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Abstract 

Many fundamental parameters of the standard model are difficult to extract from 

measurements because they require an understanding of the strong interaction at 

low energies. Lattice gauge theories provide a first principles method to compute 

such effects. Unfortunately with current computational resources, "naive" lattice 

gauge theories would not give the precision results that the experiments require. 

Fortunately, there are several field theoretical methods that we can use to improve 

accuracy at minimal computational cost. One part of this program involves im- 

proving the lattice act ions, to better approximate the continuum theory. 

This improvement can be done order by order in perturbation theory. For sev- 

eral reasons, perturbative calculations in lattice gauge theory are very complicated. 

To deal with this, we have developed a set of tools to automate the most difficult 

parts of the calculations. 

This thesis introduces the general procedure of perturbatively improving lat- 

tice gauge theories, and outlines why perturbative calculations are needed. The 

calculations are done for the most complex actions currently used by simulations, 

the Symanzik improved gluon action for the gluons, Fermilab fermions for the 

heavy quarks, and AsqTad fermions for the light quarks. We report the results of 

a number of calculations, we have computed various lattice operators (mean link, 

static quark potential) to second order, and a number of important heavy quark 

quantities (including matching the clover operator for the Fermilab action) to first 

order. The latter calculations have the potential to greatly improve lattice QCD 

determinations of mious  heavy quark quantities. 
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Chapter 1 

Introduction 

The standard model of particle physics has withstood over twenty-five years of 

testing. During the 1990s its predictions were tested to very high precision at the 

Large Electron Positron Collider (LEP), the TeVatron, and B factories (such as 

BaBar). Today, at the end of the LEP era, it is one of the best tested of our 

physical theories. The description it provides is the most fundamental picture we 

have of the physical world. However, as we shall detail in this chapter, the study 

of the standard model is by no means a closed subject. 

1.1 Brief Review of the Standard Model of Parti- 

cle Physics 

There are four known fundamental forces in nature, strong, weak, electromagnetic 

and gravitational. To describe the interaction of the elementary particles we can 

ignore the gravitational force. The remaining three forces are described by the 

standard model (henceforth SM). The SM actually goes one step further, unifying 

the electromagnetic and weak forces into the electroweak force. Thus the standard 

model describes two forces. 

Each of the forces in the standard model is a gauge theory, with interactions 
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between fermion fields ("matter") mediated by gauge fields ("force carriers")'. The 

matter fields come in a structure known as a generation, the first generation is the 

familiar electron, its neutrino, the up (u) quark and the down (d) quark. The u 

and d quarks are bound by the strong force into protons and neutrons. In this way 

the particles of the first generation make up all of the matter we see around us. 

There are two other generations as well, the second generation contains the 

muon, its neutrino, and the charm and strange quarks. The particles in the second 

generation are similar to those in the first, apart from the fact that they are much 

more massive. The third generation consists of the tau, its neutrino and the top 

and bottom quarks. Table 1.1 lists the matter particles in the standard model, 

along with their masses and electric charges2. 

The matter particles interact via the electroweak and strong forces, each force 

couples to a different type of "charge". For the electroweak force there is the 

standard photon, which couples to electric charge. As well, there is the Z0 boson, 

which acts much like a heavy copy of the photon, and the W* bosons, which couple 
A -  -- 1 -L-- -- L L  - -LL--  - - -L I  -1 - L--- - f -- n \ 
LU, u u  L L L ~ ~ G ,  CLLG u a L b c l  p a  CIUG hype \UI u avuu ) .  

The strong force couples to another kind of charge; called colour. There are 

three colour charges (red, green and blue) carried only by quarks. The interaction 

between colour charge is mediated by gluons, the gauge bosons of the colour SU(3) 

symmetry. This theory of the strong force is called quantum chromodynamics, or 

QCD. The Lagrangian for QCD is 

'For a pedagogical introduction to gauge theory see [I] and for a overview of the elementary 

particles and their phenomenology see [2]. 
2The neutrino masses here have been shown as approximately zero, however there is very strong 

evidence that the neutrinos have a small mass. Additionally, the quark masses listed here are in the 
- 
MS scheme. All values were taken from 131, numbers in brackets are the errors on the last digits, for 

the e and p they are negligible. Unless otherwise stated all measured properties (masses, charges, 

etc.) have been taken from [3]. 
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Particle 

electron ( e )  

electron neutrino (v,) 

up quark (u) 
down quark (d) 

(4 
muon neutrino (v,) 

charm quark (c) 

strange quark ( s )  

tau (T) 

tau neutrino (v,) 

top quark (t) 

bottom quark (b) 

Generation I Mass MeV Charge (e) 

1 

0 

2/3 
-1 /3 

Table 1.1: The Matter Particles 
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The notation here is standard and is explained in any ilitroduction to quantum 

field theory (we're following the conventions of [I]). There are 8 gluon fields A; 

with the standard field strength tensor 

and gauge covariant derivative 

The sum over q is for all six flavours of quark. Using this Lagrangian we can 

compute the action S = S d4xL, and from that compute vacuum expectation values 

of operators by path integrating 

From these expectation values the physical predictions of the theory can be ex- 

tracted. 

For our purposes, the most important thing about QCD is that at low energies 

the coupling constant, g, is very large and at high energies it's very small. Above 

energies of about 1 GeV the decrease of the coupling constant can be computed 

perturbatively. At leading order we have 

where nf is the number of quark flavours with m, < E, and AQcD is a parameter 

which depends on nf. For nf = 5 we have AQcD = 400 MeV. Notice that AQcD 

takes the place of the coupling constant in the list of things that need to be fixed 

from experiment. 

The leading order formula for cx, indicates that around E = 2.25AQcD = 1 GeV 

the coupling constant becomes O ( 1 )  and at E = AQcD it diverges. This indicates 

that the energy scale AQcD is the rough marker of where QCD perturbation theory, 
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including the above equation, can be applied. If E > (few)AQcD then we can use 

perturbation theory, otherwise we need to look for alternative approaches. Using 

the conversion factor lic ==: 200 MeV fm we can convert the energy scale to a 

distance. We find that QCD perturbation theory should be-useful on scales shorter 

than about 0.3 fm, at longer distances we need non-perturbative methods. We 

discuss below that many important experiments require as input predictions from 

the long distance, non-perturbative, sector of the theory. 

1.2 Fundamental parameters of the SM 

The electroweak sector of the standard model is considerably more complicated than 

the QCD part. We will not review it in detail here as we will only be concerned with 

its most basic properties. Briefly, the electroweak theory is an SU(2) x U ( l )  gauge 

theory. The gauge group is spontaneously broken to U ( l )  via the Higgs mechanism. 

The exact form of the Higgs sector has not been determined experimentally, a single 
r m ~ i  n r q i 3 r  Gairi ;m + k n  m n m t  nrnnnmic m n i . + + ; r r n  
2-UL UbIUIU I A b I U  I U  V A A b  A A A V U U  u b V Y w L U I u  U W A U U I W U .  

The symmetry breaking gives mass to three of the four gauge bosons in the 

unbroken theory. The boson that remains massless is the familiar photon, the 

massive bosons are the W* (mass 80.425(38) GeV) and the Z0 (mass 91.1876(21) 

GeV). Of these we will be concerned with the interaction of the W bosons. 

The W bosons are very interesting because they change the flavour of the parti- 

cles they interact with. For example, in the decay of a p, the p emits a W- turning 

into a Y ,. The (virtual) W then decays into an e and a Y,. This is illustrated in 

figure 1.1. 

Applying the Feynman rules for the electroweak theory to this decay gives the 

amplitude for this process (in unitary gauge) 

Here Jz = ii(pvp)y0u(p,) is the muon weak current, Jz = ii(p,)yvv(pTe) is the 
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Figure 1.1: The lowest order Feynman diagram for muon decay in the full elec- 

troweak theory 

electron weak current, and g, is the weak interaction coupling constant. The 

momentum transfer (in the muon rest frame) for this process is q2 = mt - m,E, < 
m t  << M s .  Neglecting the q terms give 

f i g 2  where we have set GF = --p. In this form this is the same as the result from 
8Mw 

the early Fermi theory of decay [4]. In this theory the W boson is replaced by 

a four fermion contact interaction. At low energies (E << Mw) it is an excellent 

approximation. For the remainder of this discussion we will use this "four-fermion" 

form. 

Quarks have similar interactions with the W bosons. For example, a d quark 

inside a neutron can decay into a u quark, electron and (electron) antineutrino as 

shown in figure 1.2. The amplitude for this process will be the same as that for 

muon decay (1.7) except the weak coupling for the quark current has a different 

strength, which we will call Vdgw. The net effect is that the amplitude for this 

process is (1.7), multiplied by Vud. In an exactly analogous way we could consider 

c -+ s + t + Te and t -+ b + t + Te decays. We would get extra factors V,, and Vtb 

in each case. Like all couplings, these are fundamental parameters of the standard 

model, and need to be fixed by experiments. 

The situation is actually more complicated than this. The three "V" parameters 

we've seen so far only couple quarks of the same generation. However, the structure 
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Figure 1.2: The lowest order Feynman diagram for d -+ u + e + -7, in decay in the 

Ferrni effective theory. 

of the electroweak theory allows for decays across generations. For example, we can 

have s -+ u decays. All of the couplings are arranged in the Cabibbo-Kobayashi- 

Maskawa [5], [6] (CKM) matrix, 

This En,2trk ;ppe=~ iz the Lz,-rz,-iz fcI the stzd=d ECde!, s~ iC, be 
- - 

unitary. This restriction means we can describe this matrix by four parameters, 

three real angles, and one complex phase. Ignoring the phase, the current world 

average for the amplitude of this matrix is 

There is an obvious pattern to these magnitudes, the diagonals are close to 1, with 

the off diagonals falling off quickly. A parametrization that takes this into account 

is the Wolfenstein parametrization [7] 
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In keeping with the measured values we expect, A << 1. The other parameters Alp 

andq are O(1) .  

These parameters are very important, they are fundamental SM quantities. 

Without precise knowledge of them many SM predictions have large errors. Re- 

lated to this, but perhaps of even more interest, is that without good knowledge of 

these parameters it will be difficult to understand if a measurement has revealed 

new physics beyond the standard model. So one of the primary goals in contem- 

porary high-energy phenomenology is to understand how these parameters can be 

accurately extracted from experiments. 

Strong Matrix Elements 

The trouble in precisely determining the CKM parameters is not with the elec- 

troweak theory. For many processes the lowest order effective Fermi theory would 

be enough. If not, there is the full theory, and the weak coupling constant g, is 
a-.. 1 1  ..A -m--.,-A.--- --- L.. ----..&..A -..-&--L..A:--..l-- rnL- A--..Ll.. :" :- ------A:-- 
OIUCUA, ou LUAAGLCAULLJ LU UG L U I I A ~ U C G U  ~ C I  CUI uau v c ~ y  . I uc CIUUUIC 13 AU L U I I I ~ U C I I I ~  

the QCD contribution. 

For example, let's consider one of the simplest decays, the purely leptonic decay 

of a pseudo-scalar meson, PQq which contains one "heavy" quark Q, and a "light" 

anti-quark ij with initial four momentum p. The following analysis actually applies 

to any pseudo-scalar meson, however later on we will be specifically dealing with 

heavy-light mesons, so we introduce the notation and language here. This sort of 

meson can decay into a lepton and antineutrino. Naively this takes place via the 

diagram of figure 1.3. However, there is a problem with this. Figure 1.3 shows 

the amplitude ( ~ ~ l V l ~ i j )  where Q and q are being treated as free quarks. This 

is not the case, the quarks are strongly interacting so the external quark lines are 

dressed by the strong interactions. The situation is even more complicated since 

the quarks are bound in the meson we really want ( W , I ~ I P ~ , ( ~ ) ) .  The former 

amplitude neglects the bound state properties of the quarks, which are permanently 
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Figure 1.3: The lowest order Feynman diagram for Q + 51 t t + Te 

confined within the meson. 

The weak interaction operator in this case is the four fermion interaction 

Since the initial state has negative parity this reduces to 

We've set 
h.. Jr = pyp( 1 i- y5)$f] 

here. To compute ( w ~ I V I P ~ ~ ( ~ ) )  we insert a complete set of states, and note that 

is the only non-zero possibility. The rules of the electroweak theory allow calcu- 

lation of L,, we will not need its exact expression here. With this notation, we 

have 

(@~vpQq (PI) = - ~ ~ V ~ Q G F L ' ( O I G Y  py5?pQq (PI )  (1.13) 

as our expression for the matrix element. 

We can calculate the leptonic part L, of equation 1.13, in principle to any order 

in perturbation theory. It is the hadronic part 
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which is hard to handle. To simplify matters somewhat, we note that the initial 

momentum p is the only four-vector in this hadronic matrix element. Therefore we 

can write 

( o I % ~ Y ~ ~ I P Q ~ ( P ) )  = ifPpp (1.15) 

with f p  a constant, known as the pseudo-scalar meson decay constant (the i is 

conventional, and ensures that f p  will be real). With this notation we have the 

final expression 

( f i eV/pQq(~) )  = - i a v q Q f  P G F L Y ~ ~ .  (1.16) 

Squaring this expression, and integrating over the final state phase space gives the 

decay rate for the P  meson 

Everything in square brackets has only small, calculable, perturbative corrections. 

The problem is now clear, even assuming that we have an accurate measurement 

of the decay rate (not always an easy thing to measure) we still cannot determine 

\VqQI since it is multiplied by the unknown constant fp. 

This problem is not specific to purely leptonic decays either. For example, in 

the semi-leptonic decay PQq -+ Pk,, + t + ye the CKM element lVQQl 1 comes out 

multiplied by a function f  of the momentum transfer q which is related to the 

strong interaction matrix element 

Even with accurate measurements of the decay rates, without reliable calculations 

of these matrix elements the fundamental CKM parameters cannot be extracted. 

The strong interaction matrix elements required to fully predict these processes 

cannot, in general, be computed with perturbative QCD. The reason is that the 

meson state IP) is a bound state. Bound states are non-perturbative in nature, 

so even if the coupling were weak we would need non-perturbative methods to 
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determine the matrix elements we need. This is not to say the QCD perturbation 

theory is not useful. Perturbative QCD effects can be important, however, the 

experiments work with mesons and baryons, so we need to understand how the 

quarks are bound, and how to compute the bound state matrix elements. 

Lattice QCD 

There are a number of ways to attack the problem of determining what the QCD 

matrix elements are. The problem that has plagued them all has been that none 

give high precision results for a broad range of QCD processes. 

For example, it is relatively straightforward to build models inspired by QCD 

and make predictions (see [8] for one example and references to many more) but, 

as these models have large and mostly uncontrolled systematic errors they rarely 

give results that have better than 10% precision. Most other methods have similar 

limitations, all of which essentially stem from the fact that they are not reliable 
m m r m  4 - n  r n m - . . + r r  l r r m  n n r r r m r  f \ r  ' I  \ me+-.rr m I ~ r n m - + -  
v v u j  0 u u  L U U ~ U U L  r u r v  b r r b r b y  vvu r r r a u u  GIGLILGUUP. 

What is needed then is a way of computing directly from QCD the quantities 

we want, using some sort of controlled approximation. This would allow for cal- 

culations to be done with small errors. Furthermore, the systematic errors should 

be understood, and a means of reducing them must be available. These two fea- 

tures are absolutely crucial to the larger high-energy physics community: they want 

numbers with errors that are low, well understood and that can be trusted. Such 

an approximation has actually been known for close to thirty years. It is Wilson's 

formulation of QCD on a finite lattice [9]. 

Wilson's idea was to discretize a volume of space-time, turning it into a hyper- 

cubic lattice with grid spacing a and total volume L4. A two-dimensional example 

of this is shown in figure 1.4. This has the advantage of turning a problem with 

an infinite number of variables into one with a finite number. This opens up the 

possibility of numerically evaluating the path integral. 
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Figure 1.4: A two dimensional lattice 

A technical note: QCD is described by a path,integral in Minkowski space 

Z = D [fields] eis. I (1.19) 

If we wanted to evaluate this numerically we'd run into serious problems, due to 

the oscillating exponential. This makes numerical integration very difficult. It's 

much easier to Wick rotate into four dimensional Euclidean space, this takes S + is 
which gives an exponential damping 

This is the formalism we will use for the remainder of this report. Henceforth, unless 

otherwise noted, all fields, coordinate and momenta will be Euclidean. Minkowski 

space results can still be extracted from lattice theories. For example, the fourth 

component of the lattice momentum p4 is p4 = iE(p'), where E is the Minkowski 

space energy. Masses can be extracted by determining this energy at zero three- 

momentum. 

Obviously, putting a continuum theory on a lattice will break the four di- 

mensional Euclidean symmetry which will introduce errors into numerical results. 

Breaking this symmetry is unavoidable, however it is not a fundamental concern as 

it is naturally restored in the a t 0 limit. QCD has other symmetries which are 

important. The most important is gauge symmetry. If we break it, a large number 

of couplings have to be fine-tuned in order to recover gauge symmetry to the de- 

sired approximation in the continuum limit. Fortunately Wilson's formulation of 
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Lattice QCD preserves gauge invariance. 

