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Abstract 

The complete graph of order n, denoted Kn, is the graph consisting of n vertices and 

(;) edges, one for each unordered pair of vertices. For even n,  the graph Kn - I is 
obtained from K, by removal of n/2 pairwise disjoint edges. A 2-factor of a graph 

G = (V, E) is a subset F C E such that each vertex of G is incident with exactly 2 

edges in F. Each connected component of the subgraph induced by F is a cycle of 

length at  least three in G. The shape of F is the multiset (a;"', . . . , aLk ) of lengths of 

these cycles. (The symbol a? expresses that F has exactly ni cycles of length ai.) 

The Obemolfach problem OP(a;"', . . . , is to determine whether the edges of 

K, or K, - I can be partitioned into isomorphic 2-factors, each having a given shape 

. . . , aLk)), where n = C nisi. This problem arises in design problems such as the 

specification of tournaments and balanced circular arrangements. 

The Oberwolfach problem has been solved in the uniform case (i.e., when k = 1). 

It is known that in this case the problem has a solution except when a1 = 3 and 

nl = 2 or nl = 4. Much less is known when k > 1. 

In this thesis, we focus on the cases OP(a;"', a t2 )  and OP(3, a;2, a:3). In particular, 

n-e prove that OP(a,  b) has a solution for all odd a and b, a # b. We also prove that 

OP(an,  bn) has a solution for all odd a,  b and n such that n # 7,11 and 5 5 a < b. 
\Ve also prove that 0 P(3,4,  n - 7) and 0 P(3 ,6 ,  n - 9) have solutions for all n not 

congruent to one modulo 4. For n = 4k, we prove that the Oberwolfach problem has 

a solution in the more general case OP(3, a, n - 3 - a). 

1-2 graceful labeling of a graph on n vertices with k edges is an injective mapping 

from the vertex set of the graph to the set {1,2,3, .  . . , k + 1) such that {lu - vl : 

(u.1. )  E E) = { l ,2 ,3  , . . . ,  k ) .  



Throughout the thesis, we prove and use various results on graceful labelings. In 

particular, we prove that, for an arbitrary label 1 5 a 5 n, a path on n vertices has 

a graceful labeling with one endpoint labeled a. We also conjecture on the necessary 

and sufficient conditions for the existence of a graceful labeling of a path on n vertices 

with the endpoints labeled a and b. 
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Chapter 1 

Introduction 

1.1 Definitions and Notation 

In this section, we introduce the definitions and notation used throughout this thesis. 

For a graph G, V(G) and E(G) shall denote the sets of vertices and edges of G, 

respectively. H is a subgraph of G if H is a graph, V(H) is a subset of V(G)  and 

E(H)  is a subset of E(G). H will be called a factor of G if it is a subgraph of G with 

l ' (H)  = V(G). A graph whose vertices all have the same degree r is r-regular. An 

T-regular factor of a graph is its r-factor. 

In our graphs, we will not allow loops, i.e., edges emanating from and terminating 

at the same vertex. We will not allow directed edges either. 

A multigraph is a graph with at least one pair of distinct edges which have identical 

endpoints. Except where we specify otherwise explicitly, all graphs that we discuss 

are not multigraphs. 

If H is a subgraph of G, then G - H is the graph with V(G - H) = V(G) and 

with E ( G  - H) = E(G) \ E(H). 

\Ve say that two graphs GI and G2 are isomorphic if there exists a bijection i from 

l ' (GI )  onto V(G2) such that (i(u), i(v)) is an edge in G2 if and only if (u, v)  is an 

edge in GI.  If GI and G2 are multigraphs, we will further require that the number 

of edges in GI connecting u with v be same as the number of edges in G2 connecting 

Z ( U )  with i (v ) .  
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For a given n, K, shall denote the complete graph on n vertices. When n is even, 

we will denote by K, -I the graph K, with a 1-factor removed (this graph is defined 

11 
i / 
I 

I I 
uniquely up to isomorphism). En is a graph on n vertices with no edges. XKn is a 1 

1 

multigraph in which each pair of vertices is connected by exactly X distinct edges. I 

A factorization of a graph G is a list of factors of G which form a partition I 

of E(G). If HI, Hz, . . . , H, are graphs, then OP(G; HI, Hz, . . . , H,) denotes the 

problem of deciding whether G can be factored into m factors such that the ith factor 

is isomorphic to Hi for 1 5 i 5 m. The symbol "OP" abbreviates "Oberwolfach 

Problem". If all H, are pairwise isomorphic, we write OP(G; H )  instead. Since, for a 
I 

given G and H ,  there can be at most one m such that G decomposes into m factors 

each of which is isomorphic to H ,  we do not need to include a reference to m in the 

notation. 

A 2-factorization of G is its decomposition into subgraphs each of which is a 2- 

factor of G. Obviously, a 2-factor is comprised of disjoint cycles. If H consists of n, 

cycles of length ai (i = 1,.  . . , s), then we may write OP(G; a:', a;2,. . . , a:.) instead 

of OP(G; H).  Furthermore, we will usually omit the superscripts that are equal to 1. 

Finally, if G is equal to K, (for odd n) or K, - I (for even n), then we will usually 

omit G in the notation. Thus, for example, the problem of deciding whether K19 can 

be factored into 2-factors, each of which consists of a 7-cycle and a 12-cycle is denoted 

OP(7,12). 

In our constructions, we will make frequent use of permutations of vertices of the 

complete graph K, or the complete graph less a 1-factor, K, - I. In particular, we 

will frequently use the permutation a, described below (when no confusion results, 

we may write a instead of a,). 

Let t = [?I. We will denote the vertices of Kn as al ,  a2,. . . ,a t ,  61, b2,. . . ,bt, cl. 

For n even, we will denote the remaining vertex as c2. Then 

a, induces a permutation of the edge-set of K,. Note that we omit cycles of length 

one when describing a permutation. We will refer to that permutation as a, also. 

Obviously, if H is a subgraph of Kn, then the image a,(H) of H is a subgraph of Kn 
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Figure 1.1: The action of a, on V(K,), n even 

isomorphic to H. 

We will denote the two non-trivial vertex-orbits induced by a, as follows: 

A = {allaz, . .  . ,at), 

B = (b l lb2 , .  . - , b t ) ,  

The additional vertex orbits are trivial: {cl) and (when n is even) {c2) We will 

simply write cl and c2 when no confusion may arise. 

Further, we will denote the edge-orbits induced by a, as follows: 

1. ABi is the orbit containing the edge (al, bl+i) for 0 5 i 5 t - 1, 

2. Ai is the orbit containing the edge (al, ~ 1 , ~ )  for 1 5 i 5 I$], 

3. Bi is the orbit containing the edge (bl, bl+,) for 1 5 i 5 L f J ,  

4. AC1 is the orbit containing the edge (al, cl). In addition, when n is even, AC2 

is the orbit containing the edge (al, c2). 

5. BCl is the orbit containing the edge (bl, cl). In addition, when n is even, BC2 

is the orbit containing the edge (bl, c2). 

6. Co is the orbit containing the edge (cl, c2) (this orbit exists only when n is even). 

It is readily seen that all edge orbits have size t except that, when n is even, the 

orbit Co has size 1 and, when t is even, the orbits At and Bt  have size t / 2  each. 
2 2 

Further, we notice that in case n G 2 (mod 4) (i.e., when both n and t are even), 

the orbits Co, At ,  BL induce a one-factor in K,. 
2 2 

The wreath product GI H is constructed as follows: Replace each vertex of G with a 

copy of H. In addition, connect two vertices in different copies of H if and only if the 
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1.2 History and Motivation 

The Oberwolfach Problem is due to Ringel [ll]. As originally posed, the problem asks 

whether or not a complete graph on an odd number of vertices can be partitioned 

into identical subgraphs, each isomorphic to a given 2-factor. 

Since then, the problem has been generalized and studied by a number of authors. 

In its most general form in the graph context, the (undirected) Oberwolfach Problem 

is the problem of deciding whether, given multigraphs G, HI, H2,. . . , H,, G can be 

partitioned into m factors isomorphic to Hi, H2, . . . , H,, respectively. 

In addition, a number of related problems have been studied by many authors. 

For example, Piotrowski [21] solves the bipartite uniform length cycle analogue of 

the Oberwolfach Problem. More recently, Liu [19, 201 has considered the complete 

multipartite case, again with uniform cycle lengths. 

The so-called Hamilton- Waterloo Problem (introduced in [9], see also [2]) asks for 

a 2-factorization of the complete graph Kn, n odd, in which r of the 2-factors are 

isomorphic to a given 2-factor Fl, and s of the 2-factors are isomorphic to a given 

2-factor F2, where r + s = 

The Alspach Problem asks for a decomposition of Kn or Kn -I into cycles of given 

lengths cl, c2, CQ, . . . , c,, where C ci equals the total number of edges of Kn or Kn - I. 

The uniform cycle case has been settled (see [5, 14, 23, 24, 251). In the non-uniform 

case, it is known (see [3]) that when all cycles have lengths three or five, then the 

decomposition exists as long as the trivial necessary conditions are satisfied. 

In the thesis, we deal exclusively with the Oberwolfach Problem. 

We will interchangeably use the terms "0 P(G; Hi, H2, . . . , H,) has a solution" 

and "OP(G; HI, H2, . . . , Hm) exists". Further, we shall use the term "we construct 

OP(G; HI, H2, . . . , H,)" to mean that we construct a factorization solving OP(G; 
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H I , H ~ ,  . - .  H m ) .  
In its general form, the Oberwolfach Problem appears to  be very difficult. In this 

thesis, we will concentrate on the case when G is either a complete graph on n vertices 

(when n is odd) or a complete graph on n vertices less a one-factor (when n is even), 

and when all Hi are identical collections of cycles. Using our terminology, we will 

concentrate on the problem 0 P(a;L1, a;', . . . , a:.). 
Even this problem is difficult and only a partial progress has so far been made 

towards its solution. In this section, we will summarize the most important results 

found to date. We will then outline the methods and results presented in the later 

chapters. 

The "uniform" case, i.e., the case OP(ak), has been completely settled. 

Theorem 1.2.1 ([6, 7, 151) For n 2 3, the Op(ak)  has a solution whenever a . k  = 

n, except that 0P(32)  and 0P(34)  do not have solutions. 

The condition that a . k  = n is the obvious necessary condition in the above 

theorem. The theorem says that with the exception of 0P(32)  and 0P(34) (which 

are known to not have solutions [16]), the necessary condition is also sufficient. 

The author extended this result to multigraphs: 

Theorem 1.2.2 ([12]) Let X 2 1 and let G be XKn (or XKn minus a 1-factor when 

n is even and X is odd). Let further a  > 3 and m 2 1 be such that a .  m = n. Then 

OP(G; am) has a solution if and only if none of the following are satisfied: 

1. X = 2 (mod 4 ) , a =  3 , m =  2, 

2. X is odd, a = 3, m = 2, or 

3. A =  1 , a = 3 , m = 4 .  

Although Theorem 1.2.1 and methods used to prove it provide a powerful basis 

for decomposition of complete graphs into 2-factors, so far only limited progress has 

been made in generalizing the results for 2-factors with non-uniform length cycles. 

Alspach [4] provides a good summary of known results. These results, together 

with more recent results [8, 131, provide the following theorem in the non-uniform 

cycle length case: 
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Theorem 1.2.3 ([8, 13, 16, 17, 181) The following Oberwolfach problems all have 

solutions: 

1. OP(3, a) for all odd a > 5, 

2. OP(4, a) for all even a > 4, 

3. OP(a, a + 2) for all a > 3, 

4. OP(a,  a + 1) for all a > 3, a # 4, 

5. OP(3,8a - 2) for all a > 1, 

6. OP(3,4a, 4a) for all a > 1, 

7. OP(2a+ 1,2a + 1 ,2a+  2) for all a > 1, 

8. OP(a, a ,  2[a/21 + 2c) for all a > 3 and each c = 0,2,3, .  . ., 
9. OP(2a+ 1,4n) for all a > 1 and all n > 1, 

10. OP(2a + 1, (4~)" )  for all a > 1 and all n > 1, and 

11. 0P(a;f.,a2) for all n 2 1, a1 > 3, a2 > 4aln - 1. 

All of the results in Theorem 1.2.3 deal with the cases when only two cycle lengths 

are present, i.e., with cases of the form OP(an, bm). Furthermore, with the exception 

of cases 8 and 11, either one of the cycle lengths is a constant, or the two cycle lengths 

are both based on the same parameter. 

Cases 8 and 11 are the only two cases which allow for two cycle lengths based on 

two parameters. However, even in these two cases, the two cycle lengths must satisfy 

restrictive inequalities. 

In this thesis, we focus on cases with two independent cycle lengths. In Chapter 

2. we prove that OP(a, b) has a solution for all distinct odd a and b. 

In Chapter 3 we look at the problem of the form OP(3, a, b). We first expand on 

the techniques introduced in Chapter 2 to prove that OP(3,4,  s- 7) and OP(3,6, s-9) 

have solutions for all s which are not of the form s = 4k + 1. 

\lk then again look at the case with two independent cycle lengths, i.e., the case 

0 P(3. a.  b). We succeed in solving this case for 3 + a + b = 0 (mod 4). 

In Chapter 4 we return to the case with two cycle lengths, this time in the con- 

test of OP(an, bn). We introduce additional techniques that enable us to tackle the 

problem of having more than 2 cycles in each 2-factor. We succeed in proving that, 
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for sufficiently large odd a, b, and n, OP(an, bn) has a solution. 

Finally, in Chapter 5 we introduce and discuss a conjecture on graceful labelings 

of paths. 

Throughout the thesis, we frequently encounter situations where small cases have 

to be treated separately. Except where it is easy to check the small cases either 

manually or with a computer search using a simple exhaustive search algorithm, we 

cover small case proofs in the thesis. 



Chapter 2 

Two Cycles 

2.1 Outline of the Construction 

In this chapter, we will solve the Oberwolfach problem O P ( a ,  b) for odd a and b. 

In particular, we will prove that 0 P ( a ,  b) has a solution whenever a and b are odd 

integers satisfying a,  b 3 3 and a # b. 

In this section, we outline the constructions that we use in this chapter. Let 

n = a + b. We consider Kn with its vertices labeled as in Chapter 1. Also, t and a 

will be as in Chapter 1. 

The following obvious lemma provides the basis for constructing Oberwolfach 

Problem solutions through a construction of a base 2-factor. 

Lemma 2.1.1 Let n be even and let F be a 2-factor of Kn such that 

(i)  F intersects only those edge-orbits of a that have size t ,  including each of the 

orbits Al ,  A2, . . . , ALqI7 Bl, B2, .  . . , B,?,, ACl, AC2, BCl and BC2, and 

(ii) F does not intersect any of the edge-orbits of a in more than one edge. 

Then F, Fa, F a 2 , .  . . , Fat-' form a 2-factorization of a subgraph of Kn isomorphic 

to Ii, - I .  Further, all 2-factors i n  the 2-factorization are isomorphic to  F. 

