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Abstract

Many fundamental parameters of the standard model are difficult to extract from
measurements because they require an understanding of the strong interaction at
low energies. Lattice gauge theories provide a first principles method to compute
such effects. Unfortunately with current computational resources, “naive” lattice
gauge theories would not give the precision results that the experiments require.
Fortunately, there are several field theoretical methods that we can use to improve
accuracy at minimal computational cost. One part of this program involves im-
proving the lattice actions, to better approximate the continuum theory.

This improvement can be done order by order in perturbation theory. For sev-
eral reasons, perturbative calculations in lattice gauge theory are very complicated.
To deal with this, we have developed a set of tools to automate the most difficult
parts of the calculations.

This thesis introduces the general procedure of perturbatively improving lat-
tice gauge theories, and outlines why perturbative calculations are needed. The
calculations are done for the most complex actions currently used by simulations,
the Symanzik improved gluon action for the gluons, Fermilab fermions for the
heavy quarks, and AsqTad fermions for the light quarks. We report the results of
a number of calculations, we have computed various lattice operators (mean link,
static quark potential) to second order, and a number of important heavy quark
quantities (including matching the clover operator for the Fermilab action) to first
order. The latter calculations have the potential to greatly improve lattice QCD

determinations of various heavy quark quantities.
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Chapter 1

Introduction

The standard model of particle physics has withstood over twenty-five years of
testing. During the 1990s its predictions were tested to very high precision at the
Large Electron Positron Collider (LEP), the TeVatron, and B factories (such as
BaBar). Today, at the end of the LEP era, it is one of the best tested of our
physical theories. The description it provides is the most fundamental picture we
have of the physical world. However, as we shall detail in this chapter, the study

of the standard model is by no means a closed subject.

1.1 Brief Review of the Standard Model of Parti-
cle Physics

There are four known fundamental forces in nature, strong, weak, electromagnetic
and gravitational. To describe the interaction of the elementary particles we can
ignore the gravitational force. The remaining three forces are described by the
standard model (henceforth SM). The SM actually goes one step further, unifying
the electromagnetic and weak forces into the electroweak force. Thus the standard
model describes two forces.

Each of the forces in the standard model is a gauge theory, with interactions
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between fermion fields (“matter”) mediated by gauge fields ( “force carriers”)!. The
matter fields come in a structure known as a generation, the first generation is the
familiar electron, its neutrino, the up (u) quark and the down (d) quark. The u
and d quarks are bound by the strong force into protons and neutrons. In this way
the particles of the first generation make up all of the matter we see around us.

There are two other generations as well, the second generation contains the
muon, its neutrino, and the charm and strange quarks. The particles in the second
generation are similar to those in the first, apart from the fact that they are much
more massive. The third generation consists of the tau, its neutrino and the top
and bottom quarks. Table 1.1 lists the matter particles in the standard model,
along with their masses and electric charges®.

The matter particles interact via the electroweak and strong forces, each force

couples to a different type of “charge”. For the electroweak force there is the
standard photon, which couples to electric charge. As well, there is the Z° boson,
which acts much like a heavy copy of the photon, and the W* bosons, which couple
to, and change, the matier particle type (or flavour).
The strong force couples to another kind of charge; called colour. There are
three colour charges (red, green and blue) carried only by quarks. The interaction
between colour charge is mediated by gluons, the gauge bosons of the colour SU(3)
symmetry. This theory of the strong force is called quantum chromodynamics, or
QCD. The Lagrangian for QCD is

1 a v T (1
L=—2FLFY + S Doty D* —mabg (1.1)

q=u,d,c,s,t,b

1For a pedagogical introduction to gauge theory see [1] and for a overview of the elementary

particles and their phenomenology see [2].
2The neutrino masses here have been shown as approximately zero, however there is very strong

evidence that the neutrinos have a small mass. Additionally, the quark masses listed here are in the
MS scheme. All values were taken from [3], numbers in brackets are the errors on the last digits, for
the e and u they are negligible. Unless otherwise stated all measured properties (masses, charges,
etc.) have been taken from [3].
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Particle Generation | Mass MeV | Charge (e)
electron (e) 1 0.5110 1
electron neutrino (v.) 1 ~ 0 0
up quark (u) 1 3.0(1.5) 2/3
down quark (d) 1 6.75(1.75) -1/3
muon (p) 2 105.7 1
muon neutrino (v,) 2 ~ 0 0
charm quark (c) 2 1200(200) 2/3
strange quark (s) 2 117.5(37.5) -1/3
tau (7) 3 1776.99(29) 1
tau neutrino (v.) 3 ~0 0
top quark (t) 3 174300(5100) 2/3
bottom quark (b) 3 4250(250) -1/3

Table 1.1: The Matter Particles
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The notation here is standard and is explained in any introduction to quantum
field theory (we're following the conventions of [1]). There are 8 gluon fields A§
with the standard field strength tensor

FS, =0,AS— 3,A% + gf*P°APAS (1.2)

ntv

and gauge covariant derivative
D,=0,—1gA[T% (1.3)

The sum over q is for all six flavours of quark. Using this Lagrangian we can
compute the action S = | d*xL, and from that compute vacuum expectation values
of operators by path integrating

_ JDADgGDg0[A, §, qle™*

(1.4)

From these expectation values the physical predictions of the theory can be ex-
tracted. .

For our purposes, the most important thing about QCD is that at low energies
the coupling constant, g, is very large and at high energies it’s very small. Above
energies of about 1 GeV the decrease of the coupling constant can be computed

perturbatively. At leading order we have

2(p2
wi(£y) = S5 - o , (15)
T (11 - %nf) log (%)
QCD

where ny is the number of quark flavours with m, < E, and Agcp is a parameter
which depends on n¢. For ny = 5 we have Agcp = 400 MeV. Notice that Agcp
takes the place of the coupling constant in the list of things that need to be fixed
from experiment.

The leading order formula for o indicates that around E = 2.25Aqcp = 1 GeV
the coupling constant becomes O(1) and at E = Aqcp it diverges. This indicates

that the energy scale Aqcp is the rough marker of where QCD perturbation theory,
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including the above equation, can be applied. If E > (few)Agcp then we can use
perturbation theory, otherwise we need to look for alternative approaches. Using
the conversion factor hc ~ 200 MeV fm we can convert the energy scale to a
distance. We find that QCD perturbation theory should be useful on scales shorter
than about 0.3 fm, at longer distances we need non-perturbative methods. We
discuss below that many important experiments require as input predictions from

the long distance, non-perturbative, sector of the theory.

1.2 Fundamental parameters of the SM

The electroweak sector of the standard model is considerably more complicated than
the QCD part. We will not review it in detail here as we will only be concerned with
its most basic properties. Briefly, the electroweak theory is an SU(2) x U(1) gauge
theory. The gauge group is spontaneously broken to U(1) via the Higgs mechanism.

The exact form of the Higgs sector has not been determined experimentally, a single

raal oralar
PRIV RV vl §

th

The symmetry breaking gives mass to three of the four gauge bosons in the
unbroken theory. The boson that remains massless is the familiar photon, the
massive bosons are the W* (mass 80.425(38) GeV) and the Z° (mass 91.1876(21)
GeV). Of these we will be concerned with the interaction of the W bosons.

The W bosons are very interesting because they change the flavour of the parti-
cles they interact with. For example, in the decay of a u, the u emits a W~ turning
into a v,,. The (virtual) W then decays into an e and a v.. This is illustrated in
figure 1.1.

Applying the Feynman rules for the electroweak theory to this decay gives the

amplitude for this process (in unitary gauge)

2 goy— o
M= STy (16)
8 "M gc—-M5,

Here ] = 1i(p~, )y®u(p,) is the muon weak current, J3 = i(pe)y*v(pv.) is the
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Figure 1.1: The lowest order Feynman diagram for muon decay in the full elec-

troweak theory

electron weak current, and g,, is the weak interaction coupling constant. The
momentum transfer (in the muon rest frame) for this process is q% = mZ—m.E,, <

mﬁ < M#%,. Neglecting the q terms give

M= e (L.7)
where we have set Gy = %EA%%. In this form this is the same as the result from
the early Fermi theory of § decay [4]. In this theory the W boson is replaced by
a four fermion contact interaction. At low energies (E « Myy) it is an excellent
approximation. For the remainder of this discussion we will use this “four-fermion”
form.

Quarks have similar interactions with the W bosons. For example, a d quark
inside a neutron can decay into a u quark, electron and (electron) antineutrino as
shown in figure 1.2. The amplitude for this process will be the same as that for
muon decay (1.7) except the weak coupling for the quark current has a different
strength, which we will call V,,4g.. The net effect is that the amplitude for this
process is (1.7), multiplied by V4. In an exactly analogous way we could consider
c—-+s+0++v,and t —» b+ £+ v, decays. We would get extra factors V., and Vi,
in each case. Like all couplings, these are fundamental parameters of the standard
model, and need to be fixed by experiments.

The situation is actually more complicated than this. The three “V” parameters

we’ve seen so far only couple quarks of the same generation. However, the structure
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V.7
d

Figure 1.2: The lowest order Feynman diagram for d — u+ e + V. in decay in the

Fermi effective theory.

of the electroweak theory allows for decays across generations. For example, we can
have s — u decays. All of the couplings are arranged in the Cabibbo-Kobayashi-
Maskawa [5],{6] (CKM) matrix,

Vud Vus Vub
Vekm=| Vea Vs Voo |- (1.8)
Via Vis Vw

unitary. This restriction means we can describe this matrix by four parameters,
three real angles, and one complex phase. Ignoring the phase, the current world

average for the amplitude of this matrix is

0.9741 0 0.9756  0.219 t0 0.226  0.0025 to 0.0048
Vexml = 0.219 t0 0.226  0.9732 t0 0.9748 0.038 t0 0.044 | . (1.9)
0.004 t0 0.014  0.037 to 0.044  0.9990 to 0.9992

There is an obvious pattern to these magnitudes, the diagonals are close to 1, with
the off diagonals falling off quickly. A parametrization that takes this into account

is the Wolfenstein parametrization [7]

1-2 A AM(p—in)
Vekm = —A —x AN +O(AY). (1.10)
AN(1—p—in) —AA? 1
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In keeping with the measured values we expect, A <« 1. The other parameters A,p
and n are O(1).

These parameters are very important, they are fundamental SM quantities.
Without precise knowledge of them many SM predictions_ have large errors. Re-
lated to this, but perhaps of even more interest, is that wit;hout good knowledge of
these parameters it will be difficult to understand if a measurement has revealed
new physics beyond the standard model. So one of the primary goals in contem-
porary high-energy phenomenology is to understand how these parameters can be

accurately extracted from experiments.

1.3 Strong Matrix Elements

The trouble in precisely determining the CKM parameters is not with the elec-

troweak theory. For many processes the lowest order effective Fermi theory would

the QCD contribution.

For example, let’s consider one of the simplest decays, the purely leptonic decay
of a pseudo-scalar meson, Pgq which contains one “heavy” quark Q, and a “light”
anti-quark q with initial four momentum p. The following analysis actually applies
to any pseudo-scalar meson, however later on we will be specifically dealing with
heavy-light mesons, so we introduce the notation and language here. This sort of
meson can decay into a lepton and antineutrino. Naively this takes place via the
diagram of figure 1.3. However, there is a problem with this. Figure 1.3 shows
the amplitude (WgIVIQa) where Q and q are being treated as free quarks. This
1s not the case, the quarks are strongly interacting so the external quark lines are
dressed by the strong interactions. The situation is even more complicated since
the quarks are bound in the meson we really want (WEIVJPQq(p)). The former

amplitude neglects the bound state properties of the quarks, which are permanently
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Q q
Figure 1.3: The lowest order Feynman diagram for Q+q — { + ¥,

confined within the meson.

The weak interaction operator in this case is the four fermion interaction
0 = [By,(1 = v/ VaqV2Gr [Gvu(1-v*)Q] . (1.11)
Since the initial state has negative parity this reduces to
V= —vV2VaoGel [Gv,v°Q] - (1.12)

We've set
Ji = Brul1 =¥V

here. To compute (h'/glVlPQq(p)) we insert a complete set of states, and note that
(tvgfh0y =L

is the only non-zero possibility. The rules of the electroweak theory allow calcu-
lation of L*, we will not need its exact expression here. With this notation, we

have
(e 0P aq(P)) = —V2VaoGeL™(01dy,Y?QIPoq(p)) (1.13)

as our expression for the matrix element.
We can calculate the leptonic part L, of equation 1.13, in principle to any order

in perturbation theory. It is the hadronic part

(01Gv,y°QIPqq(P)) (1.14)
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which is hard to handle. To simplify matters somewhat, we note that the initial
momentum p is the only four-vector in this hadronic matrix element. Therefore we

can write
(01Gv,v°QIPqq(p)) = ifppy, (1.15)

with fp a constant, known as the pseudo-scalar meson decay constant (the i is
conventional, and ensures that fp will be real). With this notation we have the

final expression
(94 VIPqq(p)) = —iV2V4ofpGrL p,.. (1.16)

Squaring this expression, and integrating over the final state phase space gives the

decay rate for the P meson

_ GZmim m2\?
M(Pqq — 89¢) = [V4ol*f3 [—igjt—" (1 - Fé) : (1.17)

Everything in square brackets has only small, calculable, perturbative corrections.
The problem is now clear, even assuming that we have an accurate measurement
of the decay rate (not always an easy thing- to measure) we still cannot determine
|Vqal since it is multiplied by the unknown constant fp.
This problem is not specific to purely leptonic decays either. For example, in
the semi-leptonic decay Pqoq — Pg/q + £ + V¢ the CKM element [Vqq/| comes out
multiplied by a function f of the momentum transfer q which is related to the

strong interaction matrix element

(P'(p")y*[P(p)) x f(a%)(p' +p)*. (1.18)

Even with accurate measurements of the decay rates, without reliable calculations
of these matrix elements the fundamental CKM parameters cannot be extracted.
The strong interaction matrix elements required to fully predict these processes
cannot, in general, be computed with perturbative QCD. The reason is that the
meson state [P) is a bound state. Bound states are non-perturbative in nature,

so even if the coupling were weak we would need non-perturbative methods to
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determine the matrix elements we need. This is not to say the QCD perturbation
theory is not useful. Perturbative QCD effects can be important, however, the
experiments work with mesons and baryons, so we need to understand how the

quarks are bound, and how to compute the bound state matrix elements.

1.4 Lattice QCD

There are a number of ways to attack the problem of determining what the QCD
matrix elements are. The problem that has plagued them all has been that none
give high precision results for a broad range of QCD processes.

For example, it is relatively straightforward to build models inspired by QCD
and make predictions (see [8] for one example and references to many more) but,
as these models have large and mostly uncontrolled systematic errors they rarely
give results that have better than 10% precision. Most other methods have similar
limitations, all of which essentially stem from the fact that they are not reliable

TrATYra A AAaYmrivaba lAer - Avrrer ()
'VCI.JD LAV R VIV IRV Y [SATLVRVE L)

What is needed then is a way of computing directly from QCD the quantities
we want, using some sort of controlled approximation. This would allow for cal-
culations to be done with small errors. Furthermore, the systematic errors should
be understood, and a means of reducing them must be available. These two fea-
tures are absolutely crucial to the larger high-energy physics community: they want
numbers with errors that are low, well understood and that can be trusted. Such
an approximation has actually been known for close to thirty years. It is Wilson’s
formulation of QCD on a finite lattice [9].

Wilson’s idea was to discretize a volume of space-time, turning it into a hyper-
cubic lattice with grid spacing a and total volume [*. A two-dimensional example
of this is shown in figure 1.4. This has the advantage of turning a problem with
an infinite number of variables into one with a finite number. This opens up the

possibility of numerically evaluating the path integral.
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Figure 1.4: A two dimensional lattice

A technical note: QCD is described by a path integral in Minkowski space
Z = JD [fields] e®>. (1.19)

If we wanted to evaluate this numerically we’d run into serious problems, due to
the oscillating exponential. This makes numerical integration very difficult. It’s
much easier to Wick rotate into four dimensional Euclidean space, this takes S — iS

which gives an exponential damping

"

-~ - - <
oakicl o v
dirvanan ) N
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J
This is the formalism we will use for the remainder of this report. Henceforth, unless
otherwise noted, all fields, coordinate and momenta will be Euclidean. Minkowski
space results can still be extracted from lattice theories. For example, the fourth
component of the lattice momentum p4 is ps = 1E(p), where E is the Minkowski
space energy. Masses can be extracted by determining this energy at zero three-
momentum.

Obviously, putting a continuum theory on a lattice will break the four di-
mensional Euclidean symmetry which will introduce errors into numerical results.
Breaking this symmetry is unavoidable, however it is not a fundamental concern as
it is naturally restored in the a — 0 limit. QCD has other symmetries which are
important. The most important is gauge symmetry. If we break it, a large number
of couplings have to be fine-tuned in order to recover gauge symmetry to the de-

sired approximation in the continuum limit. Fortunately Wilson’s formulation of
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3

Lattice QCD preserves gauge invariance.

1.4.1 Gauge Fields on the Lattice

The key to Wilson’s action for the gauge fields is to use group elements of SU(3)
rather than the Lie algebra elements. The group elements have a natural inter-
pretation in terms of directed paths. Thus, to each link of the lattice we assign a

group element U, (x). Pictorially this is
U,(x) = xe—wp—ae (x+afl). (1.21)

Under an SU(3) transformation S(x) we have U(x) — S(x)U,(x)ST(x + aft). To
build up a gauge invariant operator, we can consider the trace of any product of
links forming a closed curve.

Consider the shortest such path, a 1 x 1 square, or plaquette,
U, (x)Uy (x + af)Ul(x + a9)UL(x). (1.22)
Under a local SU(3) transformation we have,

S(x)U,(x)ST(x + aft)S(x + aft)U, (x + aft)St(x + afi + a?)
xS(x + a9)Ul(x + a9)S!(x + aft)S(x + af)Ul(x)ST(x). (1.23)

Using ST(x)S(x) = 1 this becomes,
S UL () Uy (x + af)Ul (x + a9)Ul, (%) ST (x). (1.24)

Taking the trace of this, and permuting the end link around to the front cancels
the last gauge variant part. It is clear that this procedure will hold for the trace of
any more general closed curve.

We can use these objects to build up an action for the group elements. The

simplest thing to do is use the plaquette operator

P, = %ReTr [Uu(x)uv(x + af)ul (x + aV)UL(x)] (1.25)
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to construct an action for the gauge group elements

Sw=B)> ) [1—Pul. (1.26)

x u<v

This action was first constructed by Wilson [9] and is known as the Wilson gauge
action. We expect that the constant B will be related to the QCD coupling g.

To determine the nature of this relationship we will look at the small a expansion
of the Wilson action. We want to recover the limit where we can neglect the
extremely short distance effects associated with the lattice spacing. Introduce the
elements of the Lie algebra su(3), A,(x), with the standard connection between
group and algebra elements

U, (x) = et90An), (1.27)

Expanding to O(a®), and using Tr[A, ] = 0, we find

4
Pov=1— 96—% (9%FFn] + 0(a®). (1.28)
If we set P — 6/g” we recover the continuuin aclion up bu spacing errors,
1
S,y = —EdeTr[Fm,F‘“’] +0(ad), (1.29)

where we have used,
1
aty — de and =-) . 1.30
> 21k (120

From the preceding formulas it is clear that powers of the lattice spacing clutter
things up. To simplify the notation we will henceforth use units where a = 1 unless

otherwise noted.

1.4.2 Fermions on the lattice

Naively putting fermions on the lattice should be straightforward. The fermion

fields transform as P(x) — S(x)(x) so the mass term P(x)P(x) is automatically
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gauge invariant®. The term,
W)U (x)h (x + )

is also gauge invariant. We can use this sort of operator to construct a gauge

invariant kinetic term,

PID(x) = 5 (DO UnxIblx + B) — PlOULx— Qp(x—@)).  (1.31)
2

With these two operators we propose the following fermion action
Sn=) B(x) (¥*Dy+ m)(x). (1.32)

This is known as the naive fermion action. In the a — 0 limit it reproduces the
continuum (Dirac) action with O(a?) errors.

