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Abstract 

Model-based fault detection and isolation (FDI) in plants of complex control systems 

has been a subject of tremendous research over the last three decades. Most common 

FDI approaches are based on analytical models of the systems which are often not 

available in practice for complex multivariate processes. 

On the other hand, statistical linear correlation models developed using princi- 

pal component analysis (PCA) can be built from historical operating databases and 

require no prior knowledge of the plant. Statistical process monitoring (SPM) ap- 

proaches using these models can easily handle a large number of variables and are 

very powerful for fault detection. Their main limitations lie in the linear assumption 

of the process variables and the ability to isolate or diagnose faults. 

This thesis presents a multivariate statistical process monitoring (MSPM) and 

fault diagnosis approach based on nonlinear principal component analysis (NLPCA). 

A technique called NLPCA neural network is applied to model the process of interest. 

It addresses the linearity limitation of the PCA by assuming that the hidden principal 

components are nonlinear functions of the observed process variables; therefore, it is 

more effective in extracting the information from nonlinearly correlated variables than 

linear methods. A new statistic fault diagnosing scheme is also developed based on 

analyzing the distribution patterns of the process data in the nonlinear principal 

component feature space through the use of self-organizing feature mapping (SOFM) 

and vector quantization algorithms. 

The proposed procedure is compared with observer-based methods and current 

statistical methods in performing process monitoring and fault diagnosis of linear 

and nonlinear processes. Its applications are illustrated on the diesel engine actuator 

benchmark system as well as the three-tank benchmark system. 
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Chapter 1 

Introduction 

Over the past three decades, efforts to manufacture high quality products and to 

improve the efficiency, reliability and safety of modern complex systems have led to 

the increased use of process monitoring and quality control techniques in a variety 

of industries. For example, the new California Air Resource Board and the Envi- 

ronmental Protection Agency regulations have required that all 1996 and newer light 

duty vehicles should be equipped with the On Board Diagnostics Generation I1 (OBD 

1I)system. The OBD I1 system monitors virtually every component that can affect 

the emission performance of the vehicle to ensure that the vehicle remains as clean 

as possible over its entire life, and assists repair technicians in diagnosing and fix- 

ing problems. In the chemical industry, statistical process monitoring techniques are 

widely adopted to detect leaks, clogs, and other faults that mostly occur in the trans- 

port of fluids. The field of fault diagnosis has become a widespread and interesting 

topic of research. The purpose of fault diagnosis is to detect unexpected changes in 

functional units that tend to degrade overall system performance, and to determine 

the causes of faults early enough so that a complete system failure can be avoided. 



Chapter 1. Introduction 

A Review of Model-Based Fault Diagnosis 

Most fault detection and isolation (FDI) methods developed today fall under the 

umbrella of model-based approaches, and can be classified into three categories [I]: 

analytical model-based methods, qualitative model-based methods, and statistical 

model-based methods. These three classes of methods are described next. 

1.1.1 Analytical Model-Based Met hods 

In this approach, analytical system models are obtained from theory, or identified 

empirically from experiments. Numerous FDI methods developed based on analytical 

system models can be subdivided into three groups [2]: 

Parity Space Approach 

The parity space approach tests the consistency of parity equations using the 

measured signals of the actual process. Fkom the inconsistency of the parity 

equations one can detect faults. Chow and Willsky [3] derived the parity equa- 

tions from the state space model of the system. Further contributions are due 

to Gertler and his co-workers [4]. 

Observer-Based Approach 

The analytical observer-based approach reconstructs the outputs of the system 

with the aid of observers or Kalman filters and uses the estimation errors as 

residuals. Fault isolation is implemented by constructing structured residuals 

such that individual faults are mapped into different directions. The residuals 

are independent of each other, and for the sake of robustness, are independent 

of unknown inputs. Fault isolation can be achieved either in the time domain 

[5] or in the frequency domain [6, 71. 
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Parameter Estimation Approach 

The basic idea of the parameter estimation detection approach is that the pa- 

rameters of the actual process are repeatedly estimated on-line using well known 

parameter estimation methods and the results are compared with the parame- 

ters of the reference model obtained initially under fault-free conditions. Any 

substantial discrepancy is declared as a fault [8]. 

Due to the complexity of practical processes, obtaining complete mathematical 

models is usually difficult. The analytical model-based approach is generally limited 

to processes with a small number of variables. 

1.1.2 Qualitative Model-Based Methods 

As was noted, the analytical approach suffers from the fact that under real conditions, 

a precise model of the system of interest is generally unavailable. In the case of 

noticeable modelling uncertainty, a more suitable strategy consists of using qualitative 

model-based techniques. In this approach, the knowledge is derived in terms of facts 

and rules from the description of the system structure. Model integrated diagnostic 

analysis system (MIDAS) 191, signed directed graph (SDG) and fault diagnosis tree 

are the most common qualitative models for fault detection and isolation. 

1.1.3 Statistical Model-Based Met hods 

In recent years, the huge increase in computing power has prompted significant tech- 

nological advances in instrumentation and data logging in the field of process control. 

Many large plants are now equipped with sophisticated distributed control systems 

capable of logging literally hundreds of variables of the process in every passing sec- 

ond. The tremendous number of data available from routine operating processes, 
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coupled with the realization that obtaining complete analytical models of processes 

is difficult due to the process complexity, has led to serious considerations of process 

monitoring using statistical techniques. The most important approaches are the so 

called correlation model-based methods and neural network-based methods. 

Correlation Model-Based Methods 

Statistical process monitoring and fault diagnosing involve three activities [45]: 1) de- 

tecting out-of-control status, 2) identifying the variable(s) responsible for the process 

going out of control, and 3) diagnosing the source cause for the abnormal behav- 

ior. Monitoring focuses on detecting activities, while diagnosing provides information 

for the intervention or control stage. Classical univariate statistical monitoring tech- 

niques rely on the use of the Shewhart chart [lo], the cumulative sum (CUSUM) plots 

[ll], and the exponentially weighted moving average (EWMA) chart [12]. All of these 

are typically used for monitoring a small number of quality variables. Little informa- 

tion is derived from the interactions between variables, which are very important for 

fault diagnosis in complex dynamic processes. Multivariate statistical process moni- 

toring (MSPM) methods address the limitations of univariate monitoring techniques 

by processing all the observations simultaneously and extracting features on the 'di- 

rectionality' of the process variations. FDI approaches using these models fall under 

the category of multivariate statistical process control (MSPC). 

The classic techniques of MSPM are the projection methods of principal com- 

ponent analysis (PCA) [13, 141 and partial least squares (PLS) [15]. The philosophy 

behind these approaches is to reduce the dimensionality of the problem by eliminating 

the linear correlations between the random variables. By forming a new set of uncorre- 

lated variables or features in the lower dimensional space, an enhanced understanding 
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of the process behavior may be obtained. 

Another approach for MSPM is based on the well-known subspace identification 

methods (SIMs). The most influential SIMs are canonical variate analysis (CVA) 

method [16, 171, multivariate output error state space (MOESP) method [18] and 

numerical subspace state-space system identification method (N4SID) [19]. SIMs 

try to estimate the state variables directly from the system input and output data. 

Process monitoring is based on the Hotelling T2 statistic of the state variables. 

Statistical correlation models developed using PCA or CVA can easily handle a 

large number of variables and are very powerful for fault detection. However, their 

main limitations lie in their ability to isolate or diagnose faults. 

Neural Network-Based Methods 

It has been recognized that neural networks offer a number of advantages for modelling 

the dynamics of systems. One of the main advantages of neural networks is the 

ability to model non-linear systems; in practice most systems are non-linear and their 

mathematical models are difficult to build. Another attractive property of neural 

networks is the capability of generalizing underlying rules of system behaviors through 

learning examples. The learning ability of neural networks is rooted in statistical 

mechanics. Neural networks can also handle complex systems with a large number of 

process variables. These properties of neural networks offer the possibility of using 

them to solve fault diagnosis problems. Since the late 1980s artificial neural networks 

have been widely discussed for model-based fault detection and isolation in slowly 

varying complex systems where analytical models are not available. [20, 21, 221. 

Currently, there are two kinds of neural network structures used for system mod- 

elling. They are called multilayer feedforward networks and recurrent networks. The 
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feedforward network structure is one of the most popular and arguably the most im- 

portant ANN structures. It builds the system model based on studying the spatial 

correlations of the process; it is therefore considered as a static network structure. 

For dynamic system modelling, feedback has to be introduced into the neural net- 

work topology to derive dynamics. Such a neural network is called the recurrent 

neural network. 

1.2 Thesis Outline 

Standard PCA and SIM based MSPM methods are limited by the assumption that 

the hidden features or state variables are linearly correlated with the process observa- 

tions. These methods are not efficient when the variables are from highly nonlinearly 

correlated processes. Since in practice, most manufacturing processes are inherently 

nonlinear, this thesis work has focused on the study of statistical representations of 

nonlinear systems in an attempt to design a nonlinear model-based process monitoring 

and fault diagnosis system. 

One technique applied here is called nonlinear principal component analysis 

(NLPCA) neural network which is used to model nonlinear processes. NLPCA is 

a generalization of PCA. It addresses the limitation of PCA by assuming that the 

hidden principal components are nonlinear functions of the observed process vari- 

ables. The NLPCA technique has been shown to be able to describe the underlying 

structure of data and is more effective in extracting information from nonlinearly cor- 

related variables than conventional linear methods [23, 241. NLPCA has been applied 

to various fields such as pattern recognition [25, 261, data compressing [27], medi- 

cal signal processing [28], and nonlinear dynamical problems that appear in chemical 

engineering [29]. NLPCA based methods for nonlinear process modelling have been 
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previously introduced by a few researchers [20, 24, 301, with most techniques being 

based upon artificial neural networks. Of particular interest is a special multilayer 

feedforward network called the autoassociative neural network. In this thesis, the 

NLPCA autoassociative network is applied to monitor slow-varying nonlinear pro- 

cesses with a large number of process variables. An extension of the static NLPCA 

network is also achieved by combining the NLPCA network with the time-delay neural 

network (TDNN). The TDNN is an efficient tool to discover spatiotemporal relation- 

ships both directly in the input layer and in the more abstract representation of the 

hidden layer. The NLPCA neural network with TDNN is used to monitor dynamic 

systems with multiple process variables. In addition, by selecting different groups of 

process variables based on causal knowledge of the process, the NLPCA neural net- 

work with TDNNs can be designed to be sensitive to a specific kind of fault and to 

be insensitive to other faults, which makes fault isolation possible. 

A new statistical fault identification approach based on studying the distribution 

patterns of the process principal components is also introduced in this thesis. It is 

believed that most industrial processes are usually operated in a few normal operation 

regions. A process is subject to input changes as well as system parameter changes. 

These changes affect the process operation and consequently result in the process 

drifting away from its normal operation region. By studying the directions of the 

process movement, different faults can thus be identified. Score plots of the principal 

components in two or three dimensions have previously been used to  identify the onsets 

of faults. The idea is based on the assumption that different faults may cause the 

process to move in different directions, and by checking the direction of the process 

movement, the cause-effect relationship may be established. However, due to the 

limitation of dimensionality, score plots are usually suitable for processes with small 
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number of variables. For nonlinear complex processes or processes with large numbers 

of variables, score plots are not reliable for fault identification since the movements of 

the process on different fault conditions are not always distinctive in the score plots. 