1.4.1 Gauge Fields on the Lattice 

The key to Wilson's action for the gauge fields is to use group elements of SU(3) 

rather than the Lie algebra elements. The group elements have a natural inter- 

pretation in terms of directed paths. Thus, to each link of the lattice we assign a 

group element U,(x). Pictorially this is 

U,(x) = x - (x + a@). (1.21) 
P 

Under an SU(3) transformation S(x) we have U(x) + S(x)U,(x)St (x + a@). To 

build up a gauge invariant operator, we can consider the trace of any product of 

links forming a closed curve. 

Consider the shortest such path, a 1 x 1 square, or plaquette, 

Under a local SU(3) transformation we have, 

Using St (x)S (x) = 1 this becomes, 

Taking the trace of this, and permuting the end link around to the front cancels 

the last gauge variant part. It is clear that this procedure will hold for the trace of 

any more general closed curve. 

We can use these objects to build up an action for the group elements. The 

simplest thing to do is use the plaquette operator 

1 
PPv = -ReTr [u,(x)u,(x + afl)~;(x + a Q ) a ( x ) ]  3 

(1.25) 
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to construct an action for the gauge group elements 

This action was first constructed by Wilson [9] and is known as the Wilson gauge 

action. We expect that the constant will be related to the QCD coupling g. 

To determine the nature of this relationship we will look at the small a expansion 

of the Wilson action. We want to recover the limit where we can neglect the 

extremely short distance effects associated with the lattice spacing. Introduce the 

elements of the Lie algebra su(3), AP(x), with the standard connection between 

group and algebra elements 
u (X) = eigaA,(x) 

P (1.27) 

Expanding to (3(a6), and using Tr[AJ = 0, we find 

where we have used, 

From the preceding formulas it is clear that powers of the lattice spacing clutter 

things up. To simplify the notation we will henceforth use units where a = 1 unless 

otherwise noted. 

1.4.2 Fermions on the lattice 

Naively putting fermions on the lattice should be straightforward. The fermion 

fields transform as +(x) -+ S(x)+(x) so the mass term $(x)+(x) is automatically 
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is also gauge invariant. We can use this sort of operator to construct a gauge 

invariant kinetic term, 

With these two operators we propose the following fermion action 

This is known as the naive fermion action. In the a -t 0 limit it reproduces the 

continuum (Dirac) action with (3 (aZ) errors. 

The naive fermion action has a very unfortunate property that limits its useful- 

ness for numerical work. To see this problem we consider the weak coupling limit, 

Going to momentum space this becomes, with p, = sin(p,a) , 

1 
SN = - Z$(-P) [i~vp + mI Q(P). L4 

P 

From equation 1.34 we can read off the momentum space propagator 

The mass shell for these fermions is given by solving 

sin(p4) = im. 

3Recall that $ = $+yo. 
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Naively, this has the solution p4 = sin-' (im) which in the continuum limit gives 

p4 = in, the correct Euclidean mass shell. The problem is that (restoring the 

lattice spacing) 

p4a = sin-' ( ima) + .rr (1.37) 

is also a solution. Thus a lattice quark with high energy close to the cutoff n/a will 

become a low energy quark, nearly at rest, in the continuum limit. This is clearly 

a big problem, as numerical simulations will give 16 degenerate types (or "tastes") 

of quarks. There are few ways of dealing with this problem. We will outline one of 

them here, and touch on another in the next section. 

The most straightforward solution to this problem is to add an irrelevant op- 

erator to the quark action, which modifies the small a behavior of the "doubler" 

quarks. An operator which does this is the lattice Laplacian 

This changes the mass shell condition to (again restoring a) 

In this case p4a = sinM'(ima) gives the correct continuum limit but, due to the 

sin(p/2) term, p4a = sin-' ( ima) + n is no longer a solution. This solves the fermion 

doubler problem by driving the energy of the doublers up near the cutoff. 

This solution to the doubling problem was first proposed by Wilson [lo]. It is 

widely used in the lattice field theory community. It does suffer from two serious 

drawbacks. First, the Laplacian operator is dimension five. This introduces a (3( a) 

error, whereas the naive action had (3(a2) errors. Furthermore, and more seriously, 

the Wilson action does not have the chiral symmetry that QCD exhibits in the 
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limit of massless quarks. This means that fermion masses 

mass renormalization and calculating any quantity which is 

properties of QCD is very difficult. 

receive large additive 

sensitive to the chiral 

Full QCD 

We can put these two actions together into a full approximate action for QCD, 

This action reproduces full QCD up to linear errors in the spacing. We can use 

this to evaluate QCD matrix elements. For example, 

(olQv'91PQq) = (oIQv'9 Qdo) = D U D Q D G Q Y + ~ ~ Q ~ ~ - S .  (1.42) 

In principle there are a finite number of integrals, so one could just do them all. 

However, even on a moderately sized lattice there are too many integrals to evaluate. 

Fortunatelv the weighting e-' makes these path integrals amenable to Monte Carlo 

methods. 

1.4.3 Dynamical Fermions 

The techniques of Monte Carlo simulations are not the direct subject of this re- 

port. We are more concerned with the errors that they report. As we have dis- 

cussed above, we would like to have small errors for QCD matrix elements. Before 

discussing small, controllable errors we have to address the one approximation in 

lattice QCD that does not meet the controlled criteria: the quenched approxima- 

tion. 

Fermionic variables cannot be represented in a computer so we have to find 

another way to deal with the fermion integral. This is not hard to do, at least 

conceptually. We can write the Wilson quark action as 
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where M has the derivative and mass operators, which depend on U. This action 

is bilinear in the quark fields, so we can integrate them out, 

D $ D Q ~ - S ~ ~  = det (M[U]) . . (1.44) 

Therefore the general path integral can be represented as 

Z =  DUdet(M[U])e-Sw. S (1.45) 

This allows us to use purely gluonic variables in the computer. To compute matrix 

elements involving quarks we can use the propagator formula 

The trouble is that the fermionic matrix M[U] is very large and sparse. This 

makes it computationally very expensive to invert. In the past many people doing 

large scale Monte Carlo simulations would simply set det M = 1, neglecting the 

dynarnical quarks altogether. This is known as the quenched approximation. 

For many years computing power was such that there was no way to avoid the 

quenched approximation. In spite of this rather extreme approximation, many in- 

teresting results were obtained with quenched simulations. However, even the best 

quenched results contained uncontrolled, and often not well understood, systematic 

errors. This means that lattice QCD results could not provide the high precision 

QCD results needed to understand experiments. 

Fortunately the quenched approximation is going away. Modern teraflop scale 

computers are allowing high statistics results for unquenched simulations. With this 

source of error being removed it is even more important to look at other sources of 

systematic errors, and how to control them. 

One technical detail worth pointing out here is that one of the main reasons that 

unquenched simulations are becoming more feasible is the use of so-called improved 

staggered (or AsqTad) fermions introduced in [Ill. In the interests of completeness 

we give an outline of how one constructs a staggered quark action. In chapter 2 we 

will discuss the improvement. 



CHAPTER 1. INTRODUCTION 

, 

We begin with the naive fermion action 

As we discussed above, this action describes 16 different tastes of quark. One way 

to get rid of these extra tastes is to introduce a Laplacian term as we did previously, 

and another is to "stagger" the fermions. This means we spin diagonalize the naive 

fermion action. This is accomplished via the transformation 

This transformation will produce an action diagonal in the spin indices. 

A explicit matrix that implements (1.49) is 

With this choice the factor ~ ( x )  is 

Implementing this transforms the naive fermion action to 

4 

where we've shown the sum over the single spin index. It's clear that in this form 

the naive fermion action is just four copies of the same thing; each term in the sum 

over cc is identical. This suggests that we can "stagger" the fermions by simply 

dropping the sum over a. 

Dropping the sum over a gives the unimproved staggered quark action 
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This action will describe four tastes of quarks, rather than sixteen. There are 

techniques which can be used to define an effective number of flavours, and hence 

to further reduce taste doubling, but we will not discuss them here. 

Recall that for the Wilson fermion action we introduced-a term Gall, to the ac- 

tion which removed the doublers. However, such a term breaks the chiral symmetry 

of QCD, leading to large additive mass renormalizations. This greatly slows down 

matrix inversions, as the large renormalizations introduce unphysical "exceptional" 

configurations. 

The staggered formalism has a remnant chiral symmetry, which protects against 

any additive mass renormalizations. This greatly speeds up the matrix inversions. 

A further factor in favour of staggered fermions is that they have 1/4 the number 

of spin degrees of freedom, resulting in a smaller matrix to invert. Overall, the 

savings from these fermions are a factor of 20 or more [12]. 

1.4.4 HPQCD 

With the quenched approximation going away there is a tremendous opportunity 

for lattice QCD to make a major impact on the experimental high-energy physics 

program. If lattice QCD is to be relevant to experimentalists, we need to deliver 

results with low errors that are under control. 

This is the goal of the High Precision QCD (HPQCD) collaboration. A loose 

collaboration of researchers from North America and the UK, HPQCD seeks to 

apply the many innovations in lattice QCD developed over the last ten years to 

quantities of interest to the broader high-energy physics community. 

In order to do this, we need to make use of highly improved actions in order 

to reduce the lattice spacing errors which dominate. The following two chapters 

outline the technical details behind the perturbative improvement program. These 

techniques, and the calculations performed with them, are absolutely crucial to this 

program. 

Given the size of the HPQCD collaboration and the number of authors listed 



CHAPTER 1. INTRODUCTION 2 1 

t 

on its papers, it is appropriate to emphasize that the work presented here was per- 

formed by the author, under the supervision of Howard Trottier. The calculations 

of various link operators, presented in chapter 4, and the matching calculations in 

chapter 6 represent the author's original contributions to the multi-authored works 

of HPQCD. These calculations have impacted on several of HPQCD's papers (per- 

turbation theory for Wilson loops [13], improved staggered quark action [14], and 

the determination of a, [15]). 



Chapter 2 

Improving Lattice QCD 

The current experimental situation requires precision lattice calculations in order 

to extract standard model parameters, or resolve possible signals of new physics. 

Despite many impressive successes (for example, the calculation of the light hadron 

spectrum in the quenched approximation [16]) the lattice QCD community has not 

delivered the precision calculations that are needed. 

There are a number of reasons for this. The first is that, until recently the 

cost of doing unquenched simulations was prohibitively expensive. With modern 

computers, removing the quenched approximation is now possible. The MILC 

collaboration [I?] has generated large numbers of gauge field configurations with 

light dynamical quarks, removing this major source of lattice errors. 

In fact, the removal of the quenched approximation is particularly important 

since it removes an uncontrolled systematic error from lattice results. With this 

error removed we can investigate the remaining, controllable, errors in lattice cal- 

culations, and try to find ways of reducing them. 

2.1 Errors in Lattice QCD Simulations 

Lattice QCD simulations use Monte-Carlo methods, so there are unavoidable sta- 

tistical errors associated with them. These errors are well understood and, with 
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modern computers, generating suf3icient statistics is not usually the major source 

of error. 

Another source of error, which plagues both quenched and unquenched simula- 

tions, is quark mass errors. These stem from the need to invert the lattice Dirac 

operator y - D + m (or some modification of it, like addition of the Laplacian term). 

As m goes to zero (which is the limit we want to consider for up and down quarks) 

the algorithms for inverting this matrix critically slow down. There is a well-known 

"wall" at which simulation with lower m, becomes effectively impossible. In order 

to circumvent this problem, simulations must be done at unphysical quark masses, 

and extrapolated to the physical limit. 

These extrapolations can introduce large errors. Often, simple polynomial ex- 

trapolations are not adequate. The m -+ 0 limit of QCD is described by chiral per- 

t urbat ion theory [I 81 (xPT) . Often these chiral expansions have non-analytic terms, 

for example the tree level xPT prediction for the pion mass is m, M d m ,  and 

the one loop xPT correction to the pseudoscalar B meson decay constant contains a 
+arm 4.b.r.b in I~nr,i+L-;r ;- C L r  -..--l- --..r -mL^"^ ^C L-..-r ^^- r . .LrL^. . .L;^ll--  
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alter the extrapolation at small quark masses [19]. 

Ideally one would like to do lattice simulations at quark masses that are in 

the region where chiral perturbation theory is applicable and reliable. Most lattice 

simulations are probably not in this region [20] however the MILC collaboration has 

simulated at sea quark masses three to five times smaller than the strange quark 

mass, and reports reliable chiral extrapolations [17]. There are other technical 

issues with chiral extrapolations beyond the scope of this report [21], [22]. 

2.1.1 Spacing Errors 

The dominant errors in most modern lattice simulations are the errors associated 

with the finite lattice spacing (a). The Wilson actions we outlined in chapter 1 have 

(3(a) errors for the quarks and (3(a2) errors for the gluons. Of course, simulations 

can be run at multiple values of a and extrapolations performed, but the errors are 
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still large. 

The obvious solution to this problem is to simply run at smaller values of the 

lattice spacing. This is, unfortunately, not feasible. The number of points that 

are needed to simulate on an L4 lattice is 5 so naively, one would expect that the 

computer time needed would scale as a+. This is not the case. The Monte-Carlo 

simulation routines used to generate gauge field configurations critically slow down 

for small a. For this reason the computer time scales at least as ac6 instead of aS4. 

This limitation exceeds what would allow for a reasonable time to wait for brute 

force reduction of a. Of course, increases in computing power are vitally important, 

but they will not be enough to deliver high precision results in a timely manner. 

2.2 Improvement 

Fortunately there is another way to address this problem. Rather than brute force 

reduction of the lattice spacing, we might look for a better discretization of the 

Q I ~ ~ I  2.c;icc; rice which lnwer spacing errcrs tc  stzrt with. 

A simple example illustrates the general technique. Assume we wished to com- 

pute a numerical derivative. We might use the simple forward difference 

df (x) f (x + e) - f (x) -- - 
dx e  + w 4 ,  

but this has linear errors. For no extra cost we can use a symmetric 

which has quadratic errors. 

The situation is similar in lattice field theory. Rather than using the simple 

Wilson actions presented in the chapter 1, we can use "improved" versions of ac- 

tions that have lower errors. Unlike the simple numerical example this has some 

additional cost, but it is much faster than trying a brute force reduction. 

There are many approaches to improvement, and improved actions are almost 

universally used in lattice simulations. The approach we will discuss in this report 
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is known as Symanzik improvement, [23]. For the gluon action this approach is 

fairly straightforward. Recall from the previous chapter that the small a expansion 

of the plaquette term in the Wilson action is 

The next term in this expansion is 

Now we look at the expansion of the following operator 

R p =  nQ 
we have P 

If we take. 

we recover the continuum action up to 0(a4) errors. By adding a new operator into 

the action we have managed to subtract out the 0(a2) error. The computational 

cost of this improvement is orders of magnitude lower than brute force reduction 

of the lattice spacing [24]. 

2.2.1 Symanzik Improvement of the Wilson Quark Action 

Recall the Wilson gluon action 

The Laplacian term, needed to solve the fermion doubling problem, induces an 

O(a) error. We would like to cancel this error by adding another operator to the 
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action. Noting that the Laplacian operator has dimension five, we look for another 

dimension five operator. There is only one, 

Here Fpv is a lattice approximant to the continuum field strength tensor. We use 

the clover approximat ion 

I t t  F, = - sign(pT)UwUtUwU, + H.C. 
,,,v 

which is accurate to (3 ( a2). 

We add this operator into the action with an arbitrary coefficient 

This is known as the Sheikholeslami-Wolhert [25] or clover action. If we can deter- 

mine the coefficient csw we should be able to cancel the 0 ( a )  errors. The problem 

is i u  determine csw. 

One way of proceeding is to look at the Feynman rules generated by this action. 

Taking U, = e-ig*r and expanding to first order in a we find the quark-gluon 

vertex for the action (2.9) is 

r -, 

L J 

Clearly setting csw = 1 will ensure that this vertex agrees with the continuum one 

to 0(a2). 

Of course this is not the full story, as there are further lattice spacing errors 

that can turn out to be uncomfortably large. As well, our determination was done 

in free field theory, interactions between quarks and gluons will surely modify this 

result. Indeed the calculation of the leading interaction effects will be one of the 

main focuses of this thesis. To understand these effects, it pays to think a bit more 

carefully about the way we determined csw. 
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2.3 The Physics of Improvement , 

In order to understand spacing errors and the improvement program better, it is 

instructive to consider the physical origin of the lattice spacing errors and what is 

accomplished by the addition of improvement operators. This discussion will make 

it clearer why the naive improvement considered above is not sufficient. 

The discussion up to now has treated the lattice field theory as some numerical 

approximation to a continuum field theory. That is, we took some field theory 

we wanted to study and constructed some numerical approximation to it. This is 

of course a correct point of view, but it is not the most useful one for discussing 

improvement. 

