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Abstract

The complete graph of order n, denoted K, is the graph consisting of n vertices and
('2’) edges, one for each unordered pair of vertices. For even n, the graph K, — I is
obtained from K, by removal of n/2 pairwise disjoint edges. A 2-factor of a graph
G = (V,E) is a subset F C F such that each vertex of G is incident with exactly 2
edges in F. Each connected component of the subgraph induced by F is a cycle of
length at least three in G. The shape of F is the multiset (a7?,...,ar*) of lengths of
these cycles. (The symbol a;* expresses that F has exactly n; cycles of length a;.)

The Oberwolfach problem OP(al?,...,a.*) is to determine whether the edges of
K, or K, — I can be partitioned into isomorphic 2-factors, each having a given shape
(al',...,ap*), where n = 3. n;a;. This problem arises in design problems such as the
specification of tournaments and balanced circular arrangements.

The Oberwolfach problem has been solved in the uniform case (i.e., when k = 1).
It is known that in this case the problem has a solution except when a; = 3 and
n; = 2 or n; = 4. Much less is known when £ > 1.

In this thesis, we focus on the cases OP(a}?, a3?) and OP(3,a3?, a3®). In particular,
we prove that OP(a,b) has a solution for all odd a and b, a # b. We also prove that
OP(a™ b") has a solution for all odd a, b and n such that n # 7,11 and 5 < a < b.

We also prove that OP(3,4,n—7) and OP(3, 6, n —9) have solutions for all n not
congruent to one modulo 4. For n = 4k, we prove that the Oberwolfach problem has
a solution in the more general case OP(3,a,n — 3 — a).

A graceful labeling of a graph on n vertices with k edges is an injective mapping
from the vertex set of the graph to the set {1,2,3,...,k + 1} such that {ju —v] :
(u.v) € B} ={1,2,3,...,k}.

il




Throughout the thesis, we prove and use various results on graceful labelings. In
particular, we prove that, for an arbitrary label 1 < a < n, a path on n vertices has
a graceful labeling with one endpoint labeled a. We also conjecture on the necessary
and sufficient conditions for the existence of a graceful labeling of a path on n vertices

with the endpoints labeled a and b.
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Chapter 1

Introduction

1.1 Definitions and Notation

In this section, we introduce the definitions and notation used throughoﬁt this thesis.

For a graph G, V(G) and E(G) shall denote the sets of vertices and edges of G,
respectively. H is a subgraph of G if H is a graph, V(H) is a subset of V(G) and
E(H) is a subset of E(G). H will be called a factor of G if it is a subgraph of G with
V(H) = V(G). A graph whose vertices all have the same degree r is r-regular. An
r-regular factor of a graph is its r-factor.

In our graphs, we will not allow loops, i.e., edges emanating from and terminating
at the same vertex. We will not allow directed edges either.

A multigraph is a graph with at least one pair of distinct edges which have identical
endpoints. Except where we specify otherwise explicitly, all graphs that we discuss
are not multigraphs.

If H is a subgraph of G, then G — H is the graph with V(G — H) = V(G) and
with E(G — H) = E(G)\ E(H).

We say that two graphs G, and G are isomorphic if there exists a bijection i from
1(G,) onto V(G3) such that (i(u),i(v)) is an edge in G, if and only if (u,v) is an
edge in G;. If G; and G, are multigraphs, we will further require that the number
of edges in G, connecting u with v be same as the number of edges in G, cbnnecting

Hu) with i(v).
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For a given n, K, shall denote the complete graph on n vertices. When n is even,
we will denote by K, — I the graph K, with a 1-factor removed (this graph is defined
uniquely up to isomorphism). K, is a graph on n vertices with no edges. A\K,, is a
multigraph in which each pair of vertices is connected by exactly A distinct edges.

A factorization of a graph G is a list of factors of G which form a partition
of E(G). If H\,H,,...,H,, are graphs, then OP(G;H,, H,...,Hy) denotes the
problem of deciding whether G can be factored into m factors such that the ith factor
is isomorphic to H; for 1 < i < m. The symbol “OP” abbreviates “Oberwolfach
Problem”. If all H; are pairwise isomorphic, we write OP(G; H) instead. Since, for a
given G and H, there can be at most one m such that G decomposes into m factors
each of which is isomorphic to H, we do not need to include a reference to m in the
notation.

A 2-factorization of G is its decomposition into subgraphs each of which is a 2-
factor of G. Obviously, a 2-factor is comprised of disjoint cycles. If H consists of n;
cycles of length a; (i = 1,...,s), then we may write OP(G;al*,a3?,...,a?) instead
of OP(G; H). Furthermore, we will usually omit the superscripts that are equal to 1.
Finally, if G is equal to K, (for odd n) or K, — I (for even n), then we will usually
omit G in the notation. Thus, for example, the problem of deciding whether K9 can
be factored into 2-factors, each of which consists of a 7-cycle and a 12-cycle is denoted
OP(7,12).

In our constructions, we will make frequent use of permutations of vertices of the
complete graph K, or the complete graph less a 1-factor, K, — I. In particular, we
will frequently use the permutation ¢, described below (when no confusion results,
we may write ¢ instead of o).

Let t = L’-‘—;—IJ We will denote the vertices of K, as a1, as,...,as,b1,b0,...,0;, 1.

For n even, we will denote the remaining vertex as c;. Then

Qn = (a17a27 R 7at)(blab2a .. ',bt)'

o, induces a permutation of the edge-set of K,,. Note that we omit cycles of length
one when describing a permutation. We will refer to that permutation as «, also.

Obviously, if H is a subgraph of K, then the image a,(H) of H is a subgraph of K,
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VeV Ay

by b2 b3 bt
a; a2 ag at

Figure 1.1: The action of a;, on V(K,), n even

isomorphic to H.
We will denote the two non-trivial vertex-orbits induced by a, as follows:
A={a),aq,...,0:},
B = {by, by, ..., b},
The additional vertex orbits are trivial: {c,} and (when n is even) {c;}. We will
simply write ¢; and c¢; when no confusion may arise.

Further, we will denote the edge-orbits induced by «, as follows:
1. AB; is the orbit containing the edge (@), by4;) for 0 <i <t —1,
2. A; is the orbit containing the edge (a1, a14:) for 1 <¢ < [£],
3. B; is the orbit containing the edge (b1, bi4:) for 1 <4 < |£],

4. AC, is the orbit containing the edge (a;,¢;). In addition, when n is even, AC,

is the orbit containing the edge (a;, ¢2).

5. BC is the orbit containing the edge (b, ¢;). In addition, when n is even, BC>
is the orbit containing the edge (b;, ¢2).

6. Cp is the orbit containing the edge (ci, ¢2) (this orbit exists only when 7 is even).

It is readily seen that all edge orbits have size ¢ except that, when n is even, the
orbit Cy has size 1 and, when ¢ is even, the orbits A% and B% have size t/2 each.

Further, we notice that in case n =2 (mod 4) (i.e., when both n and ¢ are even),
the orbits CO,A_;_, B% induce a one-factor in K,,.

The wreath product GLH is constructed as follows: Replace each vertex of G with a

copy of H. In addition, connect two vertices in different copies of H if and only if the
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vertices in G that gave rise to the copies of H are connected in G. Formally, we have
V(G1H) = V(G) x V(H) and E(G1H) = {((91, h1), (92, h2)) : 91,92 € V(G), b, b2 €
V(H),(91,92) € E(G)}U{((g,M),(9,h2)) : g € V(G),h1,h2 € V(H),(h1,he) €
E(H)}.

1.2 History and Motivation

The Oberwolfach Problem is due to Ringel [11]. As originally posed, the problem asks
whether or not a complete graph on an odd number of vertices can be partitioned
into identical subgraphs, each isomorphic to a given 2-factor.

Since then, the problem has been generalized and studied by a number of authors.
In its most general form in the graph context, the (undirected) Oberwolfach Problem
is the problem of deciding whether, given multigraphs G, H, Hs, ..., Hy,, G can be
partitioned into m factors isomorphic to Hy, Hs, ..., Hy,, respectively.

In addition, a number of related problems have been studied by many authors.
For example, Piotrowski [21] solves the bipartite uniform length cycle analogue of
the Oberwolfach Problem. More recently, Liu [19, 20] has considered the complete
multipartite case, again with uniform cycle lengths.

The so-called Hamilton- Waterloo Problem (introduced in [9], see also [2]) asks for
a 2-factorization of the complete graph K,, n odd, in which 7 of the 2-factors are
isomorphic to a given 2-factor F), and s of the 2-factors are isomorphic to a given
2-factor F,, where 7+ s = [2].

The Alspach Problem asks for a decomposition of K, or K, — I into cycles of given
lengths c;, ¢o, c3, - . ., Cs, Where 3 ¢; equals the total number of edges of K, or K, —I.
The uniform cycle case has been settled (see [5, 14, 23, 24, 25]). In the non-uniform
case, it is known (see [3]) that when all cycles have lengths three or five, then the
decomposition exists as long as the trivial necessary conditions are satisfied.

In the thesis, we deal exclusively with the Oberwolfach Problem.

We will interchangeably use the terms “OP(G; Hy, Hs, ..., Hpy) has a solution”
and “OP(G; Hy, Hs, ..., Hy,) exists”. Further, we shall use the term “we construct
OP(G;Hy, Hy,...,Hy)” to mean that we construct a factorization solving OP(G;
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H\,H,,...,Hp).

In its general form, the Oberwolfach Problem appears to be very difficult. In this
thesis, we will concentrate on the case when G is either a complete graph on n vertices
(when n is odd) or a complete graph on n vertices less a one-factor (when n is even),
and when all H; are identical collections of cycles. Using our terminology, we will
concentrate on the problem OP(al*,a3?,...,a%).

Even this problem is difficult and only a partial progress has so far been made
towards its solution. In this section, we will summarize the most important results
found to date. We will then outline the methods and results presented in the later
chapters.

The “uniform” case, i.e., the case OP(a*), has been completely settled.

Theorem 1.2.1 ([6, 7, 15]) Forn > 3, the OP(a*) has a solution whenever a-k =
n, ezcept that OP(3%) and OP(3*) do not have solutions.

The condition that a - kK = n is the obvious necessary condition in the above
theorem. The theorem says that with the exception of OP(3?) and OP(3*) (which
are known to not have solutions [16]), the necessary condition is also sufficient.

The author extended this result to multigraphs:

Theorem 1.2.2 ([12]) Let A > 1 and let G be AK, (or AK,, minus a 1-factor when
n is even and X\ is odd). Let further a > 3 and m > 1 be such that a-m = n. Then
OP(G;a™) has a solution if and only if none of the following are satisfied:

1.A=2 (mod4),a=3m=2,

2. ANisodd, a=3, m=2, or

S A=1la=3m=4.

Although Theorem 1.2.1 and methods used to prove it provide a powerful basis
for decomposition of complete graphs into 2-factors, so far only limited progress has
been made in generalizing the results for 2-factors with non-uniform length cycles.

Alspach [4] provides a good summary of known results. These results, together
with more recent results [8, 13], provide the following theorem in the non-uniform

cycle length case:
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Theorem 1.2.3 ([8, 13, 16, 17, 18]) The following Oberwolfach problems all have
solutions:

1. OP(3,a) for all odd a > 5,
P(4,a) for all even a > 4,
P(a,a+2) for alla > 3,
P(a,a+1) foralla>3, a # 4,

(3,8a —2) for alla > 1,

(3,4a,4a) for alla > 1,

(2a+1,2a+1,2a+2) foralla > 1,

P(a,a,2[a/2] + 2¢) for alla > 3 and each ¢ =0,2,3,. ..,
OP(2a+1,4") foralla>1and alln > 1,

10. OP(2a+1,(4a)") for alla > 1 and alln > 1, and

11. OP(a%,as) foralln>1,a; 2 3, ay > 4a1n — 1.

0
0
0
0
OP
OP
OP
0

© % NS> A e

All of the results in Theorem 1.2.3 deal with the cases when only two cycle lengths
are present, i.e., with cases of the form O P(a", b™). Furthermore, with the exception
of cases 8 and 11, either one of the cycle lengths is a constant, or the two cycle lengths
are both based on the same parameter.

Cases 8 and 11 are the only two cases which allow for two cycle lengths based on
two parameters. However, even in these two cases, the two cycle lengths must satisfy
restrictive inequalities.

In this thesis, we focus on cases with two independent cycle lengths. In Chapter
2. we prove that OP(a,b) has a solution for all distinct odd a and b.

In Chapter 3 we look at the problem of the form OP(3,a,b). We first expand on
the techniques introduced in Chapter 2 to prove that OP(3,4,s—7) and OP(3,6,5-9)
have solutions for all s which are not of the form s = 4k + 1.

\We then again look at the case with two independent cycle lengths, i.e., the case
OP(3.a.b). We succeed in solving this case for 3+a+b=0 (mod 4).

In Chapter 4 we return to the case with two cycle lengths, this time in the con-
text of OP(a", b"). We introduce additional techniques that enable us to tackle the

problem of having more than 2 cycles in each 2-factor. We succeed in proving that,
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for sufficiently large odd a, b, and n, OP(a",b™) has a solution.

Finally, in Chapter 5 we introduce and discuss a conjecture on graceful labelings
of paths.

Throughout the thesis, we frequently encounter situations where small cases have
to be treated separately. Except where it is easy to check the small cases either
manually or with a computer search using a simple exhaustive search algorithm, we

cover small case proofs in the thesis.




Chapter 2

Two Cycles

2.1 Outline of the Construction

In this chapter, we will solve the Oberwolfach problem OP(a,b) for odd a and b.
In particular, we will prove that OP(a,b) has a solution whenever a and b are odd
integers satisfying a,b > 3 and a # b.

In this section, we outline the constructions that we use in this chapter. Let
n = a+ b We consider K, with its vertices labeled as in Chapter 1. Also, ¢ and o
will be as in Chapter 1.

The following obvious lemma provides the basis for constructing Oberwolfach

Problem solutions through a construction of a base 2-factor.

Lemma 2.1.1 Let n be even and let F be a 2-factor of K, such that

(1) F intersects only those edge-orbits of o that have size t, including each of the
orbits Ay, As, . "’AL%J’ Bl,Bg,...,BL%J, AC,, AC,y, BC, and BC,, and

(11) F does not intersect any of the edge-orbits of  in more than one edge.

Then F, Fa, Fo?, ..., Fa'=! form a 2-factorization of a subgraph of K, isomorphic

to K, — I. Further, all 2-factors in the 2-factorization are isomorphic to F'. m

When F consists of 2 cycles, one with length a and the other with length b, then
F.Fa.Fa?, ...,Fot! solve OP(a,b). Therefore, all that remains is to construct an

appropriate F'.
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We construct F’ as a union of a number of paths and edges. We start with a path
with ¢ edges. The path has the form a;, b, ai11, bj—1, Giv2, 852, . . . (0T a;, b5,a; 1, bity,
@i—2,b;+2,... ). Figure 2.1 shows an example with ¢ =20, ¢ = 1 and j = 15. In that
figure, as in all figures throughout the thesis, the left edge of a vertex label is aligned
with the corresponding vertex. For example, label ‘a; = a;’ corresponds to the first

vertex in the bottom vertex row.

® & 6 6 06 0 ¢ 0 o
a1 = a; ay

Figure 2.1: Construction of /' — initial path

This path intersects all of the edge-orbits of a of the form AB, with each orbit
intersected exactly once. We want to break this path into two subpaths P; and P,
each of odd length. This can be done by a removal of an edge from the path when
t is odd. When t is even, the removal of an edge results in two paths — one of an
even length, the other of an odd length. We then append an extra edge to one of the
endpoints of the even-length path to again create two odd-length paths. We choose
the extra edge so that it is in the same orbit ABy as the edge that was removed from
the path. This ensures that the union of P, and P, intersects each of the edge-orbits
of the form ABj in at most one edge (see Figure 2.2).

b b
> 00 0 o

o &6 06 06 06 ¢ 0 0 o
a]y = a; at

®----@ Deleted edge - @&—@ New edge

Figure 2.2: Construction of F' — P, and P, when ¢t is even

We now have two paths, each with one endpoint in A and the other in B. Also,

these paths use up about one half of the vertices in A and B each. We still need to
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use the remaining vertices in A and B as well as the edge orbits of the form A; and
B;.

We will use up these vertices and edge-orbits by creating 2 more paths - one in
orbit A and the other in orbit B. These paths will have lengths approximately ¢/2
each. We will then attach these paths to the paths P, and P.

For a simple example, consider the construction in Figure 2.2 (here, t is even). We
will want a path on t/2 vertices bjy1,bj12,bj43,..., b, b1, bo, .. .,bj_t/2 such that its
edges intersect each of the edge-orbits By, By, ..., By/s—1 exactly once and such that
b, is one of its endpoints. The existence of such a path can be seen to be equivalent to
the existence of a graceful labeling of a path on ¢/2 vertices, with one endpoint given
label ¢ + 1 — j. We will prove that such graceful labelings exist.

While this example is particularly simple, it describes the approach we will use to
construct the paths in A and B. However, in order to connect these paths with P
and P; and to ensure that all lengths work as desired, we will need additional graceful
labeling results. We prove these results in Section 2.2. With the help of these results,
we will be able to construct the desired paths.

The new paths will connect to the existing paths P, and P, to create two paths of
lengths a — 2 and b — 2. Again, these paths will each have one endpoint in A and the
other in B. We will connect one of the paths to vertex ¢, and the other to ¢;. This
creates F' (and uses up the edge orbits AC,, BC}, AC; and BC3).

While this description does not delve in the detail of constructing paths in A and
B and connecting them to P, and P, it gives the general idea of the construction.

In order to cover all cases OP(a,b) for odd a and b, we have to be able to control
the length of the cycles we create. The construction allows us to control this length
in two ways.

First, we are more or less free to choose the edge that is removed when P, and P,
are created, i.e., we can control the relative length of P, and FP.