Instead, they often overlap with each other or are buried within the nominal region 

which makes them difficult to identify. In addition, process movements are subject to  

change when fault levels change, which makes score plots based on fault identification 

even more difficult. In this work, fault identification is automated by using a new type 

of network called the self-organizing feature mapping (SOFM) network. The SOFM 

neural network has received wide interest in recent years because of its significant 

success in analyzing and visualizing high-dimensional data. It carries out a nonlinear 

mapping of input data onto a low-dimensional grid. The mapping preserves the most 

important topological and metric relationships of the data. In this research work, the 

SOFM network turned out to  be an efficient tool to describe the distribution patterns 

of process da.ta in the principal component feature space, which makes computer-aided 

statistical fault identification possible. 

A new fault diagnosis scheme that combines the NLPCA neural network with 

the SOFM is also presented in this thesis to solve the problem of process monitoring 

and fault identification of slowly varying processes with large number of variables. A 

Kramer's NLPCA autoassociative neural network is first trained to model the normal 

operation of the processes of interest. This model is then used to produce residuals 

when the process is running under unknown conditions. For fault identification pur- 

pose, historical process data from various known fault conditions are projected to  the 

same model and nonlinear principal components are extracted to form the features 

of the corresponding faults. SOFM networks are subsequently employed to learn the 

distributions of different faults in the feature space. Statistical distribution models 
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are then built from the feature space. Given an unknown faulty condition, fault iden- 

tification is achieved by comparing its distribution in the feature space to known fault 

models. Bayes decision theory is used to declare a fault condition if the distribution 

is close to a known fault model. 

The remainder of this thesis is organized as follows: In Chapter 2,  the NLPCA 

concept and the NLPCA neural network model are first presented. In Chapter 3, 

multivariate statistical process monitoring methods are introduced, such as the stan- 

dard PCA method, the state space analysis method, and the NLPCA method. The 

applications of these methods to linear and nonlinear processes are also discussed. 

In Chapter 4, the time-delay neural network (TDNN) is introduced as an extension 

of the static NLPCA neural network to model dynamic systems. Its implementation 

is illustrated on the industrial actuator benchmark system. In Chapter 5, the fault 

identification method using SOFM is discussed. In Chapter 6, the implementation 

of the NLPCA-SOFM-based fault diagnosis approach is illustrated on the three-tank 

benchmark system. Lastly, Chapter 7 contains concluding remarks. 



Chapter 2 

Principal Component Neural 

Networks 

2.1 Introduction 

A central problem in statistical data processing is finding a suitable representation 

of data by means of a transformation. The transformation facilitates the subsequent 

analysis of data, whether it is for the purpose of data visualization, de-noising, pat- 

tern recognition, or anything else. This chapter first introduces a classical linear 

transformation method called principal component analysis (PCA). Next, an exten- 

sion to PCA is described called nonlinear principal component analysis (NLPCA) 

which generalizes PCA to nonlinearly correlated data. The neural network technique 

for implementing NLPCA is covered in the last part of the chapter. 

2.2 Principal Component Analysis 

Principal component analysis, or PCA, is widely used in signal processing, statistics 

and neural computing. In some application areas, it is also called the Karhunen-Loeve 

10 
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transform. 

Given an n-dimensional random variable x,  the basic idea of PCA is to find a 

linear transformation W E R p x n  SO that the linearly transformed components defined 

by: 

S =  WX, S E  RP (2.1) 

explain the maximum amount of variance of random variable x .  Here s = 

[sl, s2, ..., splT is a p-dimensional vector in the transformed feature space. The p 

elements sl , s2, . . ., s, are called principal components, which are calculated by: 

Here wi is the eigenvector that corresponds to the ith largest eigenvalue of the covari- 

ance matrix 

C, = E{xx~}. 

In addition, from the p principal components s l ,  s2, ..., s,, it is also possible to recon- 

struct the random variable x through 

The reconstruction error is defined by 

The fundamental purpose of PCA is to reduce the dimension of data (p << n). In 

fact, it has been proved that the representation given by PCA is an optimal linear 

dimension reduction technique in the sense that the mean square error defined by 

(2.5) is minimized. The dimension reduction has some important benefits. First, 

it can reduce the computational load in the subsequent processing stages. Second, 
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noise may be deleted, since the data corresponding to the discarded n - p smallest 

components are most likely due to noise. Finally, a projection into a subspace of low 

dimension enables data visualization. 

2.3 Nonlinear Principal Component Analysis 

The classic linear PCA method assumes that the transformed features of the process 

are linear functions of the observed variables. In many industrial situations, however, 

this assumption may not be true when the observations are from highly nonlinear 

processes. In such cases, it may be more appropriate to assume that the feature 

subspace is defined by nonlinear functions of the process variables. 

In general, it is assumed that from an n-dimensional observation vector x = 

[xl,. . . , xnIT, we can extract the underlying feature vector s = [sl,. . . , sPlT, ( p  5 n) 

via function h : R, + Rp, and can also reconstruct the observation from the feature 

vector via function g : Rp + R,. The mapping from the data space to the feature 

space is referred to as coding and the reverse mapping as decoding. The coding func- 

tion h and decoding function g are members of nonlinear continuous function sets Fh 

and Fg respectively. 

The target is to minimize the nonlinear reconstruction mean square error (MSE) 

by choosing the optimal functions g E F, and h E Fh. Naturally, the problem 

min J = E{I I X  - g(h(x))l 1 2 )  
9,h 

(2.6) 

is called the nonlinear principal component analysis (NLPCA) problem. Clearly, the 

solution to the NLPCA problem depends on both the choice of the function sets Fh 

and Fg: 
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The elements sl, . . . , s,  of the feature vector s are called nonlinear principal com- 

ponents. They are the nonlinear features that underlie the distribution of the data x .  

The optimal choice of h and g (i.e. h* and g*) is not unique. Indeed, if [h*(.), g*(.)] 

are NLPCA solutions for x ,  which achieve the minimum error 

then the same error is achieved by any pair of functions of the form [h, = 

q-'(h* (.)), g, = g*(q(.))] for any invertible function q : RP =+ R p  [32]. In general, 

the unique recovery of the hidden factors is impossible. However, we can obtain some 

unique properties of h and g starting from the following theorem [31]: 

Theorem 2.1 Let the variables x E Rn and s E RP be jointly distributed. Then  the 

best estimate of x by a function of s is  the conditional expectation of x given s, namely 

where 

Thus, given the coding function h, the optimal solution to the objective function 

(2.6) is when 

d s )  = E{xl(s = h(x))). (2.10) 

Since function h maps a higher-dimensional data space to a lower-dimensional feature 

space, it is a many-to-one function. For a given feature s, the set h-'(s) = {x : h(x) = 

s) is the isometric surface of h corresponding to value s. Moreover, the function g(s) 

is a p-parametric surface called the principal component surface of x, and by (2.10), 

g(s) is the mean of the set hF1(s). 
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As it has been mentioned in the above example, if a pair of functions [h(.), g(.)] get 

the minimum reconstruction error defined by (2.6), then the same is also true for the 

functions [h, = q-'(h(.)), g, = g(q(.))], where q : RP + RP is any invertible function . 

Let I be the set of isometric surfaces 

I ( h )  = {h-'(s), Vs E Rp). 

Since 

and 

therefore, 

I(h,) = {h-l(q(s)), Vs E RP) = {hP1(s'), VS' E Rp) = I ( h )  = I (2.14) 

where 

Therefore, for a given distribution of x ,  we can conclude that the isometric surface 

set I is invariant with respect to the coding function h; in other words, it is unique 

[32]. Furthermore, since the principal component surface g(s) is the mean of the set 

h-'(s), it is invariant with respect to the decoding function g. Therefore, it is also 

unique. These unique properties are the foundation for implementing the NLPCA 

technique to model a random process. The functioiis h and g can be accomplished by 

different kinds of neural structures. 

The linear PCA is a special case of NLPCA when both h and g are linear mappings. 

In general, the performance of NLPCA cannot be worse than linear PCA if Fh and 

F, contain all linear mappings of the corresponding dimensions. 
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The drawback of NLPCA lies in its computational complexity since the nonlinear 

optimization problem is much harder to solve and usually has no closed-form solu- 

tion. On the other hands, neural learning algorithms are much more computationally 

attractive [33, 34, 35, 361. 

NLPCA Neural Networks 

Currently, two kinds of neural networks are often used for system modelling. They are 

the multilayer perceptrons (MLPs) and the radial basis function networks (RBFNs). 

In the MLPs, neurons are activated by all inputs; therefore, they are called global 

neural networks. In the RBFNs, neurons only respond to some particular regions 

of input space; hence they are called local neural networks. MLPs usually need 

smaller numbers of hidden neurons than RBFNs, and are widely used for function 

approximation problems. RBFNs, on the other hand, need shorter training time and 

are often used for classification problems. In this thesis, the MLP networks are used 

for process modelling. 

2.4.1 Feedforward Neural Networks 

Feedforward neural networks (FNNs), commonly referred to as multilayer percep- 

trons, are an important class of neural networks. Typically, a feedforward network is 

composed of an input layer, one or more hidden layers of computation neurons, and 

an output layer of computation neurons. All these layers are connected in a series 

structure. The input signal propagates through the network layers in a forward di- 

rection. In this section the architecture of FNNs is introduced starting from a single 

neuron model. 
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Figure 2.1: A single neuron 

A Single Neuron Model 

A neuron is the basic information-processing unit of a neural network. Figure 2.1 

shows the model of a neuron, which is the elementary building block of a feedforward 

network. There are three basic elements in the neural model: 

1. A set of Links or weights, each of which scales the input signal by a value of a 

weight and connects to the neuron. Specifically, a signal xj at the input of link 

j connected to the neuron is multiplied by the weight wj. 

2. An adder, which sums the input signals weighted by the respective weights of 

the neuron; the operation described here constitutes a linear combiner. 

3. An activation function, which limits the amplitude of the output of a neuron to  

some finite range. The three basic types of activation functions are the threshold 

function, the piecewise-linear function, and the sigmoid function. 

Besides these three basic elements, another external parameter of the neuron model 

is the bias denoted by b. The bias increases or lowers the net input of the activation 
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Figure 2.2: An MLP network with one hidden layer and one output layer 

function depending on whether it is positive or negative, respectively. In mathematical 

terms, we may describe a neuron using the equation 

where x l ,  x2, ..., XN are the input signals, wl, w2, ..., WN are the weights of the neuron, 

b is the bias, f (.) is the activation function, and y is the output signal of the neuron. 