The naive fermion action has a very unfortunate property that limits its useful-
ness for numerical work. To see this problem we consider the weak coupling limit,
g — 0, which means we can take U, (x) = 1, This gives,

2 ((x) +0) - —~ _
Sux Y Z1(11>(xv*“l1)(x )2 (x v+ (x m)+mw(x)w(x). e

X pu=

Going to momentum space this becomes, with $,, = sin(p,a),
1 = e
Sn= 17 2_ (=) [iy*Pu+ mb(p). (1.34)
P

From equation 1.34 we can read off the momentum space propagator

iy pr+m
S =— 1.35
(p) ey, (1.35)

The mass shell for these fermions is given by solving

sin(ps) = im. (1.36)

3Recall that P = Plyo.
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Naively, this has the solution ps = sin™'(im) which in the continuum limit gives
ps = im, the correct Euclidean mass shell. The problem is that (restoring the
lattice spacing)

psa =sin"'(ima) + m ’ (1.37)

is also a solution. Thus a lattice quark with high energy close to the cutoff 7t/a will
become a low energy quark, nearly at rest, in the continuum limit. This is clearly
a big problem, as numerical simulations will give 16 degenerate types (or “tastes”)
of quarks. There are few ways of dealing with this problem. We will outline one of
them here, and touch on another in the next section.

The most straightforward solution to this problem is to add an irrelevant op-
erator to the quark action, which modifies the small a behavior of the “doubler”

quarks. An operator which does this is the lattice Laplacian

Db(x) =Y (Upl(x+ )+ UL(x— RIb(x— ) = 20(x)) . (1.38)

- ar -
Swe = 3_B00) (¥"Du— S A+ mib(x)) b(v) (1.39)
This changes the mass shell condition to (again restoring a)
sin®(psa) + [ma + 2rsin? (E;—a)] . (1.40)

In this case psa = sin”'(ima) gives the correct continuum limit but, due to the
sin(p/2) term, psa = sin™'(ima) 4+ is no longer a solution. This solves the fermion
doubler problem by driving the energy of the doublers up near the cutoff.

This solution to the doubling problem was first proposed by Wilson [10]. It is
widely used in the lattice field theory community. It does suffer from two serious
drawbacks. First, the Laplacian operator is dimension five. This introduces a O(a)
error, whereas the naive action had O(a?) errors. Furthermore, and more seriously,
the Wilson action does not have the chiral symmetry that QCD exhibits in the
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limit of massless quarks. This means that fermion masses receive large additive
mass renormalization and calculating any quantity which is sensitive to the chiral

properties of QCD is very difficult.

Full QCD

We can put these two actions together into a full approximate action for QCD,
S=Sw+) Sw,. (1.41)
q

This action reproduces full QCD up to linear errors in the spacing. We can use

this to evaluate QCD matrix elements. For example,
(0IQv*iiPa) = (01QY*3Qa0) = | DUDYDHQY*aQae™. (142)

In principle there are a finite number of integrals, so one could just do them all.
However, even on a moderately sized lattice there are too many integrals to evaluate.

S

Fortunately the weighting e™> makes these path integrals amenable to Monte Carlo

methods.

1.4.3 Dynamical Fermions

The techniques of Monte Carlo simulations are not the direct subject of this re-
port. We are more concerned with the errors that they report. As we have dis-
cussed above, we would like to have small errors for QCD matrix elements. Before
discussing small, controllable errors we have to address the one approximation in
lattice QCD that does not meet the controlled criteria: the quenched approxima-
tion.

Fermionic variables cannot be represented in a computer so we have to find
another way to deal with the fermion integral. This is not hard to do, at least

conceptually. We can write the Wilson quark action as

S = bx)M[Up(x) (1.43)
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where M has the derivative and mass operators, which depend on U. This action

is bilinear in the quark fields, so we can integrate them out,
JD\T)D\be‘SWq =det (M[U]). . (1.44)
Therefore the general path integral can be represented as
Z = JDU det (M[U]) e™>w. | (1.45)

This allows us to use purely gluonic variables in the computer. To compute matrix

elements involving quarks we can use the propagator formula
S¢=M"[U]. (1.46)

The trouble is that the fermionic matrix M[U] is very large and sparse. This
makes it computationally very expensive to invert. In the past many people doing
large scale Monte Carlo simulations would simply set det M = 1, neglecting the
dynamical quarks altogether. This is known as the quenched approximation.

For many years computing power was such that there was no way to avoid the
quenched approximation. In spite of this ra;ther extreme approximation, many in-
teresting results were obtained with quenched simulations. However, even the best
quenched results contained uncontrolled, and often not well understood, systematic
errors. This means that lattice QCD results could not provide the high precision
QCD results needed to understand experiments.

Fortunately the quenched approximation is going away. Modern teraflop scale
computers are allowing high statistics results for unquenched simulations. With this
source of error being removed it is even more important to look at other sources of
systematic errors, and how to control them.

One technical detail worth pointing out here is that one of the main reasons that
unquenched simulations are becoming more feasible is the use of so-called improved
staggered (or AsqTad) fermions introduced in [11]. In the interests of completeness
we give an outline of how one constructs a staggered quark action. In chapter 2 we

will discuss the improvement.
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We begin with the naive fermion action
Sn=)_ b(x) (¥*Dy+m)(x). (1.47)

As we discussed above, this action describes 16 different tastes of quark. One way
to get rid of these extra tastes is to introduce a Laplacian term as we did previously,
and another is to “stagger” the fermions. This means we spin diagonalize the naive

fermion action. This is accomplished via the transformation

Y(x) =T(x)x(x), B(x) =x0x)T(x), (1.48)

where we demand that
TH) v T(x + i) = nu(x)L (1.49)
This transformation will produce an action diagonal in the spin indices.

A explicit matrix that implements (1.49) is
T(x) =yi"v2v3va' (1.50)
With this choice the factor n(x) is

Mu(x) = (117710 i (x) = 1. (1.51)

Implementing this transforms the naive fermion action to

Sn=)_ Zxa x)D* + m) Xalx), (1.52)

X a=l
where we’ve shown the sum over the single spin index. It’s clear that in this form
the naive fermion action is just four copies of the same thing; each term in the sum
over « is identical. This suggests that we can “stagger” the fermions by simply
dropping the sum over «.

Dropping the sum over « gives the unimproved staggered quark action

St = Zx x)D* +m) x(x). (1.53)
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This action will describe four tastes of quarks, rather than sixteen. There are
techniques which can be used to define an effective number of flavours, and hence
to further reduce taste doubling, but we will not discuss them here.

Recall that for the Wilson fermion action we introduced a term PAY to the ac-
tion which removed the doublers. However, such a term bre_aks the chiral symmetry
of QCD, leading to large additive mass renormalizations. This greatly slows down
matrix inversions, as the large renormalizations introduce unphysical “exceptional”
configurations.

The staggered formalism has a remnant chiral symmetry, which protects against
any additive mass renormalizations. This greatly speeds up the matrix inversions.
A further factor in favour of staggered fermions is that they have 1/4 the number
of spin degrees of freedom, resulting in a smaller matrix to invert. Overall, the

savings from these fermions are a factor of 20 or more [12].

1.4.4 HPQCD

With the quenched approximation going av.vay there is a tremendous opportunity
for lattice QCD to make a major impact on the experimental high-energy physics
program. If lattice QCD is to be relevant to experimentalists, we need to deliver
results with low errors that are under control.

This is the goal of the High Precision QCD (HPQCD) collaboration. A loose
collaboration of researchers from North America and the UK, HPQCD seeks to
apply the many innovations in lattice QCD developed over the last ten years to
quantities of interest to the broader high-energy physics community.

In order to do this, we need to make use of highly improved actions in order
to reduce the lattice spacing errors which dominate. The following two chapters
outline the technical details behind the perturbative improvement program. These
techniques, and the calculations performed with them, are absolutely crucial to this
program.

Given the size of the HPQCD collaboration and the number of authors listed
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on its papers, it is appropriate to emphasize that the work presented here was per-
formed by the author, under the supervision of Howard Trottier. The calculations
of various link operators, presented in chapter 4, and the matching calculations in
chapter 6 represent the author’s original contributions to the multi-authored works
of HPQCD. These calculations have impacted on several of HPQCD's papers (per-
turbation theory for Wilson loops [13], improved staggered quark action [14], and

the determination of o [15]).



Chapter 2
Improving Lattice QCD

The current experimental situation requires precision lattice calculations in order
to extract standard model parameters, or resolve possible signals of new physics.
Despite many impressive successes (for example, the calculation of the light hadron
spectrum in the quenched approximation [16]) the lattice QCD community has not
delivered the precision calculations that are needed.

There are a number of reasons for this. The first is that, until recently the
cost of doing unquenched simulations was prohibitively expensive. With modern
computers, removing the quenched approximation is now possible. The MILC
collaboration [17] has generated large numbers of gauge field configurations with
light dynamical quarks, removing this major source of lattice errors.

In fact, the removal of the quenched approximation is particularly important
since it removes an uncontrolled systematic error from lattice results. With this
error removed we can investigate the remaining, controllable, errors in lattice cal-

culations, and try to find ways of reducing them.

2.1 Errors in Lattice QCD Simulations

Lattice QCD simulations use Monte-Carlo methods, so there are unavoidable sta-

tistical errors associated with them. These errors are well understood and, with

22
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modern computers, generating sufficient statistics is not usually the major source
of error.

Another source of error, which plagues both quenched and unquenched simula-
tions, is quark mass errors. These stem from the need to invert the lattice Dirac
operator y-D +m (or some modification of it, like addition of the Laplacian term).
As m goes to zero (which is the limit we want to consider for up and down quarks)
the algorithms for inverting this matrix critically slow down. There is a well-known
“wall” at which simulation with lower m, becomes effectively impossible. In order
to circumvent this problem, simulations must be done at unphysical quark masses,
and extrapolated to the physical limit.

These extrapolations can introduce large errors. Often, simple polynomial ex-
trapolations are not adequate. The m — 0 limit of QCD is described by chiral per-
turbation theory [18] (xPT). Often these chiral expansions have non-analytic terms,
for example the tree level xPT prediction for the pion mass is m, «x {/m, + mg, and
the one loop xPT correction to the pseudoscalar B meson decay constant contains a
A rithmic in the quark mass. "These types of terms can su
alter the extrapolation at small quark masses [19].

Ideally one would like to do lattice simulations at quark masses that are in
the region where chiral perturbation theory is applicable and reliable. Most lattice
simulations are probably not in this region [20] however the MILC collaboration has
simulated at sea quark masses three to five times smaller than the strange quark
mass, and reports reliable chiral extrapolations [17]. There are other technical

issues with chiral extrapolations beyond the scope of this report [21], [22].

2.1.1 Spacing Errors

The dominant errors in most modern lattice simulations are the errors associated
with the finite lattice spacing (a). The Wilson actions we outlined in chapter 1 have
O(a) errors for the quarks and O(a?) errors for the gluons. Of course, simulations

can be run at multiple values of a and extrapolations performed, but the errors are
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still large.

The obvious solution to this problem is to simply run at smaller values of the
lattice spacing. This is, unfortunately, not feasible. The number of points that
are needed to simulate on an L*# lattice is (Ll:— so naively, one would expect that the
computer time needed would scale as a™*. This is not the case. The Monte-Carlo
simulation routines used to generate gauge field conﬁguratibns critically slow down
for small a. For this reason the computer time scales at least as a~° instead of a™*.
This limitation exceeds what would allow for a reasonable time to wait for brute
force reduction of a. Of course, increases in computing power are vitally important,

but they will not be enough to deliver high precision results in a timely manner.

2.2 Improvement

Fortunately there is another way to address this problem. Rather than brute force
reduction of the lattice spacing, we might look for a better discretization of the

h
witn.
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A simple example illustrates the general technique. Assume we wished to com-
pute a numerical derivative. We might use the simple forward difference

df(x) _ flx+e) —flx)
= 2.1
™ - +0(e), (2.1)
but this has linear errors. For no extra cost we can use a symmetric derivative,
df(x) f(x+e€)—"f{x—¢€) 2
= 2.2
™ 5 + 0(e?), (2:2)

which has quadratic errors.

The situation is similar in lattice field theory. Rather than using the simple
Wilson actions presented in the chapter 1, we can use “improved” versions of ac-
tions that have lower errors. Unlike the simple numerical example this has some
additional cost, but it is much faster than trying a brute force reduction.

There are many approaches to improvement, and improved actions are almost

universally used in lattice simulations. The approach we will discuss in this report
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is known as Symanzik improvement [23]. For the gluon action this approach is
fairly straightforward. Recall from the previous chapter that the small a expansion

of the plaquette term in the Wilson action is
0.4 2ruv 6
Puv=1- =Tt [97F*"Fun| + O(a®). (2.3)

The next term in this expansion is
6

a 2 2
—=Tr 9F.(D + D2)gF, | (2.4)

Now we look at the expansion of the following operator

R = 9 (2.5)

18

we have

8 20
Ruv + Ry =1 Za*Tr [9%F*"F| — 57 0°Tr [9F (D2 + D2)gFn] + 0(a®). (2.6)

If we take,

5 1
L =300 =Pu) = 50 = Ry + Rop)] (2.7)

we recover the continuum action up to O(a*) errors. By adding a new operator into
the action we have managed to subtract out the O(a?) error. The computational
cost of this improvement is orders of magnitude lower than brute force reduction

of the lattice spacing [24].

2.2.1 Symanzik Improvement of the Wilson Quark Action
Recall the Wilson gluon action

$=3 ¥ (mo+vuD¥ = 24) b(x). (2.8)

The Laplacian term, needed to solve the fermion doubling problem, induces an

O(a) error. We would like to cancel this error by adding another operator to the
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action. Noting that the Laplacian operator has dimension five, we look for another

dimension five operator. There is only one,
0 = $o PP,

Here F"Y is a lattice approximant to the continuum field strength tensor. We use

the clover approximation

1
Fuv=3 Y sign(pv)uaUsulul + HC.
fi=tu,v=zkv )
which is accurate to O(a?).

We add this operator into the action with an arbitrary coefficient
- T v
Ssw= Z W(x) (mo +v.D¥— zA + cswO Y ) Y(x). (2.9)

This is known as the Sheikholeslami-Wolhert [25] or clover action. If we can deter-
mine the coefficient csy, we should be able to cancel the O(a) errors. The problem
1s L0 determine Csw.

One way of proceeding is to look at the Feynman rules generated by this action.
Taking U, = e *9%* and expanding to first order in a we find the quark—gluon
vertex for the action (2.9) is
i

20(1 —csw)(p+p')u| +0(a?). (2.10)

My =—got® |y, —

Clearly setting csw = 1 will ensure that this vertex agrees with the continuum one
to O(a?).

Of course this is not the full story, as there are further lattice spacing errors
that can turn out to be uncomfortably large. As well, our determination was done
in free field theory, interactions between quarks and gluons will surely modify this
result. Indeed the calculation of the leading interaction effects will be one of the
main focuses of this thesis. To understand these effects, it pays to think a bit more

carefully about the way we determined cgwy.



CHAPTER 2. IMPROVING LATTICE QCD 27

2.3 The Physics of Improvement

In order to understand spacing errors and the improvement program better, it is
instructive to consider the physical origin of the lattice spacing errors and what is
accomplished by the addition of improvement operators. This discussion will make
it clearer why the naive improvement considered above is not sufficient.

The discussion up to now has treated the lattice field theory as some numerical
approximation to a continuum field theory. That is, we took some field theory
we wanted to study and constructed some numerical approximation to it. This is
of course a correct point of view, but it is not the most useful one for discussing
improvement.

It is far more useful to think of our lattice field theory as a continuum euclidean
field theory with a hard spatial cutoff of a. That is, any field mode with wavelength
less than a is simply thrown out of the theory. In momentum space this idea
translates into the statement that field modes with momenta greater than Z are
exclnded _

In this way of thinking, lattice QCD becomes an effective field theory, one
which agrees with full QCD at long distances, but disagrees on short distances.
The spacing errors, from this perspective, reflect this short distance disagreement.
Adding improvement operators becomes a systematic procedure, just like in any
other effective field theory. There is a tower of terms, organized by some “small”
expansion parameter (in this case Aqcpa = 0.2), and one expands to a desired
order in it. Once one has these terms, they are each added to the action with a
separate coefficient.

These coefficients can be fixed by matching to the full theory. In our case, we
started with the Wilson quark action. It contains the dimension four operators,
and this matches the low-energy, long-wavelength dispersion relation for quarks in
the underlying continuum theory. In this action the Laplacian term is redundant

and can be removed by a field transformation, but we keep it to solve the doubling
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problem. Unfortunately it induces an O(a) error that can be very large.

To correct the O(a) error (the Agcp is implicit) in the Wilson action we added
the next set of operators from the tower. In this case, there was only one o, F*".
The coefficient was fixed by demanding that the quark—giuon vertex agree with
continuum QCD. In the effective field theory view, we were really demanding that
the tree level scattering of a quark off of a gluon is the same in both theories to
O(a?). This is best illustrated graphically. Consider quark-quark scattering off of
a chromo-magnetic field, there will be tree level diagrams for both the lattice and

continuum,

= tree; c. (2.11)

l,c

With csw = 1 our calculation above shows that

tree. — tree; = 0.

e i m e T2k e T mendd AL VT dAla
LluuuLLll alllplliiluue, allld Luc lauuive

amplitude. To insure that they are not mismatched we must have a one-loop

contribution to cgy (we'll call the one-loop part cl,) such that
one-loop. — one-loop; — c[SQV x tree, = 0.

Solving for ¢ [sgv gives, graphically,

= L e, (2.12)

1

The hatched blobs represent the sum of all the one-loop corrections.
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From this perspective it is easy to understand why the naive “numerical im-
provement” presented above doesn’t work to remove all of the O(a) errors. We
know that in QCD (or any QFT) scattering amplitudes get radiative corrections.
Our simple matching didn’t take these into account, so we éxpect that in addition
to O(a?) errors we will have O(«x.a) errors. In a “typical” lattice simulation a ~ 0.1
fm, g = 0.2 and Agcp = 300MeV = 1.5fm~'. With theée parameters the error
from the one-loop corrections is 0.015, comparable to the estimated O(a?) errors
of 0.0225. Furthermore, if we are to achieve high precision results, we really must
cancel the O(a?) errors as well, making it absolutely crucial to remove the one-loop
erTors.

The situation is actually worse than this in some cases. Owing to the nature
of the lattice regulated theory there are so-called lattice tadpole graphs, which can
give errors that are not suppressed by powers of a. As we shall see in chapter 3
for some quantities (such as the mean link) the leading perturbative error is really

O(as) = 0.2. We will see how to deal with these errors later in this report.

+ + | 2 s - > lhoed &
Jjue tc ¢ 1COriCs aIc VEIr'y 4arda 1o

t

work with. We have developed a set of tools which allow perturbative calculations
to be automated. These tools, and how we use them in lattice perturbation theory,
will be the subject of chapter 3.

The HPQCD collaboration has set a goal of achieving high precision results from
lattice QCD. We want to compute a broad range of physical quantities with errors
of a few percent. In order to do this we need all lattice spacing errors of O(a*, a?a?).
This means that we need all of the action improvement parameters to either one or
two loops of perturbation theory. This requires an ambitious perturbative matching

program, which is now in progress.

2.3.1 Improvement of the Staggered Quark Action

The unimproved staggered action (1.53)has large O(a?) errors, so it is desirable to

improve it. Such an action was constructed in [11], and is given, in the regular spin
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basis, by
- 1
Spsqraa = 3 (1) (Y”DL - LD+ m) i), (2.13)
where -
Dmme=Z£(mxwwu+ay—vmx—anmx—a0, (2.14)
. |
=V,—) —eE o u (2.15)
PFU
1
AfU,(x) = agO%unux+mUAw+mn¢u+6+amyx+m
— 2U,(x) (2.16)

+ Ub(x~ B)UL(x — 2B)Uu(x — 26)Up(x — 2B + B)Up(x — p + 1))

Vulx) = H (1 + %) U, (x), (2.17)
PFU symm
and
AUy(x) = 1? (Up(x)Uyx+ BIULx + )
0
~ 2ulU,(x) (2.18)

+ UL(x— B)Uu(x — P)Up(x — p+ 1)) .
Here up is a mean field improvement factor, which will be discussed at length in

chapter 3. This action has errors of O(a*, «,a?).