It is far more useful to think of our lattice field theory as a continuum euclidean 

field theory with a hard spatial cutoff of a. That is, any field mode with wavelength 

less than a is simply thrown out of the theory. In momentum space this idea 

translates into the statement that field modes with momenta greater than are 

f?~~Illd(1(! 

In this way of thinking, lattice QCD becomes an effective field theory, one 

which agrees with full QCD at long distances, but disagrees on short distances. 

The spacing errors, from this perspective, reflect this short distance disagreement. 

Adding improvement operators becomes a systematic procedure, just like in any 

other effective field theory. There is a tower of terms, organized by some "small" 

expansion parameter (in this case AQcDa = 0.2), and one expands to a desired 

order in it. Once one has these terms, they are each added to the action with a 

separate coefficient. 

These coefficients can be fixed by matching to the full theory. In our case, we 

started with the Wilson quark action. It contains the dimension four operators, 

and this matches the low-energy, long-wavelength dispersion relation for quarks in 

the underlying continuum theory. In this action the Laplacian term is redundant 

and can be removed by a field transformation, but we keep it to solve the doubling 
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problem. Unfortunately it induces an O(a)  error that can be very large. 

To correct the (3(a) error (the /IQcD is implicit) in the Wilson action we added 

the next set of operators from the tower. In this case, there was only one o,FKv. 

The coefficient was fixed by demanding that the quark-gluon vertex agree with 

continuum QCD. In the effective field theory view, we were really demanding that 

the tree level scattering of a quark off of a gluon is the same in both theories to 

(3 ( a2). This is best illustrated graphically. Consider quark-quark scattering off of 

a chromo-magnetic field, there will be tree level diagrams for both the lattice and 

continuum, 

With csw = 1 our calculation above shows that 

tree, - tree, = 0. 

T T  ------- L L  --- --- -- - 1- -- A:--- A -  L L . -  ---I: ---1:A.---l -- -1 L L  - l - I A I - -  
IIUWCVGI CUGIG c u t :  UUG-IUU~ LUIICLLIUU~ cu LUG LUUI,IULLLLIU QIII~IICUUG, auu LUG 1 a C u L G  

amplitude. To insure that they are not mismatched we must have a one-loop 

contribution to csw (we'll call the one-loop part c!&) such that 

[I1 one-loop, - one-loop, - csw x tree, = 0. 

Solving for cFb gives, graphically, 

The hatched blobs represent the sum of all the one-loop corrections. 
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From this perspective it is easy to understand why the naive "numerical im- 

provement" presented above doesn't work to remove all of the O(a) errors. We 

know that in QCD (or any QFT) scattering amplitudes get radiative corrections. 

Our simple matching didn't take these into account, so we kxpect that in addition 

to (3(a2) errors we will have O((x,a) errors. In a "typical" lattice simulation a = 0.1 

fm, as M 0.2 and /IQcD z 300MeV = 1.5fm-'. With these parameters the error 

from the one-loop corrections is 0.015, comparable to the estimated (3(a2) errors 

of 0.0225. Furthermore, if we are to achieve high precision results, we really must 

cancel the (3 (a2) errors as well, making it absolutely crucial to remove the me-loop 

errors. 

The situation is actually worse than this in some cases. Owing to the nature 

of the lattice regulated theory there are so-called lattice tadpole graphs, which can 

give errors that are not suppressed by powers of a. As we shall see in chapter 3 

for some quantities (such as the mean link) the leading perturbative error is really 

(3(as) = 0.2. We will see how to deal with these errors later in this report. 
- 
I \.ra tn +k- i - .+~-, .~ -..+-+% +kn L.~,.~~.....~ -.I-.. i -  &L-..- L L A ~ - ; - . .  ------ L - - J  L -  
Y Ub UW U U b  A U U U A b b  b U U W U l  U U b  I'bJUUlClAl I UlG3  111 C U G J G  bUGUJ.1GJ QLG VCly UQLU b U  

work with. We have developed a set of tools which allow perturbative calculations 

to be automated. These tools, and how we use them in lattice perturbation theory, 

will be the subject of chapter 3. 

The HPQCD collaboration has set a goal of achieving high precision results from 

lattice QCD. We want to compute a broad range of physical quantities with errors 

of a few percent. In order to do this we need all lattice spacing errors of (3(a4, (x2a2). 

This means that we need all of the action improvement parameters to either one or 

two loops of perturbation theory. This requires an ambitious perturbative matching 

program, which is now in progress. 

2.3.1 Improvement of the Staggered Quark Action 

The unimproved staggered action (1.53)has large (3(a2) errors, so it is desirable to 

improve it. Such an action was constructed in [ll], and is given, in the regular spin 
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basis, by 

and 

Here uo is a mean field improvement factor, which will be discussed at length in 

chapter 3. This action has errors of (3 (a4, cc,a2). 

2.3.2 Other uses of lattice perturbation theory 

Beyond matching of action parameters, there are many other uses of lattice per- 

turbation theory. We discuss two relevant examples here. 
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Operator matching 

Consider some lattice operator olatt, it will only agree with the continuum operator 

6, up to some order in the lattice spacing. That is we will- have 

We can make this a bit more precise. Consider the case where there is one lattice 

operator O0 with the same dimension as the continuum operator. There will also be 

a tower of operators, 6, with the same quantum numbers, but higher dimensions. 

These will be suppressed by powers of the lattice spacing. This allows us to write 

the connection between the lattice and continuum operators as (restoring the lattice 

where (g ,  . . .) indicates the dependence on all the couplings in the action, masses, 

the Wilson parameter r, etc, and d, is the dimension of the operator 6,. The 

overall factor of Z is conventional. 

The situation with the currents is the same as with the action parameters. The 

coefficients are calculable in perturbation theory, and can be tuned to remove errors 

to any desired order in aman. Often the coefficients C, are expanded further in 

some mass expansion. For example, if the mass is very large, we expect that C, 

will produce a set of corrections suppressed by powers of the quark mass. 

Determining a, 

Another very important use for lattice perturbation theory is in determining the 

strong coupling constant from non-perturbative simulations. This is a three-stage 

procedure. 

The first stage is to fix the QCD constants non-perturbatively. We need to fix 

the quark masses and a, the lattice spacing. This can be done by demanding that 
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the lattice simulation reproduce five experimental numbers'. For example, we tune 

the light quark mass until the pion mass comes out right. 

Once we know all the inputs we measure some extremely short distance quantity 

on the lattice. The simplest thing to do is to measure the average plaquette P. 

Now, the need for perturbation theory comes in. Assume we have a perturbative 

expansion for P, 

P = 1 + P,a,(q*) + P Z ~ : ( ~ * )  + - - 

Since we have a measurement of the left hand side of this equation, we can solve 

for a,(q*). Naively we expect the scale q* - n/a, that is the plaquette is evaluated 

at a scale near the cutoff. A precise method for determining q* will be given in 

chapter 3. 
- 

Finally we can use the conversion between the lattice coupling, and the MS to 

get a value for aMS(.rr/a). This result is usually scaled up to E = MZ and compared 

to other determinations of a. The lattice result compares favourably with the world 

average. The lattice determination of a, is particularly interesting since it involves 

input from both perturbative and non-pertkbative calculations. The agreement 

between this and other methods of determining a, is a very powerful argument 

in favour of QCD. Of course this whole program depends on being able to do the 

perturbation theory for a number of short distance quantities. We will address 

some of these calculations in chapter 4. 



Chapter 3 

Met hods for lattice perturbation 
theory 

3.1 The need for automation of bare perturbation 

theory 

As we mentioned in chapter 2 lattice perturbation theory is technically more com- 

plicated than standard continuum perturbation theory. The reasons for this are 

straightforward, the breaking of four dimensional Euclidean symmetry by the lat- 

tice regulator, and the non-linear connection between the link fields U, and the 

gauge fields A,. 

The breaking of Euclidean symmetry has a number of unfortunate effects. First, 

as we observed in chapter 1, the Feynman rules are trigonometric functions of the 

momenta, rather than polynomial ones. Clearly this makes manipulation, and 

simplification, more difficult. Furthermore, there are corrections to the vertices 

that vanish in the continuum limit, but are present in the lattice theory. These 

additional terms, along with the trigonometric functions, makes deriving and cal- 

culating with these large vertices very error prone. The number of terms in a vertex 
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is naively given by [26] 

L 

nr,e = O ( O +  1 ) - ( t + r -  1 )  ( r -  I ) !  

where r is the number of gluons, and O is the length of the curve in the action. 

This formula grows very quickly. For example, the 2 gluon vertex (r = 2) from the 

Wilson plaquette action (O = 4) only has 40 terms, however the six gluon vertex 

from the rectangular improvement term (t = 6) has 5544 terms. We will address 

the problems that this growth presents below. 

Another issue is the hard cutoffs of n/a on momentum integrals. This means 

that the traditional "textbook" tricks for loop integrals do not work. Of course, 

before one even thinks about evaluating the loop integrals, one must have a reliable 

way to generate the vertex functions. 

For striking example of the troubles that these issues can cause, we look at the 

four gluon vertex. In the continuum theory we have 

This is already a rather complicated expression. If we derive the four gluon vertex 

from the Wilson gauge action, we get the result shown in figure 3.1 (used with 

permission from [27]). Notice that the vertex is much more complicated than the 

continuum version, and this is just the simplest gauge action. Other actions, such 

as the improved gauge action, would generate rules that would fill many pages. The 

need for some more automatic method of dealing with such expressions is hinted at 

in the footnote shown on figure 3.1. The expression for is a corrected version! The 

original paper had an error. Even further, the page reproduced here has another 

error. The argument of the vertex on the left hand side is given as p, and on the 

right hand side it is k. This seems a minor point, but such errors are easy to make 

when typing complicated vertex functions into a text editor. Clearly then if we 
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want to perform perturbative calculations with improved actions we will need to 

automate the generation of these vertices. 

The non-linear connection between the gauge field and the link field 

is the origin of the complexity of the Feynman rules. Consider the part of the rule 

coming from $(x)~,(x)+ (x + a@). Expanding the link field will give a tower of 

vertices. There will be a quark-gluon vertex, a quark two-gluon vertex, etc. The 

first three terms in this tower are shown in figure 3.2. The same issue arises with 

the gluon action. In addition to the regular three- and four-gluon vertices, which 

are already very complicated, there is an infinite tower of higher order vertices, all 

of which get progressively more complicated. 

The situation is not totally hopeless. These vertices come with progressively 

more powers of a, so at a given order in perturbation theory we only need to 

consider a few of them. Nonetheless, given their complexity, it is essential to be 

dbk LW d ~ ~ ~ l l l d i k d ~ ~  gWleldk hX11. 

There is one further difficulty with the perturbative improvement program. 

The number of actions that have been proposed for use in lattice QCD studies 

is very large. Just for simulating fermions we have NRQCD, Fermilab, D234, 

clover, AsqTad, HYP, FLIC, domain wall, overlap, and more. Given this large, 

and increasing, number of actions we would like to have a method of generating 

Feynman rules that makes switching actions easy. In this way, once we set up a 

calculation it is relatively straightforward to change the action. This allows for a 

detailed study of the improvement properties of various actions. 

3.1.1 The Liischer-Weisz Algorithm 

Fortunately an algorithm exists which has most of the desirable properties we need. 

This is the Liischer-Weisz algorithm, first outlined in [26] (see also [28],[29] and 

[30]). The description of the algorithm given in [26] paper is somewhat opaque. In 
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242 Lattice Gauge Theories 

iv) Fermwnie and ghost contdut ioru 
, 

Consider first the contribution to (15.22b) arising from S(FW'[A,~,G].  For 
Wilson fermions it is given by (6.4), when the link variables are replaced by . 

(15.la). Expanding these in powers of +,, and introducing the dimensional fermion 
fields and gauge potentials according to (4.3a) and (15.36), one obtains up to 

* This is a corrected version of the expression given by Kawai et al. (1981). 

Figure 3.1: The four-gluon vertex, and an instructive footnote. 
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Figure 3.2: Terms in the tower of vertices generate by G(x) eig~Ap(X)~(x) .  

light of the central role it will play in what follows we will give a more detailed 

description here. Following that we will outline the implementation of the algorithm 

in the object oriented scripting language Python1. 

In general, a lattice gluon action is the sum of a number of "sub-actions", each 

containing a sum over the trace of some closed curve of links. That is, 

For example, for the Wilson gluon action there are six curves, corresponding to  

the plaquettes in various planes. Clearly it is sufficient to consider the problem of 

generating the Fevnman rules for a single curve at  a time. Our problem then is to  

generate the rules for the action, 

where 

L ( e )  = (constant) x ReTr [I - e] . 

I The vertex functions V will be given by expanding in go 

I One further requirement is that the vertex functions be totally symmetric under 

I permutations of any two gluon labels. 

I 'For an introduction to Python see [31]. Python is free software, available at the Python website 
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The problem is now clearly defined. We want an algorithm that takes a given 

link path e and returns the vertex functions V to some specified order r. The 

return should be in the form of a subroutine that represents the vertex in some 

convenient language (Fortran in this report, though any modern compiled language 

would work). These subroutines are subsequently used by another program which 

codes a given Feynman diagram out of the vertex functions, and which performs 

the loop integrations. 

The path e is given by a set of points on the lattice, starting at n( 1 ) and ending 

at n(!). For a plaquette in the xy plane these are 

Clearly knowing these allows us to specify the direction of any link. We write these 

as a sign s times a direction @ as follows, 

( i  - 1 ) - n )  = ( i )  p i ) ,  n(0) = n(!). (3.5) 

The list of signs allows us to tell if the link in the path is a daggered or undaggered 

one. This allows us to write the curve as 

with 

Xi = A,[il(n[il) if s[i]  = +1, and Xi = -A,,(n[i- I ] )  if s[i] = -1. 

Finally setting 
1 

we find 



CHAPTER 3. METHODS FOR LATTICE PERTURBATION THEORY 39 

We want to expand this expression in go. The trouble is-that the link fields are 

non-abelian, so the ordering matters. 

The solution of Liischer and Wiesz is quite simple. We start by picking one 

ordering of links, then sum over all the distinct orderings. To do the ordering we 

start at the origin of the curve, and move along it until we get to the first term igoX 

that contributes, this could be the f is t  link, the last link, or any one in between. 

We label it by ul, so the first term in our product igoXul . The index ul is going to 

run over all the links in the path 1 , . . . , t since the first contribution to the vertex 

function could have come from the expansion of any one of the links. 

We continue, looking for the next contribution. It could be from the same link 

(i.e. from an x2 contribution to the Taylor expansion of the exponential), or at 

another link, further along the path. We'll denote this contribution igoXUz, where 

u2 > ul .We proceed in this manner, until we have r gluons, arranged in an order, 

Finally: we sum over all possible orderings of this type; which gives the r g h n n  

contribution 

This solves the ordering issue. We can write the full Lagrangian as, 

with, 

We have to specify the factor in (3.11). This counts the number of times a 

single link contributes. A simple expression for the factor is obtained by counting 

the number of gluons coming from each link 
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I 

With this expression, we can write the full expression for the r gluon contribution 

We want the momentum space vertex functions, so we Fourier transform 

There are a few things about this expression worth detailing. The location of the 

field is given by the starting point of the curve x plus the position along the curve 

The factor of 1 /2 reflects the fact that the link connects the points x and x + a, so 

it makes sense to use the midpoint of that path as the transform point. The delta 

function ensures that the gauge field A will be polarized in the same direction as 

the link field. Finally, Ta is the element of the SU(3) algebra. This is the only part 
1 1  ~ u d i  duesu'i cummuie. 

We use the expression for the Fourier transform in (3.13), which gives 

To clean this up a bit we write the colour factor as 

and we extract the function 
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Using these expressions in (3.3)) along with, 

gives 

The final step in the derivation is to symmetrize under permutation of any two 

gluon indices, as follows 

Here iP, represents the sum over all permutations of the labels 

All that we need to automate is the generation of the unsymmetrized parts of the 

vertices Yr, the colour factors and symmetrization are trivial to implement, by 

hand. 

To automatically generate the function Y we rewrite it as 
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n [ij a [ij 

Table 3.1: Curve parameters for a plaquette in the xy plane. 

where 

These expressions entirely are determined by the indices ul, . . . , u,-. This fact allows 

us to construct a dictionary, indexed by p1, - - - , b, with entries f ,  a[ul], - , a[uJ. 

Then, to build up the vertex we sum up all the terms which contribute to each 

orientation, for a given set of input momenta. 

Example 

To make these ideas clear, we will construct Y:, , (kl , k2) for a plaquette in the xy 

plane. The input to the algorithm is a list of points, specifying the curve. From 

these we can construct the lists s, p, p and a, using (3.5) and (3.15). These values 

are enumerated in table 3.1. 