Multilayer Perceptrons 

The power of a single neuron can be greatly increased by using multiple neurons in 

a layered and interconnected network architecture. The simplest form of a layered 

network has an input layer of source nodes that projects onto an output layer of 

neurons. Such a network is called a single-layer network with the term single-layer 

referring to  the output layer of computation neurons. The input source node layer is 

not counted as a layer because it involves no computation. A more complex layered 
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network contains one or more hidden layers of neurons intervening between the exter- 

nal input and the network output. By adding one or more hidden layers, the network 

is able to  extract higher-order statistics [37]. The architectural graph in Figure 2.2 

illustrates the layout of a multilayer perceptron network with a single hidden layer. 

External input signals are connected to  the source nodes of the input layer, and are 

supplied to the neurons in the hidden layer. The output signals of the hidden layer 

are used as inputs to the output layer. The set of output signals of the output layer 

constitutes the overall response of the network to  the activation signal supplied by the 

source nodes in the input layer. For brevity, the network in figure 2.2 is referred to 

as a 6-4-2 network, which means the network has 6 source nodes, 4 hidden neurons, 

and 2 output neurons. 

2.4.2 Kramer's NLPCA Neural Network 

A special FNN called the NLPCA neural network, originally introduced by Kramer 

[38], offers a powerful tool to learn and describe nonlinear subspaces [39] of high- 

dimensional variables. It has been successfully applied to many complex nonlinear 

process applications. Specifically, many dynamical problems that appear in chemical 

engineering are described by nonlinear equations which need to be modelled for study. 

The human body is also a complicated nonlinear system. The NLPCA network has 

been applied t o  analyze medical signals [28], such as Electrocardiograph (ECG) and 

Electroencephalograph (EEG) signals. Other applications include data compression 

[22] and pattern recognition [25, 261. 

Kramer's NLPCA network, shown in figure 2.3, is a four-layer feedforward MLP 

network with a bottleneck layer to reduce the dimensionality of the input variables 

[32]. It is comprised of two symmetric subnetworks called the coding subnetwork and 
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Figure 2.3: An autoassociative nonlinear network performing NLPCA 
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the decoding subnetwork. The first and second layer constitute the coding subnetwork 

which maps the input data to the principal component feature space (we follow the 

convention that the input layer counts as the zeroth layer). The second layer is called 

the principal component feature layer. It usually has much fewer nodes than the input 

layer and has the function to extract lower dimensional features of the input data. 

The third and fourth layer constitute the decoding subnetwork, which reconstructs 

the output data from the principal component features. 

The first layer and the third layer are nonlinear layers. The neurons in these 

two layers use the nonlinear sigmoid activation function f (x) = *. The second 

layer and the fourth layer are linear layers. It is known that a two-layer neural 

network as described in figure 2.2 using linear actuation functions in the output layer, 

and nonlinear sigmoid functions in the hidden layer, can approximate any piecewise 

continuous function from a closed bounded subset of R, + R, with arbitrary accuracy 

provided that sufficient neurons are used in the hidden layer [40, 411. That is, the 

functions of the form 
N 

are universal approximators [32]. Here xi is the weight vector that links the inputs 

to neuron i in the hidden layer, bi is the bias of neuron i, TVi is the weight vector that 

links neuron i to the output layer, and 6 is the bias vector of the output layer. 

Therefore, the coding and decoding subnetwork in figure 2.3 can approximate any 

continuous bounded function with any degree of accuracy. This is the reason why we 

need not consider the case where layers 2 and 4 are nonlinear. For simplicity we will 

assume that both of them are linear. 

Suppose the input (layer 0) and output (layer 4) layer have n units corresponding 

to the n dimensional input observations, and the feature layer (layer 2) has p units 
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(p < n). The coding subnetwork finds the nonlinear map from the n-dimensional 

observation space to the p-dimensional feature space. The decoding subnetwork re- 

constructs the output from the features by minimizing the square error between input 

and output. 

Let ai(l) be the activation of unit i in layer I ,  wij(l) be the synaptic strength of 

the connection between unit i in layer 1 and unit j in layer 1 - 1, and &(l) be the bias 

for unit i in layer 1. With this notation we have: 

where 

The number of units in layer 1 is denoted by Nl. The activation of the zeroth layer is 

the input ai(0) = xi, and activation of the fourth layer is the output ai(4) = Zi. 

The training mode is autoassociative which means the network input is also the 

teacher of the network output. As a result, the number of neurons in the output layer 

is always the same as the number of input sources. The target is to minimize the 

quadratic error between the training samples and the corresponding outputs 

Here we assume that there are M input training data vectors X I , .  . . x,. The value 

ai,*(4) is the activation of the output unit i in layer 4 for input training data xk. 

2.5 Illustrative Examples 

We use the following example to illustrate the superiority of the NLPCA network to  

linear PCA in nonlinear random process modelling. 
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Figure 2.4: Data approximated by NLPCA networks and PCA 

Examplel.1 Consider a random process with two variables xl and x2 generated 

by the equations 

where q5 is the input random variable and is uniformly distributed between [ 0 , 2 ~ ] ,  and 

E I ,  ~2 are independent uniformly distributed additive noises with amplitudes between 

[-0.05,0.05]. A NLPCA network is applied to model this process. The process 

observations xl and x2 are the inputs to the network. Since the process measurements 

are determined by a single random variable 4, the principal component feature layer 

of the network has size of N2 = 1. The choice of the size of layer 1,3 usually depends 

on the complexity of the process. Here we choose Nl = N3 = 10 to form a 2-10-1-10-2 

network structure. The coding subnetwork is designed to extract the single hidden 

factor corresponding to variable q5 from measurements, and the decoding subnetwork 
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reconstructs the observations from the hidden factor. 

Figure 2.4 shows the result of the experiment. The NLPCA network achieves a 

good approximation of the random process by a elliptic principal component curve. 

However, if we use the linear PCA model with a single principal component, the result 

is a straight line on the main axis of the ellipse as shown in figure 2.4. Obviously, 

this line is a very poor approximation of the process observation. Therefore, it can 

be concluded that the NLPCA networks are more effective than the standard PCA 

method in extracting features of nonlinear process data. 

2.6 Conclusions 

The NLPCA is an extension of the classic linear PCA. It assumes that the mapping 

from the input data space to the feature space and the mapping from the feature space 

to the output space could both be nonlinear. Neural networks offer a powerful tool 

for NLPCA implementation and have been proved to be very successful in extracting 

the underlying features of highly nonlinear processes. The classical PCA is a purely 

second-order statistics method, which means it only uses the information contained 

in the covariance matrix of the process data vector. The NLPCA technique, on the 

other hand, has the advantage over PCA by taking into account higher order statistics 

at  least implicitly. 

The limitations of NLPCA neural networks lie in the constraint that the map- 

ping from the data space t o  the feature space must be a continuous function. This 

constraint has some undesirable consequences [42] : 

1. the mapping points will be incorrect when the training data are close to  any 

ambiguity point. An ambiguity point is a point that can be mapped to more 

than one place on the principal surface or curve according to (2.6). 
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2. Kramer's NLPCA cannot correctly model curves or surfaces that intersect them- 

selves. 

3. NLPCA cannot model parameterizations that have discontinuous jumps. 

These events may or may not be present in practical problems. Therefore, special 

attention must be paid to avoid using incorrect results derived from the above situa- 

tions. 



Chapter 3 

Multivariate Statistical Process 

Monitoring 

3.1 Introduction 

Multivariate statistical process monitoring (MSPM) approaches have evolved in two 

different directions [45]. One group of methods, such as cumulative sum (CUSUM), 

and subspace identification methods (SIMs), involve the development of efficient tech- 

niques for monitoring the out-of-control status. These methods use the Hotelling T2 

technique to detect the out-of-control status. Once a deviation is detected, other 

techniques such as univariate Shewhart charts are then used to identify the specific 

variables that cause the out-of-control status. The second group of methods, called 

residual-based methods, focuses on the integration of detection and identification. 

Residuals measure the difference between the observations and the nominal system 

model outputs, and are commonly used when system models are available. Statis- 

tical projection methods, such as principal component analysis (PCA), partial least 

squares (PLS) and nonlinear principal component analysis (NLPCA) belong to  the 
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class of residual-based methods. These methods first develop models describing the 

process variations under their normal operation conditions (NOCs). These models 

are then used to detect any deviation from the NOCs. 

In the following sections, we'll introduce three multivariate process monitoring 

methods using SIMs, standard PCA and NLPCA neural network techniques, and 

compare their performances in linear and nonlinear process monitoring. 

3.2 Canonical Variate State Space Analysis Method 

Canonical variate analysis (CVA) is one of the most influential SIMs. CVA was 

introduced by Hotelling in 1936 [43] and applied to dynamic systems by Akaike in 

1974 [44] and further developed by Larimore [16,17]. Negiz and Cinar [46] developed a 

multivariate statistical process monitoring method based on a canonical variate state 

space (CVSS) model. 

Consider a state space model: 

where xk is the vector of n state variables at  time k ,  yk is the vector of p observations, 

ck is the innovation vector with zero mean and covariance E(E~E;+~)  = A if 1 = 0, 

and 0 otherwise. System matrices A, B and C,  and the covariance matrix are to 

be determined using CVSS realization methods which try to describe the dynamics 

of the process with minimum number of state variables. 

The CVSS realization procedure starts from a Hankel matrix that expresses the 

covariance between the vectors of stacked future outputs (Y&) and past outputs (YG). 
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The number of future (J) and past(Q) observations are parameters defined by the 

user. Q is selected to cover all lagged values of process variables that have significant 

autocorrelation with current values. J usually set equal to or greater than Q. 

The Hankel matrix is defined as: 

The dimension of the state vector is determined by the number of dominant singular 

values of the Hankel matrix. The scaled Hankel matrix is given by 

where (RJf) = E{Y&Y&~) and (RK) = E{YL~~Y;?~) are the scaling factors. The 

singular value decomposition of the scaled Hankel matrix is 

The state variables can be expressed as 

Once the state variables are computed, the system matrices A, B and C, and the 

covariance matrix A can be determined [46]. The CV state variables obtained from 
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(3.6) are linear combinations of the past process measurements that are best suited 

to predict the variability of the future measurements. Therefore, the state variables 

computed from the CVSS model can be used to describe the variation of the process 

based on the T2 statistics: 

where p, is the mean value of x, and Cx is the estimation of C. By monitoring the 

magnitude of the T2 statistics, process deviations from in-control conditions can be 

detected. 

PCA Method 

PCA is a statistical modelling technique which seeks to find a few linear combinations 

of the process variables that can be used to summarize the process variations with a 

minimal loss of information. 

Consider an m x n matrix X = [xl, .  . . , x,IT with each row containing a vector of 

observations of dimension n. Each observation is assumed to be a normally distributed 

random variable with zero mean and unit variance. The covariance matrix C, of X 

is defined as: 

PCA decomposes X as follows: 

X = X + E )  

where x is the model prediction and E is the prediction error matrix. The estimated 

x is given by: 

x = S W ~ ,  (3.10) 
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where W is an n x p matrix. Its columns are the eigenvectors corresponding to the 

p largest eigenvalues of the covariance matrix which are also referred to as the p 

principal directions of the process data. S is the principal component score matrix 

and is given by: 

S = XW. (3.11) 

Given a new sample observation x ,  the PCA model prediction is calculated as: 

and the prediction error e is calculated using: 

The residual r corresponding to sample x is given by: 

To perform process monitoring, a PCA model is first built using historial data col- 

lected durring normal process operation. Principal directions of the data are found 

as discussed above. The PCA model is then used for data prediction by projecting 

the on-line data onto the model. Residual r at each sample time is estimated by 

(3.13, 3.14). Whenever the residual exceeds a certain threshold, a fault alarm signal 

is generated. 