Ii'hen F consists of 2 cycles, one with length a and the other with length b, then 

F. Fa. F a 2 , .  . . , Fat-' solve O P ( a ,  b). Therefore, all that remains is to construct an 

appropriate F. 
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We construct F as a union of a number of paths and edges. We start with a path 

with t edges. The path has the form ai, bj, ai+1, bj-1, ai+2, bj-P, . . - (01 ai, bj, ai-1, bjcl, 

ai-2, bj+2,.. . ). Figure 2.1 shows an example with t = 20, i = 1 and j = 15. In that 

figure, as in all figures throughout the thesis, the left edge of a vertex label is aligned 

with the corresponding vertex. For example, label 'al = ai' corresponds to the fist 

vertex in the bottom vertex row 

Figure 2.1: Construction of F - initial path 

This path intersects all of the edge-orbits of a of the form ABk, with each orbit 

intersected exactly once. We want to break this path into two subpaths PI and P2, 

each of odd length. This can be done by a removal of an edge from the path when 

t is odd. When t is even, the removal of an edge results in two paths - one of an 

even length, the other of an odd length. We then append an extra edge to one of the 

endpoints of the even-length path to again create two odd-length paths. We choose 

the extra edge so that it is in the same orbit ABk as the edge that was removed from 

the path. This ensures that the union of PI and P2 intersects each of the edge-orbits 

of the form ABk in at most one edge (see Figure 2.2). 

*----. Deleted edge New edge 

Figure 2.2: Construction of F - Pl and P2 when t is even 

We now have two paths, each with one endpoint in A and the other in B. Also, 

these paths use up about one half of the vertices in A and B each. We still need to 
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use the remaining vertices in A and B as well as the edge orbits of the form Ai and 

Bi . 

We will use up these vertices and edge-orbits by creating 2  more paths - one in 

orbit A and the other in orbit B. These paths will have lengths approximately t / 2  

each. We will then attach these paths to the paths PI and P2. 

For a simple example, consider the construction in Figure 2.2 (here, t is even). We 

will want a path on t / 2  vertices bj+l1 bjf2, bj+3,. . . , bt, bl, b2,. . . , bj+2 such that its 

edges intersect each of the edge-orbits B1, B2, .  . . , Bt12-1 exactly once and such that 

bl is one of its endpoints. The existence of such a path can be seen to be equivalent to 

the existence of a graceful labeling of a path on t / 2  vertices, with one endpoint given 

label t + 1 - j. We will prove that such graceful labelings exist. 

While this example is particularly simple, it describes the approach we will use to 

construct the paths in A and B. However, in order to connect these paths with Pl 

and P2 and to ensure that all lengths work as desired, we will need additional graceful 

labeling results. We prove these results in Section 2.2. With the help of these results, 

we will be able to construct the desired paths. 

The new paths will connect to the existing paths Pl and P2 to create two paths of 

lengths a - 2  and b - 2. Again, these paths will each have one endpoint in A and the 

other in B. We will connect one of the paths to vertex cl and the other to c2. This 

creates F (and uses up the edge orbits ACl, BC1, AC2 and BC2). 

While this description does not delve in the detail of constructing paths in A and 

B and connecting them to Pl and P2, it gives the general idea of the construction. 

In order to cover all cases OP(a, b) for odd a and b, we have to be able to control 

the length of the cycles we create. The construction allows us to control this length 

in two ways. 

First, we are more or less free to choose the edge that is removed when PI and P2 

are created, i.e., we can control the relative length of Pl and P2. 

Second, the two paths that are constructed in the orbits A and B may be connected 

to either the same path Pi or, alternatively, one path may be connected to Pl and 

the other to P2. The former approach will cover the cases of the form OP(m, n - m) 

where m < 7214. The latter approach will provide solution to the cases OP(m, n - m) 
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with n/4 < m < n/2. 

The actual construction in Section 2.3 will also vary depending on the congruence 

class of n modulo 8. 

2.2 Graceful Labelings 

Let G be a graph with n vertices and with k edges. A graceful labeling of G is an 

injection from the vertices of G to  {1,2,. . . , k + 1) such that { lu - vl : (u,v) E 

E(G)} = {1,2,. .., k}. 

Graceful labelings were first introduced by Rosa [22] who called them bvaluations. 

Golomb [lo] first introduced the term graceful labeling. It is easily seen that every 

path has a graceful labeling. Less is known about the structure of graceful labelings 

on paths. 

We need the following lemma to construct the paths that we will use in the base 

2-factor F in our construction of OP(a,  b). To see how Lemma 2.2.1 might be used, 

note that a graceful labeling of a path on s vertices, s < (n - 1)/2, can be used to 

construct a path with vertices ai, ai+l, . . . , ai+S-l (or bi, bi+1, . . . bi+s-l) such that the 

edges of the path intersect each of the orbits A1 , A2, . . . , As-1 (or B1, B2, . . . , BS-l) 

exactly once. 

Lemma 2.2.1 For every n and m such that 1 < m < n, there is a graceful labeling 

of the path on n vertices in which one of the endpoints is assigned label m. 

This lemma is easy to  believe. In fact, we conjecture in Chapter 5 that a stronger 

result is true. However, in spite of its apparent simplicity, we were unable to  locate a 

proof of Lemma 2.2.1. Abrham [I] proves the result for all m when n is odd and for 

all m 5 (n - 2)/4 (which, due to symmetry, implies the result for m 2 (3n + 6)/4) 

when n is even. In fact, Abrham proves a stronger result for these pairs of n and 

m. However, his methods do not provide an obvious extension to cover the remaining 

cases in Lemma 2.2.1. Simoson and Simoson [26] conjecture that Lemma 2.2.1 is true. 

In order to  prove Lemma 2.2.1, we identify the vertices of a path with their labels. 

We then need to prove that there is a path on the vertex set {1,2,3, . . . , n)  such that 
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one of the endpoints is m and such that {lu-vl : (u, v) E E(G)) = {1,2,3,. . . , n- I). 

We will build a gracefully labeled path one edge at a time, starting with the longest 

edge (i.e., the edge with the maximum absolute value of the difference between the 

labels of its endpoints) and working our way down to the shortest edge. We will make 

sure that, at  each step, the graph constructed up to that point will satisfy certain 

invariant conditions that will enable us to continue the construction. 

Given n, and given s, t and k satisfying 0 < s < k < t 5 n + 1, consider the 

following sets of graphs. 

1. s:'~ (k) is the set of all graphs G such that 

(a) G is a path with the vertex set equal to {1,2, . . . , s) u {k) u {t, t + 1, . . . , n), 

(b) one endpoint of G is m and the other endpoint is k (G may consist of a 

single vertex, in which case m = k), and 

(c) {li - jl : (i, j) E E(G)) = {t - s - 1 , t  - s , t  - s + 1,. . . , n  - 1). 

2. sipt(u; k) is the set of all graphs G such that 

(a) G is a union of two vertex-disjoint paths PI and P2 (P2 may consist of a 

single vertex, PI contains at least one edge) with the vertex set of G equal 

to {1,2, . . . , s) U {k) U {t, t + 1, . . . , n), 

(b) one endpoint of Pl is u, 

(c) one endpoint of P2 is m, and the other is k, 

(d) {li - jl : (i, j) E E(G)) = {t - s , t  - s +  1 , t  - s + 2  , . . .  , n -  I), and 

(e) if a is the other endpoint of PI, then either a 5 s and a + (t - s - 1) > s 

o r a > t a n d a - ( t - s - l ) < t .  

3. S;~~(U, v; w; k) is the set of all graphs G such that 

(a) G is a union of three vertex-disjoint paths PI, P2 and P3 (P3 may consist of 

a single vertex, Pl and P 2  contain at least one edge each) with the vertex 

set of G equal to {1,2,. . . , s) U {k) U {t, t + 1, .  . . , n), 
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(b) one endpoint of PI is w, 

(c) the endpoints of P2 are u and v, 

(d) the endpoints of P3 are m and k, 

(e) {li - jl : (i, j) E E(G)) = {t - s + 1 , t  - s + 2, t  - s +  3 , .  . . , n  - I), and 

( f )  if a is the other endpoint of PI, then either a < s and a + (t  - s) > s or 

a > t and a - (t - s) < t .  

We will further partition the set s ~ ' ~ ( u ;  k) into two subsets depending on a. The 

set siyt(u; k; -) consists of all those graphs in s iZ(u;  k) for which a 5 s. Similarly, 

S,Sjt(u; k; +) contains those graphs where a 2 t. 
We use the same rule to partition each s,"'~(u, v; w; k) into s ~ ' ~ ( u ,  v; w; k; -) and 

s ~ ' ~ ( u ,  V ;  W; k; +). 
We denote by SSJ the union of all ssyt (k) ), silt (u; k) and s,"?~(u, v; w; k). 

We say that G is interesting if, for some s and t ,  G is either in s:'~ (k) , or in s,"'~ (u; k) 

for u E {s,t), or in S ~ ~ ~ ( U , ~ ; W ;  k) for (u,v;  W) E {(s - l , s ; t ) ,  (S - 1, t ;  s), (s, t ;  s - 

1): (s, t ;  t + 1), (s, t + 1; t) ,  (t, t + 1; s)). 

We say that G is very interesting if it is interesting and it does not belong to 

s iv t ( s , t ; t  + 1;k;-)  with a + t - s = s + 2 and with s + 2 < k < t - 2, nor to 

~ i ' ~ ( s , t ; s  - 1; k;+) with a - (t - s) = t - 2 and with t - 2 > k > s + 2. Finally, we 

say that a very interesting G is m-very interesting if m is as in the above definitions. 

\Ye now prove the following lemma. 

Lemma 2.2.2 For a given n, let G E SS't be m-ve ry interesting with t - s 2 6. Then 

G extends to a gracefully labeled path on n vertices with one endpoint labeled m. 

Proof. From the definition of S"T~, we note that "everything important" happens in 

the  vertices ranging from s - 1 to t + 1 and that, given s and t,  we may ignore n. 

It is quite tedious but still possible to manually check that the lemma holds true 

for 6 5 t - s 5 8 (it is easy to check this on a computer). 

Suppose the lemma is false and choose a counterexample with the smallest t - S. 

Tables 2.1-2.3 show how to extend any m-very interesting graph to another m-very 
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Table 2.1: Extension of ~ ; ' ~ ( k )  

Case I k I Append Edges I Result 

interesting graph (due to symmetry, we omitted the cases of the form S;~(U; k; +) and 

s ~ ' ~ ( u ,  v; W ;  k; +) from the tables). 

Note that some of the cases in the table lead to a graph of the form s;'~"(s', t'; t'+ 

1; k) or of the form S;~~'(S', t'; s' - 1; k). Such graphs could potentially not be m-very 

interesting. However, a review of our construction in these cases confirms that none 

of the constructed graphs fall into the non-very interesting category. The cases that 

result in graphs of a different form are obviously very interesting too. 

Also note that we need t - s 2 9 in order for all constructions in the tables 

to work. In particular, t - s 2 9 is required for the case s,"'~(s, t; t + 1; k; -) with 

a +  (t - s )  = s + 2  and with k = t - 2. 

The extension patterns provided in the tables reduce t - s by anywhere between 

0 and 3. Also, if the first extension does not reduce t - s, then the second extension 

does. The extended graph G' E ~ " 7 ~ '  is then m-very interesting with t' - s' 2 6. 

Therefore, by the minimality of t - s, G' extends further to a graceful labeling with 

one endpoint labeled m, which gives a contradiction. rn 
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Proof of Lemma 2.2.1. The lemma is easily checked for n < 5. For n 2 5, note 

that the graph consisting of the single vertex m is m-very interesting with t - s = 

(n  + 1) - 0 = n + 1 2 6. The result now follows by Lemma 2.2.2.. 

The following describes a special gracefully labeled union of paths in K, which 

will be used in a later construction. 

Lemma 2.2.3 Let n 2 4 and let V = {1,2,. . . , n ) .  Let further {u, v, w) = {1,2,3). 

Then, unless n = 4 and w = 1, or n = 5 and w = 2, there exist paths P,, P, and P, 

(with some of the paths possibly consisting of a single vertex) such that 

(2) V(PU) u V(PV) u V(PW) = v, 
(ii) u, v and w are endpoints of P,, Pv and P,, respectively, 

(iii) P,, Pv and P, are disjoint except that P, and one of P, and Pv share a 

common endpoint distinct from u, v and w, 

(iv) {la - bl : (a ,  b) E E(Pu) U E(Pv) U E(Pw)) = {1,2, . . . , n - 2) as multisets. 

Proof. We will prove the statement by induction on n .  Cases n = 4,5 and 6 are easy 

to check, so we will assume that n 2 7. 

Case w = 1: By symmetry, we may assume that u = 2 and v = 3. 

(a) We will start building P,, P, and Pw as follows: set wl = n - 1, u1 = n - 2, vl = 

n, and let P,, P, and P, contain the edges uul, vvl and wwl, respectively. The lengths 

of these edges are n - 4, n - 3 and n - 2, respectively. These can be extended to paths 

P,, Pv and P, if and only if the lemma holds for n - 3 (with w = 2). To see this, note 

that the n - 3 vertices to which the lemma is applied are the vertices 4,5,6, . . . , n, 

that wl plays the role of w, and that one will think of the vertices as being labeled 

in the opposite direction, i.e., the vertex wl = n - 1 is viewed as having label 2. See 

Figure 2.3 for a visual description of the construction. 

(b) Alternatively, we may start by building P,, Pv and P, as follows: wl = n - 

2, ul = n and vl = n - 1, and, as before, let the edges uul, vvl and wwl be in P,, Pv 

and P,, respectively. Paths P,, P, and P, can now be constructed if and only if the 

lemma holds for n - 3 (this time with w = 3). 

Note that we only need this alternative construction when n = 8, as in that case 

there are no required paths for n - 3 = 5 with w = 2. 
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Figure 2.3: Lemma 2.2.3 

Therefore, we have proved that if the lemma is true for n - 3, then it is also true 

for n with w = 1. 

Cases w = 2 and w = 3 use similar arguments as Case w = 1 and we omit their 

proofs. 

Results from the above three cases, together with the fact that the lemma holds 

true when 4 < n < 6, imply the lemma in general. 

The following lemma also has a graceful labeling flavour. It can be used to con- 

struct special paths in either the orbit A or the orbit B. 

Lemma 2.2.4 Let V = V(K,) = {1,2, . . . , s), where s 2 4, and m be an integer 

satisfying 0 < m 5 s - 3. Then there is st E V and a path P in K, such that 

(2) V(P)  = v \ {st), 

(ii) {la - bj : (a, b) E E (P) )  = {1,2,. . . , s - 1) \ {s' + m), and 

(iii) one of the endpoints of P is 1. 

Proof. The proof will be by induction on s. It can be checked that the lemma holds 

true when s < 7. So we will assume s 2 8. If m 5 s - 6, then we start constructing 

P by using edges (1, s) and (s, 2). This path can be completed so as to satisfy the 

lemma if and only if the lemma holds with s - 2 in place of s and with m + 1 in place 

of m (here, we apply the induction hypothesis to the vertex set {2,3,4,. . . , s - 1) 

which we view as being relabeled by subtracting 1 from each label). Since m < s - 6, 

we have 0 < m + 1 5 (s - 2) - 3, and thus the induction hypothesis applies. 

Therefore, we may assume that m > s - 6. Since m < s - 3, we have rn E 

( 5  - 5 .  s - 4, s - 3). 
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Case 1.  m = s - 3. We set st = 2. Hence st + m = s - 1. The path P will start 

with the edge ( 1 ,  s - 1 ) .  Proving that this may be extended to P as required is now 

equivalent to showing that one can find a path P' with V(P' )  = ( 3 , 4 , .  . . , s } ,  with 

one endvertex equal to s - 1, and with { l a  - b( : (a ,  b )  E E ( P 1 ) )  = { 1 , 2 , .  . . , s - 3 ) .  

This is equivalent to the existence of a graceful labeling of a path on s - 2 vertices 

such that one of the endpoints has label 2; this exists by Lemma 2.2.1. 

