRC) receivers as opposed to the perfectly coherent 

receivers studied, for example, by Win and Winters in [23]-[25]. We analyse the hybrid diversity 

receiver using linear MMSE channel estimation aided by PSAM or DPSK and obtain compact 

closed form expressions for the average symbol error probability (SEP) and the average output 

signal to noise ratio (SNR). 

In Chapter 4 we investigate receivers operating in radio channels with unknown channel 

statistical information (CSI) and obtain symbol error probability (SEP) expressions for two 

special cases of HDR's analysed in part in [27]-[28]. We identify these receivers as noCSI to 

indicate the fact that they do not have access to the channel statistical information (CSI). 

Furthermore, we contrast the performance of these receivers to that of the H-SIMRC receivers 

analysed in Chapter 3 and observe the effect of the branch power profiles on their SEP. 

To gain insight into the effect of the signal power profile and the noise power profile on the 

performance of HDR's operating in channels with known and unknown CSI we derive, in 

Chapter 5, compact and descriptive asymptotic approximations to the SEP of H-SIMRC and H- 

SIEGC receivers. These expressions indicate that absence of CSI has an effect on the error 

performance, which is related to the general arithmetic mean and the general geometric mean of 

the signal andlor noise power profiles. We find that the effect of the power profiles varies 

depending on the SNR region of interest. From the derived asymptotic expressions, we also 

observe that in general at high SNR a H-SIEGC receiver monitoring N and combining L branches 



would perform better than an EGC receiver combining L branches with a more pronounced 

advantage in uniform power profiles. 

Finally, in Chapter 6, we derive a reduced complexity hybrid diversity receiver, which can 

operate in channels with unknown CSI using DPSK. The RHDR selects 2 diversity branches out 

of all available while maintaining differential phase continuity between symbols. The common 

problem with DPSK in any selective diversity receiver is that it requires the previous symbol in 

every branch as a differential phase reference. This problem has been addressed by a more 

intelligent selection algorithm, which ensures that at least one of the two strongest branches can 

be correctly used for differential detection at any one time. It is shown by simulation that the SEP 

of this receiver is bound by the SEP of the SC and 2SlEGC receivers analysed in Chapter 4. 



Chapter 2 

Background 

In this chapter, we provide background material, which is used in the main body of the thesis. The 

topics described in this chapter are: complex random variables, linear MMSE estimation, 

baseband system model, fading, channel estimation with or without channel statistical 

information (CSI) and ordered variables. CSI, in this thesis, refers to information about the 

channel statistics such as the maximum Doppler spread, the autocorrelation function of the fading 

process, the average power of the signal and the noise in each branch, etc. 

2.1 Complex Random Variables 

Since most of the analysis in this thesis involves statistical averaging of complex random 

variables (rv), we begin by explaining the notation used for our analysis. Let z be a complex rv 

defined in terms of the independent and identically distributed (iid) real variables x and y as 

follows 

z = x +  j y .  (2.1) 

The rv's x and y have zero mean and, hence, z also has zero mean, that is 

E[x] = E[y] = E[z] = 0 , (2.2) 

where E[*] denotes expectation (statistical average). ' Using (2.2) and considering the fact that x 

and y are iid, the variance of x and y is defined as 

cr," = a," = E[x2] = E [ ~ ~ ]  = a2 (2.3) 

and the variance of z is defined as 

1 In this thesis we do not distinguish between the random variable and actual values taken by the 

random variable, usually denoted by capital and lower case letters respectively. For example, the rv could 

be denoted by X and its expectation in (2.2) could be written as E [ X ]  . 



The ?4 factor introduced in (2.4) is used merely for convenience as this equates the variance of 

the complex rv z to the variance of the real rv's x and y . 

Now let z, and z, be two complex, zero-mean rv's with variances a; and a: respectively. 

The covariance of z, and z2 , which in this case is equal to their correlation, is defined as 

1 
oziZ, = iE[z,z2'l (2.5) 

Note the absence of the square in the covariance symbol as opposed to the square in the variance 

symbol. 

2.2 Linear MMSE Estimation 

For the analysis of the average symbol error probability (SEP) of the various diversity receivers 

we make extensive use of linear minimum mean-squared error (MMSE) estimation theory. In the 

case of the Gaussian random variables that we are investigating, linear MMSE estimation is also 

the optimum MMSE estimation method [291.~ 

According to basic estimation theory, the MMSE estimate 2 of a random variable g can be 

calculated fiom a set of N  observations. Let the N x l  column vector h consisting of the N 

observations be denoted by 

h=C4,h2 ,...,h, IT, (2.6) 

where denotes transpose. The estimate is, then, 

g = w t h + y ,  (2.7) 

where denotes conjugate transpose, 

p = E[g] - w t ~ [ h ]  (2.8) 

and the vector w is calculated from the Wiener-Hopf equation. In this thesis the variable g is 

used to represent the fading gain of the channel and, therefore, based on our assumption of using 

the Rayleigh fading model, it is a zero-mean Gaussian variable. In light of this information, 

p = 0 and (2.7) becomes 

g = w t h .  (2.9) 

Let R be the N x  N correlation matrix of the observations defined as 

The material in this section is based on [29]. 



and let p  be the cross-correlation vector between the variable g and the observations vector h , 

defined as 

where * denotes complex conjugation. Since the correlation matrix R is for our purposes 

positive definite and, hence, non-singular, the vector w is calculated by solving the Wiener-Hopf 

equation 

R w = p .  (2.12) 

To measure the quality of the estimation, we define the estimation error as 

e = g - 2 ,  (2.1 3) 

and its variance, in this case the minimum mean squared error variance, is obtained from the 

expression 

where 

The error variable, e, has the property that it is zero-mean, Gaussian and statistically independent 

of the estimate 2 . As we will see in the following chapters, this property of the estimation error 

greatly assists in the derivation of the SEP expressions. 

When the MMSE estimation is based on a single observation h ,  the expression shown in 

(2.9) takes the scalar form 

g=w*h,  (2.16) 

and 

o,, is the covariance of the random variable g and the observation h, defined as 

and 0: is the variance of the observation, defined as 



The MMSE error variance is given by (2.14), where the variance of the estimate, g, a special 

case of (2.15) and is shown below: 

2.3 Baseband System Model 

For our analysis of communication systems, we use the discrete-time, complex baseband model 

shown in Figure 2.1. This baseband equivalent model removes unnecessary bandpass details 

without affecting the analysis [2]. The source in Figure 2.1 generates a random sequence of 

symbols, which are sent to the channel encoder for appropriate formatting before being 

transmitted through the channel. The channel encoder, for example, could introduce pilot symbols 

in the data stream or perform differential encoding in order to assist in the channel estimation at 

the receiver. The modulation we consider is phase shift keying (PSK) in which all transmitted 

symbols, s[k], have equal energy and for the purposes of this analysis, the energy is set to 1. In 

effect, the symbol energy is incorporated into the channel gain. The channel we consider is the 

Rayleigh fading channel with Doppler spread and normalized fade rate f, . This channel 

introduces both multiplicative Rayleigh fading gain, g[k], as well as additive white Gaussian 

noise (AWGN), n[k] [2]. At the receiver, the channel decoder attempts to remove as much of the 

channel uncertainty as possible, aided by the channel pilot symbols or the differential encoding 

introduced in the transmitter by the channel encoder. The result is then passed to the detector 

which makes a symbol-by-symbol decision on the transmitted data. 

Based on the variables shown in Figure 2.1 we may express the signal arriving at the 

receiver at time k as 

r[k] = g[k]s[k] + n[k] . (2.21) 

For convenience, we omit from now on the time index k, except when absolutely necessary, and 

the expression shown in (2.21) becomes 

r = g . s + n .  (2.22) 

The complex gain g is a zero-mean, complex Gaussian rv and it may be represented in polar 

form as 

= Ig(eje (2.23) 
9 

and the transmitted symbol s may be written as 

=&9, 



Figure 2.1 : Baseband equivalent system model for the fading channel. 

where 

and M is the constellation size of PSK. 

Since in PSK the information is conveyed through the angle p, the random rotation 8 

introduced by fading on the received signal must be removed as it directly affects the detection of 

the received symbol. To better illustrate the effect of fading in PSK communications we present 

two diagrams in Figure 2.2 corresponding to a binary PSK (BPSK) transmitted symbol s=l. The 

symbol received from an AWGN channel is shown on the left and the symbol received from a 

fading channel is shown on the right. The transmitted signal is the small light coloured circle and 

the received symbol without the effect of AWGN is the dark circle of equal size. Note that when 

the channel is only affected by AWGN and assuming phase lock has already been achieved, the 

received symbol is attenuated by a constant real valued factor and is affected only by AWGN. 

The larger fuzzy disc represents the uncertainty arising from the AWGN and the resultant 

received symbol is likely to be within the circle. By testing whether the received symbol is in the 

right or left hand plane the detector can reproduce the transmitted symbol with a certain 

probability of error. When the channel is also affected by fading in addition to the AWGN, the 

received symbol suffers a random phase rotation in addition to a real valued attenuation. The 

phase rotation could randomly move the received symbol into the wrong plane and make phase 

lock difficult. As shown in the example in Figure 2.2, the rotation would result in erroneous 

detection. Therefore, for PSK modulation, estimation of the phase rotation is necessary. Pilot 

symbol assisted modulation (PSAM) or differential PSK (DPSK) may be used to assist in the 

estimation of the random rotation 8 .  The estimate 9 can be used to rotate the symbol back to 

approximately its original position. Based on the diagram in Figure 2.2, at the receiver we 

perform the following operation 

6=r.e-'e.  
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Figure 2.2: Comparison of Fading and AWGN channels 

A useful measure of the signal quality, which is used for the symbol error probability (SEP) 

calculation, is the instantaneous SNR. In the case of the ideal coherent PSK receiver, that is the 

receiver which has complete and perfect knowledge about the channel state, we may deduce from 

equation (2.22) that the 1" term on the right hand side (rhs) is the useful part of the signal and the 

2nd term is the noise. Therefore, the instantaneous SNR is defined as 

To simplify the readability of the expressions and without loss of generality we may assume that 

the transmitted symbol is 1. The expression shown in (2.27) is not affected by this simplification 

because any other transmitted symbol, based on the representation of (2.24), is merely a rotation 

and does not affect the magnitude of the numerator. In this case, (2.27) becomes 

If MMSE estimation is employed, we can use (2.13) to express the fading gain in terms of 

the channel estimate g and the estimation error e as 

g = g + e .  (2.29) 

Consequently, the received symbol shown in (2.22) can be expressed as 

r = ( g + e ) + n = g + v ,  (2.30) 

where 



v=e+n  (2.3 1) 

and it may be thought of as the effective noise in the received symbol as it merges the AWGN and 

the estimation error into a new, zero-mean, Gaussian, random variable. The variance of v is 

denoted by 
2 2 2  N=aV =a, + a ,  . (2.32) 

Note that as explained in Section 2.2, v is statistically independent of . 

2.4 Fading 

The radio channel may be represented by different models depending on the operating 

environment. The most popular model used for urban communications is the Rayleigh fading 

model but Nakagami and Rician models are also common [2]. In fact, the Rayleigh model is a 

special case of the Nakagami model. For our research we used the Rayleigh model but the results 

can also be extended to the Nakagarni model. 

2.4.1 Rayleigh Fading 

The fading gain in a Rayleigh fading environment is modelled as a complex Gaussian random 

variable with its real and imaginary parts being iid, zero-mean Gaussian variables like the 

variables used in (2.1). The magnitude of the fading gain at the receiver, is defined as 

~ = d $ + y ' .  (2.33) 

The magnitude of the fading gain can be shown to be a Rayleigh distributed random variable 

characterized by the following pdf: 

where a: is the variance of the fading gain g and is defined below: 

a: = . 

Furthermore, the phase of the fading gain, defined as 

can be shown to be a uniform random variable characterized by the following pdf: 



l o  otherwise 

With the magnitude of the fading gain Ig) being Rayleigh distributed the pdf of the 

instantaneous SNR, y , defined in (2.28), can be shown to be exponentially distributed as shown 

below: 

where 

is the average signal to noise ratio. 

2.4.2 Nakagami Fading 

The Nakagami distribution used for the fading signal envelope is a more general pdf than the 

Rayleigh distribution. By choosing an appropriate value for the parameter m the distribution of 

the variable can vary from the one-sided Gaussian (m = f ) to the Rayleigh (m = 1) and to 

distributions with tails which decay faster than the Rayleigh distribution [2]. The Nakagami pdf is 

shown below: 

where I?(.) is the gamma function defined by 

T(m) = (m - l)!, minteger and m>0 . 

In (2.41), m is the Nakagami fading parameter and oi is the variance of the fading gain or, 

alternatively, the average power. From the expression shown in (2.40) we observe that the 

Nakagami pdf is similar to the Rayleigh pdf and, in fact, it reduces to a Rayleigh pdf when m=l. 



2.4.3 The Doppler Effect 

In cases where at least one of the communication nodes or the surrounding objects are moving, 

the signal spectrum will be spread because of the Doppler effect. The Doppler effect, or Doppler 

spread, is also commonly observed in the case of sound with the well-known example of the train 

horn changing its pitch as the train passes by an observer. As the train approaches the observer, 

the pitch of the horn seems higher whereas as the train moves away the pitch seems lower. 

Similarly, in the case of radio communications, depending on the direction of motion, the 

Doppler effect distorts the frequencies of the various arriving paths and produces an effect at the 

receiver, which is equivalent to a U-shaped spectrum [a]. The Doppler spread reduces the 

temporal correlation of the channel gain between consecutive received symbols with detrimental 

effects on the error rate at the receiver. This Doppler spread has the effect of reducing the 

receiver's ability to predict the current channel state based on previous observations. 

2.5 Channel Estimation using CSI 

From this point forward and without loss of generality, we set the transmitted symbols s[k] (for 

all k )  in (2.21) to unity. This means that for any time index k ,  r[k] can be written as 

r[k] = g[k] +n[k] . It should also be noted that we assume that the Rayleigh fading channel 

suffers Doppler spread with maximum normalized Doppler frequency fD . The autoconelation 

function of g[k] based on the average received power, o: , and the normalized fade rate, fD , is 

shown in [8] to be 

where Jo ( 0 )  is the zero order Bessel function of the first kind, fD is the normalized fade rate and 

z is the temporal separation in number of samples. 

With CSI available at the receiver an estimator can use observations to calculate an optimum 

MMSE estimate of the fading gain as discussed in Section 2.2. The observations may be obtained 

in several ways and in this thesis we focus on using differential encoding or pilot symbols, which 

are introduced by the transmitter into the data stream. 

Unfortunately, in many situations, the receiver has no knowledge about the statistics of the 

channel it is operating in. The signal and noise powers as well as the correlation between the 

fading gain and the observations are not available or they are continuously changing making their 



estimation difficult. To overcome this difficulty we may use a modulation, which works with or 

without optimum channel estimation such as DPSK. 

2.5.1 Pilot Symbol Assisted Modulation 

With PSAM the transmitter periodically inserts known pilot symbols in the data stream, which 

may be used at the receiver to calculate the optimum MMSE estimate of the fading gain of every 

received symbol. The estimator may use any number of pilot symbols for the calculation of the 

fade estimates and according to [30] 11 pilot symbols provide a good compromise between 

performance and delay or energy waste.3 Following the analysis in [30] we define a frame of 

length M which consists of M -1 data symbols and 1 pilot symbol. The pilot symbol is 

assumed to be the lSt symbol in the frame. In general the receiver uses K pilot symbols to 

calculate the optimum channel estimates. 

Let the received pilot symbols be placed in the following column vector 

where r[kM] is a pilot symbol and the 1.1 notation indicates the largest integer which is less 

than or equal to the number inside the brackets. The goal is to calculate the fading estimates 

2[1], g[2], . . . , g[M - 11 in the current frame. The autocorrelation matrix R was defined in (2.10) 

and the cross-correlation vector was defined in (2.1 1). The element in row i ( i = 1,2,. . . , K ) and 

column j ( j = 1,2,. . . ,K ) of the autocorrelation matrix is given by 

4, = oiJ0 (2n fDMli- jl)+o;Gy, 

where Gy is the Kronecker delta function. The cross-correlation 

estimate and is a function of the symbol's position in the frame. 

frame, the i-th element of the cross-correlation vector is given by 

pi[m] = 0 ~ ~ ~ ( 2 n f ~ i ( l - K / 2 ] + i ) M  -mi) 

(2.44) 

vector is different for each 

For the m-th symbol in the 

Based on the analysis in [30] and in Section 2.2 in this chapter we derive the optimum estimation 

coefficients and ultimately the variance of the estimation error and the average power of the 

estimates. The estimate of g[k] is given by 

Note that the PSAM transmitter introduces a higher number of non-data symbols than DPSK and, 

thus, provides a lower energy per bit. 



g[k] = w[klt h , (2.46) 

where w[k] is calculated using (2.12) as 

w[k] = R-'p[k]. (2.47) 

The variance of the error and of the estimates can be calculated using (2.14) and (2.15) 

respectively. 

2.5.2 Differential Phase Shift Keying 

With DPSK the transmitter conveys information as the angular difference from the previous 

transmitted symbol and it is, therefore, a simpler system to implement and to analyse since the 

observation is a single scalar value. The symbol received in the previous instant is used as the 

observation and the optimum estimate of the fading gain can be calculated following the analysis 

in Section 2.5.1. 

Let the observation be defined as 

h=r[k-11. (2.48) 

The optimum MMSE estimate is, then, given by 

g=w*h,  (2.49) 

where w was defined in (2.17) and the values of the required statistics are 

a,h = a , ' ~ m f D )  (2.50) 

of =o; + o i ,  (2.51) 

The variance of the error and of the estimates can be calculated using (2.14) and (2.15) 

respectively. 

The optimum channel estimate derived in (2.49) uses CSI which may not be available in 

certain situations. When CSI is not available at the receiver, DPSK may be used with the 

unmodified previous received symbol providing an estimate of the channel. In effect, the signal 

plus noise of the previous symbol becomes the raw channel estimate for the current symbol. 

Therefore, when CSI is not available the observation h shown in (2.48) is used as the estimate. 

When the receiver does not employ diversity, that is it uses a single receive branch, the two 

fading gain estimates shown in (2.49) and in (2.48) perform identically. In a multiple branch 

diversity receiver, however, where the signals from multiple branches must be combined to 

produce the decision variable, the use of the raw channel estimate shown in (2.48) has detrimental 

effects on the symbol error rate. The difference in performance is caused by the weighting factor 



w* which places more weight on signals with higher SNR and helps produce a combined output 

signal which is closer to the optimum MRC signal. This issue will become clear when we 

consider the receivers with no CSI in chapters 4 and 5. 

2.6 Ordered Random Variables 

The SEP analysis of the hybrid diversity receivers (HDR) inevitably leads to the study of ordered 

variables. The HDR's we analyse in the following chapters select a number of the strongest 

branches for diversity combining and, thus, ordering has to be done to assist in the selection. 

Unfortunately, the ordered variables representing the received signal in the diversity branches are 

not independent, making averaging calculations more complicated than for their independent 

unordered counterparts used in MRC and EGC. In this section, we briefly review some of the 

concepts related to the order statistics of independent, exponentially distributed variables. These 

variables represent the instantaneous SNR in the diversity branches and are used for the 

evaluation of the SEP of the H-SIMRC receiver in Chapter 3. 

Let {x, , x, , . . . , xN ) be a set of N independent, exponentially distributed variables with not 

necessarily equal parameters. We denote the exponential pdf of the individual variables as 

where 

Xi = E[xi ]  . 

The joint pdf of the variables {x, , x, , . . . , xN ) is given by 

Now let us define the following transfonnation: 

xc,, = largest of {x , ,  x, , . . . , x N )  

x(,, = 2"d largest of {x ,  , x2 , . . . , xN } 

x(,, = smallest of {x,  , x2 , . . . , xN ) 



This transformation creates the set of variables (x(,, ,x(,, , . . . , x(,,) , where x(,, > x(,, > . . . > x(,, , to 

represent the original set {x, , x2 , . . . , xN ) when arranged in descending order of magnitude. The 

joint pdf of the ordered variables is given by 

where P denotes the set of the N! permutations of the integers 1,2,---,N and the subscript k 

denotes the k-th permutation in that set. As already stated, the variables {x(,, , x(,), . . . , x(,)) are no 

longer independent, thus, any averaging performed on the ordered set of variables is non-trivial. 