3.4 NLPCA Neural Network Method 

Most industrial processes with a large number of process variables are nonlinear pro- 

cesses and are usually operated at fixed points for extended periods. The monitoring 

method designed here is based on Kramer's NLPCA network model of the process. 
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Process data from the normal operating condition are normalized and used to train 

the parameters of the networks. 

We use the Levenberg-Marquardt back-propagation (BP) algorithm to iteratively 

adjust the weights and biases of the network to minimize the objective function JNET 

defined in (2.20). 

Standard back-propagation is a gradient descent algorithm. The term baclcpropa- 

gation refers to  the manner in which the gradient is computed for nonlinear multilayer 

networks. Gradient-descent-based algorithms have a first-order convergence charac- 

teristic and usually are too slow for practical problems. 

A useful way to improve the performance of training is by using second-order 

convergence based algorithms such as Newton's method. The basic step of Newton's 

method is: 

where Wk is the current parameter matrix of the network, Hk is the Hessian matrix of 

second derivatives of the objective function J defined by (2.20) at  the current values 

of weights and biases, and X is the step size. 

Unfortunately, it is usually too expensive to compute the Hessian matrix for feed- 

forward neural networks at each iteration. There are a class of algorithms that are 

based on Newton's method but don't require calculations of second derivatives. These 

are called quasi-Newton methods. They update an approximate Hessian matrix a t  

each iteration of the algorithm. The most successful quasi-Newton method published 

is the BFGS (Broyden, Fletcher, Goldfarb and Shanno) update. 

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed 

to approach second-order training speed without having to compute the Hessian ma- 

trix. When the Hessian matrix is symmetric and positive definite (which is most often 
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the case in feedforward networks where the objective function J has the form of a 

sum of squares), it can be approximated as: 

where ji: is the output of the network. 

The Levenberg-Marquardt algorithm uses this approximation of the Hessian ma- 

trix but also introduces a factor p > 0 into the matrix, i.e.: 

When p is zero, this is simply Newton's method using the approximate Hessian matrix. 

When p is large, this becomes the gradient descent method with a small step size. 

Newton's method is faster and more accurate near the minimizer, so the strategy 

is to shift towards Newton's method as quickly as possible. Thus, p is decreased after 

each successful step (reduction in performance function) and is increased only when 

a tentative step would increase the performance function. In this way, the objective 

function will always be reduced at  each iteration of the algorithm. 

The basic steps used to train a NLPCA network model using Levenberg-Marquardt 

method involve [22] : 

1. Set initial values Wo and a large start value of p 

2. Calculate gradient & and $& 

3. Update Wk using (3.17) 

4. 1s IJ(Wk+l)l 5 IJ(wk)I? 

Yes: decrease p for fast search in Newton direction; 

No: increase p, search in the gradient descent direction. 
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5. If IJ(Wk+l)l 5 E ,  the target reached, then stops, otherwise goes to (2 ) .  

Once the NLPCA network model of the process is obtained, we can then project 

the on-line data x onto the model and measure the model predictions 2. The residual 

corresponding to each observation is estimated by: 

Whenever an abrupt change in the amplitude of the residual is observed, a fault 

condition is declared. 

3.5 Statistical Process Monitoring Illustrative 

Examples 

Two examples are used to illustrate the performance of the CVSS method, the PCA 

method, and the NLPCA method in statistical monitoring of linear and nonlinear 

processes. 

Example 1 

Consider a linear auto-regressive process with two variables y l ,  y2 described as: 

~1 ( k )  = 4 ~ 1  ( k  - 1)  + €1 ( k )  (3.19) 

~ 2 ( k )  = 0.5yl(k - 1) + 0.15y2(k - 1) + e2(k) ,  

where integer k  denotes the current time index, and e l ( k )  and e2 (k )  are independent 

zero mean Gaussian noises with standard deviation 0.1. The system parameter 4 = 0.2 

under normal conditions. The system initially operated normally and a sufficient 

number of samples of yl and y2 were recorded to  build the system model. Then a 
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change in the dynamics was induced by increasing the value of #J from 0.2 to 0.5 at  

200 sample time and lasted for 100 samples. Figure 3.1 plots the adjacent 500 samples 

of the PCA residuals, the NLPCA network residuals and the CVSS T2 statistics in 

response to this change. Both the PCA and the NLPCA method have one principal 

component, and the NLPCA network has the size of 2-2-1-2-2. 

Figure 3 . la  shows that the PCA method using one principal component detects 

the changes in the system; however, it is significantly affected by the process noises, 

while the CVSS (Figure 3.lb) method, and the NLPCA (Figure 3 . 1 ~ )  method, both 

show good sensitivity to the change in the dynamics and are also robust to system 

noise. 

Example 2 

Consider a two-dimensional nonlinear dynamical system [47] 

where q ( k )  and c2(k) are independent zero mean Gaussian noises with a standard 

deviation of 0.1. The system parameter 8 has the value of 0.1 under its normal 

operating condition. A change of 0 from 0.1 to 0.5 was induced a t  200 sample time 

and lasted for 100 samples. The process drifted away from its normal region, and 

returned after 8 returned to 0.1. Figure 3.2 shows the responses of the PCA, NLPCA 

residuals, and CVSS T2 statistics to this change. In this example, both the PCA and 

the NLPCA methods have one principal component, and the NLPCA network has 

the size of 2-15-1-15-2. 

In this example, the PCA method cannot detect the change in this nonlinear 

process. CVSS T2 statistics give an indication of the system change; however, the 
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Figure 3.1: Monitoring the dynamic change of a linear process 
(a)Residuals of PCA method; (b)T2 statistic of CVSS method; (c)Residuals of NLPCA method 
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Figure 3.2: Monitoring the dynamic change of a nonlinear process 
(a)Residuals of PCA method; (b)T2 statistics of CVSS method; (c)Residuals of NLPCA method 
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signal to noise ratio is very low. NLPCA residuals give a good indication of the 

dynamic change and is robust in the presence of noise. 

3.6 Conclusions 

SIMs-based MSPM methods have certain features in common with that of PCA in 

that they all use covariance and cross-covariance information to determine the number 

of variables for building system models [48]. The limitation of these methods is that 

they assume the state variables, such as in the CVA method, or principal component 

features in the PCA method, are linear functions of the observations. Therefore, 

when the measurements are from highly nonlinear processes, these methods cannot 

efficiently extract the process information. NLPCA neural networks address this 

limitation by using nonlinear mapping functions, and treat linear dynamics as special 

cases when the mapping functions are linear. Simulation results show that NLPCA 

neural networks can detect changes in both linear and nonlinear dynamics and are 

robust against system noise. 



Chapter 4 

Actuator Benchmark Test 

In this chapter, static nonlinear principal component analysis (NLPCA) neural net- 

works are extended to model dynamic systems using a technique called time-delay 

neural networks (TDNNs). These networks are used to detect faults in a diesel en- 

gine actuator benchmark system, and the performance is compared with a frequency 

domain analytical model-based method. 

4.1 The Diesel Engine Actuator Benchmark 

The industrial diesel engine actuator benchmark is based on an electro-mechanical test 

facility which has been built at Aalborg University in Denmark [49]. The equipment 

simulates a part of a speed governor for large diesel engines. The governor is a 

device that controls the shaft speed of a diesel engine. It regulates the amount of 

fuel loaded into each cylinder by controlling the position of a common control rod 

which can be moved by an actuator motor. The current and velocity of the actuator 

motor are controlled by a power drive, while the position of the rod is controlled by 

a microprocessor based controller. 
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Table 4.1: Data sequences representing different models 

1 Data Seauence No. I Descri~tion 
1 I Linear model, small signals, no noise. 
2 I Soft nonlinear model, small signals, no noise. 

1 3 ( Complex nonlinear model, small signals, noise. I 
I 4 I Complex nonlinear model, large signals, noise. I 

Simulink files provided by [49] for the diesel actuator benchmark system include 

nonlinear and linearized plant models, and can simulate various generic fault scenarios 

in electronics and other hardware. In this study, the following two realistic events are 

considered: 

1. A sensor fault in a feedback element as a fault in the position measurement ASo 

(f,). The wiper of a feedback potentiometer loses contact with the resistance 

element due to  wear or dust. The particular fault might cause an over-speed 

of the diesel engine with a shut down of the engine as the result. The fault is 

intermediate, and lasts for only 0.2s. 

2. A component fault in Aim (f,). An end-stop switch suddenly malfunctions be- 

cause of a broken wire or a defect in the switch element due t o  heavy mechanical 

vibration. As a result, the power drive can only deliver positive current. 

The generally available signals that can be used for FDI are velocity reference 

n,,f, velocity measurement n,,, and position measurement si,. The data provided 

with the actuator benchmark consist of four data sets ( see table 4.1), where each set 

is characterized in terms of the system model and signal conditions that were used 

to  produce them. The sequences comprise a position fault, a current fault, and load 

disturbance. 
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The main task is to design algorithms that enable detection and isolation of the 

two faults which are also robust to load changes, noise, and model uncertainty. 

4.2 Frequency Domain Analytical Model-based 

FDI Approach 

A frequency-domain FDI approach for the actuator benchmark study is presented by 

E.A.Garcia [50]. The FDI method designed here is based on the analytical linear 

model of the benchmark system. This approach offers powerful methods to tackle the 

robustness problem by using H, theory. 

The basic idea of the frequency domain approach is the following [50]: through 

a frequency characterization of all achievable residual dynamics, based on Coprime 

stable factorizations and Youla parametrization, the robust residual generation design 

is formulated as an optimization problem and solved by the H, technique. 

Consider a linear time-invariant system with the state equations 

with output y E Rm, input u E R P ,  unknown input d E R8, fault f E Rq, and matrices 

A, B, C, Dl Ed, Fa, F, and Fd of proper dimensions. The input-output relation in the 

frequency domain is described as 

where G,(s), Gd(s) and Gf (s) are the transfer matrices from u, d, f ,  respectively, to 

the output y of the system. 
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The detailed procedure to build residuals was given in [51], and is summarized 

below: 

1. Do coprime factorization of G,(s) 

Gu (s) = M; ' (s) N, (s) . 

2. Find Ql(s) such that Q~(s)&(s)G~(s)  = diag(Ti) .  

3. Do an extended inner-outer factorization of Q ~ ( S ) M ~ ( S ) G ~ ( . S )  

4. Find the Smith-McMillan form SM{Gde(s)} of Gde(~). 

7. Compute the residual by: 

The continuous time state space description for the industrial actuator system is 

written in the standard form of 4.1 and the matrices are given by: 
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D = 0; Fd = 0; 

The state x is defined as 

where i2 is the velocity controller integral variable, n, is the motor shaft velocity and 

so is the gear output position. and the fault vector f is defined as 

where fa is a component fault in Ai,, and f ,  is a sensor fault in As,. The input 

velocity reference is u = n,,f and the measurement is y = [n,sb], where sb is the 

position measurement. 