Case 2. m = s - 4 .  The procedure is similar to Case 1. We again set s' = 2. 

Hence, this time s1 + m = s - 2. The path P will start with the edge ( 1 ,  s) .  Proving 

that this may be extended to P as required is now equivalent to showing that there 

is a path P' with V(P') = ( 3 , 4 ,  . . . , s ) ,  with one endvertex equal to s, and with 

{ la - b( : ( a ,  b) E E (PI)) = {1,2, . . . , s - 3 ) .  This is then equivalent to the existence 

of a graceful labeling of a path on s - 2 vertices such that one of the endpoints is 

given label 1; this again exists by Lemma 2.2.1.  

Case 3. m = s - 5. We now set s' = 3 (thus s1 + m = s - 2). The path P will 

start with the edge (1 ,  s) , and will also use the edges ( 2 ,  s - I ) ,  and ( 2 ,  s - 2 ) .  We 

observe that proving that these three edges extend to a P as required is equivalent to 

Lemma 2.2.3 with n = s - 3 2 5 and w = 1. For the purposes of Lemma 2.2.3,  one 

uses vertices 4 , 5 , 6 , .  . . , s and views them as being labeled in the opposite direction 

(vertex s is viewed as being relabeled with 1, vertex s - 1 is relabeled 2, and so on). 

Figure 2.4 illustrates this case. 

s - 1  

Figure 2.4: Lemma 2.2.4 
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2.3 Construction of OP(a, b) 

Lemma 2.3.1 Let n 2 18, n - 2 (mod 8) and let m be an odd integer such that 

n/4 < m < n/2. Then there exists an OP(m, n - m) 

Proof. In thiscasewe haven = 2t+2 and 41t for some t 2 8. For s = 1,3,5, .  . ., f -1, 

we define five paths in K2t+2. Paths PI and P 2  are described in the following tables. 

Note that in the tables, as well as in similar tables throughout the thesis, we list the 

vertices of each path in the first column and the intersected edge orbits in the second 

column. For example, the edge (at/2+1, b(t/2+1)-s) of PI is in the orbit ABt-,. 

P3: V(P3) = {bt-s+l, b t++2 , . .  . , bt, bl, b2,. . . , bt/2-s), the edge-orbits intersected 

by the edges of P3 are B1, B2, BS, . . . , Btl2-1. One of the endpoints of P3 is bl. The 

existence of such a path is equivalent to the existence of a graceful labeling of a path 

with t / 2  vertices with one of the endvertices labeled with t/2 - s. Such a path exists 

by Lemma 2.2.1. 

P4 and P5: The path P4 contains exactly one edge joining a(,l2+,)-+ to a, for 

some r E {t/2 + 2, t/2 + 3 , .  . . , t ) .  The path P5 has at/2+1 as one of its endpoints and 

is such that V(P5) = {at12+l, at/2+2,. . . , at) \ {a,), and such that the edges of P4 and 

P5 intersect each of the orbits All A2,. . . , At/2-1 exactly once. The existence of these 

P4 and P5 is guaranteed by Lemma 2.2.4 (here we are using t > 8). 
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P3 (only vertices highlighted) @ P5 (only vertices highlighted) 

Figure 2.5: Example: n = 42, t = 20, s = 5, n/4 < m < n/2 

The union P of Pl and P5 is a path of length s + t/2 - 2 with one endpoint in 

A and the other endpoint in B. Similarly, the union PI of P2, P3 and P4 is a path of 

length (3t)/2 - s. Again, one of its endpoints is in A, while the other is in B. 

Figure 2.5 shows how this construction works. 

We now join vertex cl to the endpoints of P, and join c2 to the endpoints of PI. 

In this way we obtain a 2-factor F, with cycle lengths t/2 + s and (3t)/2 - s + 2, 

respectively. It is easily checked that the edge set of F intersects each edge-orbit under 

a in at most one edge, and that the only orbits it misses are the orbits At12, Bt12 and 

Co. Therefore, F, Fa, F a 2 , .  . . , Fat-' form a 2-factorization of K, - I. 

Since t/2 + s varies over all odd integers m such that n/4 < m < n/2 as s varies 

over the set {1,3,5,. . . , t/2 - I), we are done. 

Lemma 2.3.2 Let n - 2 (mod 8 )  and let m 2 3 be an odd integer such that m < 
n/4. Then there is a solution to OP(m, n - m). 

Proof. As before, n = 2t + 2, where 41t, t 2 8. For s = 1,3,5, .  . . , - 3, we set PI, P2 

and P3 as in Lemma 2.3.1. 

P4 contains only the edge a,-+). This edge belongs to At12-l. 

P5 is a path such that V(P5) = {at/2+2, at/2+3, . . . , at), and such that one of its end- 

points is at-&. The edge-orbits intersected by the edges of P5 are All A2, . . . , Atl2-2. 
2 

The existence of such a P5 is equivalent to the existence of a graceful labeling of the 
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path of length t/2 - 2, one of whose endpoints is labeled (s+3)/2, which is guaranteed 

by Lemma 2.2.1. 

This construction is depicted in Figure 2.6. One may note that the construction 

is similar to  the construction in Lemma 2.3.1. The main difference is that paths P4 

and P5 are modified so that the path P5 is attached to the union of the paths P2, P3 

and P4 instead of the path PI. 

P3 (only vertices highlighted) @ P5 (only vertices highlighted) 

Figure 2.6: Example: n = 42, t = 20, s = 5 ,  m < n/4 

The union P of P2, P3, P4 and P5 is a path of length 2t - s - 2 with one of the 

endpoints in A, and the other endpoint in B.  Similarly, the path PI has one of its 

endpoints in A, and the other in B, and is of length s. 

If we join cl to the endpoints of P, and join c2 to the endpoints of PI, we will 

obtain a 2-factor F whose cycles have lengths 2t - s and s + 2, respectively. As in 

Lemma 2.3.1, F, F a ,  Fa2, . . . , Fat-' form a 2-factorization of K, - I. 

As s varies over the set {1,3,5,. . . , t/2 - 31, s + 2 varies over all odd integers m, 

3 5 m < n/4, which ends the proof. I 

Lemma 2.3.3 Let n - 6 (mod 8), and let m 2 3 be an odd integer such that 

m < n/4. Then there is a solution to OP(m, n - m). 

Proof. We may write n = 2t + 2, where t 2 10 is congruent to 2 modulo 4. For 

S =  l , 3 ,  . . . ,  -2, we set PI, P2, P3, P4 and P5 as in Lemma 2.3.2. The same reasoning 

as there shows that this lemma holds true. 



CHAPTER 2. TWO CYCLES 25 

Lemma 2.3.4 Let n r 6 (mod 8), and let m be an odd integer such that n/4 < 
m < n/2. Then there is a solution to OP(m, n - m). 

Proof. We write n = 2t+2, where t is congruent to 2 modulo 4. For s = 1,3, . . . , $ -2, 

we set PI, P2 and P3 as in Lemma 2.3.1. 

Let P4 be a path such that V(P4) = {at/2+1, at/2+2,. . . ,at}, where one of the 

endpoints of P4 is at/2+~. Further, let P4 be such that its edges intersect the orbits 

Al, A2,.  . . , At/2-1. The existence of such a path is equivalent to the existence of a 

graceful labeling of a path on t/2 vertices, with one of the endpoints being given label 

1, and as such is guaranteed by Lemma 2.2.1. 

The union P of P2 and P3 is a path of length (3t)/2 - s - 1, with one of its 

endpoints in A and the other in B. Similarly, P', the union of Pl and P4, is a path of 

length t/2 + s - 1, with one endpoint in A, and the other in B. 

P3 (only vertices highlighted) @ P4 (only vertices highlighted) 

Figure 2.7: Example: n =  38, t = 18, s = 5, n/4 < m < n/2 

If we connect cl to the endpoints of P, and c2 to the endpoints of P', we obtain 

a 2-factor F ,  with the cycles of lengths (3t)/2 - s + 1 and t/2 + s + 1. As before, 

F, Fa, Fa2, . . . , Fat-' form a 2-factorization of K, - I. 

As s ranges over {1,3,5, . . . , t/2 - 21, m = t/2 + s + 1 ranges over all odd integers 

for which n/4 < m < n/2, which proves this lemma. 

Lemma 2.3.5 Let n -= 0 (mod 8), and let m 2 3 be an odd integer such that 

m < n/4. Then there is a solution to OP(m, n - m). 
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Proof. We may write n = 2t + 2, where t is congruent to  3 modulo 4. For s = 

1,3,5 , .  . . , y, we define 

P3: V(P3) = {bt, bl, b2, bJ, . . . , bt-11. The edge-orbits intersected by the edges of 
2 

P3 are the orbits B1, B2, B3, . . . , Be, and one of the endvertices is bt. The existence 

of such a path is equivalent to a graceful labeling of a path on vertices, with one 

endpoint given label 1, and thus follows from Lemma 2.2.1. 

P4 : The only edge in P4 is the edge (at+l S + I ,  a,-+). This edge belongs to A*;?. 
2 2 

Note that t - (s + 1)/2 > (t + 1)/2 and, therefore, is not in V(Pl) U V(P2). 

P5: V(Ps) = . . . , at}. The edge-orbits intersected by the edges of 

P5 are the orbits All A2,. . . , A=, and one of the endpoints is a,-+. The existence 

of such a path is equivalent to the existence of a graceful labeling of a path on 

vertices, with one endpoint being given label y, and as such is guaranteed by Lemma 

2.2.1. Figure 2.8 illustrates this construction. 

The union P of P2, P3, P4 and P5 is a path of length 2t - s - 2, with one endpoint 

in A, and the other in B. Pl is a path of length s, with one endpoint in A, and the 

other in B. If we now connect vertex cl to the endpoints of P, and the vertex c2 to 

the endpoints of PI, we will obtain a 2-factor F ,  whose cycle lengths are 2t - s and 

s + 2, respectively. One can check that the edge-set of F intersect each edge-orbit 
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P3 (only vertices highlighted) @I P5 (only vertices highlighted) 

Figure 2.8: Example: n = 40, t = 19, s = 5, m < n/4 

in at most one edge, and that the orbits AB, and Co are missed entirely. Therefore, 

F, Fa, F a 2 , .  . . , FatA1 form a 2-factorization of K, - I. 

Since s + 2 varies over all odd integers m, 3 5 m < 7x14, as s varies over 

{1,3,5,. . ., 7 1 ,  we are done. 

Lemma 2.3.6 Let n r 0 (mod 8), and let m be an odd integer such that n/4 < 
m < n/2. Then there is a solution to OP(m, n - m). 

Proof. Again, n = 2t + 2, where t is congruent to 3 modulo 4. For s = 1,3,5, . . . , Y ,  
we define PI and P2 as in Lemma 2.3.5. 

P3: V(P3) = {bl, b2, . . . , b e } .  The edge-orbits intersected by the edges of P3 
2 

are the orbits B1, B2, B3,. . . , B e ,  and one of the endpoints of P3 is the vertex bs+l. 
2 2 

This path is equivalent to a graceful labeling of a path on vertices, with one of the 

endpoints being given label y, and its existence is once again guaranteed by Lemma 

P4 contains only one edge, namely the edge (b-, bt+l s;~). This edge belongs to 
2 

B5. 

Pj: ( P )  = { a ,  a a . . . , a} .  The edge-orbits intersected by the 

edges of P5 are the orbits A1 , A2, AS, . . . , At-', and one of the endvertices is a*. A 
2 2 

path like this is equivalent to a graceful labeling of a path on vertices, with one 

. of the endpoints assigned label 1. The existence of such a labeling is guaranteed by 

Lernma 2.2.1. 
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P3 (only vertices highlighted) @ P5 (only vertices highlighted) 

Figure 2.9: Example: n = 40, t = 19, s = 5, n/4 < m < n/2 

Figure 2.9 illustrates the construction. 

The union P of paths PI, P3, Pq and P5 has one of its endpoints in A, the other 

in B, and its length is t + s - 1, while the length of P2 is t - s - 1 (and also, one of 

its endpoints is in A, while the other is in B). If we join vertex cl to the endpoints 

of P, and join vertex c2 to the endpoints of P2, we obtain a 2-factor F, whose two 

cycles have lengths t + s + 1 and t - s + 1. As in the earlier lemmas, this 2-factor 

gives rise to a Zfactorization of K, - I. Since t - s + 1 ranges over all odd m such 

that n/4 < m < n/2 when s ranges over {I, 3,5, .  . . , y}, we are done. 

Lemma 2.3.7 Let n - 4 (mod 8), and let m be an odd integer such that 3 5 m 5 
7214. Then OP(m, n - m) has a solution. 

Proof. The proof of this lemma is essentially same as that of Lemma 2.3.5, with the 

only difference that now s = 1,3,5, . . . , .m 

Lemma 2.3.8 Let n - 4 (mod 8), and let m be an odd integer such that n/4 < 
m < n/2. Then OP(m, n - m) has a solution. 

Proof. This is essentially same as Lemma 2.3.6, except that s = l ,3 ,5 ,  . . . , y. 
Theorem 2.3.9 combines Lemmas 2.3.1-2.3.8 and covers the remaining small cases. 

Theorem 2.3.9 Let a, b _> 3, a # b be odd integers. Then OP(a, b) has a solution. 
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Proof. Lemmas 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5, 2.3.6, 2.3.7 and 2.3.8 cover all pairs 

(a, b) except for the pair (3,7). In this case, we will construct a 2-factor F such that 

F, Fa, Fa2, Fa3 form the desired 2-factorization: 

It is easily seen that this Zfactor is as desired. 



Chapter 3 

Three Cycles 

The skeleton of the constructions used in this chapter is similar to that described in 

Section 2.1. However, the factor F now comprises 3 cycles and, in Sections 3.1 and 

3.2, we allow odd n of the form n = 4k + 3. In order to accommodate the third cycle, 

we prove additional results with graceful labeling flavour. Also, we can no longer rely 

on the paths PI and P2 exactly as constructed in Section 2.1. We have to tweak their 

construction a bit at times in order to create an appropriate F. The general idea is 

the same though. Start with paths that use up most of the edges in the orbits ABi 

and combine them with additional paths and/or cycles to create F. 

In Sections 3.1 and 3.2 we look at the cases OP(3,4, n - 7) and OP(3,6, n - 9) ,  

respectively. In Section 3.3 we consider the case OP(3, a ,  n - 3 - a). 

3.1 Construction of OP(3,4, n - 7)  

Lemma 3.1.1 Let n 2 16 be a n  integer divisible by 4 .  T h e n  OP(3,4,n - 7 )  has a 

solution. 

Proof. As usual, we write n = 2t + 2. First, we will construct the (n - 7)-cycle. 
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Pl : 

P2: P2 will contain the edges (a3, a*) and (at+s, al). These two edges contribute 
2 

to A* and A-. 
2 2 

P3: P3 will be a path such that V(P3) = {a*, a ~ ,  . . . , at, al, a2}, such that a1 
2 2 

is one of its endpoints, and such that the orbits intersected are All A2, A3, . . . , 
2 

(here we are using n 2 16). The existence of this path is equivalent to the existence 

of a graceful labeling of a path on vertices, with one of the endpoints given label 

2, and hence P3 exists. 

P4: P4 will contain the edge (b3, b* ) , which belongs to Ba. 
2 2 

P5: V(P5) = {b+ , bt+ , b y ,  . . . , btdl}, by is one of the endpoints of P5, and the 

orbits used are B1, B2, B3, . . . , BG. Again, the existence of this path is guaranteed 
2 

by its equivalence with the existence of the appropriate graceful labeling. 