Fortunately, for the case of exponentially distributed rv7s a simple linear transformation was 

introduced to the field of HDR's by Win and Winters in [23] to express the dependent variables 

in terms of a set of N independent variables {u, ,u2 ,. . . , u,) . A modified version of that 

transformation applied to variables having the pdf shown in (2.56) is shown below: 

This transformation can also be expressed in a more concise form using matrix notation. Let the 

column vector x consist of the variables (x(,, , x(,, , . . . , x(,,) as follows: 

and the vector u consist of the variables (u, , u, , . . . , u,} as follows: 

The linear transformation shown in (2.57) can be written in vector notation as 

x = T u ,  

where T is the upper triangular matrix shown below: 

What this transformation does, is ensure that the new variables {u, ,u, ,. . . ,uN} can vary 

independently while the ordering of the variables {x(,, , x(,, , . . . , x(,,) still holds. The joint pdf of 

the resulting variables {u, , u,, . . .,uN) is given by 



fu, ,U z,..., UN ( u 1 , u 2 , . . - , ~ N ) = ~  
Pk 

where 

This transformation restores the independence of the variables and in some cases, as we will see 

in Chapter 3, considerably simplifies the average SEP and SNR derivations as well as produces 

results which are concise and easily interpreted. 



Chapter 3 

Hybrid Diversity Receivers Using Optimum MMSE 

Channel Estimation 

The hybrid diversity receivers (HDR's) are a hybrid of two of the classical diversity methods. 

One example is the hybrid of selection combining (SC) and maximal ratio combining (MRC). 

Another example, more common in receivers without channel statistical information (CSI), is the 

hybrid of SC and equal gain combining (EGC). The HDR's provide performance, which is 

bounded by the performance of the classical SC receiver and the performance of MRC or EGC 

receivers. Since only a subset of the monitored diversity branches are combined, the HDR's have 

reduced complexity over the MRC and EGC receivers [31]. In this chapter we analyse the 

performance of a class of HDR's which use optimum MMSE channel estimation to aid in 

selection and combining, called the hybrid selection/maximal ratio combining (H-SIMRC) 

receivers. As shown in Chapter 2, CSI is necessary for optimum MMSE estimation of the channel 

gain since statistical parameters of the channel are needed to calculate the optimum estimator 

coefficients. For example, in (2.1 6) and (2.17) the channel estimate for a receiver using DPSK is 

shown to be a function of the joint statistics of the fading gain and the observation variable. The 

transmitter communicating with such a receiver also participates in the channel estimation 

process by either periodically introducing pilot symbols in the data stream or by differentially 

encoding the transmitted symbols. 

The analysis in this chapter was inspired by the work of Win and Winters who in numerous 

papers (for example 1241, [32]) analysed the operation of coherent diversity receivers using the 

"virtual branch technique" we described in Section 2.6. The two researchers and their associates 

investigated coherent receivers operating in Rayleigh and Nakagami fading channels with both 

independent and correlated diversity branches. They considered channels with branches having 

both equal and unequal (also called uneven, unbalanced or non-uniform) average SNR's and 

derived expressions for the average combined SNR and for the average SEP of the H-SMRC 

receiver. We extend the analysis performed previously to investigate the H-SMRC receiver 

operating in a Rayleigh fading environment with Doppler spread and unequal branch SNR's. Our 



H-SMRC receiver does not have perfect knowledge of the channel state but uses its knowledge 

of the CSI to employ MMSE channel estimation and to perform optimum hybrid diversity 

combining. Since the MMSE estimation, in our analysis, does not predict the channel state 

perfectly, the maximum estimated SNR is used as the branch selection criterion. Furthermore, the 

estimated fading gain is used to calculate the optimum weights for the combined branches. The 

uncertainty in the fading gain estimates is modelled as a Gaussian error and has the effect of 

reducing the combined output SNR relative to the SNR of HDR7s with perfect channel state 

information. Some of the analysis in this chapter appeared in [26] which incidentally was the first 

paper to appear investigating imperfect channel estimation in HDR7s. Other papers analysing 

classical diversity with errors include [33]-[36]. Annamalai and Tellambura also analysed HDRYs 

with Gaussian errors in the channel estimates, in [21] and more recently in 1221. They analysed 

channels with iid diversity branches and assumed constant correlation between the estimate and 

the actual fading gain for all SNR7s. As we see in Section 3.4 this is not true in the case of MMSE 

estimation since the correlation increases at high SNR due to the reduction of the influence of the 

AWGN on the uncertainty of the channel. 

Specifically, in this chapter we investigate the effect of the Gaussian error, introduced by the 

MMSE channel estimation, and of the non-uniform average SNR profile on the SEP of the H- 

SMRC receiver. To the best of our knowledge no other analysis of hybrid diversity receivers has 

appeared in the literature which properly models the MMSE (PSAM or DPSK) estimation error in 

relation to the fade rate and the channel statistics. The ideal coherent receiver is a special case of 

the H-SMRC receiver analysed in this chapter and is used as a reference in evaluating the effects 

of the estimation error. The main contributions of this chapter are: a) Derivation of the average 

SEP and average combined SNR for the H-SMRC receiver using MMSE channel estimation, b) 

analysis of the effect of uneven average branch SNRYs on the SEP, c) derivation of lower 

computational complexity bounds for the SEP and d) asymptotic analysis of the SEP at high 

SNR. 

3.1 System Model 

The model we use for the H-SMRC receiver is directly derived fiom the system model shown in 

Figure 2.1. The transmitter is identical to that of Figure 2.1 and the channel affects the signal with 

Rayleigh fading with Doppler spread and with AWGN. The receiver, shown in Figure 3.1, 

consists of N diversity branches, which are independently affected by fading and AWGN, 





indicated by the variables gi[k] and n,[k] respectively. The N branches represent the 

independent versions of the received signal that are acquired, for example, by multiple antennas 

or by a RAKE receiver. The symbols received from the N branches, r,[k], r,[k],. . . ,r,[k] , are 

sorted according to their estimated SNR, which is calculated by the MMSE estimators. Using the 

notation introduced in Section 2.6, the symbols from the L strongest branches can be written as 

q,, [k], q,, [k], . . . , r,,, [k] , (1 I L I N ). These L symbols are combined using MRC to produce the 

decision variable, y ,  which is used for a symbol-by-symbol decision by the detector. The 

detector computes the decoding metrics Cn = ~ e ( ~ e - " " " ' ~  ) , n = O,l, . . . , M - 1, and decides that 

Sn = eJZZklM is the transmitted symbol if C, is the largest amongst the C,, 's. 

As in equation (2.22), in any symbol interval the signal from the i -th branch at the receiver 

can be written as 

5 = g, + ni 
(3.1) 

where gi is the fading gain affecting the i-th branch and ni is the corresponding AWGN term. 

Note that as discussed in Chapter 2, we have set, without loss of generality, the transmitted data 

symbols to 1. The gi 's are complex Gaussian random variables with zero mean and variance 

0;; . The set {oil ,  oi2, .  . . , oiN} defines the signal power profile (SPP) of the channel. The SPP is 

called uniform if all the 0;; 's are equal. In this thesis, the analysis is general in the sense that it is 

not limited to any particular profile. The ni 's are also complex Gaussian random variables with 

zero mean and variance 0:; . The set {oi , oi2,. . . ,,oiN } defmes the noise power profile (NPP) of 

the channel which as for the SPP is not limited to any particular profile. In this chapter we will 

also use the average SNR profile to refer to the set {oil lo:, oi2 loi2,.  . . , oiN lo:N} of actual 

average SNR's in each branch. 

At each symbol interval the bank of N channel estimators produces the estimates ki of the 

complex multiplicative fading gains gi . The optimum MMSE channel estimate in each branch is 

calculated by the expression 

gi=wWf,  (3.2) 



where hi is the observations vector and wi is the MMSE estimator coefficients vector. Just as in 

equation (2.29), in each branch we can express the channel fading in terms of the estimate and the 

MMSE estimation error as 
A 

gi = gi + ei . (3.3) 

Equation (3.3) allows the expression of the received symbol in branch i as a function of the 

channel estimate & ,  the estimation error ei and the AWGN ni as 

r;: =(& +ei)+ni = &  +vi ,  (3 -4) 

where vi = ei + ni , defined in (2.31), is the effective noise in each branch with variance defined in 

(2.32) as = 0: = 0: + 0:. . 

Using (2.9), (2.14) and (2.15) the approximate instantaneous SNR in 5 based on the 

estimate i i ,  can be expressed as 

and its probability density function (pdf) is exponential and is defined as 

where 

is the average estimated SNR of branch i. For the special case of channel estimation using a 

single observation value, as for example in DPSK, the vector expressions shown in (3.2), (3.5) 

and (3.7) are reduced to the scalar expressions, respectively, 



Before deriving the optimal H-S/MRC strategy in the presence of imperfect channel 

estimation, it is instructive to derive the optimal classical MRC strategy. For MRC, the combined 

signal, i.e. the decision variable for the demodulator, is the sum 

where mi is the weighting coefficient for the i-th branch and is a function of &. Given the 

channel estimates ki from (3.2) or (3.8), the combined signal can be written as 

where the first term is the signal component and the second is the effective noise component. The 

corresponding instantaneous estimated SNR at the detector is, thus, 

Based on the independence of the vi with the ii and hence with the mi, we may simplify the 

denominator of (3.13) and rewrite the instantaneous estimated SNR as 

I Z m i i i r  
Ymrc = N 

2 x l m i r  x 

The optimum values for the mi that maximize the overall SNR can be obtained by applying the 

Schwarz's inequality on (3.14) based on the assumption that the signals in all branches are 

independent. By rewriting (3.14) as 

we may use Schwarz's inequality to separate the two terms in the numerator as follows: 

After cancellations the inequality is simplified to 



The conclusion should now be obvious, as our goal is to maximize the left hand side. The 

maximum value is achieved at equality which implies that the two numerator terms shown in 

(3.16) must be equal as shown below: 

The value of mi is 

and using this value for mi the corresponding maximum SNR in (3.14) is simplified to 

The expression in (3.20) indicates that the total SNR at the output of the MRC receiver is the sum 

of the individual SNR's from the independent branches. Therefore, branches with larger 

instantaneous SNR contribute more to the total combined SNR than branches with lower 

instantaneous SNR. At this point it should be noted that the optimum diversity combining strategy 

described above requires that the receiver has knowledge of the statistics of each branch which 

are used to calculate the mi in (3.19). Furthermore, in spite of the assumption of mutual 

independence of the branches it was recently shown in [37] that these weights are still optimal 

even with correlated branches. 

Based on the analysis for MRC and the fact that the instantaneous SNR, 3 / i ,  is a positive 

quantity, it can be deduced that the optimum H-SIMRC receiver should combine, at each symbol 

interval, the L branches, 1 I L 5 N, with the largest instantaneous SNR. The weighting 

coefficients were derived in (3.19). The instantaneous SNR at the output of the H-SNRC 

receiver can, thus, be written as 

where 



1 i=1,2,...,L 
a = { 
' 0 otherwise 

and y(,, > 8,) > > y,,, , are the instantaneous branch SNR's arranged in descending order. As 

shown in (2.56) the joint pdf of the sorted variables is 

where P denotes the set of the N! permutations of the integers 1,2,...,N and the subscript k 

denotes the k-th permutation in that set. 

3.2 Symbol Error Probability Analysis 

The necessary background is now established to allow us to derive the SEP of the H-SIMRC 

receiver with independent Rayleigh faded branches. For this derivation we use an alternative 

expression for the conditional SEP of PSK receivers derived by Pawula et a1 in [38] and used 

widely in the literature. This technique can also be used to calculate the SEP of M-AM and 

square M-QAM modulations [44]. The expression defines the SEP conditioned on the combined 

SNR as 

where K(p) = sin2 ( X I  M)/sin2 (p) , @ = n(M - 1)/M , and M is the constellation size in PSK. 

The unconditional average SEP for the fading channel is obtained by the expression 

One possible approach to obtaining a solution would be to directly evaluate the nested integral 

with the variable upper limits, a very tedious procedure. An alternative approach is to use the 

"virtual branch technique" which was described in Section 2.6. With the simple linear 

N 
transformation qi, = z n z i u n  , defined in (2.57), the sorted variables can be converted into the 

new set of independent, exponentially distributed, random variables {u, , u, , . . . , u,) . The joint pdf 

of the new, independent variables is 

where 



and To is the geometric mean of the average branch SNR's defined as 

Using the independent variables ui the expression in (3.25) becomes 

where 

or in other words 

After simplification, the integrand in (3.29) becomes a product of exponentials and (3.29) can be 

written more conveniently as 

The N inner integrals, each of which can be evaluated separately due to the independence of the 

variables, produce the closed-form expression for the SEP 

where bkj was replaced with the sum defined in (3.27). It is interesting to note that the SPP and 

NPP do not independently influence the SEP of the H-SIMRC receiver but instead the profile of 

the average branch SNR's is the influencing factor. 

A special case of interest because of its simpler form, as well as its potential for comparison 

with the literature, is the case of the uniform SNR profile, i.e. where all the branches have equal 

average SNR. In this special case, the SEP is simplified to 



While (3.34) appears to be of the same form as the result in [24], it should be noted that the 

variable r in (3.34) is the average estimated SNR and not the actual SNR in the branches as was 

the assumption in [24]. 

In comparing (3.33) with (3.34), we observe that unequal SNR in the different branches 

leads to N! -fold increase in computational complexity. While for many diversity receivers of 

practical interest N is a small integer and this N! -fold increase in computational complexity is 

manageable there are cases such as dense multipath channels where the number of branches could 

be high. We therefore derive, in Section 3.2.1, bounds with adjustable complexity and accuracy. 

3.2.1 Upper and Lower Bounds on the SEP 

To reduce the complexity in the evaluation of (3.33) we derive lower computational complexity 

expressions which provide upper and lower bounds. Let 

' = [r,,, 3 r(2) 3.. .Yr(N)] 9 r(l) > r(*) > - -  S ~ ( N )  (3.35) 

be the average branch SNR's arranged in descending order, derived from the set of unsorted 

SNR's {I?, , T2 ,.. -,I?,} . Then it can be easily shown that for any permutation Pk , the term 

cl, (1 1 rk,$ ) in (3.33) satisfies 

where 

and 

Consequently, we can obtain a lower bound and an upper bound on the SEP by using (3.36) to 

bound every product term in (3.33). The upper and lower bounds obtained this way will be 

independent of the permutation Pk . As such, their computation complexity will be identical to 

that of the exact SEP of a uniform power profile (3.34). However, depending on how substantial 

is the variation in the SNR profile, these bounds may not be tight. By making a sacrifice in 

computational complexity, we can obtain tighter bounds by applying (3.36) only to the last N-t 

terms in the integrand of (3.33) while allowing the first t terms to be averaged over all possible 

permutations Pk . These more general upper and lower bounds can be written as 



and 

where Pt denotes the set of the N!I(N -t)! permutations of the t integers taken fi-om the set 

{1,2,-.-, N )  and the subscript k denotes the k -th permutation fiom that set. 

Pi =(k,,k,,...,kt), k=1,2,..-,N!I(N-t)! (3.41) 

is the k-th possible t-tuple that can be constructed from the set {1,2,. . ., N} without repetition. 

3.2.2 Asymptotic Analysis 

To reach meaningful conclusions from the expression in (3.33) we assume that the channel fading 

is slow enough that there is no irreducible error floor in the region of interest. This means that at 

large channel SNR, the term zi n=l ( l / rk , ,  ) in (3.33) will be insignificant compared to the term 

K(q)ci [26][4O] [41]. Consequently, the SEP may be approximated by 

where, for convenience of notation, we used the following substitution: 

In [40] the term (N!I(L!L"-L)))I'~ is called the upper bound for the SNR penalty and indicates 

the additional SNR required by the H-SIMRC receiver to achieve the same SEP as the classical 

MRC receiver with N branches. The integral in (3.43) has a known evaluation according to the 

integral tables in [42]. For the general case of PSK with M t 2 ,  the integral is given by [39 

eq.2.513 11 

and for the special case of BPSK ( M  = 2 )  the integral is simplified to [39 eq.3.621 31 



where the notation 2k! ! denotes the product 2 .4.6 0 . .  2k and the notation (2k-I)! ! denotes the 

product 1 .3.5 . . (2k - 1) where k is any integer. In spite of the existence of the exact solution to 

the integral, in most expressions we retain the integral form since it is more compact than the 

right hand side of (3.44). 

The approximation in (3.42) leads to a very simple expression for the degradation in profile 

efficiency caused by having a non-uniform SNR profile compared to having a uniform SNR 

profile. Recall that To represents the geometric mean of the branch SNR's. Since the geometric 

mean is less than or equal to the arithmetic mean, let us consider two H-SMRC systems having 

the same number of branches and equal total average SNR but with different SNR profiles 

amongst their respective branches. For the uniform power profile, To is also equal to the average 

SNR of all the branches defined by 

We can, therefore, express the asymptotic SEP of the H-SIMRC receiver operating in a uniform 

SNR profile in terms of To, as 

From (3.42) and (3.47) it is clear that the receiver operating in the uniform SNR profile will 
N 

perform better than the receiver operating in a non-uniform SNR profile by a factor (T,, /To)  . 

We, therefore, define theprofile efJiciency ratio as shown below: 

6, is the ratio of the SEP of the H-SIMRC receiver in the uniform SNR profile over the SEP of 

the receiver in a non-uniform SNR profile shown in (3.42) and (3.47) respectively. Alternatively, 

the profile efficiency can be expressed in logarithmic terms as 

6,,& = 1 Odmlog [?)dB . (3.49) 

In (3.48) we observe that the degradation in energy efficiency caused by a non-uniform profile is 

only dependent upon the total number of branches Nand not on the number of selected branches 

L .  In Section 3.4 we use (3.48) to explain the behaviour of various receivers operating in the 

asymptotic region. 



3.3 Output SNR Analysis 

The inner multiple integrals are evaluated independently as 

and the expression in (3.53) is simplified to 

SNR analysis for the ideal coherent H-SMRC receiver has been done by Kong and Milstein in 

[43] and [I 51 and by Win et a1 in [32] and [3 11. We extend the analysis to the H-SMRC receiver 

which uses MMSE channel estimation. In this section we derive a closed-form expression for the 

average SNR of the H-SMRC system whose SEP was analysed in Section 3.2. With most of the 

framework established in Sections 3.1 and 3.2, here we briefly derive the final expression. 

The average SNR is calculated as the expectation of the instantaneous SNR yh , defined in 

(3.21), as follows: 

where f, (yh) is the pdf of y, defined in (3.6). The expression in (3.50) can be modified by 

replacing yh with the sum of the sorted random variables shown in (3.21) to obtain the 

alternative expression 

As in Section 3.2, we use the "virtual branch technique" from Section 2.6 to convert the 

dependent variables into a set of independent variables ui with exponential pdf. The average 

SNR in (3.5 1) can now be written as 

where ci and bki were defined in (3.30) and (3.27) respectively. We can easily solve (3.52) by 

reversing the summation and integration order as follows 



Let us now consider two special cases for the SNR of the H-S/MRC receiver: The SNR of 

the H-S/MRC receiver operating in a uniform profile and the SNR of the classical MRC receiver. 

For a uniform SNR profile (3.55) can be simplified even further as shown below: 

For ideal coherent detection, the SNR r in (3.56) becomes equal to the SNR used in [32], [43] 

and [15]. In other words, for the special case ii = gi the expression in (3.56) is identical to those 

in [32], 1431 and [15]. 

For the classical MRC receiver we note that there is no selection involved and, hence, no 

need for ordered branches. The average SNR of the MRC receiver can, thus, be written as 

The final expression is easily obtained by direct calculation of the multiple integrals and is shown 

below: 

We observe in (3.58) that the average SNR of the MRC receiver is simply the sum of the average 

SNR7s of the individual branches. 

3.4 Results 

In this section we use the expressions derived in Sections 3.2 and 3.3 to examine the behaviour of 

the H-S/MRC receiver operating under various scenarios and demonstrate the tightness of the 

low-complexity SEP bounds for various parameters t. Furthermore, in this section we 

demonstrate the significance of the asymptotic SEP expression and the profile efficiency ratio in 

explaining the difference in the performance of the H-S/MRC receiver operating in various SNR 

profiles. All systems evaluated in this section operate in a Rayleigh fading environment with 

Doppler spread and employ 8-PSK (M=8) modulation. For the two types of channel estimators 

considered in this study, namely the DPSK and the PSAM we use the MMSE estimator 

parameters wi derived in Section 2.5. In this section we provide results for these two estimation 

methods as well as for the ideal coherent receiver (CPSK) for comparison. It is worthwhile to 

note that the ideal coherent receiver is a special case of our receiver when ii = gi . 