2.3.2 Other uses of lattice perturbation theory

Beyond matching of action parameters, there are many other uses of lattice per-

turbation theory. We discuss two relevant examples here.
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Operator matching

Consider some lattice operator élatt’ it will only agree with the continuum operator

O. up to some order in the lattice spacing. That is we will have
Glatt = C/\)c + O(Qn).

We can make this a bit more precise. Consider the case where there is one lattice
operator CA)O with the same dimension as the continuum operator. There will also be
a tower of operators, O,, with the same quantum numbers, but higher dimensions.
These will be suppressed by powers of the lattice spacing. This allows us to write
the connection between the lattice and continuum operators as (restoring the lattice

spacing)
GC=Z(g,...){@o+Zad“Cn(g,...)@n}, (2.19)

where (g, ...) indicates the dependence on all the couplings in the action, masses,
the Wilson parameter r, etc, and d, is the dimension of the operator O.. The
overall factor of Z is conventional. .

The situation with the currents is the same as with the action parameters. The
coefficients are calculable in perturbation theory, and can be tuned to remove errors
to any desired order in a™a™. Often the coefficients C,, are expanded further in
some mass expansion. For example, if the mass is very large, we expect that C,

will produce a set of corrections suppressed by powers of the quark mass.

Determining o

Another very important use for lattice perturbation theory is in determining the
strong coupling constant from non-perturbative simulations. This is a three-stage
procedure.

The first stage is to fix the QCD constants non-perturbatively. We need to fix

the quark masses and a, the lattice spacing. This can be done by demanding that
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the lattice simulation reproduce five experimental numbers. For example, we tune
the light quark mass until the pion mass comes out right.
Once we know all the inputs we measure some extremely short distance quantity
on the lattice. The simplest thing to do is to measure the average plaquette P.
Now, the need for perturbation theory comes in. Assume we have a perturbative
expansion for P,
P=1+Pa(q*) + Paal(q*) +---

Since we have a measurement of the left hand side of this equation, we can solve
for os(q*). Naively we expect the scale q* ~ 7/, that is the plaquette is evaluated
at a scale near the cutoff. A precise method for determining q* will be given in
chapter 3.

Finally we can use the conversion between the lattice coupling, and the MS to
get a value for ags(m/a). This result is usually scaled up to E = Mz and compared
to other determinations of «. The lattice result compares favourably with the world
average. The lattice determination of «; is particularly interesting since it involves
input from both perturbative and non—perfurbative calculations. The agreement
between this and other methods of determining o is a very powerful argument
in favour of QCD. Of course this whole program depends on being able to do the
perturbation theory for a number of short distance quantities. We will address

some of these calculations in chapter 4.



Chapter 3

Methods for lattice perturbation
theory

3.1 The need for automation of bare perturbation

theory

As we mentioned in chapter 2 lattice perturbation theory is technically more com-
plicated than standard continuum perturbation theory. The reasons for this are
straightforward, the breaking of four dimensional Euclidean symmetry by the lat-
tice regulator, and the non-linear connection between the link fields U, and the
gauge fields A ..

The breaking of Euclidean symmetry has a number of unfortunate effects. First,
as we observed in chapter 1, the Feynman rules are trigonometric functions of the
momenta, rather than polynomial ones. Clearly this makes manipulation, and
simplification, more difficult. Furthermore, there are corrections to the vertices
that vanish in the continuum limit, but are present in the lattice theory. These
additional terms, along with the trigonometric functions, makes deriving and cal-

culating with these large vertices very error prone. The number of terms in a vertex

33
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is naively given by [26]

2

where T is the number of gluons, and £ is the length of the curve in the action.
This formula grows very quickly. For example, the 2 gluon vertex (v = 2) from the
Wilson plaquette action (£ = 4) only has 40 terms, however the six gluon vertex
from the rectangular improvement term (£ = 6) has 5544 terms. We will address
the problems that this growth presents below.

Another issue is the hard cutoffs of m/a on momentum integrals. This means
that the traditional “textbook” tricks for loop integrals do not work. Of course,
before one even thinks about evaluating the loop integrals, one must have a reliable
way to generate the vertex functions.

For striking example of the troubles that these issues can cause, we look at the

four gluon vertex. In the continuum theory we have

irabcd — fabefcde({s;;&vc _ 8;38.'.;)

+ fobefede(s 5 §00y,)
4 fobefede(§ 5 §.08y0)-

This is already a rather complicated expression. If we derive the four gluon vertex
from the Wilson gauge action, we get the result shown in figure 3.1 (used with
permission from [27]). Notice that the vertex is much more complicated than the
continuum version, and this is just the simplest gauge action. Other actions, such
as the improved gauge action, would generate rules that would fill many pages. The
need for some more automatic method of dealing with such expressions is hinted at
in the footnote shown on figure 3.1. The expression for I" is a corrected version! The
original paper had an error. Even further, the page reproduced here has another
error. The argument of the vertex on the left hand side is given as p, and on the
right hand side it is k. This seems a minor point, but such errors are easy to make

when typing complicated vertex functions into a text editor. Clearly then if we
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want to perform perturbative calculations with improved actions we will need to
automate the generation of these vertices.

The non-linear connection between the gauge field and the link field
U, (x) = et90r() (3.2)

is the origin of the complexity of the Feynman rules. Consider the part of the rule
coming from W(x)U,(x)¥(x + afl). Expanding the link field will give a tower of
vertices. There will be a quark-gluon vertex, a quark two-gluon vertex, etc. The
first three terms in this tower are shown in figure 3.2. The same issue arises with
the gluon action. In addition to the regular three- and four-gluon vertices, which
are already very complicated, there is an infinite tower of higher order vertices, all
of which get progressively more complicated.

The situation is not totally hopeless. These vertices come with progressively
more powers of «, so at a given order in perturbation theory we only need to
consider a few of them. Nonetheless, given their complexity, it is essential to be
able 10 automaiically generate ihem.

There is one further difficulty with the perturbative improvement program.
The number of actions that have been proposed for use in lattice QCD studies
is very large. Just for simulating fermions we have NRQCD, Fermilab, D234,
clover, AsqTad, HYP, FLIC, domain wall, overlap, and more. Given this large,
and increasing, number of actions we would like to have a method of generating
Feynman rules that makes switching actions easy. In this way, once we set up a
calculation it is relatively straightforward to change the action. This allows for a

detailed study of the improvement properties of various actions.

3.1.1 The Liischer—Weisz Algorithm

Fortunately an algorithm exists which has most of the desirable properties we need.
This is the Liischer-Weisz algorithm, first outlined in [26] (see also [28],[29] and
[30]). The description of the algorithm given in [26] paper is somewhat opaque. In
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(15.53b)
This concludes our discussion of the pure gluonic sector. We now proceed to the
analysis of the fermionic and ghost sectors.
iv) Fermionic and ghost contributions
Consider first the contribution to (15.22b) arising from SI"’[A,%,%]. For
Wilson fermions it is given by (6.4), where the link variables are replaced by
(15.1a). Expanding these in powers of ¢,,, and introducing the dimensional fermion
_fields and gauge potentials according to (4.3a) and (15.36), one obtains up to

i * This is a corrected version of the expression given by Kawai et al. (1981).

Figure 3.1: The four-gluon vertex, and an instructive footnote.
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Figure 3.2: Terms in the tower of vertices generate by {(x)et9o2 X1p(x).

light of the central role it will play in what follows we will give a more detailed
description here. Following that we will outline the implementation of the algorithm
in the object oriented scripting language Python?.

In general, a lattice gluon action is the sum of a number of “sub-actions”, each

containing a sum over the trace of some closed curve of links. That is,

s=) s(e).
¢

For example, for the Wilson gluon action there are six curves, corresponding to
the plaquettes in various planes. Clearly it is sufficient to consider the problem of
generating the Feynman rules for a single curve at a time. Our problem then is to

generate the rules for the action,
s@) =) &(e), (33)

where
L(C) = (constant) x ReTr [1 — €].

The vertex functions V will be given by expanding in go

— (ig0)" d*k d*k, .
s = 508 (5 [ 3 [ e v
x (A2 (k) A (k) VIR (K, oo k). (3.4)

One further requirement is that the vertex functions be totally symmetric under

permutations of any two gluon labels.

!For an introduction to Python see [31]. Python is free software, available at the Python website
http://www.python.org.



CHAPTER 3. METHODS FOR LATTICE PERTURBATION THEORY 38

The problem is now clearly defined. We want an algorithm that takes a given
link path C and returns the vertex functions V to some specified order r. The
return should be in the form of a subroutine that represents the vertex in some
convenient language (Fortran in this report, though any modern compiled language
would work). These subroutines are subsequently used by another program which
codes a given Feynman diagram out of the vertex functions, and which performs
the loop integrations.

The path C is given by a set of points on the lattice, starting at n(1) and ending

at n({). For a plaquette in the xy plane these are

n(1) = [0,0,0,0]
n(2) = 1,0,0,0]
n(3) = 1,1,0,0]
n(4) = [0,1,0,0]

Clearly knowing these allows us to specify the direction of any link. We write these

as a sign s times a direction fi as follows,
n(i-1)-n(i) =s(i)f(i), n(0)=n(L). (35)

The list of signs allows us to tell if the link in the path is a daggered or undaggered

one. This allows us to write the curve as

C = el%Xi ... glo0Xe (3.6)
with
X, = Aug(nlil) if sli] = +1, and X; = —A q(nfi— 1]) if sfi] = —1.
Finally setting
Re(1—C) = —%(e +e —2)
we find

L= —%’I‘r (eig"x“ S el90Xt g0 L e ig0Xe 2) : (3.7)
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We want to expand this expression in go. The trouble is that the link fields are
non-abelian, so the ordering matters.

The solution of Liischer and Wiesz is quite simple. We start by picking one
ordering of links, then sum over all the distinct orderings. To do the ordering we
start at the origin of the curve, and move along it until we get to the first term igoX
that contributes, this could be the first link, the last link,‘ or any one in between.
We label it by uy, so the first term in our product igoX,,,. The index u, is going to
run over all the links in the path 1,...,{ since the first contribution to the vertex
function could have come from the expansion of any one of the links.

We continue, looking for the next contribution. It could be from the same link
(i.e. from an X? contribution to the Taylor expansion of the exponential), or at
another link, further along the path. We’ll denote this contribution igeX,,,, where

u, > uy.We proceed in this manner, until we have r gluons, arranged in an order,
(iQO)TX‘Lu Xuz Tt Xur) 1 S uy S uz S ot S WUy S £ (3'8)

Finally, we sum over all possible orderings of this type, which gives the v glion

contribution

_] T+1 - T
Z ( 2) t(.lgO) 'I‘]_‘ [Xu] “ee Xur + (—] )Txur PPN Xu|] . (3.9)
1<y <up <--<upr <t actor

This solves the ordering issue. We can write the full Lagrangian as,

— (igo)"
;:,222 L, (3.10)
with,
L= ) ED™ M X X+ (1) X+ X ] (3.11)
L 2 factor ht W b e .

1<uy Sy <Sur <t
We have to specify the factor in (3.11). This counts the number of times a
single link contributes. A simple expression for the factor is obtained by counting

the number of gluons coming from each link

X = Z 51,% . (312)
a=1
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]

With this expression, we can write the full expression for the r gluon contribution

Ly = (- . .
r= Z 2 “]!'..“e!'I‘r[Xu,...Xur+(f) u e u]}. (3]_3)

TSy <--Sur <t

We want the momentum space vertex functions, so we Fourier transform

d4k -1 oik-x+ik-ali] /2 a ;1
X; = aZuJ (27_()45[1]e S TAAL(K). (3.14)

There are a few things about this expression worth detailing. The location of the
field is given by the starting point of the curve x plus the position along the curve

afi] nfi]+nfi—-1]
2 2 )

(3.15)

The factor of 1/2 reflects the fact that the link connects the points x and x + a, so
it makes sense to use the midpoint of that path as the transform point. The delta
function ensures that the gauge field A will be polarized in the same direction as
the link field. Finally, T is the element of the SU(3) algebra. This is the only part
thai doesu'i commuie. ’
We use the expression for the Fourier transform in (3.13), which gives
d*k; d*k, (=1)*! 7!
Lr = m%‘ J (2m)4 aZuJ (2m)? L Suzzs---Sursz 2 ol

x  ellk +-~+kr)~xs[-|]oc1 SR T (T - T 4 (=1)T ... T
X (B ppuy1€™ M By g™ e A% () - A (k). (3.16)

To clean this up a bit we write the colour factor as
Ch o =Tr(T® - - T + (=1)T% ... TY), (3.17)

and we extract the function

v _ SlD MR 3.18
u]...ur(k'l)"')k’r) - Z 2 “1!...“2! ( ) )

1<u Sup <--<ur <t

X s[1]% ... s[g]* (6u1 ufuyjet . "5uru[u,1€ik"°[“']) -
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'

Using these expressions in (3.3), along with,

Zek'+ T = (278 (ka + -+ ),

gives
- (i90)" d*k d*k,
sie) = 3 (Zj(znf“”'zj( )27[452](
r=2 ay, ar,pr
X (A{i} (k) - -A;‘;(kr)) CHoYy, (ko ke (3.19)

The final step in the derivation is to symmetrize under permutation of any two

gluon indices, as follows

vm O.r(k.l’ .. , r’ Z CQ] O.rY:u o (k1’ - k"r)- (3‘20)
P,

Here P, represents the sum over all permutations of the labels
1,--m.
For example, if r = 3 we have

Vo 23 (ki ko, k) = CYRBY (ke ko, ks)

CHBRY s (K1, k3, k2)
CRBNY s (2, k3, k1)
CRNBY s (K2, k1, ks3)
CBHRY (k3 ki, k2)
CBRNY o w (k3 ko, k).

+ + + + +

All that we need to automate is the generation of the unsymmetrized parts of the
vertices Y, the colour factors and symmetrization are trivial to implement, by
hand.

To automatically generate the function Y we rewrite it as

Y;w-ur(k])' k) = Z (TR STRRRTITIN kT)eikl.a[ul]/2+...+ik.-.a[ur]/2,

1<y Sy <-Sur <t

(3.21)
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¥

i mnlfi s{i] fifil ufi] ali]

1[10,0,0,01] +1]10,1,0,01] 2 |10,1,0,0]
2| 0,0,0,00| =1 11,000| 1 |0,0,0,0]
3lm1,00 | =101,001 2 |121,00
4100,1,0,01| +1 | 11,000 1 |01,2,0,0]

Table 3.1: Curve parameters for a plaquette in the xy plane.

where

(=1 r!

Flun, g5 ke) = ls[]]a, o SIO™O L ) Sl (3-22)
g-

2 oyl
These expressions entirely are determined by the indices uy, - - -, u,. This fact allows
us to construct a dictionary, indexed by w,---, 1., with entries f, afu4],-- -, afu.

Then, to build up the vertex we sum up all the terms which contribute to each

orientation, for a given set of input momenta.

Example

To make these ideas clear, we will construct Yﬁ] ., (K1, k2) for a plaquette in the xy
plane. The input to the algorithm is a list of points, specifying the curve. From
these we can construct the lists s, fi, u and a, using (3.5) and (3.15). These values
are enumerated in table 3.1.

These values allow us to compute the values for the o constants, which count
the number of gluons from a single link, and, with those, write down the f factors
defined in (3.22). These are enumerated in table 3.2. With the a vectors from
table 3.1 and the f factors and delta functions from table 3.2 we can assemble the
dictionary for the Y, ,, vertex. For example, the entry for u, = u, = 2 has three
terms associated with it, which are listed in table 3.3. With these values we can
construct

Ya(k, q) = _%ei(kzﬂh)/l + etlket2ar+a2)/2 _ 1ei(2k1 +k2+2aq1+a2)/2
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Wy | W oy | x| 3| xa f
1T(1]2]0 0 | —38,20802
T 121 (1[0 0| 84264
1030101 ]0]| 64282
T4 [ 1]10]0] 1| =6428u1
212101200 |—38u18u
203001110 —=841642
214 0001101 | 8418,
313[010(2]0 [—1642602
314101001 [ 1] 8,428
414101002 |=38410u

43

Table 3.2: Front factors for the two gluon expansion of plaquette in the xy plane.

front factor all] al2]
-1 [0.1.0.01 | [0.1.0.01
+1 [0,1,0,01 | [2,1,0,0]
-3 2,1,0,01{ 12,1,0,0]

Table 3.3: Terms in the (2,2) dictionary entry.

Clearly, if we had the contents of tables 3.1 and 3.2 we could write out a Fortran

source file that would compute Y3, for given input momenta. We could clearly do

the same for all of the other directions, we won’t write them all out. This method is

clearly quite labour intensive, even for this simple case. Once again this illustrates

the need to automate the generation of the vertex rules. The algorithm described

in this section is easily implemented in a symbolic computer language, as described

next.
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Implementation in Python

The implementation of this algorithm in Python is straightforward. We start with
a path )
path = {(0,0,0,0), - - -, (endpoint)] (3.23)

and assign the n's, moving around it. Once we have the ns, a subroutine computes
the signs s, direction vectors {l, directions u and gluon positions a. With these we
can construct the factors f.
The delta functions in the f factors are used to figure out which entry a term
belongs with. For example
f=100,,10,,30,,4 (3.24)

means that an term
[fo, afuil, alual, afus]] (3.25)

gets put in the entry indexed by (1, 3,4). To save a bit of space, if the entry already
has a term
[fo, alwl, afuzl, alus]] (3.26)

we just add the two front factors, so the two terms get replaced by
[fy + fo, alwi], afuyl, afus]]. (3.27)

Note that for any term with f = 0, either by this addition or the delta functions, .
we don’t write into the dictionary.

The end result of this procedure is a dictionary (hash table) with entries indexed
by the Lorentz indices. From this point it is easy to construct a source code (e.g. in
Fortran) which implements this table in a form for later use in evaluating Feynman
diagrams. We use a template to write a standard file, which defines a subroutine

that takes the momenta as arguments and outputs the unsymmetrized vertex

Y,

ENEE

(3.28)
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Note that compared to the cost of performing the loop integrations the cost of
generating the Feynman rules is trivial. For the most complicated case considered
here, the two gluon vertex generated by the improved staggered fermion action, it
takes a few minutes to generate the vertex tables. »

Pick one entry, say (1,3,4) for a three gluon vertex. This entry will have a
number of terms of the form |

f,a, az, as.

The vertex writer steps through each of these terms, writing (in the first version
of this code, “writing” meant literally writing a term of this form into the Fortran

subroutine)
Y(1,3,4) = Y(1,3,4) + fez(-artkeaztks-as) (3.29)

for each one. In this way we build up the vertex. Actually, to save more space, we

write only the non-zero parts of the dot products. For example, with

a; = [])O) O)O]
a, = [O)dyov ]]
a = [O) 0)2)0])

we write
Y(1,3,4) = Y(1,3,4) + fer (K+4+24)

After all the entries have been summed over we have the unsymmetrized vertex,
we can easily take the product with the colour factor, and symmetrize the result.
Clearly the procedure we have just outlined satisfies our requirements, it au-
tomatically generates the Feynman rules without any human intervention at all.
Furthermore, the only inputs are link paths, so generating new sets of rules is easy.
By breaking the action S up into a sum over the various curves it is clear how to

add new operators to the action.
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'

3.1.2 Adding Quarks

It is also straightforward to extend this algorithm to quark actions; we just have
to make three small changes. The structure of a quark operator on the lattice is a
bit different than a gluon one. Whereas a gluon operator is the trace of a closed
curve, a quark operator is a line of links joining two quark fields. For example, we

might want to consider

VUL ) Uy (x + Q) (x + ). (3.30)
This highlights the three changes we have to make, taking the displacement of the
quark field into account, changing the colour factor, and allowing for open paths.
To take the displacement of the quark field into account we note that the Fourier
transform of the field displaced by some distance d is
P(x+d) = J —d—4]£-eik'deik"‘¢(k) (3.31)
(2m)4

the quark field is to multiply each term in the vertex by the factor e <. From an
implementation perspective this is a trivial thing. For quark vertices we check the
endpoint of the path of links (n[f] = x.) and multiply each term by exp (ik - x.).
This also reproduces the correct “no-gluon” vertices that we need for the quark
propagator.

Changing the colour factor is just as straightforward. There are two major

changes, since the action is now

P(x)U,, (x) -+ Uy, (x + € — 1Pp(x + nle]) (3.32)

we don’t have the trace over the colour matrices T, and there is no real part of the

trace. So the colour “factor” in this case becomes

carvar _ e Tar (3.33)



.
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Working with these matrix products typically involves working out the colour factor

for a diagram in advance, and only keeping certain parts.