We set P to be the union of paths PI, P2, P3, P4 and P5. It can be checked that P 

is a path of length n - 9, and that its endpoints are in the sets A and B, respectively. 

The construction of P is illustrated in Figure 3.1. 

If C1 is the cycle constructed by connecting cl to the endpoints of P, then C1 is 

an (n - 7)-cycle, and one may observe that it doesn't intersect any of the edge-orbits 

in more than one edge. Further, one may observe that the vertices and edge-orbits 

missed by C1 are 

at+l,at+8,at+;.,bl,b2,bt,c2, and 
2 2 2 
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w Pl @--a P2 .--a P4 

@ P3 (only vertices highlighted) @, P5 (only vertices highlighted) 

Figure 3.1: Construction of P for OP(3,4,33) 

respectively. 

If we set C2 to be the 3-cycle a y ,  61, c2 (using the orbits AB=, 2 AC2 and BC2), 

and C3 the Ccycle a s ,  bt, a 9 ,  b2 (using the orbits ABe ,AB* ,AB= and AB-), 
2 2 2 2 2 

then C1, C2 and C3 form a 2-factor F which gives rise to an 0 P(3,4,  n - 7). w 

Lemma 3.1.2 Let n 2 66, n - 2 (mod 4). Then OP(3,4, n - 7) has a solution. 

Proof. As usual, n = 2t + 2. 
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P2 is a path only if 2 7, or, equivalently, if n 2 66. 

P3: V(P3) = {brl b8, b9,. . . , by} ,  one of the endpoints of P3 is b s ,  and the edge- 
2 

orbits used are B1, B2, BS, . . . , BS. This path is equivalent to a graceful labeling of 
2 

a path on vertices such that one of the endpoints is given label 6. The existence 

of such a path is guaranteed by Lemma 2.2.1. 

P5: V(P5) = {a4,a5,a6,. . . ,ae}, one of the endpoints of P5 is a-, and the 
2 

edge-orbits used are Al, A2, AJ, . . . , At--14. This is equivalent to a graceful labeling of 
2 

a path on vertices, with one of the endvertices being given label 3. The existence 

of such a P5 is guaranteed by Lemma 2.2.1. 

The union P of paths PI through P5 is a path of length n - 9, with one of the 

endpoints in A and the other in B. See Figure 3.2 for a visual description of the 

construction. 

@ P3 (only vertices highlighted) w Ps (only vertices highlighted) 

Figure 3.2: Construction of P for OP(3,4,71) 

If we let C1 be the cycle obtained by connecting cl to the endpoints of P, then 

C1 has length n - 7, intersects each edge-orbit in at most one edge, and misses the 

following vertices and edge-orbit s . 

AB-, 2 AB*, 2 ABt, 2 AB*, 2 AB*, 2 AC2, BC2, A;, Bi, Co. 
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If we let C2 be the 3-cycle a2, bt , c2 (intersecting the orbits AB- , AC2 and BC2), 
2 

and 6 3  be the Ccycle a;, bt , a?, b2 (intersecting the orbits AB? , AB4, ABY and 
AB* ) , then C1, C2 and C3 form a 2-factor which gives rise to OP(3,4, n - 7). rn 

2 

When n was even, we used either cl or c2 for the 3-cycle. When n E 3 (mod 4), 
we only have cl. We would like to  be able to use CI for the n - 7 cycle. Therefore, 

the 3-cycle will be either in A or in B. We will use Lemma 3.1.3 to  provide us with 

such a 3-cycle. 
I 

Lemma 3.1.3 Let n 2 7 and let V = {1,2,3,. . . , n). Then there is a path P and a 

3-cycle C such that 

(i) V(P)  U V(C) = V, 

(ii) V(P) n V(C) = 0, 

(iii) {lu - vl : (u,v)  E E(P) U E(C))  = V \ {n) ,  and 

(iv) one of the endpoints of P is 5. 

Proof. The proof will be done by induction on n. It can be checked that the lemma 

holds true for 7 5 n 5 15. So we may assume that n > 16. Now, let PI be the path 

5, n - 3,4, n - 2,3, n - l ,2 ,  n, 1, n - 8. The statement will follow if we can prove that 

there exist a path P2 and a 3-cycle C' such that 

(i) V(P2) U V(Ci) = {6,7,8, . . . , n - 41, 

(ii) V(P)  n V(C) = 0, 
(iii) {lu - vl : (u,v) E E(P2) U E(Ci))  = {1,2,3,. . . , n - lo}, and 

(iv) one of the endpoints of P2 is n - 8. 

It is readily seen that the existence of such P2 and C' is equivalent to the statement 

of the lemma for n - 9 (see Figure 3.3). Since n 2 16, n - 9 > 7, and thus P2 and C' 

exist by the induction hypothesis. 

\\e may now set P = PI U P2 and C = C' to  complete the proof. 

Lemma 3.1.4 Let n > 63, n = 3 (mod 4). Then OP(3,4, n - 7) has a solution. 

Proof. \Ye write n = 2t + 1, where t is an odd integer. Set 
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Figure 3.3: Inductive construction in Lemma 3.1.3 

P3 and C1: P3 is a path and C1 is a 3-cycle such that 

(i) V(P3) U V(Cl) = {by,  b a ,  b e , .  2 . . , b t 4 ) ,  

(ii) V(P3) n V(C1) = 0, 
(iii) {li - jl : (ui,uj) E E(P3) U E ( 9 ) )  = {1,2,3,. . . , y}, and 

(iv) one of the endpoints of P3 is bt-8. 
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For n 2 63, the right-hand side of (i) is a set with at  least 7 elements, and thus 

the existence of P3 and C1 follows from Lemma 3.1.3. 

P5 consists of a single edge, namely (at, b e ) .  This edge belongs to  AB*. 
2 2 

P6 consists of the edge (ae, at-5). This edge belongs to  As. 
2 2 

P7 is a path with V(P7) = {at+s,at+ll,at+l3, . . . ,att1}. The edge-orbits inter- 
2 2 2 

sected are All A2, AS,. . . , A s  and one of the endpoints is at+ The existence of 
2 

such a path is equivalent to  the existence of a graceful labeling of a path on ver- 

tices, such that one of the endpoints is assigned label 5. Therefore, such a path exists 

by Lemma 2.2.1 (see Figure 3.4). 

O P3 U C1 (only vertices highlighted) P7 (only vertices highlighted) 

Figure 3.4: Construction of P and C1 for 0 P(3,4,72) 

C2 is the cycle a*, bt , a s ,  b2 (and thus intersects the orbits AB=, ABa, 
2 2 2 

AB*, AB?). 
2 

IVe let P be the union of Pl through P7. Then P is a path of length n - 9, with 

one endpoint in A, and the other in B. If we connect cl to  these endpoints, we obtain 

a cycle C3. 
It may be checked that the union of C1, C2 and C3 intersects each edge-orbit in at  

most one edge. Since the lengths of C1, C2, and C3 are 3,4 and n - 7, respectively, 

the 2-factor comprising these cycles gives rise to an OP(3,4, n - 7). I 

Theorem 3.1.5 combines Lemmas 3.1.1, 3.1.2 and 3.1.4 , and covers the remaining 

small cases through explicit construction. 
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Theorem 3.1.5 Let n > 10, n - 0,2, or 3 (mod 4). Then OP(3,4, n - 7) has a 

solution. 

Proof. Lemmas 3.1.1, 3.1.2, and 3.1.4 cover all but finitely many cases. We will now 

construct the 2-factor F yielding the desired OP(3,4, n - 7) in each of these cases. 

When n = 0 (mod 4), the only unresolved case is n = 12. In this case, the 

2-factor F = (al, b2, bl), (a3, a4, b3, b5), (a2, a5, c2, b4, cl) yields OP(3,4,5), as desired. 

When n = 2 (mod 4), the generating 2-factors for the remaining unresolved 

cases are listed in the following table: 

Table 3.1: OP(3,4, (4k + 2) - 7) 
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cycles in F 

When n - 3 (mod 4), the generating 2-factors are as follows: 
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Table 3.2: OP(3,4 ,  (4k + 3) - 7) 
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-- 

cycles in F 

3.2 Construction of OP(3,6, n - 9) 

In Lemma 3.1.4 we used a gracefully labeled union of a path and a 3-cycle. In this 

and the next section, we will use graceful labelings of unions of a path and a longer 

cycle. Lemmas 3.2.1-3.2.4 provide us with such graceful labelings. 

Lemma 3.2.1 Let n = 2k + 1 2 3 and let G be the graph consisting of an n-cycle 

C and a path P on k vertices. Then G has a graceful labeling i n  which one of the 

endpoints of P is assigned label 2. 

Proof. Let V(G) = {1,2,3,. . . ,3k + 1). We will construct paths Pll P2 and P as 

follows: 
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PI : 

k odd k even 

edge b - 211 
( L 3 k )  3 k -  1 

( 3 k ,  4 )  3 ( k  - 1)  - 1  

( 4 , 3 k  - 3 )  3 ( k  - 2 )  - 1  

( 3 k  - 3 , 7 )  3 ( k  - 3 )  - 1  

( 7 , 3 k  - 6 )  3 ( k  - 4 )  - 1  

edge b - 4 
( 1 , 3 k )  3 k -  1  

( 3 k ,  4 )  3 ( k  - 1)  - 1 

( 4 , 3 k  - 3 )  3 ( k  - 2 )  - 1 

(3k - 3 , 7 )  3 ( k  - 3 )  - 1 

( 7 , 3 k  - 6 )  3 ( k  - 4 )  - 1 

k odd k even 

edge Iu - 211 edge 1-4 
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0 Vertex of PI Vertex of P2 A Vertex of P 

Endpoint of f i  &J Endpoint of P2 1 Endpoint of P 

Figure 3.5: Vertex pattern for PI, P2 and P3 in Lemma 3.2.1 

k odd k even 

edge b - 4 edge 1u - 4 

Figure 3.5 illustrates the pattern for even k. One observes that the pattern is very 

simple - with vertices alternating between the three paths except for possible small 

adjustments around the middle of the vertex range, i.e., around y. One may also 

observe that the union of PI and P2 is a path of length n - 1, with the vertices 1 and 

3k + 1 being its endpoints. Therefore, by appending the edge (1,3k + 1) to this path, 

we obtain a cycle of length n. Also, P is a path of length k - 1 with vertex 2 as one 

of its endpoints. It is somewhat tedious, but otherwise easy, to check that the union 

of P and C is as required. 
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Lemma 3.2.2 Let n = 2k + 2 2 4, and let G be the graph consisting of an n-cycle 

C and a path P on k  vertices. Then G has a graceful labeling in which one of the 

endpoints of P is assigned label 2 .  

Proof. Now, V ( G )  = {1,2,3, . . . ,3k + 2). Paths PI, P2 and P are constructed as 

follows. 
PI 

k odd k even 

edge b - 4 
(1,3k + 1) 3k 

(3k+1 ,4)  3 (k-1)  

(4 ,3k-2)  3 (k-2)  

(3k - 2,7) 3(k - 3) 

(7,3k - 5) 3(k - 4) 

3k-1 3k+5 
1 3  

3 k f 5  3k+3 
1 1 

edge b - 4 
( l , 3 k  + 1) 3k 

( 3 k + 1 , 4 )  3 ( k - 1 )  

(4 ,3k-2)  3 ( k - 2 )  

(3k-2 ,7 )  3 (k-3)  

(7 ,3k-5)  3 ( k - 4 )  

k odd k even 

edge I U  - 4 edge b - VI  
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P :  

k odd k even 

edge Iu - 4 
(2,3k) 3(k - 1) + 1 

edge Iu - 4 
(2,3k) 3(k - 1) + 1 

(3k, 5) 3(k - 2) + 1 

(5,3k - 3) 3(k - 3) + 1 

(3k - 3,8) 3(k - 4) + 1 

(8,3k-6) 3 ( k - 5 ) + 1  

3k-2 3k+6 
( 7 7  7) 4 

The patterns are similar to the previous lemma; the union of Pl and P2 is a path on 

n vertices, with 1 and 3k + 2 being its endpoints. By adding the edge (1,3k + 2) to 

this path, we obtain the cycle C. Again, one may check that if G is the union of P 

and C, then G satisfies the conditions of this lemma. 

We will denote the disjoint union of an s-cycle and a path on t vertices by C,Pt. 

Unless stated otherwise, we will always assume that V(C, Pt) = {1,2,3, . . . , s + t ) .  

Lemma 3.2.3 If there is a graceful labeling of CsPt i n  which one of the endpoints of 

the path is assigned label 2, then there are also such graceful labelings of the graphs 

CSPt+3 and CsPt+4. 

Proof. Consider first C,Pt+3. Let PI consist of the edges (2, s + t + 3), ( s  + t + 3 , l )  

and (1, s + t + 1). If we can show that there is a graph H isomorphic to C,Pt, such 

that 

(i) V(H) = {3,4,5, . . . , t + s + 21, 

(ii) {Iu-v1 : ( u , ~ )  E E(H))  = {1,2,3, . .  . , s + t  - I) ,  and 

(iii) one of the endpoints of the path in H is s + t + 1, 

then we are done, because the union of H and Pl will be as required (see Figure 3.6). 

But the existence of H is easily seen to be equivalent to the existence of a graceful 

labeling of CsPt in which one of the endpoints of the path is assigned label 2, and as 
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Figure 3.6: Inductive construction of CsPt+3 

such is guaranteed by the assumption. Thus we conclude that the required graceful 

labeling of CsPt+3 exists. 

Now, consider CsPt+4. The idea is the same as for CsPt+3. Let PI consist of the 

edges (2, s + t + 3), (s + t + 3, I), (1, s f t + 4) and (s + t + 4,4). Now, we need to find 

a graph H isomorphic to C, Pt, such that 

(i) V ( H )  = {3,4,5, . . . , s + t + 2)) 

(ii) { I u  - v1 : (u, v) E E ( H ) )  = {1,2,3,. . . , s + t - I), and 

(iii) one of the endpoints of the path in H is 4. 

The rest of the proof goes through the same way as in the first part. 

Lemma 3.2.4 Let s > 3 be given and let t be such that t 2 + 5. Then there is a 

graceful labeling of C,Pt in which one of the endpoints of the path is assigned label 2. 

Proof. It follows from Lemmas 3.2.2 and 3.2.1 that, for s 2 3, CsPt has the required 

graceful labeling when t = rs/2 - 11. 

From Lemma 3.2.3, it follows that CsPt has the required labeling also when t = 

rs/2 + 21 and t = rs/2 + 31. Applying Lemma 3.2.3, starting with these two values of 

t, we conclude that the labeling also exists when t = rs/2 + 51, rs/2 + 61 and rs/2 + 7). 

Starting with these three values, it is immediately seen that applying Lemma 3.2.3 

inductively proves that the labeling exists for all values t > s/2 + 5, which proves our 

lemma. 

Lemma 3.2.5 Let n 2 60, n E 0 (mod 4). Then OP(3,6,  n - 9) has a solution. 

Proof. n = 2t + 2, where t is odd. We construct the following paths and cycles: 
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Pl : 

P2: V(P2) = {a2,a3,a4,. ..,a*), one of the endpoints of P2 is a*, and P2 
2 2 

meets each of the orbits Al, A2, AS,. . . , At-1 exactly once. The existence of this P2 is 

equivalent to the existence of a graceful labeling of a path on vertices, with one 

endpoint assigned label 1, and thus is guaranteed by Lemma 2.2.1. 