We begin by explaining the convention we follow for defining the SNR profiles. The general 

form of the SNR profile is exponential, meaning that the actual input SNR's at the various 

branches are distributed according to 

Fi = G ~ - 4 - 1 )  
9 (3.59) 

where i is the branch index with values i = 1,2,. . . ,N , a is the profile decay factor, and G  is some 

constant. The tilde (-) over Ti indicates that the Fi shown in (3.59) is the actual input SNR from 

branch i and not the SNR estimated by the channel estimator. The input SNR is defined as 

When a = 0 ,  the SNR profile is uniform and all branches have identical average branch SNR's, 

i.e. Fi = for all i. When a > 0 , the average SNR in each branch decreases exponentially with 

increasing branch index i . For the plots in this section the abscissa represents the mean value of 

the SNR7s from all branches as shown below': 

For the general exponential profiles the value of G  can be calculated using (3.59) and (3.61) as 

' Note that some authors use the total received SNR on the abscissa, i.e. A@. 

For the uniform profile = G .  With this convention for the SNR, we ensure that the total 

received SNR, irrespective of the profile, is identical for all receivers. The values of a and the 

corresponding profile efficiency ratio, defined in (3.48), for a receiver using N=4 branches are 

shown in Table 3.1. 

We first compare the performance of the DPSK, PSAM and coherent PSK (CPSK) receivers. 

The SEP of the CPSK receiver is used as a lower bound on the average SEP that can be achieved 

by the two types of MMSE receivers analysed in this chapter. In Figures 3.2-3.5 we compare the 

DPSK, PSAM and CPSK receivers which operate in a fast fading channel with fade rate 

f, =0.01 and combine 1, 2, 3 and 4 branches respectively from a total of N=4 diversity 

branches. The PSAM receiver uses 11 pilot symbols for channel estimation and a frame of 15 



Table 3.1. Profile efficiency values for the four SNR profiles used in Section 3.4. 

Profile name 

uniform 

exp 1 

exp2 

exp3 

symbols. The PSAM receiver illustrates the utility of more elaborate estimators in which a 

sacrifice in energy efficiency and complexity improves the SEP over that of the simpler DPSK 

receiver. In Figures 3.2-3.5 we observe that as the number of combined branches increases, the 

error floor of the DPSK receiver is reduced. The maximum incremental improvement occurs 

when the number of combined branches is increased from 1 to 2 while the benefit of increasing 

the number of combined branches to 3 and 4 is gradually diminished. We also observe that, apart 

from the change in the error floor of the DPSK receiver, the relative performance of the 3 

receivers remains approximately constant as we increase the number of combined branches. In 

Figure 3.6 we compare the same three receivers as in Figures 3.2-3.5 but in a slower fading 

environment with f, = 0.002. We observe that the error floor of the DPSK receiver is now 

shifted to a much lower level due to the higher temporal correlation of the channel. Another 

consequence of the increased temporal correlation is the reduction in the estimation error, which 

can be observed in Figure 3.6 where the performance the DPSK and PSAM receivers is closer to 

the performance of the CPSK than in Figures 3.2-3.5. 

We, now, demonstrate the utility of the profile efficiency ratio, defined in (3.48), in 

predicting the degradation in the SEP of the H-SMRC receiver as the SNR profile becomes more 

non-uniform, i.e. as the decaying factor a becomes larger. In Figure 3.7 we use the exact SEP 

expression shown in (3.33) and the asymptotic SEP expression shown in (3.48) to plot the exact 

and asymptotic SEP respectively of a DPSK receiver employing 214~ H-SNRC. We generate 

In this thesis we use the notation LIN to specify the number of selected branches, L, and the total 

number of available branches, N, of HDR's. 



SNR (dB) 

Figure 3.2: SEP of the DPSK, PSAM and CPSK receivers in a Rayleigh fading channel with 
normalized fade rate f, = 0.01 and SNR profile exp2. The receivers combine 1 out of 4 available 
branches. 

Figure 3.3: SEP of the DPSK, PSAM and CPSK receivers in a Rayleigh fading channel with 
normalized fade rate f, = 0.01 and SNR profile exp2. The receivers combine 2 out of 4 available 
branches. 
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Figure 3.4: SEP of the DPSK, PSAM and CPSK receivers in a Rayleigh fading channel with 
normalized fade rate f, = 0.01 and SNR profile exp2. The receivers combine 3 out of 4 available 
branches. 

Figure 3.5: SEP of the DPSK, PSAM and CPSK receivers in a Rayleigh fading channel with 
normalized fade rate f, = 0.01 and SNR profile exp2. The receivers combine all 4 available 
branches. 
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Figure 3.6: SEP of the DPSK, PSAM and CPSK receivers in a Rayleigh fading channel with 
normalized fade rate f, = 0.002 and SNR profile exp2. The receivers combine 2 out of 4 
available branches. 

SNR (dB) 

Figure 3.7: The exact and the asymptotic SEP of the DPSK H-S/MRC receiver in a static 
Rayleigh fading environment for three SNR profiles: uniform, expl and exp2. The receiver 
combines 2 out of 4 branches. 



three such pairs of curves using the first three SNR profiles in Table 3.1 (a=O, 0.5, 1). We 

observe that at high SNR the SEP in the uniform profile is about 0.5 and 0.1 times smaller than in 

the exponential profiles expl and exp2 respectively as predicted by Table 3.1. The exact values 

calculated directly fiom the expression in (3.33) are: 0.55 and 0.1 1. 

We, next, investigate two scenarios where N diversity branches could be exploited but due to 

practical limitations, the receivers can only combine L branches. Similar scenarios were 

investigated by Win and Kostic in [31] for the case of dense multipath channels. Let receiver A 

be the ideal H-SMRC receiver, which is able to monitor N branches and at every symbol interval 

combine the L strongest branches using the optimum weights derived in (3.19). We identify 

receiver A as LIN H-SMRC. Let receiver B have more limited resources so that it cannot monitor 

more than L branches, i.e. it combines the same L branches at all times. Receiver B is the classical 

MRC receiver with L diversity branches and we identify it as LMRC where L indicates the total 

number of diversity branches it uses. In Figure 3.8 we compare the performance of the two 

receivers operating in static Rayleigh fading channel and a uniform SNR profile with L=2 and 

N=4. We observe that in this profile the 214 H-SMRC receiver outperforms the 2MRC receiver 

with a large margin even at very low SNR's. In Figures 3.9-3.10 we compare the two receivers 

operating in the exponential SNR profiles exp2 and exp3 with profile decay parameters a=l and 

a=2 respectively. The 2MRC receiver in these two figures always combines the two branches 

with the largest average SNR's, i.e. the branches with indices i=1,2 in (3.59). In contrast, the 214 

H-SMRC receiver monitors all four branches and at each symbol interval selects the two 

branches with the largest instantaneous SNR in that interval. In Figure 3.10 we observe that the 

disparity in the performance of the two receivers is lower than in Figure 3.9 and even lower than 

in Figure 3.8. In fact, we observe that the two receivers in Figure 3.10 perform very similarly at 

low SNR's up to 15dB. To understand the difference in comparative performance of the two 

receivers in different SNR profiles we need to consider the selection process. The 2MRC receiver 

completely ignores two of the four available branches at all times whereas the 214 H-SJMRC 

receiver monitors all four of them and selects the strongest two at each symbol interval. In the 

exponential SNR profiles, the 2MRC receiver ignores the two branches with the lowest average 

SNR. Since the probability that any of these two branches has instantaneous SNR in the top two 

is very low, especially for large a's, ignoring them does not penalize considerably the 2MRC 

receiver. On the other hand, in the uniform SNR profile the 2MRC receiver ignores two branches, 

which have average SNR which are identical to the SNR of the two branches it combines. In this 

case the probability that any of the two ignored branches have instantaneous SNR in the top two 
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Figure 3.8: SEP of the 214 H-SIMRC and 2MRC receivers using DPSK in a static Rayleigh 
fading channel with uniform SNR profile. 
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Figure 3.9: SEP of the 2/4 H-S/MRC and 2MRC receivers using DPSK in a static Rayleigh 
fading channel with exp2 SNR profile. 
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Figure 3.10: SEP of the 214 H-SMRC and 2MRC receivers using DPSK in a static Rayleigh 
fading channel with exp3 SNR profile. 

is much higher and the 2MRC is penalized by a more dramatic drop in performance compared to 

the 214 H-SMRC receiver. We can, therefore, conclude that use of a H-SIMRC receiver over the 

classical MRC receiver described in this paragraph would make more sense in channels with 

uniform SNR profile or low profile decays. In highly unbalanced SNR profiles the simpler 2MRC 

receiver would provide a better performance-complexity balance. 

In Figure 3.1 1 we demonstrate the effect of different normalized fade rates on the SEP of a 

114 H-SMRC (SC) receiver using DPSK and operating in a uniform SNR profile. We observe 

that as the fade rate increases, the SEP deteriorates and the unavoidable error floor for DPSK 

moves to a higher SEP and occurs at lower SNR's. To explain this phenomenon we need to 

examine the effect of the fade rate on the variance of the estimation error and on the correlation 

between the fading gain and the observation. We may obtain a more convenient visual 

correspondence of the SEP with the normalized correlation wi using the following 

transformation: 
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Figure 3.1 1 : SEP of the 114 H-SMRC receiver using DPSK in a Rayleigh fading environment for 
various fade rates. The receiver operates in uniform profile. 

Figure 3.12: The variable Pgh , 2  as a function of SNR for the 114 H-SIMRC receiver in Figure 



In (3.63) we normalize and transform the correlation function a,, to better illustrate the effect 
, ' 

of higher received SNR on the correlation. The variable Pg, would approach zero at high SNR if 
8 8 

the two variables were completely correlated. In Figure 3.12 we plot G,, versus the SNR for the 

fade rates used in Figure 3.1 1. We observe in Figure 3.12 that c, reaches a floor, which 
2 2 

depends on the fade rate. This floor has a relation to the SEP error floor we observed in Figure 

3.11. To complete the observations, we plot in Figure 3.13 the normalized variance of the MMSE 

estimation error in the DPSK receiver, defined as 

In (3.64) the error variance is normalized with the power of the signal power for clearer 

comparison. We observe that the estimation error follows the same pattern as the SEP of the 

receiver, which demonstrates that the estimation cannot be improved indefinitely for non-zero 

fade rates. 

In Figure 3.14 we plot the SEP of a 214 DPSK H-SMRC receiver. We observe that there is 

some improvement over the SEP in Figure 3.1 1 but the additional branch does not improve the 

SEP dramatically. We also plot in Figure 3.1 5 the SEP of the 214 H-SIMRC receiver operating in 

the exponential SNR profile exp2 with a=l. It appears that while the performance of the receiver 

in the uniform profile is slightly better in the region above the error floor, the two profiles 

produce identical error floors. Finally, in Figure 3.16 we plot the SEP of the 214 H-S/MRC 

receiver using PSAM. In this figure we observe that at high fade rates the error floor is higher 

than for the equivalent DPSK receiver whereas at low fade rates the error floor is not present in 

the SNR region 0-50dB. This can be explained by considering the spacing of the pilot symbols 

with respect to the symbol of interest. Some of the pilot symbols are separated from the estimated 

symbols by long time intervals indicating that it is possible that a larger number of pilot symbols 

can be detrimental to the fading gain estimation. As we have seen in Figures 3.2-3.6, PSAM has 

the potential to provide better error performance than DPSK but in Figure 3.14 and Figure 3.16 

we observe that in cases of fast fading the opposite may occur. 

We next demonstrate the effect of the number of selected branches, L, on the combined 

output SNR and the SEP of a H-SMRC receiver with a fixed total number of branches N=4. The 

plots of the normalized combined SNR of a DPSK H-SMRC receiver operating in the uniform 

and the exponential profiles with a=0.5, a=l and a=2 from Table 3.1 are shown in Figure 3.17. 
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Figure 3.13: Normalized estimation error as a function of SNR for the 114 H-SIMRC receiver in 
Figure 3.1 1. 

Figure 3.14: SEP of the 214 H-SIMRC receiver using DPSK in a Rayleigh fading environment for 
various fade rates. The receiver operates in uniform profile. 
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Figure 3.15: SEP of the 114 H-SMRC receiver using DPSK in a Rayleigh fading environment for 
various fade rates. The receiver operates in the exp2 SNR profile. 
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Fibwe 3.16: SEP of the 214 H-SMRC receiver using PSAM in a Rayleigh fading 
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Figure 3.17: Normalized combined SNR of L/4 H-SNRC receivers using DPSK in a Rayleigh 
static fading environment for various SNR profiles. The normalized SNR is taken at input mean 
SNR=3OdB. 

The normalized SNR is defined as the ratio of the combined output SNR over the mean of the 

actual branch SNR's, f', defined in (3.61). The SNR is obtained for average input SNR 

f' = 30dB . Hence the values on the ordinate in Figure 3.17 are given by 

normalised output SNR = 10 log I?, - 30 . (3.65) 

We observe that as the SNR profile decay parameter a decreases, i.e. as the SNR profile becomes 

more uniform, the average combined SNR is reduced. The exception is when L=N, i.e. when the 

H-SNRC receiver is reduced to the classical MRC receiver. Because of the convention we use to 

calculate the average SNR in this section, shown in (3.61), the average SNR of the MRC receiver 

given by (3.58) is identical for all SNR profiles. This is not true for the H-SIMRC receiver with 

L<N, however, because by selecting the branches with the maximum instantaneous SNR the H- 

SNRC receiver takes advantage of the fact that some of the branches in the exponential profile 

have higher average SNR. Another observation fiom Figure 3.1 7, is the monotonically decreasing 

slope of the SNR curves for all the profiles, indicating the reduced benefit we obtain by selecting 

more branches. 



In Figure 3.18 we plot the SEP curves corresponding to the profiles used in Figure 3.17. It is 

surprising at first to notice that the receivers providing higher output SNR do not provide the 

better error performance. We observe in Figure 3.18 that the receiver operating in the uniform 

SNR profile outperforms the receivers operating in the non-uniform SNR profiles in spite of 

providing the lowest output SNR. To explain this occurrence it is instructive to consider a 

receiver without diversity, i.e. a receiver with one branch, having average input SNR equal to 

41'. This SNR is equal to the sum of the average input SNR7s from all four diversity branches. 

The single branch receiver would, thus, provide output SNR equal to 4 r ,  which is equal to the 

SNR provided by the MRC receiver as shown in Figure 3.17. Of course, the SEP of this single 

branch receiver is not expected to be lower than the SEP of any diversity receiver and in fact it is 

calculated as 1.68xl0-~, well above the SEP of the receivers shown in Figure 3.18. We could, 

therefore, conclude that output SNR comparisons of receivers must be done carefully as higher 

output SNR does not necessarily translate to lower SEP. 

Finally, in Figure 3.19 and Figure 3.20 we demonstrate the effect of the parameter t on the 

tightness of the lower computational complexity SEP bounds derived in (3.40) and (3.41). In 

Figure 3.19 the exact SEP curve and the bounds for t=O and t=2 are plotted for a CPSK H-SMRC 

receiver with N=4 and L=l operating in a channel with the expl SNR profile. We chose CPSK to 

avoid any additional effects due to the channel estimation. In Figure 3.20 the corresponding 

curves are plotted for a channel with exponential profile exp2 and decay parameter a=l. We 

observe that as the parameter t approaches N-1 the tightness of the bounds improves. 

3.5 Conclusions 

In this chapter we derived various performance measures for the H-SMRC receiver which uses 

MMSE channel estimation for selection and combining of L out of N diversity branches. The 

final expressions are in a concise, closed-form expression which helps in understanding the 

factors affecting the performance of the H-SIMRC receiver. 

In Section 3.2, the exact expression for the SEP of the H-SMRC receiver was derived. Due 

to the consideration of non-uniform SNR profiles the exact expression has a factor of N! 

increase in complexity over the expression for the uniform SNR profile. The complexity issue 

could be significant in dense multipath channels with high numbers of diversity branches and is 

addressed in Section 3.2.1 with the derivation of lower computational complexity bounds. The 

upper and lower bounds reduce the computational complexity by a factor of (N -t)! over the 
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Figure 3.1 8: SEP of L/4 H-SIMRC receivers using DPSK in a Rayleigh static fading environment 
for various SNR profiles. The SEP is taken at input mean SNR=30dB. 
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Figure 3.19: SEP of SC CPSK receiver with N=4 diversity branches in profile expl with lower 
and upper bounds calculated for 6 0  and t-2. 
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Figure 3.20: SEP of SC CPSK receiver with N=4 diversity branches in profile exp2 with lower 
and upper bounds calculated for t=O and t=2. 

complexity of the exact expression. In other words the computational complexity of the bounds is 

N!I(N - t)! higher than the complexity of the uniform SNR profile expression. The value of t 

can vary from 0, which produces the most crude but least complex approximation, to N-1, which 

produces the exact value but with N! increase in complexity. 

Asymptotic analysis of the SEP at high SNR values was performed in Section 3.2.2 to obtain 

better understanding of the effect of the SNR profile on the SEP of the H-SIMRC receiver. The 

asymptotic expression is concise and leads to two conclusions: 

a) The asymptotic SEP is inversely proportional to the Nth  power of the geometric mean 

of the average branch SNR's. As long as the SNR profile remains the same, the rate of 

decrease of the SEP with increasing SNR is constant on a logarithmic scale and this rate 

of decrease is identical for all values of L . 

b) The asymptotic SEP is proportional to the fknction N!I(L!LN-L). This function is 

responsible for the diminishing returns of successively increasing L . 



In Section 3.3, we derived a concise expression for the average combined SNR of the H- 

SIMRC receiver. This expression is a generalization of the expression derived previously by 

Kong et a1 in [15] and by Win and Winters in [23] for the coherent H-SIMRC receiver. 

The benefit of the H-SNRC receivers over classical MRC receivers as, for example, in 

cases where the number of available diversity branches is larger than the capabilities of the 

receiver was demonstrated in Section 3.4. The L I N  H-S/MRC receiver was shown to 

outperform the classical MRC receiver, which always combines the same L branches but its 

advantage is reduced in highly unbalanced SNR profiles. In Section 3.4 we showed the effect of 

the fade rate on the error floor of DPSK and PSAM and identified a possible source of erroneous 

conclusions when comparing receivers operating in different SNR profiles. A receiver providing 

higher average output SNR does not necessarily provide lower SEP. 



Chapter 4 

Selection and Double Selection/Combining Receivers 

without Channel Statistical Information 

In Chapter 3 we analysed the performance of the H-S/MRC receiver operating in a Rayleigh 

fading channel with the assumption that the channel statistical information (CSI) was available. 

The CSI was used to design a MMSE channel gain estimator for optimal selection and diversity 

combining using optimum MRC weights. Absence of CSI on the one hand complicates the 

detection process, as the optimum MMSE channel estimation cannot be used. The channel 

uncertainty, manifesting itself as random phase rotation and scaling factor, is especially harmful 

for PSK because the information for this modulation is carried in the phase of each symbol which 

the random phase rotation makes harder to detect. On the other hand, absence of CSI forces the 

use of simpler receivers, such as receivers using plain DPSK, which do not have the channel 

estimation overhead, but as a consequence their performance is inferior. In addition to combining 

and detection issues, absence of CSI complicates branch selection in diversity receivers since the 

optimum criterion of largest instantaneous SNR cannot be used. In many practical receivers the 

selection is instead based on the signal-plus-noise (SPN) criterion. For example, Neasmith and 

Beaulieu in [9] provided bit error probability analysis for a SC receiver using binary NFSK and 

DPSK modulations and employing the SPN criterion. 

The performance of receivers which do not use CSI is in general more difficult to analyse 

than the performance of receivers which use CSI such as the H-SIMRC receiver analysed in 

Chapter 31. Many of the simplifications used in Chapter 3 arising from the optimum MRC 

combining can no longer be applied. Consequently, it is very difficult to obtain simple and 

insightful yet general expressions for this type of hybrid diversity receiver (HDR) except for 

certain special cases. In the past Brennan [7] used the pdf of the sum of Rayleigh variables to 

obtain a solution for the EGC receiver and most of the later researchers followed along the same 

path. In this chapter we use an alternative method to analyse two special cases of HDR's which 

do not use CSI and are operating in a Rayleigh fading channel with Doppler spread: A receiver 

which selects a single branch and a receiver which selects and combines the two strongest of the 



N available diversity branches, a hybrid of SC and EGC. The former is the classical SC receiver 

and the latter we call the double selection equal gain combining (2SlEGC) receiver.' 