Finally we have to slightly change the way we define the path. For a closed
path we stopped one point away from the initial point, and imposed the condition
n(0) =n(£) (see (3.5)). With an open path, we set n[0] to the initial point, and go
up to n[f]. That is, (3.5) gets rewritten as

nfi—1]—nfi] =silffi], i=1,---,L (3.34)

This is the only change, after that everything proceeds in the same way.
One further issue comes up with quark paths. Unlike gluon paths, quark oper-

ators typically have a direction. For example, the link operator is

P Uu(x)p(x + ). (3.35)

This is a component of the operator y*D,, so in order to deal with quark vertices we
need to keep track of the spin indices. For example, for y*D, we use the automatic
] vertex generator four times to get rules for Dy, Dy, etc. Then, in the Fortran code,
multiply each vertex rule by the appropriate gamma matrix. For this work we just

keep track of these by hand, however they could be automated as well.

3.1.3 Large vertices and performance

One of the key problems with the LW algorithm is that the vertices it generates
grow very rapidly as they get more complex. As we mentioned above the growth

is factorial in the size of the input path and in the number of gluons, that is

Le+1)---(L+1—1). (3.36)

M= )

This can result in very large Fortran source files, which are slow to compile and
produce extremely large object files.

There is a simple way to fix this problem, at least for the actions we will be

considering here. The key is that every term has the exact same form (3.29). The
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«L3e 8

k+q

Figure 3.3: Gluon loop contributions to the gluon self energy.

various quantities (f,{a;}) change from term to term, but the form of the terms do
not change. We can avoid the large source files by writing the varying parameters
into a text file, and reading them in at run time. This avoids needless compilation
of thousands of instructions.

Of course, we cannot avoid the double factorial growth altogether; this is inher-
ent in the complexity of the Feynman rules, and there is only so much reduction we
can do. By reading in text files we trade the problems of large source and object
files into a problem with large arrays. That is, after reading in the text files we have
large arrays in memory. Now assume that we want to calculate a diagram with this
array. We have to run the whole array in from memory, through the CPU’s cache,

multiplying by the momenta. This returns the values for Y, but| for large arrays it

———J

gets very slow.

3.1.4 Bare perturbation theory

Once we have generated the Feynman rules, the remainder of our perturbative
calculations are done in a very straightforward manner. We use our Python scripts
to generate the Feynman rules that we need. For example, let’s say we wanted
to compute the one-loop contributions to the gluon self energy from diagrams
involving gluons. There are two diagrams, shown in figure 3.3. For these diagrams
we need three different Feynman rules, the two-gluon vertex (which gets inverted
to make the propagator) Vv (k, —k), the three-gluon vertex Vivs(ki, k2, k3) and the

four-gluon vertex V3o<S(ky, k2, k3, kg). These are the symmetrized rules, built from

the automatically generated unsymmetrized ones.
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Gauge fixing and measure terms

Just like in the continuum theory we need to do gauge fixing in order to remove the
redundant gauge degrees of freedom from the path integral. This is just the usual
Faddeev-Popov method outlined in any QFT textbook applied to the discretized
action.

Another issue for lattice perturbation theory is the conversion of the lattice
path integral measure D{U], which integrates over link fields, into the gauge field
integration measure D{A]. The connection between U and A is non-linear, so we

expect that we cannot just substitute
D[U] — DIA].

This is indeed the case, and we need to properly derive the connection between
the two integration measures. This is a standard exercise in group theory, though

fairly long. We refer the interested reader to [27] and merely quote the result here,

D[U] = D[A]e~miAl (3.37)
where
] — (=)
=—= logl1+2) —— ST . 3.38
SmlA] ZXZH'IT og |1+ é(zuz)!(g"/\“ ) (3.38)
In this report we will only need the first term in this series, so for our purposes we
can use
D[U] = D{Ale~SnA (3.39)
where 5
SLIA] = j—é’ 578, A%(x)AD(x). (3.40)
X,

In addition to the measure terms, we need to fix the gauge in the path integral.
To do this we will use the Faddeev—-Popov procedure. Once again this is a standard

result, and we provide a brief summary of the development in [32].
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We start with the path integral for the gauge field?
Z= JD[U]e‘SW[A]. (3.41)

Here D[U] is the (gauge invariant) measure we discussed above, and Sw[A] is the
Wilson gluon action (or any other gauge invariant improved action). On the lattice,

a gauge transformation is represented as
Alx) = e (),

It is sufficient to consider gauge transformations infinitesimally close to the unit

transformation, so we write
Alx) =1+ iTdw®(x) (3.42)

dropping all higher order terms. Under such a transformation, the gauge field A

transforms as follows

SAC(y) — l E=HA (v &0:b(v 1 0V _E=1A (1) &mbPl0)] (2 42\
AT R N g L-’C\ SULT VY [ad] Soh A\ ULy Y ™ 'lJ \We 4wy
where
-1 X
E7'(x) = , (3.44)
1 —e>
and
A o d
Au(x)pe = gfbeaAp(x). (3.45)

We wish to use a covariant gauge fixing, so we introduce the gauge fixing function

4
fA(x)) = AMAS(x) = Y (AS(x) — AS(x— 1)) . (3.46)

u=1

Under an infinitesimal gauge transformation we find, using (3.43)

SFA(X)) = ) Mexpydw®(y) (3.47)
Y

2We omit the fermion action in this discussion, so long as it is gauge invariant, nothing changes,

just replace Sw(A] by SwlA] + Se[¥, ¥, A].
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where we have introduced the Faddeev-Popov operator

4

MomAl = 2 3 [EATnsny — B (A00))6s

=1

— ET A= @)y — ETN A — @)6ypy] . (348)

We denote the gauge transformed field by A (x). Equ-ation (3.47) shows that
if we transform from the variables f(A”(x)) to w?(x) the Jacobian is just M.

Defining the determinant of the Jacobian, or the Faddeev—-Popov determinant, as

A¢[A] = det M[A] (3.49)
we see that the integral
J [T dw®x) [ T6 (f(AMy)) — g5) AJAN (3.50)
x,b y,c

is a constant.

Returning to the original path integral, we have
= J'D[U]C—SW[A] = JD[UA]C—SW[AA] (351)

since everything in this expression is gauge invariant. Now we are free to multiply
this by the constant (3.50)

Z= J DIUM [ dw®(x) [ ] 8 (fAMw)) — g5) AdANeSwY, (3.52)
x,b y,c

Transforming to A gives

Z= (J 11 dwb(x)) JD[U] T 15 (f(AW) — g2) AdAJeSw?. (3.53)
x,b y,c

We can drop the integral over w as it is an uninteresting constant.

2
Next we integrate over g with a Gaussian weight e¥, which gives

Z= JD[U]Af[A]e“SW R=SerlAl S = zl_a % [f5(A ()12 (3.54)
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¥

Finally, we express the Faddeev-Popov determinant as an integral over ghost fields

A¢A] = JDnDﬁe"SF"[A’“’Fﬂ, (3.55)

Sep =) (flc(x + ) —fic(x)) (Egp (Au(x) Mo(x) — Egd (ALbmo(x + 1)) . (3.56)

X1

This expression can be expanded in the gauge coupling to generate Feynman rules
for gauge field-ghost interactions. This can be done by hand, the explicit expression
is well-known [26].

With the gauge fixing accomplished there we can easily implement the diagrams

shown in figure 3.3. For example the tadpole diagram is

d*k 3
T(p) = [ 5o ValSi(h, k,—, ~pIDRE(K). (357)

We assemble the diagrams by hand, and then numerically integrate them. To do
the numerical integrations we use the VEGAS routine [33]. In this way we have
performed all of the calculations in this report. Many other calculations have also
been performed by the HPQCD perturbation theory group, using this same basic
approach.

The numerical integrations are typically well-behaved, however we can run into
problems when the integrands have contributions from widely separate scales. We

will discuss these issues as they arise in the forthcoming chapters.

3.2 Issues with bare perturbation theory

The general Liischer—-Weisz algorithm has been understood since 1985. Why, then,
has lattice perturbation theory not been applied widely? One reason is that even
with the Liischer-Weisz algorithm, these perturbative calculations are very diffi-
cult. Another reason is that for many years the predictions of lattice perturbation
theory disagreed substantially with non-perturbative calculations of short distance

quantities.
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As an illustration, we consider the perturbative versus non-perturbative deter-
minations of the mean link. Working at B = 6/g5 ~ 6 the one-loop perturba-
tive value for the mean link in Landau gauge is = 0.078, compared to the non-
perturbatively determined value 0.139. At this B we have a, = g?/4m =~ 0.08.
Such disagreements were typical of any comparison between perturbative and non-
perturbative results for short distance quantities. Accordihg to our quick estimates
in chapter 1, perturbation theory ought to work very well in this case. This failure
of lattice perturbation theory meant that the perturbative improvement of actions
could not be trusted, and hence doomed lattice field theory to waiting for computers
to become powerful enough to work “brute force” at very small a. Alternatively,
symmetry considerations can be used in some cases to design improved actions
and operators without recourse to perturbation theory. These non-perturbative
techniques are beyond the scope of this report, for an up to date review see [34].
In a groundbreaking 1993 paper [35] Lepage and Mackenzie solved this issue.
They showed why perturbation theory was disagreeing with the non-perturbative

rercnatad Avre A 1YY

ralrasintsarna AarmA as vrr ATTa tha a an
D) Al QURRWILLLL WUyw bW LLpPLUYLY bl aglve

~
Wwlldw Wil viviad

ent techniques to fix the perturbative series, we review them here. Of the three,
two (better expansion parameter and scale setting) are well-known in continuum

perturbation theory, and one (tadpole improvement) is unique to the lattice.

3.2.1 Xy

The first problem with pre-Lepage-Mackenzie lattice perturbation theory was that
perturbative expansions were typically done with the bare lattice coupling. This is
a bad choice of expansion parameter. In general, using a bad expansion parameter
can result in perturbative series that are technically correct, but practically useless.

To see this, lets assume we have a well behaved perturbative series,
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¥

where all the coefficients are O(1) and x <« 1. If we then make a transformation
Xvad = xgood“ - ]Oooxgood)

The second order coefficients become very large. If we look only at the power of x
the two series are equally good, but in practice the series in xpqq Will badly disagree
with data.

The solution to this problem is fairly clear; use a good coupling. There is no
unique choice for what to use as a good coupling. Lepage and Mackenzie suggested
using a physically motivated choice. For example, we can define a coupling «y such
that the short distance QQ potential has the form

(3.58)

to all orders.
Equation 3.58 gives us a means to convert o, to xy. We compute V(q) as a

series in &y,

&
ki
<

V(q) = —2 3.59
The connection can be read off,
0(,v=060(]—V'|OCo+"'). (360)

Perturbative series that are expressed in terms of «y have much better convergence
properties than those expressed in terms of oo We will discuss the computation of
the connection between the two couplings later in this report, for now we simply
quote the long known result for the Wilson gluon action

1 e 5
ao(q) = v [1 - xv (4—7; log (?) +4.702> + O(ocv)} . (3.61)

It is the large constant term 4.702 which is causing the problems with series ex-
pressed in terms of «p. We would like to understand the origin of these large terms,

and if possible arrange perturbation theory such that they don’t occur.
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3.2.2 Tadpole improvement

The large terms are due to so-called lattice tadpole diagrams in perturbation theory.

Consider the perturbative expansion of the link variable,
Up(x) = 1 —igaAu(x) — Lo Aux)ALX) + .
Taking the expectation value we find
g2a?
(Uulx)) = 1= = (AU + -+,

so naively we expect that perturbative series will reproduce the continuum predic-
tion (1) up to O((ga)?) errors.

Unfortunately this naive expectation is not correct. The reason is that the

(Au(x)AL(x)) = —>&>—

can be written (in Feynman gauge)

correction term

: dk 1
= . p S o 3 X —a—-z'
P [Esm( 2 )]

When multiplied into (ga)? this cancels the a dependence, giving only a suppression

of O(g?). Note that this problem is not present in the continuum, these power

divergent diagrams vanish in dimensional regularization.

Impact for high precision lattice QCD

These tadpole diagrams are disastrous for improving lattice QCD. Recall the im-
proved quark action of chapter 2,
- T
Ssw =1b(x) [YuD“ - EA + CswO Y + mo] Y(x).
We argued that with csyw = 1 this action would be correct to O(a?, xa). In im-

provement coefficients they cause the perturbative errors to be much larger than
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expected. For example a correction that is expected to be 1 x ¢ might turn out
to be 6 x &, due to the large tadpole contribution.

Fortunately there is a way to at least partially remove these errors without
perturbative calculations. Rather than using the bare link variable U, in non-

U, (x)
- Here

perturbative simulations, one uses a “tadpole-improved” link, ﬂu(x) =
uo is some measure of the average value of the link variable (common choices are
the mean link in Landau gauge, or the fourth root of the average plaquette).

Recall the original Wilson gauge action,

Sw= 'g]‘z > =Pl (3.62)

p<v
Multiplying and dividing by ug, and setting § = g/u3 we find,

Sw = L > 1Pyl (3.63)

2.,4
9o

Using the action in this form results in much lower errors, and perturbation theory

e e . < . . Lo -
g 1s mucn petrer penaveq, in act tner

-

n

no large constants. Evidently & is another “good” expansion parameter.

3.2.3 Scale setting

A final issue for lattice perturbation theory is determining what energy scale to use
in the strong coupling. Recall from chapter 1 that the strong coupling constant

varied with energy. At lowest order in perturbation theory we have,
2 EZ 4
oy (E2) = 2 i ) _ R{LE— (3.64)

The issue for lattice perturbation theory is to determine what value we should use

for E. For the purpose of this section, a more convenient expression for « is

1n-2
CXv(EZ) _ CX,v(ll) BO — _Zi;tirﬁ

= 3.65
1+ av(u)Bolog(E2/u?)’ (3.65)
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We are trying to correct for physics that has been excluded by the UV cutoff,
so we might try using E = q* = m/a as our energy scale. While this reasoning is
correct, it is not a particularly precise way of determining the ideal q*. We would
like to have a more precise way of setting the scale. ‘

A general one-loop term in a perturbative series has the form
T = av(a) | dafla).
We might try to determine q* by setting
oov(q*) J dqf(q) = jd“qav(q)f(q). - (3.66)

This will produce an average value for g*, but we must be careful about using
equation 3.65. As we've written it, it will produce a divergent integral. The key is

to expand 3.65 to the correct order in o

2
av(q) = av(q®) {1 — Boxv(g*)log (::,;) +-- ] . (3.67)

Using (3.67) in (3.66) and solving for log(q**) gives

=y _ J daf(q) log(q?)
Jd*af(q)

Using ov(g*) rather than oy(71/a) in perturbative series can result in still better

log(q (3.68)

agreement with non-perturbative simulations, there are examples of this in [35].

Troubles with g*

The simple definition of q* outlined above suffices for many lattice calculations.

However, it can fail in some cases of interest. For example when the denominator

Jd“qf(q)

vanishes (or gets anomalously small) the formula (3.68) clearly doesn’t apply (or
gives anomalously large values for g*). The solution to this problem is to use a
higher order expansion for ay(q). This procedure is outlined in [36], along with

detailed examples of its use.



Chapter 4

Link operator results

In this chapter we will consider the perturbative expansion of various operators
built out of links. There are four operators we wish to consider. The first, and
simplest, is the mean link. That is the expectation value of a single-link operator
(U,). This is a gauge dependent quantity.

Another simple gauge dependent quantity we can consider is the expectation
value of a line of links in some direction. This is known as a Wilson line of length
L, where L is the number of links in the line. We will denote this as P(L). Again,
this quantity is gauge dependent, except when the length of the line is equal to
the length of the lattice. The Wilson line is a important quantity, because the
self-energy of a static quark can be extracted from the Wilson line’s overlap with
the ground state. That is,

lim (P(L)|0) = ce Fot, (4.1)

Looo

The static quark self-energy E, is gauge invariant, but the overlap c is not.

From the Wilson lines, the next most complicated quantity is the static quark
potential. By computing the correlation function of two Wilson lines, we can extract
the potential. We outline this in more detail below. We work in the L — oo limit,
which gives gauge invariant results.

Finally we would like to compute the expectation values for various small closed

58
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paths. The simplest of these are Wilson loops, that is rectangles of length R and
width T in a plane. These quantities are gauge invariant and will be denoted as
W(R, T).

All of these quantities are important to know in perturbétion theory. The mean
link is an input into tadpole improved lattice simulations so it is useful to know.
Typically it is measured non-perturbatively, however the pérturbative result could
be used. The Wilson lines and static quark potential are needed to compute the
relationship between o and «y as discussed in chapter 3. In addition, if we have
a calculation for the static quark potential in the continuum theory we can use the
lattice calculation to relate ay to «p. Finally, as outlined in chapter 2, perturbative
expansions for small Wilson loops play a vital role in extracting the strong coupling

« from lattice simulations.

4.1 Gauge field actions

-

T 1e Aeairahi
T 1g aegirap

end, we report results in this chapter for three different gauge field actions. The

first is the unimproved Wilson gauge action. That is,

Sw=B )Y [1-Pul. (4.2)

X u<v

where P, is the trace of the plaquette, as detailed in chapter 1 and § = 56;. Most
of the things we calculate using the Wilson action have already been computed, so
we can use this action to test our methods.

We also consider the Symanzik improved action of chapter 2,

S1=Bm ) (1—Pul+8% Y [1-Ryul, (4.3)
Xp<v Xpu<v
where
10
BPI = Bo = EEL

g Tt 207
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At this point, there are a number of ways to go about tadpole improving this
action. We choose to only consider the additional tadpole factors generated by the
rectangle terms, since there are two additional links in the rectangle we get two

powers of the average link. That is, our action is

S1=Bp ) [=Pul+B% > [1-Rul, (4.4)
X U<V X;U<V
where
10 Bot
ﬁ 1= 5 ﬁo = > .
P g2 Tt 20u3

The counterterm generated by the 1/uj factor will cancel some, but not all, of the
large second order coefficients. The remainder will be dealt with by converting to
Ky

Both of the previous actions have uncorrected O(xa?) errors. An action which

removes these is [37],

SG = ﬁpl Z (] _Pp:v) + Brt Z (] —Rp:v)

+Bpg Z “ - Cp:vc)y (45)
XUV
where
10 Bpt
Bpl = ?’ 6rt = —-zou%(] + O.48050qatt)
Bt g’
f-”pg = "‘1:;%0-03325061:,&, Kjatt = ZE

This action is is highly improved, it’s errors are O(a*, o?a?). The term C,.; is a
six link “chair term” defined by

%’I‘r (U ()W (x + ) U (x+ &+ 9)UL(x 49 + )UL(x + B)UL(x)]

C],L‘VO’ =
Note that this prescription for improvement is not unique. There are other redun-
dant operators that can be used instead that would also remove the errors. Our

perturbative methods could be applied to them as well.
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We present our results for an expansion in the bare lattice coupling o =
g%/(4m). We include tadpole counterterms for (4.5), which are generated by the
first order expansion of the mean-field in the rectangle terms. In this chapter we
use the mean-field, u,, defined by the average plaquette which, for the action of
(4.5), is given to first order by uy &~ 1 — 0.76710q.. Our second order results also

included the counterterm generated by the 1 x 1 x 1 paths in (4.5).

4.2 Twisted periodic boundary conditions

A problem that comes up repeatedly in doing perturbative calculations is that
most of the quantities we wish to compute are infrared divergent. In a matching
calculation these divergences must cancel, since the lattice and continuum theories
are the same at long (> a) distances. For this cancellation to work we must use

the same infrared regulator for both theories, we will return to this point in chapter

we are doing second order calculations, so a gluon mass (which is a more traditional
IR regulator) could destroy the gauge invariance. Another infrared issue that comes
up occurs when we compute on a finite lattice with periodic boundary conditions.