Second, the two paths that are constructed in the orbits A and B may be connected
to either the same path P; or, alternatively, one path may be connected to P, and
the other to P,. The former approach will cover the cases of the form OP(m,n —m)

where m < n/4. The latter approach will provide solution to the cases O P(m,n—m)
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with n/4 <m < n/2.
The actual construction in Section 2.3 will also vary depending on the congruence

class of n modulo 8.

2.2 Graceful Labelings

Let G be a graph with n vertices and with % edges. A graceful labeling of G is an
injection from the vertices of G to {1,2,...,k + 1} such that {ju — v| : (u,v) €
E(G)} =11,2,...,k}.

Graceful labelings were first introduced by Rosa [22] who called them b-valuations.
Golomb [10] first introduced the term graceful labeling. It is easily seen that every
path has a graceful labeling. Less is known about the structure of graceful labelings
on paths.

We need the following lemma to construct the paths that we will use in the base
2-factor F in our construction of OP(a,b). To see how Lemma 2.2.1 might be used,
note that a graceful labeling of a path on s vertices, s < (n — 1)/2, can be used to
construct a path with vertices a;, i1, - .., Giys—1 (O bi, bit1, ... biys_1) such that the
edges of the path intersect each of the orbits A;, Az, ..., As_; (or By, By, ..., Bs_1)

exactly once.

Lemma 2.2.1 For every n and m such that 1 < m < n, there is a graceful labeling

of the path on n vertices in which one of the endpoints is assigned label m.

This lemma is easy to believe. In fact, we conjecture in Chapter 5 that a stronger
result is true. However, in spite of its apparent simplicity, we were unable to locate a
proof of Lemma 2.2.1. Abrham [1] proves the result for all m when n is odd and for
all m < (n — 2)/4 (which, due to symmetry, implies the result for m > (3n + 6)/4)
when n is even. In fact, Abrham proves a stronger result for these pairs of n and
m. However, his methods do not provide an obvious extension to cover the remaining
cases in Lemma 2.2.1. Simoson and Simoson [26] conjecture that Lemma 2.2.1 is true.

In order to prove Lemma 2.2.1, we identify the vertices of a path with their labels.

We then need to prove that there is a path on the vertex set {1,2,3,..., n} such that
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one of the endpoints is m and such that {|u—v|: (v,v) € E(G)} ={1,2,3,...,n—1}.

We will build a gracefully labeled path one edge at a time, starting with the longest
edge (i.e., the edge with the maximum absolute value of the difference between the
labels of its endpoints) and working our way down to the shortest edge. We will make
sure that, at each step, the graph constructed up to that point will satisfy certain
invariant conditions that will enable us to continue the construction.

Given n, and given s,t and k satisfying 0 < s < k < t < n+ 1, consider the
following sets of graphs.

1. Sy*(k) is the set of all graphs G such that

(a) G is a path with the vertex set equal to {1,2,...,s}U{k}U{t,t+1,...,n},

(b) one endpoint of G is m and the other endpoint is k (G may consist of a

single vertex, in which case m = k), and

() {li—Jl:G,7) € E(G)}={t—s~1t—s,t—s+1,...,n—1}.
2. S3*(u; k) is the set of all graphs G such that

(a) G is a union of two vertex-disjoint paths P, and P, (P, may consist of a
single vertex, P, contains at least one edge) with the vertex set of G equal
to {1,2,...,s}U{k}uU{t,t+1,...,n},

(b) one endpoint of P, is u,

)
(c) one endpoint of P, is m, and the other is k,
(d) {li—jl:(4,5) € EG)}={t-s,t—s+1,t—s+2,...,n—1}, and
)

(e) if a is the other endpoint of P, then eithera < sanda+(t—s—1) > s
ora>tanda—(t—s—1) <t

3. S3"(u,v;w; k) is the set of all graphs G such that

(a) G is a union of three vertex-disjoint paths Pj, P, and P3 (P; may consist of
a single vertex, P; and P, contain at least one edge each) with the vertex
set of G equal to {1,2,...,s}U{k}U{t,t+1,...,n},
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(b) one endpoint of P, is w,

)
(c) the endpoints of P, are u and v,
(d) the endpoints of P; are m and k,
(e) {li—j:G,j) e EG)}={t—-s+1,t—s+2,t—5+3,...,n—1}, and
(f) if a is the other endpoint of Py, then either a < sand a+ (t —s) > s or
a>tanda—(t—s) <t

We will further partition the set S3*(u; k) into two subsets depending on a. The
set S5"(u; k; —) consists of all those graphs in S3*(u; k) for which a < s. Similarly,
S5 (u; k; +) contains those graphs where a > t.

We use the same rule to partition each S5*(u,v;w; k) into S3*(u,v;w;k; —) and
St (w, v;w; k; +).

We denote by S5t the union of all Sy*(k), Sy*(w; k) and S5 (u, v; w; k).

We say that G is interesting if, for some s and t, G is either in S;*(k), or in S3*(u; k)
for u € {s,t}, or in Sy*(u,v;w; k) for (u,v;w) € {(s — 1,s:t),(s — 1,t5), (s, ;5 —
1), (s, t;t+ 1), (s, + 1;8), (¢, t + 1;8)}.

We say that G is very interesting if it is interesting and it does not belong to
Syt(s,t;t + 1;k;—) with a+t—s = s+ 2 and with s +2 < k < t — 2, nor to
S;H(s,t;8 — 1;k;+) witha — (t — s) =t — 2 and with t — 2 > k > s + 2. Finally, we
say that a very interesting G is m-very interesting if m is as in the above definitions.

We now prove the following lemma.

Lemma 2.2.2 For a given n, let G € S be m-very interesting witht —s > 6. Then

G extends to a gracefully labeled path on n vertices with one endpoint labeled m.

Proof. From the definition of S**, we note that “everything important” happens in
the vertices ranging from s — 1 to ¢t + 1 and that, given s and ¢, we may ignore n.

It is quite tedious but still possiblé to manually check that the lemma holds true
for 6 <t — s < 8 (it is easy to check this on a computer).

Suppose the lemma is false and choose a counterexample with the smallest ¢ — s.

Tables 2.1-2.3 show how to extend any m-very interesting graph to another m-very
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Table 2.1: Extension of S} (k)

Case k | Append Edges Result
SSHE) [s+1| (s+1,t—1) Syt —1)
t—1] (s+1,t—1) S (s)
other | (s+1,t—1) [ S37"" (s + 1;k)

interesting graph (due to symmetry, we omitted the cases of the form S3*(u; k; +) and
S3*(u, v;w; k; +) from the tables).

Note that some of the cases in the table lead to a graph of the form ngl’t/(s’, t;t +
1;k) or of the form ng”t’(s’ ,t';8" —1;k). Such graphs could potentially not be m-very
interesting. However, a review of our construction in these cases confirms that none
of the constructed graphs fall into the non-very interesting category. The cases that
result in graphs of a different form are obviously very interesting too.

Also note that we need t — s > 9 in order for all constructions in the tables
to work. In particular, t — s > 9 is required for the case S3*(s,t;t + 1;k; —) with
a+(t—s)=s+2and with k=1¢t—-2.

The extension patterns provided in the tables reduce ¢t — s by anywhere between
0 and 3. Also, if the first extension does not reduce ¢ — s, then the second extension
does. The extended graph G’ € S¥* is then m-very interesting with ¢ — s’ > 6.
Therefore, by the minimality of ¢t — s, G’ extends further to a graceful labeling with

one endpoint labeled m, which gives a contradiction. m
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Proof of Lemma 2.2.1. The lemma is easily checked for n < 5. For n > 5, note
that the graph consisting of the single vertex m is m-very interesting with t — s =
(n4+1)—0=mn+1>6. The result now follows by Lemma 2.2.2.a

The following describes a special gracefully labeled union of paths in K, which

will be used in a later construction.

Lemma 2.2.3 Letn >4 and let V ={1,2,...,n}. Let further {u,v,w} = {1,2,3}.
Then, unlessn =4 and w =1, orn =5 and w = 2, there exist paths P,, P, and P,
(with some of the paths possibly consisting of a single vertez) such that

(1) V(P)UV(R)UV(P,) =V,

(1t) u,v and w are endpoints of P,, P, and P, respectively,

(i1i) P,, P, and P, are disjoint except that P, and one of P, and P, share a
common endpoint distinct from u,v and w,

() {|la — b} : (a,b) € E(P,)U E(P,)U E(P,)} ={L1,2,...,n — 2} as multisets.

Proof. We will prove the statement by induction on n. Cases n = 4,5 and 6 are easy
to check, so we will assume that n > 7.

Case w = 1: By symmetry, we may assume that v = 2 and v = 3.

(a) We will start building P,, P, and P, as follows: set w; =n—1,u4; =n—2,v; =
n, and let P,, P, and P,, contain the edges uu,, vv; and ww,, respectively. The lengths
of these edges are n — 4, n — 3 and n— 2, respectively. These can be extended to paths
P,, P, and P, if and only if the lemma holds for n — 3 (with w = 2). To see this, note
that the n — 3 vertices to which the lemma is applied are the vertices 4,5,6,...,n,
that w; plays the role of w, and that one will think of the vertices as being labeled
in the opposite direction, i.e., the vertex w; = n — 1 is viewed as having label 2. See
Figure 2.3 for a visual description of the construction.

(b) Alternatively, we may start by building P,, P, and P, as follows: w; = n —
2,u; =n and v; = n — 1, and, as before, let the edges uu;,vv; and ww; be in P, P,
and P,, respectively. Paths P,, P, and P, can now be constructed if and only if the
lemma holds for n — 3 (this time with w = 3).

Note that we only need this alternative construction when n = 8, as in that case

there are no required paths for n — 3 = 5 with w = 2.
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w o u v Uy wp n
1 2 3 4 n—2 n
n—1

Figure 2.3: Lemma 2.2.3

Therefore, we have proved that if the lemma is true for n — 3, then it is also true
for n with w = 1.

Cases w = 2 and w = 3 use similar arguments as Case w = 1 and we omit their
proofs.

Results from the above three cases, together with the fact that the lemma holds

true when 4 < n < 6, imply the lemma in general. m

The following lemma also has a graceful labeling flavour. It can be used to con-

struct special paths in either the orbit A or the orbit B.

Lemma 2.2.4 Let V = V(K,) = {1,2,...,s}, where s > 4, and m be an integer
satisfying 0 < m < s — 3. Then there is s € V and a path P in K, such that

(1) V(P)=V\{s},

(ii) {la — bl : (a,b) € E(P)} = {1,2,...,s =1} \ {s' + m}, and

(ii1) one of the endpoints of P is 1.

Proof. The proof will be by induction on s. It can be checked that the lemma holds
true when s < 7. So we will assume s > 8. If m < s — 6, then we start constructing
P by using edges (1,s) and (s,2). This path can be completed so as to satisfy the
lemma if and only if the lemma holds with s — 2 in place of s and with m + 1 in place
of m (here, we apply the induction hypothesis to the vertex set {2,3,4,...,s — 1}
which we view as being relabeled by subtracting 1 from each label). Since m < s—6,
we have 0 <m+1 < (s —2) — 3, and thus the induction hypothesis applies.

Therefore, we may assume that m > s — 6. Since m < s — 3, we have m €
{s —5.s—4,s -3}
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Case 1. m=s—3. Weset s =2. Hence s + m = s — 1. The path P will start
with the edge (1,s — 1). Proving that this may be extended to P as required is now
equivalent to showing that one can find a path P’ with V(P’) = {3,4,...,s}, with
one endvertex equal to s — 1, and with {|ja — b} : (a¢,b) € E(P")} ={1,2,...,s - 3}.
This is equivalent to the existence of a graceful labeling of a path on s — 2 vertices
such that one of the endpoints has label 2; this exists by Lemma 2.2.1.

Case 2. m = s — 4. The procedure is similar to Case 1. We again set s’ = 2.
Hence, this time s’ + m = s — 2. The path P will start with the edge (1,s). Proving
that this may be extended to P as required is now equivalent to showing that there
is a path P’ with V(P") = {3,4,...,s}, with one endvertex equal to s, and with
{la—1|:(a,b) € E(P)} ={1,2,...,s — 3}. This is then equivalent to the existence
of a graceful labeling of a path on s — 2 vertices such that one of the endpoints is
given label 1; this again exists by Lemma 2.2.1.

Case 3. m = s — 5. We now set s = 3 (thus s’ + m = s — 2). The path P will
start with the edge (1,s), and will also use the edges (2,5 — 1), and (2,5 — 2). We
observe that proving that these three edges extend to a P as required is equivalent to
Lemma 2.2.3 with n = s —~3 > 5 and w = 1. For the purposes of Lemma 2.2.3, one
uses vertices 4, 5,6,...,5 and views them as being labeled in the opposite direction
(vertex s is viewed as being relabeled with 1, vertex s — 1 is relabeled 2, and so on).

Figure 2.4 illustrates this case.

1 2 3=¢

Figure 2.4: Lemma 2.2.4
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2.3 Construction of OP(a,b)

Lemma 2.3.1 Letn > 18, n =2 (mod 8) and let m be an odd integer such that
n/4 <m < n/2. Then there ezists an OP(m,n —m)

Proof. In this case we have n = 2¢t+2 and 4t for some ¢ > 8. For s = 1,3,5,..., 21,
we define five paths in Ky1,. Paths P, and P, are described in the following tables.
Note that in the tables, as well as in similar tables throughout the thesis, we list the
vertices of each path in the first column and the intersected edge orbits in the second

column. For example, the edge (ay/2+1, bt/2+1)—s) of Py is in the orbit AB,_,.

P B
atj2+1 AB;_ Q(1/2+1)- 5L AB,
b(t/2+1)—s AB;_ st b(t/2+1)— Sl AB,
aja+1)-1  ABi_sia Q(t/241)— 2211 AB;
bit/2+1)~(s-1) ABi—s+3 :
: : bt—s AB; s
Qt/241)— 252 AB;_, a; AB,
b(t/2+1)—%1— by

Py: V(P3) = {bt—st1,bt—s42,---,0t,b1,b2,...,by2—s}, the edge-orbits intersected
by the edges of P are By, By, Bs, ..., Bya—1. One of the endpoints of P; is b;. The
existence of such a path is equivalent to the existence of a graceful labeling of a path
with t/2 vertices with one of the endvertices labeled with ¢/2 — s. Such a path exists
bv Lemma 2.2.1.

P, and Fs: The path Pj contains exactly one edge joining A(t/241)— 21 to a, for
some r € {t/2+2,t/2+3,...,t}. The path Ps has a;/24; as one of its endpoints and
is such that V(Ps) = {at/241, atj242, - - -, @t} \ {a- }, and such that the edges of P, and
Ps intersect each of the orbits A;, As, ..., A;/2—1 exactly once. The existence of these

Py and P; is guaranteed by Lemma 2.2.4 (here we are using ¢t > 8).
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b

ORCNORCR G )

C2

a

®o---—-0 P o—e o—e P

P (only vertices highlighted) @ Ps (only vertices highlighted)

Figure 2.5: Example: n =42,t =20, s =5, n/4 < m < n/2

The union P of P; and Ps is a path of length s + ¢t/2 — 2 with one endpoint in
A and the other endpoint in B. Similarly, the union P’ of P, P; and P, is a path of
length (3t)/2 — s. Again, one of its endpoints is in A, while the other is in B.

Figure 2.5 shows how this construction works.

We now join vertex c¢; to the endpoints of P, and join ¢, to the endpoints of P'.
In this way we obtain a 2-factor F, with cycle lengths ¢t/2 + s and (3¢t)/2 — s + 2,
respectively. It is easily checked that the edge set of F' intersects each edge-orbit under
« in at most one edge, and that the only orbits it misses are the orbits A2, B;/2 and
Cy. Therefore, F, Fa, Fo?,. .., Fat™! form a 2-factorization of K, — I.

Since t/2 + s varies over all odd integers m such that n/4 < m < n/2 as s varies

over the set {1,3,5,...,t/2 — 1}, we are done. =

Lemma 2.3.2 Let n =2 (mod 8) and let m > 3 be an odd integer such that m <

n/4. Then there is a solution to OP(m,n —m).

Proof. As before, n = 2t + 2, where 4|t, t > 8. For s =1,3,5,..., % -3, weset P, P
and P; as in Lemma 2.3.1.

P, contains only the edge (a/, +1)— 25l Oy st ). This edge belongs to A;/o—1.

Ps is a path such that V(P5) = {as/2+42, G¢/243, - - - , a¢}, and such that one of its end-

pointsis a,_ 1. The edge-orbits intersected by the edges of Ps are A;, Ao, . .., Ayj2—2-

The existence of such a Ps is equivalent to the existence of a graceful labeling of the
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path of length t/2—2, one of whose endpoints is labeled (s+3)/2, which is guaranteed
by Lemma 2.2.1.

This construction is depicted in Figure 2.6. One may note that the construction
is similar to the construction in Lemma 2.3.1. The main difference is that paths P,
and Ps are modified so that the path P; is attached to the union of the paths P;, Py
and FP; instead of the path P;.

C2

o----0 P o—e P o—e P,

[@ Ps (only vertices highlighted) @ Ps (only vertices highlighted)

Figure 2.6: Example: n =42t =20, s=5, m<n/4

The union P of P,, P5, Py and Ps is a path of length 2t — s — 2 with one of the
endpoints in A, and the other endpoint in B. Similarly, the path P, has one of its
endpoints in A, and the other in B, and is of length s.

If we join ¢; to the endpoints of P, and join c, to the endpoints of P;, we will
obtain a 2-factor F whose cycles have lengths 2¢ — s and s + 2, respectively. As in
Lemma 2.3.1, F, Fa, Fa?,..., Fa'™! form a 2-factorization of K,, — I.

As s varies over the set {1,3,5,...,¢/2 — 3}, s + 2 varies over all odd integers m,

3 <m < n/4, which ends the proof. m

Lemma 2.3.3 Let n = 6 (mod 8), and let m > 3 be an odd integer such that

m < n/4. Then there is a solution to OP(m,n — m).