These values allow us to compute the values for the cx constants, which count 

the number of gluons from a single link, and, with those, write down the f factors 

defined in (3.22). These are enumerated in table 3.2. With the a vectors from 

table 3.1 and the f factors and delta functions from table 3.2 we can assemble the 

dictionary for the Y,, , vertex. For example, the entry for p1 = p2 = 2 has three 

terms associated with it, which are listed in table 3.3. With these values we can 

construct 
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Table 3.2: Front factors for the two gluon expansion of plaquette in the xy plane. 

Table 3.3: Terms in the (2'2) dictionary entry. 

Clearly, if we had the contents of tables 3.1 and 3.2 we could write out a Fortran 

source file that would compute Yu for given input momenta. We could clearly do 

the same for all of the other directions, we won't write them all out. This method is 

clearly quite labour intensive, even for this simple case. Once again this illustrates 

the need to automate the generation of the vertex rules. The algorithm described 

in this section is easily implemented in a symbolic computer language, as described 

next. 

a [21 

T0,l.O.Ol 

front factor 
1 -- -, L 

a[l  ] 

TO.1.0.01 
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Implementation in Python 

The implementation of this algorithm in Python is straightforward. We start with 

a path 

path = [(O, 0,0,0), . - . , (endpoint)] (3.23) 

and assign the n's, moving around it. Once we have the ns, a subroutine computes 

the signs s, direction vectors 0, directions p. and gluon positions a. With these we 

can construct the factors f. 

The delta functions in the f factors are used to figure out which entry a term 

belongs with. For example 

f = f06pl16,36,4 (3.24) 

gets put in the entry indexed by (1,3,4). To save a bit of space, if the entry already 

has a term 

[f;, abd,  d u d ,  a[u311 (3.26) 

we just add the two front factors, so the two terms get replaced by 

Note that for any term with f = 0, either by this addition or the delta functions, 

we don't write into the dictionary. 

The end result of this procedure is a dictionary (hash table) with entries indexed 

by the Lorentz indices. From this point it is easy to construct a source code (e.g. in 

Fortran) which implements this table in a form for later use in evaluating Feynman 

diagrams. We use a template to write a standard file, which defines a subroutine 

that takes the momenta as arguments and outputs the unsymmetrized vertex 
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Note that compared to the cost of performing the loop integrations the cost of 

generating the Feynman rules is trivial. For the most complicated case considered 

here, the two gluon vertex generated by the improved staggered fermion action, it 

takes a few minutes to generate the vertex tables. 

Pick one entry, say (1,3,4) for a three gluon vertex. This entry will have a 

number of terms of the form 

f ,  a1, a29 a3. 

The vertex writer steps through each of these terms, writing (in the first version 

of this code, "writing" meant literally writing a term of this form into the Fortran 

subroutine) 

~ ( 1 , 3 , 4 )  = ~ ( 1 , 3 , 4 )  + f e i ( k ~ ~ ~ + k 2 . ~ 2 + k 3 " ~ 3 )  (3.29) 

for each one. In this way we build up the vertex. Actually, to save more space, we 

write only the non-zero parts of the dot products. For example, with 

we write 

Y(1,3,4) = Y(l ,3,4)  + fei(k:+4+2q). 

After all the entries have been summed over we have the unsymmetrized vertex, 

we can easily take the product with the colour factor, and symmetrize the result. 

Clearly the procedure we have just outlined satisfies our requirements, it au- 

tomatically generates the Feynman rules without any human intervention at  all. 

Furthermore, the only inputs are link paths, so generating new sets of rules is easy. 

By breaking the action S up into a sum over the various curves it is clear how to 

add new operators to the action. 
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3.1.2 Adding Quarks 

It is also straightforward to extend this algorithm to quark actions; we just have 

to make three small changes. The structure of a quark operator on the lattice is a 

bit different than a gluon one. Whereas a gluon operator is the trace of a closed 

curve, a quark operator is a line of links joining two quark fields. For example, we 

might want to consider 

This highlights the three changes we have to make, taking the displacement of the 

quark field into account, changing the colour factor, and allowing for open paths. 

To take the displacement of the quark field into account we note that the Fourier 

transform of the field displaced by some distance d is 

M 7 .  1 f l  I . P 1 1  1 .  7 -  A C 
I I I IS  S;,I:IWS i.Ildi. i.ile i..lie I.,!I~ v ellet..!., ill JJ~I-I~~~I--~. 51 M I  .I+ 1.1~ !.l,.c [.t!s[ B I A I  .el I I ~ I  I I ,  1-11 

A- - - -  - 1  A--- - 

the quark field is to multiply each term in the vertex by the factor eik'd. From an 

implementation perspective this is a trivial thing. For quark vertices we check the 

endpoint of the path of links (n[t] = x,) and multiply each term by exp (ik - x,). 

This also reproduces the correct "no-gluon" vertices that we need for the quark 

propagator. 

Changing the colour factor is just as straightforward. There are two major 

changes, since the action is now 

we don't have the trace over the colour matrices TI 

trace. So the colour "factor" in this case becomes 

and there is no real part of the 
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Working with these matrix products typically involves working out the colour factor 

for a diagram in advance, and only keeping certain parts. 

Finally we have to slightly change the way we define the path. For a closed 

path we stopped one point away from the initial point, and imposed the condition 

n(0) = n(t) (see (3.5)). With an open path, we set n[O] to the initial point, and go 

up to n[t]. That is, (3.5) gets rewritten as 

This is the only change, after that everything proceeds in the same way. 

One further issue comes up with quark paths. Unlike gluon paths, quark oper- 

ators typically have a direction. For example, the link operator is 

This is a component of the operator yFD, so in order to deal with quark vertices we 

need to keep track of the spin indices. For example, for ypD, we use the automatic 
---- L --_ - --- 
V C ~  IXA geueiaivl iour times to get ruies for 5,) E,, etc. Then, in the Fortran code, 

multiply each vertex rule by the appropriate gamma matrix. For this work we just 

keep track of these by hand, however they could be automated as well. 

3.1.3 Large vertices and performance 

One of the key problems with the LW algorithm is that the vertices it generates 

grow very rapidly as they get more complex. As we mentioned above the growth 

is factorial in the size of the input path and in the number of gluons, that is 

2 
n~,e = t ( t +  l ) - . . ( t + r - 1 ) .  (r-  I ) !  

(3.36) 

This can result in very large Fortran source files, which are slow to compile and 

produce extremely large object files. 

There is a simple way to fix this problem, at least for the actions we will be 

considering here. The key is that every term has the exact same form (3.29). The 
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Figure 3.3: Gluon loop contributions to the gluon self energy. 

various quantities (f, {ai)) change from term to term, but the form of the terms do 

not change. We can avoid the large source files by writing the varying parameters 

into a text file, and reading them in at run time. This avoids needless compilation 

of thousands of instructions. 

Of course, we cannot avoid the double factorial growth altogether; this is inher- 

ent in the complexity of the Feynman rules, and there is only so much reduction we 

can do. By reading in text files we trade the problems of large source and object 

files into a problem with large arrays. That is, after reading in the text files we have 

large arrays in memory. Now assume that we want to calculate a diagram with this 

array. We have to run the whole array in from memory, through the CPU's cache, 

gets very slow. 

3.1.4 Bare perturbation theory 

Once we have generated the Feynman rules, the remainder of our perturbative 

calculations are done in a very straightforward manner. We use our Python scripts 

to generate the Feynman rules that we need. For example, let's say we wanted 

to compute the one-loop contributions to the gluon self energy from diagrams 

involving gluons. There are two diagrams, shown in figure 3.3. For these diagrams 

we need three different Feynman rules, the two-gluon vertex (which gets inverted 

to make the propagator) V$(k, -k), the three-gluon vertex V$i(kl, k2, k3) and the 

four-gluon vertex V$'$(kl, k2, kj, k4). These are the symmetrized rules, built from 

the automatically generated unsymmetrized ones. 
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Gauge fixing and measure terms 

Just like in the continuum theory we need to do gauge k i n g  in order to remove the 

redundant gauge degrees of freedom from the path integral. This is just the usual 

Faddeev-Popov method outlined in any QFT textbook applied to the discretized 

action. 

Another issue for lattice perturbation theory is the conversion of the lattice 

path integral measure D[U], which integrates over link fields, into the gauge field 

integration measure D[A]. The connection between U and A is non-linear, so we 

expect that we cannot just substitute 

This is indeed the case, and we need to properly derive the connection between 

the two integration measures. This is a standard exercise in group theory, though 

fairly long. We refer the interested reader to [27] and merely quote the result here, 

where 

In this report we will only need the first term in this series, so for our purposes we 

can use 

D [U] = D [ ~ ] e - ~ h [ ~ l  (3.39) 

where 7 

In addition to the measure terms, we need to fix the gauge in the path integral. 

To do this we will use the Faddeev-Popov procedure. Once again this is a standard 

result, and we provide a brief summary of the development in [32]. 
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We start with the path integral for the gauge field2 

Here D[U] is the (gauge invariant) measure we discussed above, and Sw[A] is the 

Wilson gluon action (or any other gauge invariant improved action). On the lattice, 

a gauge transformation is represented as 

It is sufficient to consider gauge transformations infinitesimally close to the unit 

transformation, so we write 

dropping all higher order terms. Under such a transformation, the gauge field A 

transforms as follows 

where 

and 

X 
E-' (x) = 1 - e-x' 

We wish to use a covariant gauge fixing, so we introduce the gauge fixing function 

4 

fC(A(x))  = ALLAC,(x) = 1 (A;(x) - AL(x - P)) . (3.46) 
~1 

Under an infinitesimal gauge transformation we find, using (3.43) 

2We omit the fermion action in this discussion, so long as it is gauge invariant, nothing changes, 

just replace Sw[Al by Sw[Al+ SF [$, I), A]. 
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where we have introduced the Faddeev-Popov operator 

We denote the gauge transformed field by AA(x). Equation (3.47) shows that 

if we transform from the variables fC(AA(x)) to wb(x) the Jacobian is just M. 

Defining the determinant of the Jacobian, or the Faddeev-Popov determinant, as 

Af [A] = det M[A] (3.49) 

we see that the integral 

is a constant. 

Returning to the original path integral, we have 

since everything in this expression is gauge invariant. Now we are free to multiply 

this by the constant (3.50) 

Transforming to A gives 

We can drop the integral over w as it is an uninteresting constant. 
2 

Next we integrate over g with a Gaussian weight ezc, which gives 
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Finally, we express the Faddeev-Popov determinant as an integral over ghost fields 

This expression can be expanded in the gauge coupling to generate Feynman rules 

for gauge field-ghost interactions. This can be done by hand, the explicit expression 

is well-known [26]. 

With the gauge fixing accomplished there we can easily implement the diagrams 

shown in figure 3.3. For example the tadpole diagram is 

We assemble the diagrams by hand, and then numerically integrate them. To do 

the numerical integrations we use the VEGAS routine [33]. In this way we have 

performed all of the calculations in this report. Many other calculations have also 

been performed by the HPQCD perturbation theory group, using this same basic 

approach. 

The numerical integrations are typically well-behaved, however we can run into 

problems when the integrands have contributions from widely separate scales. We 

will discuss these issues as they arise in the forthcoming chapters. 

3.2 Issues with bare perturbation theory 

The general Liischer-Weisz algorithm has been understood since 1985. Why, then, 

has lattice perturbation theory not been applied widely? One reason is that even 

with the Liischer-Weisz algorithm, these perturbative calculations are very diffi- 

cult. Another reason is that for many years the predictions of lattice perturbation 

theory disagreed substantially with non-perturbative calculations of short distance 

quantities. 
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As an illustration, we consider the perturbative versus kon-perturbative deter- 

minations of the mean link. Working at = 6/gg = 6 the one-loop perturba- 

tive value for the mean link in Landau gauge is = 0.078, compared to the non- 

perturbatively determined value 0.139. At this f3 we have a, = g2/4n z 0.08. 

Such disagreements were typical of any comparison between perturbative and non- 

perturbative results for short distance quantities. According to our quick estimates 

in chapter 1, perturbation theory ought to work very well in this case. This failure 

of lattice perturbation theory meant that the perturbative improvement of actions 

could not be trusted, and hence doomed lattice field theory to waiting for computers 

to become powerful enough to work "brute force" at very small a. Alternatively, 

symmetry considerations can be used in some cases to design improved actions 

and operators without recourse to perturbation theory. These non-perturbative 

techniques are beyond the scope of this report, for an up to date review see [34]. 

In a groundbreaking 1993 paper [35] Lepage and Mackenzie solved this issue. 

They showed why perturbation theory was disagreeing with the non-perturbative 
r r r ~ r . . ~ - + . r r - n  - - A  n. .nrr f in+nA mrrvro t r r  ;mrrrrr*a t h e  ~-narnan+ it t G r a e  t h m a  ri;Gar- 
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ent techniques to fix the perturbative series, we review them here. Of the three, 

two (better expansion parameter and scale setting) are well-known in continuum 

perturbation theory, and one (tadpole improvement) is unique to the lattice. 

The first problem with pre-Lepage-Mackenzie lattice perturbation theory was that 

perturbative expansions were typically done with the bare lattice coupling. This is 

a bad choice of expansion parameter. In general, using a bad expansion parameter 

can result in perturbative series that are technically correct, but practically useless. 

To see this, lets assume we have a well behaved perturbative series, 



CHAPTER 3. METHODS FOR LATTICE PERTURBATION THEORY 54 

where all the coe4icients are (3 ( 1 ) and x 1. If we then m.&e a transformation 

The second order coefficients become very large. If we look only at the power of x 

the two series are equally good, but in practice the series in xbad will badly disagree 

with data. 

The solution to this problem is fairly clear; use a good coupling. There is no 

unique choice for what to use as a good coupling. Lepage and Mackenzie suggested 

using a physically motivated choice. For example, we can define a coupling a v  such 

that the short distance QQ potential has the form 

to all orders. 

Equation 3.58 gives us a means to convert a 0  to av. We compute V(q) as a 

series in ao, 

The connection can be read off, 

Perturbative series that are expressed in terms of a v  have much better convergence 

properties than those expressed in terms of a o .  We will discuss the computation of 

the connection between the two couplings later in this report, for now we simply 

quote the long known result for the Wilson gluon action 

It is the large constant term 4.702 which is causing the problems with series ex- 

pressed in terms of ao .  We would like to understand the origin of these large terms, 

and if possible arrange perturbation theory such that they don't occur. 
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3.2.2 Tadpole improvement 

The large terms are due to so-called lattice tadpole diagrams in perturbation theory. 

Consider the perturbative expansion of the link variable, 

Taking the expectation value we find 

so naively we expect that perturbative series will reproduce the continuum predic- 

tion (1) up to 0((ga)2)  errors. 

Unfortunately this naive expectation is not correct. The reason is that the 

correction term 

can be written (in Feynman gauge) 

-. - 
(A,(x)A,(x)) = 2 " ;;I' 

J-a t4 [ z  a sin (?)I 
When multiplied into ( g a) this cancels the a dependence, giving only a suppression 

of (3(g2). Note that this problem is not present in the continuum, these power 

divergent diagrams vanish in dimensional regularization. 

Impact for high precision lattice QCD 

These tadpole diagrams are disastrous for improving lattice QCD. Recall the im- 

proved quark action of chapter 2, 

r 
ssw = $CX) [Y,D'- zA + CSW~,F'~ + m0] ](x). 

We argued that with csw = 1 this action would be correct to (3(a2, aa). In im- 

provement coefficients they cause the perturbative errors to be much larger than 



CHAPTER 3. METHODS FOR LATTICE PERTURBATION THEORY 5 6 

expected. For example a correction that is expected to be 1 x a, might turn out 

to be 6 x a, due to the large tadpole contribution. 

Fortunately there is a way to at least partially remove these errors without 

perturbative calculations. Rather than using the bare link variable U, in non- 

perturbative simulations, one uses a 'Ltadpole-improved" link, d,(x) = y. Here 

uo is some measure of the average value of the link variable (common choices are 

the mean link in Landau gauge, or the fourth root of the average plaquette). 

Recall the original Wilson gauge action, 

Multiplying and dividing by u:, and setting lj = g/ug we find, 

* 

Using the action in this form results in much lower errors, and perturbation theory 
. - .  . - - 62 . 
in ; i s  II.r,uch bitpr bph2~mn_. fZCt the piatinE3Bin h ~ i m ~ ~ n  - i~ ann N., ha" 

s? -------- 47c -- --"  -- 
no large constants. Evidently & is another "good" expansion parameter. 

3.2.3 Scale setting 

A final issue for lattice perturbation theory is determining what energy scale to use 

in the strong coupling. Recall from chapter 1 that the strong coupling constant 

varied with energy. At lowest order in perturbation theory we have, 

The issue for lattice perturbation theory is to determine what value we should use 

for E. For the purpose of this section, a more convenient expression for a is 
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We are trying to  correct for physics that has been excluded by the UV cutoff, 

so we might try using E = q* = n/a as our energy scale. While this reasoning is 

correct, it is not a particularly precise way of determining the ideal q*. We would 

like to have a more precise way of setting the scale. 