P3 and C1: V(P3 U C1) = {bl, b2, b3, . . . , b a ) ,  C1 is a 6-cycle, P3 is a path of 
2 

length y, one endpoint of P3 is b2, and E(P3) U E(Cl) intersects each of the orbits 

B1, B2, B3,.  . . , Be exactly once. The existence of such P3 and C1 is seen to be 
2 

equivalent to the existence of a graceful labeling of C6Pe, in which one of the 
2 

endpoints of the path is assigned label 2. Since n 2 60, we have t 2 29 and > 8. 

The existence of the graceful labeling now follows by Lemma 3.2.4. 

C2 is the 3-cycle al ,  b*, cl (and thus intersects the orbits AB-, AC1 and BC1). 
2 

P4 consists of the single edge (b2, b*) (and thus intersects the orbit B s  ). 
2 2 

Now, P = PI U P2 U P3 U P4 is a path of length n - 11, with one endpoint in A, 

and the other in B. We extend P to a cycle C by connecting its endpoints to c2. See 

Figure 3.7 for a visual description of the construction. 

It is easily checked that the 2-factor F formed by C1, C2 and C intersects each of 

the edge-orbits in at most one edge. Since the lengths of C1, C2 and C3 are 6,3 and 

n - 9, respectively, F gives rise to an OP(3,6, n - 9). 

Lemma 3.2.6 Let n > 62, n = 2 (mod 4). Then OP(3,6, n - 9) has a solution. 

Proof. n = 2t + 2, where t is even. We will construct the following paths and cycles: 
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@I P2 (only vertices highlighted) P3 U C1 (only vertices highlighted) 

Figure 3.7: Construction of P and C1 for 0 P(3,6,71) 

P2: V(P2) = {a2,a3,a4,. . .,a*), one of the endpoints of P2 is a t ,  and the 
2 

edge-orbits intersected by P2 are All AZ1 AS, . . . , A=. The existence of such a P2 is 
2 

equivalent to the existence of a graceful labeling of a path on $ vertices, such that 

one of the endpoints is assigned label 2, and as such is guaranteed by Lemma 2.2.1. 

P3 and C1: V(P3) U V(C1) = {bl, b2, b3, . . . , b-), C1 is a 6-cycle, P3 is a path 
2 

on 2 vertices, with b2 being one of the endpoints. The edge-orbits intersected by 

E(P3) U E(C1) are B1, B2, B3, . . . , Ba. Similarly as in Lemma 3.2.5, the existence 
2 

of P3 and C1 is guaranteed by Lemma 3.2.4 (here we need n > 62). 

C2 is the 3-cycle al l  b t  , cl (the edge-orbits intersected are ABt-2, AC1 and BC1). 
2 2 

P4 consists of the single edge (b2, b*) (intersecting the orbit B s ) .  
2 2 
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w P. (only vertices highlighted) 8 P3 U C1 (only vertices highlighted) 

Figure 3.8: Construction of P and C1 for OP(3,6,69) 

The union P of PI through P4 is a path of length n - 11, with one of its endpoints 

in A, and the other in B (see Figure 3.8). We obtain an (n - 9)-cycle C by joining 

the endpoints of P to c2. 

The 2-factor F comprising C1, C2 and C3 intersects each edge-orbit in at most one 

edge, does not intersect any of the orbits with size less than t (i.e., orbits At ,  B t  and 
2 2 

Co), and thus gives rise to an OP(3,6, n - 9). 

Lemma 3.2.7 Let n 2 55, n r  3 (mod 4). Then there is an OP(3,6,n-9) .  

Proof. n = 2t + 1, where t is odd. We will construct the following paths and cycles. 
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P2 and C1: V(P2) U V(C1) = {al,a2,a3,. . . ,at+l), CI is a 6-cycle, P2 is a path 
2 

on vertices, with a2 being one of its endpoints, and P 2  and C1 are such that 2 

the edge-orbits intersected by E(P2) U E(C1) are the orbits Al, A2, A3, . - . , A*. The 
2 

existence of these P2 and Cl is equivalent to the existence of a graceful labeling of 

C6P% in which one of the endpoints of the path is given label 2. Such a labeling is 
2 

guaranteed by Lemma 3.2.4 (here we need > 8, but this is guaranteed by n 2 55). 

P3 and 62: V(P3) u V(C2) = {bl, b2, b3, . . . , b? }, where C2 is a 3-cycle and P3 is a 

path on y vertices. One of the endpoints of P3 is 62, and the edge-orbits intersected 

by the edges of C2 and P3 are the orbits B1, B2, B3, . . . , Bs. As in the case of P2 
2 

and C1, Lemma 3.2.4 guarantees the existence of P3 and C2. Figure 3.9 illustrates 

this construction. 

O P2 U C1 (only vertices highlighted) P3 U C2 (only vertices highlighted) 

Figure 3.9: Construction of P, C1 and C2 for 0 P(3,6,70) 

The union P of PI, P2 and P3 is a path of length n - 11, with one endpoint in A, 

and the other in B. We extend it to an (n - 9)-cycle C by connecting its endpoints 

to cl. The union F of C, C1 and C2 is a 2-factor intersecting each of the edge-orbits 

in at most one edge. Since the lengths of the three cycles C, C1 and C2 are n - 9,6 

and 3, respectively, F gives rise to an 0 P(3,6, n - 9). 

Theorem 3.2.8 Let n 2 12, n = 0,2 or 3 (mod 4). Then OP(3,6, n - 9) has a 

solution. 

Proof. Lemmas 3.2.5, 3.2.6, and 3.2.7 cover all but finitely many cases. We will now 

construct the 2-factor F yielding the desired OP(3,6, n - 9) in each of these cases. 
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When n ZE 0 (mod 4), the 2-factors are listed in the following table: 

Table 3.3: OP(3,6,4k - 9) 

cycles in F 
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cycles in F 

W h e n  n - 2 (mod 4), the 2-factors are: 

Table 3.4: OP(3,6, (4k + 2) - 9) 

n 

14 

18 

- - 

OP 

OP(3,6,5) 

OP(3, 619) 

- 

cycles in F 

( ~ 4 1 b 3 1 ~ l ) l ( ~ l l b l l ~ 3 1 ~ 5 1 ~ 6 1 b 2 ) l ( ~ 2 1 b 5 ~ b 6 ~ b 4 ~ ~ 2 )  

(b1, b3, b8)1 (all a2, b2, ~ 1 ,  a61 as), (a4, b71 a51 b61 a71 
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cycles in F 

When n r 3 (mod 4), the 2-factors are: 
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Table 3.5: OP(3,6,  (4k + 3) - 9) 

--- 

cycles in F 
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3.3 Construction of OP(3, a ,  n - 3 - a) 

n 

51 

For graphs G I ,  G2 ,  . . . , G,, we will denote by G I  U G 2  U . - . U G ,  any vertex-disjoint 

union of graphs isomorphic to G I ,  G2 ,  . . . , G,. Also, we will denote by C ,  the cycle 

on n vertices. Finally, in Lemmas 3.3.1 and 3.3.2 only, we will use P, to denote the 

path on n vertices. 

We start this section with two more graceful labeling results. 

Lemma 3.3.1 Let m 2 13 and let G = P3 U C3 U P m 4 .  Then G has a graceful 

labeling i n  which one of the endpoints of P3 has label 1 and one of the endpoints of 

Pm-6 has label m. 

O P  

OP(3 ,6 ,42 )  

M p3 0----0 An edge of P m 4  

cycles in F 

ai l ,  b l l ) ,  (b1, b47 '321 b81 b20, b9), (all a19, a7, 

Figure 3.10: Lemma 3.3.1 

Proof. For m > 13, P3 will be the path 1, m - l , 2 .  Pm-6 will contain the edge (m, 4 ) .  

The rest follows by Lemma 3.2.4 (see Figure 3.10). 
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For m = 13, we construct the graceful labeling explicitly: P3 = 1,12,7,  C3 = 

4,6,10andP7=13,3,11,2,9,8,5.  

Lemma 3.3.2 Let m 2 13 and let G = P2 U C3 U Pm-5 Then  G has a graceful 

labeling i n  which one of the endpoints of P2 has label 1, and one of the endpoints of 

Pmb5 has label m. 

Proof. P2 will be the path 1, m - 1. Pm-5 will contain the edge (m, 3) .  The rest 

follows by Lemma 3.2.4. 

Lemma 3.3.3 Let n 2 48, n - 0 (mod 4) and let a < n- 3 -  a. Then  O P ( 3 ,  a ,  n-  

3 - a )  has a solution whenever a > 3. 

Proof. We write n = 2t + 2. Let s = [F J . Construct Pi, P2 and P3 as follows. 

a, ABt-48+3 
2 

bt-zs+3 ABt-4s+5 
2 2 

as- 1 ABt-ds+.r 
2 

bt-zs+5 ABt-4s+9 
2 

as-2 ABt-45+11 
2 

P3: Vertices of P3 are the vertices of B which are not used by PI and P2 plus the 

vertex b*. This vertex is one of the endpoints of P3. The edge-orbits intersected by 
2 

P3 are the orbits B1, B2, . . . , B e .  The existence of such a path follows immediately 

from Lemma 2.2.1 (connect b* to bt+3 t - 1  and use this latter vertex as an endpoint 
2 2 2 

of a path on {bt+2+., bt+3+, . . . , bt, bl, b2, - . . , bt-zs+l)).  
2 
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@ P3 (only vertices highlighted) Pq U Pg U CI (only vertices highlighted) 

Figure 3.11: Example: n = 80, a = 11, s = 4 

P4, P5 and C1: V(P4 U P5 U C1) = {a,, a,+l, . . . , at+2~+1). Cl is a 3-cycle, P4 is 
2 

a path of length 1 (if a is even) or 2 (if a is odd), with one of its endpoints being 

a,, and P5 is a path of length (if a is even) or (if a is odd), with one of 

its endpoints being at+ns+l. The orbits intersected by E(P4 U P5 U Cl) are the orbits 
2 

All A2, A3,. . . , Ax. The existence of P4, P5 and C1 is guaranteed by Lemma 3.3.1 

(when a is odd) or 3.3.2 (when a is even). Note that here we need n 2 48. Figure 

3.11 depicts the construction when n = 80 and when a = 11. 

The union of P2 and P4 is a path of length a - 2 with one of its endpoints in A 

and the other in B. The a-cycle C2 is obtained by joining the endpoints of this path 

to Cl. 

The union of PI, P3 and P5 is a path of length n - 5 - a with one of the endpoints 

in A and the other in B. The (n - 3 - a)-cycle C3 is obtained by joining the endpoints 

of this path to c2. 

The 2-factor F comprising C1, C2 and C3 intersects each edge-orbit in at most one 

edge and gives rise to an 0 P(3, a, n - 3 - a). 

Lemma 3.3.4 Let n < 48, n - 0 (mod 4) and let a be such that 3 < a < n - 3 - a. 

Then OP(3, a,  n - 3 - a) has a solution. 

Proof. We will construct the desired OP(3, a, n - 3 - a) for all pairs n and a. For 

each n > 16, the outline of the construction is described below. Cases where n 5 16 

are then handled independently. 
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Outline of the construction: For each n > 16, we will construct a 3-cycle C1 and 

two paths PI and Pi, each on n - 5 vertices and each disjoint from C1, such that each 

of the unions C1 U Pl and C1 U Pi satisfies the following two conditions: 

(i) The vertex set of the union is V(Kn) \ {cl, c2). 

(ii) The edges of the union intersect each of the orbits of the form Ail Bi and ABi 

exactly once and, of course, they do not intersect the orbits AC1, AC2, BC1, BC2 and 

co . 
Furthermore, (Pi)'s second, third, fourth, . . ., (n/2)th vertices will be the same 

as (Pl)'s first, second, third, . . ., (7212 - 1)st vertices, respectively. We will denote by 

el, e2, es, . . . , en/2-2 the first n/2 - 2 edges of PI. We will construct paths Pl and Pi 
such that they satisfy the following. If we 

(i) remove any of the edges e2, e4, e6, . . . , en/2-4 from Pl or from Pi, 

(ii) complete thus created two paths into cycles by attaching their endpoints to cl 

and c2, and 

(iii) denote the resulting 2-factor of Kn as F, then 

F intersects each edge-orbit except that it avoids the orbit Co and one of the orbits 

of the form ABi. 

The action of a on this 2-factor will then result in an OP(3, a, n - a - 3). 

Though somewhat tedious, it is easy to check that the construction indeed results 

in solutions to 0 P(3, a, n - a - 3) as described. It is then easy to see that the 2- 

factorizations resulting from the removal of e2, e4, e6, . . . , e n p 4  from Pl will result in 

solutions to OP(3,3, n - 6), OP(3,5, n - 8), OP(3,7, n - lo),  . . . , OP(3, n/2 - 3, n/2), 

respectively. Similarly, the removal of e2, e4, e6,. . ., en/2-4 from Pi will result in 

solutions to OP(3,4, n-7), OP(3,6, n-9), OP(3,8, n-  ll), . . ., OP(3, n/2-2, n/2- 

1). respectively. These will then combine to cover all a for a given n. 

\\k will look at n = 24 in more detail. All other cases are handled in a similar 

manner. Figure 3.12 illustrates construction of Pl and C1 for n = 24 (PI and C1 

are written out explicitly on page 60). Pl and C1 give rise to the solutions of the 

corresponding Oberwolfach Problems as follows: 

OP(3,3,18) is obtained by breaking the path Pl into two subpaths through the 

removal of the edge (a6, blo). One subpath, namely (bll ,  a6), consists of a single edge. 
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- - - - _ _ _ _ _ _ _ - - - - - -  - 9 .-----a c1 

Figure 3.12: Construction of Pl and C1 for n = 24 

Figure 3.13: Base 2-factor for 0 P(3,3,18) 

By attaching the vertex c2 to this path, a 3-cycle is created. The other subpath has 16 

edges and its endpoints are blo and a4. By attaching the vertex cl to these endpoints, 

an 18-cycle is created. Thus, we have constructed three cycles of the required lengths 

(see Figure 3.13). The action of a then creates a solution of OP(3,3,18). 

OP(3,5,16) is obtained in exactly the same manner except that we break the path 

PI into 2 subpaths by removing the edge (a7, bg) .  OP(3,7,14) is obtained with the 

removal of the edge (a9, bg) from PI. Finally, OP(3,9,12) is obtained by the removal 

of @lo, (57). 

Note that for the construction to work, path Pl has to be broken into two sub- 

paths such that each of the subpaths has one vertex in A and the other vertex in B. 

Therefore, for example, we cannot construct OP(3,4,17) in this manner. 

We use Pi to construct OP(3,4,17), OP(3,6,15), OP(3,8,13) and OP(3,10,11) 

in the same way in which we used PI. In fact, we will be removing the same edges 

from Pi that we removed from PI. 
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Figure 3.14: Construction of Pi and C1 for n = 24 

For this to  work, we construct Pi from Pl by making a couple of adjustments. 

First, we append an extra vertex to bll so that bll is not an endpoint of Pi. Second, 

we will, in general, have to adjust the subpath of Pl that is in B to make room for 

the vertex attached to bll. 

Figure 3.14 shows how Pi can be constructed for n = 24. The edges that differ 

from the edges in PI are highlighted in bold. 