In this case, integrals over the lattice momentum

T 34
J d’k ] 5 = 0.1549326(6),

4 .
< T (2sn )
which are well behaved, become badly behaved lattice sums

4 L/2

IT > 1 . (4.6)

n i) 0, (25 [=2])

The trouble is that the zero-mode n; =n,; = n3z = ny4 = 0 is only properly treated

in the L — oo limit.
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'

There is an infrared regulator that is both gauge invariant and removes this
zero-mode problem, twisted periodic boundary conditions [38]. We review twisted
boundary conditions here in some detail; even more technical detail can be found
in [26]. '

We consider a lattice with volume L, with regular periodic boundary conditions
Us(x + Lil) = Uy(x), pn=2z1, (4.7)

in two directions (zt), and twisted periodic boundary conditions
Us(x + 19) = Q. Us(x)QL, un=x,v, (4.8)

in the other two. The twist matrices Q are constant elements of SU(N). We can
solve for the twist matrices by considering the effect of a crossing both the x and
y boundaries. There are two ways of doing this, applying (4.8) in the x then y
directions,

U, (1+L,1+L,21t) =0Q,0,U,(1,1,z, t)QLQL, (4.9)

or applying (4.8) in the y then x directions;
Uy(T+L,1+L,z1t) =0Q,0,U(1,1,2,£)QLQ]. (4.10)

These two possibilities must be equal. Enforcing this, right multiplying both sides
by (Qny)’f and left multiplying both sides by 0,0, gives

(Qny)TQnyux = ux(Qny)TQny) (411)

or
[(Qy0,)10,0,, Uy =0. (4.12)

In order for (4.12) to hold for an arbitrary link element (Q,Q,)'Q,Q, must be
an element of the centre group of SU(N), Z(N). We define z = e?™/N, to get
(Q,0)'0,0, = z
Q.Q, =20,0,. (4.13)
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This equation can be solved for an explicit set of twist matrices, however we do
not need to do this for perturbative calculations. Instead we consider the effect of
twists on the gauge fields A, (x).

The gauge fields are related to the link fields via

U, (x) = e9Rex)
We find that the gauge field must satisfy
Aux+19) = QA (x)Q. (4.14)

We wish to have an expression for the momentum space gauge field, so we try the

Fourier decomposition
1 Lk
AulX) = 53 Y Re®HF A (K). (4.15)
k

Rather than expanding in the traditional colour matrices T¢, we have expanded in

PR o TN
10

~ mad Py HpRuh. BRI D T L
a oCTu v WIOLTU LULlU UL LLIALEILTD T

—Lli l . 1.1
L wililil WG L

e dm lim e mann manday e mend  YKTA
anc vy uc L

IoInEntuin dependent. We
will derive conditions on these matrices below, but one important point is that we
have traded the traditional colour degrees of freedom a = 1,...,8 for additional
momentum degrees of freedom.
Fourier expanding both sides of (4.14) we find the condition on the twisted
colour matrices
QLA = eI, (4.16)

We left multiply both sides of this with N — 1 more QQ.’s and right multiply with
N — 1 more Q1’s. This gives

QUN(QDN = e™tQT R Q)N (4.17)

Using (4.16) repeatedly on the right hand side, and QY = (—1)™-1 on the left we
find
N = (=1)NletNev i (4.18)
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This is solved, up to an arbitrary phase factor, by

2r

That is, in the twisted directions there are three times as many momentum modes
as there would be for periodic boundary conditions. An explicit solution of (4.18)

with a convenient choice of phase [39] is
M= Q™ QMg ™", _ (4.20)

The twisted momenta, for the purposes of solving (4.18), are defined modulo
N. This means that there appears to be N2 choices for the n, and n, values in our
solution for . This is not quite the case. Consider the n, = n,, = 0 mode, which

gives the N x N identity matrix Inxn. Note that we must have
Tr(A(x)) =0. (4.21)
Since Tr(In.n) = N we must have
Ak, = 0(modN), k, = 0(modN), k;, k) = 0. (4.22)

This is the crucial property which makes twisted boundary conditions appealing.
The zero-mode k, = ky, = k, = k¢ = 0 is excluded from the theory. The bad lattice

sum (4.6) becomes

HE) e

. 2
—31/2) \u=3n,=-3L2 ZL] (2 sin [Tﬁ‘-])

where xx = 0 if ky = O(modN), and xx = 1 otherwise. We’'ve introduced the

notation
k1 = 0(modN),

which means

n, =0(modN), and ny=0(modN).
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The sum (4.23) has no zero-mode, so it is well behaved.
There are a few other properties of the Is that we will need. First, the N2 — 1

remaining matrices must be traceless
Trl =0, if k1 #0. (4.24)

Notice that there are N2 — 1 remaining matrices, which is the same as for more

traditional colour basis. Two other properties of these matrices we will need are
N =T, (4.25)

and
Mol = 27 MmN, = Z(n,n') R4, (4.26)

which trivially follow from (4.20) with our choice of phase.

Twisted colour factors and smell

bvvrandamd AnlAsie lhansa s &
v LU LvuIvuUuL vaoio 1u b

many changes. For gluon actions we just replace
CQ]...Q,. — rI'lr [TQ] .. _Tar + (___‘I )TTQr .. ‘Ta|] ,

by
1
Clkq, -, ke) = N N, N, + (=1)T, - - N, ] (4.27)

It is actually easier to work with this sort of colour factor. Repeated use of (4.26)

allows all of these colour factors to be reduced to the form

f(ky, - -
C(k], Tttty krr) = —Q—N—’kl)'l‘r [Fk, +k2+---+kr] . (428)

The trace will be zero unless we have

(k‘) + kZ +---+ kfr)twisteddirections = O(mOdN)) (429)
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which enforces momentum conservation on the twisted momentum modes. Assume

that the momentum conservation condition is met; we have Trl, = N, so the colour

factor is 7
C(kb"')k'r):f(k])"'akf)' _ (430)
An example should make this clear. We consider the three-gluon colour factor,
1
C(k1,k2, ks) = *N*Tl’ [rk1 rkz rk3 - rk3 rkz rk1]
1

= =Tr [Z(n1)n2)r‘k] +k2 rkg, - Z(n3)n2)rk3+k2 rkl]

N
Trl,
= [Z(ny,n2)}Z(ny +nz,n3) — Z(n3, n2)Z(n3 + Ny, ny )]—N—

= [Z{ny,n2)Z(ny + Ny n3) — Z(n3,n2)Z(nz +nz, )], (4.31)

Clearly this is the sort of procedure which lends itself to automation very well.

In order to treat quarks in this formulation, we must express them in this new
colour basis [40]. This is most easily done by introducing an additional SU(N’)
symmetry group for the quarks, this is known as the smell group [41]. Here we
take N’ = N. We must modify the quark éction to take this into account. Take

the mass term (MT) as an example. In the ordinary colour basis we write

N

MT = ZIBC(X)IPC(X)- (4'32)

c=1
We introduce N copies of this, one for each smell,

N
MT= 3 Sebuclxbeal), (433)

c,s=1

where the quarks are now N x N matrices in colour—smell space, and we have used

wcs(x) = II)SC(X)' (4'34)

The sums now just give the trace, so we have

1 -

MT = NTHI)(X)INX)- (4.35)
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This is general, for any term in the quark action, we replace the quark fields by
colour-smell matrix fields, and take the trace. Analogous to (4.15) we have the

Fourier expansion of the quark field

1

Pse(x) = N_L"'

D (Rsce™W(p). (4.36)

k
With this modification, the colour factors for the quark actions are just

_ 1
C'p, k1, -+, k) = T MR, - M), (4.37)

where p (p) is the incoming (outgoing) quark momentum. These factors can be

worked out by using (4.25) and (4.26). Again, they are easy to automate.

Triple Twists

One can take these boundary conditions one step further and twist in the z direction

as well. By going through the derivations of the QO twist matrices again, one finds

11l .12 VY _r L - - Y11 11 *11 - . r 11 . 10 Tan]
Litat a1t O OUt Ievious 1Tesulls noid, wikll gue furuer conation 14z

ns3 = (n, — ny){(modN). (4.38)

So in addition to the zero-mode being eliminated by n; = n,; = 0, all modes that
do not satisfy this new condition are gone. This eliminates many momenta from

sums.

4.3 Results in «y

We return to the results of our perturbative calculations. All of the results in this
section have been derived using triple twisted periodic boundary conditions. To

perform the mode sums we used the following identity:

N-1 N
3 fn) = J F(INT(x))dx, (4.39)

0
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where INT(x) is x truncated to an integer. This allows us to evaluate sums over
lattice momentum using the VEGAS numerical integration routine.

We start by considering the static quark potential. We can use it to define a
renormalized coupling «y, which can be used as the expansion parameter for other
quantities. To compute the static quark potential we take the correlator of two
Wilson lines of length Ly, separated by a distance R, < ‘@(R, Ly) >. The static

quark potential is then given by
-1
V(R)+2Ey = lim —1ln < O(R,Ly) >, (4.40)
L1—o I—T .
where E, is the self-energy of an isolated quark (see below for our calculation of
this quantity). Expanded in the bare coupling the static quark potential should

have the following form [35]

_‘_1 Kjatt
3 R
X{] + Oqatt(ZE)olTl(T[R) + C(R))}, (441)

V(R) =

where Bo = (11—2/3n¢)/(4m) and C(R) is a function of R which goes to a constant
as R — oo. .

As mentioned in chapter 2, the static quark potential is used to define a renor-
malized coupling. This is done by demanding that the Fourier transform of (4.41)

have the form

447

V(q) =—§?“V(CI)- (4.42)

Using this definition, we obtain the expansion for the bare coupling in terms of the

Natt = ocv{1 — Qv (2(301n (g) + é)

b o), (449

physical one,

Note that by explicitly doing the Fourier transform, we have

C = C(R— 00) + 2BoYe, (4.44)

where v = 0.57722... is Euler’s constant.
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Figure 4.1: Leading order correlator of Wilson lines for R = 3, using (4.3).

Fitting V(R)
Extracting V(R) from the correlations is quite difficult, we will outline the proce-
dures in some detail. The central problem is that we are computing

-1
V(R) +2Eo = lim —ln < O(R,T) >. (4.45)

The trouble is that V(R) = lR and E, = constant, so the signal we want is swamped
as we increase R. As we shall see, this problem is very hard to surmount.

To extract V(R) we start by taking the T — oo of a number of correlators,
'71 In(O(R, T)), at a number of fixed R values. Figures 4.1 and 4.2 show the corre-
lators at R = 3. We fit functions of the form a+b/T + ¢/T? to them and keep only
the constant part a. We do this for 9 values of R from 1 to 9. This gives values
for V(R) + 2E,. The NLO piece is shown in figure 4.3, the “swamping” of the 1/R
potential is clear.

We can do somewhat better by globally fitting all of the data to a function
of the two variables R and T. We can use Bayesian fitting methods [43]. In this
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Figure 4.2: Next to leading order correlator of Wilson lines for R = 3, using (4.3).
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Figure 4.3: Next to leading order potential and self-energy, using (4.3).
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approach we try a fitting function with many parameters -

L f A3
fRT) =fot g +=+pT+ . (4.46)

The Bayesian fitting routine allows us to use a large number of parameters, in-
creasing the quality of the fits. We can also make use of the known form of the
potential, and independent determinations of the self-energy (see below) to fix some
of the terms in the fitting function. For example we can fix fo = 2E(, using our
calculation of E, reported below. Even with these techniques, the re_:sults are still
hard to extract, and the fundamental problem of suppression with 1/R is hard to
surmount. ’

As a test of our calculations we reproduced the known result for the Wilson
gluon action, C = 4.70. We have also determined C for the improved gluon actions.
Using (4.3) we fine

Cn =2.94(77), (4.47)

and with (4.5) we have

L

2 EITIN /A AON
Seddd I‘A-‘l- \\T-TU'I

=

We could easily recompute C for other gluon (and quark) actions, and with other
definitions of u,.

In addition to the static quark potential, we have computed a number of other
quantities. Tables 4.1, 4.2, and 4.3 give results for the logarithms of small Wilson

loops, whose perturbative expansion is defined by,

1 n
_ﬁ——-}-—T)an(R’T) = ;wn(R,T)amt. (449)

We also give results for the scale g* in table 4.1 and 4.2, the scales for the one loop
improved action (4.5) are the same as those reported in table 4.2 for the tree level
action (4.3). The results for the Wilson action agree with those of [44].

We have also computed the static quark self-energy E, through second order.
We define the self-energy Eo(L) on a finite lattice according to

Eo(L) = —% P =Y o (4.50)
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Wi

W2

q*

R
1
1
1
2
2
3

T
1
2
3
2
3
3

1.0471(4)
1.2041(2)
1.2589(2)
1.4342(3)
1.5177(3)
1.610(1)

3.548(7)
4.460(5)
4.816(6)
5.841(7)
6.41(1)
7.09(4)

3.358(8)
3.014(8)
2.931(9)
2.591(8)
2.525(8)
2.446(8)

RIT{w Wo q*

1|1 |0.7673(2) | 1.562(4) | 3.322(7)
1| 2 |0.9255(2) | 2.059(8) | 3.031(8)
1|3 ]0.9849(2) | 2.28(2) | 2.851(8)
21211180303} | 2.85(2) ! 2.505(8)
2 | 3 [1.2342(3) | 3.22(4) | 2.48(1)
3|3 |1.3231(4) | 3.55(6) | 2.31(1)

Table 4.2:

Table 4.3: Perturbative Wilson loops evaluated using (4.5).

Perturbative Wilson loops evaluated using (4.3).

w1

W3

R
1
1
1
2
2
3

TU R C N FUR C Sy

0.7673(2)
0.9255(2)
0.9849(2)
1.1503(3)
1.2342(3)
1.3231(4)

2.070(4)
2.796(8)
3.11(2)
3.93(2)
4.43(4)
4.91(6)
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Table 4.1: Perturbative Wilson loops evaluated using Wilson glue, errors are from
the VEGAS integrations.
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Here P4(L) is the Wilson line on a lattice of size L%. For an infinite volume lattice,
we consider lines of length L, which are gauge variant, and extrapolate L — oc.
The infinite volume extrapolation agrees with earlier estimates, Eo = 2.11720¢,44 +
11.1520,,. The finite volume results were used in a determination of the third
order self-energy, using Monte-Carlo methods [42].

Finally, we have computed the mean link in Landau gaﬁge. In agreement with

earlier determinations we have for the Wilson action,

U= 1—0.9738(2) o — 3.33(1) s (4.51)
For the tree level Symanzik improved action (4.3) we have the new result

Uo=1—=0.7501(1) 0gaes — 1.5(1) 0, (4.52)
and for the one-loop Symanzik improved action (4.5) we report,

uo =1—0.7501(1)0otgase — 2.19(1) 0. (4.53)

The methods for automatic vertex generation can also be readily applied to
commplicated feruonic actions. For example, we compuied the ne pari of the average
plaquette at second order for improved staggered fermions [11]. We find: w;(1,1) =
1.958(2) — 0.06969(4)n+.

4.3.1 Application of these results

As we outlined at the end of chapter 2 the results in this chapter can be used
in conjunction with non-perturbative simulations to extract the strong coupling
constant, «,. In practice, the methods outlined here do not provide the most
practical way of doing the perturbation theory for the connection between «y and
oatt. Other methods have been used, to rederive these results with lower errors,
and to higher orders[45].

The results presented in this chapter came before [45], and provided very valu-
able independent checks of these newer results, which use a background field tech-

nique for the matching, rather than the static potential.
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Another use for the perturbative potential reported here is to provide another,
independent, determination of & from Monte Carlo simulations, using measured
values of the static potential at short distances, instead of small Wilson loops. The
perturbation theory will eventually be used to correct the simulation results of the

static potential for lattice discretization errors.



Chapter 5

Fermilab Quarks

As we discussed in chapter 1, a central problem in high-energy phenomenology is to
determine the elements of the CKM matrix. Looking at (1.9) it’s clear that those
involving heavy quarks are not known very well. Furthermore, the complex phase
of the matrix, related to the parameters p and i in the Wolfenstein parametrization
(1.10), are only accessible via the heavy quark sector of this matrix.

This alone makes heavy quark physics a relevant subject for study. Combined
with the active experimental program in this field, heavy quark physics has been
and continues to be a very active area. Clearly we would like to be able to attack

problems in this field with lattice field theory techniques.

5.1 Heavy quarks on the lattice

There is a problem with doing heavy quark physics on the lattice. The scale mga is
not much less than one (at least at currently used, and foreseeable, lattice spacings).
Practically what this means is that heavy quarks have a Compton wavelength 1/mq
that is comparable to the lattice spacing a. This means that the heavy quark’s
dynamics do not get resolved by the simulations. There are a large number of ways
that have been proposed to deal with this. In this report we will be focused on the

Fermilab approach to heavy quark physics. However it will be very useful to review

75
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a more traditional approach; the heavy quark effective theory. This approach shares
common themes and language with the Fermilab method.

The heavy quark effective theory method is to explicitly integrate the heavy
quarks out of the theory, treating their dynamics in some systematic expansion.
This approach has been widely used in the continuum [46] to address problems in
heavy quark physics. |

To use this approach, one needs an expansion parameter. In systems with one
heavy, and one light, quark, the expansion parameter is 1/Mgq. By taking the
Mg — oo limit of QCD one constructs the heavy quark effective theory!(HQET)

- 1
SHoer = J d*xQ.(x)iD:Q.(x) + O (——) - (5.1)
Maq
This the continuum Minkowski space version of the theory. The heavy quark fields
Q. are related to the continuum fields Q, at tree level, by

Q.(x) = eiMQ"J—%Q(x). (5.2)

In the same manner as a latiice theory, HQET can be “lmproved” by sysiew-
atically correcting the action. Each correction is suppressed by atMg™, so we can
always (in principle) make the theory as close to full QCD as we’d like. Just like
the lattice improvement program, tree level corrections (those for which n = 0)
need to be perturbatively matched to get full agreement.

This program can be implemented on the lattice. At tree level, and to O(1/Mg),

one has

Strger = ) Qu(x)Ua(x)Qu(x + ). (5.3)

Just like the continuum theory, this action has 1/Mg errors, as well as O( a?) errors.

These can be systematically corrected for, and perturbative errors removed.
Another approach along these lines is nonrelativistic QCD (NRQCD). NRQCD

is used to describe systems with more than one heavy quark. In NRQCD the

1For the sake of simplicity we are writing all HQET expressions in the rest frame v = (1,0,0,0).

More general expressions can be found in [46].
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expansion parameter is the relative velocity of the system with two heavy quarks.

With this counting the tree level continuum theory to O(v?) is

D2
iDt + AxA

v | Y- (5.4)

SNrQeD = J d*xpt(x)

Not surprisingly, this is just the Schrodinger action, with a non-abelian gauge
interaction. Just as with HQET, corrections to this action can be considered, and

a lattice theory can be developed [47].

5.2 The Fermilab Approach

Heavy quark and nonrelativistic approaches work very well for situations involving

! and vy, are typically very small, so lattice

a b quark. In this case the scales my
versions of HQET and NRQCD can be applied. The situation with the charm

quark is more complicated. In this case m.a = 1 so expansions in either small or

large ma may not he viahle [48] Tt would he degirable to have a formulation which

was valid for all quark masses, large or small. This is provided by the Fermilab
approach {49].

The basic idea behind the Fermilab approach is to make all the relevant coeffi-
cients in the action mass dependent, rather than fixed to the large mass limit. In
addition, the space and time directions are separated in order to allow for a smooth
transition from light to heavy quarks. The remainder of this chapter will focus on
detailing the Fermilab approach, and in the following chapter we will outline our
perturbative calculations using these actions.

The Fermilab action, proposed in [49], is analogous to (2.9) and is given by

(with the lattice spacing restored)

- 1+vs._ 1—v —
S = 04;11)0(7() [mo+ 3 4D4— 7 4D1+COY'D

iaC%Co = = OC(E)CO

arsCO Z B —

— —SOAB_
2A 2

&- E| pol(x), (5.5)
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where we have put a O on all the bare quantities and used the following definitions

for the various operators

Tulb(x) = Uu(XN)(X'Fﬂﬁ),

Tab(x) = Ullx—a@)b(x),
1

Div(x) = E(T4—1)IP(X))
Divlx) = < (=T 0(),
Dab() = 5= (Te= T (),

ABY(x) = é (T + Toe = 2) H(x),

1

Bi = zeiijjka
Ei_ = FOi» and
1 N
Fod(x) = 523 Z sign(fiv) (ToTo T Ty + H.C.) W(x).
a p=tpnvy==v

The key feature of this action is that the couplings (r, ¢, cs and c¢) are mass
dependent. In fact no assumptions are méde, a priort about the bare mass my.
As well, the space and time directions are split apart. We expect that as my — 0
we should recover the clover action, and for my — oo we should find { — 0 (with
cg( fixed) to recover the heavy quark limit. The only expansion made here is in
pa, the quark momentum, this is why the Fermilab approach works well at any
mass.