A general one-loop term in a perturbative series has the form 

We might try to determine q* by setting 

This will produce an average value for q*, but we must be careful about using 

equation 3.65. As we've written it, it will produce a divergent integral. The key is 

to expand 3.65 to the correct order in a 

Using (3.67) in (3.66) and solving for log(q*') gives 

Using av(q*) rather than av(n/a) in perturbative series can result in still better 

agreement with non-perturbative simulations, there are examples of this in [35]. 

Troubles with q* 

The simple definition of q* outlined above suffices for many lattice calculations. 

However, it can fail in some cases of interest. For example when the denominator 

vanishes (or gets anomalously small) the formula (3.68) clearly doesn't apply (or 

gives anomalously large values for q*). The solution to this problem is to use a 

higher order expansion for av(q) .  This procedure is outlined in [36], along with 

detailed examples of its use. 



Chapter 4 

Link operator results 

In this chapter we will consider the perturbative expansion of various operators 

built out of links. There are four operators we wish to consider. The first, and 

simplest, is the mean link. That is the expectation value of a single-link operator 

(U,) . This is a gauge dependent quantity. 

Another simple gauge dependent quantity we can consider is the expectation 

value of a line of links in some direction. This is known as a Wilson line of length 

L, where L is the number of links in the line. We will denote this as P(L). Again, 

this quantity is gauge dependent, except when the length of the line is equal to 

the length of the lattice. The Wilson line is a important quantity, because the 

self-energy of a static quark can be extracted from the Wilson line's overlap with 

the ground state. That is, 

lim (P(L)JO) = ce-hL. 
L+oo 

The static quark self-energy Eo is gauge invariant, but the overlap c is not. 

From the Wilson lines, the next most complicated quantity is the static quark 

potential. By computing the correlation function of two Wilson lines, we can extract 

the potential. We outline this in more detail below. We work in the L -+ co limit, 

which gives gauge invariant results. 

Finally we would like to compute the expectation values for various small closed 
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paths. The simplest of these are Wilson loops, that is rectangles of length R and 

width T in a plane. These quantities are gauge invariant and will be denoted as 

wm, TI. 

All of these quantities are important to know in perturbation theory. The mean 

link is an input into tadpole improved lattice simulations so it is useful to know. 

Typically it is measured non-perturbatively, however the perturbative result could 

be used. The Wilson lines and static quark potential are needed to compute the 

relationship between % and av as discussed in chapter 3. In addition, if we have 

a calculation for the static quark potential in the continuum theory we can use the 

lattice calculation to relate av to %. Finally, as outlined in chapter 2, perturbative 

expansions for small Wilson loops play a vital role in extracting the strong coupling 

a from lattice simulations. 

4.1 Gauge field actions 

-. 
I T  is r i o c i r a h i o  i n  p n n e i A o r  P P  m i r i m  a r D n r r o  n C  m s i 7 m a  i i n i r i  P r ~ i n n c  s c  ma r g n  s T n  T ~ P T  " -""""-'- " ""^"A""* ..., .."" " V* (j"Y.b" U Y I U  U " Y A V U "  U .." "UY. * V  Y Y U Y  

end, we report results in this chapter for three different gauge field actions. The 

first is the unimproved Wilson gauge action. That is, 

where P, is the trace of the plaquette, as detailed in chapter 1 and = 3. Most 

of the things we calculate using the Wilson action have already been computed, so 

we can use this action to test our methods. 

We also consider the Symanzik improved action of chapter 2, 

where 
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At this point, there are a number of ways to go about tadpole improving this 

action. We choose to only consider the additional tadpole factors generated by the 

rectangle terms, since there are two additional links in the rectangle we get two 

powers of the average link. That is, our action is 

where 

The counterterm generated by the 1 /u$ factor will cancel some, but not all, of the 

large second order coefficients. The remainder will be dealt with by converting to 

av. 

Both of the previous actions have uncorrected (3(aa2) errors. An action which 

removes these is [37], 

where 

This action is is highly improved, it's errors are (3(a4, cx2aZ). The term C,, is a 

six link "chair term" defined by 

Note that this prescription for improvement is not unique. There are other redun- 

dant operators that can be used instead that would also remove the errors. Our 

perturbative methods could be applied to them as well. 
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We present our results for an expansion in the bare lattice coupling Elatt = 

g2/(4n). We include tadpole counterterms for (4.5), which are generated by the 

first order expansion of the mean-field in the rectangle terms. In this chapter we 

use the mean-field, uo, defined by the average plaquette which, for the action of 

(4.5), is given to first order by uo x 1 - 0.7671 alatt. Our second order results also 

included the counterterm generated by the 1 x 1 x 1 paths in (4.5). 

4.2 Twisted periodic boundary conditions 

A problem that comes up repeatedly in doing perturbative calculations is that 

most of the quantities we wish to compute are infrared divergent. In a matching 

calculation these divergences must cancel, since the lattice and continuum theories 

are the same at long (> a) distances. For this cancellation to work we must use 

the same infrared regulator for both theories, we will return to this point in chapter 

6. 
--- --- 
I!;I~ wnuiQ l i k e  tc h z T e  a gauge i~.zrizi inezrefi rerLiit~r. \.n!e zeeri_ +is +~=cce  

we are doing second order calculations, so a gluon mass (which is a more traditional 

IR regulator) could destroy the gauge invariance. Another infrared issue that comes 

up occurs when we compute on a finite lattice with periodic boundary conditions. 

In this case, integrals over the lattice momentum 

which are well behaved, become badly behaved lattice sums 

The trouble is that the zero-mode nl = nz = n3 = n4 = 0 is only properly treated 

in the L -+ oo limit. 
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I 

There is an infrared regulator that is both gauge inmiant and removes this 

zero-mode problem, twisted periodic boundary conditions [38]. We review twisted 

boundary conditions here in some detail; even more technical detail can be found 

in [26]. 

We consider a lattice with volume L4, with regular periodic boundary conditions 

in two directions (zt), and twisted periodic boundary conditions 

U,(x + LQ) = ~ , u , ( x ) R ~ ,  p = X, y , (4-8) 

in the other two. The twist matrices 0 are constant elements of SU(N). We can 

solve for the twist matrices by considering the effect of a crossing both the x and 

y boundaries. There are two ways of doing this, applying (4.8) in the x then y 

directions, 

u X ( i  + L, I + L,Z, t) = n x n y u X ( i ,  I , Z ,  t)ntn;, (4.9) 

or applying (4.8) in the y then x directions, 

These two possibilities must be equal. Enforcing this, right multiplying both sides 

by (wx)t and left multiplying both sides by n X n y ,  gives 

In order for (4.12) to hold for an arbitrary link element ( ~ ~ R ~ ) t f 2 ~ f l ~  must be 

an element of the centre group of SU(N ), Z(N ). We define z = eZmIN, to get 
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This equation can be solved for an explicit set of twist matrices, however we do 

not need to do this for perturbative calculations. Instead we consider the effect of 

twists on the gauge fields A,(x). 

The gauge fields are related to the link fields via 

We find that the gauge field must satisfy 

A,(x + LQ) = fl,~,(x)@,. (4.14) 

We wish to have an expression for the momentum space gauge field, so we try the 

Fourier decomposition 

Rather than expanding in the traditional colour matrices Ta, we have expanded in 
- ..-A -f A - : - A - ~  --A-:--- r -L:-L -- A-I - -  A -  L- ----- L.- 2 2 - - A  TXT- 
a JCL UL I, w L J ~ C U  LUIUUI I L L ~ L L I L C J  I k_ WULU WG ~ M C  b u  UG LLLULLICUI,UUI UG_UGUUGUC. V V G  

will derive conditions on these matrices below, but one important point is that we 

have traded the traditional colour degrees of freedom a = 1 ,  . . . ,8 for additional 

momentum degrees of freedom. 

Fourier expanding both sides of (4.14) we find the condition on the twisted 

colour matrices 

i2JkflL = eikLrk. (4.16) 

We left multiply both sides of this with N - 1 more 0,'s and right multiply with 

N - 1  more fit's. This gives 

Using (4.16) repeatedly on the right hand side, and fly = on the left we 

find 
N-1 iNbLr ( - 1  e k . (4.18) 
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This is solved, up to an arbitrary phase factor, by 

That is, in the twisted directions there are three times as many momentum modes 

as there would be for periodic boundary conditions. An explicit solution of (4.18) 

with a convenient choice of phase [39] is 

The twisted momenta, for the purposes of solving (4.18), are defined-modulo 

N. This means that there appears to be N~ choices for the n, and n,, values in our 

solution for rk. This is not quite the case. Consider the n, = n, = 0 mode, which 

gives the N x N identity matrix INxN.  Note that we must have 

Since Trf = N we must have 

A(k, = O(modN), k, = O(modN), k,, kt) = 0. (4.22) 

This is the crucial property which makes twisted boundary conditions appealing. 

The zero-mode k, = k, = k, = kt = 0 is excluded from the theory. The bad lattice 

sum (4.6) becomes 

where xk = 0 if kT = O(modN), and xk = 1 otherwise. We've introduced the 

notation 

kT = O(modN), 

which means 

n, = O(modN), and n,, = O(modN). 
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The sum (4.23) has no zero-mode, so it is well behaved. 

There are a few other properties of the rks that we will need. First, the N2 - 1 

remaining matrices must be traceless 

Notice that there are N~ - 1 remaining matrices, which is the same as for more 

traditional colour basis. Two other properties of these matrices we will need are 

which trivially follow from (4.20) with our choice of phase. 

Twisted colour factors and smell 

It is actually easier to work with this sort of colour factor. Repeated use of (4.26) 

allows all of these colour factors to be reduced to the form 

The trace will be zero unless we have 
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which enforces momentum conservation on the twisted momentum modes. Assume 

that the momentum conservation condition is met; we have Trb = N,  so the colour 

fact or is 

C ( k l , - . - , k )  = f ( k l , . - . , k ) .  (4.30) 

An example should make this clear. We consider the three-gluon colour factor, 

1 
C(kl,k2,k3) = - n [ r k l r k z r k 3  - rk3rkz rk l l  N 

1 
= -2 [Z(nl ,n2)rkl +kz b3 - Z(n3, n2)rk3+kz hll N 

Clearly this is the sort of procedure which lends itself to automation very well. 

In order to treat quarks in this formulation, we must express them in this new 

colour basis [40]. This is most easily done by introducing an additional SU(N') 

symmetry group for the quarks, this is known as the smell group [41]. Here we 

take N'  = N. We must modify the quark action to take this into account. Take 

the mass term (MT) as an example. In the ordinary colour basis we write 

We introduce N copies of this, one for each smell, 

N . .  

where the quarks are now N x N matrices in colour-smell space, and we have used 

The sums now just give the trace, so we have 
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This is general, for any term in the quark action, we replace the quark fields by 

colour-smell matrix fields, and take the trace. Analogous to (4.15) we have the 

Fourier expansion of the quark field 

With this modification, the colour factors for the quark actions are just 

1 
c f ( ~ , k l ) . - . ) k , ~ )  = ji,Tr [ a r k ,  . - . r k T r p ]  ) (4.37) 

where p (P) is the incoming (outgoing) quark momentum. These factors can be 

worked out by using (4.25) and (4.26). Again, they are easy to automate. 

Triple Twists 

One can take these boundary conditions one step further and twist in the z direction 

as well. By going through the derivations of the f2 twist matrices again, one finds 
~ 1 - L  - 1 1  r 1 1  1  1  1  . 1  1  r 1 1  1  r 4 - 1  
LI I~II .  ~ I I I  III IIIII i ] t r v ~ t ) ~ ~ h  1 r h 1 1 1 1 . h  IIIIIII, W I I . I I  IIIIP ~ I I I I . I ~ ~ I  I IIIIIIILIIIII I+I.I 

L J 

So in addition to the zero-mode being eliminated by nl = nz = 0, all modes that 

do not satisfy this new condition are gone. This eliminates many momenta from 

sums. 

4.3 Results in Q 

We return to the results of our perturbative calculations. All of the results in this 

section have been derived using triple twisted periodic boundary conditions. To 

perform the mode sums we used the following identity: 
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where INT(x) is x truncated to an integer. This allows us to evaluate sums over 

lattice momentum using the VEGAS numerical integration routine. 

We start by considering the static quark potential. We can use it to define a 

renormalized coupling av, which can be used as the expansion parameter for other 

quantities. To compute the static quark potential we take the correlator of two 

Wilson lines of length LT, separated by a distance R, < O(R, LT) >. The static 

quark potential is then given by 

-1 
V(R) + 2Eo = lim - In < O(R, LT) >, 

L T + ~  LT . 

where Eo is the self-energy of an isolated quark (see below for our calculation of 

this quantity). Expanded in the bare coupling the static quark potential should 

have the following form [35] 

where Po = (1 1 - 2/3nf)/(4n) and C(R) is a function of R which goes to a constant 

as R + oo. 

As mentioned in chapter 2, the static quark potential is used to define a renor- 

malized coupling. This is done by demanding that the Fourier transform of (4.41) 

have the form 

Using this definition, we obtain the expansion for the bare coupling in terms of the 

physical one, 

Note that by explicitly doing the Fourier transform, we have 

where YE = 0.57722. . . is Euler's constant. 



Figure 4.1: Leading order correlator of Wilson lines for R = 3, using (4.3). 

Fitting V(R) 

Extracting V(R) from the correlations is quite difficult, we will outline the proce- 

dures in some detail. The central problem is that we are computing 

-1 
V(R) + 2Eo = lim - In < O(R, T) > . 

T t o o  T 
(4.45) 

The trouble is that V(R) ;;: and Eo = constant, so the signal we want is swamped 

as we increase R. As we shall see, this problem is very hard to surmount. 

To extract V(R) we start by taking the T + oo of a number of correlators, 

5 T ln(O(R, T)), at a number of fixed R values. Figures 4.1 and 4.2 show the corre- 

lators at R = 3. We fit functions of the form a + b/T + c/T2 to them and keep only 

the constant part a. We do this for 9 values of R from 1 to 9.  This gives values 

for V(R) + 2Eo. The NLO piece is shown in figure 4.3, the "swamping" of the 1 /R 

potential is clear. 

We can do somewhat better by globally fitting all of the data to a function 

of the two variables R and T. We can use Bayesian fitting methods [43]. In this 
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Figure 4.2: Next to leading order correlator of Wilson lines for R = 3, using (4.3). 

Figure 4.3: Next to leading order potential and self-energy, using (4.3). 
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, 

approach we try a fitting function with many parameters 

The Bayesian fitting routine allows us to use a large number of parameters, in- 

creasing the quality of the fits. We can also make use of the known form of the 

potential, and independent determinations of the self-energy (see below) to fix some 

of the terms in the fitting function. For example we can fix fo = 2Eo, using our 

calculation of Eo reported below. Even with these techniques, the results are still 

hard to extract, and the fundamental problem of suppression with 1 / R  is hard to 

surmount. 

As a test of our calculations we reproduced 

gluon action, = 4.70. We have also determined 

Using (4.3) we fine 

= 2.94(77), 

and with (4.5) we have 

the known result for the Wilson 

c for the improved gluon actions. 

(4.47) 

/ A  AO\  
{-r.XU! 

We could easily recompute for other gluon (and quark) actions, and with other 

definitions of uo. 

In addition to the static quark potential, we have computed a number of other 

quantities. Tables 4.1, 4.2, and 4.3 give results for the logarithms of small Wilson 

loops, whose perturbative expansion is defined by, 

We also give results for the scale q* in table 4.1 and 4.2, the scales for the one loop 

improved action (4.5) are the same as those reported in table 4.2 for the tree level 

action (4.3). The results for the Wilson action agree with those of [44]. 

We have also computed the static quark self-energy Eo through second order. 

We define the self-energy Eo(L) on a finite lattice according to 
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Table 4.1: Perturbative Wilson loops evaluated using Wilson glue, errors are from 

the VEGAS integrations. 

Table 4.2: Perturbative Wilson loops evaluated using (4.3). 

Table 4.3: Perturbative Wilson loops evaluated using (4.5). 
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Here P,(L) is the Wilson line on a lattice of size L4. For an. infinite volume lattice, 

we consider lines of length L, which are gauge miant ,  and extrapolate L t oo. 

The infinite volume extrapolation agrees with earlier estimates, Eo = 2.1 1 72alatt + 
1 1 .I 52aitt.  The finite volume results were used in a determination of the third 

order self-energy, using Monte-Carlo met hods [42]. 

Finally, we have computed the mean link in Landau gauge. In agreement with 

earlier determinations we have for the Wilson action, 

For the tree level Symanzik improved action (4.3) we have the new result 

and for the one-loop Symanzik improved action (4.5) we report, 

The methods for automatic vertex generation can also be readily applied to 

~ulupli~died iel~lliuui~ d~iiuus. Fi)1 exdupie,'we ~vulpuied ihe r l f  pcu i u i  ihe averdge 

plaquette at second order for improved staggered fermions [ll] .  We find: wZ( l , l  ) = 

1.958(2) - 0.06969(4)nf. 