Since CSI is not available to the receivers analysed in this chapter, branch selection is based 

on the received SPN and is, therefore, different fi-om the method used in Chapter 3. The reader 

may recall that for the H-SIMRC receiver the branch selection was based on the estimated 

instantaneous branch SNR. Instead, the selection criterion used in this chapter is similar to that 

considered by Neasmith and Beaulieu in [9] where the authors used the SPN selection criterion in 

a 2DPSK SC receiver but made the assumption that the channel was invariant over a two-bit 

interval. This assumption would hold in a static fading channel, i.e. a channel without a Doppler 

spread, but not in a fast fading channel. Since, in this chapter the received SPN is the selection 

criterion, which means that a non-optimal, in the MMSE sense, noisy channel estimate is used for 

the selection, it is not immediately obvious what the best possible selection strategy is. Does 

selection based on the current received symbol magnitude provide better performance than 

selection based on the previous symbol magnitude? We prove in Appendix A that the use of the 

previous instead of the current symbol magnitude for branch selection does indeed provide better 

performance. While initially this result seems counter-intuitive, when we consider that with 

DPSK the previous received symbol is used as an estimate of the current value of the fading gain, 

it is not as surprising. The analysis indicates that selecting the branch with the largest estimated 

channel gain is more important than selecting the branch with the largest current SPN. 

In this chapter we provide exact symbol error probability (SEP) expressions for the SC and 

2SlEGC receivers and derive descriptive asymptotic SEP approximations. The asymptotic 

expressions are derived directly from the final exact SEP expressions. As we show in Chapter 5, 

it is also possible to obtain asymptotic SEP expressions for the general case of a receiver 

combining an arbitrary number of branches, by applying high SNR approximations in the 

beginning and throughout the derivation. One of the outcomes of this chapter is the effect of the 

signal power profile (SPP) and the noise power profile (NPP) on the SEP of the SC and 2SlEGC 

receivers in contrast to the effect of these profiles on the H-SIMRC receivers fiom Chapter 3. 

Although variations of the SC receiver have been investigated by other authors the specific 

receiver analysed in this chapter appears to have been missed. The main characteristics of this SC 

receiver are: 

' Part of the analysis for the SC receiver appeared in 1121 and for the 2SlEGC receiver appeared in 

U31. 



1. Modulation is plain DPSK and the receiver uses the raw previous symbol as the channel 

estimate. 

2. The channel is not assumed to be constant over a 2 symbol period and has an 

autocorrelation function dependent upon the fading rate. 

3. Both the average signal power profile (SPP) and the noise power profile (NPP) can be 

independently non-uniform (unbalanced) 

4. We use asymptotic expressions to provide quantitative explanation for the effect of the 

SPP and NPP on the SEP. 

To the best of our knowledge, the double selection equal gain combining (2SlEGC) receiver 

has not been previously investigated. We provide an exact expression for the SEP of this receiver 

as well as perform asymptotic analysis to quantify the effect of the non-uniform SPP and NPP on 

its performance. We contrast the performance of the two receivers analysed in this chapter with 

the performance of the equivalent SC and double selection maximal ratio combining (2SlMRC) 

receivers, which are two special cases of the H-SIMRC receiver analysed in Chapter 3. The 

notation 2SlMRC is chosen to correspond to the notation for the 2SlEGC receiver and refers to a 

H-SlMRC receiver which selects and combines L=2 branches. 

4.1 Selection Combining Receiver 

The SC receiver is considered the simplest of the three classical diversity receivers, SC, EGC, 

MRC, because there is no combining involved [a]. The conceptual receiver model, shown in 

Figure 4.1, is derived fiom the diagram of the H-SJMRC receiver shown in Figure 3.1. In contrast 

to the receiver in Figure 3.1, however, the channel estimators of this receiver do not attempt to 

produce the optimal MMSE channel  estimate^.^ The channel estimate is now the raw previous 

received symbol and the channel estimators are, therefore, nothing more than delay elements. For 

this SC receiver the penalty in performance when compared to the SC receiver in Chapter 3 is 

expected to arise fiom the inability of the sorter in Figure 4.1 to select the branch with the largest 

instantaneous SNR. This SC receiver at each symbol interval selects the branch with the largest 

SPN magnitude. 

As noted in Section 2.5.2, the optimal estimates are important in channels with non-uniform SNR 

profiles because they use the statistical information to more optimally compare each branch. 





4.1.1 System Description 

The signal arriving in the i-th branch of the receiver at time k was shown in (3.1) to be expressed 

in terms of the fading gain and the AWGN as 

r;: =gi  +ni ,  (4.1) 

where the time index k was omitted. As already mentioned, for the SC receiver in this section the 

previous received symbol is used as a crude fading gain estimate. If we use the terminology of 

Chapter 2, we are now using the observation variable hi as the fading gain estimate. The 

observation variable was defined in (2.48) as 

hi[k] = q [ k  -11. (4.2) 

You may contrast this estimate with the optimum MMSE estimate provided by the H-SMRC 

receiver for branch i, shown in (3.8) and repeated below: 

ki = =,*hi , (4.3) 

where the variable wi was defined in (2.17) as 

The H-SMRC receiver was able to calculate the optimum channel estimate because it had 

knowledge of the CSI. Since the SC receiver in this section does not have access to the CSI, it in 

effect sets wi to unity for all branches at the cost of reduced accuracy in the selection process, 

especially at low SNR.~ 

At each symbol interval, the SC receiver selects the branch with the largest estimated signal 

magnitude. As explained in the previous paragraph the selection is based on the magnitude of the 

observation variable, that is the metric Ihi 1 , 1 I i 5 N. Upon selection of the signal with the 

maximum Ihi I , say the signal from branch j,  the decision variable at the detector can be written as 

Y=r jh ; .  (4.5) 

From (3.3) we know that the fading gain can be expressed in terms of its MMSE estimate as 
A 

gi = g i  +ei, (4.6) 

In the case of the 2SJEGC receiver this inability to calculate y also causes reduced accuracy in the 

combining process. 



where, according to the analysis in Section 2.2, ei represents the MMSE estimation error and it is 

a zero mean, Gaussian random variable, independent of the estimate gi. Observing that the 

MMSE estimate is related to hi by the expression in (4.3), it is straightforward to express the 

actual fading gain as 

gi = w;hi +ei .  (4.7) 

Note that ei in this case is also independent of hi since wi is just a constant. Finally, the received 

symbol can be expressed in terms of hi as 

ri = w,? hi + vi , (4.8) 

where vi is the effective noise defined in (2.3 1) and reproduced below: 

V ,  = ei + n, . (4.9) 

The variance of vi is denoted by x. and was shown in (2.32) to be - 0;. = 0: + oii . (4.10) 

Note the presence of wi in (4.8) as opposed to the equivalent expression for the H-SIMRC 

receiver in (3.4). 

Using (4.8), the decision variable in (4.5) can be written in terms of the observation hi and 

the effective noise as 

= W* J J  lh12 + h;vj . (4.1 1) 

The first term on the right hand side is the estimated signal component and the second term is 

noise. Consequently, the estimated instantaneous SNR at the detector is given by 

It should be stressed at this point that even though the j -th branch may have the largest SPN 

magnitude, it is not necessarily the branch providing the largest SNR, since y, in (4.12) depends 

not only on lhj\ , but also on the branch's effective noise power Nj and on the channel statistics 

included in the definition of wi . In contrast, in a receiver with CSI knowledge as in the case of 

the H-SIMRC receiver in Chapter 3, all the wi 's and x. 's are known and, hence, the receiver 

can normally select the branch with the largest instantaneous branch SNR. We observe that the 

expression for the instantaneous SNR in (4.12) is the same as the expression (3.20) for the 



corresponding SC receiver in Chapter 3. We, therefore, expect that the only factor causing a 

disparity in the perfonnance of the receiver analysed in this chapter and the special case of the H- 

S/MRC receiver in Chapter 3 with L=l will be the selection process. 

4.1.2 Symbol Error Probability Analysis 

Before deriving the exact SEP expression of this SC receiver we introduce the following random 

variables: 

A, = i1hil2. (4.13) 

The new random variables represent the instantaneous power of the hi's and are statistically 

independent and exponentially distributed with pdf given by 

where A, represents the average power of kt, and is defined as 

Alternatively, Ai is the average power of q , the received signal plus noise. 

By arranging the Ai 's in descending order a new set of random variables 4,) ,A(,, , . . .,A(,, is 

obtained, where A(,, > A(,, > -.- > A(,, . These ordered random variables, as explained in Section 

2.6, are no longer independent and their joint pdf is given by 

where P, is the k-th permutation of the branch indices (1,2, ...fl. Using the new notation, the 

detector's SNR defined in (4.12) can be expressed as 

where the largest estimated power, A(,, , is assumed to have arrived from the j -th branch and 

both of the statistics wj and gj are associated with this selected branch. 

As explained in Section 3.2, we may use the expression found in [38] to calculate the SEP 

conditioned on ys as 



where K(q) = sin2 ( n l   si sin^ (q) , Q, = n(M - 1)/M , and M is the constellation size in PSK. 

Following the approach in Section 3.2, the unconditional average SEP can be evaluated from 

(4.1 8) by expressing y, as a fwnction of A(,, . This transformation has the effect of avoiding the 

calculation of the pdf of ys but instead makes use of the pdf of the sorted random variables 

A(,, ,A(,, , . . . ,A(,, from (4.16). The expression for the average SEP is given by 

where 

0 otherwise 

The expression in (4.19) can be further manipulated as follows: 

where A, is the geometric mean of the average powers hi defined as 

and 

According to the "virtual branch technique" the dependent variables A(,, , i = 1,2,..., N can 

be transformed into the independent variables ui , i = 1,2,-..,N, using the linear transformation 

shown in (2.57). The scalar form of the transformation applied to the variables A(,, is given by 

which is equivalent to the vector equation 

l = T u ,  

T 
where 1 = [ ~ ( ~ , , 4 ~ , , . . . , 4 ~ , ] ~  , u = [ u , , ~  ,-..,uN] and T is the upper triangular matrix defined 

in (2.61). Therefore, the expression shown in (4.21) is now transformed into the simple multiple 

integral with constant limits 



where 

The final solution is obtained by direct evaluation of the integrals to obtain the closed form 

expression 

or, written explicitly 

This expression is recognised as being similar to the expression shown in (3.33) which was 

derived in Chapter 3 for the H-S/MRC receiver. 

4.1.3 Average SNR Analysis 

We now proceed to derive an expression for the average SNR of the SC receiver. We begin by 

using the definition of the average SNR, expressed in terms of the instantaneous SNR and its pdf 

where f, (y,) is the pdf of the instantaneous SNR. As in the previous section, the pdf of y, is 

replaced with the joint pdf of the sorted variables & ,  defined in (2.56), and the average SNR in 

(4.30) can be written as 

Using the "virtual branch technique", the expression in (4.31) is transformed into the simpler 

integral with constant limits 

where 



The multiple integral is easily evaluated by solving each integral independently and the final 

closed form expression for the SNR is given by 

The average combined SNR in (4.34) is similar to the corresponding expression for the H-SNRC 

receiver shown in (3.55). 

4.2 Double Selection Equal Gain Combining Receiver 

The analysis of the SC receiver in Section 4.1 benefits from the fact that only a single branch was 

selected which was then simply used for detection, i.e. no combining was involved. In this 

section we analyse the performance of the double selection/equal gain combining (2SlEGC) 

receiver which selects and combines the two branches with the maximum estimated SPN 

magnitude. The analysis of this type of receiver is more complex than both the H-SMRC and the 

SC receivers analysed in Chapter 3 and Section 4.1, respectively, since the instantaneous SNR is 

now a function of the sum of two ordered Rayleigh random variables. The final closed form 

expression for the average SEP is also in a more complex form than the other expressions we 

have derived so far. 

Before proceeding with the derivation for the SEP of the 2SlEGC receiver, it is necessary to 

justify the definition of EGC as it is used in this section and later on in Chapters 5 and 6. The 

EGC receiver according to the classical literature [I]-[2] and research papers as for example [ l l ]  

and [19] is a receiver which attempts to phase-align the diversity signals and then combines them 

without applying any additional weights. This contradicts the use of the term by many researchers 

such as the authors of [44]-[46] where they refer to their receiver as an EGC receiver in spite of 

using unequal weights (Also see the discussion in [47]). In the references [44]-[46], for example, 

the combiner output signal consists of the following sum: 

Noting that the magnitudes lr;[k -111 are different for each branch we may conclude that the sum 

in (4.35) is not obtained using equal weights. We name this receiver the "previous symbol gain 

combining" (PSGC) receiver to stress the application of the unequal magnitudes lr;[k - 11 of the 



previous received symbols. Note that while this is not a standard term it provides a clear 

distinction from the receivers analysed in this thesis. 

In this thesis we follow the traditional approach regarding EGC (also see [46]) in which the 

EGC receiver simply attempts to phase-align the signals by multiplying them with the phase of 

the previous received symbol as follows: 

where 

Obviously, the SC receiver analysed in Section 4.1 is not affected by this distinction since no 

combining takes place and, thus, the instantaneous SNR in (4.12) is identical for both weighting 

methods. In contrast, the 2SlEGC receiver analysed in this section and a possible hybrid 

2SPSGC receiver would perform differently since they use different weighting methods for their 

combined signals. From simulation studies, however, the difference in performance only 

becomes noticeable for numbers of selected branches higher than two. 

Finally, we would like to point out that the term equal gain combining is also used to 

describe another type of diversity receiver which uses noncoherent square law detection. 

4.2.1 System Description 

The conceptual model of the 2S/EGC receiver is shown in Figure 4.2, where the sorter selects the 

two branches with the largest estimated SPN magnitude and uses (4.36) to partially remove the 

fading phase distortion and combine the result. 

The received signal in branch i at time k was shown in (4.8) to be 

';. = w:hi +vi ,  (4.38) 

where wi is a h c t i o n  of the channel statistics and vi is the effective noise defined in (4.9). The 

channel estimators shown in Figure 4.2 produce estimates whose instantaneous power determines 

the branch selection. If lhj 1 is the largest and lhm 1 is the second largest amongst all the branches 

(i.e. I > Ihm 1 > Ihi 1, i o j, rn ), then the j-th and rn-th branches are selected and the decision 





variable for the detector can be written as 

To determine the symbol error rate of the 2SlEGC receiver we substitute (4.38) into (4.39) to 

obtain the following expression for the decision variable: 

The first term in (4.40) is the signal component and the second term is noise. The corresponding 

instantaneous SNR is defined as 

where is the variance (power) of the effective noise at branch i. It should be noted from 

(4.40) that, as for the SC receiver in the previous section, even though the j-th and m-th branches 

may have the largest SPN magnitudes, y,, is not necessarily maximized since it not only depends 

on lhj 1 and lhm 1 , but also on the branches' effective noise powers Nj , % as well as the channel 

statistics used to calculate wj, w , ~ .  We would, therefore, expect that the 2SlEGC would have 

inferior SEP performance to the H-SNRC receiver, which has the ability to select the branches 

with the maximum SNR. This SEP degradation is in addition to the degradation fiom applying 

non-optimal weights in the combining as opposed to the optimal weights in the MRC receiver. 

4.2.2 Symbol Error Probability Analysis 

To derive the exact expression for the SEP of the 2SlEGC diversity receiver we define the 

random variables 

4 =Ihil, (4.42) 

which are statistically independent and Rayleigh distributed, with probability density functions 

where 



Note that while the variables li are different from the variables 4 defined in (4.13) and are 

related with the expression 

The statistic Ai , however, is the same quantity as in (4.15) and is defined as the average received 

SPN power. 

Using the new variables and the conditional SEP found in [38], the SEP of the 2SlEGC 

receiver conditioned on lj and I,, can be written as 

where K(p)  = sin2 ( n l   sin^ ( p )  , = n(M -1)lM , and M is the constellation size in PSK. 

Averaging over all possible permutations of two branches selected from the population of the N 

available branches we obtain the expression for the average SEP given by 

where it should be noted that dl, . . -dl, does not include dli or dl, . The reason behind this 

choice of averaging as opposed to the method used in the SC and H-SIMRC cases is the more 

convenient result of the evaluation of the inner N - 2 integrals. By choosing the method in (4.47) 

we obtain the expression consisting of a sum of exponentials shown below: 

where 

( N  - 2)! 
Y( i )  = 

i!(N - 2 - i ) !  

and the definition of v,'," (n, k) is provided below: 



Let v be a vector defined as v = (v,  ,v2 ,. .,vN)' . We define the matrix v:;'." as a 

( N - 2 ) !  x i  matrix consisting of every possible combination of i elements in its 
i ! ( N - 2 - i ) !  

rows selected from the vector v with v,  and vm removed. We defrne V,j'," 0 

V/'" (n, k )  is the k-th element in the n-th row of matrix v;," . 
The elements of vector v in (4.48) are assigned the values 

The resulting expression for the SEP only involves the 2 integrals for 1, or 1, and the 

integral of 9 as follows: 

The triple integral expression for the SEP can be reorganized resulting in 

( W Z ,  + 1 y i 

exp I: ~ ( 9 )  - I: ~ y j , ~  (n,  k )  dl,dl,dg. 
2 A j  2Am I '  2 ,  + N ,=I 1 

We now use a two dimensional version of the "virtual branch technique" to convert the 2 inner 

integrals in (4.52) to a pair of integrals that are independent of the variable 1, . The following 

linear transformation will ensure that we obtain two integrals with lower and upper limits of 0 

and .o respectively: 

After applying the transformation and using the integral tables in [39 eqns 3.322.2 and 

3.462.51 we obtain the exact expression for the SEP of the 2SlEGC receiver as 



where the variables a, (9) , a2 (9) and a, (p) are defined below: 

2 

1 1 (w; + w:) i 
a3(9>=-+-+K(~) + x v/*" (n, k) . 

2Aj 2Am 2 %  + N m  ,=, 

We recognise that (4.54) is a complex expression. We, therefore, provide asymptotic analysis in 

the following section, which results in simpler approximate expressions. 

4.3 Asymptotic Analysis of the SC and 2SlEGC Receivers 

In this section we provide asymptotic SEP analysis for the SC and 2SlEGC receivers. The SEP 

expressions we derived in Sections 4.1 and 4.2 depend on statistical parameters such as the 

average signal and noise powers in each branch, the correlation between the fading gain and its 

observation etc, which were defined in Chapter 2. It should be stressed at this point that although 

the SEP expression is a function of the specific channel statistics, the receivers do not use these 

statistics in their operation. 

4.3.1 Asymptotic Analysis of the SC Receiver 

The SEP of the DPSK receiver operating in fading channels with Doppler spread is known to be 

limited by an irreducible error floor, which is caused by the reduced temporal correlation of the 

fading gain. In other words, since the channel changes randomly between successive symbols, 

increasing the transmitted signal's power would not improve the SEP beyond a certain level as 

was shown in Section 3.4. For this reason it is necessary to derive two asymptotic expressions for 

the SEP at high SNR: the static fading asymptote and the errorfloor asymptote. 



The static fading asymptote is derived under the assumption that fading is static. By static 

fading we refer to the case where the fading gain remains constant for the period of interest, 

possibly due to the fact that the receiver and transmitter as well as their environment are 

stationary. In other words the channel fade rate, fD , is zero. Furthermore, we assume that for the 

purpose of our asymptotic analysis the operating range is the high SNR region where, in all the 

branches, the signal powers are much larger than the noise powers. In mathematical terms, the 

assumptions for static asymptotic fading are 

f~ =O, (4.58) 

2 2 a, >>a , ,  i=1,2 ,..., N.  (4.59) 

Based on these assumptions the quantities of interest can be approximated by 

Jo(2nf~)  (4.60) 

=a2 hi =a2 g, +a: =a;i, (4.61) 

a,hj = oii Jo (2nfD = a:, , (4.62) 

Another quantity of interest is the average effective noise x. defined in (2.32) as 

Using (4.59)-(4.62) we can easily show that Ni can be approximated by 20; with equality in 

the limit as oil I a:, + . In other words, the approximation for Ni is given by 

It is straightforward to derive a static fading asymptotic approximation to the exact SEP of 

the SC receiver shown in (4.29). By substituting the high SNR approximations (4.61)-(4.65) into 

(4.29) the SEP can be approximated by 

Since we are interested in the high SNR region (see assumption (4.59)) the denominator in (4.66) 

can be approximated by 



Hence, the static fading asymptotic approximation to the SEP of the SC receiver is given by the 

following expression: 

where K, was defined in (3.43) as 

To show that the asymptotic expression in (4.68) is also an upper bound to the SEP we 

incorporate (A,)* into the integrand product of the exact SEP expression in (4.29) as follows: 

The denominator in (4.70) can be shown to be lower bounded by 

therefore, the asymptotic expression shown in (4.68) also provides an upper bound to the exact 

SEP expression. 