The frequency domain residual based on [50] is given by : 
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I I 
I 

Figure 4.1: Schematic of neural network NNa 

4.3 Time-Delay NLPCA Neural Network-Based 

FDI Approach 

Time-delay neural networks incorporate time-delay elements along their interconnec- 

tions, and can be trained by back-error propagation. Time-delay neural networks are 

powerful tools for realizing spatiotemporal relationships between process variables. 

The idea of using the time-delay neural network to model the dynamics of the 

diesel engine actuator system is based on the considerations that only a small number 

of process variables are available and spatial information between the process data 

may not be enough to model the system. Besides, the system involves a feedback 

loop. Therefore, the network designed to  model the actuator system should have the 

ability to learn temporal relationships between the current data and the past history 

of events as well as the ability to  learn spatial relationships between process data. 

In this work, two time-delay NLPCA neural networks are designed to detect the 

actuator fault f a  and the position fault f, respectively. The schematic architectures 

are illustrated in figure 4.1 and figure 4.2. Here the velocity reference n,,f, velocity 
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Figure 4.2: Schematic of neural network N N ,  

measurement n,,, and their one-step delay values are selected as the inputs to the 

neural network NNa for actuator fault f a  detection ( see figure 4.1). The velocity 

measurement n,,, the position measurement sb,, and the corresponding one-step 

delay of these variables are the inputs of neural network N N ,  to detect sensor fault 

f, ( see figure 4.2). Both NLPCA neural networks have the size of 4-6-3-6-4. 

4.3.1 Simulation results 

In this section, simulation studies are given to show how the two FDI approaches work 

for the detection and isolation of single faults occurring in the diesel engine actuator 

benchmark system. The time-delay NLPCA neural networks are obtained using data 

generated by the nonlinear Simulink model of the system under normal conditions 

with Gaussian noise and load disturbances. 

The data sequences for simulation studies are described in table 4.1. The times 

of fault events and load step disturbances occurring in the system are listed in table 

4.2. The sampling period is 0.01 sec. 

Figure 4.3 shows the trends of frequency domain residuals R, and Ra with four data 
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Table 4.2: The time of fault events and load step disturbances 

I Event 1 Start time 1 End time ) 
I Position fault I 0.7s I 0.9s 
I Load input I 1.2s I 2.3s 
I Current fault I 2.7s I 3.0s 

sequences. Residual R, clearly indicates that a position sensor fault has occurred at  

time 0.7 second in all four sequences. Residual R,, however, is highly affected by load 

disturbances (data sequences 1, 2, 3, 4), and fails to detect the fault when nonlinear 

uncertainties are present in the system (data sequence 4). Therefore, the linear model 

with fixed threshold will generate false alarms for actuator fault fa. 

Figure 4.4 shows the residual plot for the time-delay NLPCA neural network ap- 

proach. Residual R, generated by neural network NN, gives a good indication of the 

sensor fault f,, and yet is completely insensitive to the position fault fa in all four data 

sequences. It is more robust against system disturbances and noise than its frequency 

domain analogy. The result suggests that with a predefined threshold, neural network 

NN, can perform effective detection and isolation of position sensor fault. Residual 

Ra from neural network NNa clearly indicates the actuator fault when the system is 

soft-nonlinear or nonlinear (data sequences 2, and 3). Its performance decreases for 

data from linearized model (data sequences 1). The neural network fails to detect the 

actuator fault in the hard nonlinear system with large signals (data sequence 4). 

4.4 Conclusions 

The results reported in this chapter show that the time-delay nonlinear principal 

neural network based method is a viable approach to detect sensor and motor drive 
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Figure 4.3: Residual generated by frequency domain approach 
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failures in the industrial actuator benchmark problem. Unlike the frequency domain 

method, the neural-network-based method does not need a mathematical model of 

the system, though at  the price of a large set of training data. Furthermore, by 

selecting different groups of process variables as inputs to the neural network based on 

knowledge of the system, the NLPCA neural networks with TDNNs can be designed 

to be sensitive to different faults and thus make fault isolation possible. 
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St at ist ical Fault Identification 

5.1 Introduction 

Although MSPM using statistical correlation models are very effective for fault de- 

tection, fault isolation is more difficult with this approach. The main strategy for 

fault isolation is the use of contribution plots. Once a fault is detected by a resid- 

ual statistic, the contributions of individual variables to the residual statistic can be 

calculated and those variables having large contributions are examined to indicate 

possible causes. Contribution plots do not provide direct fault isolation. They only 

show which group of variables are highly correlated with the fault, and it is up to the 

engineers to use their process knowledge to provide feasible interpretations. 

To do more, one needs to have additional information. Several approaches using 

prior fault histories have been proposed [24, 521. These approaches all use some 

form of fault features, of which the most important are the directions of the process 

movement in the principal component space [24], or in the square-prediction-error 

space [52]. Once a new fault occurs, its features are compared with those in the fault 

bank in order to identify the most likely cause. Comparing the new fault with the 

48 
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fault bank and identifying the fault usually depends on the experience of the person 

reviewing the data. 

Fault identification methods based on feature visualization are suitable for simple 

processes with a small number of variables and a small set of potential faults to  

be considered. As we know, different faults in a process may cause the process to  

drift away from its normal state and move along different trajectories until it reaches 

new equilibrium states. For simple processes, with a small number of variables, these 

trajectories may cover distinct regions in the feature space and can be easily identified 

by human eyes. However, for complex processes with a large number of potential 

faults, different faults usually cover regions that are highly overlapped and when the 

size of faults are small, they are most likely buried within the nominal region which 

makes them difficult to separate from one to another (see figure 5.1 [62]). Furthermore, 

depending on the magnitude of fault, the direction of the movement corresponding to  

the same fault may not be consistent. Figure 5.1 shows such a case where the principal 

component plot of a chemical process goes through different trajectories in response to  

different levels of clog in a valve [62]. In fact, for complicated multivariate processes, 

it is not effective to identify various process faults relying on human visualization of 

their principal component plots. 

To overcome the limitation of the visualization-based approach, a fault identifica- 

tion system has been developed based on statistical fault distribution modelling. The 

difference between the fault visualization and the fault-distribution-modelling-based 

approach is that the former relies on human vision, while the latter is a computer- 

aided approach. The fault identification system is operated in two stages: a learning 

stage followed by an on-line working stage. In the learning stage, the system learns 

the distributions of various types of known faults in the feature space using prior fault 
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Figure 5.1: Principal component plot of a chemical process under normal and fault 
conditions 
+ = nominal data, . = data from various fault conditions 

Figure 5.2: Principal component plots of a chemical process movement in response to 
different levels of clog in a valve 
o = nominaldata, . = 10% clog, + = 50% clog, 0 = 90% clog 
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histories and builds fault distribution models. This is accomplished through the use 

of self-organizing feature mapping (SOFM) and learning vector quantization (LVQ) 

techniques which will be discussed fully in subsequent sections. In the on-line work- 

ing stage, unknown on-line faults are recognized by the system using the fault models 

built in the learning stage. The following sections introduce the fault identification 

system, its two operating stages, and the underlying techniques. 

Fault Distribution Modelling 

During the learning stage, the fault identification system builds fault distribution 

models with historical database record of prior faults. The information for fault 

modelling consists of statistical distribution of process data in the nonlinear principal 

component feature space during the period immediately following its detection of 

the fault. As mentioned before, different faults in a process may cause the process 

to drift away from its normal state and move along different trajectories. In other 

words, from the moment a fault occurs, the process operating trajectory contains 

some unique information about this fault. Therefore, by comparing the distribution 

patterns of these trajectories in the feature space, different faults can be identified. 

Distribution patterns in the feature space are analyzed using the techniques of self- 

organizing feature mapping (SOFM) and learning vector quantization (LVQ). 

Figure 5.2 shows the main steps involved in the process of building fault distribu- 

tion models. The first step involves extracting low-dimensional features that exist in 

the high-dimensional process data. The second step involves learning the distribution 

topography of fault data in the feature space using SOFM. In the third step, features 

are encoded and fault distribution models are calculated. To improve the quality of 

classification, distances between different fault distributions are measured using the 
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Figure 5.3: Block diagram of fault modelling procedure 

Kullback-Leibler divergence, and LVQ is applied to improve fault models that have 

similar distributions. 

5.2.1 Feature Extraction 

In order to build a fault distribution model, historical process data are analyzed to  

determine the fault mechanisms. The onset of the fault is first located using the 

detection techniques introduced in chapter 3, then a suitable length of the subsequent 

process data are collected to build the model of the fault. 

It is assumed that the process data contain a large amount of information for 

fault classification in the sense that different types of faults may have different dis- 

tribution patterns. However, a variety of obstacles stand in the way of firming up 

this vague statement into a practical classification system. To begin with, the high 

cross-correlation between the process variables will make any classification inaccu- 

rate. Therefore, the first step to fault identification is to reduce the dimensionality of 

the process data and form a manageable set of uncorrelated variables using Kramer's 

NLPCA networks introduced in chapter 2. The nonlinear principal components of the 

process data at each sampling instant are calculated at the second layer of the NLPCA 
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networks, and form a new set of features that contain the most important information 

of the process 

model. 

5.2.2 Se 

rariety. These features are then used to build the corresponding fault 

f-Organization Feature Mapping (SOFM) 

The study of the human brain [53] has revealed that the brain keeps each incoming 

piece of information in its proper context, and neurons dealing with closely related 

information are clustered together so that they can interact via short synaptic con- 

nections. The principal of the topographic map formation in the brain may be stated 

as [54] : 

The spatial location of an output neuron in a topographic map corresponds 

to a particular domain or feature of data drawn from the input space. 
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Inspired by this neurobiological structure, Kohonen [55] introduced the SOFM 

model shown in Figure 5.4. Kohonen's model maps features from the input space to  

a two-dimensional array of neurons. Each neuron in the array represents a certain 

region of the input space. When a feature is within a region in the input space, the 

corresponding neuron is called a winning neuron. This model has received intensive 

attention in the literature and most SOFM algorithms are derived based on this model. 

The SOFM introduced by Kohonen [54, 55, 56, 581 was originally designed for 

visualization of high-dimensional data. It converts nonlinear relationships between 

high-dimensional data into simple geometric relationships on a low-dimensional dis- 

play which is usually a regular two-dimensional grid of nodes. 

Kohonen's SOFM also belongs to the class of vector-coding algorithms, since 

SOFM provides a topological mapping that optimally places a fixed number of vectors 

into a high dimensional input space which will be demonstrated later in chapter 6, and 

thereby facilitates data compression [37]. In this work, the SOFM is used to  perform 

vector quantizing and coding of the process features obtained in section 5.2.1. Fault 

visualization ca,n also be achieved using the SOFM networks which will be introduced 

in the following section. 