We will now construct C1, PI and Pi for each n > 16: 
n = 44: 

Cl = (a2491a10) 

pl = (b211 all 1 b20, a121 b19, a131 h 8 ,  a141 b17, a151 b16, a171 b15, a18, b14, a191 

b13, a201 b121 a211 bll1 bll b101 b21 b9, b31 b8, b4, b71 b51 b61 a61 a161 a71 a11 

a4? a81 a31 a5) 

pi is obtained from Pl by inserting the edge (blol b21) as its first 

edge and by replacing the subpath (bill . . . , b6) of Pl by the 

path (bll1 b21 b9, bl1 b7, b31 b81 b51 b41 b6). 

n = 40: 
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( ~ 4  1 a5 1 ~ 7 )  

(b15,  a81 b141 bl3, a10, bl2, a121 bll 1 a13, b l ~ ,  a14> b g ,  a151 b8, bl ,  b71 

b2, b61 b31 b51 b4, a31 all1 a21 a6, a l )  

is obtained from Pl by inserting (b6,  b15) as its first edge and by 

replacing (b8, . . . , b4) with (b8, bl, b3, b7, b2, b5, b4). 

( ~ 3  1 a5 1 ~ 1 0 )  

(b13, a7, b12, a8, b11, a91 blol a i l ,  bg, a121 b81 a131 b7, b11 b61b21 b51 b3,  b41 

a4, a17 a21 a6) 

is obtained from Pl by inserting (b6, b13) as its first edge and by 

replacing (b7, . . . , b4)  with (b7, b2, b3, b5, b l ,  b4). 

( ~ 1 1  a3 1 as) 

(hi, a6, bio, a71 b9, a97 b81 a101 b7,aii1 b6, bl,  b5, b2, b41 b37a21a51a4) 

is obtained from Pl by inserting (b4 ,  b l l )  as its first edge and by 

replacing (b6 , .  . . , b3) with (b6 ,  b l ,  b2, b5, b3). 

(4, a2, a4) 

(b91 a51 b8, a67 b7, a81 b61 a91 b51 b l ,  b41 b2, b3, a3, a7) 

is obtained from PI by inserting (b4, bg )  as its first edge and by 

replacing ( b 5 , .  . . , b3) with (b5,  b2, b l l  b3). 
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c1 = (a24345) 

pl = (b7, a41 b6, a6, b5, a7, b4, b l l  b3, b21 ~ 1 )  

For n = 16 we do not construct Pi. Therefore, our construction only gives rise to 

0 P(3,3,10) and to 0 P(3,5,8).  However, the remaining two cases, 0 P(3,4,9) and 

0 P(3,6,7) had previously been constructed in Lemma 3.1.1 and Theorem 3.2.8. 

n = 12: Both 0 P(3,3,6) and 0 P(3,4,5) had previously been constructed (in 

Theorems 3.2.8 and 3.1.5). 

Since there are no a's satisfying conditions of this lemma for n < 12, the proof is 

completed. 

P3 (only vertices highlighted) @ P5 U C1 (only vertices highlighted) 

Figure 3.15: Example: OP(3,3,74) 

Lemma 3.3.5 Let n > 44, n - 0 (mod 4). Then OP(3,3, n - 6) has a solution. 

Proof. Again, n = 2t + 2. Paths Pl and P2 are constructed as in Lemma 3.3.3 except 

that we use s = 1. 

P3: V(P3) = {a2,a3,. . . ,as) .  One of the endpoints of P3 is a s ,  and the edge- 
2 2 

orbits intersected by E(P3) are the orbits All A2,. . . , A*. The existence of this path 
2 

is guaranteed by Lemma 2.2.1. 

P4: P4 is a path containing a single edge, namely, the edge (b2, b e ) .  2 

P5 and C1: V(P5 U C1) = {bl, b2,. . . , bt-~). C1 is a %cycle and P5 is a path, with 
2 

one of the endpoints being b2. The edge-orbits intersected by E(P5uC1) are the orbits 
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B1, B2, . . . Be. The existence of P5 and Cl is guaranteed by Lemma 3.2.4 (here we 
2 

need n 2 44). Figure 3.15 illustrates the construction. 

C2 will be the 3-cycle constructed by connecting the endpoints of P2 to cl. 

Finally, C3 will be the cycle constructed by connecting the endpoints of the path 

Pl u P, u P, u P5 to c2. 

The 2-factor C1 U C2 U C3 uses at most one edge from each edge-orbit, and gives 

rise to an OP(3,3,n-6) .  8 

Theorem 3.3.6 Let n = 0 (mod 4) and let a be such that 3 5 a < n - 3 - a. Then 

OP(3, a,  n - 3 - a )  has a solution. 

Proof. This result is an immediate consequence of Lemmas 3.3.3, 3.3.4 and 3.3.5.. 
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Two Cycle Lengths - Many Cycles 

In this Chapter, we prove that OP(an, bn) has a solution for all odd a, b and n with 

5 5 a < b and n # 7 , l l .  

In order to prove this result, we decompose Kn(a+b) - I into graphs isomorphic to 

Kafb - I, C3 IKa+b and C5 ?Ka+b. Furthermore, this decomposition will be such that 

the graphs of the form C31Kafb and c ~ ~ K ~ + ~  can be grouped into a number of 2(a+b)- 

factors of Kn(a+b). It then will be seen that if OP(Ka+b - I; a,  b), 0P(C31xa+b; a3, b3) 

and 0P(C5 1 Ka+b; a5, b5) all exist, then 0 P(an,  bn) also exists. 

OP(Ka+b - I; a,  b) = OP(a,  b) was shown to exist for all odd a and b in Theorem 

2.3.9. We will prove the existence of 0 P(C3 1 Ka+b; a3, b3) in Section 4.1 and the 

existence of 0 P(C5 2 Xa+b; a5, b5) in Section 4.2. 

The proof will be similar in both cases. We start with a number of paths (6 for 

0P(C3 2 Ka+b; a3, b3) and 10 for OP(C5 I E a + b ;  a5, b5) ) in a subgraph isomorphic to 

Kz I Ka+b = Ka+b,a+b. We impose certain invariant conditions on these paths and 

show that 

(i) paths satisfying the invariant conditions exist, and 

(ii) such paths can be inductively extended to longer paths satisfying the same 

invariant conditions until a solution of 0P(C3 lKa+b; a3, b3) (or 0 P ( C 5  lKa+b; a5, b5)) 

is reached. 



CHAPTER 4. TWO CYCLE LENGTHS - MANY CYCLES 

4.1 Construction of 0P(C3 1 Kn; a3, b3) 

Let n > 0 and let KnSn be the complete bipartite graph with each part having n 

vertices. Let the vertices in each part be denoted as all a2,. . . ,an and b l ,  b2, .  . . , bn, 

respectively. Let permutation a, be as in the previous chapters, i.e., a, = (al,  a2, .  . . , 
an)(bl, b2, . . . , b,). Further, for a given rn, let sl, s2, . . . , sm be positive integers and 

t l ,  t 2 , .  . . , tm be non-negative integers such that CE1 Si . ti = n. We will then denote 

by P($ ,  SF, . . . , s$) the set of graphs G satisfying the following properties: 

1. G is a subgraph of K n ,  and V ( G )  = V(Kn,,). 

2. G is a vertex-disjoint union of C&-Li paths, with exactly ti paths of length si 

for each i ,  1 5 i 5 m, and of a number of isolated vertices. 

3. E(G) intersects each of the edge-orbits of a in exactly one edge. 

Figure 4.1 depicts a graph that belongs to p(12, 3'). 

We will use graphs in P(s7, SF, . . . , s$) as a basis for an inductive construction 

of 0 P(C3 2 En; a3, b3). Lemmas 4.1.1-4.1.4 guarantee the existence of the graphs we 

will need for the construction. 

Lemma 4.1.1 P(13, st, ( ~ + 4 ) ( ~ - ~ ) )  is non-empty for all odd s 2 3 and all t ,  0 5 t 5 3, 

as well as fors= 1 and all t ,  0 5 t 5 2 .  

Proof. We will construct a G E P(13, st ,  ( S  + 4)(3-t)). Note that G has 30 + 6s - 8t 

vertices and is a factor of K15+3s-4t,~5+3s-4t. Let ul = u2 = - - - = ~ 3 - ~  = s + 4 and let 

u4-t = . . . = u3 = S .  Further, let n = 15 + 3s - 4t. Note that u1 + u2 + UQ = n - 3. 

\Ye construct three paths PI, P2 and P3 as follows: 

Figure 4.1: A graph in P(12, 3') 
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Figure 4.2: n = 16, s = 3, t = 2, P with deleted edges highlighted in bold 

Figures 4.2 and 4.3 illustrates how paths PI, P2 and P3 can be viewed as obtained 

from a path P by deleting two edges. Paths PI, P2 and P3 are vertex-disjoint and 

they have lengths US, u2 and ul, respectively. They also intersect each orbit of a 

in exactly one edge except that they do not intersect orbits AB,,, ABu,+u3+1 and 

ABul+u2+u3+1 = ABn-2. To finish the proof of the lemma, we need to find three edges 

in G that belong to one of these orbits each. Further, these edges must be mutually 

vertex-disjoint and vertex-disjoint from paths PI, P2 and P3. It can be seen that the 

edges 

( a m ,  2 b ~ ) ,  



CHAPTER 4.  TWO CYCLE LENGTHS - MANY CYCLES 

*----. Pl - p 2  - p3 
Figure 4.3: PI, P2 and P3 after deletion of two edges from P 

0 Vertices used by Pl U P2 U P3 

Figure 4.4: Insertion of three additional edges 

(an+: + 3 ,  bn-u, -1  ), and 
2 

(an+ul+u2+4, bn-ul-u2-2 
2 2 

) 
will work. Note that here we need to exclude the case s = 1 , t  = 3. In that case, 

u1 = u2 = UQ = 1 and b5 = bn-ul-l, so the three edges are not mutually vertex- 
2 2 

disjoint. Figure 4.4 illustrates their construction. I 

Lemma 4.1.2 P(33, st, ( ~ + 4 ) ( ~ - ~ ) )  is non-empty for all odd s 2 3 and all t, 0 < t 5 3. 

Proof. The construction is very similar to the previous lemma. We will construct 

a G E P(33, st, ( s  + 4)3-t). Note that G is a factor of Kn,, with n = 21 + 3s - 4t. 

- UQ-t = s + 4 and let u ~ - ~  = - .  . = Let ul = u2 = . .. - U S  = S. This time, 

ul + u2 + u3 = n - 9. We will define paths PI, P2 and P3 as follows: 



CHAPTER 4.  TW0,CYCLE LENGTHS - MANY CYCLES 

Paths Pl , P2 and P3 have lengths U S ,  u2 and ul, respectively. They are vertex- 

disjoint and intersect each orbit of a! in exactly one edge except that they do not inter- 

sect the following 9 orbits: A&,, ABu3+1, ABu3+2, ABu2+u3+3, ABu2+u3+4, ABu2+U3+5, 

ABu~+w+U~+~ = ABn-4, ABu1+u2+u3+6 = A&-3, ABu1+u2+u3+7 = ABn-2. 
We will conclude the proof by constructing 3 paths P4, P5 and P6 each of length 3 

which intersect these 9 orbits: 

Lemma 4.1.3 P(33, It, 53-t) is non-empty for all t ,  0 5 t 5 3 .  

Proof. For t = 3 the result follows from Lemma 4.1.1.  For t = 0, it follows by Lemma 

4.1 .2 .  For t = 1 and t = 2 ,  we will construct the required paths. Paths Pl through P4 

will be as in Lemma 4.1.2 (with s = 1 ) .  We need to adjust paths P5 and P6 because 

be = b n - u l - ~ ,  SO the construction in Lemma 4.1.2 does not work here. Paths P5 and 
2 2 

P6 will be as follows: 
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t = 2. Now P5 = (al3, b4, a14, b3) and P6 = ( ~ 1 5 ,  b2, a16, bl) .  

t = 1. NOW P5 = (al5,  b6, a16, b5) and P6 = (a197 b2, a20, bl).  

It is straightforward to check that the paths as constructed here will work. 

Lemma 4.1.4 P(13,  s t ,  ( s  + 4)3-t) and P(33 ,  st ,  ( s  + 4)3-t) are non-empty for all odd 

s 2 1 and all t ,  0 5 t 5 3 except that P(13 ,  13, 5') = P(16)  may be empty. 

Proof., This lemma follows directly from Lemmas 4.1.1,4.1.2 and 4.1.3. 

The next lemma is used for the induction step in our inductive construction. 

Lemma 4.1.5 Let V = { 1 , 2 , 3 )  x {1 ,2 ,  . . . , n )  be the vertex set of C3 2 K, and let P 
be the permutation of V defined by 

Let nl,  nn, . . . , n6 2 3 be odd integers whose sum is 3n. Further, let P I ,  P2, .  . . , P6 

be a collection of 6 vertex-disjoint paths or cycles with vertices i n  V ,  where c of 

P I ,  P2, . . . , P6 are cycles. Finally, let mi be the cardinality of { ( i ,  I ) ,  ( i ,  2 ) ,  . . . , (i ,  n ) )  fl 

( V ( P l )  U V ( P 2 )  U . . . U V ( P 6 ) )  for 1 5 i I: 3. Assume that the following conditions 

are met: 

1. IE(Pi)l 5 ni for all i ,  

2. Pi is a cycle i f  and only if IE(P,)I = ni, 

3. the union of all E (P , )  intersects each edge-orbit of /3 in  at most one edge. I n  

addition, it intersects each of the edge-orbits of P connecting vertices of ((1, I ) ,  

( 1 , 2 ) ,  . . . , (1 ,  n ) )  with vertices of ( ( 3 ,  I ) ,  (3 ,2) ,  . . . , (3,  n ) )  in  exactly one edge, 

4 .  1 E ( P i )  I = ni (mod 4 )  whenever Pi is a cycle and I E ( P ~ )  I I ni + 2 (mod 4) 

otherwise, 

5. each P, that is not a cycle has one of its endpoints i n  { ( I ,  I), (1 ,2 ) ,  (1 ,3 ) ,  . . . , 
(1 ,  n ) )  and the other in ( ( 3 ,  I ) ,  ( 3 , 2 ) ,  ( 3 , 3 ) ,  . . . , (3 ,  n)), and 
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Then  paths PI, P2,. . . , P6 can be extended to  a set of 6 vertex-disjoint cycles C1, 

C2, . . . , C6 S U C ~  that 

7. IE(Ci) 1 = ni for each i ,  and 

8. the union of all Ci intersects each edge-orbit of P i n  exactly one edge. 

Proof. The proof of this lemma is analogous to  the proof of Lemma 4.2.5. The proof 

of Lemma 4.2.5 will be given in Section 4.2. 

Lemma 4.1.6 shows why we were interested in Lemma 4.1.5. 

Lemma 4.1.6 Suppose the assumptions of Lemma 4.1.5 are satisfied. Then 0P(C3 2 
- 
K,, nl,  n2, n3, .  . . , n6) has a solution. 

Proof. The lemma follows as C1, C2, . . . , C6 provided by Lemma 4.1.5 form a 2-factor 

of C3 1 Kn whose cycle lengths are n l ,  n2,. . . ,126 and the action of ,f? on this 2-factor 

yields the desired Zfactorization. 

Lemma 4.1.7 Let 3 5 a < b be odd integers, let n = a + b and let G = C3 2 Kn. Then 

OP(G; a3, b3) has a solution except possibly when (a, b) = (3,5) or ( a ,  b)  = (5,9). 

Proof. The proof is analogous to that of Lemma 4.2.7 which will be provided in 

Section 4.2.. 

Lemma 4.1.8 0P(C3 1 Kg; 33, 53) has a solution. 