This action has been used by the group at Fermilab to address many problems
in heavy quark physics [50],[51]. Unlike other actions in wide use, it is specifically
designed to work for any quark mass. In particular, the region ma = 1 is a region
where many other approaches either fail or require error-prone extrapolations. On
typical lattice spacings ma = 1 corresponds to roughly the physical charm quark
mass, so for D meson studies the Fermilab action is very useful.

The Fermilab action works for heavy quarks because the dominant mass depen-

dence is carried in the coefficients of the action, and not simulated in the computer.
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For example, if one tried to simulate a very heavy quark using (2.9), the problems
discussed above would apply. The simulation simply would not “catch” the dy-
namics of the heavy quark. On the other hand, with the Fermilab action, the
coefficients are tuned such that one would basically be wbrking with the HQET
action (5.1).

Tree level determination

To see how the various coefficients change with the bare mass, we will outline how
the tree level determination of {, cg and cg is done. This follows the discussion in
[49], interested readers can find more technical details there.

To begin we note that the operator A® is redundant, it can be removed by a
field transformation. This means we are free to take its coefficient T, to be whatever
value we want (typically we take r; = 1). As well, the bare mass m, is an input
parameter, so it is fixed. We want to determine how (, cg and cg depend on it.

The coefficient ¢ can be determined by looking at the propagator for the free
termion field. This will actually tell us a lot about the way the Fermilab theory
works. By setting all the interactions in (5.5) to zero, and going to p space it is

straightforward to derive the propagator

S7'(po, B) = tyosin(poa) + ia¥ - S — cos(poa) + w(P), (5.6)
with
. . 2 - .
Si= CM, wp) =1+ mea + rsta 5, Pi= 2 sin (p‘a) .
a 2 a 2

We rewrite S as

. —iyosin(poa) — ia¥ - S — cos(poa) + w(¥)
sin®(poa) + a?5? + [u(P) — cos(poa)]

(5.7)

Using (5.7) we can determine the dispersion relation for these fermions. To do

this, we set po = 1E(P) and solve for the point where the denominator vanishes.
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Doing this, we find that the energy is given by

1+ a?§2 4 p2(p)
2u(p)

One of the important distinctions between Fermilab fermions and clover fermions

cosh(Ea) =

(5.8)

is that moa is not assumed to be small. Accordingly we expand (5.8) in powers of
p;ia. This gives '

- Mi(mpa) _

E3(P) = M? — 2 5%+ O(p*a? 5.9
(P) 1(moa) + Mz(moa)p + O0(p“a), (5.9)

where

-1

2¢2 + TsC

Mia = 1 =
1a=log(1+ mea), M:a moa(2 + mea) | 1+ mea

(5.10)

We can impose conditions on (5.9) to determine (. The most obvious case
would be to duplicate the continuum dispersion relationship, up to the spacing
errors. This would require setting M; = M,. Doing this, and solving for ( gives

(in a = 1 units, here and henceforth)

, _ !/Tsmg(2+mo)\|2 . mng-l-mg\ Tsmg(2+mc) ,
TMEME AN 40+ me) ) T 2log(T+mg) 40+ mg) '

This gives

(9
Py
fuy
~—

E2 = M? 4+ 5% + O(p2a?)
which is the continuum dispersion relationship for a quark of mass M;.
Enforcing M; = M; is the most obvious way to set ¢ but it is perhaps not
the most useful. Assume we want to simulate a heavy quark, at some fixed (not

necessarily small or large) mpa. Taking the square root of (5.9) gives
E=M,;+ il + O0(p*a?). (5.12)
2M;
For simulating a nonrelativistic quark with physical mass m, we would demand
M; = m, and forget about M;, since the rest mass only produces an overall energy

shift. This gives

Tx(2 4+ x)

2




CHAPTER 5. FERMILAB QUARKS 81
This is appealing, since for large mq, ¢ = 0, which would give the HQET action if
we varied T to keep 7, constant.

A third approach to setting ¢, the one used in practice, is to once again forget
about M,, but fix { = 1. Then the physical quark mass is give by M3(mo) = myg.
This has technical advantages in the simulations, and is conceptually simple. In
this case (5.10) provides the connection between m, and 'Mz with {,rs = 1. On
a a = 0.1 fm lattice, to simulate mq = 2 GeV (approximately the charm quark
mass) means that we need to take moa = 1.17, which is right in the intermediate
region. As this is the approach used in simulations, all of our numerical results will
be presented with { = 1. However all of the expressions in this report will be for
general ( so other methods can be used.

There is one more important quantity to be considered related to (5.7), the
fermion wavefunction renormalization factor Z,. To find this we consider the
residue of the propagator (5.7) at po = iE(pP). Using the full dispersion relation

(5.8) the residue is
1

: .
1+mo+ 2P

Unlike the continuum theory, this is dependent on the three momentum. To define

fan )
\VJ) —

—
o
’.-I

~—

T oMl — s
NIV ) T B

a wavefunction renormalization we use the p = 0 value,

]
= = _M‘,
2 ]+mo ¢

For processes with external particles not at rest, we need to use the full Z. This
definition has been chosen to conform to the conventions of [49], we will introduce

a slightly different convention in the following chapter.

Fixing ¢ and c¢

With zeta fixed at tree level, we turn to the improvement terms. Just as with
the improvement discussed in chapter 2, we compute the scattering of a quark

off of some background gluon field and demand that the O(a) difference from the
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continuum result vanish, by tuning cg and c¢. This procedure will reproduce the
results from [49], valid for all bare masses,
Cg=T,, Cg= Sl + rs T‘:-mo.(z + m°).
’ mo(2+me) T4+mg 41+ mo)?
We will not reproduce the derivation of these here, as in the following chapter an

(5.15)

automatic method will be presented. The analytic derivation of these results (using
a different method) is presented in [49]. There is a minor subtlety concerning ce
which bears discussing. The Fermilab action we have been working with is correct
only up to O(pa). If we wanted to correct to the next order we would need to add

a number of new operators to the action [52], one of which is the spin-orbit term

Csol - N o= L =
Z=bvo[¥-D,7-E|v. (5.16)
This additional operator will affect the matching of c¢ at tree level, giving
ce = 2—1 + TsC Timo(2 +mp) | Csomo(2 + M) (5.17)
mo(2+mo) 14+mg 4(1 4+ myp)? (1 4+ my)

Our results will correspond to cgo = 0.

5.2.1 Tadpole improvement of the Fermilab action

We saw in chapter 3 that tadpole diagrams can ruin the naive estimates of pertur-
bative errors. The examples that we considered there all pertained to gluon actions,
however the same issues plague us here. For example, the one loop diagrams for
the fermion self energy are shown in figure 5.1. The second diagram is the tadpole,
which has no continuum analogue. Calculation of the self energy [53] (and chapter
6) reveals that the tadpole diagram, in Feynman gauge, is very large.

Once again, if we hope to have accurate perturbative determinations of the
Fermilab action parameters, we need to remove these large tadpoles. As we saw in
chapter 2 one way to do this is to tadpole improve the action.

To tadpole improve the Fermilab action we write all links U as

u -
U=2"
Uo
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K . k
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Figure 5.1: Self energy diagrams for lattice fermions

Here u, is some estimate of the average value of a link field. Rewriting the action

in terms of ﬂ, we find

= o[ Tdya 1- _
s = uo;xpo(x) o+ 2741)4 - 2Y4D;{+Co}’ D
=0 - =0 .
- rf’zc%“) - ‘cg“z-s— CF-TC"&.E Wo(x), (5.18)

where all the derivatives are now written using the U link, and
- Mo -1 = 3
Mo = —— +{1+3rC}(ug — 1), &pr=UChE- (5.19)
0

Perturbative calculations with this action are straightforward. We compute in bare

artnirhatinn thonrtv and than 1ice (R 1Q) writh a1
Siv Cn TOCSCIY, 2 T8l UEC (c.iy, Wikl a2

talran aithar fram tha mean hinl
uroat taken e1tner Irom tney

[
—0 ——— aa anana.y

or the fourth root of the plaquette. We can use the values for u, from chapter 4 to

compute the tadpole improved couplings.

5.3 Lattice calculations of hyperfine splittings

The calculations we will outline in the next section will have a broad impact on a
number of areas in high energy phenomenology, there is one area that we want to
highlight here.
One of the easiest things to measure in a heavy quark simulation is the hyperfine
splitting
Am =M — My

The experimental value for this quantity is

Am = 117.7(1.3) MeV.
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The hyperfine splitting is important, because it impacts upon determinations of
the bound state wavefunction at the origin. The bound state wavefunction at
the origin is related to decay constants (for example, fg), so if we are to have
confidence in lattice QCD determinations these important quantities it is important
to understand the hyperfine splittings, and get good agreement with experiments.

The trouble is that lattice simulations all seem to sigﬁiﬁcantly underestimate
this quantity. For many years quenched simulations ([54], [55]) found results that
were up to =~ 50% lower than the measured number. It was suspected that this
discrepancy was due to the quenched approximation, however early results with
the unquenched MILC configurations [56] showed that this problem remained. A

more recent unquenched simulation gives [50]
Am = 97(2) MeV,

which is around 20% off. The various determinations of this quantity have been
done by different groups using very different actions, so the disagreement is not a

A e dsa s, - AT sadds

2 particular formulation of 1atti

This sort of hyperfine splitting is a fairly easy thing to calculate in lattice QCD,
so the statistical errors are not a factor. As the discussion of chapter 2 makes clear,
it is likely that there are uncorrected systematic errors we should look for. The
results of [50] do not show any strong dependence on the light sea quark masses,
suggesting that the chiral extrapolation of this quantity is well-behaved. This leaves
only lattice spacing errors, and perturbative errors as the most likely sources.

The coefficients of the Fermilab action used in [50] are only mean field tad-
pole improved. This leaves (x;aAqcp) errors. This can easily give 10% or larger

corrections. The operators that directly affect the hyperfine splittings are

—

¥-D and §&-B.

This means that we need to compute the perturbative corrections to ¢ and cg
in order to determine the effect perturbative corrections have on the hyperfine

splitting.
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The other source of error is due to the finite lattice spacing. With Agcp = 300
MeV, (/\Qcpa)2 ~ 0.04 so at least some of the error is due to lattice spacing
effects. The full dimension 6 Fermilab action will fix this. The situation is better
in NRQCD, since a fully O(a?) action is known, however the coefficients are only

mean-field tadpole improved in this case as well.



Chapter 6

Matching Calculations for
Fermilab Quarks

6.1 Renormalization of the Fermilab action

For the tree level matching we discussed in the previous chapter we worked with
the bare parameters of the Fermilab action. This is, of course, acceptabie, since
any differences between the bare and renormalized theories would occur at O(«).
For matching at one loop order, however, it will be important to understand how

the Fermilab action gets renormalized. We start with the bare action

1+v, 1—va

S = Y Wolx)|mo+ 5 D;——z—D:+co?-6
Ts( icgoloz 5 Ceolo. =
— 2°A<3)———52'9—°z.3— E; 0& - E| Polx), (6.1)

and investigate the transition to a renormalized action®.
We digress here briefly on our notation. We are computing the perturbation

series for a number of quantities. Consider a general quantity, denoted by A. We

1We do not use subscripts to denote the renormalized parameters, however we have been careful

to always use a 0 subscript on all bare parameters.
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will write the perturbation expansion of this as
A=A 4 gZAll 4. (6.2)

So A™ is the n-loop contribution, using the bare coupling go as the expansion
parameter.

We begin with the field renormalization, which requires- some care. Recall from
the previous chapter, we found the full residue of the Fermilab propagator, at tree

level, to be
1

=2
14 mo+ 55p
More generally, we write the residue as a function of the renormalized quantities as

2(p) = (6.3)

ZZ = Z(m) C»ﬁ)ZZ) (64)
where
" 1
1+m+ 556

Z,=1+gZ) +---. (6.6)

Care must be taken to properly track the factors generated by Z. At tree level, and
with p = 0 this is just the factor

1 (o)
— oM

T+m
which will multiply all zero-momentum external lines. This split emphasizes that
external field lines obey the free field equations of motion, expressed in terms of the
renormalized parameters. Then there are perturbative corrections to this, given by
the series (6.6).
Next we consider the renormalization of the bare mass mo and Fermilab param-

eter (,. We have no conditions on the bare mass, so we simply write

m=mg +gim!. (6.7)
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We also have
¢ = o+ g3 (6.8)

To determine (! we look at the tree level expression for the kinetic mass (5.10)

1 T.sCO -

M9 —
2 mo(Z + mo) ] + Mo

(6.9)

It’s convenient [53] to rewrite this as

eYsinhy

x? + roxsinhy’ My =log(1+ mo), (6.10)
S

MY = my(Ce, MY, ma(x,u) =

and define the full expression for the mass as
M; = Zm, (Mo, Co)ma2(Lo, My). (6.11)
This contains two perturbative factors; the full expression for
M, = log(1 + mo) + gaM I + .-,
and an “intermediate” renormalization factor,
Zny (Mo, 0) =1+ g3Z80 +---.

The latter factor captures the renormalizations of M, not shared by M;.

Using this notation we define the renormalized parameter ¢ according to
Mz = mz(C, M]) (612)

That is, the physical kinetic mass must be the same expressed in terms of the
renormalized and bare parameters. The renormalized quantities M;, M, and ¢
are connected by the same relation (6.12) as the tree-level quantities MEO], M[2°]
and (o in (6.10). This will prove to be very convenient when computing radiative
corrections to a scattering amplitude in renormalized perturbation theory; equation
(6.12) will ensure that the leading-order amplitude in the lattice effective theory

remains properly matched to the leading-order amplitude in the continuum theory,
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when both are evaluated at the same renormalized quark mass. The O(g?) radiative
correction to an action parameter such as cg will then come entirely from one-loop
Feynman diagrams. ,

The condition on M, fixes !V, to get an explicit expression we expand both
(6.11) and (6.12) out to O(g3). For (6.11) we have

19ma(lo, MY

Mz = m3(Co, MP) + g3Zm, (Co, mo) + g3MY) MO

’

and for (6.12) using ¢ = (o + g3¢!",

ama (o, M)

ny0mz(Co, MEO])
000 '

M, = m;(Co, MIY) + g2 +M, 0]

Solving these for ¢! gives

0
mZ(CO) Allgl ])
amy (Lo, M)
3%

M = Znm, (Lo, mo) (6.13)

For compieteness, we compute the derivative, obtaining the final expression for the
one-loop contribution to ¢

3+ 1,osinh MY
2o + rssinh M[]O]

M = —Zpm, (o, o) (6.14)

Finally we need to address the renormalizations of cg and cg. We will be
computing the one loop corrections to these parameters by matching scattering
amplitudes between the continuum theory and our lattice theory. The scattering
amplitudes will involve physical (i.e. renormalized) quarks and gluons, so it makes
sense to set up a renormalized perturbation theory, and work in that. However, at
the end we want the one loop correction to the bare quantities, as these are what
will be input to lattice simulations.

We can expand the bare couplings as

cB,o(Co, Mo) = Cg)?o(Co, mo) + Q%Cg](Co, mo) (6.15)
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and

ceolCo, Mo) = Cg),]o(Co, mo) + gict (Lo, Mo). (6.16)

Now we define the renormalized couplings as

cs(i,m) =c(C,m), ce(l,m)=cP(Lm). (6.17)
Therefore at one loop we have,
ca0(Co, Mo) = ca(L, m) + g3ck (Lo, Mo), (6.18)

and

2 M 2
aCo + 1 + ]mo amo C[EOI(mO) CO) + C[E]](CO) mO)'

ceolZo, mo) = cP(¢, m) — 920 | L

(6.19)
The derivative terms take into account the implicit difference between c[EOJ(mo, (o)

and c[EOJ(m, () that occur at one loop order. These terms are not present for cg,

since at tree level

cg’:'(mo, (o) = cg’](m, () = vs = constant. (6.20)
We now have a complete set of renormalization factors
Yo = V1+323
me = m—g%mm
Colmo) = ¢(m)— gdc!(mo)
cgollo,Mo) = CB(C,m)'FQSCg](Co,mo)
)]
' [0l 2 0 My 03 | U
Ceollo,mp) = ¢ ,m)—g50o {C + ce (Mo, + cg (lo, mMyg).
£,0(Co, Mo) £ (¢, M) — g5Co M3z T me o £ (Mo, Co) + cg (Lo, Mo)

The terms on the left hand side here are the original functions of the bare param-
eters. On the right hand side they are expressed as renormalized functions of the
renormalized parameters, plus the one loop counterterms. This allows to write the

Fermilab action as
So=(1+932}") S. + 935S, (6.21)
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'

where the renormalized action is

~ 2
TsC a3 _ 1eBCs = Cel. = »
> JAN > Z-B > &-EfP(x), (6.22)
and the counterterms are -
S — 4% 3 [_ m_ [11(~,5_E (3)> 23
5 a;w(x) mil— ¢y >4 (6.23)
b= = Odg. =
-5 2-B-— zoc-E]tp(x)
We have defined
bp = Coch (Mo, Co) — Mg (o, Mo) (6.24)

and

d MM 9
dg = ggCngl(mo, Co) — Cmcgﬂ(mo, Co) — Co |'Cma—co + T Imoa—mo C[EO](mo, Co)-

-

(6.25)
The results of our calculations that will be directly used as input to the simulations

are the one-loop corrected values of cgp and cp in the bare action (6.1), given by

e.g.

Cgo = C{:?](mo, Co) + QZC[E]](mo, Co). (6.26)

The expressions for the counterterms (6.24) and (6.25) are the connection we use
to extract these quantities from our renormalized perturbation theory.
Before addressing the one loop results for c{;}E we clearly need to compute (!

and m!" from the self energy.

6.2 Calculation of the self energy

Equation (6.14) relates the one loop part of C to the renormalization of the kinetic

mass. The latter quantity can be calculated by looking at the one-loop self energy
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for the fermion. The full energy is expected to go as

]—52

2M;

E(P) =M+ + 0(p3).

Expanding this out to O(g3) and dropping the higher order momentum corrections

gives

E(F) = E9F) + gt ()

E9(F) = M[1°]+ 15’2[0]
2M;
=2 Mﬂ]
ENE) = mi— B2 6.27
EPIVIVIS (627)
This allows us to solve for M“]
aEM(p)
My = MY ( ) . (6.28)
{ } art /5o

The derivative on the right hand side can be evaluated from the one-loop corrections
to the fermion propagator. From that, we can extract MY, Zy,, and, finally, ¢

To solve for the self energy, we write the full fermion propagator as

S7'(po, P) = ivosin(po) +ia¥ - S — cos(po) + w(B) — Z(p), (6.29)

where we use the same conventions as chapter 5 with

14+ mo+ 152&62, P; = 2sin (r;>

S = Cosin(pi), w(p)

The additional function L(p) is the self-energy correction. It is given by the sum

of the two diagrams shown in figure 5.1. We write this correction as
pr (P, B) + C(po, B)- (6.30)

The extraction of the various quantities of interest from the self-energy correc-

tion is fairly tedious. The calculation is well known, so' we content ourselves with
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restating the one-loop results of [53]. The one loop expression for the rest mass M,
is needed to separate the factor Zy,, from the full expression for M, (6.11). We
have ,

M = [AS M, 0) — cimP, 6) + c(0,5)] e ™, (6.31)
where the factor C(0,0) ensures that zero-mass quarks do not get an additive mass
shift at one-loop order. This factor is often measured non-perturbatively in simu-
lations, in which case that value can be used in place of the factor CV(0,0).

With the one loop expression for M, we can extract the factor Zy,, at one loop.