SOFM networks 

The SOFM networks have a feedforward structure with a single computational layer 

consisting of neurons arranged in rows and columns. Figure 5.5 shows the schematic 

diagram of a two-dimensional lattice of neurons applied in this work. Each neuron in 

the array is fully connected to the input nodes; therefore, the weight vector w of each 

neuron has the same dimension as the input space, and is called the reference vector. 
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Figure 5.5: Two-dimensional array of neurons 

The network maps a feature vector from the input space to a neuron in this two- 

dimensional array whose reference vector is at a minimal distance from the feature 

vector. 

The formation of the SOFM involves the following three essential processes [37]: 

1. Competition 

For every input vector, each neuron calculates the distance between its reference 

vector and the input vector. The neuron with the minimum distance is declared 

the winner of the competition. 

2. Cooperation 

The winning neuron determines its topological neighboring neurons in the lat- 

tice, and provides the basis for cooperation within its neighborhood. Assume 

the SOFM array contains N units and for an input vector x, the winning neuron 
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index is i. The neighborhood function of the winning neuron i and its neighbor 

neuron j is defined by 

where dj,i is the lateral distance between the winning neuron i and its neighbor 

neuron j and di,i = 0. The standard deviation a defines the effective width of 

its topological neighborhood. The neighborhood function hj,i has a maximum 

value 1 at j = i ,  and decreases monotonically with increasing lateral distance 

dj,i. 

The SOFM algorithm also requires the size of the neighborhood to shrink with 

time. This is achieved by making the effective width parameter u exponentially 

decay with time t [59, 601 

where a. is the initial value of a,  and TI is a time constant. 

3. Synaptic adaptation 

At this stage, the weights of the winning neuron and all of its neighboring 

neurons are updated according to the input pattern. The updated weight vector 

wj(t + 1)  at time t + 1 is defined by [55, 57, 601 

where ~ ( t )  is a scalar-valued learning-rate factor. It starts at an initial value qo 

and decreases exponentially with time t 
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where 72 is another time constant. 

The adjustments have the effect of moving the weight vectors of the winning 

neuron and all of its neighbors toward the input vector x, and enhancing the 

response of the winning neuron to a subsequent similar input. Moreover, the 

weight vectors are updated repeatedly in accordance with the repeated presenta- 

tions of the input vectors in the training data and tend to follow the distribution 

of the input space due to the neighborhood updating. 

SOFM networks training 

The training of SOFM networks involves two phases: an ordering phase followed by 

a convergence phase. These two phases of adaptation are described as below [55, 571: 

1. Order phase 

It is during the first phase of the adaptive process that topological ordering 

of the weight vectors takes place. The ordering phase may take as many as 

1000 iterations of the SOFM algorithm. The neighborhood function hjti(t) and 

learning-rate parameter q(t) in this phase are set as follows: 

The neighborhood function hj,i(t) defined by (5.1,5.2) initially includes all 

neurons in the networks and shrinks slowly with time. The initial size oo 

is set equal to the "radius" of the lattice. The time constant r1 is defined 

by: 

The learning-rate factor q(t) is calculated using (5.4), where the two con- 

stants are chosen as: 
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72 = 1000, 

2. Convergence phase. 

This second phase fine-tunes the feature map and provides an accurate statistical 

model of the input space. This phase needs many more iterations than the first 

phase - usually at least 500 times the number of neurons in the networks [58,37]. 

The neighborhood and the learning-rate are set as follows: 

0 The neighborhood function hj,i(t) in this phase only contains the nearest 

neighbors of a winning neuron and eventually reduces to zero in neighboring 

neurons. 

The learning rate q(t) is maintained at a small value of the order of 0.01. 

SOFM properties 

Once the SOFM algorithm has converged, the mapping from the input feature space 

to the discrete neuron array displays some important statistical characteristics of the 

input space, and has some interesting properties [37]. 

1. Approximation of the input space 

The set of the weight vectors {wl, wz, . . . , wN) provide a good approximation 

of the input space. 

2. Topological ordering 

The spatial location of a neuron in the lattice corresponds to a particular domain 

of features in the input space. The mapping computed by the SOFM algorithm 

preserves the most important topological and metric relationships of the input 

features. 
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3. Density matching 

The map reflects variations of the statistics of the input distribution: regions of 

the input space from where sample vectors are drawn with a high probability of 

occurrence are mapped to larger domains of the output space, and therefore with 

better resolution than regions where sample vectors occur with low probability. 

Properties 2 and 3 supply the theoretical basis for designing a fault visualization 

approach using SOFM. 

5.2.3 Feature Encoding and Model Computing 

Since the SOFM gives a good approximation of the distribution of training features in 

the input space using a small set of reference vectors {wl, w2, . . . , wN), it offers an ap- 

proach for feature vector quantization. The set of reference vectors {wl,  w2, . . . , wN) 

becomes the codebook, and its members are called codewords. Each reference vector 

wn can be represented by the index of its associated neuron in,  here n = 1 ,2 , .  . . , N. 

The codebook is then used to encode all feature vectors extracted in 5.2.1. 

Suppose the historical database training the SOFM networks involves M classes 

of faults, el, 02,. . . , Bill. After feature vector encoding, all training data are encoded 

by N neural indices i l ,  i2, .. . , iN. The conditional probability function Pm(in 10,) of 

each fault is defined by: 

Total number of features of fault 8, encoded as in 
P m  (in (om) Total number of features belonging to fault 0, 

Since each neuron is associated with a reference vector in the input feature space, 

the conditional probability Pm(inlO,) represents the distribution information of fault 



Chapter 5.  Statistical Fault Identification 60 

19, in the feature space based on historical data records, and serves as the fault model 

to identify unknown faults occurring in the process. 

5.2.4 Model Improvement 

As we know, the SOFM matches the density of the input distributions. Regions where 

features have high probability of occurrence have high resolution in the output neuron 

lattice. One problem arises when features extracted from two different faults overlap. 

The overlapped regions usually have higher density than non-overlapped ones. Instead 

of using the information of non-overlapping regions for fault classification, the SOFM 

focuses on their overlapped regions. As a result, the fault models built based on 

SOFM are prone to have similar distributions, making fault identification difficult. 

Fault modelling is enhanced by adding learning vector quantization to the detec- 

tion system and improves the separation of faults with similar distributions. 

Kullback-Leibler divergence 

The distance between any two distributions is measured by the relative entropy or 

Kullback-Leibler divergence. 

Given two probability functions P, and P,, the Kullback-Leibler divergence is 

defined by [61]: 

The Kullback-Leibler divergence has some unique properties: 

1. It always has a nonnegative value and is zero only when the two distributions 

match perfectly, P, = P,. 

2. It is invariant with respect to the permutation of the order in which the com- 

ponents i l ,  i2, ..., iN are arranged. 



Chawter 5. Statistical Fault Identification 6 1 

The Kullback-Leibler divergence has a large value when the two distributions 

are very different and has a small value when they are similar. Therefore, it can be 

considered as the distance between two distributions, although it is not a real distance 

measure because it is not symmetric. A symmetric measure 

is used here to measure the distance between two fault distribution models. Whenever 

two faults are found to have similar distributions, the learning vector quantization 

(LVQ) technique is applied to modify their fault models. 

Learning vector quantization 

Learning vector quantization is a supervised learning technique that uses fault class 

information in the training database to move the positions of reference vectors {w,) 

slightly to increase the distance between any two fault distribution models defined by 

(5.9). 

Assume that fault Qp and 8, occupy very close or overlapped regions of the feature 

space and thus have similar distributions. After SOFM vector quantization, the fea- 

ture vectors of these two faults are encoded to the nearest codewords. The subset of 

codewords related to these two faults are first assigned to each fault class according 

to the following criterion: 

Let CP,, be the subset of codewords related to fault Q, or Q,, then a code- 

word w, E &, is assigned to fault class Qp if 

and vice versa. 
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Given an input feature vector x of fault 8, or 8,, and its nearest codeword wi, the 

learning vector quantization process is defined by the following equations: 

wi(t + 1 )  = wi ( t )  + v(t)(x  - wi(t)) (5.10) 

if x and wi belong to the same fault classes, 

wi (t + 1) = wi (t ) - v (t) (x - wi (t ) ) 

if x and wi belong to different fault classes, 

w j ( t + l )  = wj( t )  f o r j f i .  

If the class label of the input feature vector x and its nearest codeword wi agree, 

then the codeword is moved in the direction of the feature vector x. If, on the other 

hand, the class labels of the feature vector x and its nearest codeword wi disagree, 

the codeword is moved away from the feature vector x. Other codewords remain 

unchanged. 

After codewords are updated according to (5.10), all fault distribution models are 

recalculated using (5.7). In general, by using the learning vector quantization tech- 

nique in conjunction with the SOFM, similar distributions can be further separated 

and improved fault models are obtained. 

5.3 On-line Fault Identification 

The previous section introduced the learning stage of the fault identification system. 

It is in the learning stage that distribution models of all possible faults of an industrial 

process are built using prior fault histories. This section will cover another operating 

stage, the on-line working stage. In this stage, the fault models built in the learning 

stage are applied to diagnose on-line fault conditions of the process. 



Chapter 5. Statistical Fault Identification 63 

Assume that the industrial process involves M classes of possible faults $1, 02, , . . , OM. 

In the learning stage, the M fault distribution models were built. Also a codebook 

with N codewords labelled as i l ,  i2 , .  . . , iN was obtained through the use of the SOFM 

network. During the on-line working stage, once an unknown fault condition is de- 

tected, the subsequent L observations y l ,  y2,  . . . , y~ are collected for the purpose of 

fault identification. On-line fault identification involves the three steps listed below. 

Step 1: Feature extraction 

The way process features are extracted in the on-line working stage is similar to that 

in the learning stage. The same length of data as in the learning stage are collected 

after a fault is detected and their nonlinear principal component features are extracted 

using the NLPCA networks. 

Step 2: Feature encoding 

The process feature vectors obtained in Step 1 are encoded using the codebook ob- 

tained in the learning stage. 

Step 3: Fault identification 

The final step is to identify what kind of fault is involved in the process based on the 

fault distribution models built in the learning stage. 

After steps 1 and 2, the L process observations y l ,  y2 , .  . . , y~ are encoded as a 

sequence of codeword indices XI ,  x2, 3 .  , XL. The fault identification problem can be 

described as: given a sequence of codeword indices X I ,  22, . . . , XL , decide which one 

of the M fault classes they belong to. 

Define an L-dimensional vector X = {xl, x2, . . . , xL). According to the Bayes 

decision theory, X is assigned to class Om,, if it maximizes the probabilities P(Bm(X), 
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m = l , 2  ,..., M. 

Qmax = argorn 

From Bayes rule we have: 

Assume the a priori probabilities of the M fault classes are equal, that is P(Q1) = 

P(Q2) = . . . = P(QM). Then equation (5.11) becomes: 

M 
Omax = argern max P ( X  10,). 

m=l 
(5.13) 

This is also known as the maximum likelihood estimation method. Assuming statis- 

tical independence between the L observations, we have: 

L 

p(XIom) = n p ( x r l ~ m ) .  (5.14) 
1=1 

Equation (5.13) can then be written as: 

L 

- arge, m%x ~ ( x i l ~ m ) .  Qmaz - m= 1 
1=1 

Because of the monotonicity of the logarithmic function, Equation (5.15) is equivalent 

to: 
L 

where zl E {il, i2 , .  . . , iN ), I = 1 ,2 , .  . . , L. 