4.3.1 Application of these results 

As we outlined at the end of chapter 2 the results in this chapter can be used 

in conjunction with non-perturbative simulations to extract the strong coupling 

constant, a,. In practice, the methods outlined here do not provide the most 

practical way of doing the perturbation theory for the connection between av and 

aiatt. Other methods have been used, to rederive these results with lower errors, 

and to higher orders[45]. 

The results presented in this chapter came before [45], and provided very valu- 

able independent checks of these newer results, which use a background field tech- 

nique for the matching, rather than the static potential. 
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, 

Another use for the perturbative potential reported here is to provide another, 

independent, determination of a, from Monte Carlo simulations, using measured 

values of the static potential at short distances, instead of small Wilson loops. The 

perturbation theory will eventually be used to correct the simulation results of the 

static potential for lattice discretization errors. 



Chapter 5 

Fermilab Quarks 

As we discussed in chapter 1, a central problem in high-energy phenomenology is to 

determine the elements of the CKM matrix. Looking at (1.9) it's clear that those 

involving heavy quarks are not known very well. Furthermore, the complex phase 

of the matrix, related to the parameters p and q in the Wolfenstein parametrization 

(1.10), are only accessible via the heavy quark sector of this matrix. 

This alone makes heavy quark physics a relevant subject for study. Combined 

with the active experimental program in this field, heavy quark physics has been 

and continues to be a very active area. Clearly we would like to be able to attack 

problems in this field with lattice field theory techniques. 

5.1 Heavy quarks on the lattice 

There is a problem with doing heavy quark physics on the lattice. The scale m ~ a  is 

not much less than one (at least at currently used, and foreseeable, lattice spacings). 

Practically what this means is that heavy quarks have a Compton wavelength 1 /mQ 

that is comparable to the lattice spacing a. This means that the heavy quark's 

dynamics do not get resolved by the simulations. There are a large number of ways 

that have been proposed to deal with this. In this report we will be focused on the 

Fermilab approach to heavy quark physics. However it will be very useful to review 



CHAPTER 5. FERMILAB QUARKS 76 

a more traditional approach; the heavy quark effective theory. This approach shares 

common themes and language with the Fermilab method. 

The heavy quark effective theory method is to explicitly integrate the heavy 

quarks out of the theory, treating their dynamics in some- systematic expansion. 

This approach has been widely used in the continuum [46] to address problems in 

heavy quark physics. 

To use this approach, one needs an expansion parameter. In systems with one 

heavy, and one light, quark, the expansion parameter is 1 /MQ. By taking the 

MQ t oo limit of QCD one constructs the heavy quark effective theoryl(HQET) 

This the continuum Minkowski space version of the theory. The heavy quark fields 

Qv are related to the continuum fields Q, at tree level, by 

.,'tr\-m I t .  in the same manner as a ia'ciice theory, nyn 1 ~au. b e  ~mpruveli" by sysieru- 

atically correcting the action. Each correction is suppressed by a:MT, so we can 

always (in principle) make the theory as close to full QCD as we'd like. Just like 

the lattice improvement program, tree level corrections (those for which n = 0) 

need to be perturbatively matched to get full agreement. 

This program can be implemented on the lattice. At tree level, and to 0(1 /MQ), 

one has 

SLHQET = QJX)U~X)Q~(X + PI. 
X 

(5.3) 

Just like the continuum theory, this action has 1 /MQ errors, as well as O( a') errors. 

These can be systematically corrected for, and perturbative errors removed. 

Another approach along these lines is nonrelativistic QCD (NRQCD). NRQCD 

is used to describe systems with more than one heavy quark. In NRQCD the 

'For the sake of simplicity we are writing all HQET expressions in the rest frame v = (1,0,0,0). 

More general expressions can be found in [46]. 
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expansion parameter is the relative velocity of the system with two heavy quarks. 

With this counting the tree level continuum theory to (3(v2) is 

Not surprisingly, this is just the Schrodinger action, with a non-abelian gauge 

interaction. Just as with HQET, corrections to this action can be considered, and 

a lattice theory can be developed [47]. 

5.2 The Fermilab Approach 

Heavy quark and nonrelativistic approaches work very well for situations involving 

a b quark. In this case the scales mi' and vb are typically very small, so lattice 

versions of HQET and NRQCD can be applied. The situation with the charm 

quark is more complicated. In this case m,a x 1 so expansions in either small or 

m-n ~n_zy EQ! he TT~T~]? [dl]. I! wry1d he Tje~ ir~h]~  !Q hz~re 2 f ~ r m - - 1 ] ~ f i ~ ~  which 

was valid for all quark masses, large or small. This is provided by the Fermilab 

approach [49]. 

The basic idea behind the Fermilab approach is to make all the relevant coeffi- 

cients in the action mass dependent, rather than fixed to the large mass limit. In 

addition, the space and time directions are separated in order to allow for a smooth 

transition from light to heavy quarks. The remainder of this chapter will focus on 

detailing the Fermilab approach, and in the following chapter we will outline our 

perturbative calculations using these actions. 

The Fermilab action, proposed in [49], is analogous to (2.9) and is given by 

(with the lattice spacing restored) 
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, 

where we have put a 0 on all the bare quantities and used the following definitions 

for the various operators 

1 
- (Ti - T-i) * ( X I )  2a 
1 
- (Ti + T-i - 2) + (x) , 
a2 
1 
-€ijkFjk) 2 
FOi) and 

The key feature of this action is that the couplings (r,, <, c~ and CF) are mass 

dependent. In fact no assumptions are made, a priori  about the bare mass mo. 

As well, the space and time directions are split apart. We expect that as mo -+ 0 

we should recover the clover action, and for mo -+ oo we should find 5 -+ 0 (with 

cB< fixed) to recover the heavy quark limit. The only expansion made here is in 

pa, the quark momentum, this is why the Fermilab approach works well at any 

mass. 

This action has been used by the group at Fermilab to address many problems 

in heavy quark physics [50],[51]. Unlike other actions in wide use, it is specifically 

designed to work for any quark mass. In particular, the region m a  z 1 is a region 

where many other approaches either fail or require error-prone extrapolations. On 

typical lattice spacings m a  = 1 corresponds to roughly the physical charm quark 

mass, so for D meson studies the Fermilab action is very useful. 

The Fermilab action works for heavy quarks because the dominant mass depen- 

dence is carried in the coefficients of the action, and not simulated in the computer. 
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For example, if one tried to simulate a very heavy quark using (2.9), the problems 

discussed above would apply. The simulation simply would not "catch" the dy- 

namics of the heavy quark. On the other hand, with the Fermilab action, the 

coefficients are tuned such that one would basically be working with the HQET 

action (5.1). 

Tree level determination 

To see how the vzuious coefficients change with the bare mass, we will outline how 

the tree level determination of 5, cg and c~ is done. This follows the discussion in 

[49], interested readers can find more technical details there. 

To begin we note that the operator A(3) is redundant, it can be removed by a 

field transformation. This means we are free to take its coefficient r, to be whatever 

value we want (typically we take r, = 1). As well, the bare mass rno is an input 

parameter, so it is fixed. We want to determine how 5, c~ and CE depend on it. 

The coefficient 5 can be determined by looking at the propagator for the free 

fermion field. This will actually tell us a lot about the way the Fermilab theory 

works. By setting all the interactions in (5.5) to zero, and going to p space it is 

straightforward to derive the propagator 

with 

We rewrite SF as 

Using (5.7) we can determine the dispersion relation for these fermions. To do 

this, we set po = iE(p') and solve for the point where the denominator vanishes. 
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I 

Doing this, we find that the energy is given by 

One of the important distinctions between Fermilab fermions and clover fermions 

is that ma is not assumed to be small. Accordingly we expand (5.8) in powers of 

pia. This gives 

where 

We can impose conditions on (5.9) to determine <. The most obvious case 

would be to duplicate the continuum dispersion relationship, up to the spacing 

errors. This would require setting MI = M2. Doing this, and solving for ( gives 

(in a = 1 units, here and henceforth) 

2 I /r,mc(2 + -1 \ , mof2 + mc) r,mnf2 + mn! - f C  1 1  1 'M1=M2=jj 4 ( l + m o )  T ~ l o g ( ~ + m o )  4 ( l + m o )  . ( 0 . L A J  

This gives 

E~ = M: + c2 + (3(p2a4) 

which is the continuum dispersion relationship for a quark of mass MI. 

Enforcing MI  = M2 is the most obvious way to set L, but it is perhaps not 

the most useful. Assume we want to simulate a heavy quark, at some fixed (not 

necessarily small or large) moa. Taking the square root of (5.9) gives 

For simulating a nonrelativistic quark with physical mass mq we would demand 

M2 = m, and forget about MI ,  since the rest mass only produces an overall energy 

shift. This gives 
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This is appealing, since for large m,, < = 0, which would give the HQET action if 

we varied r, to keep r,< constant. 

A third approach to setting <, the one used in practice, is to once again forget 

about MI,  but fix < = 1. Then the physical quark mass is give by M2(mo) = m,. 

This has technical advantages in the simulations, and is conceptually simple. In 

this case (5.10) provides the connection between mo and M2 with <,I-, = 1. On 

a a = 0.1 fm lattice, to simulate m, = 2 GeV (approximately the charm quark 

mass) means that we need to take %a = 1.17, which is right in the intermediate 

region. As this is the approach used in simulations, all of our numerical results will 

be presented with < = 1. However all of the expressions in this report will be for 

general C so other methods can be used. 

There is one more important quantity to be considered related to (5.7), the 

fermion wavefunction renormalization factor Z2. TO find this we consider the 

residue of the propagator (5.7) at po = iE(@). Using the full dispersion relation 

(5.8) the residue is 
1 

Unlike the continuum theory, this is dependent on the three momentum. To define 

a wavefunction renormalization we use the p' = 0 value, 

For processes with external particles not at rest, we need to use the full Z. This 

definition has been chosen to conform to the conventions of [49], we will introduce 

a slightly different convention in the following chapter. 

Fixing c~ and c~ 

With zeta fixed at tree level, we turn to the improvement terms. Just as with 

the improvement discussed in chapter 2, we compute the scattering of a quark 

off of some background gluon field and demand that the (3( a) difference born the 
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continuum result vanish, by tuning c~ and c ~ .  This procedure will reproduce the 

results from [49], valid for all bare masses, 

We will not reproduce the derivation of these here, as in the following chapter an 

automatic method will be presented. The analytic derivation of these results (using 

a different method) is presented in [49]. There is a minor subtlety concerning C E  

which bears discussing. The Fermilab action we have been working with is correct 

only up to O(pa). If we wanted to correct to the next order we would need to add 

a number of new operators to the action [52], one of which is the spin-orbit term 

This additional operator will affect the matching of c~ at tree level, giving 

Our results will correspond to cso = 0. 

5.2.1 Tadpole improvement of the Fermilab action 

We saw in chapter 3 that tadpole diagrams can ruin the naive estimates of pertur- 

bative errors. The examples that we considered there all pertained to gluon actions, 

however the same issues plague us here. For example, the one loop diagrams for 

the fermion self energy are shown in figure 5.1. The second diagram is the tadpole, 

which has no continuum analogue. Calculation of the self energy [53] (and chapter 

6) reveals that the tadpole diagram, in Feynman gauge, is very large. 

Once again, if we hope to have accurate perturbative determinations of the 

Fermilab action parameters, we need to remove these large tadpoles. As we saw in 

chapter 2 one way to do this is to tadpole improve the action. 

To tadpole improve the Fermilab action we write all links U as 
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Figure 5.1: Self energy diagrams for lattice fermions 

Here uo is some estimate of the average value of a link fieId. Rewriting the action 

in terms of G, we find 

where all the derivatives are now written using the fi link, and 

Perturbative calculations with this action are straightforward. We compute in bare 

or the fourth root of the plaquette. We can use the values for uo from chapter 4 to 

compute the tadpole improved couplings. 

5.3 Lattice calculations of hyperfine splittings 

The calculations we will outline in the next section will have a broad impact on a 

number of areas in high energy phenomenology, there is one area that we want to 

highlight here. 

One of the easiest things to measure in a heavy quark simulation is the hyperfine 

splitting 

AM = M J/* - Mq, . 

The experimental value for this quantity is 

AM = 1 17.7(1.3) MeV. 
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, 

The hyperfine splitting is important, because it impacts upon determinations of 

the bound state wavefunction at the origin. The bound state wavefunction at 

the origin is related to decay constants (for example, fB),  SO if we are to have 

confidence in lattice QCD determinations these important quantities it is important 

to understand the hyperfine splittings, and get good agreement with experiments. 

The trouble is that lattice simulations all seem to significantly underestimate 

this quantity. For many years quenched simulations ([54], 1551) found results that 

were up to = 50% lower than the measured number. It was suspected that this 

discrepancy was due to the quenched approximation, however early results with 

the unquenched MILC configurations [56] showed that this problem remained. A 

more recent unquenched simulation gives [50] 

AM = 97(2) MeV, 

which is around 20% off. The various determinations of this quantity have been 

done by different groups using very different actions, so the disagreement is not a 
caE:en,weEce af zziI?g 2 p?LtiCiL!= fcrIl?l?!2iicI: cf I2Wice ferFaicze. 

This sort of hyperfine splitting is a fairly easy thing to calculate in lattice QCD, 

so the statistical errors are not a factor. As the discussion of chapter 2 makes clear, 

it is likely that there are uncorrected systematic errors we should look for. The 

results of [50] do not show any strong dependence on the light sea quark masses, 

suggesting that the chiral extrapolation of this quantity is well-behaved. This leaves 

only lattice spacing errors, and perturbative errors as the most likely sources. 

The coefficients of the Fermilab action used in [50] are only mean field tad- 

pole improved. This leaves (a,aAQcD) errors. This can easily give 10% or larger 

corrections. The operators that directly affect the hyperfine splittings are 

This means that we need to compute the perturbative corrections to L, and c~ 

in order to determine the effect perturbative corrections have on the hyperfine 

splitting. 
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The other source of error is due to the finite lattice spacing. With AQcD = 300 

MeV, ( ~ ~ ~ ~ a ) ~  z 0.04 so at least some of the error is due to lattice spacing 

effects. The full dimension 6 Fermilab action will fix this. The situation is better 

in NRQCD, since a fully 0(a2) action is known, however the coefficients are only 

mean-field tadpole improved in this case as well. 



Chapter 6 

Matching Calculations for 

Fermilab Quarks 

6.1 Renormalization of the Fermilab action 

For the tree level matching we discussed in the previous chapter we worked with 

the bare parameters or' the Fermiiab action. This is, or' course, acceptabie, since 

any differences between the bare and renormalized theories would occur at (3 (a). 

For matching at one loop order, however, it will be important to understand how 

the Fermilab action gets renormalized. We start with the bare action 

and investigate the transition to a renormalized action1. 

We digress here briefly on our notation. We are computing the perturbation 

series for a number of quantities. Consider a general quantity, denoted by A. We 

'We do not use subscripts to denote the renormalized parameters, however we have been careful 

to always use a 0 subscript on all bare parameters. 
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will write the perturbation expansion of this as 

A  = + gi~[ ' l  + .  . . . 

So A["] is the n-loop contribution, using the bare coupling go as the expansion 

parameter. 

We begin with the field renormalization, which requires some care. Recall from 

the previous chapter, we found the full residue of the Fermilab propagator, at tree 

level, to be 
1 

More generally, we write the residue as a function of the renormalized quantities as 

where 

Care must be taken to properly track the factors generated by 2. At tree level, and 

with p' = 0 this is just the factor 

which will multiply all zero-momentum external lines. This split emphasizes that 

external field lines obey the free field equations of motion, expressed in terms of the 

renormalized parameters. Then there are perturbative corrections to this, given by 

the series (6.6). 

Next we consider the renormalization of the bare mass rno and Fermilab param- 

eter Lo. We have no conditions on the bare mass, so we simply write 
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To determine we look at the tree level expression for the kinetic mass (5.10) 

It's convenient [53] to rewrite this as 

ey sinh y [ol 
, MI =log( l+mo) ,  (6.10) 

and define the full expression for the mass as 

This contains two perturbative factors; the full expression for 

and an "intermediate;; renormaiization factor, 

The latter factor captures the renormalizations of M2 not shared by MI.  

Using this notation we define the renormalized parameter < according to 

That is, the physical kinetic mass must be the same expressed in terms of the 

renormalized and bare parameters. The renormalized quantities MI ,  M2 and < 
are connected by the same relation (6.12) as the tree-level quantities MY,  MY 
and Z0 in (6.10). This will prove to be very convenient when computing radiative 

corrections to a scattering amplitude in renormalized perturbation theory; equation 

(6.12) will ensure that the leading-order amplitude in the lattice effective theory 

remains properly matched to the leading-order amplitude in the continuum theory, 
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when both are evaluated at the same renormalized quark mas .  The 0 ( g 2 )  radiative 

correction to an action parameter such as CB will then come entirely from one-loop 

Feynman diagrams. 