Proof. We may write n = 2t + 2, where ¢ > 10 is congruent to 2 modulo 4. For
s=13,..., -%—2, we set Py, P, P;, Py and Ps as in Lemma 2.3.2. The same reasoning

as there shows that this lemma holds true. m
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Lemma 2.3.4 Let n = 6 (mod 8), and let m be an odd integer such that n/4 <

m < n/2. Then there is a solution to OP(m,n —m).

Proof. We write n = 2t+2, where t is congruent to 2 modulo 4. Fors =1,3,.. ., %—2,
we set Py, P; and P; as in Lemma 2.3.1.

Let P; be a path such that V(Py) = {a¢j241,0t/242, .- -, as}, Where one of the
endpoints of P; is a;/p41. Further, let F; be such that its edges intersect the orbits
A1, Ay, ..., Aya-1. The existence of such a path is equivalent to the existence of a
graceful labeling of a path on t/2 vertices, with one of the endpoints being given label
1, and as such is guaranteed by Lemma 2.2.1.

The union P of P, and P; is a path of length (3t)/2 — s — 1, with one of its
endpoints in A and the other in B. Similarly, P’, the union of P, and F, is a path of

length ¢/2 + s — 1, with one endpoint in A, and the other in B.

by

bs
@ @ @ @ [

ORCRO b“2+‘—s. be/2

®
C2

TYPOO®e®O®®

a1 At/2+1 az
o----0 P o—o P
[@ Ps (only vertices highlighted) @ P (only vertices highlighted)

Figure 2.7: Example: n=38,t =18, s=5n/4<m < n/2

If we connect ¢; to the endpoints of P, and ¢, to the endpoints of P, we obtain
a 2-factor F, with the cycles of lengths (3t)/2 — s + 1 and ¢t/2 + s + 1. As before,
F,Fa,Fo?, ..., Fa'! form a 2-factorization of K, — I.

As s ranges over {1,3,5,...,t/2—2}, m = t/2+ s+ 1 ranges over all odd integers

for which n/4 < m < n/2, which proves this lemma. m

Lemma 2.3.5 Let n = 0 (mod 8), and let m > 3 be an odd integer such that

m < n/4. Then there is a solution to OP(m,n — m).
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Proof. We may write n = 2t + 2, where t is congruent to 3 modulo 4. For s =
1,3,5,. ,—2—, we define

P B

a% ABO at_—;—_l_s-;l ABS_H
b  AB besa,sr AByy
Q1) AB, Qe1_ 3 ABg ;3
bur,,  ABs bt sss ABypa
a#-z AB4 : :
b%+2 AB5 a; ABt_l

. b,
A+l s—1 ABs—l

7 T2
b et

Py: V(P3) = {bs,b1,b9,bs,..., be_;_1}. The edge-orbits intersected by the edges of
P; are the orbits By, By, B3, ... Bt—l and one of the endvertices is b;. The existence

+1 vertices, with one

of such a path is equivalent to a graceful labeling of a path on :
endpoint given label 1, and thus follows from Lemma 2.2.1.

P, : The only edge in P, is the edge (a H1_st1, 0, s41 ). This edge belongs to A 1
Note that ¢t — (s +1)/2 > (¢t + 1)/2 and, therefore, a;_(s41y/2 is not in V(P,) UV (Py).

Ps: V(Fs) = {a% +1 08, a:}. The edge-orbits intersected by the edges of
Ps are the orbits A;, A,, ..., At_;:i , and one of the endpoints is a,_ sl The existence
of such a path is equivalent to the existence of a graceful labeling of a path on t—;l
vertices, with one endpoint being given label %, and as such is guaranteed by Lemma
2.2.1. Figure 2.8 illustrates this construction.

The union P of P,, P3, P, and Ps is a path of length 2t — s — 2, with one endpoint
in A, and the other in B. P; is a path of length s, with one endpoint in A, and the
other in B. If we now connect vertex ¢; to the endpoints of P, and the vertex c; to
the endpoints of P, we will obtain a 2-factor F', whose cycle lengths are 2t — s and

s + 2, respectively. One can check that the edge-set of F intersect each edge-orbit
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ai Q(t4+1)/2—(s4+1)/2 Qr—(s+1)/2 Gt
Q(t+1)/2

o0 P o—e P o—e P

[@ P3 (only vertices highlighted) @ Ps (only vertices highlighted)

Figure 2.8: Example: n=40,t =19, s=5, m <n/4

in at most one edge, and that the orbits AB; and Cy are missed entirely. Therefore,
F,Fa,Fa?, ..., Fat~! form a 2-factorization of K, — I.
Since s + 2 varies over all odd integers m, 3 < m < n/4, as s varies over

{1,3,5,..., 5%}, we are done. m

Lemma 2.3.6 Let n = 0 (mod 8), and let m be an odd integer such that n/4 <
m < n/2. Then there is a solution to OP(m,n — m).

Proof. Again, n = 2t+ 2, where t is congruent to 3 modulo 4. For s = 1,3, 5, .. ., t—;—l,
we define P, and P, as in Lemma 2.3.5.

Ps: V(P;) = {b1,bo,.. A,b%}. The edge-orbits intersected by the edges of P
are the orbits By, By, Bs, .. ., B:_;_:z, and one of the endpoints of Pj is the vertex ba-;_l.
This path is equivalent to a graceful labeling of a path on %l vertices, with one of the
endpoints being given label %1, and its existence is once again guaranteed by Lemma
2.2.1.

P; contains only one edge, namely the edge (b52 b: Hiys ) This edge belongs to
Bi-a.

Ps: V(Ps) = {a%;,a%;_,_l,at_;_lw,..v.,at}. The edge-orbits intersected by the

edges of P5 are the orbits A;, As, As, . .., At_;_l, and one of the endvertices is ug1. A

path like this is equivalent to a graceful labeling of a path on %—1 vertices, with one

. of the endpoints assigned label 1. The existence of such a labeling is guaranteed by
Lemma 2.2.1.
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[ ] - o
a1 — ¢
L BORORONONORCROROROKO!
Q) Q(t+1)/2—(s+1)/2 Qi—(s+1)/2 Gt
A(t4+1)/2
o----0 o—eo P, o—o F,
@] Ps (only vertices highlighted) @ Ps (only vertices highlighted)

Figure 2.9: Example: n =40,t=19, s=5,n/4 <m <n/2

Figure 2.9 illustrates the construction.

The union P of paths P, P;, P, and Ps has one of its endpoints in A, the other
in B, and its length is t + s — 1, while the length of P, is t — s — 1 (and also, one of
its endpoints is in A, while the other is in B). If we join vertex ¢; to the endpoints
of P, and join vertex ¢, to the endpoints of P, we obtain a 2-factor F', whose two
cycles have lengths t + s+ 1 and t — s + 1. As in the earlier lemmas, this 2-factor
gives rise to a 2-factorization of K, — I. Since t — s + 1 ranges over all odd m such

that n/4 < m < n/2 when s ranges over {1,3,5,...,5*}, we are done. m

Lemma 2.3.7 Let n =4 (mod 8), and let m be an odd integer such that 3 < m <
n/4. Then OP(m,n —m) has a solution.

Proof. The proof of this lemma is essentially same as that of Lemma 2.3.5, with the

)

R

only difference that now s =1,3,5,.

Lemma 2.3.8 Let n =4 (mod 8), and let m be an odd integer such that n/4 <
m < n/2. Then OP(m,n —m) has a solution.

Proof. This is essentially same as Lemma 2.3.6, except that s =1,3,5, ..., t—‘2—3‘- m

Theorem 2.3.9 combines Lemmas 2.3.1-2.3.8 and covers the remaining small cases.

Theorem 2.3.9 Leta,b> 3, a # b be odd integers. Then OP(a,b) has a solution.
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Proof. Lemmas 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5, 2.3.6, 2.3.7 and 2.3.8 cover all pairs
(a,b) except for the pair (3,7). In this case, we will construct a 2-factor F such that

F,Fa, Fa? Fa? form the desired 2-factorization:

F= {(ah b27 bl), (aQa as, ¢z, b3a a4, C1, b4)}

It is easily seen that this 2-factor is as desired. m




Chapter 3
Three Cycles

The skeleton of the constructions used in this chapter is similar to that described in
Section 2.1. However, the factor F' now comprises 3 cycles and, in Sections 3.1 and
3.2, we allow odd n of the form n = 4k + 3. In order to accommodate the third cycle,
we prove additional results with graceful labeling flavour. Also, we can no longer rely
on the paths P, and P, exactly as constructed in Section 2.1. We have to tweak their
construction a bit at times in order to create an appropriate F. The general idea is
the same though. Start with paths that use up most of the edges in the orbits AB;
and combine them with additional paths and/or cycles to create F.

In Sections 3.1 and 3.2 we look at the cases OP(3,4,n — 7) and OP(3,6,n — 9),

respectively. In Section 3.3 we consider the case OP(3,a,n — 3 — a).

3.1 Construction of OP(3,4,n —7)

Lemma 3.1.1 Let n > 16 be an integer divisible by 4. Then OP(3,4,n—7) has a

solution.

Proof. As usual, we write n = 2t + 2. First, we will construct the (n — 7)-cycle.

30
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P
asz AB% AB;_,
b% ABt;Q AB;_»
a4 AB:__%

b% ABt_—_21§_ by ABg-2_9
: LI AB%Z
AB; b3

ABy

P,: P, will contain the edges (a3, a #) and (a e, a1). These two edges contribute
to At_g_l and A =P

P;: P; will be a path such that V(P;) = {a%,a#, ...,04,a1,02}, such that a,
is one of its endpoints, and such that the orbits intersected are A;, Ay, As,..., At=s
(here we are using n > 16). The existence of this path is equivalent to the existenze
of a graceful labeling of a path on % vertices, with one of the endpoints given label
2, and hence P; exists.

P,: P, will contain the edge (b3, b%), which belongs to Bt_;_l_ )

Ps: V(B) = {bH—Tl, bg%g, b%, cey b1}y bg-;_s is one of the endpoints of Ps, and the
orbits used are B;, B, B3, .. ., Bt_;_s. Again, the existence of this path is guaranteed
by its equivalence with the existence of the appropriate graceful labeling.

We set P to be the union of paths Py, Py, P3, Py and Ps. It can be checked that P
is a path of length n — 9, and that its endpoints are in the sets A and B, respectively.
The construction of P is illustrated in Figure 3.1.

If C; is the cycle constructed by connecting ¢; to the endpoints of P, then C; is
an (n — 7)-cycle, and one may observe that it doesn’t intersect any of the edge-orbits
in more than one edge. Further, one may observe that the vertices and edge-orbits

missed by C; are

N
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[ J [ J
C1 C2
LONONONONORO,
a1 as a(t+5)/2 at
o—oe I o—e P e--9F,
@ Ps (only vertices highlighted) [@ Ps (only vertices highlighted)

Figure 3.1: Construction of P for OP(3,4,33)

respectively.

If we set C5 to be the 3-cycle agT, b, ¢z (using the orbits AB

=5
2

and Cj3 the 4-cycle a1, by, g3, by (using the orbits AB t3 JAB 1 ,AB 1 and AB

then Cy, C, and Cj form a 2-factor F which gives rise to an OP(3,4,n —

Lemma 3.1.2 Letn > 66, n =2 (mod 4). Then OP(3,4,n —7) has a solution.

Proof. As usual, n =2t + 2.

7). m

P1 P2 P4 .
A t+4 ABt_—g besa Bt_—-_z_ at+4 Ag—_4
2 2 2z 3 2z 3
b1 AB:_;g b3 Be_;_4_ ay At_—fg
at+6 AB;;1_0 b3+_2 Bﬂ at—2 A_t;g
2 2 2z p1 2z 2z
bt-—z ABi-12 b4 Bt;l_o as Ae;l_o
3 2 p1
bﬁ Bi-12 dt—4 At_—_G
2z 2 p1 2
AB1 b5 Bt—214 ax A3:2_1_2
ABO bt_—i Bﬂ at-10
Z 2 3
ABt—-l bﬁ Bt-218
ABt_z bg_—z;g Bg;_s
b1 Bi-2
a1 AB:+e bi-1s

32

5, ACQ and BCQ),

t+3),
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P; is a path only if 518 > 7, or, equivalently, if n > 66.
P3: V(P3) = {by,bg, by, .. ., b%}, one of the endpoints of P is b_z_—zl_s, and the edge-
orbits used are B;, By, Bz, .. Bz—22 This path is equivalent to a graceful labeling of

=20 vertices such that one of the endpoints is given label 6. The existence

a path on =22
of such a path is guaranteed by Lemma 2.2.1.

Ps: V(Ps) = {a4, as,ae,...,a%}, one of the endpoints of P; is a1, and the
edge-orbits used are Aj, A, Az, ..., A S This is equivalent to a graceful labeling of
a path on t—”2l—2 vertices, with one of the endvertices being given label 3. The existence
of such a Ps is guaranteed by Lemma 2.2.1.

The union P of paths P; through Ps is a path of length n — 9, with one of the

endpoints in A and the other in B. See Figure 3.2 for a visual description of the

construction.
co Y m;o@@@@d%?@ @K@‘t;)g f:+4)/2 b‘
- °
c1 2 = //////'\\\\\\ 2
Ilnnlli'i'i- “ 23 \ as
‘\ / o
o--o P, —o P,
@ Pz (only vertices highlighted) m P5 (only vertices highlighted)

Figure 3.2: Construction of P for OP(3,4,71)

If we let C; be the cycle obtained by connecting ¢; to the endpoints of P, then
C) has length n — 7, intersects each edge-orbit in at most one edge, and misses the

following vertices and edge-orbits.

a2,Q¢, Qes2, ba, b%, be, Ca,

ABis, ABiz2, ABy, ABusz, ABess, AC, BCy, Ay, By, Co.
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If we let Cy be the 3-cycle ao, b%, ¢y (intersecting the orbits AB%, AC; and BC,),
and Cj be the 4-cycle at, by, a2, by (intersecting the orbits AB'—'T” AB;, AB!"F and
ABt_+i5_), then C1, C; and Cjy form a 2-factor which gives rise to OP(3,4,n— 7). m

When n was even, we used either ¢; or ¢, for the 3-cycle. When n = 3 (mod 4),
we only have ¢;. We would like to be able to use ¢; for the n — 7 cycle. Therefore,
the 3-cycle will be either in A or in B. We will use Lemma 3.1.3 to provide us with

such a 3-cycle.

Lemma 3.1.3 Letn > 7 and let V = {1,2,3,...,n}. Then there is a path P and a
3-cycle C such that

(i) V(P)uV(C)=V,

(i) V(P)NV(C) =0,

(111) {lu —v| : (u,v) € E(P)UE(C)} =V \ {n}, and

(iv) one of the endpoints of P is 5.

Proof. The proof will be done by induction on n. It can be checked that the lemma
holds true for 7 < n < 15. So we may assume that n > 16. Now, let P, be the path
5n—3,4,n-2,3,n—1,2,n,1,n — 8. The statement will follow if we can prove that
there exist a path P, and a 3-cycle C’ such that

() V(R)UV(C)=1{6,7,8,...,n — 4},

(ii) V(P)nV(C) =0,

(iii) {ju —v| : (u,v) € E(R)UE(C")} ={1,2,3,...,n— 10}, and

(iv) one of the endpoints of P, is n — 8.
It is readily seen that the existence of such P, and C’ is equivalent to the statement
of the lemma for n — 9 (see Figure 3.3). Since n > 16, n —9 > 7, and thus P, and C’
exist by the induction hypothesis.

We may now set P = P, U P, and C = C’ to complete the proof. m

Lemma 3.1.4 Letn>63, n=3 (mod 4). Then OP(3,4,n—7) has a solution.

Proof. We write n = 2t + 1, where ¢ is an odd integer. Set
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1 2 3 4 5 n—38 n—2 n
n—-3 n-1
Figure 3.3: Inductive construction in Lemma 3.1.3
P1 P2 P4
as AB:-s bu-_s Bﬂ ag Ag:i
2 2 2 2
bi-1 ABi-1 by Bixa aies Ai-3
2 2 2 2 2
as ABgzg bt_ﬁ Bt:_s a1 At_—_s
2 2 2 2
bi-a ABi-n bi_y Bi-s Ai+1 Aer
2 2 2 2 2
ay ABi-s bﬂ Bg;_u ag
2 2 2
bt_—_S ABt~15 bt—2 Bt-l.‘s
2 2 2
: bire Bi1s
2 2
ABI bt_3 Bg;__7
ABy bir1i Bi-ar
2 2
AB; be—s
AB;_o
b3 ABus1

P; and C): P; is a path and C] is a 3-cycle such that

(1) V() UV (Cy) = {besn, besa, besss, .., be—s},

(i) V(P) N V(Cy) = b,

(iti) {|s — j| : (wi,u;) € B(P)UE(C))} ={1,2,3,...,552}, and
(

iv) one of the endpoints of P is b;_g.
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For n > 63, the right-hand side of (i) is a set with at least 7 elements, and thus
the existence of P; and C) follows from Lemma 3.1.3.

Ps consists of a single edge, namely (a;, b:+s) This edge belongs to AB: s,

P consists of the edge (a:-1,a:—5). This edge belongs to Ai-s 9.

2

P; is a path with V(P;) { G159, Qe Qetas, - , Gt} The edge-orbits inter-
sected are A;, Aj, Asz,... A =n and one of the endpoints is a;—5. The existence of

such a path is equivalent to the existence of a graceful labeling of a path on % ver-

tices, such that one of the endpoints is assigned label 5. Therefore, such a path exists

by Lemma 2.2.1 (see Figure 3.4).

bzt11)/2 . *
t4-5)
b i@@@@@@@@@@@onoo
(t— 1)/2 ~

~ 555
.".