Proof. Let 
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be a 2-factor of C3 2 fTn consisting of 3 3-cycles and 3 5-cyclm. Note that 2-factors 

F, FP, F B ~ ,  . . . , F P ~  contain each of the edges of C3 ix,, exactly o n a  -t that the 

edges of the form ((1, i), (2,7)) and ((3, i), (2,8)) are contained twice a, and the 

edges of the form ((3, i) , (2,7)) and ( (1, i )  , (2,8)) are not contained at d. 
Let F' be obtained from F by "swapping" vertices (2,7) and (2,8). Explicitly, 

Note that then F', F'P, F'p2, . . . , F'P7 contain each of the edges of C3 1 e-tly 
once except that the edges of the form ((3, i) , (2,7)) and ((1, i), (2,8)) are contained 

twice each, and the edges of the form ((1, i), (2,7)) and ((3, i), (2,8)) are not contained 

at all. 

Using these observations and some more simple checking, one can easily see that 

graphs F, Fp2, Fp4, FP6, F'P, F'P3, F'P5 and F'p7 form the desired %factorization. 

Lemma 4.1.9 0 P(C3 2 K14; 53, g3) has a solution. 

Proof. Let 

Similar to Lemma 4.1.8, we can see that F is a ?-factor of Cs 1R14 consisting of three 
5-cycles and three 9-cycles. Its edge set intersects each orbit of in e-ly one edge 

except that the edges of the form ((1, i), (2,4)) and ((3, i), (2,13)) are co&iained twice 

each, and the edges of the form ((3, i), (2,4)) and ((1, i), (2,13)) are not contained at 

all. 



Similar to Lemma 4.1.8, we can also see that if F' is obtained from F by "swap 
ping" vertices (2,4) and (2,13), then F, FB2, F,O4,. . . ,FDl2, FIP, Pp, PP5,. . . 
, form a solution to OP(C3 2 R14; 53, g3). 

Thus, we arrive at the following lemma: 

Lemma 4.1.10 Let 3 < a < b be odd integers, let n = a + b and let G = C3 1 x,,. 
Then OP(G; a3, b3) has a  solution.^ 

4.2 Construction of 0P(C5 2 Kn; a5, b5) 

We proceed using an approach similar to that of Section 4.1. We will prove that 

t l ,  0 5 tl 5 5 except for P(15, 15) (which can be seen to be empty). 

We will prove this through a series of lemmas. 
-.- 

Lemma 4.2.1 P(15, st, ( ~ + 4 ) ~ - ~ )  zs non-empty for all odds 2 3 and &$,O 5 t 5 5, 

as well as for s = 1 and all t, 0 5 t 5 4. 

Proof. We will construct a G E P(15, st, (S + 4)5-t). Note that G 488 50 + 10s - 8t 

vertices and is a factor of K25+5s-4t,25+5s-4t Let ul = u2 = . . = 215-4 qti4 + 4 a d  let 

216-t = - 0 -  = U S  = S. Further, let n = 25f5s-4t.  Note that u 1 + u 3 + q j + ~ + u 5  = 

n - 5. We construct five paths PI, P2,.  . . , P5 as follows: 
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Paths PI, P2, . . . , P5 are vertex-disjoint and have lengths US, uq, US, u2 and ul, re- 

spectively. Also, they intersect each orbit of a in exactly one edge. The only excep- 

tions are the following orbits, which are not intersected at all: AB,, , AB,4+,5+1, 

A B U ~ + U ~ + U ~ + ~  7 ABu2+u3+U4+U5+3 and ABul+,2+u3+u4+u5+~ = ABn-2. To finish the 

proof of the lemma, we need to  find five edges in G which belong to one of these 

orbits each. Further, these edges must be mutually vertex-disjoint and vertex-disjoint 

from paths PI, P2, . . . , P5. It can be seen that the edges 

(aH, be), 
2 2 

(an+ul+3, bn-u , - l ) ,  
2 2 

(an+ul+U2+4, bn-ul-u2-z ), 
2 2 

(an+ul+u2+u3+5, bn-ul  -u2-u3-3), 
2 2 

( ~ n + ~ ~ + u ~ + ~ ~ + ~ ~ + 6 ,  bn-UI-u2-u3-u4-4 ) 
2 2 

will work (here we require bd # bn-ul-l, i.e., ul # 1, which excludes the case s = 1 
2 

and t = 5 from the proof). w 

Lemma 4.2.2 P(35, st, ( ~ + 4 ) ~ - ~ )  is non-empty for all odds 3 3 and all t ,  0 5 t L 5 .  
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Proof. We will construct a G E P(35, st, ( s  + 4)5-t).  Note that G is a factor of 

K35+5s-4t,35+5s-4t. Let ul = 212 = s o  = = s + 4 and let U G - ~  = . - - = u5 = S .  

Further, let n = 35 + 5s - 4t. This time ul + u2 + u3 + u4 + u5 = n - 15. Paths 

PI, P2, . . . , P5 will now be as follows: 
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Similar to the previous lemma, paths PI,  P2, P3, P4 and P5 are vertex-disjoint, have 

lengths U S ,  u4, U S ,  u2 and ul ,  and intersect each orbit of a in exactly one edge except 

that they do not intersect the following 15 orbits: 

We will complete the proof by constructing five paths P6, P7, . . . , Plo, each of length 

3 which intersect these 15 orbits: 

P6 = ( a 5 ,  bn-l,ae, b?), 
2 2 

P7 = (an+Ul+3, bn-ul - 5 ,  an+u1+5, bn -u l -7 ) ,  
2 2 2 2 

P8 = (an+ul+u2+6, bn-ul -u2-8,  u ~ + u ~ + u ~ + E ~ ,  bn-ul-u2-10 
2 2 2 2 

> 1 

Pg = (an+ul+u2+u3+9, bn-ul-u2-ug-ll , an+ul+u2+u3+l~,  bn-ul-u2-u3-13),  and 
2 2 2 2 

PIO = (an+ul+u2+u3+u4+12 , bn-ul-u2-u3-u4-14, an+ul+u2+u3+u4+14 , 
2 2 2 

bn-ul-u2-u3-u4-16).  . 
2 

Lemma 4.2.3 P(35, It ,  55-t) is non-empty for all t ,  0 < t I. 5.  

Proof. For t = 5 the result follows from Lemma 4.2.1. For t = 0 it follows from 

Lemma 4.2.2. For the remaining t ,  we will construct the required paths. In all cases, 

paths PI through P6 are as in Lemma 4.2.2. The remaining paths are "shifted" by I. 

Explicitly, they are as follows: 

Case t = 1. Now n = 36 and 
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P 7  = (~23,  b14, a24 , b13), P8 = (a277 b10, a287 b9), 

Pg=(a3l,b6,a32,b5), Plo=(a35,b2,a36,bl). 

g 
Case t = 2. Now n = 32 and 

k 

Case t = 3. Now n = 28 and 

Case t = 4. Now n = 24 and 

It is somewhat tedious but otherwise easy to  check that these constructions work.. 

Lemma 4.2.4 P(15, st, (s  + 4)5-t) and P(35, st, (s + 4)5-t) are non-empty for all odd 

s > 1 and all t ,  0 5 t 5 5, except that P(15, 15, 5O) = P( l lO)  may be empty. 

Proof. This lemma is an immediate consequence of Lemmas 4.2.1, 4.2.2 and 4.2.3.. 

The following Lemma 4.2.5, together with its counterpart, Lemma 4.1.5, provide 

crucial building blocks for OP(an,  bn) with odd a and b. The idea is t o  construct 

a 2-factor of C5 2 En that, under the action of a permutation P, gives rise to a 2- 

factorization of C5 2 En. To do so, we start with paths whose existence is guaranteed 

by Lemma 4.2.4 and expand them, four vertices at  a time, into the required 2-factor. 



CHAPTER 4. TWO CYCLE LENGTHS - MANY CYCLES 76 

The conditions of Lemma 4.2.5 appear somewhat convoluted, but after a short 

observation, they are quite natural. 

Conditions 1, 2 and the first part of Condition 3 are obvious. Condition 4 is 

needed to ensure that we can complete the construction by adding four edges at a 

time. The second part of Condition 3 and Conditions 5 and 6 are invariants that are 

a by-product of the particular construction that we use to construct the 2-factors. We 

need them to ensure that the construction does not "stray" from where we want it to 

go. 

Lemma 4.2.5 Let V = { 1 , 2 , 3 , 4 , 5 )  x { 1 , 2 , .  . . , n)  be the vertex set of C5 1 K, and 

let ,O be the permutation of V defined by 

Let nl,n2,n3,. . . ,nlo 2 5 be odd integers whose sum is 5n .  Further, let P I ,  P2, 

P3.. . . , Plo be a collection of 10 disjoint paths or cycles with vertices i n  V ,  where c of 

P I .  P2, . . . , Plo are cycles. Finally, let mi be the cardinality of { ( i ,  I ) ,  (i, 2), . . . , (2, n))n 
(\/ ' (PI) u V ( P 2 )  U . . . U V ( P l o ) )  for 1 5 i 5 5. Assume that the following conditions 

are met: 

I .  IE(P,)I 5 ni for all i ,  

2. Pi i s  a cycle if and only if ifE(P,)I = ni, 

3. the union of all E ( P i )  intersects each edge-orbit of ,B in at most one edge. I n  

addition, i t  intersects each of the edge-orbits of ,B connecting vertices of { ( I ,  I ) ,  

( 1 . 2 ) ,  . . . , (1 ,  n ) )  with vertices of ( ( 5 ,  I ) ,  ( 5 , 2 ) ,  . . . , (5 ,  n ) )  in exactly one edge, 

4. I E(P,) I - ni (mod 4 )  for all i ,  

5 .  each Pi that is  not a cycle has one of its endpoints i n  ((1, I ) ,  ( 1 , 2 ) ,  ( 1 , 3 ) ,  . . . , 
(1. n ) )  and the other i n  ( ( 5 ,  l ) ,  ( 5 , 2 ) ,  ( 5 , 3 ) ,  . . . , (5 ,  n ) ) ,  and 
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6. m2 + m4 = 2m3, Im2 - m41 5 2, ma = 2(ml - n/2 - 5) + c and m4 = 2(m5 - 

n/2 - 5) + c. 

Then paths PI, P2, . . . , Plo can be extended to a set of 10 disjoint cycles CI, C2, C3, - . . , 
Clo such that 

7. /E(Ci)l = ni for each i, and 

8. the union of all Ci intersects each edge-orbit of ,O in exactly one edge. 

Proof. We will prove the lemma by contradiction. Suppose there is a counterexample 

to the Lemma for a given n. Select a counterexample in which the total number 

of edges in PI, P2,.  . . , Plo is maximal. We will note that there is an i such that 

IE(P,)I < ni. Otherwise, Condition 1 would imply I E(P,)I = ni for all i (i.e., Condition 

7 is satisfied). Then by Condition 2, each Pi would be a cycle. Also, the total number 

of edges in all Pi would be nl + n2 + . - + nlo = 5n. Since there are 5n orbits of 

,O each containing exactly n edges, Condition 3 would imply Condition 8. However, 

then PI, P2, . . . , Plo would be 10 disjoint cycles satisfying Conditions 7 and 8. 

Therefore, we may assume that I E(Pl) I < nl. We may further assume that for all 

i # 1, either IE(Pi)l = ni or ni - IE(P,)I 2 nl - (E(Pl)I. From Condition 4 it follows 

that IE(Pl)I 5 nl - 4. We now proceed in two cases. 

Case 1. I E(Pl)I = nl - 4. We will first show that m2, m3 and m4 are all less than 

n. If ma = n, then Condition 6 implies that ml = n + (10 - c)/2. However, since 

(E(Pl)I < nl,  Condition 2 implies that c < 9. Therefore ml > n, which is impossible. 

Similarly, m4 < n. However, if m2 and m4 are both less than n, then so is m3 by 

Condition 6. Therefore, there are vertices (2, v2), (3, u3) and (4, u4) not yet used by 

any of the paths. We connect the two endpoints of PI,  (1, vl) and (5, u5) with the 

path consisting of these three vertices to create a cycle Pi. Towards contradiction, 

we only need to prove that Pi, P2, P3, P4,. . . , PIO satisfy Conditions 1 through 6. All 

conditions except for Condition 3 are trivially satisfied. To see that Condition 3 is 

also satisfied one only needs to observe that the orbits of ,O (other than those that 

involve edges of the form ((1, i), (5, j))) are of the form { ((i, j ) ,  (k, 1)) : 1 5 1 < n) for 

i E {2,4), 15 j 5 n a n d  k = i f  1. 
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Case 2. I E(Pl) I < nl - 4. Therefore I E(Pl)I 5 nl - 8. Without loss of generality 

we may assume that m2 < m4. Then also m2 < m3 by Condition 6. Also by Condition 

6, ml = (n + 10 - c + m2)/2 and m:, = (n + 10 - c + m4)/2. Since m4 2 m2, we have 

m5 > ml. Therefore, 

On the other hand, 

Combining the above two inequalities gives 

or: equivalently, m2 5 n - 20 + 2c. From Condition 6 we then also get ml 5 n - (10 - 

c)/2. Since c 5 9, we get m2 5 n - 2 and ml < n, i.e., ml 5 n - 1. Furthermore, 

by Condition 6, 2m3 = m2 + m4 5 (n - 2) + n = 2n - 2 and, thus, m3 < n - 1. 

Therefore, one can find four distinct vertices (1, vl),  (2, v2), (2, vk) and (3, 213) which 

are not used by paths PI through Plo. We can now extend path Pl to a path Pi 

by adding these vertices in the following order: (2, v2), (3, v3), (2, vk), (1, vl). We add 

them to the endpoint of Pl whose first coordinate is 1. As in Case 1, it can be seen 

that Conditions 1-6 remain satisfied. 

11-e conclude that in both cases we can extend the set of paths to another set of 

paths satisfying conditions of the lemma. However, since we originally selected the 

set of paths to have the maximum number of edges from among the sets that do not 
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extend to cycles Cl through Clo satisfying Conditions 7 and 8, we know that this 

new set of paths extends to such cycles. However, it means that paths P I ,  P2, . . . , P ~ o  

extend also, which gives a contradiction. rn 

Lemma 4.2.6 Suppose the assumptions of Lemma 4.2.5 are satisfied. Then  0 P ( C 5  1 
- 
K,, nl, n2, n3,. . . , nlo) has a solution. 

- 
Proof. It is easily seen that C1, C2, . . . , Clo from Lemma 4.2.5 form a 2-factor of C51 K ,  

whose cycle lengths are nl, nz, . . . , nlo and that - since each orbit under p contains 

exactly n edges - the action of ,O on this 2-factor yields the desired 2-factorization.. 

Lemma 4.2.7 Let 5 5 a < b be odd integers, let n = a + b and let G = C5 1 
- 
K,. Then  O P ( G ;  a5, b5) has a solution except possibly for the following pairs ( a ,  b): 

( 5 ,  7 ) ,  ( 5 ,  l l ) ,  (7 ,9 ) ,  (7 ,  l l ) ,  (7 ,15) ,  (7 ,19) ,  and ( l L 1 5 ) .  

Proof. Set nl = n2 = . - .  = n:, = a and n~ = n7 = - .  = nlo = b. By Lemma 4.2.6 we 

only need to find 10 paths PI, P2, . . . , Plo that will satisfy the conditions of Lemma 

4.2.5. We will use Lemma 4.2.4 to prove the existence of such paths. We will divide 

the proof into four cases depending on the congruence classes of a and b modulo 4. 