The condition on M2 fixes <['I, to get an explicit expression we expand both 

(6.11) and (6.12) out to ~ ( g ; ) .  For (6.11) we have 

2 [I1 and for (6.12) using Z = <O + goz , 

Solving these for <['I gives 

For compieteness, we compute the derivative, obtaining the hnai expression ior the 

one-loop contribution to L, 

Zg + rsZo sinh MY1 
5"' = (LO, mo) 

2Zo + r, sinh M/" ' 

Finally we need to address the renormalizations of c~ 

(6.14) 

and CE. We will be 

computing the one loop corrections to these parameters by matching scattering 

amplitudes between the continuum theory and our lattice theory. The scattering 

amplitudes will involve physical (i.e. renormalized) quarks and gluons, so it makes 

sense to set up a renormalized perturbation theory, and work in that. However, at  

the end we want the one loop correction to the bare quantities, as these are what 

will be input to lattice simulations. 

We can expand the bare couplings as 
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Now we define the renormalized couplings as 

Therefore at one loop we have, 

and 

The derivative terms take into account the implicit difference between cF1 (mo, Lo) 
and c p  (m, Z) that occur at one loop order. These terms are not present for c ~ ,  

since at tree level 
... ... 

IU! , c:!(mo, i o j  = cg (m, i j  = r, = constant. 

We now have a complete set of renormalization factors 

The terms on the left hand side here are the original functions of the bare param- 

eters. On the right hand side they are expressed as renormalized functions of the 

renormalized parameters, plus the one loop counterterms. This allows to write the 

Fermilab action as 

so = (1 + g;z:']) S T  + g@, 
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where the renormalized action is 

and the counterterms are 

We have defined 

The results of our calculations that will be directly used as input to the I 

are the one-loop corrected values of C E , ~  and CB,O in the bare action (6.1), given by 

e.g. 
2 ['I 

CE,O = c!](~o, bo) + 9 CE (mo, Lo). (6.26) 

The expressions for the counterterms (6.24) and (6.25) are the connection we use 

to extract these quantities from our renormalized perturbation theory. 

Before addressing the one loop results for c!!, we clearly need to compute <['I 

and m['] from the self energy. 

6.2 Calculation of the self energy 

Equation (6.14) relates the one loop part of < to the renormalization of the kinetic 

mass. The latter quantity can be calculated by looking at the one-loop self energy 
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for the fermion. The full energy is expected to go as 

Expanding this out to (3(gi) and dropping the higher order momentum corrections 

gives 

This allows us to solve for M!], 

The derivative on the right hand side can be evaluated from the one-loop corrections 

to the fermion propagator. From that, we can extract MI'', ZM2 and, finally, <['I. 

To solve for the self energy, we write the full fermion propagator as 

where we use the same conventions as chapter 5 with 

The additional function E(p) is the self-energy correction. It is given by the sum 

of the two diagrams shown in figure 5.1. We write this correction as 

The extraction of the various quantities of interest from the self-energy correc- 

tion is fairly tedious. The calculation is well known, so we content ourselves with 
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restating the one-loop results of [53]. The one loop expression for the rest mass MI 

is needed to separate the factor ZMz from the full expression for M2 (6.11). We 

have 

My1 = [A!] ( i ~ r ' ,  8) - c['](~M?', 8) + ~[ '1(0 ,  z)] e-"Y1, (6.31) 

where the factor C(O,8) ensures that zero-mass quarks do not get an additive mass 

shift at one-loop order. This factor is often measured non-perturbatively in simu- 

lations, in which case that value can be used in place of the factor c['](o, 8). 
With the one loop expression for MI,  we can extract the factor ZMz at one loop. 

It is given by 

- A!](iMP, 8) cosh [My1] e - ~ r ' .  (6.32) 

Where 

Finally, we quote the one loop result for Z2, 

Results for kinetic terms 

We present results for the various kinetic quantities, using both the Wilson and 

improved gluon actions. The results for the Wilson action are already known, so 

they provide a valuable cross-check. Furthermore the logarithmic dependencies of 

these quantities on the infrared regulator (in this case a gluon mass) and the lattice 

spacing (or the dimensionless combination moa) are universal. In all cases, our 

results for the improved action reproduce these known results. 
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In keeping with the Fermilab approach, we present all of our results for the full 

range of bare masses. The connection between the small and large mass limits is, 

in all cases, smooth. For the improved action we can report new results for various 

quantities. For Ml (mo) we have 

4 3 MY'  = tanh (My') {0.12050(9) - - log ([MY] ') - 0.047(l )MY,  } (6.35) 
1 6n2 

when the bare mass is small, and 

for large bare mass. The full mass dependence is shown in figure 6.1. For the 

kinetic mass renormalization factor, we find zE2 -+ 0 as mo + 0, and 

in the infinite mass limit. Figure 6.2 shows the full mass dependence. Finally we 

present results for the wavefunction renormalization factor Zz. These results are 
1 I ,111 . . .- . 9 .  - 

sc-llllrwfie!. c--c_larrplica.rd by ihr izr-t !hilt L~ ~ . a  ; )~1  =Enen, n,Llrergezce. ~ ~ ~ t ~ n ~ t ~ ~ ~ r  
J 1 

the coefficient of the divergence is known exactly. We have 

111 - P I  I Z2 = Z, - - log ( A ~ )  , 
6n2 

for a gluon mass (A) IR regulator. Figure 6.3 shows results for 2:' over the whole 

mass range. At small bare mass we have 

and in the static limit 

Note that these results used CE = CB = 1. This is the value of CE used in simulations 

by the Fermilab group. If we use the correct value of CE from (5.15) we find very 
- 

small differences. For example, with a correctly tuned c ~ ,  Z2 = $0.1 327(3), a 

0.5( 3 )% difference. 
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, 

Figure 6.1: One loop determination of the rest mass MI.  

Figure 6.2: One loop determination of the kinetic mass renormalization ZM2 



C H A P T E R  6. MATCHING CALCULATIONS FOR FERMILAB QUARKS 96 

Figure 6.3: One loop determination of the wavefunction renormalisation Z2. 

Numerical Integration Issues 

There are a number of technical issues that arise in the integrations, both for the 

kinetic terms and for the numerical matching calculations presented below. There 

are two sources of difficulties; the pole structure of the heavy quark propagator, 

and the wide separation of scales in the integrals. We have implemented techniques 

to deal with both of these. 

The first trouble stems from the behaviour of the quark propagator in the heavy 

quark limit. For large mass we have a pole in the gluon propagator at po = 
i log(mo). This pole is integrable, however it is numerically unstable. Fortunately, 

the solution to this problem is straightforward; we shift the integration contour 

away from the pole, by a complex constant [28]. Shifting the energy component of 

the loop momentum ki = k4 + is, where A is the gluon mass, works to stabilize the 

numerical integrations. Note that the gluon propagator has a pole at k4 = ih so 

the shift uses half of the gluon mass to insure we do not hit the gluon mass pole. 



CHAPTER 6. MATCHING CALCULATIONS FOR FERMILAB QUARKS 97 

The second difficulty with the numerical integrations is the separation of scales. 

The trouble is that we are integrating from 0 to n/a >> 1, which means the 

integral gets contributions from widely separated scales. This can cause trouble 

with VEGAS's adaptation routines. Furthermore, the in tegkds  are dominated by 

the infrared divergences, which we expect to cancel in any matching calculations. 

These problems are somewhat lessened by transforming to spherical coordinates 

I dkldk3dk3dk4 = / r d k / r d X I r d 8  /rd@k3sin2(x) sin(8). 
(6.41) 

The factor of k3 significantly improves the infrared behavior of the integrals. 

The convergence can be made better by a further transformation. To start, we 

cutoff the lower limit of the k integral at e ,  where we choose E: to be much less than 

any other scale. Next we make the transformation 

K = log (k/A). 

This transforms the k integral to 

277 log(n/N 

k3dk = I. IlogW 
k4d (ek/y . (6.42) 

The addition factor of k improves the infrared behaviour further, and taking the 

logarithm of the limits narrows the range that needs to be integrated over. 

For the calculations of the kinetic terms these variable transformations are not 

necessary (though the complex energy shift is). Good results can be obtained 

without them. However, for the matching of action parameters, and currents, they 

are crucial. 

6.3 Matching calculations for c~ and CE 

We adopt a very simple method to compute c ~ .  We consider the scattering of a 

quark off of a background chromo-magnetic field, with momentum transfer q. The 
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I 

level amplitude for this process is 

The tree level lattice amplitude will be similar, also linearly dependent on if, we 

will call it Mgtt.  Likewise the one loop amplitudes will indicated by a superscript 

I .  
There are three pieces to the one loop lattice amplitude M;itt. First there are 

the one-loop diagrams, calculated with the tree level renormalized action, which 

we will denote This contains all of the one loop diagrams, including the 

contributions from the wavefunction renormalization counterterms (that is, com- 

puted using the f i s t  term in (6.21)). Then there is term, b!', times the tree level 

scattering from 1 . E. bB is the one loop counterterm defined above in (6.24). Fi- 

nally there is a contribution coming •’rom the -z[l1$? - 61) part of the counterterm 

Lagrangian. We write the full one loop lattice amplitude as 

The continuum amplitude is just M i & ,  , and it includes the one loop wavefunction 

counterterms as well (but not the bB, Or <[I1 parts) 

To compute the matching factor cE1 we subtract the one loop continuum am- 

plitude from (6.44) and solve for the unknown 6;'. This gives 

We want this equation to hold up to 0(q2a2), which means we can consider the 

q i 0 limit of (6.45). From 6;' we can use (6.24) to get c!' by accounting for the 

renormalization of I ,  that is 

This gives our final expression 
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where 

In an exactly similar manner we can consider scattering of a background chromo- 

electric field. By demanding the continuum and lattice amplitudes be equal to one 

loop we find 

From this calculation and equation (6.25) we can read off the result we want 

Note that in this case there is no additional term for the tree level y 4 ~ ~  part as it 

receives no additional renormalization in the Fermilab formalism. 

One potential issue with this calculation is the renormalization of the external gluon 

field and the bare coupling. These would be generated by loop diagrams correcting 

the gluon propagator and give a charge renormalization and a field renormalization. 

That is the combination Ago gets renormalized to ATg,. 

These renormalizations can be eliminated by working in background field gauge. 

This scheme was developed in the continuum (see [I]) and greatly aids in the 

calculation of certain processes. In background field gauge the combination Ag 

does not get renormalized. The price to be paid is that the gluon field is split into 

two parts, the background field (denoted in Feynman diagrams by a zigzag line) 

and the quantum gluon (denoted by a wavy line). 

The background field method can also be implemented on the lattice, and the 

same property between the bare and renormalized gA holds [57]. To use it with 
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our automatic vertex generator we write the link field as 

background quantum 
Upb) = up Mu, (4 (6.51) 

considering two link fields at every point. Then we apply our vertex generator, 

taking care to distinguish quantum and background gluons. Finally we symmetrize 

over each gluon type separately. For these one loop calculations this method only 

saves us two diagrams, however as we increase the number of loops, the savings will 

increase rapidly. 

6.3.1 Lattice to Lattice matching 

Clearly in order to use (6.47) we need to be able to compute the continuum one loop 

amplitude. Of course, one-loop calculations in the continuum theory are feasible, 

however there is a problem with using them in lattice matching calculations 

The trouble is that the lattice and continuum theories should be identical in 

the infrared. Given that onr ralrnlatinns will tirrn oirt t o  he bfrxed diverge" thk 

means that we need to use the same infrared regulator for both the lattice and the 

continuum parts of (6.47). The lattice matching computations that have been done 

to date have typically used a gluon mass to regulate the IR in both the lattice and 

continuum theories. This is the method we will use for our present calculation, 

however, it may pose significant problems with gauge invariance at higher order. 

Another solution might be to use twisted boundary conditions, which provide 

a gauge invariant IR regulator. However this regulator is somewhat difficult to 

combine with dimensional regularization for continuum calculations. This can be 

avoided by rethinking the continuum UV regulator that we use. We are calcu- 

lating matching coefficients, so there is no particular reason to use dimensional 

regularization. In fact, we can use any UV regulator we want. 

Following a suggestion of Peter Lepage we have simply used a lattice cutoff to 

regulate the continuum theory. This allows us to do the "continuum" side of the 

computation using the same lattice techniques as we have developed for the heavy 
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quark actions. This procedure is straightforward, as we can pick a simple lattice 

theory (Wilson glue + naive quarks) and run the lattice spacing down. As long as 

the spacing is made small enough, this theory will be very close to the continuum 

theory. Then we can subtract off our heavy quark results, and get the matching 

coefficients. 

We will see illustrations of how this works in the following sections. For the 

present work we have used a gluon mass to perform these matching calculations, 

however the procedure will work with twisted boundary conditions as well2. We 

suspect that for higher order calculations these will be needed. 

Tree level matching 

As an illustration of our lattice to lattice matching technique, we will outline in 

some detail the tree level matching for cB and c ~ .  The tree level lattice amplitude 

for scattering off of a chromo-magnetic field is 

We have shown the dependence on the incoming and outgoing momenta (p and P 
respectively). The continuum amplitude is approximated using the Wilson quark 

action 
M [OI (01 

cont (P,P) = ~ ~ o M C B ~ ( ~ a ' , f j a ' ) -  (6.53) 

Demanding that the difference between the two amplitudes vanish as qa  -+ 0 

gives 

This is straightforward to implement in the computer. The only issue is that we 

must use dimensionless numbers in the computer. In practice what we do is to 

specify moa, then compute Mza. Independently we specify M2a' << 1. This allows 

'We can use a gluon mass because the tree-level amplitude involves only one coupling, so the 

effect of breaking gauge invariance will not show up until two-loop order. 
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Figure 6.4: Tree level determination of CB, for moa = 10.0. 

us to get the ratio of a'/a. This lets us convert ftom our specified values for pa 

and. pa to those invoiving a; by muitipiying by the known ai/a ratio. Note that 

analogous formulas hold for c!. 

Figure 6.4 illustrates the matching for cL1. This is the matching factor for 

moa = 10.0. The linear 0(a1) errors of Wilson fermions are clear in this plot. The 
I01 - extrapolation is clearly to cB - r, = 1. This holds for all masses, and for general 

I-,. For the tree level c! figure 6.5 shows that we reproduce the known tree level 

result given in chapter 5. 

These methods have also been used to cross check the ~~mplica ted  tree level 

matching for the dimension six Fermilab action [52]. The expressions for the tree 

coefficients of that action get quite involved, so these numerical cross checks are 

very useful. 
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Figure 6.5: Tree level determination of c ~ ,  fixed matching mass M2a1 = 0.0001. 

The line is the exact result. 

The lattice to lattice matching procedure can be implemented at one loop to deter- 

mine c&. We can subtract lattice from continuum amplitudes, and divide by the 

appropriate tree level amplitude, to get the final result for bB. This is the same as 

the tree level procedure, with only difference being one of complexity. It requires 

considerably more effort to evaluate the one-loop diagrams. 

We have performed the lattice to lattice matching for two different types of 

matching fermions, naive and clover. We expect that the naive fermions will have 

(3(a2) errors and the clover fermions will have O ( a )  errors. Figures 6.6 and 6.7 show 

that this is the case, for both gluon actions. The naive fermions clearly are much 

closer to the "continuum" result for a given m2a1, because of this, the one loop 

results for c~ and CB presented below all use naive fermions to do the matching. 

The diagrams (apart from the wavefunction renormalization) are shown in figure 

6.8. We evaluate these diagrams in both the lattice and "continuum" theory. This 
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Figure 6.6: One loop lattice to lattice matching of CB at moa = 0.1, with Wilson 

glue. 
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Figure 6.7: One loop lattice to lattice matching of cB at moa = 0.1, with improved 

glue. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 

0.21 

0.2 

0.19 

Dl 
'B 0.18 

0.17 

0.16 

0.15 

I I I I I I 

- I clover m&h - 
naive match : .+ . : 

+ - - 
+ 

- + - 

+ + 
3 - 

- @ - 

0 
- - 

0 
I I I I I I I I I I 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 



CHAPTER 6. MATCHING CALCULATIONS FOR FERMILAB QUARKS 105 

Figure 6.8: One Loop diagrams for quark scattering off of a background field. 

gives us 6B,E. TO extract CB,E we also need the wavefunction renormalization factors 

and, for the lattice theory, the factors of ZM2 and MI as required by (6.24) and 

(6.25). 

6.3.3 Results for c!] 

Figure 6.9 shows cll  over the whole mass range, with Wilson glue. Along with our 

data we show the known point at moa = 0 ([58][40]), and the known result in the 

heavy quark limit3 [59] 

I11 
58.091 - 3 log (m:a2) 

c , ( m - + c o ) =  
1 67r2 

(6.55) 

Comparing with [59] requires some care. They performed their calculation in HQET 

which has no rest mass term. This means that there is no 5 parameter in their 

action, and the connection between CB and bB (6.46) becomes 

Ill ill 6~ = CB 

INote that this result is in terms of MY and the x-axis in figure 6.9 is MI" 
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Figure 6.9: One loop determination of CB, with Wilson glue. 