’ a1az /////,‘\\ N <R Eam llll-ll n

o— e P UP; o--o P, ——e F,UP;

@ P;UC; (only vertices highlighted) m P; (only vertices highlighted)

Figure 3.4: Construction of P and C; for OP(3,4,72)

2

C, is the cycle 355} ,bt,a%g ,by (and thus intersects the orbits AB;E_s , AB:-1,

\’;'e let P2 be the union of P, through P;. Then P is a path of length n — 9, with
one endpoint in A, and the other in B. If we connect ¢; to these endpoints, we obtain
a cvcle Cjs.

It may be checked that the union of C}, C; and Cj intersects each edge-orbit in at
most one edge. Since the lengths of C1,Cs, and C3 are 3,4 and n — 7, respectively,

the 2-factor comprising these cycles gives rise to an OP(3,4,n— 7). m

Theorem 3.1.5 combines Lemmas 3.1.1, 3.1.2 and 3.1.4 , and covers the remaining

small cases through explicit construction.
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Theorem 3.1.5 Let n > 10, n = 0,2, or 3 (mod 4). Then OP(3,4,n—7) has a

solution.

Proof. Lemmas 3.1.1, 3.1.2, and 3.1.4 cover all but finitely many cases. We will now

construct the 2-factor F yielding the desired OP(3,4,n — 7) in each of these cases.
When n = 0 (mod 4), the only unresolved case is n = 12. In this case, the

2-factor F = (ay, by, by ), (@3, a4, b3, bs), (a2, as, ca, by, c1) yields OP(3,4,5), as desired.
When n = 2 (mod 4), the generating 2-factors for the remaining unresolved

cases are listed in the following table:

Table 3.1: OP(3,4,(4k+2)—T7)

n OP cycles in F'

10 | OP(3,4,3) | (a1, b2, b1), (a2, as, c2, ba), (a4, b3, c1)

14 | OP(3,4,7) | (a1,b2,b1), (as, as, bs, b3), (a2, as, c2, b, as, c1, bs)
18 | OP(3,4,11) | (a1, as,as), (a7, c2, bs, 1), (a2, bs, a3, b3, a4, by, as,
by, be, br, bs)

22 | OP(3,4,15) | (ag,c2, bs), (b1, b3, ba, b5), (a1, a3, as, c1, b, a0, br,
as, bs, az, by, as, bo, a2, as)

26 | OP(3,4,19) | (a1, bs, b1), (a9, b2, bs, ¢2), (a2, as, as, as, as, c1, bz,
bi2, b11, bs, @12, b7, @11, bs, a0, be, ag, bio, az)

30 | OP(3,4,23) | (a1,b1,c1), (ba, ba, bs, br1), (a2, a7, as, as, a4, as, 2,
be, bs, bz, 14, bs, a13, by, a12, b1o, @11, b12, @10, b13, a9,
bi4, as)

34 | OP(3,4,27) | (ar,b7,¢1), (a1, 62, 12, a5), (as, ag, as, C2, b2, bs, ba,

by, b, be, b1, bs, ass, be, a1s, big, @14, b11, 013, bi2, a11,

b, a0, b14, ag, bis, ag)
38 OP(3, 4, 31) (a1> blvcl)7 (b3ab47b67_b14)7(a27a97a37a87a4>a75a5ﬂ

ag, C2, bz, by, bg, bs, by, a1s, bio, a17, b11, aze, b12, a1s,

b3, 14, b1s, @13, big, @12, b17, 11, b1s, a10)
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opP

cycles in F

42

OP(3,4,35)

(a77 b77 01)7 (a37 as, ae, alS)) (ala as, ag, as, Ca, b3) b2)
bs, bg, bs, bg, bao, bs, b1, b1o, G20, b11, @19, b12, a18, by3,
a7, big, a16, b1s, G14, b1s, @13, b17, A12, b1s, a11, big,

a10, a4)

46

OP(3,4,39)

(02, ba, Cl), (b5> bg, bi7, blo), (al, as, ag, 7, a4, A19,
as, ag, C2, b47 b6) b7) b31 b97 bl) blla asg, b12) as, b13)
a0, b4, @19, bis, a1s, bie, a17, bis, ais, b1g, a1s, bao,

a4, b21, 13, b22, 12, a3, 011)

50

OP(3,4,43)

(a1, b1, ¢1), (ag, az, axs, a), (@12, a2, a11, as, ag, as,
as, ag, 2, bg, bs, bio, bs, by, by, by, bg, bag, bi1, b, by2,
g4, b13, Go3, 14, 22, bis, @21, bie, Ao, bi7, a9, b1s,

a7, big, a1, b2o, A1, ba1, Q1a, baz, G13, ba3)

o4

OP(3,4,47)

(as, bs, c1), (br, bs, bao, b11), (a1, as, ag, as, a0, C2, by,
be, b1, b3, big, by, br2, by, b3, asge, b14, A2s, b1s, A4, b1s,
a3, b17, aga, big, @21, brg, G20, ba1, Qrg, bao, A1, bas,

a17, bag, ase, bas, a1s, bog, a14, az, a13, a3, a12, ag, A11,

a7)

58

OP(3,4,51)

(07, br, 01)7 (as, an, as, 012), (ag, as, ao, az, a13, a1,
a14, baz, 15, bos, A1, bos, A17, bag, G1s, ba3, A1, bag,
@20, ba1, G2, bzo, a3, brg, a4, big, ass, b17, azs, bis,
ap7, bis, ags, bia, b3, b3, bas, b12, bs, by, be, by, b1, b2,

bii, bs, by, C2, as, ag, as)

62

OP(3,4,55)

(a1, b1, c1), (s, by, bas, bi3), (a2, a1s, as, a14, 4, a13,
as, a12, Gs, 011, a7, G19, As, Ay, C2, bg, b10, b7, bs, bu1,
by, b12, b3, big, b, b1s, aso, bis, ase, b7, a2g, bis, aor,
big, @26, b20, A5, b21, Aoq, bz, 23, bog, a2z, bas, a21,

bas, @20, ba7, A1, bas, a1s, bag, a17, bso, ale)

When n =3

(mod 4), the generating 2-factors are as follows:

38
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Table 3.2: OP(3,4, (4k+3) = 7)

n OP cycles in F

11| OP(3,4,4) | (a3, bs, 1), (a1, ag, as, bs), (as, bs, by, by)

15| OP(3,4,8) | (a1,as,a4), (az, ba, bs, c1), (as, by, ag, bs, az, by, bs,
b)

19 | OP(3,4,12) | (as, bs, c1), (b, ba, by, bs), (a1, a7, a2, ag, as, b, ag,
bz, ag, bs, ag, bs)

23 | OP(3,4,16) | (a4, by, bg), (b1, b3, ba, bs), (a1, a2, as, as, as, c1, be,
a11, bz, a0, bs, ag, bio, ag, b1, ar)

27 | OP(3,4,20) | (a3, a10, b3), (b1, b2, bs, bs), (a1, ag, az, az, b1z, as, b1,
ag, big, a11, be, a12, bs, a13, b7, b3, bs, €1, as, as)

31| OP(3,4,24) | (as, bs, b12), (a3, a4, ag, as), (a1, az, as, ¢1, bs, bz, by,
be, b1, b2, bg, a1s, b, a14, b1o, a13, b11, a12, b13, a11, by,
a10,b15,69)

35 | OP(3,4,28) | (a4, by, a13), (b1, b7, bs, bs), (a1, as, az, as, as, ag, az,
ag, bis, a0, b1s, a11, bi4, a12, b1z, 414, b12, a1s, b1, aze,
b0, @17, be, b17, b, bs, b, 1)

39 | OP(3,4,32) | (as, bs, b1s), (a4, as, as, a1o), (a1, ag, az, az, as, c1, ba,
by, bs, bz, bg, b3, by, by, b1, a1g, b11, azg, b12, a7, bs,
a16, bia, a1s, bis, a14, b17, 13, big, a1z, brg, an1)

43 | OP(3,4,36) | (as, bs,a16), (b1, bg, ba, b1o), (a1, as, as, az, ag, as,
ayo, @z, a11, bao, a12, b1g, 13, big, ar4, b17, a1s, b,
a17, bis, a1, bi4, @19, b13, Ao, b1a, @21, b1, b2, by, by,
b7,bs,b3,01,06)

47 | OP(3,4,40) | (a7,b7, b1g), (b1, bro, b3, b11), (a1, as, c1, bs, bs, b, bs,
ba, be, b12, 23, b13, A2, b1y, @21, b1s, g0, bie, a19, b17,
a1g, b1g, a17, bao, a6, ba1, a1s, baa, a14, baz, @13, a2,
a12, a3, 11, 44, A10, A8, @9, A6)

39
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n OP cycles in F

51 OP(3,4,44) (aﬁ,algybﬁ)’(a'l,a10aa'27a'12)7 (a’3,a57a81a97a47a11a

az, a13, bag, a14, bas, a15, b2, 16, b21, @17, bao, G138, big,
a0, b1g, @21, b17, @22, b6, A23, b1s, Qo4 b1a, a2s, b13, by,
bia, ba, b11, b3, bro, ba, bas, bs, bg, by, b, C1)

55 | OP(3,4,48) | (as, bs, ba1), (b1, b12, b3, b13), (a1, as, €1, bro, bs, bs, by,

by, b7, b1, be, b1a, a7, bis, ag, bis, a2s, bi7, az, bis,

g3, big, an, b20, @91, b2z, G20, b23, a19, bas, a8, bzs,
ar, b267 a16, b277 ais, a2, a4, a3, @13, A4, @12, 45, A9,
ai1, @10, a7)

59 OP(3:4) 52) (a'77a/227b7)7 (a1’a13,a37 a’l4)a (02,09,011,06,0/15,

bas, 16, bor, @17, bog, a1, bas, a1, bay, G20, bes, a1,
bag, 23, ba1, @24, bag, 25, b, Q26, b1g, A27, b17, ass,
bie, G20, b1s, b1, b1a, ba, b3, b3, bi2, by, b1y, bs, big, by,

bs, bag, be, €1, A12, ag, as, G4, alo)

3.2 Construction of OP(3,6,n —9)

In Lemma 3.1.4 we used a gracefully labeled union of a path and a 3-cycle. In this
and the next section, we will use graceful labelings of unions of a path and a longer

cycle. Lemmas 3.2.1-3.2.4 provide us with such graceful labelings.

Lemma 3.2.1 Letn = 2k + 1 > 3 and let G be the graph consisting of an n-cycle
C and a path P on k vertices. Then G has a graceful labeling in which one of the
endpoints of P is assigned label 2.

Proof. Let V(G) = {1,2,3,...,3k + 1}. We will construct paths P, P> and P as

follows:
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P :
k odd keven
edge lu — v edge
(1,3k) 3k—1 (1, 3k)
(3k,4)  3(k—-1)-1 (3k,4)
(4,3k—-3) 3(k—-2)—1 (4,3k — 3)
(3k—-3,7) 3(k-3)—1 (3k —3,7)
(7,3k—6) 3(k—4)—1 (7,3k — 6)
(5 59) 2 (552,52
b
k odd k even
edge lu — v edge
(3k+1,3) 3(k—-1)+1 (3k+1,3)
(3,3k—2) 3(k—2)+1 3,3k — 2)
(3k—2,6) 3(k—3)+1 (3k — 2,6)
(6,3k—5) 3(k—4)+1 6,3k — 5)
(3k—5,9) 3(k—5)+1 (3k — 5,9)
(32591 700
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zi@@A@@A@ii@@A@@A@E

1 2 3 4 5 (3k +2)/2 3k -2 3k

(3k 4+ 4)/2 3k—-1 3k+1
@ Vertex of P, [@] Vertex of P, A Vertex of P
z Endpoint of P; E Endpoint of P i Endpoint of P

Figure 3.5: Vertex pattern for P, P, and P in Lemma 3.2.1

P:
kodd keven
edge lu — vl edge |u =]
(2,3k—1) 3(k—1) (2,3k—1) 3(k—1)
(3k—1,5) 3(k—2) (3k—1,5) 3(k—2)
(5,3k —4) 3(k—3) (5,3k —4) 3(k—3)
(3k — 4,8) 3(k—4) (3k —4,8) 3(k—4)
(8,3k—7) 3(k-5) (8,3k—17) 3(k—75)
(T, 3) 3 (550 3

Figure 3.5 illustrates the pattern for even k. One observes that the pattern is very
simple — with vertices alternating between the three paths except for possible small
adjustments around the middle of the vertex range, i.e., around 1’%2- One may also
observe that the union of P; and P, is a path of length n — 1, with the vertices 1 and
3k + 1 being its endpoints. Therefore, by appending the edge (1,3k + 1) to this path,
we obtain a cycle of length n. Also, P is a path of length k — 1 with vertex 2 as one
of its endpoints. It is somewhat tedious, but otherwise easy, to check that the union

of P and C is as required. m
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Lemma 3.2.2 Let n = 2k + 2 > 4, and let G be the graph consisting of an n-cycle
C and a path P on k vertices. Then G has a graceful labeling in which one of the
endpoints of P is assigned label 2.

Proof. Now, V(G) = {1,2,3,...,3k + 2}. Paths P;, P, and P are constructed as

follows.

P
kodd k even

edge Ju ~— v edge |u — v
(1,3k+1) 3k (1,3k+1) 3k
(3k+1,4) 3(k—-1) (3k+1,4) 3(k—-1)
(4,3k—2) 3(k-—2) (4,3k—2) 3(k—2)
(3k—2,7) 3(k-3) Bk —2,7) 3(k-—23)
(7,3k—=5) 3(k—4) (7,3k—5) 3(k-—4)
(=1 3kes) 3 (38 3ei2) 3
(g, 0) (52,520 1

2%
kodd k even

edge |u — v edge lu — ]
(3k +2,3) k-1 (3k+2,3) 3k—1
(3,3k—-1) 3(k-1)—-1 (3,3k—=1) 3(k-1)—
(3k—1,6) 3(k—-2)—1 (3k—1,6) 3(k—2)—
6,3k —4) 3(k-3)—1 (6,3k—4) 3(k—3)—
(3k —4,9) 3(k—4)-1 (3k—4,9) 3(k - 4)
(1.0 B SR
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P:
kodd keven

edge lu — v edge lu — v

(2,3k)  3(k-1)+1 (2,3k)  3(k-1)+1

(3k,5) 3(k—-2)+1 (3k,5) 3(k—2)+1
(5,3k—3) 3(k—3)+1 (5,3k—3) 3(k—3)+1
(3k—3,8) 3(k—4)+1 (3k—3,8) 3(k—4)+1
(8,3k—6) 3(k—-5)+1 (8,3k—6) 3(k—5)+1
(352, #54) 4 e

The patterns are similar to the previous lemma; the union of P, and P, is a path on
n vertices, with 1 and 3k + 2 being its endpoints. By adding the edge (1, 3k +2) to
this path, we obtain the cycle C. Again, one may check that if G is the union of P

and C, then G satisfies the conditions of this lemma. m

We will denote the disjoint union of an s-cycle and a path on t vertices by CsFP;.
Unless stated otherwise, we will always assume that V(C,P,) = {1,2,3,...,s+t}.

Lemma 3.2.3 If there is a graceful labeling of Cs P, in which one of the endpoints of
the path is assigned label 2, then there are also such graceful labelings of the graphs
CsPiy3 and CsPiyy.

Proof. Consider first C;P,;3. Let P, consist of the edges (2,s+t+3),(s +t+3,1)
and (1,s+t + 1). If we can show that there is a graph H isomorphic to CsF, such
that

(i) V(H) ={3,4,5,...,t+ s+ 2},

(ii) {Ju —v| : (u,v) € E(H)} ={1,2,3,...,s+t— 1}, and

(iii) one of the endpoints of the path in H is s +1t + 1,
then we are done, because the union of H and P, will be as required (see Figure 3.6).
But the existence of H is easily seen to be equivalent to the existence of a graceful

labeling of C P, in which one of the endpoints of the path is assigned label 2, and as
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s+t+1s+t+3
s+t+2

Figure 3.6: Inductive construction of CsP; 3

such is guaranteed by the assumption. Thus we conclude that the required graceful
labeling of C P43 exists.

Now, consider CyP;14. The idea is the same as for C;F;,3. Let P; consist of the
edges (2,s+t+3),(s+t+3,1),(1,s+t+4) and (s+t+4,4). Now, we need to find
a graph H isomorphic to C,F;, such that

(i) V(H)={3,4,5,...,5 +t+ 2},

(i) {lu=~v|: (u,v) € E(H)}={1,2,3,...,s+t—1}, and

(iii) one of the endpoints of the path in H is 4.

The rest of the proof goes through the same way as in the first part. m

Lemma 3.2.4 Let s > 3 be given and let t be such that t > § + 5. Then there is a
graceful labeling of Cs P, in which one of the endpoints of the path is assigned label 2.

Proof. 1t follows from Lemmas 3.2.2 and 3.2.1 that, for s > 3, CsF; has the required
graceful labeling when ¢t = [s/2 — 1].

From Lemma 3.2.3, it follows that C P, has the required labeling also when ¢t =
[s/2+2] and t = [s/2+ 3]. Applying Lemma 3.2.3, starting with these two values of
t, we conclude that the labeling also exists when ¢t = [s/2+5], [s/2+6] and [s/2+7].
Starting with these three values, it is immediately seen that applying Lemma 3.2.3
inductively proves that the labeling exists for all values ¢t > s/2+ 5, which proves our

lemma. =
Lemma 3.2.5 Letn>60, n =0 (mod 4). Then OP(3,6,n—9) has a solution.

Proof. n = 2t + 2, where t is odd. We construct the following paths and cycles:
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b
Gess AB t=s : AB;
b AB s : ABy
Gegs AB et AB;_4
b1, AB =
Qg AB =1 a; AB 13

P V(R) = {az,a3,a4,...,a%}, one of the endpoints of P, is e, and P,

meets each of the orbits A4;, As, A3, ..., At_;_l exactly once. The existence of this P, is
1
endpoint assigned label 1, and thus is guaranteed by Lemma 2.2.1.