Case 1. a - b - 1 (mod 4 ) .  Since 5 5 a < b, we have n 2 14. Note that 

n - 5 - 1 (mod 4 ) .  Let s be the integer satisfying s - 1 (mod 4 )  and s 5 

(n  - 5 ) / 5  < s +4. Then there is a unique quintuple t l ,  t2, . . . , t5 E { s ,  s + 4) satisfying 

t l  5 t2 5 t3 5 t4 5 t5 and tl + tP + t3 + t4 + t5 = n - 5. Since not all of ti 

are equal to 1 (as n 2 l 4 ) ,  P (15 ,  tl , t2, t3, t4, t5)  is non-empty by Lemma 4.2.4. Let 

PI, P2, P3, . . . , Plo be a collection of paths comprising a graph in P(15 ,  t l ,  t2, t3, t4, t5) 

with I E (Pl)I  = IE(P2)1 = . - - I E(P5)I = 1 and with I E(P5+i) 1 = ti for 1 5 i 5 5. We 

may assume that the vertex set of this collection is ( ( 1 ,  i )  , (5 ,  i )  : 1 5 i 5 n ) .  We will 

show that these 10 paths satisfy the conditions of Lemma 4.2.5. Thus we have c = 0,  
a+b+lO, and - ml = m5 = - 2 2 - m3 = m4 = 0.  

Conditions 3, 4 ,  5 and 6 are obviously met. Since no Pi is a cycle, Conditions 1 

and 2 will be shown to be met if we can prove that IE(Pi)l < ni for all i .  This is 
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obvious for 1 5 i < 5. Since n~ = n7 = - = nlo = b and since tl 5 t2 5 5 t5, it 

suffices to show that t5 < b. However, b > n/2 while 

and thus t5 < n/2. This concludes the proof for Case 1. 

Case 2. a - 1 (mod 4), b - 3 (mod 4). Assume further that n = a + b 2 20. 

The proof is identical to Case 1 with the following adjustment: Now we require that 

s - 3 (mod 4). Note that here we require n 2 20 to guarantee that s > 0. 

Case 3. a - 3 (mod 4) and b - 1 (mod 4). Once again, we require n 2 20. 

Again, the proof is similar to Case 1. First, let s be the positive integer satisfying s - 1 

(mod 4) and s 5 (n - 15)/5 < s + 4 (here we require that n 2 20). Let t l , t2 , t3 , t4 , t5  

be the unique quintuple with tl 5 t2 5 t3 5 t4 5 t5 and t l  + t2 + t3 + t4 + t5 = 

n - 15. By Lemma 4.2.4, P(35, tl,  t2, t3, t4, t5) is non-empty. Let a graph in this set 

be comprised of paths PI, P2,. . . , Plo with IE(Pl)I = IE(P2)1 - . -  = IE(P5)l = 3 and 

with IE(P5+i)l = ti for 1 5 i < 5. As in Case I., we will show that these paths satisfy 

conditions of Lemma 4.2.5. Again, as before, we only need to show that t5 < b. 

However, the same argument as in Case 1. applies here. 

Case 4. a ZE b - 3 (mod 4). Assume further that n > 30. The proof is identical 

to Case 3. except that we require that s zz 3 (mod 4). To guarantee that s > 0, we 

need n 2 30. 

Combining Cases 1-4 covers all pairs (a, b) with the exception of (5,7), (5, l l ) ,  

(71 9)1 (7,11), (7,15)1 (71 19), and (111 

Lemma 4.2.8 Let 5 5 a < b be odd integers, let n = a +  b and let G = C51K,. Then 

OP(G; a5, b5) has a solution for the following pairs (a, b) : (5,7), (5, ll), (7,9), (7, l l ) ,  

(7,15), (7,19) and (11,15). 

Proof. For each pair (a, b) , we will construct an 0 P(G; a5, b5). 

Case 1. (a, b) = (5,7). F will contain the following 10 cycles: 

C1 = ((5, 1 1 1  (4, I), (51 12)l (41 Wl (31 Wl (21 1% (11 12)) 

c2 = ((513)1(~,~)1(2,~)1(31~)1(4,3)) 



CHAPTER 4. T W O  CYCLE LENGTHS - MANY CYCLES 

c3 = ( (5 ,5 ) ,  (1,2),  (2 ,2 ) ,  (3 ,2 ) ,  ( 4 , s ) )  

c4 = ( ( 5 1 7 ) , ( ~ , 7 ) , ( 5 , 2 ) , ( 4 , 2 ) , ( 3 1 3 ) 1 ( 2 1 3 ) 1 ( ~ 1 3 ) )  

c5 = ( ( 5 1 9 ) , ( ~ 1 4 ) 1 ( 2 , 4 ) 1 ( 3 1 4 ) 1 ( 4 1 9 ) )  

C6 = ((51 11)1 (115)1 (215)1 (31 5)1 (41 11))  

c7 = ( (5 ,4 ) ,  (1 ,8 ) ,  (2 ,8 ) ,  (3 ,8 ) ,  ( 4 4 ) )  

c8 = ( (5 ,6 ) ,  (1 ,9) ,  (2 ,6 ) ,  ( 116 ) ,  (2 ,7 ) ,  (3 ,7 ) ,  (4 ,6))  

c9 = ((5, 8) ,  (1,  l o ) ,  (2,  l o ) ,  (3 ,  l o ) ,  (4,  l o ) ,  (3, g ) ,  (4 ,  8 ) )  

c10 = ( (5 ,  l o ) ,  (17 l l )?  (23 l l ) ,  (3,  1 1 ) ~  (27 9)1 (3,6)1(417))- 
Let F' be obtained from F by "swapping" vertex ( 4 , l )  with vertex (4,lO) and ver- 

tex (2 ,6)  with vertex (2,9).  Similar to Lemma 4.1.9, one will observe that F, Fp2,  

Fp4 , .  . . , Fpl0, FIP, F1p3, F1p5,.  . . , F1Pl1 form the desired 2-factorization. 

The proof in the remaining cases will be along the same lines. In each case, we 

will construct two Zfactors F and F' (with F' being obtained from F by swapping a 

few pairs of vertices), such that F ,  Fp2,  Fp4, .  . ., Fpnd2, F'P, F1p3, F1p5,.  . ., F'Pn-l 

form the  required 2-factorization. Although it is rather tedious to  check in each case 

that the 2-factorization is as required, it is essentially trivial. In what follows, we 

will list the pair F, F' in each case. The reader may verify that they are indeed as 

required. 

Case 2. (a ,  b)  = ( 5 , l l ) .  Let F contain the following 10 cycles: 



cui 
V
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Combining Lemmas 4.2.7 and 4.2.8, we obtain the following: 

Lemma 4.2.9 Let 5 5 a < b be odd integers, let n = a + b and let G = C5 1 En. 
Then OP(G;  a5, b5) has a so1ution.m 

4.3 Construction of OP(an, bn) 

The following lemma, which was proven in [7], will help us decompose Kn(a+b) into 

the desired component graphs. 

Lemma 4.3.1 Let n be a positive integer other than 3 or 5. Then KZn+i has a 

2-factorization in which each 2-factor consists of 3-cycles and 5-cycles only. 

Theorem 4.3.2 Let n # 7,11 be odd. Further, let 5 < a < b be odd integers. Then 

0 P(an, bn) has a solution. 

Proof. For n = 1, the result follows from Theorem 2.3.9. For n > 1, we need to prove 

that h'n(a+b) - I has a 2-factorization in which each 2-factor consists of n a-cycles and 

n bcycles. Kn(a+b) - I is a vertex-disjoint union of n copies of Ka+b - I ,  plus a copy 

of Kn I Ta+b. Each copy of Ka+b - I has an OP(a ,  b) by Theorem 2.3.9. Therefore, 

the vertex-disjoint union of these Ka+t, - I has a 2-factorization in which each 2-factor 

consists of n a-cycles and n bcycles. It remains to  prove that K, 2 Ka+b also has such 

a ?-factorization. To this end, note that, by Lemma 4.3.1, Kn has a 2-factorization 
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in which each cycle of every 2-factor is a 3-cycle or a 5-cycle (note that for Lemma 

4.3.1 to apply, we need n # 7 , l l ) .  This 2-factorization induces a division of K, 1 K a + b  

into a collection of (n - 1)/2 2(a + b)- factors, each of which consists exclusively of 

disjoint copies of C3 2 Ka+* and C5 1 z a + b .  One can easily see that the proof will be 

completed if we can show that C3 2 Ka+b has a 2-factorization in which each Zfactor 

consists of three a-cycles and three bcycles and that C5 1 Ka+b has a Zfactorization 

in which each Zfactor consists of five a-cycles and five bcycles. However, this is true 

by Lemmas 4.1.10 and 4.2.9.. 
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Final Remarks 

5.1 Possible Extensions of Our Results 

In the thesis, we solved the Oberwolfach Problem in case OP(a, b) where a and b are 

odd. We believe that our methods can be used to prove all possible cases OP(a, b) 

except when a + b is congruent to one modulo 4. The conjecture below, if true, would 

give us more freedom in selecting the starting 2-factor F and, we believe, would go a 

long way towards settling the remaining cases of the form OP(a, b). 

When n = a + b is congruent to one modulo 4, the methods presented in the thesis 

do not work without modification. The reason for this is that, for the methods to 

work, each of the edges that we use has to be in an edge-orbit of cardinality t = Ly J . 

However, when t is even, our construction produces two orbits of cardinality t /2  each. 

When n is even, we are decomposing Kn - I, and we are able to avoid the edges in 

these orbits, which then form part of the one-factor I .  However, when n is odd, we 

are decomposing Kn, so we cannot avoid any edges. Therefore, in the case when n is 

odd and t is even (i.e., the case n congruent to one modulo 4), the construction does 

not work. 

Conjecture 5.1.1 Let n > 1 be an integer. Then there is a graceful path on n vertices 

with endpoints a and b if and only if all of the following conditions hold true: 

(i) a # b, 
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(ii) 1 5 a,  b 5 n, 

(iii) la - bl has the same parity as Ln/2], 

(iv) la - bl 5 n/2, and 

(v) (n + 3)/2 5 a + b < (3n + 1)/2. 

We will prove that these conditions are necessary for the existence of the desired 

graceful labeling. 

To this end, we define the label length of a path P with the vertex set {1,2,3, . . . , n) 

(denoted by 11 (P) )  as 

For a given n and 1 5 a, b 5 n, we define ll,(a, b) to be the maximum label length 

over all paths on n vertices with one endpoint a and the other b. A path that attains 

the maximum is a maximum label length path. 

The following lemma provides us with insight into structural properties of paths 

with maximum label length. 

Lemma 5.1.2 Let P be a maximum label length path for given n, a and b. Then there 

is no pair of edges (u, u') and (v, v') in P such that max(u, u') < min(v, v') . 

Proof. Suppose the lemma is false. Choose a path P, and edges (u, u') and (v, v') that 

contradict the lemma. Then P can be broken down into five subpaths PI, (u, u'), P2, 

(v, v'), P3 such that each pair of consecutive paths intersect in a single vertex (without 

loss of generality, we may assume that u, u', v and v' appear in this order). We allow 

degenerate paths PI, P2 and P3 consisting of a single vertex. 

Let P; denote the path P2 traversed backwards and consider the path P' = PI, 

(u, v), P;, (u', v'), P3. Then 

Since P' has the same endpoints a and b as P, we reach a  contradiction.^ 

Lemma 5.1.3 calculates 11, (a, b) for some n, a and b. 
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Lemma 5.1.3 Let n, a and b be such that a < (n + 1)/2 and b > (n + 1)/2. Then 

ll,(a, b) = [n2/2J - (b - a). 

Proof. Let P be a maximum label length path with endpoints a and b. We will divide 

the proof into two cases. 

Case 1. n=2k. P contains as many vertices less than or equal to k as vertices 

greater than k. Therefore, if P contains an edge with both endpoints less than or 

equal to k, then P must also contain an edge with both endpoints at least k + 1 (and 

vice versa). However, this would contradict Lemma 5.1.2. Therefore, each edge of P 

must have one endpoint less than or equal to k and the other endpoint at least k + 1. 

Then 

2k k 
2 

(( 22) - b) - ( ( x 2 i )  - a )  = 2k - (b-a)  = Ln2/2J - (b-a).  
i=k+l i=l 

Case 2. n=2k+l. Similar reasoning as in the even case shows that P does not 

contain any edges with both endpoints either less than k + 1 or greater then k + 1, 

and that one of the edges with the endpoint k + 1 has the other endpoint less then 

k + 1 while the other one has the other endpoint greater than k + 1. Then 

Lemma 5.1.4 provides upper bounds on some lln(a, b) not addressed by Lemma 

5.1.3. 

Lemma 5.1.4 Let n, a and b be such that a < (n + 1)/2 and b < (n + 1)/2. Then 

ZZn(a, b) 5 1-1 + (a + b). 
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Proof. As in Lemma 5.1.3, let P be a maximum label length path with endpoints a 

and b. Again, we will divide the proof into the same two cases. 

Case 1. n=2k. An application of Lemma 5.1.2 now implies that P contains exactly 

one edge (w, w') with both endpoints 2 k + 1 and that all other edges (u, u') in P 

satisfy min(u, u') 5 k and max(u, u') > k + 1. Further, we may assume that w < w'. 

Therefore, 

Case 2. n=2k+l. As before, we argue that all edges (u, u') in P must satisfy 

min(u, u') < k + 1 and max(u, u') > k + 1 except that there may be an edge e with 

both endpoints greater than k + 1. If there is such an e, then one of the two edges 

with k + 1 as an endpoint has the other endpoint less than k + 1, while the other one 

has the other endpoint greater than k + 1. If e does not exist, then both edges with 

one endpoint equal to k + 1 have the other endpoint greater than k + 1. We then get 

\\e can now prove the necessity of the conditions in Conjecture 5.1.1. 
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Theorem 5.1.5 Let P be a graceful path on n vertices, with endpoints a and b. Then 

the conditions (i)-(v) of Conjecture 5.1.1 are satisfied. 

Proof. Conditions (i) and (ii) are obvious. For condition (iii) , note that if the vertices 

along the path are labeled consecutively as a = sl ,  SZ, s3 , .  . . , S, = b, then 

(n - l ) n  
2 

= (mod 2), 

Also note that U(P) = ~1z:i = n(n - 1)/2. 

To prove condition (iv), note that it is satisfied whenever either max(a, b) 5 (n + 
1)/2 or min(a, b) > (n + 1)/2. Therefore, we may assume that the conditions of 

Lemma 5.1.3 are satisfied. Then 

However, this implies condition (iv). 

For condition (v), we note that the first inequality in the condition is satisfied 

whenever max(a, b) 2 (n + 1) 12. When max(a, b) < (n + 1) 12, we may apply Lemma 

5.1.4 to get 

Again, this implies the first inequality in condition (v). The second inequality is 

equivalent to (n + 3)/2 5 (n - a + 1) + (n - b + I ) ,  and is thus symmetrical to the 

first inequality.. 

It is far less obvious that conditions (i)-(v) are sufficient for the existence of the 

desired graceful labeling. However, we strongly suspect that the conjecture is true. 

In practice, one will find the following: 

When one of a and b is close to either 1 or to n, the graceful labelings are few but 

they are easy to construct. When a and b are both further away from the endpoints, 
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it becomes difficult to find a general construction. However, in this case, there are 

usually many graceful labelings with the required endpoints. 

We have tested the conjecture numerically by searching through all graceful label- 

i n g ~  for paths with up to 20 vertices. Table below shows typical output. In this case, 

the path has 16 vertices and the entry in the ath row and the bth column shows the 

number of labelings in which the first vertex is labeled a and the last vertex is labeled 

b. 

Although we believe that the conjecture is very likely true, we were unable to prove 

it. 
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