As discussed in Section 3.2.2, for binary DPSK, the integral (4.69) has the simple evaluation 

shown in (3.45) and reproduced below: 

where the notation 2k! ! denotes the product 2 - 4.6  . . 2k and the notation (2k-I)! ! denotes the 

product 1.3.5 (2k - 1) where k is any integer. The asymptotic BEP of the SC receiver can 

therefore be written in a very compact form as 



For the special case of no diversity, i.e. N = 1, (4.73) is reduced to the well known asymptotic 

expression [2] 

where I? was defined in (3.60) as the input SNR. The expressions in (4.68) and (4.73) 

demonstrate the significance of the generalized arithmetic mean of the noise powers and of the 

geometric mean of the signal powers, which are influenced by the NPP and SPP respectively. 

The error floor asymptote is defined in the high SNR region where the fading gain 

uncertainty due to the Doppler spread becomes the dominant factor in the receiver performance 

and the SEP cannot be improved by further increasing the SNR. In this region the fading gain can 

no longer be considered constant over time, i.e. the channel fade rate, fD , cannot be set to 0 as in 

(4.58). The assumption in (4.59) on the other hand is still valid as the receiver is still operating in 

the high SNR region. Therefore the following approximation still holds: 

ni =o; =o;! ++a,: - Cg,, (4.75) 

The variable wi can be approximated in this case by 

where J i s  used as a shorter notation to the Bessel function defined as 

J = J0 (2z  f D )  . (4.77) 

As in the static fading case, the average effective noise I\Ii defined in (4.64) can be shown to be 

approximated at high SNR by its upper bound as 

2 2 Ni = (1 - J )og, . (4.78) 

For binary modulation, i.e. differential BPSK, an approximation derived using the technique 

used for the static fading case provides a very tight and general bound in the sense that it applies 

to the general SPP. For higher modulations, however, the approximation becomes loose. The 

difficulty stems from the fact that by applying the approximations in (4.75), (4.76) and (4.78) the 

denominator of (4.29) becomes 



In the case of static fading, it was shown in (4.65) that at high SNR the effective noise power, 

X i ,  was only a function of the AWGN power and, hence, the approximation in (4.67) was easily 

obtained. In the right hand side of (4.79), however, we observe that both terms are functions of 

the signal powers. Therefore, eliminating the rightmost term, as done in (4.67), would, in general, 

produce a loose approximation . There are two exceptions to this issue: At slow fading, for which 

J + 1, the following holds: 

Furthermore, for BPSK, for which M = 2 the factor K ( p )  attains its maximum value as shown 

below: 

Therefore, based on (4.80) and (4.81), for 2DPSK or for slow fading the error floor can be tightly 

approximated by 

Furthermore, for uniform SPP it is possible to derive an approximation to the SEP of the SC 

receiver for general M. With the average effective noise power Ni given in (4.78), the sum of 

the inverse branch signal powers on the left hand side of (4.79) cannot be eliminated but we may 

use the fact that all average signal powers oii are equal and expand the integrand product in 

(4.29) to the following: 

where E consists of terms with lower powers of (11 J 2  -1). The asymptotic expression for the 

error floor of the SC receiver in a uniform SPP is, thus, given by 

The term K: is the integral 



where the term E in (4.83) is ignored. In (4.84) we observe that for the uniform SPP the error 

floor is only a function of the total number of branches Nand the fade rate f, . 

4.3.2 Asymptotic Analysis of the ZSIEGC Receiver 

For the static fading asymptote of the 2SlEGC receiver we apply to the exact expression in (4.54) 

the approximations in (4.61)-(4.65) as well as the approximation for the "arcsine" function 

which, for low values of its argument, can be approximated by 

arcsin(x)=x. (4.86) 

With algebraic manipulation of the SEP expression in (4.54) and using only the assumption in 

(4.86) the approximation to the SEP of 2SlEGC can be obtained as 

This approximation, although compact, is not very enlightening but with the help of the following 

identity we are able to arrive at more meaningful results: 

k=l 

The identity in (4.88) is obtained by deriving the SEP of the SC receiver using the two 

approaches followed in Sections 4.1 and 4.2. By following the approach of summation over P, , 

used in Section 4.1, we obtain the right hand side whereas by following the approach of 

summation over j, used in Section 4.2, we obtain the left hand side. Using this identity, the sum 

of terms with alternating positive and negative signs shown in (4.87) is replaced by a sum of 

products similar to the sum in (4.29) and proves helpful in our derivation of a simple asymptotic 

expression. Applying the approximations in (4.61)-(4.65) as well as the identity in (4.88) to the 

intermediate result in (4.87) we obtain the simplified approximate expression 



As discussed in the previous section, when calculating the value of the SEP error floor, the 

terms 1 / A ,  cannot be safely omitted for modulations higher than binary (M=2) or for fast fade 

rates. We, therefore, provide here only an expression for the binary case. Using the set of 

approximations in (4.75)-(4.78) we obtain the error floor asymptote as 

3(l/ J~ -1)~(2N-l)!! 
C J o o r  = 23M 

i=l 

For the SC receiver, we derived in (4.84) a general asymptotic expression for a channel with 

uniform SPP. We are able to repeat the derivation for the 2SJEGC receiver and obtain the 

asymptotic expression shown below: 

where 

4.3.3 Selection Metric Issues for the SC and ZS/EGC Receivers 

Returning to our earlier discussion in Section 4.1.1 on the effect of the selection metric on the 

SEP, let us revisit the selection metrics used in the H-S/MRC receiver analysed in Chapter 3 and 

in the SC and 2SIEGC receivers analysed in this chapter. For the H-S/MRC receiver the selection 

metric is the variable defined as 

The metric in (4.93) can be approximated in the static fading case by 

and in the error floor region by 



In contrast, for the SC and 2SlEGC receivers of this chapter the selection metric xegC can be 

expressed as 

The absence of the denominator in (4.96) shows that, in effect, the SC and 2SlEGC receivers 

assume that they are always operating in a channel with a uniform SNR profile. We, therefore, 

expect that when the channel has a uniform SNR profile their selection decisions would agree 

with the decisions made by the H-SNRC receiver. However, contrasting (4.95) with (4.96), we 

expect that the SC and 2SlEGC receivers would have a higher error floor than the equivalent H- 

SIMRC receivers when they operate in a channel with a non-uniform SPP. Furthermore, 

contrasting (4.94) with (4.96) we expect that the SC and 2SlEGC receivers would have a higher 

asymptotic SEP in the static fading region than the equivalent H-SIMRC receivers when they 

operate in a channel with non-uniform NPP profile. The reason is the absence of the channel 

statistics in the receivers of this chapter. 

4.4 Results 

In this section we use the expressions derived in Sections 4.1-4.3 to compare the performance of 

the SC and 2SlEGC receivers to the performance of the equivalent H-SNRC receivers from 

Chapter 3. To distinguish the two SC receivers we denote the SC receiver from Section 4.1 as 

"SC noCSI" and the H-SIMRC receiver with L=l from Chapter 3 as "SC CSI". In this section 

particular attention is paid to the effect of the SPP and the NPP on the relative performance of the 

4 receivers. Further explanation about the divergence in asymptotic performance is also provided 

in Chapter 5 with the help of the more general asymptotic expressions derived therein. 

As in Section 3.4, all systems operate in a Rayleigh fading environment with normalized 

fade rate f, and employ differential 8-PSK (M = 8 ) modulation. Contrary to Section 3.4, where 

the branch SNR7s Fi =oil 10: determined the receiver performance, in this section both the 

average signal powers, which define the SPP, and the average noise powers, which define the 

NPP, can influence the SEP of the receivers independently. We, therefore, need to investigate the 

effect of the SPP and NPP independently of the SNR profile. For all figures in this section we set 

one of the SPP or NPP as uniform and allow the other to be non-uniform. This helps in isolating 

the effect of each profile on the SEP of the receivers. The average SNR, F,  used in the abscissa 

of the graphs is calculated in the same way as in Section 3.4, as shown below: 



The individual branch SNR's, Fi , are calculated using (3.59) as 

i;, = ~ ~ 4 i - l )  
1 9 (4.98) 

where a is the profile decay factor, i is the branch index with values i = 1,2,. . . , N and G is some 

constant. The tilde (-) over ri indicates that Fi in (4.97) is the actual input SNR in branch i and 

not the estimated SNR provided by the channel estimators. Hence, the input SNR is defined as 

In the case of an exponential SNR profile the constant G is defined as 

where i? is the mean of the branch SNR's defined in (4.97). With this convention for the SNR, 

we ensure that the total received SNR is identical for all profiles. 

Based on our assumptions and the definition in (4.98) for the average SNR in each branch, 

we may calculate the values of the signal and noise powers for two cases of non-uniform SNR 

profiles. When the NPP is uniform and the SPP is exponential, all branch noise powers are set to 

one as shown below: 
2 on, = l .  (4.101) 

The branch signal powers are, therefore, equal to the branch SNRYs as follows: 

When the SPP is uniform and the NPP is exponential, all branch signal powers are set as shown 

below: 

2 - ogj =r  . (4.103) 

The branch noise powers are, therefore, calculated by 

The convention used in (4.104) ensures that the SNR profile is exponential with decay parameter 

a. The SNR profiles use the same values for the profile decay parameter a as in Section 3.4 but in 

this case it is also important to specie which of the SPP or NPP is responsible for the exponential 



distribution of the profile. In Table 4.1 we reproduce the decay parameter for each of the three 

SNR profiles we consider in this section. 

As discussed in Sections 4.2 and 4.3.3, the two SC receivers, SC noCSI (analysed in Section 

4.1) and SC CSI (special case of the H-SMRC receiver analysed in Chapter 3), are expected to 

perform identically in a uniform SNR profile. The two double selection receivers, 2SlEGC and 

2S/MRC, on the other hand are expected to exhibit a discrepancy even in the uniform SNR 

profile due to the difference in the weights applied to each of the combined symbols. As stated in 

Section 4.2, the 2SlEGC receiver simply attempts to phase-align the signals from the two selected 

branches using the previous symbol's phase. The 2SMRC receiver, on the other hand, applies 

Table 4.1. The three SNR profiles used in Section 4.4 and the corresponding profile decay 
parameter a. 

Profile name a 

optimum weights before combining, with a higher weight applied to the symbol with the largest 

estimated instantaneous SNR. 

uniform 

exp 1 

exp2 

We first show in Figure 4.3 the SEP of the SC noCSI, SC CSI, 2SlEGC and 2SMRC 

receivers when they operate in a uniform SNR profile with both the SPP and the NPP being 

uniform. All receivers have a total of N=4 diversity branches and the channel has a normalized 

fade rate f, = 0.01. As expected, we observe in Figure 4.3 that the two SC receivers perform 

identically whereas the two double selection receivers display a small discrepancy. In Figure 4.4 

we plot the SEP of the four receivers operating in a uniform SNR but now the SPP and NPP are 

identically exponential. This is the only case where both profiles are allowed to be non-uniform. 

The signal powers are defined as 

-- 

0 

0.5 

1 
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Figure 4.3: SEP of the four hybrid receivers in a channel with uniform SNR profile 
the SPP and the NPP.are uniform. 

where both 

Figure 4.4: SEP of the four hybrid receivers in a channel with uniform SNR profile where the 
SPP and NPP are identically exponential with profiles defined in (4.105) and (4.106) respectively. 



and the noise powers are defined as 

where the profile decay parameter a=l. The SNR in all branches is, therefore, constant and equal 

to F.  We observe in Figure 4.4 that the H-SMRC receivers perform identically as in the uniform 

SNR profile in Figure 4.3. This was expected as the SEP of the H-SMRC receivers is a h c t i o n  

of the average SNR and not the individual SPP and NPP. The SEP of the SC and 2SlEGC 

receivers, on the other hand, is deteriorated compared to the SEP in Figure 4.3. This indicates the 

dependence of the SEP of the receivers analysed in this chapter on the individual NPP and SPP 

instead of the SNR profile. 

We, next, investigate the effect of the SPP on the performance of the H-SIEGC receiver in 

relation to the performance of the H-SMRC receiver. As explained in Section 4.3 we expect the 

SPP to affect the error Jloor of the CSI (SC CSI and 2SMRC) and noCSI (SC noCSI and 

2SlEGC) receivers in a different way but would produce no discrepancy in the static fading 

region above the error floor. We first plot in Figure 4.5 the SEP of the four receivers for a static 

Rayleigh fading channel with fD = 0 with a uniform NPP and exponential SPP (profile exp2). 

We observe that the relative performance of the four receivers is identical to the performance 

shown in Figure 4.3 for the uniform SPP and NPP profile. The exponential SPP has, therefore, no 

effect on the relative performance of the four receivers. Next we plot in Figure 4.6 and Figure 4.7 

the SEP of the four receivers for a channel with a uniform NPP and exponential SPP but with 

non-static Rayleigh fading with fD = 0.01 . The SNR profiles used for the exponential SPP are 

the expl and exp2, respectively, shown in Table 4.1. We observe that the greater unevenness of 

the signal powers in Figure 4.7 results in a greater disparity between the floors of the noCSI and 

the CSI receivers. For the moderate profile in Figure 4.6 the 2SlEGC receiver outperforms the SC 

CSI receiver which is an encouraging sign when operation in channels with no CSI is necessary. 

We observe that the penalty of operating without CSI is reduced in profiles with moderate 

imbalance, so that a 2S/EGC receiver could outperform a SC receiver using CSI. 

As explained in Section 4.3 we expect the NPP to affect the asymptotic SEP of the CSI and 

noCSI receivers differently in the static fading region whereas it would not affect their error 

floor. To demonstrate the effect of the NPP, we first plot in Figure 4.8 the SEP of the four 

receivers operating in a Rayleigh fading channel with fD = 0.01 and an exponential SNR profile 



Figure 4.5: SEP of the four hybrid receivers in a static Rayleigh fading channel with the 
exponential SNR profile exp2 where the NPP is uniform and the SPP is exponential. 
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Figure 4.6: SEP of the four hybrid receivers in a Rayleigh channel with normalized fade rate 
f, = 0.01 . The SNR profile is the expl profile in Table 4.1 where the NPP is uniform and the 
SPP is exponential. 



I I 1 I I I 1 I I 1 
0 5 10 15 20 25 30 35 40 45 50 

SNR (dB) 

Figure 4.7: SEP of the four hybrid receivers in a Rayleigh channel with normalized fade rate 
fD = 0.01 . The SNR profile is the exp2 profile in Table 4.1 where the NPP is uniform and the 
SPP is exponential. 
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Figure 4.8: SEP of the four hybrid receivers in a Rayleigh channel with normalized fade rate 
fD = 0.01. The SNR profile is the exp2 profile in Table 4.1 where the SPP is uniform and the 
NPP is exponential. 



with uniform SPP and exponential NPP (profile exp2). We observe that the relative error floors 

of the four receivers are identical to the error floors shown in Figure 4.3 for the uniform SPP and 

NPP case and, hence, the NPP has no effect on the relative error floors. We next plot in Figure 

4.9 and Figure 4.10 the SEP of the four receivers for a channel with a uniform SPP and 

exponential NPP but with static Rayleigh fading with fD =O. The SNR profiles for the 

exponential SPP are the expl and exp2, respectively, shown in Table 4.1. We observe that the 

greater the unevenness of the NPP, indicated by the larger value of a, the larger the disparity in 

the static asymptotic SEP of the receivers. At the expl profile we observe, that as for the error 

floor regions in Figure 4.6 and Figure 4.7, the 2S/EGC receiver outperforms the SC CSI receiver 

in the more moderate exponential SPP. 

In Figure 4.11 we plot the exact and asymptotic SEP of the four receivers which use binary 

DPSK in a Rayleigh fading channel with fD = 0.01. The NPP is uniform and the SPP is 

exponential with a=l. We observe that the asymptotes match the exact curves in the error floor 

region. In Figure 4.12 we plot the exact and asymptotic SEP of the four receivers using DPSK 

with M=8 and operating in a static Rayleigh fading channel. The SPP is uniform and the NPP is 

exponential with a=l in this case. We observe that the asymptotes approach the exact curves at 

high SNR. 

4.5 Conclusions 

In this chapter we analysed the performance of two receivers which have no CSI knowledge and, 

therefore, cannot optimally select and combine the selected signals: The SC and the 2SlEGC 

receivers. We derived exact expressions for the SEP of both of these receivers and for the average 

SNR of the SC receiver. Furthermore we performed asymptotic analysis on the exact SEP 

expressions and obtained simple expressions to approximate the SEP at high SNR in the two 

possible operating regions: The static fading region and the error floor region. 

In Section 4.4 we demonstrated that when the SPP and NPP are uniform the SC noCSI and 

2S/EGC receivers provide almost identical performance as the equivalent SC CSI and 2SlMRC 

receivers analysed in Chapter 3. In the case of SC the performance is, in fact, identical whereas in 

the case of the double selection the 2S/MRC receiver slightly outperforms the 2SlEGC receiver. 

We also demonstrated that a non-uniform SPP creates a larger disparity between the error floors 

of the CSI (SC CSI and 2SlMRC) and noCSI (SC noCSI and 2SlEGC) receivers whereas a non- 

uniform NPP creates a larger disparity in the static fading region. 
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Figure 4.9: SEP of the four hybrid receivers in a static Rayleigh fading channel. The SNR profile 
is the expl profile in Table 4.1 where the SPP is uniform and the NPP is exponential. 
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Figure 4.10: SEP of the four hybrid receivers in a static Rayleigh fading channel. The SNR 
profile is the exp2 profile in Table 4.1 where the SPP is uniform and the NPP is exponential. 
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Figure 4.1 1 : SEP of the four hybrid receivers using binary DPSK in a Rayleigh channel with 
normalized fade rate f, = 0.01 . The SNR profile is the exp2 profile in Table 4.1 where the NPP 
is uniform and the SPP is exponential. 
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Figure 4.12: SEP of the four hybrid receivers using 8-PSK in a static Rayleigh fading channel. 
The SNR profile is the exp2 profile in Table 4.1 where the SPP is uniform and the NPP is 
exponential. 



Chapter 5 

Unified Asymptotic Analysis of Hybrid Diversity 

Receivers 

In Chapter 3 we derived exact expressions for the SEP of the H-SIMRC receiver, which has 

access to the channel statistical information (CSI) and employs optimum MMSE channel 

estimation. Furthermore, in Chapter 4 we derived exact SEP expressions for two special cases of 

receivers without access to the CSI, which use DPSK modulation; the SC noCSI and the 2S/EGC 

receivers. It was indicated in Chapter 4 that it is not possible to derive a meaningful, exact SEP 

expression for the general case of the receiver, which selects L branches and combines them 

using EGC, due to the presence of a sum of Rayleigh distributed random variables. In this 

chapter, we follow a unified approach to derive concise, general, closed-form expressions for the 

SEP of hybrid diversity receivers (HDR) operating at high SNR's. We consider the general 

hybrid selection/equal gain combining (H-SIEGC) receiver but we also revisit the H-SIMRC 

receiver to better demonstrate our approach to asymptotic analysis as well as to provide a unified 

framework for the comparison of the two types of receivers. These asymptotic expressions 

provide insight into the factors affecting the performance of the HDR's as well as into the 

performance of the classical diversity receivers, SC, EGC and MRC, which are special cases. The 

expressions derived in this chapter are unique in their simplicity and are derived with the help of 

a solution to a multiple integral derived in Appendix B. The solution to the integral appears to be 

unique, at least in the receiver diversity field. 