Py and Cy: V(PBUC)) = {bl,bz,b3,...,bt_§_1}, C, is a 6-cycle, P; is a path of
length =12, one endpoint of P is by, and E(Ps) U E(C)) intersects each of the orbits

By, B,, Bs, .. .,Bt_—_2-_3_ exactly once. The existence of such P; and C] is seen to be

equivalent to the existence of a graceful labeling of a path on vertices, with one

equivalent to the existence of a graceful labeling of C’GP%, in which one of the
endpoints of the path is assigned label 2. Since n > 60, we have t > 29 and % > 8.
The existence of the graceful labeling now follows by Lemma 3.2.4.

Cs is the 3-cycle a;, bt_—;_l ,¢1 (and thus intersects the orbits ABt_;_l ,AC] and BC)).

P; consists of the single edge (b, b%) (and thus intersects the orbit Bia )-

Now, P = P, U P,U P; U P, is a path of length n — 11, with one endpoint in A,
and the other in B. We extend P to a cycle C by connecting its endpoints to co. See
Figure 3.7 for a visual description of the construction.

It is easily checked that the 2-factor F' formed by C;, C> and C intersects each of
the edge-orbits in at most one edge. Since the lengths of C;,C> and Cs are 6,3 and
n — 9, respectively, F gives rise to an OP(3,6,n —9). m

Lemma 3.2.6 Letn >62, n=2 (mod4). Then OP(3,6,n—9) has a solution.

Proof. n =2t + 2, where t is even. We will construct the following paths and cycles:
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III/II—_I-:llIIIIIIIIIIO

b1 b(e—1)/2

RNV

) °
1 €2
$6000000000000000006@
a(t+3)/2 at
——o P —e P
@ P, (only vertices highlighted) m P; U C; (only vertices highlighted)

Figure 3.7: Construction of P and C, for OP(3,6,71)

Pl :

a% AB_;_

b, ABes AB;
a# AB% AB()
b1 ABis AB,_,
at+6 ABL—Q

2 2
bt—2 AB;—Z_IZ_ ay¢ AB%
at+8 ABt_—g bgiz_

2 Z 2

Py V(P) = {az,a3,a4,...,a%}, one of the endpoints of P is a, and the
edge-orbits intersected by P, are A;, A;, As, ... ,At_;_z. The existence of such a P; is
equivalent to the existence of a graceful labeling of a path on % vertices, such that
one of the endpoints is assigned label 2, and as such is guaranteed by Lemma 2.2.1.

P; and C: V(B)UV(C)) = {bl,bz,bg,,...,b%}, C, is a 6-cycle, P; is a path
on %li vertices, with b, being one of the endpoints. The edge-orbits intersected by
E(P;) U E(C,) are By, By, Bs, . .. ,Bt_;_g. Similarly as in Lemma 3.2.5, the existence
of P; and C; is guaranteed by Lemma 3.2.4 (here we need n > 62).

Cs is the 3-cycle ay, b%, ¢1 (the edge-orbits intersected are AB 2, AC; and BC)).

Py consists of the single edge (b,, b%) (intersecting the orbit B t_%g)
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966556@@@@@@@@@@@@b
1

€1

LY
OENEEENEENNEEERERNESN

at/2
Q(t+4)/2

o—eo P ——oe Py
m P, (only vertices highlighted) @ P3 U C, (only vertices highlighted)

Figure 3.8: Construction of P and C) for OP(3,6,69)

48

The union P of P, through P, is a path of length n — 11, with one of its endpoints

in A, and the other in B (see Figure 3.8). We obtain an (n — 9)-cycle C by joining

the endpoints of P to c,.

The 2-factor F comprising C1, Cy and Cj intersects each edge-orbit in at most one

edge, does not intersect any of the orbits with size less than ¢ (i.e., orbits A%, B% and

Cby), and thus gives rise to an OP(3,6,n—9). m

Lemma 3.2.7 Letn > 55, n=3 (mod 4). Then there is an OP(3,6,n —9).

Proof. n =2t+ 1, where t is odd. We will construct the following paths and cycles.

P

a2 ABen ABjy
b%g AB%Q AB;

a; AB ts
b% AB % b1 AB =
ai-1 ABgse as ABes
b &7 AB eu b, AB =
a2 AB 13 st AB g1

ba
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P, and Cy: V(R) UV(Cy) = {ay,a9,as,.. .,a%}, C, is a 6-cycle, P, is a path
on ‘;21—1 vertices, with a, being one of its endpoints, and P, and C; are such that
the edge-orbits intersected by E(FP;) U E(C)) are the orbits A;, A;, A, . .. ,At;_l . The
existence of these P, and C; is equivalent to the existence of a graceful labeling of
C’GP% in which one of the endpoints of the path is given label 2. Such a labeling is
guaranteed by Lemma 3.2.4 (here we need 512 > 8, but this is guaranteed by n > 55).

P; and Cy: V(P3)UV(Cy) = {by, b2, b3, ..., bt_;_1}, where C is a 3-cycle and P; is a
path on % vertices. One of the endpoints of P; is by, and the edge-orbits intersected
by the edges of Cy and P; are the orbits By, B, Bs, ... ,B%_l. As in the case of P,
and C;, Lemma 3.2.4 guarantees the existence of P; and C,. Figure 3.9 illustrates

this construction.

0000000000000 00000W®

a2 2(143)/2

*—=e P1
@ P> U C; (only vertices highlighted) m P; U C; (only vertices highlighted)

Figure 3.9: Construction of P, C; and C, for OP(3,6, 70)

The union P of P, P, and P; is a path of length n — 11, with one endpoint in A,
and the other in B. We extend it to an (n — 9)-cycle C by connecting its endpoints
to ¢;. The union F of C,C) and C, is a 2-factor intersecting each of the edge-orbits
in at most one edge. Since the lengths of the three cycles C,C; and C, are n — 9,6
and 3, respectively, F gives rise to an OP(3,6,n—9). m

Theorem 3.2.8 Letn > 12, n = 0,2 or 3 (mod 4). Then OP(3,6,n —9) has a

solution.

Proof. Lemmas 3.2.5, 3.2.6, and 3.2.7 cover all but finitely many cases. We will now

construct the 2-factor F yielding the desired OP(3,6,n — 9) in each of these cases.
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Whenn=0

(mod 4), the 2-factors are listed in the following table:

Table 3.3: OP(3,6,4k — 9)

orP

cycles in F

12

OP(3,6,3)

(az, by, 02), (al, as, as, bs, b3, bz), (as, b1, 01)

16

OP(3,6,7)

(b1, ba, ba), (a1, ag, as, as, c1, bs), (as, bz, a, bs, ar,

b5) C2)

20

OP(3,6,11)

(bl: bs, b4), (ah as, ag, az, bs, 01), (047 as, by, az, bg,

as, b7) ag, b67 b2a C2)

24

OP(3,6,15)

(bla b37 b4), (alv a4, as,as, C, b5)’ (a27 ag, bll7 as, b107

ag, by, a10, bs, a11, bz, ba, bs, 2, a7)

28

OP(3,6,19)

(b3, ba, bs), (a2, as, as, as, 1, b2), (a1, as, 10, C2, b1,

bs, b13, b7, a13, b, a12, by, a11, bio, ag, b11, as, b2, a7)

32

OP(3,6,23)

(ala ar, a8)7 (b27 b127 bG) b5’ as, cl)a (a2a a4, Ay, b157
a0, b1s, 11, b13, @12, b11, @13, b1o, a4, by, a1s, bg, b1,

b37 b77 b4, C2, a3, aG)

36

OP(3,6,27)

(b37 b67 b8)7 (al’ as,as,as, b2) C]), (a47 ar, e, A13, as,
ag, big, @10, b1s, @11, b1a, @12, b3, @14, b12, a1s, b11, Az,
bio, @17, bg, b17, b7, by, bs, by, ¢2)

40

OP(3,6,31)

(ala as, a6)7 (a87 b8; b15a b7a b27 Cl), (a2a a0, a3, ag, a7,
as, €2, by, b3, bg, by, bs, by, big, arg, b1y, ass, b1z, a17,

bis, a6, b1a, a1s, b1g, a4, b17, a13, bis, a12, big, au)

44

OP(3,6,35)

(b4a b5) b21)a (a2a as, as, C1, b77 a7)a (ala Qa10, a4, as,
ai¢, g, 46, Ca, b8) b67 b3a b9a b2’ blOa bl) bll; @21, b127
a0, b13, a19, b14, a1s, bis, a7, bis, a1s, b17, a14, b1s,

a13, big, a12, b20, a11)

48

OP(3,6,39)

(al, as, a6)7 (a8’ bSa b21 b5a b37 Cl), (a27 a12, 03,011, a4,
a0, a7, Gg, C2, bz, bg, b1g, b1s, by, bs, b11, b1, b12, a23,
bis, @a2, bi4, a2, bis, ag0, bie, a9, b17, a1s, b1g, a17,

bao, G16, b21, A1, bao, Q14, ba3, Q13)

50
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n opP cycles in F

52 | OP(3,6,43) | (bs, bs, bs), (a4, as, c1, by, ag, ag), (a1, a1z, az, as, as,
ay0, @19, @11, G, C2, by, by, bg, b1, b3, b1y, b2, b2, by,
b3, @25, b14, azs, b1s, az3, b1, A2z, b17, @21, b1s, G20,
big, a1s, bao, a7, ba1, @1, b2z, a1s, bas, Arg, bag, a13)

56 | OP(3,6,47) | (a1, as, ar), (bs, bs, b1g, ar0, 1, b7), (a2, a14, a3, a13,
ay,a12, as, ag, a11, Gs, C2, bs, bg, b1z, b1, b11, b3, by, by,
b3, b1, b1a, a7, bis, ase, bis, A5, b17, @24, b1, a23, b1,
22, bao, @21, bz, @20, ba3, A1, bag, ass, bas, a7, bos,
a6, bar, 015)

When n =2 (mod 4), the 2-factors are:
Table 3.4: OP(3,6, (4k + 2) — 9)

n OP cycles in F’

14 | OP(3,6,5) | (aq,bs,c1),(a1,b1,as,as, as, bs), (az, bs, bs, by, C2)

18 | OP(3,6,9) | (b1,bs,bg), (a1,a2,bo,c1,as,a3), (ag, bz, as, bs, az,
bs, ag, by, C2)

22 | OP(3,6,13) | (a1, a2,as), (as, c1, by, b3, ba, ¢2), (ay, as, bro, ar, be,
ag, br, ag, bg, ayo, bs, bg, by)

26 | OP(3,6,17) | (a1, as, as4), (a2, ag, as, c1, bs, bs), (as, b11, a7, bro, Gs,
by, @10, bs, a11, b7, a1, bg, by, b1, bs, b1a, C2)

30 | OP(3,6,21) | (bs, bs,b11), (a1, ar, as, as, c1, by), (as, ag, 2, bg, by,
bs, by, a14, bg, a13, by, a12, bio, a11, b12, aro, b13, ag,
bis, as, as)

34 | OP(3,6,25) | (a7,b7, c1), (a1, as, as, as, a1z, ag), (ag, as, bys, Go,
b4, @10, b13, a11, b12, @13, b11, a14, b1o, @15, by, ase, bs,
b1, bs, bis, bs, b3, by, ba, C2)

51
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oP

cycles in F

38

OP(3,6,29)

(ag, ba, c1), (b1, bs, bs, bg, bra, b7), (a1, a9, a3, ayo, bis,
a1, bir, @12, bis, G13, bis, @14, b13, a1s, b1z, ase, b1y,

air, blOa a8, b97 b4, b3, Ca, 04, 0g, a5, O7, a6)

42

OP(3,6,33)

(O“Sa bSa Cl), (ah a2,04,07,015, a6)s (a37 ag, ds, C2, bsa
by, b, bag, b3, b7, ba, by, b1, b10, a0, b11, A1, bi2, a1s,
bi3, @17, b4, a1, b15, @14, D16, Q13, D17, Q12, b1g, 11,

b, 010)

46

OP(3,6,37)

(ah bla cl)a (b2> bGa b9) b7’ b17a b8)> (aza a, a3, a9, 4,
ag, s, Gs, ¢, 47, C2, by, bs, b1o, b3, b11, a2, b12, @21,
bi3, a20, b14, 19, b1s, G1s, 16, Q17, b1s, G16, D19, A5,

bao, @14, b21, Q13, bag, G12)

50

OP(3,6,41)

(a9, by, 1), (a1, as, 10, a7, G138, G8), (a2, A4, Gs, A11,
as, @12, bes, @13, b2, @14, ba1, 15, boo, a1s, b1g, A17, bis,

a9, D17, G20, bis, @21, b1s, 22, b14, 23, b13, 24, b12, by,
bi1, b2, big, bs, bs, be, baa, b, b3, by, C2)

o4

OP(3,6,45)

(@11, b11,¢1), (b1, ba, b, bs, bao, be), (a1, as, azo, as,
a2, as, @13, G2, G14, bag, Q1s, bas, a6, bag, @17, b23, a1s,
baa, @19, b21, @20, b1g, @21, b1g, G2z, b17, @23, b16, Go4,
bis, ags, bia, ase, b13, b3, bi2, bs, big, s, b7, C2, as, ag,

ar, as)

58

OP(3,6,49)

(ag, ba, 1), (a1, as, @12, as, G21, ag), (@3, A13, G4, Q11

a10, 7, Gs, C2, b7, by, bg, b3, bg, byg, bag, b11, bs, b1z, by,
b3, by, bia, ags, b1s, ag7, bis, ass, b17, G2s, big, G4, b1g,
93, b, G22, ba1, @20, baa, @19, b23, 18, bag, 17, bys,

a16, bog, 15, b7, a14)

When n = 3

(mod 4), the 2-factors are:

52
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Table 3.5: OP(3,6, (4k +3) — 9)

OP

cycles in F'

15

OP(3,6,6)

(a2, b3, cl)a (ala a4, as, as, b7> bl): (a67 b2> b67 b47 ay,
bs)

19

OP(3,6,10)

(ala Qy, b4)7 (a27 as, as, Cy, b2a a7)7 (a6) b7, as, bﬁa Qg,
b5v b17 b37 bg, b8)

23

OP(3,6,14)

(a2, as, a6)7 (a47 b47 b37 b5) b2a b9)7 (ala as, Ci, b17 bﬁa

a1, b71 a0, b8a ag, b101 asg, b117 a7)

27

OP(3,6,18)

(ag, a3, as), (a4, @10, as, a7, €1, ba), (a1, b, b2, by, bs,

b3, bs, bi2, ag, bi1, ag, b1o, 11, be, @12, bs, a13, b7)

31

OP(3,6,22)

(a7, bz, 01), (b1, bs, by, bs, b1, bs), (a1, as, as, bs, ag,
bi4, @10, b13, @12, b11, @13, bio, a14, by, a1s, bs, bs, az,

ag, a5, 411, a4)

35

OP(3,6,26)

(a2, b27 c1)7 (b17 b5a bSa b67 b147 b7)a (al) as, 13, g, 04,
ar, ag, as, g, b17, a1o, b1s, @11, b1s, a12, b13, a4, by2,

ass, b1, a1e, b10, @17, by, by, bs)

39

OP(3,6,30)

(a27 b2v cl)a (b17 b57 b87 bG) b15) b7)) (ab a4, 0g, 014, A5,
ag, ag, as, G190, 19, a11, b1s, @12, b17, 13, b1s, A15, b1y,

a1, b13, @17, b12, Q1s, b11, G19, D10, b3, b, by, a7)

43

OP(3,6,34)

(a1,by,c1), (ba, bs, bg, bg, b17,b7), (as, a7, are, as, as,
a1, ba1, @12, boo, @13, big, @14, b1, a1s, b1, a17, b1s,
aig, bia, @19, b13, G20, b12, @21, b11, b3, big, by, be, a4,

as, ag, a3, a10)

47

OP(3,6,38)

(a’7a ag, bg)a (b17 b67 b107 b77 b187 b8)7 (a'ly Qay,011, as,
aig, as, s, A4, 317, G, @12, b23, Q13, b2z, 14, bo1, @15,

bao, @16, b1g, A18, 17, @19, b16, @20, b1s, G21, D14, G22,

b3, a23, b12, b3, b11, bs, ba, b2, 1)

53
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n OP cycles in F
51 | OP(3,6,42) | (ag, a11,b11), (b1, ba, b2, bs, bao, bs), (a1, as, a1g, az,

as, as, Gg, @10, G4, A12, A3, A13, bas, G14, bay, ais, b,

16, baa, a17, ba1, a1s, big, @20, b1s, @21, b7, ase, b,

g3, bis, aga, b, ass, bis, b3, b2, bs, big, bg, br, C1)

3.3 Construction of OP(3,a,n — 3 — a)

For graphs Gy, G,,...,G,, we will denote by G; UG, U --- U G, any vertex-disjoint
union of graphs isomorphic to G1,Ga,...,G,. Also, we will denote by C,, the cycle
on n vertices. Finally, in Lemmas 3.3.1 and 3.3.2 only, we will use P, to denote the
path on n vertices.

We start this section with two more graceful labeling results.

Lemma 3.3.1 Let m > 13 and let G = PsUC3 U P,,_¢. Then G has a graceful
labeling in which one of the endpoints of P; has label 1 and one of the endpoints of

P,,_¢ has label m.

® O o6 o o o o o 0 o o o o o o ®
m—1
o—e P; o----@ An edge of P,_¢

Figure 3.10: Lemma 3.3.1

Proof. For m > 13, P; will be the path 1,m—1,2. P,,_¢ will contain the edge (m, 4).
The rest follows by Lemma 3.2.4 (see Figure 3.10).
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For m = 13, we construct the graceful labeling explicitly: P, = 1,12,7, C; =
4,6,10 and P, =13,3,11,2,9,8,5. m

Lemma 3.3.2 Let m > 13 and let G = P, UC3 U P,_s. Then G has a graceful
labeling in which one of the endpoints of Py has label 1, and one of the endpoints of

P,._s has label m.

Proof. P, will be the path 1,m — 1. P,,_s will contain the edge (m,3). The rest
follows by Lemma 3.2.4. m

Lemma 3.3.3 Letn>48, n=0 (mod 4) and leta <n—3—a. Then OP(3,a,n—

3 — a) has a solution whenever a > 3.