Since the distribution models of the M faults P(i,lQm),n = 1 ,2 , .  . . , N, m = 

1,2,  . . . , M have been built in the learning stage, the right side of equation 5.16 can 

be calculated and compared, and thus the most likely fault in the system can be 

identified. 
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5.4 Conclusions 

A statistical fault identification system integrating NLPCA neural networks with 

SOFM neural network techniques has been developed in this work. Operations under 

various known types of fault conditions in the historical database are first modelled 

through the learning of their distribution patterns in the nonlinear principal compo- 

nent space. These models are then applied to identify on-line unknown faults based 

on their similarity to previous fault behaviors. The system enables the automation of 

NLPCA-based fault identification where the visual interpretation of nonlinear prin- 

cipal component patterns is replaced by computer-aided interpretation. Unlike the 

analytical model-based methods which need accurate mathematical models of the pro- 

cesses, the system presented here gives an alternate approach for diagnosing faults in 

multivariate processes when sufficient historical databases are available. 



Chapter 6 

Three-Tank Benchmark Test 

6.1 The Three-Tank Benchmark System 

Leaks, clogs, valve blockages and sensor faults are examples of some common faults 

in chemical processes and process control applications. To study the corresponding 

fault diagnostic problems, a laboratory desktop plant, composed of three tanks inter- 

connected by various hydrodynamic paths, was built by the Department of Computer 

Automation and Control at  Jozef Stefan Institute. The plant mimics some common 

processes for transporting fluids in chemical plants [62]. 

The schematic of the process is shown in Figure 6.1 [62]. It consists of three tanks 

R1, R2, and R3 connected with flow paths which serve to supply water from the 

reservoir RO. Two of the paths have built-in pumps, P1 and P2, driven by DC motors 

with permanent magnets. There is one servo valve V5 in the plant, driven by a DC 

motor. Valves V1 and V2 are on-off while V3 and V4 are manual valves. The purpose 

of valve V3 is primarily for realizing a leakage fault of the tank R1. 

The capacity of the reservoir RO is much greater than the capacity of tanks so 

that its level is practically constant during the operation. 
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Figure 6.1: Schematic of the three-tank process 

The three-tank system can be studied in different configurations and operating 

modes. In this study, R1 and R3 take over the role of buffers for supplying R2. 

Contents from R1 and R3 are mixed in R2 and then fed back to reservoir RO. The 

level in tank R1 is controlled by manipulating the speed of pump P I ,  while the level 

in R3 is adjusted by controlling the voltage command signal of valve V5 around a 

given working point defined by the constant speed of pump P2. Proper ratios of flows 

from R1 into R2 and from R3 into R2 are achieved by adjusting the difference of the 

reference values of levels in the tanks. 

A nonlinear simulation model for the entire operating range of the system is built 

in Simulink. The model can simulate 20 different faults in sensors, actuators and 

components. Table 6.1 lists the 20 faults realized in the simulation model. The 

intensity of each fault is in the range of 0 to 1. 

The system can be operated in both open loop and closed loop. In this study, 

the closed-loop model is used for simulation of the plant under influence of faults. 

Its Simulink scheme is shown in figure 6.2 [62]. There are two feedback loops in the 

system. The first loop controls the level of tank R1 by adjusting the speed wl of pump 
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Figure 6.2: Simulink scheme of the three-tank system 
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Table 6.1: List of process faults 

I Index 1 Fault I 
11 1 leak in R1 I 
1 2  I clog in branch with V1 I 
1 3  1 clog in branch with V2 I 

4 
5 
6 
7 
8 
9 
10 

14 I bias in sensor of I1 
15 I bias in sensor of UI 

clog in branch with V4 
clog in branch with P1 
clog in branch with P2 
increased friction in DC motor of P I  
clog in branch with V5 
bias in sensor of hl 
bias in sensor of h2 

11 
12 
13 

1 16 1 bias in sensor of Q x  I 

bias in sensor of hg 
bias in sensor of Q1 
bias in sensor of A pl 

1 17 1 bias in sensor of A m I 

P I .  The second loop controls the level of tank R3 by adjusting the position of valve 

18 
19 
20 

V5. The overall model consists of two control inputs and eleven outputs. Table 6.2 

bias in sensor of I2 
bias in sensor of U:! 
bias in sensor of wl 

lists the variables of the plant and their nominal ranges. Zero-mean Gaussian noise 

with known standard deviations is added to the measured values. 

6.2 Monitoring the Three-Tank System 

This section studies the performance of the NLPCA neural network approach for 

monitoring the three-tank system. The Simulink model of the plant was used to  
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Table 6.2: Nominal value of measured process variables 

I Symbol I Variable ( Unit 1 Range 1 Description 
I LT1 I h~ I a n  I O - 60 I level in tank R1 I 
I LT2 I ha I cm I 0 - 60 1 level in tank R2 I 
I LT3 I hx I cm I 0 - 60 1 level in tank R3 I 

DPTl 
DPT2 
FT1 
FT2 

I - I WI I - 1 0 - 6 1 "Speed" of rotation of pump1 I 
1 12 

I - 1 s5 I - I 0 - 10 1 position of the stem of the continuous valve V5 I 

A pl 
A p2 
Q1 

Q2 

UI 
11 
u 2  

1 0 - 0.3 1 current to the DC motor in pump2 

simulate the operation of the system. The reference level hlTef of tank R1 and the 

reference level h3Tef of tank R3 were kept constant in the study. Measurements of 

process variables listed in table 6.2 were collected for FDI purpose. 

The NLPCA neural network model of the system was obtained with a set of 

measurements collected for 3000 seconds from the process under routine operation 

with no system fault. (In real processes, much more data would be required t o  capture 

all sources of common-cause variations.) The NLPCA neural network has 13 inputs; 

its four-layer structure is Nl=N3=N4=13 and N2=3. 

The simulation study shows how well the NLPCA neural network works for detect- 

ing single faults occurring under normal operating conditions. The plant was initially 

operating in a normal and well-behaved manner. A process fault with intensity of 

0.1 was introduced into the plant a t  210 seconds and lasted for 100 seconds. At 510 

seconds, the same fault, with intensity of 0.5, was introduced to  the plant and lasted 

for 100 seconds. The same method was repeated for all faults listed in table 6.1. 

cm Hz0 
cm Hz0 
cm3/s 
cm3/s 
V 

V 

0 - 100 
0 - 100 
0 - 30 
0 - 30 
0 - 10 
0 - 0.3 
0 - 10 

pressure difference in the pumpl 
pressure difference in the pump2 
flow through the branch with pump1 
flow through the branch with pump2 
voltage on the DC motor in pump1 
current to the DC motor in pump1 
voltage on the DC motor in pump2 
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Figure 6.3 - 6.7 plot the residuals of the NLPCA-based approach in response to 20 

different faults with intensities of 0.1 and 0.5. 

Test results show that the NLPCA neural network approach effectively detects 

component faults, such as a leak in tank R1 (see figure 6.3 (1)) or a clog in the 

main branches (see figure 6.3 (2,3,4), 6.4 (5,6)). Biases in the sensors (see figure 6.5, 

6.6, 6.7) were detected including biases in the feed-back loops (see figure 6.5 (9 , l l ) ) .  

The results show that sensitivities of the residuals to  different faults vary from case 

to  case. The NLPCA residuals are not sensitive to the clog in branch with P1 and 

increased friction in DC motor of P1 (see figure 6.4 (5,7)). Further study of these two 

cases shows that these two faults are located in the actuator of the system and their 

nonlinear principal component features lie very close to that of the normal region. 

SOFM-Based Fault Identification 

Monitoring the residuals from the NLPCA neural network determines the overall 

status of the three-tank system; however, the individual process variables responsible 

for the occurrence of the fault are not determined by residual charts. In this section, 

simulations are made to test the SOFM-based fault identification system introduced 

in chapter 5 in performing single-fault identification. 

6.3.1 Fault Distribution Modelling 

Training database preparation 

Building distribution models of process faults requires a fault training database. A 

fault database for the three-tank system was generated from the Simulink model and 

consists of fault conditions caused by the 20 faults listed in table 6.1 at  two severity 
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(1) Leak in R1 
100 

u 50 

n T 

0 100 200 300 400 500 600 700 800 
(4) Clog in branch with V4 

0 100 200 300 400 500 600 700 800 
(2) Clog in branch with V1 

U 

0 100 200 300 400 500 600 700 800 

Figure 6.3: Residual plots for a single fault with intensity of 0.1 and 0.5 
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(5) Clog in branch with P I  

l r n N  

0 T 
0 100 200 400 500 600 700 800 

" (6) Clog in branch with P2 

u 
0 100 400 700 800 5Y 600 

200 
(7Rcreased friction in DC motor of 1 

0 
T 

0 100 200 400 500 600 700 800 
(8) Clog in branch with V5 

Figure 6.4: Residual plots for a single fault with intensity of 0.1 and 0.5 



Cha~ter  6. Three-Tank Benchmark Test 

(9) Bias in sensor of h l  
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(10) Bias in sensor of h2 
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Figure 6.5: Residual plots for a single fault with intensity of 0.1 and 0.5 
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(13) Bias in sensor of dpl 
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Figure 6.6: Residual plots for a single fault with intensity of 0.1 and 0.5 
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(17) Bias in sensor of dpl 
200 I I I I I I I 
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(20) Bias in sensor of w l  

Figure 6.7: Residual plots for a single fault with intensity of 0.1 and 0.5 
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Figure 6.8: Nonlinear principal component plots of the training database 

levels, 0.1 and 0.5. 

Feature extraction 

The training database was preprocessed by the NLPCA network model built in section 

6.2. The network has three neurons in its nonlinear principal component layer (second 

layer). For a given input process observation, the outputs of the second layer are 

collected and form a nonlinear principal component feature vector of the observation. 

Figure 6.8 plots the principal component features of the training database in a 3- 

dimensional feature space. 
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Figure 6.9: Reference vector structure of SOFM 

Self-organizing Feature Mapping 

SOFM networks with a 10 x 10 lattice were applied to learn the distribution of the 

principal component features of the training database. After training, the set of 

reference vectors of the SOFM networks provided a good approximation of the training 

feature space. Figure 6.9 plots the structure of the reference vectors associated with 

the two-dimensional array of neurons after the learning process. 

The LVQ algorithm adjusts the position of the reference vectors to  increase the 

distance between any two similar fault distributions. These reference vectors act as 

codebook vectors to  quantize all features of the training database. Fault distribution 

models were built using equation 5.7. 
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6.3.2 On-line Fault Identification 

After building fault distribution models for the three-tank system, the models were 

tested for fault sensing with unknown fault records. An unknown fault was simu- 

lated and the process response to the fault was measured and used as the input to  

the NLPCA-SOFM-based fault identification system. Table 6.3 - 6.8 compares the 

performance of the NLPCA-SOFM-based fault identification system with the actual 

system fault. 