Typically, researchers in the field of receiver diversity derive exact expressions for the SEP 

of a receiver and then proceed to apply simplifications, which are true under certain conditions, to 

obtain an approximate expression. This is also the procedure we followed in Chapter 3 for the 

performance of H-S/MRC and in Chapter 4 for the performance of the SC and the 2SlEGC 

receivers. The analysis consisted of first deriving exact expressions for the SEP and then 

obtaining their asymptotic approximations. In this chapter, we deviate from this practice and 

instead we directly derive asymptotic SEP expressions by applying high SNR approximations in 

the beginning and throughout the derivation. This approach enables us to derive general 



expressions for the asymptotic SEP of the H-SIMRC and H-SIEGC receivers and aids in the 

comparison of the two types of receivers. The results are useful because they provide guidelines 

into the complexity and performance trade-off considerations of building such systems. As far as 

it has been possible to determine there is no known analysis in the literature for the H-SIEGC 

receiver analysed in this chapter. 

Asymptotic analysis as a goal in itself has received some attention in the past. Leib and 

Pasupathy in [48] looked at the asymptotic distribution of the phase of a vector perturbed by 

Gaussian noise. In [41] Abdel-Ghaffar and Pasupathy derived asymptotic expressions for the SEP 

of 2 types of MRC and 2 types of EGC receivers and they related the asymptotic expressions to 

the conditional error rates of the receivers. Furthermore, Brehler and Varanasi in [49] provided 

general asymptotic error rate analysis of coherent, differentially coherent, and noncoherent 

MIMO systems in Rayleigh-fading channels. 

5.1 Asymptotic Analysis of the H-SIMRC Receiver 

In this section, we derive the asymptotic SEP of the H-SMRC receiver. While the expression 

derived directly fiom the exact SEP expression has already been derived in (3.42), this section 

serves as an introduction to the concept of deriving asymptotic expressions without first obtaining 

the exact expressions. This section also serves as preparation for the more complex derivation of 

the asymptotic SEP for the H-SIEGC receiver. 

We begin with the expression for calculating the exact SEP of the H-SMRC receiver shown 

in (3.25). We amend (3.25) by explicitly showing the joint pdf of the SNR variables and, merging 

the exponential terms. The resulting expression is shown below: 

where ai was defined in (3.22) and is shown below: 

1 i =l,2,...,L 
. ={  " otherwise 

We note that when ai =I  , i=1,2,. . .L, the following inequality holds: 

At high SNR the right hand side of the inequality in (5.3) is a tight lower bound, therefore, we 

may use the approximation 



This can be justified by recalling that rki m and that sin2 y, < 1 , i.e. sin2 y, is upper bounded 

by 1. Therefore, even at the maximum value of sin2 y, the approximation is valid due to the large 

value of I?,, . The only possible complication might be at very large constellation sizes for which 

M is large and sin2 (n 1 M) + 0 . For i>L, ai = 0 and the exponent terms in (5.1) for 

i = L + 1, L + 2, ..., N are simply 1 IT,, . The issue now is the following: Can we ignore the integral 

or must we include the evaluation of the N-L integrals in the solution? To answer this question, 

let us consider the entire summation in the exponent in (5.1) by replacing ai with the values 

given in (3.22). The exponent in (5.1) can be expanded as follows: 

The justification for approximating (5.6) is similar to the justification for (5.3). From the 

definition of the variables q,, we know that they are arranged in descending order. We may 

therefore use the following inequality for the bracketed term in the right hand side of (5.6): 

With (5.7) and (5.4) we may simplify (5.1) as follows: 

Next, we use the "virtual branch technique", as outlined in Section 2.6, to convert the 

variables fi,, into the new set of independent variables ui and, thus, the SEP in (5.1) can be 

expressed as 

where ci was defined in (3.3 1) as 



The integrand in (5.9) is a product of exponentials and the inner N integrals are easily evaluated 

to produce the expression 

where K, was defined in (3.43) as 

Comparing (5.1 1) with (3.42) we observe that they are identical. As a result of using the lower 

bounds of the quantities in (5.7) and (5.4), the expression in (5.1 1) provides an upper bound to 

the SEP. 

Up to this point, the quantities used in calculating the approximate SEP expression have 

been those estimated at the receiver. We now use the high SNR approximations listed in (4.61)- 

(4.65) to introduce the relevant channel statistical parameters. While, as in Chapter 3, the 

expression is valid for both PSAM and DPSK (or any other MMSE estimation method), in this 

chapter we concentrate on DPSK. Consequently, (5.1 1) may be expressed in terms of the average 

signal and noise powers that define the SPP and NPP of the channel. Recall the results in Figure 

3.2, where, in spite of using optimum MMSE weighting factors to combine the H-S/MRC signal, 

the receiver using DPSK could not avoid the appearance of the error floor. It is, therefore, 

necessary, as in Section 4.3, to provide two separate expressions for the static fading and the error 

floor asymptotes. The two expressions are, respectively, 

and 

where 



is the actual average SNR defined as the ratio of the arriving signal and noise powers. In contrast, 

Ti used throughout this thesis is the average estimated SNR defined as the ratio of the estimated 

signal and efective noise powers. The error floor is determined by L , Nand the fade rate, f, as 

can be seen in (5.14). Furthermore, the static fading asymptote, P,-,, in (5.13) is determined by 

L , Nand the geometric mean of the average branch SNR's. The quantity of interest in this case is 

not the individual signal or noise powers but, instead, their ratio. 

As noted in Section 3.2.2, the integral K, can be evaluated to the exact expression shown in 

(3.44). For the special case of binary communications the two asymptotic expressions in (5.13) 

and (5.14) can be simplified even further by means of (3.45) to obtain the asymptotic bit error 

rate as respectively 

and 

where the notation 2k! ! denotes the product 2 4 6.  . - 2k and the notation (2k-I)! ! denotes the 

product 1 .3.5 - ,  . (2k - 1) where k is any integer. 

5.2 Asymptotic Analysis of the H-SIEGC Receiver 

In this section, we derive an asymptotic approximation for the SEP of the H-SIEGC receiver. We 

consider the problem of selecting and combining the L strongest diversity branches out of the 

available N, where 1 I L I N .  This receiver is a generalized version of the SC and 2SIEGC 

receivers analysed in Chapter 4, which selected L=l and L=2 branches out of N. Similarly to the 

SC and 2SlEGC receivers, the H-SIEGC receiver has N available diversity branches and operates 

in a Rayleigh fading environment employing DPSK modulation. 

The receiver uses the previous received symbol in each branch as the channel estimate and 

bases the branch selection on the SPN of that symbol as explained in Chapter 4. The decision 

variable for the demodulator is a generalized form of (4.39) and is given by 

where 1 I L I N . By expressing the received symbol in each branch as 



ri = w,* hi + vi 

we may express the decision variable shown in (5.18) as 

where y was defined in (4.4) for DPSK as 

vi is the effective noise defined in (4.9) as 

vi = ei + n, , 

where ei is a random variable, independent of hi, defined as 

ei = g, - w,*hi. 

For the decision variable in (5.20) the corresponding instantaneous SNR is defined as 

where A!', was defined in (2.32) as A!', = 0;. = 0; + 0: . 

5.2.1 Symbol Error Probability Analysis 

To derive the exact expression for the SEP of the H-S/EGC diversity receiver we use the random 

variables li , which were defined in (4.42) as 

li =lhil. (5.25) 

The li 's are statistically independent and Rayleigh distributed, with probability density functions 

defined in (4.43) as 

where 



As in the previous chapters, we use the SEP expression conditioned on the instantaneous SNR 

introduced by Pawula et a1 in [38]. Using the new variables and the ordered variable notation 

introduced in Section 2.6, the conditional SEP can be expressed in integral form in terms of 

= ('(1) y1(2) ,"','(N)) as 

The expression in (5.28) is a generalization of the average SEP expression shown in (4.46). We 

obtain the average SEP of the H-SIEGC receiver by averaging over all possible permutations Pk 

of the N branches as follows: 

- b - 1 ,  e =---] ] exp (5.29) 
4 0 0  0 

By combining the exponential terms, we observe that the following inequality holds: 

The approach for calculating the SEP approximation for the H-SIEGC receiver is conceptually 

the same as the approach followed for the H-SIMRC receiver. We observe that, as in (5.9), a 

similar simplification can be performed at high SNR to eliminate the term z" 14 (i)2 I 2Akj which 

originates from the pdf of the Rayleigh variables. This is possible since at large SNR the term 

1 ( i  2 is much smaller than the first term and the following approximation is tight: 

Furthermore, in static fading q and x. may be approximated by 

wi = I ,  

x. = 20; . 



With the approximations in (5.31)-(5.33), the SEP shown in (5.29) can be approximated by 

For clarity the following function is defined: 

where the variables k and 9 indicate the dependence of K ( 9 ,  k) on the N! branch permutations, 

as discussed in Section 2.6, as well as on the integration angle 9 .  Using the definition in (5.35), 

the asymptotic SEP approximation of (5.34) may be rewritten as 

where A, is the geometric mean of the hi 's and was defined in (4.22) as 

The first step in evaluating the integral in (5.36) is to evaluate the N - L innermost integrals 

as shown below: 

Substituting (5.38) into (5.36) and separating terms produces the expression 

The dependency of the upper limits of each integral in (5.39) to the next largest integration 

variable may be removed with the familiar "virtual branch technique" described in Section 2.6. 

The transformation results in the following expression for the asymptotic SEP in terms of the 

independent variables ui : 



exp -K(p,k) x i u i  dul...duLdp . ( i J] 
L L 

The term n x u j  in (5.40), which is a product of sums of the variables ui , expands to a sum of 
i=l j=i 

L! products of the variables ui as shown below: 

Q denotes a matrix with L! rows and L columns containing in each row the exponents of uj  . In 

other words, the n-th row of this matrix contains the vector Q ,  = [q(n,l),q(n,2),. . .,q(n, L)] , each 

L 
element of which is the exponent of [u, , u, , .. ., u, ] in the product n , u?("*" . The exponents 

~ = 1  J  

L 

q(n, j )  are non-negative integers in the range [0, L] satisfying x q ( n ,  j )  = L . We use the 
j=1 

alternative sum of products form shown in (5.41), to express (5.40) in the more convenient form 

shown below: 

1 xZj j.. . j u ; ( ~ - ~ )  [fJuz; , j )  Ix 
P, = ~ , N Z N - L ( N - L ) !  pn j=1 

exp -K(%k) x i u i  dul...duLdp . [ i J] 
In Appendix B we derive the solution to the more general multiple integral shown below: 

The solution provided in Appendix B and reproduced in (5.43) can be adapted to match the L 

inner integrals of interest in (5.42) as follows: 

uz,@"' exp -K(p, k )  x iui du, . . . du - - [ ) [ [ J ) L - 



where the notation 2k! ! denotes the product 2 .4 .6 . .  2k and the notation (2k-1) denotes the 

product 1 .3 .5 . . . (2k - 1)  where k is any integer and 

We incorporate the integral evaluation shown in (5.44) into (5.42) to obtain the asymptotic SEP 

expression 

We obtain the final form by substituting (5.35) back in (5.46) as follows: 

where 

An alternative form of (5.48) may be obtained with the help of the following axiom1: 

Consequently, C(L,N) can be written in the following form which can be calculated more 

conveniently than (5.48): 

In Figure 5.1 we plot the function C(LJV) versus L. Recall that N refers to the total number of 

available branches and L refers to the number of selected branches. We set the value of N to 4, 6 

1 This axiom may be verified using numerical methods. 
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Figure 5.1: Three plots of the function C(L,N) versus L obtained by setting N to the values 4, 6 
and 8. 

and 8 and for each N we plot the value of C(L,N) for 1 5  L I N .  We observe that the function 

C ( L f l  is monotonically decreasing for a fixed N but its slope decreases as L increases. 

We can draw two conclusions from the expression in (5.47): 

1 .  The asymptotic SEP depends on a function of the general arithmetic mean of the 

effective noise powers over the geometric mean of the SPN powers of the N branches 

as shown below: 

2. The asymptotic SEP depends on C(L ,N) ,  a function of L and N which is 

monotonically decreasing for a fixed N and increasing L as shown in Figure 5.1 



In static fading we may use the approximations shown in 

asymptotic SEP expression of the H-SIEGC receiver as follows: 

(4.61)-(4.65) to produce the 

In (5.52) we observe a deviation from the expression derived for the H-S/MRC receiver in (5.16). 

Comparing (5.16) and (5.52) it is interesting to note that while in (5.16) only the ratio of the 

branch signal and noise powers is affecting the asymptotic SEP, in (5.52) the two sets of signal 

and noise powers affect the asymptotic SEP in a different way. 

In this section we derived the asymptotic SEP expression for the H-S/EGC receiver 

operating in the Rayleigh channel. The final expression is concise and helps in identifying the 

factors affecting the asymptotic performance of the H-S/EGC receiver. Even though the Rayleigh 

model is used for this analysis, it is straightforward to expand the analysis to provide an 

expression for the Nakagami channel. The Nakagami pdf was shown in (2.40) and is reproduced 

below for the variables li : 

The main possible obstacles arising from (5.53) are the power (2m-1) of the variable x and the 

constant m inside the exponential. However, the first obstacle can be accommodated by the 

integral evaluation in Appendix B, since the derivation solves a more general integral, and the 

second obstacle is eliminated by the approximation in (5.3 1). 

5.3 Special Cases 

In this section we provide asymptotic SEP expressions for certain important special cases. The 

analysis, so far, considered receivers with generally non-uniform signal or noise power profiles. 

It is worthwhile to investigate if any simplifications can be applied to the asymptotic SEP when 

the receiver is operating in a uniform SNR profile. Furthermore, the special cases analysed in 

Chapter 4, the SC and 2SlEGC receivers, are considered here and an adjustment to the asymptotic 

approximation to the SEP of the 2S/EGC receiver is presented. Finally, the classical EGC, which 

combines all N available branches, is another important special case for which we provide a 

simple asymptotic expression. 



5.3.1 Uniform Noise and Signal Power Prof11es 

When the diversity branches of the H-SIEGC receiver are affected by iid AWGN variables, the 

receiver is operating in a uniform NPP. This is the case most often analysed in the literature and 

the analysis is usually simpler than when a general profile is assumed. In [41] and [4] the analysis 

was general enough to include non-uniform NPP but no meaningful conclusions could be reached 

from the expressions derived therein. Of the few exceptions, is a comment in [41] that for the 

uniform NPP the SEP depends only on the pi which can also be verified by our analysis. 

The special case of uniform NPP may be obtained from (5.52) by setting 0: =o:. The 

asymptotic static fading expression is shown below: 

where Fi was defined in (5.15) as the actual received SNR. When the SPP is also uniform, the 

static fading asymptotic SEP of (5.52) is simplified even further as shown below: 

5.3.2 SEP Approximation of the SC Receiver 

As mentioned in Section 5.3.1, it is not common to find analysis of the performance of diversity 

receivers with non-uniform NPP. The SC receiver with general SPP and NPP was analysed in 

Chapter 4 where we derived asymptotic expressions from the exact expression of the SEP in 

(4.68) and (4.79). It is straightforward to verify that (5.52) reduces to (4.68) for the special case 

of L=1.  

5.3.3 SEP Approximation of the 2SIEGC Receiver 

The asymptotic expression for the SEP of the 2S/EGC receiver is obtained from (5.52) by 

substituting L = 2 as 

Comparing (5.56) with (4.89) we observe a discrepancy. The ratio of (5.56) over (4.89) shows a 

discrepancy equal to 



The explanation is that the exact SEP expression for the 2SlEGC receiver in Chapter 4 was very 

complex and in order to arrive at a simple expression various simplifications were made, 

resulting in a less tight approximation. Therefore, the merit of the asymptotic analysis in this 

chapter cannot be overemphasized. 

5.3.4 SEP Approximation of the Classical EGC Receiver 

For the special case of the classical EGC receiver it is more convenient to obtain the asymptotic 

SEP for the static fading case by returning to the conditional SEP expression shown in (5.28) 

instead of attempting to simplify (5.52) by setting L=N. Since for the classical EGC receiver no 

selection is performed, i.e. L=N, the asymptotic SEP derivation is simplified. Based on the 

general H-SIEGC derivation the instantaneous SNR of the EGC combiner is given by 

and the exact expression for the SEP is 

By making the same assumptions as we did to obtain (5.34) we arrive at the approximate 

expression 

This is a special case of (5.44) with L=N and ci = 1 . It is straightforward to show that based on 

the solution to the general integral shown in (B.16), the inner integrals evaluate to 

Substituting (5.6 1) into (5.60) the SEP approximation becomes 



We use the approximation to the hi 's shown in (4.61) to obtain the final form of the asymptotic 

SEP of the EGC receiver as 

It can be verified using numerical methods that the general expression in (5.52) is reduced to 

(5.63) by setting L=N. 

5.4 Results 

In this section we use the asymptotic expressions derived in Sections 5.1-5.3 to show the effect of 

combining additional branches has on the SEP of the H-S/EGC and H-SIMRC receivers. 

Furthermore, we demonstrate the influence of the SPP and the NPP on the asymptotic SEP of the 

2 receivers types. 

The receivers we analyse in this section, as in Sections 3.4 and 4.4, operate in a Rayleigh 

fading environment with possible Doppler spread and employ differential 8-PSK (M=8) 

modulation. The convention we use to define the SNR profile of the channel as well as to define 

the SPP and NPP was explained in Section 4.4. In essence, we set either the SPP or the NPP to be 

uniform and allow the other profile to vary in an exponential decay fashion. The exponential SPP 

or NPP defines the SNR profile. We reproduce in Table 5.1 the three profiles shown in Table 4.1 

and their profiles decay parameters. 

To illustrate the value of the asymptotic expressions derived in this chapter, we study the 

effect of having different numbers of combined branches L on the asymptotic SEP of the H- 

SIEGC receiver. In Figure 5.2 we plot the normalized SEP of the H-SIEGC receiver versus the 

number of selected branches L for a total number of available branches N=8. The SEP is 

normalized by setting the SEP for L=l (SC noCSI receiver) to be equal to 1. Hence, we plot the 

ratio of the SEP for various L over the SEP of the SC receiver. In the plot we assume a slow fade 

rate and high SNR so that the receiver operates above the error floor and in the static asymptotic 



Table 5.1. The two SNR profiles used in Section 5.4 and the corresponding profile decay 
parameter a. 

Profile name a 

uniform 

exp2 

region. The normalization provides results which are independent of the specific SNR as long as 

the receiver operates in its asymptotic static region. We observe that as the number of selected 

branches increases from 1 to 6 the SEP monotonically decreases although with gradually 

decreasing steps. As the number of selected branches increases to 7 and 8, however, we observe 

that the SEP begins to increase. We actually observe something odd, an increase in the SEP when 

we use more diversity branches. A similar observation was made by Eng et a1 in [4] where they 

derived the bit error probability (BEP) of special cases of the "non-coherent" hybrid diversity 

receivers SC, SC2 (selects and combines 2 branches) and SC3 (selects and combines 3 branches) 

operating in static fading. They compared the BEP of the three receivers to the BEP of the EGC 

receiver and noted that in some cases the SEP of the EGC receiver was inferior to the SEP of the 

SC3. We also note in Figure 5.2 that when the number of selected branches increases above L=4 

we do not get as substantial a SEP improvement as at the lower values. Considering the higher 

overhead of combining more branches it may not be efficient to combine more than 4 branches 

for the receiver having N=8 available diversity branches. 

To provide a quantitative measure of the change in the SEP with the selection of additional 

branches, we define the selection gain function as follows: 

For the receiver of Figure 5.2 the corresponding selection gain is plotted in Figure 5.3. We 

observe that the selection gain for this receiver becomes negative for L=7 and L=8. This is an 

indication that the SEP actually increases with increasing number of selected branches as we also 

observed in Figure 5.2. 



Selected branches (L) 

Figure 5.2: SEP ratio of the H-SIEGC receiver versus L for total branches N=2,4,6,8. The receiver 
is operating in a static Rayleigh fading channel with uniform SPP and NPP. 

Selected branches (L) 

Figure 5.3: The selection gain of the H-SIEGC receiver versus L for total branches N=2,4,6,8. 
The receiver is operating in a static Rayleigh fading channel with uniform SPP and NPP. 