Proof. We write n =2t + 2. Let s = [_%zj Construct P;, P, and P; as follows.

Pll Pzi
auges ABegm e
b1 ABigm begers ABigs
augpn ABtye Gm1 ABiger
bos ABrges brogs ABrges
Gugpes ABiger G2 ABgen

bi2s+7 ABi—sst13
2 2

Qg ABt_—#—g ax AB%

2

bss brs1
2 2

Py: Vertices of P; are the vertices of B which are not used by P; and P, plus the

vertex bes. This vertex is one of the endpoints of P;. The edge-orbits intersected by
2

P; are the orbits By, B,,..., B 1. The existence of such a path follows immediately

from Lemma 2.2.1 (connect b% to bess and use this latter vertex as an endpoint

t+3_ t—1
2 b3

of a path on {bt+2—sa bt+3—57 ey bt, bl, b2, ceey bt_—_2§s+_1})
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as Q142941
11241

—e P o--9o P
@® P; (only vertices highlighted) m Py U Ps U C] (only vertices highlighted)

Figure 3.11: Example: n =80,a =11, s =4

Py, Ps and Cy: V(PyU Ps UCh) = {as, asq1, - - - ,at_+z2s_+1}. C) is a 3-cycle, Py is
a path of length 1 (if a is even) or 2 (if a is odd), with one of its endpoints being
as, and P; is a path of length 2 (if a is even) or 5 (if a is odd), with one of
its endpoints being Qt2st1. The orbits intersected by E(P; U PsU C)) are the orbits

Ay, Ag, Az, ... ,At;_l. The existence of Py, Ps and C) is guaranteed by Lemma 3.3.1

(when a is odd) or 3.3.2 (when a is even). Note that here we need n > 48. Figure
3.11 depicts the construction when n = 80 and when a = 11.

The union of P, and P; is a path of length a — 2 with one of its endpoints in A
and the other in B. The a-cycle C, is obtained by joining the endpoints of this path
to ¢;.

The union of P, P; and Ps is a path of length n — 5 — a with one of the endpoints
in A and the other in B. The (n—3—a)-cycle Cj; is obtained by joining the endpoints
of this path to c;.

The 2-factor F' comprising Ci, C, and Cj intersects each edge-orbit in at most one

edge and gives rise to an OP(3,a,n—3—a). m

Lemma 3.3.4 Letn <48, n=0 (mod 4) and let a be such that3 < a<n—3-—a.
Then OP(3,a,n — 3 —a) has a solution.

Proof. We will construct the desired OP(3,a,n — 3 — a) for all pairs n and a. For
each n > 16, the outline of the construction is described below. Cases where n < 16

are then handled independently.
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Outline of the construction: For each n > 16, we will construct a 3-cycle C; and
two paths P, and P, each on n — 5 vertices and each disjoint from C), such that each
of the unions C) U P, and C) U P] satisfies the following two conditions:

(i) The vertex set of the union is V(K,) \ {c1, 2}

(ii) The edges of the union intersect each of the orbits of the form A;, B; and AB;
exactly once and, of course, they do not intersect the orbits AC,, AC,, BCy, BC, and
Co.

Furthermore, (P])’s second, third, fourth, ..., (n/2)th vertices will be the same
as (P,)’s first, second, third, ..., (n/2 — 1)st vertices, respectively. We will denote by
€1,€2,€3,...,€n/2—2 the first n/2 — 2 edges of P;. We will construct paths P, and P}
such that they satisfy the following. If we

(i) remove any of the edges e, €4, €6, . . ., €n/2—4 from P, or from P,

(ii) complete thus created two paths into cycles by attaching their endpoints to ¢,
and co, and

(iii) denote the resulting 2-factor of K, as F, then
F intersects each edge-orbit except that it avoids the orbit Cy and one of the orbits
of the form AB;.

The action of o on this 2-factor will then result in an OP(3,a,n — a — 3).

Though somewhat tedious, it is easy to check that the construction indeed results

in solutions to OP(3,a,n —a — 3) as described. It is then easy to see that the 2-

factorizations resulting from the removal of ey, €4, €6, . . ., €n/2—4 from P, will result in
solutions to OP(3,3,n—6),0P(3,5,n—8),0P(3,7,n—10),...,0P(3,n/2—3,n/2),
respectively. Similarly, the removal of es, ey, €,. .., €,/2—4 from P, will result in

solutions to OP(3,4,n—7), OP(3,6,n—9), OP(3,8,n—11),...,0P(3,n/2—-2,n/2—
1). respectively. These will then combine to cover all a for a given n.

We will look at n = 24 in more detail. All other cases are handled in a similar
manner. Figure 3.12 illustrates construction of P, and C) for n = 24 (P, and C,
are written out explicitly on page 60). P, and C, give rise to the solutions of the
corresponding Oberwolfach Problems as follows:

OP(3,3,18) is obtained by breaking the path P, into two subpaths through the

removal of the edge (as, b1o). One subpath, namely (b1), as), consists of a single edge.



CHAPTER 3. THREE CYCLES 58

*o—e P o----0 C:

Figure 3.12: Construction of P, and C) for n = 24

by

(5] C2

Figure 3.13: Base 2-factor for OP(3, 3, 18)

By attaching the vertex c; to this path, a 3-cycle is created. The other subpath has 16
edges and its endpoints are bjg and a,. By attaching the vertex c,; to these endpoints,
an 18-cycle is created. Thus, we have constructed three cycles of the required lengths
(see Figure 3.13). The action of « then creates a solution of OP(3, 3,18).

OP(3,5, 16) is obtained in exactly the same manner except that we break the path
P, into 2 subpaths by removing the edge (a7, by). OP(3,7,14) is obtained with the
removal of the edge (ag, bg) from P;. Finally, OP(3,9,12) is obtained by the removal
of (a0, b7).

Note that for the construction to work, path P, has to be broken into two sub-
paths such that each of the subpaths has one vertex in A and the other vertex in B.
Therefore, for example, we cannot construct OP(3,4,17) in this manner.

We use P] to construct OP(3,4,17), OP(3,6,15), OP(3,8,13) and OFP(3, 10, 11)
in the same way in which we used P,. In fact, we will be removing the same edges

from P| that we removed from P;.
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o—e P o0 C

Figure 3.14: Construction of P and C; for n = 24

For this to work, we construct P, from P, by making a couple of adjustments.
First, we append an extra vertex to b;; so that by; is not an endpoint of P;. Second,
we will, in general, have to adjust the subpath of P, that is in B to make room for
the vertex attached to b;.

Figure 3.14 shows how P| can be constructed for n = 24. The edges that differ
from the edges in P; are highlighted in bold.

We will now construct C;, P, and P| for each n > 16:

n = 44:
Ci = (ag,ag, a1o)
P = (b21,a11, boo, a12, b1g, a13, b1s, @14, b17, 15, bis, 17, b1s, a1s, big, arg,

b3, az0, b1z, as1, b1, by, bro, b, by, b3, bg, by, br, bs, bg, ag, aze, az, a1,
a4, ag, a3, as)

P is obtained from P, by inserting the edge (b, b2;) as its first
edge and by replacing the subpath (b;3,...,b5) of P, by the
path (b11, b2, bg, b1, b7, b3, bg, bs, by, b).

n = 40:
Cy = (al, as, as)
P = (bio, a0, b18, a11, b17, @12, b1s, a13, bis, a1, b1a, a6, biz, a7, br2, a1s,
b1, @19, bio, by, by, b, bg, b3, by, by, bg, bs, a4, a9, az, as, as, 614, as)
P is obtained from P, by inserting (bs, b1g) as its first edge and by

replaCing (bIO’ ) b5) with (bIO) b17 b6a b25 b97 b3u b4a b77 b5)
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(a1, a2, ar)

(b17, g, b1s, G10, b1s, 11, b14, @12, b13, @14, b12, a15, b1, asg, bro, a7,
by, b1, b, b2, b7, b3, b, by, bs, as, a13, as, as, as, ag)

is obtained from P; by inserting (bs, b17) as its first edge and by
replacing (by, . .., bs) with (b, be, b, b1, b7, bs, b3, bs).

(a4, as,ar)

(bis, as, big, a9, b13, @10, b12, @12, b11, a13, bo, 14, be, @15, bs, by, by,
ba, bg, bs, bs, by, a3, a1, az, as, a1)

is obtained from P; by inserting (be, bis) as its first edge and by
replacing (bs, - . ., ba) with (bg, by, b3, br, ba, bs, by).

(a3, as, ano)

(b3, a7, b1z, as, b1, ag, bro, a11, be, @12, bs, ar3, br, by, bs, by, bs, b, by,
aq,ai,as, ag)

is obtained from P, by inserting (bs, b13) as its first edge and by
replacing (by,...,bs) with (b7, bs, bs, bs, b1, bg).

(a1, a3, as)

(b1, as, b1o, a7, b, ag, bg, ao, bz, a11, be, by, bs, bz, by, b3, az, as, as)
is obtained from P; by inserting (b4, b11) as its first edge and by
replacing (bs, - . ., b3) with (bg, by, ba, bs, b3).

(a1, a2,a4)

(bo, as, bs, ag, b7, ag, bs, ag, bs, by, by, by, b3, az, ar)

is obtained from P by inserting (b4, bg) as its first edge and by
replacing (bs, ..., b3) with (bs, b, b1, b3).

60
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n = 16:
Ci = (az, as,as)

Iﬂ - (b7aa4ab67a67b5aa7;b47b17b37b27a1)
For n = 16 we do not construct P]. Therefore, our construction only gives rise to

OP(3,3,10) and to OP(3,5,8). However, the remaining two cases, OP(3,4,9) and
OP(3,6,7) had previously been constructed in Lemma 3.1.1 and Theorem 3.2.8.

n = 12: Both OP(3,3,6) and OP(3,4,5) had previously been constructed (in
Theorems 3.2.8 and 3.1.5).

Since there are no a’s satisfying conditions of this lemma for n < 12, the proof is

completed. m

b(t+3)/2

0000000000000 @0@* S

(OXC)
by -—____,.—""- b(z+1)/

ay _.--"7
oI EEEEENESNENEEENENEEENDN

Ct42s+1

o—e DI o--o P o——e Py
m P; (only vertices highlighted) @ PsU C; (only vertices highlighted)

Figure 3.15: Example: OP(3,3,74)

Lemma 3.3.5 Letn > 44, n=0 (mod 4). Then OP(3,3,n — 6) has a solution.

Proof. Again, n = 2t + 2. Paths P, and P, are constructed as in Lemma 3.3.3 except
that we use s = 1.

Ps: V(B;) = {az,as,. .. _42-_} One of the endpoints of Pj is G, and the edge-
orbits intersected by E(P;) are the orbits A;, A2,..., A

is guaranteed by Lemma 2.2.1.

=1 The ex1stence of this path
Ps: P, is a path containing a single edge, namely, the edge (b2, bt_;_s ).
Ps and C;: V(PsUCy) = {by,ba, ... ,bf._;_1}. C, is a 3-cycle and Ps is a path, with
one of the endpoints being b,. The edge-orbits intersected by E(PsUC}) are the orbits
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By, Bs,.. .B%. The existence of Ps and C; is guaranteed by Lemma 3.2.4 (here we
need n > 44). Figure 3.15 illustrates the construction.

C, will be the 3-cycle constructed by connecting the endpoints of P, to ¢;.

Finally, Cs will be the cycle constructed by connecting the endpoints of the path
PLUP;UP,U Ps to co.

The 2-factor C; U C, U C; uses at most one edge from each edge-orbit, and gives
rise to an OP(3,3,n —6). ®

Theorem 3.3.6 Letn =0 (mod 4) and let a be such that3 < a <n—3—a. Then
OP(3,a,n— 3 — a) has a solution.

Proof. This result is an immediate consequence of Lemmas 3.3.3, 3.3.4 and 3.3.5.m



Chapter 4
Two Cycle Lengths - Many Cycles

In this Chapter, we prove that OP(a", b™) has a solution for all odd a,b and n with
5<a<band n#7,11.

In order to prove this result, we decompose Kp(o+t) — I into graphs isomorphic to
Korv—1I, C31 Koty and Cs? K 4. Furthermore, this decomposition will be such that
the graphs of the form C31K .5 and C51K .5 can be grouped into a number of 2(a+b)-
factors of K,(a1s). It then will be seen that if OP (Ko —1;a,b), OP(C31 K as; 03, b%)
and OP(Cs1 Koyp; 0% %) all exist, then OP(a™, ") also exists.

OP(K,p— I;a,b) = OP(a,b) was shown to exist for all odd a and b in Theorem
2.3.9. We will prove the existence of OP(Cs ! K,4p;a%,b%) in Section 4.1 and the
existence of OP(Cs ! Kayp;a°,b°) in Section 4.2.

The proof will be similar in both cases. We start with a number of paths (6 for
OP(C31 Korp;a®,5%) and 10 for OP(Cs 1 K4p;6%,b%) ) in a subgraph isomorphic to
KoylKowp = Kotbors- We impose certain invariant conditions on these paths and
show that

(i) paths satisfying the invariant conditions exist, and

(i) such paths can be inductively extended to longer paths satisfying the same
invariant conditions until a solution of O P(C31 K 445; a%, b°) (or OP(Cs1 K 444;a°,b°))

is reached.

63
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4.1 Construction of OP(C31 K,; a3, b%)

Let n > 0 and let K,, be the complete bipartite graph with each part having n
vertices. Let the vertices in each part be denoted as a;, az,...,a, and by, by, ... b,
respectively. Let permutation a be as in the previous chapters, i.e., a = (a;,ay,. ..,
an)(b1,b2,...,b,). Further, for a given m, let sy, ss,..., sm be positive integers and
t1,t2, ..., tm be non-negative integers such that /v, s; - t; = n. We will then denote

by P(s%,s%,...,st) the set of graphs G satisfying the following properties:
1. G is a subgraph of K,,, and V(G) = V(K »).

2. G is a vertex-disjoint union of 370, ¢; paths, with exactly t; paths of length s;

for each 7,1 < i < m, and of a number of isolated vertices.
3. E(G) intersects each of the edge-orbits of « in exactly one edge.

Figure 4.1 depicts a graph that belongs to P(12,3%).
We will use graphs in P(s%',s2,...,s') as a basis for an inductive construction
of OP(C31 K,;a® b®). Lemmas 4.1.1-4.1.4 guarantee the existence of the graphs we

will need for the construction.

Lemma 4.1.1 P(13,st, (s+4)®) is non-empty for all odd s > 3 and allt,0 < t < 3,
as well as fors=1and allt, 0 <t < 2.

Proof. We will construct a G € P(13, s, (s + 4)3~?). Note that G has 30 + 6s — 8t
vertices and is a factor of Ki5.35-4¢,15+35—4t- Let u1 = ug = --- =ug_y = s+4 and let
Ugy_; = -+ = uz = 8. Further, let n = 15+ 3s — 4t. Note that u; + us + us =n - 3.
We construct three paths P;, P, and P; as follows:

Figure 4.1: A graph in P(12,3%)
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P P P

azzt_ ABO a%_ﬂz-_l_l ABu3+1 a%_ﬂ#_l ABu2+u3+2
bs  AB by usmty;  ABugiz by yratusyy ABuyiuges
an_i AB2 a%_ﬂz—_l_2 ABu3+3 a%_ﬂ#ﬂ ABu2+u3+4
ba,  ABs by uszty; ABugts b yuatusy ABugiugis
(Zg__laz—_l ABu3_1 a%_ﬂ# ABu2+u3 as ABn—G
Pt byiega bus  ABus
a2 ABn—4
bn-2 ABn—S
431 AB,_,

br

Figure 4.2: n =16, s = 3, t = 2, P with deleted edges highlighted in bold

Figures 4.2 and 4.3 illustrates how paths P;, P, and P; can be viewed as obtained
from a path P by deleting two edges. Paths P, P, and P are vertex-disjoint and
they have lengths us,us and wu,, respectively. They also intersect each orbit of o
in exactly one edge except that they do not intersect orbits AB,,, ABy,+us+1 and
ABy, +uytus+1 = ABy—2. To finish the proof of the lemma, we need to find three edges
in G that belong to one of these orbits each. Further, these edges must be mutually

vertex-disjoint and vertex-disjoint from paths P;, P, and P3. It can be seen that the

edges

(a-"‘_;.LZ)b-”'z'—z))
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o 6 ¢ 6 0 ¢ o o 0 o
a; Qn/2 an

o----0 P —o I, o—e 5

Figure 4.3: P, P, and P; after deletion of two edges from P

b2 b
ORORCRORCRORORORO

ONONONORONONORO,

Qan/2 an
@ Vertices used by P, U P, U P;
Figure 4.4: Insertion of three additional edges

(an+u] +3, bn—u] -1 )7 and
2 2

(a n+uj+tug+4, bn—ul—u2-2 )
2 2

will work. Note that here we need to exclude the case s = 1,# = 3. In that case,
u; = ug = uz = 1 and bg_;_2 = bn-u;-1, SO the three edges are not mutually vertex-
2

disjoint. Figure 4.4 illustrates their construction. m

Lemma 4.1.2 P(3%st, (s+4)3Y) is non-empty for all odd s > 3 and allt,0 < t < 3.