Extensive tests show that the SOFM-based fault identification system performs 

accurate identification of single faults in the three-tank system. Faults were identified 

correctly 80% of the time. Fault identification was the most accurate when the level of 

the introduced fault is close to the level of the fault recorded in the training database. 

The system fails to  identify faults when the fault intensities are lower than 0.05. 

An interesting result is that the SOFM-based fault identification system identifies 

actuator faults (F5, F7) which are not detectable by the NLPCA neural network. 

Therefore, the system can be used for fault detection as well as identification. The 

disadvantage of the SOFM-based method is that data buffering is required while the 

NLPCA networks can perform real-time monitoring. 

6.3.3 Fault Visualization 

SOFM-based methods have also been applied as a visualization tool for mapping 

high-dimensional process data to a two-dimensional uniform grid. For the three-tank 

system model, a grid with 10 x 10 internally ordered units is constructed to visualize 

the topology of the input space. Data association in the input space is visualized in 

terms of the relative positions of the units. The gray scale of each unit is proportional 

to the quantity of process data in the region represented by the unit. Light areas 
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correspond to large quantity of process data, while dark areas correspond to small 

quantity of process data. 

Figures 6.10 and 6.11 show the patterns of the 20 fault conditions with intensity 

of 0.1 and 0.5. The pattern of normal conditions is shown on the left top of these 

two figures. These patterns prove the assumption in chapter 5 that different faults 

in a process may cause the process to drift away from its normal state and move 

along different trajectories and different faults have different distribution patterns. 

For simple systems, fault identification can be achieved by comparing the pattern of 

an unknown fault with those of fault banks based on human vision. However, for 

complex systems, such as the three-tank system, involving large amount of faults, 

human vision-based approach becomes difficult. In such cases, the NLPCA-SOFM- 

based fault identification system is more effective. 

6.4 Conclusions 

The implementation of the NLPCA-SOFM-based fault diagnosis approach was tested 

on the three-tank system. The results show that in most cases, the NLPCA neu- 

ral network performs early and accurate detection of an abnormality in the system 

when the abnormality is due to a root cause in the system components or sensors. 

The results demonstrate the capability of the SOFM-based fault identification system 

to correctly identify single faults. An advantage of this approach is the automation 

of the SOFM-based fault identification where manual interpretation of the nonlin- 

ear principal components is replaced by automated interpretation based on SOFM. 

This approach also enables fault visualization in a two dimensional lattice, which can 

provide the operator with visible knowledge of the system bias. 
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Table 6.3: Testing results for faults at intensity of 0.05 

Clog in branch with V5 1 0.05 Iclog in branch with V5 1 yes 
I I I 

1 correct Rate 55% 1 

Bias in sensor of h l  

Bias in sensor of h2 

Bias in sensor of h3 

Bias in sensor of Q1 

Bias in sensor of dpl 

0.05 

0.05 

0.05 

0.05 

0.05 

Bias in sensor of h l  

Bias in sensor of h2 

Bias in sensor of h3 

Bias in sensor of Q1 

Bias in sensor of h2 

Yes 

Yes 

Yes 

Yes 

No 
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Table 6.4: Testing results for faults at intensity of 0.1 

Bias in sensor of U2 ( 0.10 IBias in sensor of U2 
I I 

Bias in sensor of w l  1 0.10 l ~ i a s  in sensor of wl  I y e s  

Correct Rate 100% I 
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Table 6.5: Testing results for faults at intensity of 0.2 

Bias in sensor of h2 1 0.20 l ~ i a s  in sensor of h2 Yes 
I I I 

1 Correct Rate 80% 1 
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Table 6.6: Testing results for faults at intensity of 0.3 

Clog in branch with V2 1 0.30 l ~ i a s  in sensor of I1 I No 
I I I 

Fault introduced 

Clog in branch with P2 1 0.30 Iclog in branch with P2 I yes 
I I I 

Fault diagnosed 

Leak in R1 

Clog in branch with Vl 

Leak in R1 

Clog in branch with V1 

Clog in branch with V4 

Clog in branch with P1 

l~ncreased friction in DC motor of P1 / 0.30 

Correcl 

Yes 

Yes 

0.30 

0.30 

Clog in branch with V5 0.30 
I 

0.30 

0.30 

Bias in sensor of hl  1 0.30 
I 

Bias in sensor of h2 

Bias in sensor of h3 

Clog in branch with V4 

Clog in branch with Pl 

Bias in sensor of Q1 1 0.30 
I 

Yes 

Yes 

l ~ i a s  in sensor of d ~ 1  1 0.30 

Bias in sensor of I1 0.30 
I 

Bias in sensor of U1 1 0.30 
I 

Bias in sensor of 4 3  0.30 

Bias in sensor of dp2 0.30 

Bias in sensor of I2 0.30 

Bias in sensor of U2 0.30 

Bias in sensor of wl  0.30 

Increased friction in DC motor of P1 Yes 

Clog in branch with V5 Yes 

Bias in sensor of hl  Yes 

Bias in sensor of h2 Yes 

Bias in sensor of h3 Yes 

Bias in sensor of Q1 Yes 

Bias in sensor of dpl Yes 

Bias in sensor of I1 Yes 

Bias in sensor of U1 Yes 

Clog in branch with V5 No 

Bias in sensor of dp2 Yes 

Bias in sensor of I2 Yes 

Bias in sensor of U2 

Bias in sensor of wl  

l~orrect Rate I 1 90% 
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Table 6.7: Testing results for faults at intensity of 0.5 

Clog in branch with P1 1 0.50 1 ~ 1 0 ~  in branch with P1 1 yes 

Fault introduced 

Clog in branch with V4 

Bias in sensor of dpl 0.50 Bias in sensor of dpl Yes 
I I I 

Fault diagnosed 

Leak in R1 

Clog in branch with V1 

Clog in branch with V2 

Leak in R1 

Clog in branch with V1 

Clog in branch with V2 

Correct 

Yes 

Yes 

Yes 

0.50 

0.50 

0.50 

I I I 
0.50 

Bias in sensor of I1 

Bias in sensor of U1 

Bias in sensor of 43 

Bias in sensor of dp2 

Bias in sensor of I2 

Bias in sensor of U2 

Bias in sensor of w 1 

Clog in branch with V4 Yes 

0.50 

0.50 

0.50 

0.50 

0.50 

0.50 

0.50 

Bias in sensor of I1 

Bias in sensor of U1 

Bias in sensor of 43 

Bias in sensor of dp2 

Bias in sensor of I2 

Bias in sensor of U2 

Bias in sensor of wl 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
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Table 6.8: Testing results for faults at  intensity of 0.6 

Bias in sensor of Q1 1 0.60 l ~ i a s  in sensor of Q1 I yes 
I I I 

Bias in sensor of h3 1 0.60 IBias in sensor of h3 

Bias in sensor of dpl 1 0.60 IBias in sensor of dpl I yes 
I I I I 

Yes 
I I I 

Bias in sensor of 4 3  1 0.60 lclog in branch with V2 No 
I I I 

IBias in sensor of I1 

Bias in sensor of U1 

Bias in sensor of dp2 1 0.60 IBias in sensor of dp2 I yes 
I I I 

Bias in sensor of I2 1 0.60 IBias in sensor of I2 I yes 
I I I 

0.60 

0.60 

Bias in sensor of U2 1 0.60 IBias in sensor of U2 I yes 
I I I 

Bias in sensor of wl 1 0.60 ]Bias in sensor of w 1 1 yes 
I 

Bias in sensor of I1 

Bias in sensor of U1 

Correct Rate 1 90% 

Yes 

Yes 
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0: normal 

1: leak R1: 0.1 2: clog v1: 0.1 

5: clog P1 : 0.1 6: clog P2: 0.1 

9: bias h i  : 0.1 10: bias h2: 0.1 

14: bias 11: 0.1 

18: bias 12: 0.1 

3: clog v2: 0.1 4: clog v4 : 0.1 

8: clog V5 : 0.1 

12: bias Q1: 0.1 

16: bias Q3: 0.1 

20: bias w l :  0.1 

Figure 6.10: Fault representations in the SOFM lattice 
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0: normal 

2: clog V1: 0.5 3: clog V2: 0.5 4: clog V4 : 0.5 

6: clog P2: 0.5 8: clog V5 : 0.5 

10: bias h2: 0.5 11 1 bias h3: 0.5 12: bias Q1: 0.5 

14: bias I1 = 0.5 15: bias U1: 0.5 16: bias Q3: 0.5 

19: bias U2: 0.5 20: bias w l  : 0.5 

Figure 6.11: Fault representations in the SOFM lattice 
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Conclusions 

An automated framework for statistical multivariate process monitoring and fault 

diagnosis based on nonlinear principal component analysis (NLPCA) has been devel- 

oped. Unlike most analytical model-based methods which need accurate mathematical 

models of the system, multivariate statistical methods are much easier to develop be- 

cause of the availability of routine operating data. Also multivariate methods can 

handle a large number of measured variables. The approach addresses the linearity 

limitation of most statistical methods by assuming the hidden features are nonlinear 

functions of the measured observations. The NLPCA neural network and its dynamic 

extension are techniques that make this approach computationally attractive. The 

approach also enables the automation of NLPCA-based fault identification where the 

manual interpretation of the nonlinear principal component patterns is replaced by 

automated interpretation based on SOFM. These advantages were illustrated with an 

industrial actuator benchmark as well as an three-tank benchmark system. The con- 

cepts and techniques used in this work can also be extended to design large data-based 

intelligence systems. 

Although the NLPCA-SOFM-based fault diagnosis system has many advantages 
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over other methods, there are some limitations. One of the key assumptions made in 

building the NLPCA model is that the data from the normal operating region of the 

process have a Gaussian distribution. This condition is often not true in practical in- 

dustrial processes where the data follow non-Gaussian distribution. In such situations, 

the NLPCA model could lead to over-generalization, and as a result, data pertaining 

to some faults could be declared as normal. One way to  overcome this problem is 

to  use fuzzy clustering methods [63] to identify the number of Gaussians and their 

centers. NLPCA is then applied on each of the Gaussians. Another limitation of this 

system is that the fault identification method based on SOFM could fail to identify 

different faults that change the measured variables in the same direction. This is due 

to  the qualitative nature of the SOFM-based diagnosis and may be overcome by using 

knowledge of the process. 

Future improvements to the NLPCA-SOFM-based fault diagnosis system could 

be made in several directions. One direction is to  integrate the qualitative knowledge 

of the process in the system, since the qualitative knowledge of the process could be 

obtained from various channels in most situations. They could be applied in a proper 

way to improve the system's diagnosing ability. For example, the cause-effect relation 

of the process could be useful in choosing measured variables for the NLPCA model 

and could also be useful in fault diagnosis. Another direction is to  incorporate more 

temporal information in the fault diagnosis system. Sequence detection techniques 

such as Markov models and dynamic modelling techniques such as recurrent neural 

networks may improve the fault detection ability of the system. Other improvements 

could also be made by using fuzzy logic for multiple fault diagnosis. 
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