We, next, study the effect of selecting additional branches in a non-uniform NPP. In Figure 

5.4 and Figure 5.5 we plot the SEP and selection gain respectively for the uniform SPP and 

exponential NPP profile with decay parameter a=l. We observe that the SEP no longer increases 

as the number of selected branches increases but we still observe the diminishing returns seen in 

the uniform profile. Similar plots of the corresponding SEP and selection gain for an exponential 

SPP and uniform NPP would produce results identical to Figure 5.2 and Figure 5.3 and are 

omitted. The justification is obtained by observing in (5.47) that the factor involving the signal 

powers is not influenced by the value of L and thus the relative asymptotic SEP and the selection 

gain are independent of the SPP. 

For the H-SMRC receiver the corresponding relative SEP and selection gain plots are not 

affected by the SPP or NPP and are shown in Figure 5.6 and Figure 5.7 for a uniform SNR 

profile. We observe that, unlike the plots of the H-SIEGC receiver shown in Figure 5.2 and 

Figure 5.3, the SEP is a monotonically decreasing function of L or, in other words, the selection 

gain is positive for all L. This conclusion can also be reached by evaluating the selection gain 

function, defined in (5.64), to obtain the expression 

We observe in (5.65) that the selection gain only depends on L and N and, furthermore, it is 

always a positive number. We therefore do not expect to see any variation in the selection gain of 

the H-SMRC receiver for different SNR profiles. 

5.5 Conclusions 

In this chapter we derived asymptotic expressions for the SEP of the general H-S/MRC and H- 

SIEGC receivers which operate in a Rayleigh fading channel affected by Doppler spread and use 

DPSK. The analysis avoided the difficulties that exist in the exact derivation of the SEP and used 

a new integral solution from Appendix B to arrive at the final expressions. 

Using the asymptotic expressions we demonstrated in Section 5.4 that the SEP of the H- 

SIEGC receiver is not guaranteed to improve as we increase the number of combined branches. 

Specifically we showed that for a H-SIEGC receiver operating in a Rayleigh fading channel with 

8 available diversity branches having uniform SPP and NPP we obtain the best SEP by 

combining the 6 branches with the maximum instantaneous signal plus noise magnitude. 

Combining 7 or 8 increases the SEP. When the H-SIEGC operates in an exponential NPP with 
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Figure 5.4: SEP ratio of the H-SIEGC receiver versus L for total branches N=2,4,6,8. The receiver 
is operating in a static Rayleigh fading channel with uniform SPP and exponential NPP with 
profile decay parameter a=l . 
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Figure 5.5: The selection gain of the H-SIEGC receiver versus L for total branches N=2,4,6,8. 
The receiver is operating in a static Rayleigh fading channel with uniform SPP and exponential 
NPP with profile decay parameter a=l . 



I I I I I I 

2 3 4 5 6 7 8 
Selected branches (L) 

Figure 5.6: SEP ratio of the H-SIMRC receiver versus L for total numbers of branches N=2,4,6,8. 
The receiver is operating in a static Rayleigh fading channel. 
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Figure 5.7: The selection gain of the H-SIMRC receiver versus L for total branches N=2,4,6,8. 
The receiver is operating in a static Rayleigh fading channel. 



profile decay parameter a=l we found that the increase in the SEP at large numbers of combined 

branches does not occur. The H-SMRC receiver on the other hand will always benefit by the 

combining of additional branches but with diminishing although the benefit diminishes as 

L 4 N .  This was also proven by evaluating the selection gain function for the H-SMRC 

receiver. 



Chapter 6 

A Reduced-Complexity Hybrid Diversity Receiver 

So far we have investigated postdetection hybrid diversity receivers which perform symbol by 

symbol selection and combining. Implicit in the description of these receivers is the availability 

of the baseband signals from all the branches both for the current and for the previous symbol 

intervals. The previous symbol is needed for differential detection. Consider the H-SIMRC and 

H-SIEGC receivers with DPSK modulation analysed in Chapters 3 and 5 respectively. These 

receivers have N available diversity branches and, at each symbol internal, select for combining 

the L (135N) branches with the largest SNR and SPN respectively. A reasonable question would 

be: What if at two consecutive symbol intervals different sets of L branches were selected? In that 

case, a receiver with a fixed number of L demodulators1 would lose the phase reference fkom the 

previous symbol, required for differential detection, causing unacceptable error rates [47]. It is, 

therefore, necessary for proper symbol-by-symbol operation of the receivers analysed in Chapters 

3-5 to use a higher number of demodulators than L. Consider the two possible scenarios: 

O<LS/2 and NI2<LS. In the former, the HDR requires 2L demodulators, all of which may be 

necessary in rapidly varying fading channels with rapid reordering of the instantaneous branch 

powers. In the latter scenario, the HDR requires the maximum number of N demodulators. This 

indicates that the general HDR's studied thus far require, in addition to the minimum number of L 

demodulators, a number of demodulators equal to 

La = min(N - L, L) . (6.1) 

The scenarios just described require the signals from L + La diversity branches to be 

demodulated at every symbol interval. For the H-SIEGC receiver, however, only the L strongest 

1 The term demodulator is sometimes used loosely in the literature so we need to explain its usage in 

this chapter. We refer to demodulation as the recovery of the baseband pulse. Thus a demodulator performs 

frequency down-conversion and includes receive filters such as a matched filter and an equalizer. The 

output of the demodulator is the discrete-time variable r;,[k],  defmed in (2.21), obtained by sampling the 

matched filter output at the end of each symbol interval [50]. 



of these signals are combined and the demodulation of the L + La branches gives rise to higher 

complexity and higher power consumption [3][4]. Furthermore, the simplicity of combining 

fewer diversity branches is lost. In fact, classical EGC applied on all the branches could instead 

be used with negligible additional complexity. In spite of this issue, there is an abundance of 

published works dealing with the postdetection SC and HDR type of receivers. For example the 

receivers in [4], [24] and [51] even assume perfect knowledge of the channel state. It is, however, 

understood that the analysis of the coherent receivers provides a lower bound for the SEP of more 

realistic receivers. The H-SIMRC receiver analysed in Chapter 3, for example, uses channel 

statistical information (CSI) for MMSE channel estimation to provide performance close to the 

equivalent coherent HDR. The switch diversity receiver [51]-[53] is another example of a more 

practical, suboptimal (compared to SC) receiver which only switches to a different branch if the 

power of the currently selected branch falls below a certain threshold, irrespective of the 

instantaneous relative power of the branches. Of course, a receiver using DPSK in switch 

diversity would also suffer fiom the same problem described in the previous paragraph; 

specifically the differential phase reference would be lost at the switching time. Although 

switching between branches occurs less fi-equently in switch diversity than in classical SC 

diversity, the loss of phase reference is still an issue. Alternatively, predetection combining could 

be used to perform cophasing and combining of the signals at IF but this technique also faces 

problems with switching transient noise due to phase or amplitude differences between the 

branches and additional analog circuitry complexity [47] [5 11. 

At this point it would appear that using DPSK in combination with any form of selection or 

switch diversity is problematic. This fact could explain the scarcity of analyses of DPSK used in 

conjunction with any form of selective diversity. In this chapter we develop a reduced-complexity 

hybrid diversity receiver (RHDR) to demonstrate a more plausible way of taking advantage of the 

simplicity of DPSK and the power of hybrid diversity. The RHDR at each symbol interval only 

requires two branches to be demodulated yet it achieves diversity performance which is superior 

to the performance of the SC receiver, analysed in Chapter 4. In this chapter we describe the 

operation of this RHDR and provide performance statistics obtained by Monte Carlo simulation. 

6.1 System Model and Operation 

As already discussed the combination of DPSK and selection diversity is problematic unless 

L + La diversity branches are demodulated and available to the selector and the combiner. We, 

therefore, describe in this section the operation of the RHDR, a receiver which monitors N 



diversity branches but only uses two demodulators. The RHDR is able to maintain differential 

phase reference for at least one branch at all times. Contrast the two baseband demodulators 

needed for the RHDR to the L + La demodulators necessary for the HDR's analysed in Chapters 

3-5 and the reduction in complexity becomes apparent. 

The system model for the RHDR is a modified version of the 2SEGC receiver model 

described in Chapter 4 and shown in Figure 4.2. The modification occurs in the branch 

sorter/selector which is placed at the IF stage of the receiver. The conceptual diagram of the 

RHDR receiver is shown in Figure 6.1. The "Power Comparator and Selection Logic" block 

compares the envelopes of the N branches and selects two of them based both on their 

instantaneous magnitude as well as on the decisions made at the previous symbol interval. The 

two selected branches are demodulated and their sampled versions r, and r2 become available to 

the combining logic. Depending on certain conditions one or both of the branches may then be 

used to provide the decision variable y. It is therefore expected that the performance of the RHDR 

will be bounded by the SC and the 2SEGC receivers analysed in Chapter 4. 

6.1.1 RHDR Operation 

The symbol by symbol operation of the RHDR is described by the algorithm shown in Figure 6.2. 

The notation used in this figure is defined as follows: 

jl, j2: The indices of the two branches with the maximum and second maximum respectively 

signal magnitudes in the current symbol interval. 

bl, b2: The indices of the two selected branches. The indices are stored in memory and are 

used in the following symbol interval to aid in the selection of the next two branches. 

r(jl), YO2): The received symbols from branches jl and j2 respectively. 

rl, r2: The two selected symbols stored in memory to be used in the following symbol 

interval for differential phase reference. Note that, as will be clarified shortly, rl, r 2  are 

not necessarily the same as r(jl), r(j2). 

The instantaneous signal strength measurement and sorting is performed at IF in each symbol 

interval. 

The receiver is initialized by selecting the two branches with the maximum signal 

magnitude, j l  and jz. The signals are demodulated and the two baseband symbols r(jl) and YO2) as 

well as the indices of the two branches from which they arrived, jl and j2, are saved in memory as 

follows: 
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bl = j, , b2 = j2 , (6.2) 

6 =r(j , ) ,  r2 = 4 j 2 ) .  (6.3) 

For this algorithm to operate properly, the four variables in (6.2) and (6.3) must be stored in 

memory because this would ensure that the receiver would select at least one of these branches in 

the following interval. Failure to do so, that is selecting two different pairs of branches in two 

consecutive symbol intervals, would result in a loss of differential phase reference and almost 

certainly result in an erroneous detection as discussed earlier. 

At the next symbol interval, the two branches with the largest instantaneous power, jl and j2, 

are identified. The indices of these two branches as well as the indices of the two selected 

branches from the previous symbol interval, bl and b2, are considered and a decision is made on 

which branches will then be selected. At this point it should be stressed that if the two pairs of 

indices, bl, b2 and jl, j2, are different there is danger of loosing differential phase reference. 

Therefore, special provisions must be taken to ensure that at least one of the two previously 

selected branches is also selected in the current interval in spite of not having one of the two 

largest magnitudes. To explain how the RHDR avoids loosing the differential phase reference we 

describe below the three modes in which the RHDR is operating based on the algorithm shown in 

Figure 6.2: 

Operation mode 1 

Condition: The two branches with the currently maximum signal magnitudes are the same as 

the previous two branches, that is 

b, = j, and b2 = j, or (6.4) 

b, = j2 and b2 = j, . (6.5) 

Action: Demodulate both branches (jl and j2) and perform equal gain combining. Assuming 

the condition in (6.4) was satisfied, the following operations would be performed: 

b, = j, and b2 = j, , (6.7) 

where y is the decision variable at the detector. In this case the RHDR behaves like the 

2SlEGC receiver. 

Operation mode 2 

Condition: Only one of the two branches with the currently maximum signal magnitudes 

was in the previously selected pair, that is 



b, = jl and b2 <> j2 or (6.8) 

b, = j, and b2 o jl or (6.9) 

b, o j2 and b2 = j, or (6.10) 

4 0  j, and b 2 = j 2 .  (6.1 1) 

Action: Demodulate both branches G1 and j2). However, only the branch which was selected 

in both symbol intervals is used for detection. The reason is the absence of the phase 

reference for the other branch. Assuming the condition in (6.8) was satisfied, the 

following operations would be performed: 

b, = j, and b2 = j2 (6.12) 

The RHDR receiver behaves like the SC receiver described in Section 4.1 and uses a 

branch which in both the previous and the current symbol intervals belongs to the pair of 

branches with maximum instantaneous signal strength. 

Operation mode 3 

Condition: Neither of the two branches with the currently maximum signal magnitudes was 

in the previously selected pair, that is 

bl <> jl and b, o j, and b2 o j, and b2 o j2 . (6.13) 

Action: Demodulate the one branch with the current maximum signal strength, jl, as well as 

the branch which had the maximum signal strength in the previous symbol interval, bl .  

The selection of the branch with the maximum signal strength in the previous interval 

ensures the presence of a differential phase reference for detection whereas the selection 

of the branch with the maximum power in the current interval ensures that in the 

following interval there will be a differential phase reference from the branch with the 

maximum signal strength. Use only the signal from branch bl for detection. The 

following operations would be performed: 

b, = jl and b2 = bl (6.14) 

Even in this case, the RHDR receiver behaves like the SC receiver described in Section 

4.1, where it was explained that the selection is based on the strength of the previous 

received symbols. 



It should be apparent from this description that the best case scenario occurs when the same 

two branches have the maximum signal strength in two consecutive symbol intervals. A situation 

when this best case scenario applies for the majority of the time, could arise at slow fade rates and 

high SNR where the temporal correlation of the fading gain is high and the random noise effect is 

insignificant. In this case, the RHDR performs like the 2SlEGC described in Section 4.2. In the 

worst case scenario, due to abrupt redistributions of the instantaneous branch powers both of the 

selected branches at one symbol interval would be different from the two branches selected in the 

following symbol interval. In this case, a decision is made to demodulate the branch with the 

previously maximum signal strength as well as the branch with the currently maximum signal 

strength. This decision ensures that one branch maintains the differential phase reference and the 

branch with currently the maximum signal strength will provide differential phase reference in 

the next symbol interval. The reader may recognise that even in the worst case scenario, the 

RHDR is equivalent to the SC receiver analysed in Section 4.1. 

6.2 Monte Carlo Simulation 

To evaluate the performance of an RHDR with N=4 diversity branches and to compare it with the 

HDR7s considered in Chapter 4 we used Monte Carlo simulation. 

6.2.1 Model Description 

The transmitter generates random MPSK symbols which it differentially encodes and transmits 

through the channel. The channel is modelled as four independent, Rayleigh fading, AWGN 

branches where the fading is affected by Doppler spread with normalized maximum fade rate 

f, . The fading gain generation is based on the Jakes model [5 11. 

The branch signals at the receiver are sorted in each symbol interval according to their 

magnitude and their indices are considered for the decision on which branches to select and 

which branches to combine. For the purposes of this chapter the following receivers were 

simulated: 

1. SC receiver: This receiver was analysed in Section 4.1. 

2. SC limited receiver: This receiver only demodulates the strongest branch at each 

symbol interval. Since it only obtains the symbol with the maximum SPN magnitude 

at each symbol interval it cannot guarantee differential phase continuity when 

conditions require switching to a different branch. 



3 .  2S/EGC receiver: This receiver was analysed in Section 4.2. 

4.  2S/EGC limited receiver: This receiver operates similarly to the SC limited receiver 

except that it demodulates two branches. This receiver still cannot guarantee 

differential phase continuity between switches. 

5 .  2EGC receiver: This is the classical EGC receiver with a total of two diversity 

branches (N=2). The 2EGC receiver represents classes of receivers which due to 

complexity or power limitations are limited to only two branches in spite of the 

potential of exploiting a larger number of diversity branches. To provide a fair 

comparison with the other receivers we assume that the 2EGC receiver is able in the 

beginning of communications to choose the two branches with the largest average 

SPN. This decision does not change for the duration of the communication session. 

While in uniform SPP and NPP the branches have identical SNR, in non-uniform 

SPP and/or NPP the choice of branches is important. 

6. RHDR receiver: The receiver described in Section 6.1. 

The RHDR is using more intelligence than the other five receivers to perform the conditional 

tests shown in the algorithm of Figure 6.2 and described in Section 6.1. Based on which one of 

the conditions listed in Section 6.1.1 is satisfied, the RHDR combines the appropriate branches 

and collects statistics on which condition was satisfied. The SC limited and 2SlEGC limited 

receivers are included merely to demonstrate the need for the creativity found in the RHDR in 

situations where only one or two branches can be demodulated. 

6.3 Simulation Results 

To evaluate the performance of the RHDR and to compare it to the five other receivers listed in 

the previous section we performed simulations under various operating scenarios. In all 

simulations we used four independent diversity branches affected by AWGN and multiplicative 

Rayleigh fading. The receivers we consider in this section operate in a Rayleigh fading 

environment with possible Doppler spread and employ differential 8-PSK (M=8) modulation. The 

convention we use to define the branch SNR profile as well as to define the SPP and NPP was 

explained in more detail in Section 4.4. In essence, the general SNR profile is exponential and to 

observe the effect of the SPP and the NPP independently we set either the SPP or the NPP to be 

uniform and allow the other profile to vary exponentially. The exponential SPP or NPP, then also 

define the SNR profile. We reproduce in Table 6.1 the three profiles used in this section and their 

profile decay parameters. 



Table 6.1. The two SNR profiles used in Section 6.3 and the corresponding profile decay 
parameter a. 

Profile name I a 

Uniform 

exp2 

In Figure 6.3, Figure 6.4 and Figure 6.5 we compare the SEP of the six receivers described 

in Section 6.2.1 which are operating in a static Rayleigh fading channel. In Figure 6.3, the SPP 

and NFT are uniform, in Figure 6.4 the NPP is uniform and the SPP is exponential with profile 

decay parameter a=l, and in Figure 6.5 the SPP is uniform and the NPP is exponential with 

profile decay parameter a=l. As explained in Section 6.2.1, in the case of uniform SPP and NPP 

the 2EGC receiver may use any two branches. In Figure 6.4 and Figure 6.5, where the SPP and 

NPP respectively are exponential, the 2EGC receiver uses the two branches with the largest 

average SNR for the duration of communications. For example, consider an exponential SNR 

profile defined by 

pi = G ~ - 4 i - 1 )  , (6.15) 

The 2EGC receiver would use the two branches with indices i=1,2 as we assume that it can 

correctly identify the branches with the largest average SNR. We observe, in all three figures that 

the receivers SC limited and 2S/EGC limited do not provide acceptable performance. This 

observation reinforces the argument of this chapter that the H-S/EGC receivers using DPSK must 

demodulate the signals from all diversity branches in order to operate properly. In Figure 6.3 and 

Figure 6.4 we observe that the 2EGC receiver is outperformed by the higher diversity order 

hybrid receivers at almost all SNR levels with a larger performance disparity shown in the 

uniform profile of Figure 6.3. Recall that when the average SPP and NPP is uniform all branches 

have identical average signal and noise powers. The 2EGC receiver selects two of the branches in 

the beginning of communications and for the duration of the communications ignores the other 

two, which are potentially equally good. On the other hand, in the non-uniform SPP used for 

Figure 6.4, the 2EGC receiver uses for the duration of the communications the two branches with 

the highest average branch SNR and ignores the two weakest branches. Since the branches with 

higher average SNR are also more likely to have higher instantaneous SNR, it is understandable 

that the 2EGC receiver is not overly penalized by ignoring the two weaker branches. 
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Figure 6.3: SEP comparison for the 1 and 2 branch combining receivers for uniform SPP and 
NPP. 

SNR (dB) 

Figure 6.4: SEP comparison for the 1 and 2 branch combining receivers for uniform NPP and 
exponential SPP. 
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Figure 6.5: SEP comparison for the 1 and 2 branch combining receivers for uniform SPP and 
exponential NPP. 

Contrary to the results shown in Figure 6.3 and Figure 6.4 we observe in Figure 6.5 that in a 

non-uniform NPP the 2EGC receiver outperforms the hybrid receivers at low SNR. It is not 

immediately obvious why this occurs but comparing Figure 6.5 with Figure 6.3 and Figure 6.4 we 

observe that the 2EGC receiver's performance does not change significantly between the three 

profiles whereas the performance of the hybrid receivers deteriorates considerably in Figure 6.5. 