Proof. The construction is very similar to the previous lemma. We will construct
a G € P(3% s (s+4)*"). Note that G is a factor of K, , with n = 21 + 3s — 4t.
Let uy = ug = - = uzg_y = s+ 4 and let uy_y = --- = uz = s. This time,

Uy + ug +us = n — 9. We will define paths P,, P, and P; as follows:
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P1 . Pg : P3 .
az-1 ABy Qn_us-l_s AByyt3 Qp_rztus_4 ABuy+us+6
b%_l AB; b%+52’;1_+1 AB,, 14 b%+ﬁ%13_+2 ABy, 4uz+7
az—2 AB, a%_la;_l_q, ABys4s a%_zz%ga_s ABuyytus+s
blz‘- ABs b%+132—_1+2 AB‘M3+6 b_rzl_{_&z%ga_,,‘g ABu2+u3+9
az-3 ABy Gn_ua-1 g ABy; 47 p_watw_g AByyiuz+10
b%.,,l ABs b%+332-_1+3 ABy s
a%_la;_1_l ABu3_1 a%_ﬁ%!ia__2 ABu2+u3+2 bn_5 ABn_7
Ppemp g bpempm a2 ABn-s
bn—4 ABn-—S
a AB, 4
bn

Paths Pj, P, and P; have lengths uj,u; and wu,, respectively. They are vertex-
disjoint and intersect each orbit of & in exactly one edge except that they do not inter-
sect the following 9 orbits: AB,;, ABy;+1, ABy;+2, ABuyiuz+3, ABuytuz+a, ABuysus+s,
ABu1+uz+u3+5 = ABn—4, ABu1+u2+u3+6 = ABn—37 ABu1+uz+u3+7 = ABn—2-

We will conclude the proof by constructing 3 paths Py, Ps and Py each of length 3
which intersect these 9 orbits:

Py = (a%,b_n;_‘l,anzﬁ,bnT-S),

P5 = (an+u1+3 5 bn—ul—s y An+ui+s, bn—ul-—7),
2 2 2 2

PG = (an+u1+u2+6 y bn—u1—u2—8 y Antujtusts, bn—-ul-—uz—lo ) [ ]
2 2 2 2

Lemma 4.1.3 P(3% 1%,5%) is non-empty for all t,0 < t < 3.

Proof. For t = 3 the result follows from Lemma 4.1.1. For ¢t = 0, it follows by Lemma
4.1.2. Fort =1 and t = 2, we will construct the required paths. Paths P} through P,
will be as in Lemma 4.1.2 (with s = 1). We need to adjust paths Ps and Ps because

2
Fs will be as follows:

br=s = bn-u,-5, S0 the construction in Lemma 4.1.2 does not work here. Paths Ps and
2



CHAPTER 4. TWO CYCLE LENGTHS - MANY CYCLES 68

t=2. NOW P5 = ((113, b4‘7 ai4, b3) a.nd PG = ((115, bz,alﬁ, bl)
t =1. Now Ps = (ais, bs, a16, b5) and Ps = (a1, b2, a0, by).
It is straightforward to check that the paths as constructed here will work. m

Lemma 4.1.4 P(1%,st,(s+4)>") and P(3% ', (s +4)%") are non-empty for all odd
s>1andallt,0 <t <3 except that P(13,13,5°) = P(1%) may be empty.

Proof., This lemma follows directly from Lemmas 4.1.1,4.1.2 and 4.1.3. m
The next lemma is used for the induction step in our inductive construction.

Lemma 4.1.5 Let V = {1,2,3} x {1,2,...,n} be the vertez set of C31 K, and let B
be the permutation of V' defined by

8 =((1,1),(1,2),...,(1,m))((3,1),(3,2),...,(3,n)).

Let ny,no,...,ng > 3 be odd integers whose sum is 3n. Further, let P\, P,,..., Py
be a collection of 6 vertex-disjoint paths or cycles with vertices in V, where ¢ of
Py, Py, ..., Ps are cycles. Finally, let m; be the cardinality of {(3,1), (¢,2),...,(i,n)} N
(V(P)UV(P)U...UV(E)) for1 <1 < 3. Assume that the following conditions

are met:
1. |[E(P)| < ny foralli,
2. P; is a cycle if and only if |E(P,)| = ny,

3. the union of all E(P,) intersects each edge-orbit of 8 in at most one edge. In
addition, it intersects each of the edge-orbits of B connecting vertices of {(1,1),
(1,2),...,(1,n)} with vertices of {(3,1),(3,2),...,(3,n)} in ezactly one edge,

4. |E(P)| =n; (mod 4) whenever P; is a cycle and |E(P;)] =n; +2 (mod 4)

otherwise,

5. each P; that is not a cycle has one of its endpoints in {(1,1),(1,2),(1,3),...,
(1,n)} and the other in {(3,1),(3,2),(3,3),...,(3,n)}, and
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6. my=m;+mz—n—(6—c) and m; =ms.

Then paths Py, Ps, ..., FPs can be extended to a set of 6 vertez-disjoint cycles C,
Csy,...,Cs such that

7. |E(C;)| = n; for each i, and
8. the union of all C; intersects each edge-orbit of 0 in exactly one edge.

Proof. The proof of this lemma is analogous to the proof of Lemma 4.2.5. The proof

of Lemma 4.2.5 will be given in Section 4.2. m

Lemma 4.1.6 shows why we were interested in Lemma 4.1.5.

Lemma 4.1.6 Suppose the assumptions of Lemma 4.1.5 are satisfied. Then OP(C3

Kn,n1,n0,M3,...,n6) has a solution.

Proof. The lemma follows as C}, Cs, ..., Cg provided by Lemma 4.1.5 form a 2-factor
of C3 1 K,, whose cycle lengths are n;, n,, ..., ng and the action of 8 on this 2-factor

yields the desired 2-factorization. m

Lemma 4.1.7 Let 3 < a < b be odd integers, let n = a+b and let G = C31K,. Then
OP(G; a3, b%) has a solution except possibly when (a,b) = (3,5) or (a,b) = (5,9).

Proof. The proof is analogous to that of Lemma 4.2.7 which will be provided in

Section 4.2.m

Lemma 4.1.8 OP(Cs1 Kg;33,5%) has a solution.

Proof. Let
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be a 2-factor of C3 1 K, consisting of 3 3-cycles and 3 5-cycles. Note that 2-factors
F,Fj3,Fp? ..., FB" contain each of the edges of C31 K, exactly once except that the
edges of the form ((1,%),(2,7)) and ((3,1), (2,8)) are contained twice each, and the
edges of the form ((3,%),(2,7)) and ((1,4), (2,8)) are not contained at all.

Let F’ be obtained from F' by “swapping” vertices (2,7) and (2,8). Explicitly,

F'o= {((3)8)a(17l)a(276))’((373)7(175)»(2’2)) ((3’5)1(1’3)1(2,3))1
((3,2),(1,6),(3,1),(1,8),(2,4)),((3,7), (1,2),(2,5), (3,6),
(2,7)),((3,4),(1,4),(2,8),(1,7),(2,1))}.

Note that then F', F'S3, F'32,..., F'37 contain each of the edges of C3 1 K, exactly
once except that the edges of the form ((3,1),(2,7)) and ((1,1), (2,8)) are contained
twice each, and the edges of the form ((1,1), (2, 7)) and ((3,4), (2, 8)) are not contained
at all.

Using these observations and some more simple checking, one can easily see that
graphs F, F3?, F34, FG3%, F'3, F'3*, F'3° and F’(3" form the desired 2-factorization. m

Lemma 4.1.9 OP(C31 K14;5%, 93) has a solution.

Proof. Let
F = {((1,7),(3,7),(18),(3,6),(2,1)),((3,5), (1,9), (3,4), (1, 10),
(2,2)),((3,3), (1,11),(3,2), (1, 1), (2,3)), ((3,8), (1,6), (3,9),
(1,5),(2,5), (3,1), (2,6),(1,2), (2,7), ((3,10), (1,3), (2,4),
(1,4),(2,8),(3,13),(2,9),(1,12), (2, 10)), ((3,11),(1, 14), (2, 11),
(3,14), (2,12), (1,13), (2,14), (3, 12), (2,13))}.

Similar to Lemma 4.1.8, we can see that F is a 2-factor of C3 L K14 consisting of three
5-cycles and three 9-cycles. Its edge set intersects each orbit of (3 in exactly one edge
except that the edges of the form ((1,4), (2,4)) and ((3,%), (2, 13)) are contained twice
each, and the edges of the form ((3,%), (2,4)) and ((1,%), (2, 13)) are not contained at
all.
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Similar to Lemma 4.1.8, we can also see that if F” is obtained from F by “swap-

ping” vertices (2,4) and (2,13), then F, F3, Fp*,... FB2 F'g @S, F@5,...
JF'B13 form a solution to OP(C3 ! K 14;5% 9%). m

Thus, we arrive at the following lemma:

Lemma 4.1.10 Let 3 < a < b be odd integers, let n = a + b and let G = C3 1 Kn.
Then OP(G;a®, b®) has a solution.m

4.2 Construction of OP(Cs! K,; a®,bt°)

We proceed using an approach similar to that of Section 4.1. We will prove that
P(13, 5% (s, +4)%%) and P(3% 5%, (s1 +4)°>) are non-empty for all 8, > 1 and all
t1,0 < t; < 5 except for P(1°,1°) (which can be seen to be empty).

We will prove this through a series of lemmas.

Lemma 4.2.1 P(15,s,(s+4)°") is non-empty for all odd s > 3 and alit,0 <t < 5,
aS’LUCllasfors:landallt’05t54

Proof. We will construct a G € P(15, st, (s + 4)>%). Note that G has50+103 -8t
vertices and is a factor of Kosyss—4t,25+5s—4t- L€t u; = up = - - - = Ug¢. % 8+ 4 and let
Ug_y = - -+ = us = 5. Further, let n = 25+ 5s —4t. Note that u) +us+uz+uq+us =
n — 5. We construct five paths Py, Py, ..., Ps as follows:

P P Ps:
ag ABO a%—iﬁzll-—l ABu5+1 alz.__ﬂ_-;_u_l__l ABu‘m+2
b AB bz ABuso by,uaguyy  ABucruts
a3, ABy Gy szt , ABusts a3 spumg * AButuara
b%+1 AB; b%+352;1_+2 AByg 14 b-'i'-+3‘-'§—"1+2 ABtu-HA;+5
Ap_ugt ABuys—1 An_vatus AByytus Gn_uatvgtustl ABs utus+
by by rapes Pppantaperts
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P4 . P5 :
a%_ﬁa_w;_usﬂ_l ABuytustus+3 arz_t_zziﬂ’%qﬂ_sﬁ_l ABu2+u3+u4+u5+4
bzzt.+w;'_“5+_1+1 ABu3+u4+u5+4 b%+£2i.‘ﬂ+_;‘.4i‘ibi':'+1 ABu2+u3+u4+u5+5
a%_u3+u42+u5+1_2 ABu3+‘U.4+’u.5+5 a%_u2+u3+;5+u5+2 -9 AB‘U.2+‘U.3+’U.4+‘U.5+6
b%+u3+u42+u5+1+2 AB’U-3+’U.4+u5+6 sb%+u2+u3+;g+u5+2+2 ABU2+‘U.3+u4+u5+7
a%_u2+u3+;g+u5+2 ABu2+u3+U4+u5+2 as ABn_e
bﬂ+u2+u3+ug+u5+2 bn_3 AB.,.L_5
2 Z
ao ABn_4
bn—a AB;_3

3] AB,_4

bn
Paths P, P,, ..., Ps are vertex-disjoint and have lengths us, ug4, us, us and uj, re-

spectively. Also, they intersect each orbit of « in exactly one edge. The only excep-
tions are the following orbits, which are not intersected at all: AB,,, ABy,+us+1,
AByyustus+2 ABusugtustus+3 and ABy vy vugtusqus43 = ABn_p. To finish the
proof of the lemma, we need to find five edges in G which belong to one of these
orbits each. Further, these edges must be mutually vertex-disjoint and vertex-disjoint
from paths Py, P,, ..., Ps. It can be seen that the edges
(an+2 bn—z)
asys, bazgn).

an+u1+u2+4 bn—-ul—uz 2)
2

an+u]:u2+u3+5 bn—ul—uz—uL 3 )
2

(
(
(
(

an+uL+u2+u3+u4 +6, bn~u1—u2-u3—u4—-4 )
2

will work (here we require bn% % ba—u;-1, 1.e., uy # 1, which excludes the case s =1
2

and ¢t = 5 from the proof). m

Lemma 4.2.2 P(3% st, (s+4)°7%) is non-empty for all odd s > 3 and allt,0 <t < 5.
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Proof. We will construct a G € P(3°% s%, (s + 4)>7?). Note that G is a factor of
K3sy5s-4t354+55—4t- Let uy =ug =---=usy=s+4andlet ug_y =--- = us = s.
Further, let n = 35 + 5s — 4¢. This time u; + uy + uz + ug + us = n — 15. Paths

P\, P,,..., P; will now be as follows:

P1 . P2 : P3 :
a_'zl_l ABO a%_uﬁz—l_a ABU_5+3 a%_ug-;us 4 AB‘U,4+'U.5+6
b%—l ABl b%+u52—1+1 ABU_5+4 b%+u4;—u5 +2 ABu4+u5+7
a%_2 AB2 a%_uﬁz—l 4 ABU_5+5 a_-,zl_ug-;uﬁ -5 ABu4+u5+g
b."E‘ AB3 b%+u52—1+2 AB‘U,5+6 b%+ug-;u5+3 AB‘U,4+‘U,5+9
a%_:} AB4 a%_uﬁz—l_s ABu5+7 a%_ug;-uﬁ -6 AB’U.4+'U.5+10
b%+1 AB5 b%+u52—1+3 ABu5+g b%+ug-;u5 +4 ABu4+u5+11
Qn _ug—1__ AB‘U.s—l Qn _ugtus AB‘U.4+‘U.5+2 Qpn_ ug+ugtus—1 AB‘U.3+‘U.4+'U.5+5
2 2 1 2 2 2 2 2 4
b2+35—_1_1 bl‘.+i‘lﬂi bﬂ+.‘iﬁﬂ4il‘_5;l_+2
2 2 2 2 2 2
P4 : P5 :
a%_zam;u__ﬁ:_l_s AByytustus+9 a%_uﬁa;;_um_7 AByy tustustus+12
by watugtus=t g ABugrugtus+io by uarugrugrus o ABustugtustus+is
On_vatugtus=l g ABuy; tugtus+11 a%_ﬂj'_“%'ﬁiﬂi_.g AByy tugtustus+14
b%+u3+ug;u5—l+5 ABu3+u4+‘u.5+l2 b%+uz+u3;u9+u5 +6 ABu2+u3+u4+u5+15
a%_u3+u42+u5—l _8 ABu3+u4+u5+l3 a%_uz-i-ua-;ug-#-uﬁ -9 ABu2+u3+u4+u5+16
b% irtugrisl g ABy;tustus+14 b%+uz+u3;u4+us 41 ABurtugtugtus+17
a%_ u2+u3-;u.4+u.5 _5 AB’U.2+‘u,3+‘U.4+‘u.5+8 as ABn.—S
b uatugtug+u b AB —
n ugtugtugtus -5 n—T7
1 uptuztugtus 4 n
45} AB -6
bn-4 ABn—5
a; ABn-—l
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Similar to the previous lemma, paths P, P,, P5, Py and Pj are vertex-disjoint, have
lengths us, u4, us, up and u;, and intersect each orbit of @ in exactly one edge except

that they do not intersect the following 15 orbits:

ABusa AB‘u5+1a AB‘us+2? AB‘U4+‘u5+3> AB‘U4+‘U5+47 AB‘U4+U5+57
ABu3+u4+us+6> AB‘u3+u4+‘u5+7’ ABU3+u4+us+8a
ABu2+u3+u4+us+97 ABu2+u3+u4+us+10a ABu2+u3+u4+us+117
AB‘U1+U2+U3+’U4+‘Us+11 = ABn—4a
ABu1+u2+u3+u4+u5+12 = AB‘n—3a

AB‘Ul +ug+uztugtus+13 = AB,_».

We will complete the proof by constructing five paths Fg, P, . . ., Py, each of length
3 which intersect these 15 orbits:
P5 = (an, bn—4 an+2 bn—G)

P7 = an+u1+3 bn—u];s’an+u1+5 bn—u1—7)
2 2

Pg = (an+u1+u2 6 bn-ul—u2—87an+u1+u2+8 bn- —uj—ug— 10)
2 2 2

Pg—- an+u1+u2+u3+9 bn-ul—uz-ug, 11 an+u1+u2+u3+11 bn—ul—uz u3—13) and
2

P = Antugtugtuztug+12 bn—ul—uz—ug—u4—14 An+uy+ug+ugtug+1ld
10 = 3+u4 3 . ’ .2 . 3+ug )
2

bn—ul—ul—us—u‘l—lﬁ ). [ ]
2

Lemma 4.2.3 P(3% 1% 5%7¢) is non-empty for all t,0 <t < 5.

Proof. For t = 5 the result follows from Lemma 4.2.1. For ¢ = 0 it follows from
Lemma 4.2.2. For the remaining ¢, we will construct the required paths. In all cases,
paths P, through P; are as in Lemma 4.2.2. The remaining paths are “shifted” by 1.
Explicitly, they are as follows:

Case t = 1. Now n = 36 and
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P; = (ag3, bis, 624, 013), Ps = (a7, bio, ass, by),

P= (asl,bs,asm bs), Py = (ass,bz,ass,bl)-
Caset =2. Now n = 32 and

Py = (a2, bio, a22,b11), Ps = (a2s, bs, ass, br),

Py = (agg, by, a30,03),  Pio = (asy, ba, azs, by).
Caset =3. Now n = 28 and

P = (ayg, bro, 020, b9), Ps = (ass, bs, azs, bs),

Py = (ass, by, aze, b3), Pio = (a27, b2, a2s, by).
Caset =4. Now n = 24 and

P7 = (017, b87 as, b7)a P8 = (0.19, b67 Qa20, b5),

Py = (aa1, by, a2, b3), Pro = (a2s, ba, azs, by).

It is somewhat tedious but otherwise easy to check that these constructions work.m

Lemma 4.2.4 P(1% s, (s+4)57%) and P(3%, s', (s + 4)°~%) are non-empty for all odd
s> 1 and allt,0 <t <5, except that P(1%,13,5%) = P(1'%) may be empty.

Proof. This lemma is an immediate consequence of Lemmas 4.2.1, 4.2.2 and 4.2.3.»