It is given by

20,AVGMP, 0) — 2245 (iMP, 0) — D(6) sinh MY

(1]
ert2 ==

2 +1,(osinh MY
— ADEMDP 6 cosh [MEO]] e ™M (6.32)
Where 5
> d gy ey s oy =
D(0) = ( 757 [RoliE(P), B) sinh M{? — C(lE(p),p)]) . (6.33)
Finally, we quote the one loop result for Z,,
[ UV o [9A5(po,0)
z" = |ADEMY Gy coshm® — [ 220 P
apO Po=iM5°]
(1] 0
+ (___ac a(p°’ 0)) e M, (6.34)
Po po=1'.MI]°]

Results for kinetic terms

We present results for the various kinetic quantities, using both the Wilson and
improved gluon actions. The results for the Wilson action are already known, so
they provide a valuable cross-check. Furthermore the logarithmic dependencies of
these quantities on the infrared regulator (in this case a gluon mass) and the lattice
spacing (or the dimensionless combination mya) are universal. In all cases, our

results for the improved action reproduce these known results.
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In keeping with the Fermilab approach, we present all of our results for the full
range of bare masses. The connection between the small and large mass limits is,
in all cases, smooth. For the improved action we can report new results for various
quantities. For M;(m,) we have '
m_4 © 3 o172\ _ ©
M;" = 3 tanh (M ){0.12050(9)— Wlog([M1 ] )—0.047(1)1\41 } (6.35)

when the bare mass is small, and

4
Ml = 3 (0.10937(9) -

for large bare mass. The full mass dependence is shown in figure 6.1. For the

0.051 (4))

— (6.36)

kinetic mass renormalization factor, we find ZR,L — 0 as my— 0, and

0.097(2)
Mo '

4
0 =—= <o.o7753(9) - (6.37)

3

in the infinite mass limit. Figure 6.2 shows the full mass dependence. Finally we

present results for the wavefunction renormalization factor Z,. These results are

the coefficient of the divergence is known exactly. We have
m_sm_ 1 2
Z, =1, = log (}\ ) , (6.38)

for a gluon mass (A) IR regulator. Figure 6.3 shows results for 2[2” over the whole

mass range. At small bare mass we have

- 4 3 2
m_4 [0} (0
Zy' =5 {0.0182(5) + 12310 ([M1 ] ) +0.072(9)M } (6.39)
and in the static limit
7M = 4 (o.1333(2) - 0‘182(5)) . (6.40)
3 mo

Note that these results used cg = cg = 1. This is the value of cg used in simulations
by the Fermilab group. If we use the correct value of c¢ from (5.15) we find very
small differences. For example, with a correctly tuned cg, Z; = ‘—3’:0.1327(3), a
0.5(3)% difference.
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Figure 6.2: One loop determination of the kinetic mass renormalization Zp,,.
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Figure 6.3: One loop determination of the wavefunction renormalization Z,.

Numerical Integration Issues

There are a number of technical issues that arise in the integrations, both for the
kinetic terms and for the numerical matching calculations presented below. There
are two sources of difficulties; the pole structure of the heavy quark propagator,
and the wide separation of scales in the integrals. We have implemented techniques
to deal with both of these.

The first trouble stems from the behaviour of the quark propagator in the heavy
quark limit. For large mass we have a pole in the gluon propagator at po =~
ilog(my). This pole is integrable, however it is numerically unstable. Fortunately,
the solution to this problem is straightforward; we shift the integration contour
away from the pole, by a complex constant [28]. Shifting the energy component of
the loop momentum kj; = k4 + i%, where A is the gluon mass, works to stabilize the
numerical integrations. Note that the gluon propagator has a pole at k4 = 1A so

the shift uses half of the gluon mass to insure we do not hit the gluon mass pole.
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The second difficulty with the numerical integrations is the separation of scales.
The trouble is that we are integrating from 0 to 7t/a >> 1, which means the
integral gets contributions from widely separated scales. This can cause trouble
with VEGAS’s adaptation routines. Furthermore, the integfands are dominated by
the infrared divergences, which we expect to cancel in any matching calculations.

These problems are somewhat lessened by transforming to spherical coordinates

7T 27 7T 7T 27
J dk1dk3dk3dk4=J ko de dGJ d¢k>sin?(x) sin(8). (6.41)
0 0 0 0 0

The factor of k® significantly improves the infrared behavior of the integrals.
The convergence can be made better by a further transformation. To start, we
cutoff the lower limit of the k integral at €, where we choose € to be much less than

any other scale. Next we make the transformation

k = log(k/A).
This transforms the k integral to
2n log(7t/A)
J K3dk = J k*d (em) : (6.42)
€ log(e)

The addition factor of k improves the infrared behaviour further, and taking the
logarithm of the limits narrows the range that needs to be integrated over.

For the calculations of the kinetic terms these variable transformations are not
necessary (though the complex energy shift is). Good results can be obtained
without them. However, for the matching of action parameters, and currents, they

are crucial.

6.3 Matching calculations for cg and c¢

We adopt a very simple method to compute cg. We consider the scattering of a

quark off of a background chromo-magnetic field, with momentum transfer q. The
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continuum tree level amplitude for this process is

o _ _16-g
cont gozmQ‘

(6.43)

The tree level lattice amplitude will be similar, also lineérly dependent on ¢, we
will call it Miitt‘ Likewise the one loop amplitudes will indicated by a superscript
[1]. '

There are three pieces to the one loop lattice amplitude Migtt‘ First there are
the one-loop diagrams, calculated with the tree level renormalized action, which
we will denote M!"

latt”
contributions from the wavefunction renormalization counterterms (that is, com-

This contains all of the one loop diagrams, including the

puted using the first term in (6.21)). Then there is term, 531, times the tree level
scattering from Z - B. g is the one loop counterterm defined above in (6.24). Fi-
nally there is a contribution coming from the —"Wpy - D\ part of the counterterm

Lagrangian. We write the full one loop lattice amplitude as
0 _ ay0 UIVIC UV
Miagt = Miagg T8 Mg — "My (6.44)
{1
cont’
counterterms as well (but not the 5g, or !V parts)

To compute the matching factor cg] we subtract the one loop continuum am-

plitude from (6.44) and solve for the unknown 553”. This gives
m v
25g] _ Mcont: Mlatt: +é Mv.ﬁ

)
M;s

We want this equation to hold up to ©(g?a?), which means we can consider the

The continuum amplitude is just M and it includes the one loop wavefunction

(6.45)

q — 0 limit of (6.45). From 5{3” we can use (6.24) to get cg] by accounting for the

renormalization of (, that is
COCE(CO) TTLO) = 5[B1] + (,[”C[Bo]((,o, mo). (646)

This gives our final expression

m _mu
cont = latt (Ve + ¢Mell( 2o, mo) (6.47)
Mz s

1
C%](Co,mo) =
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where

— 3D, (6.48)

In an exactly similar manner we can consider scattering of a background chromo-
electric field. By demanding the continuum and lattice amplitudes be equal to one

loop we find

MH]

MmUY
la.tto ) (6.49)

5 g] cont

[
M &E

From this calculation and equation (6.25) we can read off the result we want

M’ 3
926, mo).

] e m_0
Cocg (Lo, mo) = 8¢ + ('Vc (Co, mo) + Co |C 32, 1+m08m

(6.50)
Note that in this case there is no additional term for the tree level y4D* part as it

receives no additional renormalization in the Fermilab formalism.

arlrorasrend TNATA MNavn b imnd

n
AlnE i Uuiia £ i w ua.u.m.aa.u;uxx

One potential issue with this calculation is the renormalization of the external gluon
field and the bare coupling. These would be generated by loop diagrams correcting
the gluon propagator and give a charge renormalization and a field renormalization.
That is the combination Ag, gets renormalized to A"gs.

These renormalizations can be eliminated by working in background field gauge.
This scheme was developed in the continuum (see [1]) and greatly aids in the
calculation of certain processes. In background field gauge the combination Ag
does not get renormalized. The price to be paid is that the gluon field is split into
two parts, the background field (denoted in Feynman diagrams by a zigzag line)
and the quantum gluon (denoted by a wavy line).

The background field method can also be implemented on the lattice, and the
same property between the bare and renormalized gA holds [57]. To use it with
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»

our automatic vertex generator we write the link field as
U.p_(X) — ul;ackground(x)uﬁuantum(x) (651)

considering two link fields at every point. Then we applj our vertex generator,
taking care to distinguish quantum and background gluons. Finally we symmetrize
over each gluon type separately. For these one loop calculations this method only
saves us two diagrams, however as we increase the number of loops, the savings will

increase rapidly.

6.3.1 Lattice to Lattice matching

Clearly in order to use (6.47) we need to be able to compute the continuum one loop
amplitude. Of course, one-loop calculations in the continuum theory are feasible,
however there is a problem with using them in lattice matching calculations

The trouble is that the lattice and continuum theories should be identical in
the infrared. Given that our calenlations will turn out to he infrared divergent thic
means that we need to use the same infrarea regulator for both the lattice and the
continuum parts of (6.47). The lattice matching computations that have been done
to date have typically used a gluon mass to regulate the IR in both the lattice and
continuum theories. This is the method we will use for our present calculation,
however, it may pose significant problems with gauge invariance at higher order.

Another solution might be to use twisted boundary conditions, which provide
a gauge invariant IR regulator. However this regulator is somewhat difficult to
combine with dimensional regularization for continuum calculations. This can be
avoided by rethinking the continuum UV regulator that we use. We are calcu-
lating matching coefficients, so there is no particular reason to use dimensional
regularization. In fact, we can use any UV regulator we want.

Following a suggestion of Peter Lepage we have simply used a lattice cutoff to
regulate the continuum theory. This allows us to do the “continuum” side of the

computation using the same lattice techniques as we have developed for the heavy
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quark actions. This procedure is straightforward, as we can pick a simple lattice
theory (Wilson glue + naive quarks) and run the lattice spacing down. As long as
the spacing is made small enough, this theory will be very close to the continuum
theory. Then we can subtract off our heavy quark results,A and get the matching
coefficients.

We will see illustrations of how this works in the folldwing sections. For the
present work we have used a gluon mass to perform these matching calculations,
however the procedure will work with twisted boundary conditions as well®>. We

suspect that for higher order calculations these will be needed.

Tree level matching

As an illustration of our lattice to lattice matching technique, we will outline in
some detail the tree level matching for cg and ce. The tree level lattice amplitude

for scattering off of a Chromo-magnetic field is
ima ol T XS]
B"Lz.ﬁkyu,yu}- \VIVH,

We have shown the dependence on the incoming and outgoing momenta (p and $

respectively). The continuum amplitude is approximated using the Wilson quark
action

M[Co(]mt(p,ﬁ) = lim Mg:o(pa’,f)a’). (6.53)

Demanding that the difference between the two amplitudes vanish as qa — 0

gives

. 0 — 0 —
o _ limaro Mi,f:o(pa’,pa') — M[c§=o(pa,pa)

- (6.54)

@ -
M:5(pa, pa)
This is straightforward to implement in the computer. The only issue is that we
must use dimensionless numbers in the computer. In practice what we do is to

specify mpa, then compute M,a. Independently we specify M,a’ <« 1. This allows

2We can use a gluon mass because the tree-level amplitude involves only one coupling, so the

effect of breaking gauge invariance will not show up until two-loop order.
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Figure 6.4: Tree level determination of cg, for mgoa = 10.0.

us to get the ratio of a’/a. This lets us convert from our specified values for pa
and pa to those invoiving a’ by muitiplying by the known a’/a ratio. Note that

analogous formulas hold for c[EO].

o]

Figure 6.4 illustrates the matching for cy’. This is the matching factor for

moa = 10.0. The linear O(a’) errors of Wilson fermions are clear in this plot. The

extrapolation is clearly to c%)]

=1 = 1. This holds for all masses, and for general
Ts. For the tree level c[EO] figure 6.5 shows that we reproduce the known tree level
result given in chapter 5.

These methods have also been used to cross check the complicated tree level
matching for the dimension six Fermilab action [52]. The expressions for the tree
coefficients of that action get quite involved, so these numerical cross checks are

very useful.
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The line is the exact result.
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The lattice to lattice matching procedure can be implemented at one loop to deter-
mine cQ}E. We can subtract lattice from continuum amplitudes, and divide by the
appropriate tree level amplitude, to get the final result for 65. This is the same as
the tree level procedure, with only difference being one of complexity. It requires
considerably more effort to evaluate the one-loop diagrams.

We have performed the lattice to lattice matching for two different types of
matching fermions, naive and clover. We expect that the naive fermions will have
O(a?) errors and the clover fermions will have ©(a) errors. Figures 6.6 and 6.7 show
that this is the case, for both gluon actions. The naive fermions clearly are much
closer to the “continuum” result for a given mja’, because of this, the one loop
results for cg and cg presented below all use naive fermions to do the matching.

The diagrams (apart from the wavefunction renormalization) are shown in figure

6.8. We evaluate these diagrams in both the lattice and “continuum” theory. This
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Figure 6.6: One loop lattice to lattice matching of cg at mpa = 0.1, with Wilson
glue.
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Figure 6.7: One loop lattice to lattice matching of cg at moa = 0.1, with improved

glue.
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Figure 6.8: One Loop diagrams for quark scattering off of a background field.

gives us op . To extract cg ¢ we also need the wavefunction renormalization factors
and, for the lattice theory, the factors of Zy;, and M, as required by (6.24) and
(6.25).

6.3.3 Results for cg]

Figure 6.9 shows cg] over the whole mass range, with Wilson glue. Along with our

data we show the known point at moa = 0 ([58][40]), and the known result in the

heavy quark limit? [59]

58.091 — 3log (m3a?)
1672

M

cg(m — o00) = (6.55)

Comparing with [59] requires some care. They performed their calculation in HQET
which has no rest mass term. This means that there is no { parameter in their

action, and the connection between cg and &g (6.46) becomes

3Note that this result is in terms of M;_o] and the x-axis in figure 6.9 is Mg”.
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Figure 6.9: One loop determination of cg, with Wilson glue.

In order to compare to our result we add the term 6. to their result. In the heavy
mass limit this merely shifts the constant they report 42.459 to that reported here
58.091. Figure 6.10 shows the same mass range, only with the improved gluon
action. In this case the heavy quark result is not known, however we reproduce the
corrected logarithmic dependence on my, and the known result at meoa = 0. We

summarize all the perturbative pieces for cg] in tables 6.1, 6.2, 6.3 and 6.3.

Tadpole Improvement

Tadpole improvement of the Fermilab action was outlined in chapter 5. To convert
from our bare values for cg] to the tadpole improved values Eg] we simply use (5.19).
This gives

el =l 4 3ul, (6.56)

where u, is the tadpole improvement term, either the mean link, or the fourth root

of the average plaquette. In either case, ug Y < 050 the tadpole improvement tends
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Figure 6.10: One loop determination of c¢g, with improved glue.

to lower one loop correction, as expected.

6.3.4 Impact on the Hyperfine splittings

In order to fully assess the impact of our one-loop determination of cg a non-
perturbative simulation would have to be done. This is because, in the Fermilab
formalism, the hyperfine splitting receives contributions from both ¥ - D and £ -B.
To get a truly correct result, we would have to know the relative contributions of
both these terms.

There is a way we can estimate the hyperfine splitting without the need for a
new, non-perturbative, simulation. We start with the observation that the ratio of

the tree level expectation values

=<
O

{
(£-B)

is, for pa <~ 1, only weakly dependent on the momentum transfer. We are using

=w (6.57)

the tadpole improved link fields here U = U/u, since they will have the most
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“continuum-like” behaviour and (f . ﬁ) denotes the spin-flip computed from the
clover part of the action, including the overall factor of 1/2. The fact that the ratio
is nearly independent of pa suggests that it is insensitive to the bound state effects,
and the tree level value will be a reasonable approximation to the exact result. We
can use this fact to get an estimate for the correction to the hyperfine splitting.
The hyperfine splitting is a product of two spin flips, sb we can write the cor-

rected hyperfine splitting in terms of the tadpole improved cg as
HF comes = [(7- D) + (2 - B)]". (6.58)
The Fermilab group used ¢z = 1 in their calculation [50]. This means we can take
H messurea = [(7- D) + (£ B)]”. (6.59)

Multiplying and dividing by the Fermilab result gives

(7-0) eutf 5]
j{g:correct = 12 :}{:}-measured- (660)

- = =12
Y-D)+¢cg(Z-B
A=l > BS - @ (6.61)
[(7-D)+(£-B)]
Using (¥ - D) = w(E - B) gives
- 12
1+
A= 5 (6.62)
0+
Expanding to one loop order, we find
=[1] =[1]
_ 2 26y 8ncy,
A_1+go]+w—1+ocv]+ (6.63)

We would like to use (6.63) to find the corrections to the Fermilab determination

of the hyperfine splitting. To do this we need three things, the mass that was input
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to the simulation, the type of tadpole improvement used, and the value of the

average plaquette measured in the simulation. These three things give us cg],

ug], and ay. The latter can be extracted from the perturbative expansion of the
plaquette, and the connection between « and «,, using either the results of chapter
4 or the higher order results described in [45].

We have obtained, from the Fermilab group [60] the qﬁantities, from their B =
6.8 simulations, needed to do this analysis. They give their masses in terms of two
dimensionless parameters

1 1
k=0.119, «k.=0.13788, moa=— — — =0.575.
2k 2Kc

The Fermilab group uses mean link tadpole improvement (ug] = —0.059591(8)),
and a measured plaquette of P = 0.567060. For this quark mass we calculate, using
improved glue, cg] = 0.1931g3. Note that we are not propagating errors through
this calculation, since the ratio w is only an estimate anyway and could easily be

wrong by 10%. Using our one loop expression for u, we find the tadpole improved

—aAmea

el = 0.01433. (6.64)

Note that in terms of «y the tadpole improved cg is
EB =1+ 0.180006\/, (665)

so the improvement has produced a very small coefficient (it would have been 2.427
without the tadpole improvement).

To extract a value for «y we have the average plaquette
—log(P) = 3.068395x/(3.32/a) (1 — 1.0661(2)x\(3.32/a)], (6.66)

where we have used the conversion from &, to «y outlined in [45] since it is more
accurate than the one computed in chapter 4 (for the one loop cg we can freely

interchange oo and «y). Solving (6.66) for «y gives

oav(3.32/a) = 0.2533.
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Using this and the tree level ratio w = 2.12749, gives the final result for the
correction factor A(3.32/a) = 1.029 a 3% increase. The smallness of this result is
due to the tadpole improvement. Over the whole range of interest, moa =0...1.1
the tadpole improved cg is very small. Given this, we expeét that for the Fermilab
action the uncorrected O(a?) errors will have a major impact on the hyperfine
splittings. It would be interesting to repeat this calculatidn for NRQCD, where a
O(a?) accurate action is already known. In this case, we expect that the one loop

matching of X - B would have a more pronounced effect.

6.3.5 Results for cg]

To have a fully one loop improved Fermilab action the one loop term for c¢ must
be included. The calculation of cg] proceeds in the same manner as that for cg],
however there is a significant complication.

We consider a spin-flip amplitude off of an external chromo-electric field. The
tree level amplitude for this process is proportional to b x ©. Choosing ¥ = —n%
and p = p2 we find that the amplitude is pfoportional to p2 This is in contrast to
the magnetic field scattering, which was proportional to p. Since we are working in
the small momentum limit, the extra power of p substantially reduces our signal.

The solution to this problem is to project out only the components of the
amplitude that we want. The remaining components will integrate to zero anyway,
however they form a noisy background which hurts our ability to extract the signal.

To do the projection, we note that our amplitude can be written as

— =

()M, (), (6.67)

where M is a four by four matrix in spin space. A general four by four matrix can
be written as
Tr(MT)T
M= —_ 6.68
Z Tr(2) ( )
bilinears
where the sum runs over all sixteen Dirac bilinears I'. For our problem we only

bhave three possible directions to pick from % and {j, the incoming and outgoing
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Figure 6.11: One loop determination of c¢ with Wilson glue.

momenta directions, and T the polarization of the background field gluon. So of

the sixieen choices we only have to inciude eight,
YooY o Yh v v, v, vAS andL (6.69)

The identity is included here, along with y*y®> = —y'y3>y%. All we have to do is
keep the terms in the general projection equal to these, as the rest would have
integrated to zero. Setting them to zero beforehand the signal is greatly improved.