Recall that the average power of the received signal in the i -th branch was shown in (4.61) to be 

Ai =oi, +$. (6.1 6) 

Based on the assumption of uniform SPP and exponential NPP, we may deduce that at low SNR, 

where the noise power is significant compared to the signal power, the branches with higher noise 

power would be more likely to exhibit higher SPN magnitudes. Therefore, by incorrectly 

selecting the branches with higher noise powers the SEP of the HDR's suffers. This situation 

changes at high SNR (above 25dB) where the signal power becomes more dominant and the 

effects of the noise on the selection process diminish. One could therefore conclude that receivers 

operating at low SNR in fading environments with non-uniform NPP should choose the simpler 

2EGC combining instead of the more complex 2S/EGC, assuming of course that the 2EGC 

receiver can correctly identify the branches with the largest average SNR. The selection accuracy 



of the HDR's would improve in the case of antenna diversity, by adjusting the gains in the all the 

branches to obtain equal noise powers as suggested by Barrow 1543. 

In Section 6.1.1 we described the operation of the RHDR in each of the three operation 

modes. The RHDR behaves like a 2SlEGC receiver in operation mode 1 and like a SC receiver in 

operation modes 2 and 3. The difference between conditions 2 and 3 is that in condition 2 the 

selected branch in both the previous and the current symbol intervals belongs to the set of the two 

strongest branches whereas in condition 3 the selected branch had the largest magnitude in the 

previous interval but it no longer has one of the two maximum magnitudes. We, therefore, expect 

that the RHDR would perform better while it operates in mode 1 than for the other two modes. 

The percentage of time that the RHDR operates in one of the three operation modes is shown in 

Figure 6.6 and Figure 6.7 for a slow fade rate with f, =0.002 and a fast fade rate with 

f, = 0.01 respectively. The solid lines in Figures 6.6-6.7 correspond to the uniform SPP and 

NPP channel, the dashed lines correspond to the exponential SPP (a=l) and uniform NPP channel 

and the dotted lines correspond to the exponential NPP (a=l) and uniform SPP channel. As 

should be expected, at low SNR the RHDR operates as a SC receiver for most of the time 

whereas at high SNR the situation is reversed and the RHDR operates as a 2SlEGC receiver for 

most of the time. This can be explained by considering the reasons which would lead to a 

redistribution of the instantaneous branch powers. At low SNR, noise is a major factor in the 

received SPN magnitude and, thus, the instantaneous branch power distribution among branches 

changes in a more random fashion. We observe that for the SNR interval shown in Figures 6.6- 

6.7 the exponential SPP enables the RHDR to operate in the 2SlEGC mode for a higher 

percentage of time than the other profiles and the exponential NPP forces the RHDR to operate in 

the 2SlEGC mode for the lowest percentage of time. By comparing Figures 6.6 and 6.7 we also 

observe that in this SNR range the fading rate does not influence the time that the RHDR spends 

in each of the modes of operation significantly. 

While symbol-by-symbol branch selection is desirable, it is not always feasible. For 

example, it was suggested in [55] and [56] that for TDMA the selection could be performed more 

conveniently on a frame-by-frame basis instead of a symbol-by-symbol basis. We, thus, 

investigate the effect of a less frequent branch selection on the SEP of the RHDR. In Figures 6.8- 

6.10 we observe the effects of reducing the frequency of the branch power comparison process, 

where the receivers operate in a Rayleigh fading environment with fade rate f, = 0.01 . Under 

normal operation the RHDR performs the branch power comparison on a symbol-by-symbol 
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Figure 6.6: Mode of operation for the RHDR in a slow fading environment with fD = 0.002 for 
the three power profiles used for Figures 6.3-6.5. 
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Figure 6.7: Mode of operation for the RHDR in a slow fading environment with fD = 0.01 for the 
three power profiles used for Figures 6.3-6.5. 
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Figure 6.8: SEP comparison for the SC, RHDR and slower branch comparison algorithms for 
uniform SPP and NPP. 
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Figure 6.9: SEP comparison'for the SC, RHDR and slower branch comparison algorithms for 
uniform NPP and exponential SPP. 
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Figure 6.10: SEP comparison for the SC, RHDR and slower branch comparison algorithms for 
uniform SPP and exponential NPP. 

basis. Less fiequent power comparison may be done every k symbols in which case the receiver 

would operate according to the algorithm shown in Figure 6.2 at every k symbols and as a 2EGC 

receiver in the k - 1 symbols in between. You may consider the selection being performed on a 

frame by frame basis as opposed to the symbol by symbol basis of the RHDR. The plots for the 

uniform SNR profile, the uniform NPP and exponential SPP (a=l) and the uniform SPP and 

exponential NPP (a=l) are shown in Figures 6.8-6.10 respectively. The branch power comparison 

is performed every 5, 10 and 15 symbols. We observe in all three figures that by decreasing the 

selection frequency the SEP increases. In Figures 6.1 1-6.13 we show the effect of the comparison 

frequency in a Rayleigh fading environment with a slower fade rate f, = 0.002 and power 

profiles equivalent to the profiles used in Figures 6.8-6.10 respectively. The values used for k in 

this case are 5, 10 and 20. As should be'epected, in this environment the suboptimal receivers 

perfom better than in the faster fading environment but we also observe that in some cases they 

outperform the symbol-by-symbol RHDR. Considering that the suboptimal receivers operate as 

RHDR receivers every k symbols, that is for llk proportion of the time, and as 2EGC receivers 

for (k-1)lk proportion of the time, the results indicate that the benefit of combining two branches 

outweigh the benefits of the continuous monitoring of all the branches by the RHDR. 
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Figure 6.1 1: SEP comparison for the SC, RHDR and slower branch comparison algorithms for 
uniform SPP and NPP. 
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Figure 6.12: SEP comparison for the SC, RHDR and slower branch comparison algorithms for 
uniform NPP and exponential SPP. 
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Figure 6.13: SEP comparison for the SC, RHDR and slower branch comparison algorithms for 
uniform SPP and exponential NPP. 

6.4 Conclusion 

In this chapter we described a new, reduced-complexity hybrid diversity receiver, which reduces 

the number of demodulators necessary for proper operation to only two. This receiver performs 

better than the SC receiver analysed in Chapter 4, which requires all available branches to be 

demodulated. In fact, the SEP of the RHDR was shown to be bounded by the SEP of the SC and 

2SlEGC receivers. In Section 6.3 we compared the RHDR with the SC, 2SlEGC and 2EGC 

receivers and found that the RHDR outperforms the SC and 2EGC receivers in most scenarios. 

One exception is when the average noise powers in the diversity branches are not equal. We saw 

in Section 6.3 that at low SNR the 2EGC receiver outperforms the hybrid receivers in this profile. 

We, therefore, concluded that the 2EGC receiver due to its simplicity may be preferred when a 

system is operating at low SNR and has unequal noise powers in its diversity branches. However, 

the relatively high error rates of 0.002 in this SNR range may not be desirable in many 

applications. In Section 6.3 we also performed tests to examine the performance of the RIDR 

under even simpler configurations, in which the receiver performs less frequent branch power 

comparisons, say every k symbols, rather than on a symbol-by-symbol basis. A practical 

application would be a TDMA a receiver with two antennas which may scan each branch during 



its idle periods and select the two branches with maximum power for the duration of the frame. 

This receiver was called the burst demodulator in [55] and [56].  



Chapter 7 

Conclusions 

In this thesis we analysed the performance of the hybrid diversity receivers (HDR), a fairly new 

breed of diversity receivers, which use a hybrid of two of the classical diversity techniques, i.e. 

SC and EGC or SC and MRC. We considered receivers with available channel statistical 

information (CSI) as well as receivers which do not have CSI available. We derived closed form 

expressions for their average symbol error probability (SEP) and in some cases for their average 

output signal to noise ratio (SNR). For the derivations we assumed a Rayleigh fading channel 

with Doppler spread and diversity branches with generally non-identical branch powers at the 

receiver. The derived SEP expressions were in the form of an integral with constant limits which 

can be very easily evaluated. Furthermore, we gained insight into the factors affecting the SEP of 

the hybrid receivers by deriving asymptotic expressions which apply at high SNR's. The 

recurring influencing factors for all the receivers are the geometric mean of the branch signal 

powers and the general arithmetic mean of either the signal or the noise powers. 

7.1 Major Results and Contributions 

1. Analysis of the H-SIMRC Receiver 

We analysed the H-SMRC receiver which uses MMSE channel estimation for selection and 

combining of L out of N diversity branches. Our analysis produced the following results: 

Exact expression for the average SEP of the H-SMRC receiver in the form of a single 

integral with finite limits. 

Lower computational complexity bounds to the SEP, which can be adjusted by making 

different complexity-tightness compromises. 

Simple asymptotic approximation to the SEP at high SNR. This expression provides 

insight into the effect of the branch SNR profile on the SEP of the H-SMRC receiver. 

Exact expression for the average SNR of the H-SMRC receiver. 

We showed that the SEP of the H-SIMRC receiver deteriorates in non-uniform branch SNR 

profiles. We also showed that using the average output SNR as an indication of the SEP 



performance of H-SIMRC receivers operating in different branch SNR profiles might lead to 

erroneous conclusions. 

2. Analysis of the SC and 2SIEGC Receivers 

We analysed the performance of the SC and the 2SEGC receivers which have no CSI knowledge 

and, therefore, cannot optimally select and combine the selected diversity signals. For the two 

receivers we derived the following: 

Exact expressions for the SEP of both of these receivers. As for the H-SNRC receiver, 

we derived exact, closed-form expressions in the form of a single integral with constant 

limits. 

Asymptotic approximations to the SEP of the two receivers for the static and the error 

floor operating regions. We separated the asymptotic analysis for the two receivers to 

account for the error floor and the static fading regions which occur at high SNR. 

Exact expression for the average SNR of the SC receiver. 

Furthermore, we observed that in the absence of CSI, the receivers operating with equal average 

signal and noise branch powers exhibit virtually no deterioration in performance compared to the 

performance of the equivalent, more complex, H-SIMRC receivers. We also observed that a non- 

uniform SPP affects the relative error floor value of the SC and 2SlEGC receivers compared to 

the error floor of the two H-SMRC receivers, whereas a non-uniform NPP affects the relative 

SEP in the static fading region. 

3. Unified Asymptotic Analysis of Hybrid Diversity Receivers 

We derived asymptotic expressions for the SEP of the H-SMRC and H-SEGC receivers which 

combine an arbitrary number of branches. Using high SNR approximations from the outset of the 

derivation we were able to obtain the following expressions: 

Asymptotic SEP expression of the H-SNRC receiver. This expression is identical to that 

derived directly from the exact expression in Chapter 3. 

Asymptotic SEP expression of the H-SIEGC receiver. We were able to obtain an 

asymptotic expression by performing high SNR approximations in spite of the existing 

difficulties in obtaining an exact SEP expression for the general H-SEGC receiver. 

These expressions enabled observation of the behaviour of the H-SIEGC receivers at high 

SNR and provided a correction to the asymptotic SEP of the 2SlEGC receiver derived in 

Chapter 4. In the process of deriving the asymptotic SEP, we also derived the solution to 

a multiple integral which appears to be new in the receiver diversity field. 



Furthermore, the asymptotic expressions helped us to demonstrate that while the SEP of the H- 

SIMRC receiver can always be improved by the combining of additional branches, the SEP of the 

H-SIEGC receiver is not guaranteed to improve. 

4. A Reduced Complexity HDR 

We described and simulated the operation of a new, reduced-complexity hybrid diversity receiver 

(RHDR), which only uses two demodulators. The RHDR's performance is bounded by the SEP 

of the SC and 2SlEGC receivers. We showed that if complexity is an issue, the RHDR is a more 

attractive receiver than even the SC receiver analysed in Chapter 4, since the SC receiver requires 

N demodulators in order to operate properly. Furthermore, we found that at most situations the 

RHDR takes advantage of the higher number of available diversity branches and outperforms the 

classical EGC receiver with two branches (2EGC). In situations where complexity is an issue and 

the average noise powers in the diversity branches are not equal, however, the classical EGC 

receiver with two branches (2EGC) is shown to be a more attractive option than the RHDR, 

especially at low SNR. For an even simpler configuration we showed that a version of the RHDR 

which only performs branch comparison every k symbols provides reasonable performance. 

7.2 Research Extensions 

There are still some issues in the general area of this thesis that could be investigated in the 

future: 

Expansion of the asymptotic SEP expressions derived in Chapter 5 to account for the 

more general Nakagami channel. As mentioned in Chapter 5 this expansion would take 

advantage of the multiple integral derived in Appendix B to produce the corresponding 

expressions for the Nakagami channel. 

The asymptotic approximations may be adjusted to provide tighter fit even at low SNR. 

In this thesis we analysed receivers which do not have CSI available and use DPSK as a 

means of obtaining a form of a channel fading estimate to aid in the selection and 

combining. A better channel estimation, which would still not use CSI, could be obtained 

by using pilot symbol assisted modulation and non MMSE channel estimation. A 

possible estimation strategy would be linear interpolation of the pilot symbols but more 

sophisticated interpolation may also be used. 



As explained in chapters 4 and 5, the exact expression for the H-SIEGC receiver is, at this 

point, very difficult to obtain. More effort may be expended to obtain a concise, closed- 

form expression for the H-SIEGC receiver. 

The H-S/MRC receivers use CSI to obtain MMSE channel estimates. It is possible that in 

certain situations the CSI at the H-SIMRC may not be accurate. It would be interesting to 

derive the effect of such an inaccuracy on the SEP of the H-SMRC receiver and then 

contrast this SEP to the SEP of the H-SIEGC receivers with the correct values. 

In Chapter 4, we made the distinction between the EGC combining weights and the 

weights used by the PSGC receiver. This receiver is called, incorrectly in our opinion, by 

some researchers an EGC receiver. While the PSGC receiver has already been studied, 

the hybrid version of this receiver has not. It would be interesting to analyse the H- 

SIPSGC receiver and compare its performance to that of the H-S/EGC and H-SMRC 

receivers. 

Finally, to gain more insight into the practical aspects of the receivers analysed in this 

thesis, it would be very beneficial to implement them using software defined radio (SDR) 

architecture. 



Appendix A 

Branch Selection Issues in Selection Diversity Receivers 

Using DPSK 

In our analysis of receivers operating in channels with unknown CSI, the instantaneous signal 

plus noise (SPN) of each branch is used as the selection criterion. Since the previous received 

symbol is used as a noisy phase reference it can also be considered as a crude channel estimate 

along the same lines that the MMSE estimates were used in Chapter 3. One question that 

naturally arises from this consideration is which SPN to use for the branch selection; the current 

symbol instant SPN or the previous instant SPN which is also the channel estimate? It is, in fact, 

tempting to use the current SPN as the selection criterion since it indicates that the magnitude of 

the SPN at the current interval is the largest. The analysis in this appendix, however, shows that 

using the previous symbol SPN for the selection criterion in a SC receiver actually produces 

larger output SNR. 

Let the current symbol instant be denoted by k , and the signal from branch i be defined as 

q =l;.[k] (A.1) 

where l;.[k] is the received symbol from branch i and it is defined in terms of the fading gain and 

the AWGN as 

r;. [k ]  = gi [k]  + ni [k]  . ( A 3  

In (A.2) we assume that the transmitted symbol is 1, therefore the received symbol is the sum of 

the fading gain gi[k] and the AWGN ni[k] . At time k-1 (previous symbol instant) the signal 

received from branch i is defined as 

hi =);.[k-1] 64.3) 

As described in Section 2.2, r;. may be written in terms of hi as 

where the variables wi and ei were introduced in Section 2.2 and are defined as 



and ni is the AWGN variable with variance a:, . The variance of ei was shown in Section 2.2 to 

be 

Furthermore, when the variables 5 and hi are sorted according to their magnitudes they are 

denoted as qi, and ho, as described in (2.55), Section 2.6 with r(,, and h(,, having the largest 

magnitude amongst the branches. 

We begin with the case of a channel having uniform signal and noise power profiles 

(uniform SPP and NPP). Uniform SPP and NPP imply that all the branches have identical 

statistics. For the trivial case no change in the strongest branch over two consecutive symbol 

instants there is obviously no difference in the output SNR by the two scenarios. For the non- 

trivial case in which the strongest branch changes over the two consecutive time instants k -1 

and k , the ordering of the variables q and hi also changes. In other words r(,, and h(,, arrive 

from two different branches. In this case we contrast scenario 1 in which the branch with 

maximum 1 h(i) 1 is selected with scenario 2 in which the branch with maximum I q i ,  1 is selected by 

comparing their respective output SNR's. Let the decision variable for scenario 1 be defined as 

Y h  = ql,v,i,  9 (A.8) 

where i>l. The index i cannot be equal to 1 since we assume that the branch with the maximum 

SPN in the current instant is different from the branch in the previous instant. Let the decision 

variable for scenario 2 be defined as 

YY = h;j)ql) 7 (A.9) 

where j > 1 . Let us now calculate the instantaneous SNR of the two decision variables. Using 

(A.4) the decision variables can be written as 

Y h  = hi) h*h(l )  + e(i) + n(i) I 9 
(A. 10) 

Yr = h ; j ) [ ~ * h ( ~ )  + ' ( 1 ,  + n(l) I . (A. 1 I) 

The instantaneous SNRys at the output of the SC receiver for the two decision variables in (A.lO) 

and (A. 1 1) are, respectively, 



(A. 12) 

(A. 13) 

It is apparent from (A. 12) and (A. 13) that scenario 1 always produces higher SNR for the SC 

receiver in the case of uniform SPP and NPP. 

In order to verify the validity of our selection criterion for the general case of the SC receiver 

operating in a non-uniform SPP andlor NPP channel we now compare the average output SNR 

for the two scenarios. The average output SNR of the receiver in scenario 1 was found in (4.34) to 

be 

where 

and 

Following the approach followed in Section 4.1.3, the 

scenario 2 is defined as 

(A. 14) 

(A. 15) 

(A. 16) 

(A. 17) 

(A. 1 8) 

average output SNR for the receiver in 

(A. 19) 

where yr is defined in (A.13) and fyy (yr) is its exponential pdf. Following the approach of 

Section 4.1.3, (A. l9)can be written as 



Using the virtual branch transformation described in Section 2.6, the expression in (A.20) is 

transformed into the simpler integral with constant limits 

where dki is defined in (A.18). Performing the multiple integration the final closed form 

expression for the SNR is obtained as 

Comparing (A.22) and (4.34) it is clear that T, 2 T, since a,, is a positive quantity in all cases of 

interest. 

To try to explain intuitively this important result, we must consider how a receiver detecting 

DPSK modulation operates. Using the previous received symbol as a reference the receiver 

attempts to detect the current symbol. In other words, the receiver uses the previous symbol as a 

known quantity and attempts to see how the current symbol deviates from the known quantity. 



Appendix B 

Multiple Integral Evaluation to Assist in the Asymptotic 

SEP Derivation of the H-SIEGC Receiver 

B.1 The Integral 

In this section we derive the solution to the following integral: 

This integral is reduced to (5.42) when ai = i . Let us, first, define the vectors 

= [ m ,  w ) ,  . . , a ( w i  , 

u=[u1,u2,...,uN] 

and the following transformation: 

A=Tv.  

The transformation matrix T is defined as 

The effect of this transformation is that the sum in the exponent inside the integral is reduced to 

the single variable, vN . After applying the transformation the integral in (B.1) becomes 

where J(T) is the Jacobian of the transformation shown below: 



Using the binomial expansion 

in (B.6) we obtain the expression 

This expression may be solved iteratively by successively moving the product terms in the 

binomial expansion and integrating. The first two steps for integrating with respect to v, are 

illustrated below: 

This procedure is repeated N - 2 times until (B. 1 1) becomes 

where 

(B. 13) 

It is proven in Section B.2 that 



and the solution of the integral can be simplified to 

(B. 15) 

N 

Note that in (B. 15) we assume that bk = 2M - N , where M Z N , which is true for the purpose 
k=l 

of this thesis. Finally, the integral is simplified as follows: 

B.2 Combinatorics 

To simplify the sum in (B. 14) we use the help of Combinatorics theory 1571. Using simplified 

notation, we need to prove the following: 

We make use of the following identity [57]: 

(B. 17) 

We apply identity (B.18) k times to the left hand side of (B.17) and successively simplify the 

result as shown below: 



We know (for example fi-om [42]) that since the maximum power of j is always less than 

K + k + 1, the following is true: 

Therefore, (B. 19) becomes 

By observing that 

k-l 

n ( j + i - k ) = 0  for 1 5  j i k - 1  
i=l 

we are able to eliminate the k-1 terms of the sum in (B.21) and the expression is simplified as 

follows: 



By changing the variable in the product using the transformation n = k - i we obtain 

Finally, using combinatory notation the end result in (B.24) can be written as 

which is the right hand side of (B. 17) as required. 
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