In order to compare to our result we add the term 6 L  to their result. In the heavy 

mass iimit this mereiy shifts the constant they report 42.459 to that reported here 

58.091. Figure 6.10 shows the same mass range, only with the improved gluon 

action. In this case the heavy quark result is not known, however we reproduce the 

corrected logarithmic dependence on m, and the known result at moa = 0. We 

summarize all the perturbative pieces for cS1 in tables 6.1, 6.2, 6.3 and 6.3. 

Tadpole Improvement 

Tadpole improvement of the Fermilab action was outlined in chapter 5. To convert 

from our bare values for ci l  to the tadpole improved values we simply use (5.19). 

This gives 
-Dl - I11 Dl 
CB  - CB +3u0 , (6.56) 

where uo is the tadpole improvement term, either the mean link, or the fourth root 

of the average plaquette. In either case, u:' < 0 so the tadpole improvement tends 



CHAPTER 6. MATCHING CALCULATIONS FOR FERMILAB QUARKS 107 

I I I I I 
zero mass . + . I 

0.18 - - 

Figure 6.10: One loop determination of CB, with improved glue. 

to lower one loop correction, as expected. 

6.3.4 Impact on the Hyperfine splittings 

In order to fully assess the impact of our one-loop determination of CB a non- 

perturbative simulation would have to be done. This is because, in the Fermilab 

formalism, the hyperfine splitting receives contributions from both 7 - 6 and f -8 .  
To get a truly correct result, we would have to know the relative contributions of 

both these terms. 

There is a way we can estimate the hyperfine splitting without the need for a 

new, non-perturbative, simulation. We start with the observation that the ratio of 

the tree level expectation values 

is, for pa <- 1, only weakly dependent on the momentum transfer. We are using 

the tadpole improved link fields here 0 = U/uo since they will have the most 
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"continuum-like" behaviour and (f - B) denotes the spin-flip computed from the 

clover part of the action, including the overall factor of 1 /2. The fact that the ratio 

is nearly independent of pa suggests that it is insensitive to the bound state effects, 

and the tree level value will be a reasonable approximation to the exact result. We 

can use this fact to get an estimate for the correction to the hyperfine splitting. 

The hyperfine splitting is a product of two spin flips, so we can write the cor- 

rected hyperfine splitting in terms of the tadpole improved CB as 

The Fermilab group used E B  = 1 in their calculation [50]. This means we can take 

Multiplying and dividing by the Fermilab result gives 

This allows US write XFcorrect = AXFmeasured where the correction factor is 

Expanding to one loop order, we find 

We would like to use (6.63) to find the corrections to the Fermilab determination 

of the hyperfine splitting. To do this we need three things, the mass that was input 
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to the simulation, the type of tadpole improvement used, and the value of the 

average plaquette measured in the simulation. These three things give us ci l ,  

u!', and av. The latter can be extracted from the perturbative expansion of the 

plaquette, and the connection between a v  and a o ,  using either the results of chapter 

4 or the higher order results described in [45]. 

We have obtained, from the Fermilab group [60] the quantities, from their P = 

6.8 simulations, needed to do this analysis. They give their masses in terms of two 

dimensionless parameters 

The Fermilab group uses mean link tadpole improvement (uF1 = -0.059591 (8)), 

and a measured plaquette of P = 0.567060. For this quark mass we calculate, using 

improved glue, c i l  = 0.1931 9;. Note that we are not propagating errors through 

this calculation, since the ratio w is only an estimate anyway and could easily be 

wrong by 10%. Using our one loop expression for uo we find the tadpole improved 
----.I& 
1 C D U l C  

rj[] = 0.01433. (6.64) 

Note that in terms of a v  the tadpole improved CB is 

so the improvement has produced a very small coefficient (it would have been 2.427 

without the tadpole improvement). 

To extract a value for a v  we have the average plaquette 

where we have used the conversion from a. to a v  outlined in [45] since it is more 

accurate than the one computed in chapter 4 (for the one loop CB we can freely 

interchange a 0  and av). Solving (6.66) for a v  gives 
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, 

Using this and the tree level ratio w = 2.12749, gives the final result for the 

correction factor A(3.32/a) = 1.029 a 3% increase. The smallness of this result is 

due to the tadpole improvement. Over the whole range of interest, moa = 0 . . . I .  1 

the tadpole improved c~ is very small. Given this, we expect that for the Fermilab 

action the uncorrected (3(a2) errors will have a major impact on the hyperfine 

splittings. It would be interesting to repeat this calculation for NRQCD, where a 

(3(a2) accurate action is already known. In this case, we expect that the one loop 

matching of ,X would have a more pronounced effect. 

6.3.5 Results for cF1 

To have a fully one loop improved Fermilab action the one loop term for c~ must 

be included. The calculation of c!' proceeds in the same manner as that for c!', 

however there is a significant complication. 

We consider a spin-flip amplitude off of an external chromo-electric field. The 

tree level amplitude for this process is proportional to 6 x $. Choosing = -nQ 

and 6 = p2 we find that the amplitude is proportional to p2. This is in contrast to 

the magnetic field scattering, which was proportional to p. Since we are working in 

the small momentum limit, the extra power of p substantially reduces our signal. 

The solution to this problem is to project out only the components of the 

amplitude that we want. The remaining components will integrate to zero anyway, 

however they form a noisy background which hurts our ability to extract the signal. 

To do the projection, we note that our amplitude can be written as 

where M is a four by four matrix in spin space. A general four by four matrix can 

be written as 

M =  
Tr(Mr) 
n ( r 2 )  (6.68) 

bilinears 

where the sum runs over all sixteen Dirac bilinears r. For our problem we only 

have three possible directions to pick from 4 and Q ,  the incoming and outgoing 
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Figure 6.11: One loop determination of c~ with Wilson glue. 

momenta directions, and '$ the polarization of the background field gluon. So of 

the sixteen choices we oniy have to inciude eight, 

The identity is included here, along with yLy5 = -y'y3y4. All we have to do is 

keep the terms in the general projection equal to these, as the rest would have 

integrated to zero. Setting them to zero beforehand, the signal is greatly improved. 

Figures 6.11 and 6.12 show the results for c!] from small to large masses. In the 
PI small mass limit c l l  i c,, just as cE1 did. The tadpole improvement procedure 

for c!] is the same as for crl. We summarize our results for cF1 in tables 6.1, 6.2, 

6.3 and 6.3. 
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Table 6.1: Wilson glue perturbative results needed to convert b B , ~  to CB,E. 
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Table 6.2: Wilson glue perturbative results for b B , ~  and CB,E. 



-- 
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Table 6.3: Improved glue perturbative results needed to convert b B , ~  to CB,E. 
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Table 6.4: Improved glue pertubative results for a B , ~  and CB,E. 
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Figure 6.12: One loop determination of CE with improved glue. 

6.4 Matching Currents 

0.28 I A 

The second calculation that we report is the one-loop matching of bilinear quark 

currents4. Recall from chapter 2 that the connection between a continuum operator 

and the lattice operators is 

0.26 

Here Oo is the lattice operator with the same dimension as the continuum operator. 

The remaining operators are higher-dimensional, and in our case they will contain 

O(a)  errors. 

I G v ' Q  
I I I 

G 
zero mass r . + . r  

- G - 

The operators we want to consider are the bilinear currents that connect a 

"light" quark and a "heavy" quark. The quotations emphasize that our calculations 

will be completely general: "light" and "heavy" here serve only to distinguish the 

two quarks (henceforth we'll drop the quotes). We consider the heavy quark in it's 
- 

4The calculations in this section were done in collaboration with Aida El-Khadra. 
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four-velocity is v4 = i, v' = 6. The continuum currents we consider 

where QC(qC) is the heavy(1ight) continuum quark field. The analogous lattice 

operators with the same quantum numbers ((30 in 6.70) are defined identically 

where now the quark fields are defined from the desired lattice actions. These 

matching calculations have been done for Wilson gluons with Wilson and SW 

quarks in [61] and [62], we are continuing this work for the more complicated ac- 

tions we have considered. In particular most modern simulations use the Symanzik 

improved gluon action. 

We can, at this point, consider the matching of the two operators, ignoring the 

correction terms in (6.70), and just focusing on the Z factor. The procedure for 

doing this should now be familiar, we demand that 

We can write the Z factor in (6.70) as Z = z[O] + g2Z['] and the lattice current as 

This gives, at tree and one-loop levels, our matching conditions 

As we saw with the matching for the action parameters, Wilson-like fermions have 

a tree level contribution to their self energy. This means that 
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where 

when both q and Q are Wilson-like fermions, and 

when only Q is. This suggests that we should define a renormalization factor with 

this contribution removed, 2 = TFZ = 1 + g2211] + . . .. With this definition we have 

A final technical point; the tree level self energy is actually momentum dependent, 

however we will only be considering terms linear in the external momenta, and 

since the tree level ZZ8s momentum dependence starts at 0(e2) we do not need to 

consider it. 

To do the matching we compute each of t h ~ !  r n 2 t . i ~  rllrl.111~~ts EC! evd-czte t h e  Z - 
factors. Unlike the matching of c~ and c~ these currents are not part of the QCD 

action. Therefore lattice to lattice matching has to be used with much more care. A 

finite renormalization could be generated by the lattice theory that does not go away 

in the a -+ 0 limit. Rather than deal with this complication, we simply compute 

the continuum quantities numerically with a Pauli-Villars ultraviolet cutoff. This 

amounts to replacing the continuum gluon propagator (with a small gluon mass A) 

with 

where A is the UV cutoff, set to be much greater than any other scale in the calcu- 

lation (in this case, the heavy quark mass). For the quantities we are calculating 

the dependence on the continuum regulator cancels. 
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In both cases, lattice and continuum, we need to include the wavefunction renor- 

maliaation factor ,/-, as well as the renormalization of the operator diagram. 

The full one loop expression can be written schematically in diagram form as 

where the double lines represent the heavy quark, and the hatched dot is the 

operator. The continuum calculation has the same diagrams, without the tadpoles. 

Also note that the terms in brackets have to be differentiated to get the self energy. 

With these definitions we can compute the matching factors. However, we 

neglected the higher dimensional operators in (6.70). These are the O(a) errors, 

which must be corrected. For the current operators we are considering the necessary 

corrections are relatively simple. The reason is the the current operators we are 

considering are constants (for example y4), SO the only mismatch between lattice 

and continuum theories is in the definitions of the external states. 

In the continuum theory we have 

where L = 1,2 is the spin of the quark with 

and all other components zero. In the lattice theory, 

2 sinh M1 
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where MI = log(1 + mo) is the tree level rest mass. The Oipa j terms are clearly 

not the same in this expression. As well there is a mismatch stemming from the 

exponential factor exp(-M1/2). This mismatch is taken into account by using the 

Z matching factor. Recall we defined 

The lattice spinors IQ) and Jq) generate a factor TF, SO the overall mismatch due 

to this factor cancels in the division by (qI(31Q) in (6.77). To correct the other 

mismatch we need to make the two terms in the square brackets equal. - 

We can accomplish this by using a different lattice spinor than the one we get 

from solving the discretized Wilson-Dirac equation. This is permissible so long as 

the new spinor has the correct continuum limit. With this in mind we define the 

"rotated" spinor: 

Yt(x) = [I + adly' - Dl Q(x). (6.85) 

which gives 

for the external state. Setting the square bracket equal to that in (6.81), gives 

Setting the quark mass equal to the tree level kinetic mass M2 (see 5.10) we find 

With rs = I, = 1 this simplifies to 
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If we use (6.85) to compute the external states for our 'current calculations we 

will correct tree level O(a) errors. With a one loop calculation of the matching 

factor using the rotated spinors the errors will be reduced to (3 (a2, a,a, a:). 

The outline of the calculation we presented above is the same with the rotated 

spinors, the only difference is that there are more diagrams, stemming from the D 

in the rotation term. 

Results for Current Matching 

We have computed the current matching factors Z for a number of different com- 

binations of masses. We present a few results here. First, for degenerate masses 

we recover the correct mo -4 0 limits for the Wilson quark action z;] = -0.1294. 

For the improved action, we report Z? = -0.1 OO3(6). Of most phenomenological 

interest is the case where one quark is "heavy" and the other is massless. In this 

case, we set the outgoing quark mass to be zero, leaving only one quark mass (mo) 

to vary. We consider this case in the results we present. 

In the heavy quark limit we expect [61] that the current matching factors should 

all have the form 

We have verified this for both the Wilson and improved gluon actions. For the 

improved action we can report 

Figures 6.13 and 6.14 show Zy, and ZAI over a wide range of masses. We can easily 

rerun this code for any masses of interest in simulations. 

We have also computed the q* scale for these processes, as outlined in chapter 

3. Figure 6.15 shows the results for the range of masses of interest to simulations. 

The diverging behaviour near M1 = 2 is do to the vanishing of the one loop Z near 

this point. This means the denominator of (3.68) is going to zero, and, as discussed 
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Figure 6.13: Zv,, for improved glue. 

Figure 6.14: ZAL for improved glue. 
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, 

moa 
0.9000 

0.8000 

0.7000 

0.6000 

0.5000 

0.3999 

0.2999 
n nnnn 
U.dllll(1 

0.1000 

1.0000 

2.0000 

3.0000 

Table 6.5: Table of values for ZYl for improved glue. 
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1 

Table 6.6: Table of values for ZA , for improved glue. 
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Figure 6.15: The scale q* for VII with improved glue. 

in chapter 3 more involved procedures must be used 1361. Fortunately, for the moa 

values relevant to numerical simulations, these methods are not necessary. 



Chapter 7 

Conclusion 

7.1 Summary 

In order to provide high-precision results to the wider particle physics community, it 

is imperative that lattice field theorists make use of improved actions. Such actions, 

built based on effective field theory approaches, allow for control over systematic 

errors present in all lattice simulations. one approach to improvement, the one we 

have adopted here, is to use perturbation theory to match the lattice theory to the 

continuum at high energy. Such a program requires one- and two-loop perturbative 

calculations. Several of these calculations have been reported here. 

Owing to the lattice cutoff, lattice perturbation theory is much more compli- 

cated than in the continuum. A lattice perturbation theory calculation will have 

more diagrams, and the Feynman rules will be much more complicated. In order 

to overcome these problems we have developed a number of tools to simplify and 

automate the calculations. 

The first is an implementation of the Liischer-Weisz vertex generation algo- 

rithm for arbitrary quark and gluon actions. This automatically generates n-gluon 

Feynman rules, in a quick and error-free manner. By setting up the resulting loop 

integrals in a modular way, it is easy to change which action is used. This is a 

very important feature, since the number of improved actions in use by the lattice 
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community is very large. 

Twisted periodic boundary conditions are another tool which greatly simplifies 

calculations. With a gauge invariant infrared regulator many issues which come up 

in continuum perturbative calculations are avoided. 

In order to make use of twisted boundary conditions in matching calculations, 

we need to use them for both the lattice and continuum parts. We have introduced 

lattice-to-lattice matching, which allows us to do this in a convenient way. 

7.1.1 New Results 

This thesis presents several new results, calculated using the tools we have devel- 

oped. First, there are the results for the link operators. We computed small Wilson 

loops, the static quark potential, static quark self energy, and the mean link, to 

next to leading order for three different gauge actions. Several of the results for 

the improved actions (self energy and potential) were new. These results, along 

with the calculations of small Wilson loops, are crucial in determining the strong 

coupling constant a,. 

We also present new results for the Fermilab action. The one-loop matching 

of cg and c~ across the whole mass range was not known for either the Wilson or 
[I1 [I1 improved action. Furthermore we computed the kinetic terms (MI ,zM2,zy1) for 

the improved action; another new result. With these calculations as input, results 

from the Fermilab action are now accurate to (3(a2), the O(aa) errors have been 

removed. 

The same holds true for the Fermilab currents. We matched the vector and 

axial vector currents at one loop order using the improved gluon action, and the 

improved ("rotated") spinors. These results will improve the accuracy of results 

for heavy quark decay constants and form factors. 
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Future Work 

There is no shortage of work that could be done to continue the program outlined in 

this thesis. One obvious direction is the one loop matching of the action parameters 

and currents for the NRQCD action. There is also the dimension 6 Fermilab action 

[52], which has over ten new parameters which need one-loop matching. 

For true high-precision work many two-loop calculations will also be needed. 

The strong coupling is, on the a = 0.09 fm lattices used by MILC, (optimistically) 

0.15, so two loop calculations will be needed to get perturbative errors down be- 

low few percent. A good candidate calculation would be to continue the current 

matching to two loops. This would have a major impact on the determination of 

the CKM matrix elements. 

The techniques outlined in this thesis have all been developed with their ex- 

tension to higher orders in mind. The combination of twisted boundary conditions 

and lattice to lattice matching should allow for two loop determinations of action 

techniques presented here will provide the basics for doing higher order lattice 

perturbation theory. 
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