Figures 6.11 and 6.12 show the results for c ) from small to large masses. In the
small mass limit cE — Csw’ just as cB did. The tadpole 1mprovement procedure
for c Vis the same as for cB We summarize our results for cE in tables 6.1, 6.2,
6.3 and 6.3.
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Table 6.1: Wilson glue perturbative results needed to convert dg ¢ to cpe.
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moea w Zwlz ME”

1000.000 | 0.001998 | -0.098897(38) | 0.167869(39)
631.000 | 0.003165 | -0.098840(38) | 0.167716(46)
398.000 | 0.005013 | -0.098650(40) | 0.167566(38)
251.000 | 0.007937 | -0.098528(35) | 0.167447(34)
158.000 | 0.012579 | -0.098158(39) | 0.167086(41)
100.000 | 0.019804 | -0.097539(34) | 0.166708(44)
63.100 | 0.031209 |-0.096796(35) | 0.166030(43)
39.800 0.049050 | -0.095490(36) | 0.164920(41)
25.100 0.076742 | -0.093372(34) | 0.163253(38)
15.800 0.119472 | -0.090296(33) | 0.160715(38)
10.000 0.183335 | -0.085795(31) | 0.157222(36)
6.310 0.278819 1 -0.0792582{32} | 0.152332(38)
3.980 | 0.418485 |-0.070540(27) | 0.145609(35)
2.510 | 0.620142 |-0.059458(31) | 0.136454(27)
1.580 | 0.912250 | -0.046768(33) | 0.124287(26)
1.000 | 1.333340 | -0.034118(35) | 0.109282(26)
0.800 | 1.607150 | -0.028380(35) | 0.101007(22)
0.575 | 2.127490 | -0.020793(31) | 0.087963(16)
0.400 2.916670 | -0.014132(36) | 0.073378(13)
0.202 | 5.404630 |-0.006077(40) | 0.048342(8)
0.100 | 10.476200 | -0.002284(40) | 0.029076(5)
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¥

moa 5% 5 cd cV

1000.000 | 0.00637(31) | 0.26(11) | 0.10527(31)) | 0.29(11)
631.000 | 0.02339(26) | 0.272(29) | 0.12223(26)) | 0.300(29)
398.000 | 0.04035(25) | 0.285(82) | 0.13900(25)) | 0.3097(81)
251.000 | 0.05718(22) | 0.3105(24) | 0.15572(22)) | 0.3350(24)
158.000 | 0.07425(26) | 0.33927(91) | 0.17242(26)) | 0.36369(91)
100.000 | 0.09031(23) | 0.36471(49) | 0.18788(23)) | 0.38890(49)
63.100 | 0.10587(22) | 0.38452(36) | 0.20275(22)) | 0.40841(36)
39.800 | 0.12083(22) | 0.39789(33) | 0.21653(22)) | 0.42127(33)
25.100 | 0.13496(21) | 0.40165(32) | 0.22881(22)) | 0.42421(32)
15.800 | 0.14899(24) | 0.39480(27) | 0.24033(24)) | 0.41614(27)
10.000 | 0.16102(21) | 0.37719(26) | 0.24892(22)) | 0.39671(26)
3.980 | 0.18369(29) | 0.32477(23) | 0.26096(29)) | 0.33799(23)
2.510 | 0.19457(26) | 0.30014(24) | 0.26424(26)) | 0.30878(24)
1.580 | 0.20665(30) | 0.28226(24) | 0.26720(30)) | 0.28589(24)
1.000 | 0.21778(30) | 0.27139(24) | 0.26844(31)) | 0.27066(24)
0.800 | 0.22370(35) | 0.26846(26) | 0.26947(35)) | 0.26615(26)
0.575 | 0.23069(38) | 0.26659(38) | 0.26939(38)) | 0.26274(38)
0.400 | 0.23893(44) | 0.26468(34) | 0.27066(44)) | 0.26043(34)
0.202 | 0.24933(69) | 0.26463(41) | 0.27044(70)) | 0.26170(42)
0.100 | 0.2553(11) | 0.26551(55) | 0.2690(11) | 0.26468(59)

Table 6.2: Wilson glue perturbative results for g ¢ and cge.
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moa w Zﬂz 'M[,”
1000.000000 | 0.001998 | -0.102890(28) | 0.145339(34)
631.000000 | 0.003165 | -0.102796(30) | 0.145261(28)
398.000000 | 0.005013 | -0.102625(30) | 0.145100(34)
251.000000 | 0.007937 | -0.102443(30) | 0.144969(35)
158.000000 | 0.012579 | -0.102033(29) | 0.144636(33)
100.000000 | 0.019804 | -0.101476(29) | 0.144216(28)
63.100000 | 0.031209 | -0.100556(31) | 0.143519(33)
39.800000 | 0.049050 |-0.099128(30) | 0.142455(33)
25.100000 0.076742 | -0.096906(26) | 0.140825(31)
15.800000 | 0.119472 | -0.093513(30) | 0.138387(29)
10.000000 0.183335 | -0.088675(24) | 0.135039(29)
.310000 | 0.278819 | 0.081688(26) | 0.130481(23)
3.980000 | 0.418485 | -0.072348(24) | 0.124425(27)
2.510000 | 0.620142 | -0.060749(28) | 0.116489(22)
1.580000 | 0.912250 | -0.047524(25) | 0.106224(23)
1.000000 | 1.333340 | -0.034547(28) | 0.093690(16)
0.800000 | 1.607150 | -0.028679(30) | 0.086854(16)
0.575000 | 2.127490 |-0.020971(28) | 0.075996(12)
0.400000 | 2.916670 | -0.014189(30) | 0.063740(11)
0.202000 5.404630 | -0.006000(30) | 0.042511(07)
0.100000 10.476200 | -0.002244(36) | 0.025864(04)

Table 6.3: Improved glue perturbative results needed to convert dz ¢ to cg.
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'

moea 82] 8[E” cg] cgl
1000.000 | -0.09465(20) | -0.12(65) | 0.00824(20) | -0.10(65)
631.000 | -0.07138(19) | -0.10(18) | 0.03142(19) | -0.08(18)
398.000 | -0.05068(20) | 0.132(50) | 0.05195(20) | 0.158(50)
251.000 |-0.03214(18) | 0.135(13) | 0.07031(18) | 0.161(13)
158.000 | -0.01454(21) | 0.1664(38) | 0.08751(21) | 0.1920(38)
100.000 | 0.00205(17) | 0.1972(13) | 0.10357(17) | 0.2226(13)
63.1000 | 0.01826(16) | 0.22156(55) | 0.11891(17) | 0.24683(55)
39.800 | 0.03373(17) | 0.23953(32) | 0.13308(18) | 0.26450(32)
25.100 | 0.04874(19) | 0.25076(24) | 0.14614(19) | 0.27524(24)
15.800 | 0.06290(16) | 0.25456(21) | 0.15749(16) | 0.27828(21)
10.000 | 0.07614(21) | 0.24936(19) | 0.16700(21) | 0.27192(19)
8310 ¢ 0.08877(19) 1 0.23734(18) | 0.17454(1Y) | 0.25807(18)
3.980 | 0.10094(19) | 0.22186(17) | 0.18019(19) | 0.23992(17)
2.510 | 0.11382(18) | 0.20696(16) | 0.18499(18) | 0.22139(16)
1.580 | 0.12674(20) | 0.19572(18) | 0.18827(20) | 0.20568(18)
1.000 | 0.13971(26) | 0.18931(19) | 0.19101(26) | 0.19494(19)
0.800 | 0.14609(29) | 0.18829(20) | 0.19235(29) | 0.19207(20)
0.575 | 0.15405(29) | 0.18722(22) | 0.19309(29) | 0.18886(23)
0.400 | 0.16191(35) | 0.18766(26) | 0.19377(35) | 0.18795(26)
0.202 0.17411(52) | 0.18970(34) | 0.19495(53) | 0.18934(35)
0.100 0.1832(10) | 0.19238(42) | 0.1966(10) | 0.19291(47)

Table 6.4: Improved glue perturbative results for g ¢ and cp.
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Figure 6.12: One loop determination of c¢ with improved glue.

6.4 Matching Currents

The second calculation that we report is the one-loop matching of bilinear quark
currents®. Recall from chapter 2 that the connection between a continuum operator

and the lattice operators is

6C=Z(g,...){60+ZCn(g,...)6n}. (6.70)

Here Oy is the lattice operator with the same dimension as the continuum operator.
The remaining operators are higher-dimensional, and in our case they will contain
O(a) errors.

The operators we want to consider are the bilinear currents that connect a
“light” quark and a “heavy” quark. The quotations emphasize that our calculations
will be completely general: “light” and “heavy” here serve only to distinguish the
two quarks (henceforth we’ll drop the quotes). We consider the heavy quark in it’s

4The calculations in this section were done in collaboration with Aida El-Khadra.
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'

rest frame. It’s four-velocity is v4 =1, V = 0. The continuum currents we consider

are

VE(x) = §°(x)ivaQ°(0)
AS(x) = g(x)iys7Qc(0),

where Q°(q€) is the heavy(light) continuum quark field. The analogous lattice

operators with the same quantum numbers (O, in 6.70) are defined identically

Vi(x) = ax)ivaQY0)
AL(x) = a'(x)iys7QY0),

where now the quark fields are defined from the desired lattice actions. These
matching calculations have been done for Wilson gluons with Wilson and SW
quarks in [61] and [62], we are continuing this work for the more complicated ac-
tions we have considered. In particular most modern simulations use the Symanzik
improved gluon action.

We can, at this point, consider the matching of the two operators, ignoring the
correction terms in (6.70), and just focusing on the Z factor. The procedure for

doing this should now be familiar, we demand that

(al0IQ) — Z{q|00lQ) = 0. (6.71)

We can write the Z factor in (6.70) as Z = Z% + g?Z™ and the lattice current as

(a100lQ) = (al00lQ)™ + g*(ql0o1Q) ™. (6.72)
This gives, at tree and one-loop levels, our matching conditions

<QIOc|Q)[°] (qIOCIQ)“] _ Z[O](qIO |Q)“]
o= (ql05|Q)0 zM = (al0o]Q) 0 ° (6.73)

As we saw with the matching for the action parameters, Wilson-like fermions have

a tree level contribution to their self energy. This means that

(41001Q)® = Te(al0.|Q), (6.74)
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'

where 1
Tr = , 6.75
T Um0+ mg) (679)

when both g and Q are Wilson-like fermions, and
1
\/ 1+ mQ)

when only Q is. This suggests that we should define a renormalization factor with
this contribution removed, Z = TrZ = 1+¢22!" 4. ... With this definition we have

TF<q|Oc!Q>[” - <QIOO|Q>“]
(gl0,lQ)

A final technical point; the tree level self energy is actually momentum dependent,

T = (6.76)

2N = (6.77)

however we will only be considering terms linear in the external momenta, and
since the tree level Z,’s momentum dependence starts at O(p?) we do not need to
consider it.

To do the matching we compute each of fhp matrix elements and evaluate the 7
factors. Unlike the matching of cg and cg these currents are not part of the QCD
action. Therefore lattice to lattice matching has to be used with much more care. A
finite renormalization could be generated by the lattice theory that does not go away
in the a — O limit. Rather than deal with this complication, we simply compute
the continuum quantities numerically with a Pauli-Villars ultraviolet cutoff. This

amounts to replacing the continuum gluon propagator (with a small gluon mass A)

8y
= T (6.78)
with
1 1
R _

where A is the UV cutoff, set to be much greater than any other scale in the calcu-
lation (in this case, the heavy quark mass). For the quantities we are calculating

the dependence on the continuum regulator cancels.
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3

In both cases, lattice and continuum, we need to include the wavefunction renor-
malization factor /Z}Z}, as well as the renormalization of the operator diagram.

The full one loop expression can be written schematically in diagram form as

1 0 Eé
(qloon)”] = Sa -;a-;-+ > > X ==

0po PP
LI U VG - I
2010\ P P P PP
+ *@— 6.80
> - (6.80)

where the double lines represent the heavy quark, and the hatched dot is the
operator. The continuum calculation has the same diagrams, without the tadpoles.
Also note that the terms in brackets have to be differentiated to get the self energy.

With these definitions we can compute the matching factors. However, we
neglected the higher dimensional operators in (6.70). These are the O(a) errors,
which must be corrected. For the current operators we are considering the necessary
corrections are relatively simple. The reason is the the current operators we are
considering are constants (for example y4), so the only mismatch between lattice
and continuum theories is in the definitions of the external states.

In the continuum theory we have

A - iy-p ~
Ylq(E,p)) = [1 - ZY p} u(,0) + 0(p?) (6.81)
Mg
where & = 1,2 is the spin of the quark with
'U.](],(_S) = ]) u2(2)6) = ]) (682)

and all other components zero. In the lattice theory,
iy P

A~ SW—p M2 _ 7 ¥
Pilq(&,p)) =e [] 2sinh M,

] u(&,0) + 0(p?) (6.83)
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where M; = log(1 + m,) is the tree level rest mass. The O(pa) terms are clearly
not the same in this expression. As well there is a mismatch stemming from the
exponential factor exp(—M,/2). This mismatch is taken into account by using the
Z matching factor. Recall we defined _

o z = M 2e-MP/2 - T (6.84)
\/(1 +mg)(1 + mg)

The lattice spinors |Q) and |q) generate a factor T, so the overall mismatch due
to this factor cancels in the division by (g|O|Q) in (6.77). To correct the other
mismatch we need to make the two terms in the square brackets equal.

We can accomplish this by using a different lattice spinor than the one we get
from solving the discretized Wilson-Dirac equation. This is permissible so long as
the new spinor has the correct continuum limit. With this in mind we define the
“rotated” spinor:

Yi(x) =1+ ady¥ - D]P(x). (6.85)

In momentum space, at tree level thig ic

Yi(p) =1 + ads¥ - Pl ¥(p) (6.86)

which gives
Glale ) = e - TP e 6o ,
Piq(E, p)) =e 1 TSmb ML +idy¥ - | u(£, 0) + O(p?) (6.87)

for the external state. Setting the square bracket equal to that in (6.81), gives

dy=—" ]
'~ 2sinh M, 2mg

(6.88)

Setting the quark mass equal to the tree level kinetic mass M, (see 5.10) we find
CI+mo—0C) 14

mo(2 + myp) 2(1 +mg)’
With ry = { = 1 this simplifies to

d, = (6.89)

mo
2(1 + mo)(2 + mo)”
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If we use (6.85) to compute the external states for our current calculations we
will correct tree level O{a) errors. With a one loop calculation of the matching
factor using the rotated spinors the errors will be reduced to O(a?, x.a, «2).
The outline of the calculation we presented above is the same with the rotated
spinors, the only difference is that there are more diagrams, stemming from the D

in the rotation term.

Results for Current Matching

We have computed the current matching factors Z for a number of different com-
binations of masses. We present a few results here. First, for degenerate masses
we recover the correct my — O limits for the Wilson quark action Z[\l,] = —0.1294.
For the improved action, we report W = —0.1003(6). Of most phenomenological
interest is the case where one quark is “heavy” and the other is massless. In this
case, we set the outgoing quark mass to be zero, leaving only one quark mass (mo)
to vary. We consider this case in the results we present.

In the heavy quark limit we expect [61] that the current matching factors should
all have the form

Zm _ zr+ log(1 + my)
J 1272
We have verified this for both the Wilson and improved gluon actions. For the

(6.90)

improved action we can report
zy, = —8.67(5), za, =—11.12(3). (6.91)

Figures 6.13 and 6.14 show 2y, and Z, over a wide range of masses. We can easily
rerun this code for any masses of interest in simulations.

We have also computed the g* scale for these processes, as outlined in chapter
3. Figure 6.15 shows the results for the range of masses of interest to simulations.
The diverging behaviour near M; = 2 is do to the vanishing of the one loop Z near

this point. This means the denominator of (3.68) is going to zero, and, as discussed
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Figure 6.13: 2y, for improved glue.
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Figure 6.14: 2, for improved glue.
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Zy, x 102

Zy, x 102

-6.590(43)
-6.876(49)
-7.163(66)
-7.421(60)
-7.709(62)
-8.011(91)
-8.283(55)
-9.266(93)
-6.442(48)
-5.005(37)

-4.196(35)

N AS
“0. 127

-3.586(39)
-3.061(30)
-2.637(28)
-2.264(42)
-1.940(42)
-1.686(36)
-1.358(32)

3.069(46)
3.943(50)
4.607(51)
5.109(54)
5.506(54)

Table 6.5: Table of values for Zv“ for improved glue.
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3

mea | Za, x 1072 | mea | Za, x 1072
0.10 | -8.371(43) | 5.00 | -3.870(26)
0.20 | -7.933(40) | 6.00 | -3.560(27)
0.30 | -7.515(33) | 7.00 | -3.284(24)
0.40 | -7.199(40) | 8.00 | -3.062(31)
0.50 | -6.932(35) | 9.00 | -2.842(32)
0.60 | -6.687(33) | 10.00 | -2.640(26)
0.70 | -6.487(34) | 20.00 | -1.182(26)
0.80 | -6.304(33) |30.06 | -0.244(24)
0.90 | -6.146(35) | 40.00 | 0.421(23)
1.00 | -6.010(34) |50.00 | 0.959(22)
2.00 | -5.130(32) | 60.00 | 1.405(21)
3.00 | -4.616(28) | 70.00 | 1.768(32)
4.00 | -4.209(26) | 80.00 2.097(30)

Table 6.6: Table of values for 25, for improved glue.
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Figure 6.15: The scale q* for V| with improved glue.

in chapter 3 more involved procedures must be used [36]. Fortunately, for the mya

values relevant to numerical simulations, these methods are not necessary.



Chapter 7

Conclusion

7.1 Summary

In order to provide high-precision results to the wider particle physics community, it
is imperative that lattice field theorists make use of improved actions. Such actions,
built based on effective field theory approaches, allow for control over systematic
errors present in all lattice simulations. One approach to improvement, the one we
have adopted here, is to use perturbation theory to match the lattice theory to the
continuum at high energy. Such a program requires one- and two-loop perturbative
calculations. Several of these calculations have been reported here.

Owing to the lattice cutoff, lattice perturbation theory is much more compli-
cated than in the continuum. A lattice perturbation theory calculation will have
more diagrams, and the Feynman rules will be much more complicated. In order
to overcome these problems we have developed a number of tools to simplify and
automate the calculations.

The first is an implementation of the Liischer-Weisz vertex generation algo-
rithm for arbitrary quark and gluon actions. This automatically generates n-gluon
Feynman rules, in a quick and error-free manner. By setting up the resulting loop
integrals in a modular way, it is easy to change which action is used. This is a

very important feature, since the number of improved actions in use by the lattice
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community is very large.

Twisted periodic boundary conditions are another tool which greatly simplifies
calculations. With a gauge invariant infrared regulator many issues which come up
in continuum perturbative calculations are avoided. A

In order to make use of twisted boundary conditions in matching calculations,
we need to use them for both the lattice and continuum parts. We have introduced

lattice-to-lattice matching, which allows us to do this in a convenient way.

7.1.1 New Results

This thesis presents several new results, calculated using the tools we have devel-
oped. First, there are the results for the link operators. We computed small Wilson
loops, the static quark potential, static quark self energy, and the mean link, to
next to leading order for three different gauge actions. Several of the results for
the improved actions (self energy and potential) were new. These results, along
with the calculations of small Wilson loops, are crucial in determining the strong
coupling constant o. .

We also present new results for the Fermilab action. The one-loop matching
of cg and cg across the whole mass range was not known for either the Wilson or
improved action. Furthermore we computed the kinetic terms (M[ﬂ],ZE,L,Z[Z”) for
the improved action; another new result. With these calculations as input, results
from the Fermilab action are now accurate to O(a?), the O(aa) errors have been
removed.

The same holds true for the Fermilab currents. We matched the vector and
axial vector currents at one loop order using the improved gluon action, and the
improved (“rotated”) spinors. These results will improve the accuracy of results

for heavy quark decay constants and form factors.
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7.2 Future Work

There is no shortage of work that could be done to continue the program outlined in
this thesis. One obvious direction is the one loop matching of the action parameters
and currents for the NRQCD action. There is also the dimension 6 Fermilab action
[562], which has over ten new parameters which need one-loop matching.

For true high-precision work many two-loop calculations will also be needed.
The strong coupling is, on the a ~ 0.09 fm lattices used by MILC, (optimistically)
0.15, so two loop calculations will be needed to get perturbative errors down be-
low few percent. A good candidate calculation would be to continue the current
matching to two loops. This would have a major impact on the determination of
the CKM matrix elements.

The techniques outlined in this thesis have all been developed with their ex-
tension to higher orders in mind. The combination of twisted boundary conditions

and lattice to lattice matching should allow for two loop determinations of action

naramatare and (Mmartialle) AfAanearrad Arirrands TAThIlA rawr tantian wri]]l Aawinan +hA
MO G VA Dy WAl | M Vasday ) LVaoUl Yol Cudluhio. vy a8 GOV looulo Wi ddiol, wav

techniques presented here will provide the basics for doing higher order lattice

perturbation theory.
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