The following Lemma 4.2.5, together with its counterpart, Lemma 4.1.5, provide
crucial building blocks for OP(a™,b*) with odd a and b. The idea is to construct
a 2-factor of Cs ! K, that, under the action of a permutation 3, gives rise to a 2-
factorization of Cs 1 K,. To do so, we start with paths whose existence is guaranteed

by Lemma 4.2.4 and expand them, four vertices at a time, into the required 2-factor.
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The conditions of Lemma 4.2.5 appear somewhat convoluted, but after a short
observation, they are quite natural.

Conditions 1, 2 and the first part of Condition 3 are obvious. Condition 4 is
needed to ensure that we can complete the construction by adding four edges at a
time. The second part of Condition 3 and Conditions 5 and 6 are invariants that are
a by-product of the particular construction that we use to construct the 2-factors. We

need them to ensure that the construction does not “stray” from where we want it to

go.

Lemma 4.2.5 Let V = {1,2,3,4,5} x {1,2,...,n} be the vertex set of Cs 1 K, and
let B be the permutation of V defined by

B =1((1,1),(1,2),(1,3),...,(1,n))((3,1),(3,2), (3,3),-. .,

(3,m))((5,1),(5,2),(5,3),...,(5,n)).

Let ny,n9,n3,...,n190 > 5 be odd integers whose sum is 5n. Further, let P, P,
P;...., Py be a collection of 10 disjoint paths or cycles with vertices in V , where ¢ of
P.. Py, ..., Py are cycles. Finally, let m; be the cardinality of {(i,1), (¢,2),...,(i,n)}N
(V(P)UV(P)U...UV(Py)) for 1 <i < 5. Assume that the following conditions

are met:
1. |E(P)| < n; for alli,
2. P; is a cycle if and only if |E(B)| = n;,

3. the union of all E(P;) intersects each edge-orbit of B in at most one edge. In
addition, it intersects each of the edge-orbits of 3 connecting vertices of {(1,1),
(1.2),...,(1,n)} with vertices of {(5,1),(5,2),...,(5,n)} tn exactly one edge,

+. |[E(P)|=n; (mod 4) foralli,

each P, that is not a cycle has one of its endpoints in {(1,1),(1,2),(1,3),...,
(1.n)} and the other in {(5,1),(5,2),(5,3),...,(5,n)}, and

Cr
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6. my +my = 2mg, |my — my| < 2, my = 2(my —n/2 — 5) + ¢ and my = 2(ms —
n/2 —5) +c.

Then paths Py, P,, . .., Py can be ectended to a set of 10 disjoint cycles C1,Cs,Cs, . . .,
Cio such that

7. |[E(C;)| = n; for each i, and
8. the union of all C; intersects each edge-orbit of B in ezactly one edge.

Proof. We will prove the lemma by contradiction. Suppose there is a counterexample
to the Lemma for a given n. Select a counterexample in which the total number
of edges in P, Ps,..., P is maximal. We will note that there is an ¢ such that
|E(P;)| < n;. Otherwise, Condition 1 would imply |E(F;)| = n; for all i (i.e., Condition
7 is satisfied). Then by Condition 2, each P; would be a cycle. Also, the total number
of edges in all P, would be n; + ng + --- + njo = 5n. Since there are 5n orbits of
B3 each containing exactly n edges, Condition 3 would imply Condition 8. However,
then Py, P,, ..., Py would be 10 disjoint cycles satisfying Conditions 7 and 8.

Therefore, we may assume that |E(P;)| < n;. We may further assume that for all
i # 1, either |E(P;)| = n; or n; — |E(R,)| 2 ny — |E(P)|. From Condition 4 it follows
that |E(P;)| < n; — 4. We now proceed in two cases.

Case 1. |E(Py)| = n; — 4. We will first show that mgy, m3 and my are all less than
n. If my = n, then Condition 6 implies that m; = n + (10 — ¢)/2. However, since
|E(P,)| < ny, Condition 2 implies that ¢ < 9. Therefore m; > n, which is impossible.
Similarly, m4 < n. However, if ms and my are both less than n, then so is ms by
Condition 6. Therefore, there are vertices (2,v,), (3,v3) and (4,v4) not yet used by
any of the paths. We connect the two endpoints of Py, (1,v;) and (5,vs) with the
path consisting of these three vertices to create a cycle P;. Towards contradiction,
we only need to prove that Py, P, P, Fy, . .., Pyo satisfy Conditions 1 through 6. All
conditions except for Condition 3 are trivially satisfied. To see that Condition 3 is
also satisfied one only needs to observe that the orbits of 5 (other than those that
involve edges of the form ((1,%),(5,7))) are of the form {((4, j), (k,1)) : 1 <! < n} for
i€{2,4},1<j<nandk=:1%£1
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Case 2. |E(P,)| < ny — 4. Therefore |E(P))] < n) — 8. Without loss of generality
we may assume that my < my4. Then also my < m3 by Condition 6. Also by Condition
6, m; = (n+10—c+ m3)/2 and ms = (n + 10 — ¢+ m4)/2. Since my > mo, we have

ms > m,. Therefore,

n+10—c+m n+10—-c+m
my +mg + mg + my +ms > 5 2 4+ my +my +my + 5 :

=4mo+n+10—c.
On the other hand,

my + mg +mz +mg+ms = [V(P)| + [V(P)| +--- + |V (Pw)| =

|E(P)| + |E(P2)| +- -+ |E(Po)| +10 — ¢ <

ny+mng - +np—810—c¢)+ 10— c=5n~ 70+ Tc.
Combining the above two inequalities gives

dme+n+ 10— c < 5n — 70+ 7c,

or, equivalently, my < n—20+2¢. From Condition 6 we then also get m; < n— (10—
¢)/2. Since ¢ < 9, we get me < n —2and m; < n, i.e,, m; < n — 1. Furthermore,
by Condition 6, 2m3 = ma +my < (n — 2) +n = 2n — 2 and, thus, m3 < n — 1.
Therefore, one can find four distinct vertices (1,v;), (2,v2), (2,v5) and (3,v3) which
are not used by paths P, through P. We can now extend path P, to a path P
by adding these vertices in the following order: (2, vs), (3,vs), (2, v5), (1,7;). We add
them to the endpoint of P, whose first coordinate is 1. As in Case 1, it can be seen
that Conditions 1-6 remain satisfied.

We conclude that in both cases we can extend the set of paths to another set of
paths satisfying conditions of the lemma. However, since we originally selected the

set of paths to have the maximum number of edges from among the sets that do not




CHAPTER 4. TWO CYCLE LENGTHS - MANY CYCLES 79

extend to cycles C, through C)q satisfying Conditions 7 and 8, we know that this
new set of paths extends to such cycles. However, it means that paths P, P, ..., Py

extend also, which gives a contradiction. m

Lemma 4.2.6 Suppose the assumptions of Lemma 4.2.5 are satisfied. Then OP(Cs2

K,,n1,n9,n3,...,n10) has a solution.

Proof. Tt is easily seen that C;, Cs, . . ., Cyo from Lemma 4.2.5 form a 2-factor of Cs1 K,
whose cycle lengths are nj, ns,...,n1o and that - since each orbit under 3 contains

exactly n edges - the action of § on this 2-factor yields the desired 2-factorization.m

Lemma 4.2.7 Let 5 < a < b be odd integers, let n = a + b and let G = Cs5
K.. Then OP(G;a% b°) has a solution except possibly for the following pairs (a,b):
(5,7),(5,11),(7,9),(7,11),(7,15), (7,19), and (11,15).

Proof. Setny=ny=---=ng=aand ng=n; =---=mny90 =0>. By Lemma 4.2.6 we
only need to find 10 paths Py, P, ..., Py that will satisfy the conditions of Lemma
4.2.5. We will use Lemma 4.2.4 to prove the existence of such paths. We will divide
the proof into four cases depending on the congruence classes of a and b modulo 4.

Case I. a =b=1 (mod4). Since 5 < a < b, we have n > 14. Note that
n—5=1 (mod4). Let s be the integer satisfying s = 1 (mod 4) and s <
(n—5)/5 < s+4. Then there is a unique quintuple t,%s,...,t5 € {s, s+4} satisfying
t <ty <tzg <ty <tsand t; +ta+1t3+1ts +1t5 = n—5 Since not all of ¢;
are equal to 1 (as n > 14), P(15t1,ts,t3,14,%5) is non-empty by Lemma 4.2.4. Let
P, P, P, ..., Py be a collection of paths comprising a graph in P(15, t1,t2, t3, 14, ts)
with |E(P)| = |[E(Py)| = ---|E(Ps)| = 1 and with |E(Psy)| =t for 1 <¢ <5 We
may assume that the vertex set of this collection is {(1,%),(5,¢) : 1 <7 < n}. We will
show that these 10 paths satisfy the conditions of Lemma 4.2.5. Thus we have ¢ = 0,
my =ms = I and my = mg =my = 0.

Conditions 3, 4, 5 and 6 are obviously met. Since no P, is a cycle, Conditions 1

and 2 will be shown to be met if we can prove that |E(F;)| < n; for all i. This is
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obvious for 1 < i< 5. Sinceng =n7=---=np=>bandsincet; <ty <--- <ty it

suffices to show that t5 < b. However, b > n/2 while
As <ty+ts+4=n-5)—t1—to—t3+4<(n=-5)+1=n-4,

and thus t5 < n/2. This concludes the proof for Case 1.

Case 2. a =1 (mod 4),b =3 (mod 4). Assume further that n = a + b > 20.
The proof is identical to Case 1 with the following adjustment: Now we require that
s =3 (mod 4). Note that here we require n > 20 to guarantee that s > 0.

Case 8. a =3 (mod4) and b=1 (mod 4). Once again, we require n > 20.
Again, the proof is similar to Case 1. First, let s be the positive integer satisfying s =1
(mod 4) and s < (n — 15)/5 < s + 4 (here we require that n > 20). Let t1,s,13, 14,15
be the unique quintuple with ¢; < ¢, <3 <ty <tsand ty, +t+t3+ta+1t5 =
n — 15. By Lemma 4.2.4, P(3%t),ts,t3,t4,¢5) is non-empty. Let a graph in this set
be comprised of paths P, P, ..., Py with |E(P))| = |E(R)|--- = |E(Ps)| = 3 and
with |E(Psy;)| = t; for 1 <4 < 5. As in Case 1., we will show that these paths satisfy
conditions of Lemma 4.2.5. Again, as before, we only need to show that ¢5 < b.
However, the same argument as in Case 1. applies here.

Case 4. a=b=3 (mod 4). Assume further that n > 30. The proof is identical
to Case 3. except that we require that s =3 (mod 4). To guarantee that s > 0, we
need n > 30.

Combining Cases 1-4 covers all pairs (a,b) with the exception of (5,7),(5,11),
(7,9), (7,11), (7,15), (7,19), and (11,15).m

Lemma 4.2.8 Let5 < a < b be odd integers, let n = a+b and let G = Cs1K,,. Then
OP(G;a®,t°) has a solution for the following pairs (a,b): (5,7),(5,11),(7,9),(7,11),
(7,15), (7,19) and (11, 15).

Proof. For each pair (a,b), we will construct an OP(G; a®, b°).
Case 1. (a,b) = (5,7). F will contain the following 10 cycles:
C: = ((51),(4,1),(5,12), (4,12),(3,12),(2,12), (1,12))
C, = ((53),(1,1),(2,1),(3,1),(4,3))
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G o= ((5,5),(1,2),(2,2),(3,2),(4,5))

C ((5,7),(1,7),(5,2), (4,2),(3,3),(2,3), (1,3))

Cs ((5,9), (1,4),(2,4), (3,4), (4,9))

Cs ((5,11),(1,5), (2,5), (3,5), (4,11))

Cy ((5,4),(1,8),(2,8),(3,8), (4,4))

Cs ((5,6),(1,9),(2,6),(1,6),(2,7),(3,7),(4,6))

Co = ((58),(1,10),(2,10),(3,10),(4,10),(3,9),(4,8))
Coo = ((5,10),(1,11),(2,11),(3,11),(2,9), (3,6), (4,7)).

Let F' be obtained from F by “swapping” vertex (4,1) with vertex (4,10) and ver-
tex (2,6) with vertex (2,9). Similar to Lemma 4.1.9, one will observe that F, F3?,
Fp4,. .. FB* F'B,F'3 F'3, ..., F'f form the desired 2-factorization.

The proof in the remaining cases will be along the same lines. In each case, we
will construct two 2-factors F' and F’ (with F” being obtained from F' by swapping a
few pairs of vertices), such that F', F3?, F3*%,..., F8"% F'38, F'3* F'(5, ..., F'g"!
form the required 2-factorization. Although it is rather tedious to check in each case
that the 2-factorization is as required, it is essentially trivial. In what follows, we

will list the pair F, F’ in each case. The reader may verify that they are indeed as

required.

Case 2. (a,b) = (5,11). Let F contain the following 10 cycles:

G = ((5,7),(1,3),(51),(1,16),(2,6),(3,6),(2,7),(1, 14), (2, 10),
(3,7),(4,6))

C: = ((59),(1,4),(5,3),(1,1),(2,11),(3,8),(4,7), (5,12), (4, 8),
(3,9),(4,9))

Cs = ((5,11),(1,5),(5,5),(1,2),(2,14),(3,10), (4,10), (5, 14), (4,11),
(3,11),(4,12))

C = ((513),(1,6),(2,1),(3,1),(4,1))

Cs ((5,15),(1,7),(2,2),(3,2), (4,2))

Cs = ((52),(1,9),(2,8),(1,8),(2,9), (3,14), (4,13), (5, 16), (4, 14)
(3,15), (4,15))

Cr o= ((5,4),(1,10), (2,13),(3,13), (2,12), (3,12), (2, 15), (1, 15)
(2,16), (3,16), (4, 16))
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CS = ((5’6)7(1711)’(2’3)’(333)v(4, 3))
CQ = ((5, 8)7(1a 12)7(2’4)’(3a4)’ (4v 4))
Cro = ((5,10),(1,13),(2,5),(3,5), (4,5)).

F' is obtained from F by swapping vertex (2, 8) with vertex (2,12).
Case 3. (a,b) = (7,9). Let F contain the following cycles:

G = ((57),(1,3),(51),(1,16),(2,1), (3, 1), (4, 1))

C: = ((5,9),(1,4),(5,3),(1,1),(2,2),(3,2),4,2)

Cs ((5,11),(1,5), (5,5), (1,2),(2,3), (3,3), (4, 3))

Ca = ((5,13),(1,6),(2,4),(3,5),(4,6),(5,12),(4,7),(3,6),(4,8))

Cs = ((515),(1,7),(2,5),(3,7),(4,9), (5,14), (4,10), (3,8), (4,11))

G = ((52),(1,9),(2,8),(1,8),(2,9),(3,4), (4,4)

Cr = ((54),(1,10),(2,13),(3,13),(2,12), (3,12), (4,5))

Cs ((5,6), (1,11),(2,6), (3,9), (2,7), (1,14), (2, 10), (3, 10), (4, 12))

Co = ((5,8),(1,12),(2,11),(3,11), (4,13), (5,16), (4, 14), (3,14),
(4,15))

Cwo = ((5,10),(1,13),(2,14),(3,15),(2,15),(1,15), (2, 16), (3, 16),
(4,16)).

F' is again obtained from F by swapping vertex (2,8) with vertex (2, 12).
Case 4. (a,b) = (7,11). F will contain these cycles:

G = ((5,9),(1,9),(5,8),(1,10),(2,1),(3,1), (4 1))

Cx = ((56),(1,12),(5,5),(1,13),(2,3), (3, 2), (4,2))

G = ((53),(1,15),(5,2), (1,16), (2,6), (3,3), (4,3))

Cs = ((5,18),(1,17),(5,1),(1,11),(2,10), (3,9), (2,11),(1,5), (2, 12),
(3,10), (4,6))

Cs = ((515),(1,18),(2,18),(1,7),(2,9), (3,6), (4,4))

Cs = ((516),(1,2),(2,2),(1,3),(2,13), (3,13), (4,7), (5,4), (4,8),
(3,14),(4,9))

Cr = ((5,17),(1,4),(2,4),(3,4),(2,5), (3,5), (4,5))

Cs = ((5,10),(1,1),(2,7),(3,7),(2,8),(3,8), (4,10), (5,7), (4, 13)
(3,

w

15), (4,15))
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Co = ((5,14),(4,14),(5,13),(1,6), (2, 14), (3, 16), (2, 15), (1, 14),
(2,16),(3,17), (4, 16))
Cio = ((3,11),(4,11),(3,12), (4,12), (5,11),(1,8), (2, 17), (3, 18),

(4,17), (5,12), (4, 18)).
F’ is obtained from F by swapping the following three pairs of vertices: (2,18) with

(2,5), (2,8) with (2,2) and (4, 14) with (4, 11).
Case 5. (a,b) = (7,15). Let F contain these cycles:

a1 o= ((5,11),(1,11),(5,10),(1,12),(2,1),(3,1),(4,1))

Cy = ((58),(1,14),(5,7),(1,15),(2,2), (3,2), (4,2))

Cy = ((55),(1,17),(5.4),(1,18),(2,3),(3,3),(4,3))

Cy = ((52),(1,20),(5,1),(1,21),(2,4), (3,4), (4,4))

Cs = ((5,13),(1,16),(5,12),(1,22),(2,8),(3,5),(4,5))

Cs = ((5,3),(1,19),(5,14),(1,13),(2,12),(3,8),(4,6), (5,6), (4,7)
(3,9), (4,8), (5,9), (4,9), (3,12), (4, 10))

C: = ((5,15),(1,10),(2,10),(3,10),(2,11), (3,11), (4,11), (5,19),
(4,12),(3,13),(2,13), (1, 1), (2, 14), (3, 14), (4,13))

Cs = ((5,16),(1,9),(2,9),(1,8), (2,15), (3, 15), (4, 14), (5,20), (4,15),
(3,16),(2,16), (1,2), (2,17), (3,17), (4, 16))

Co = ((5,17),(1,6),(2,6),(3,6),(2,7),(3,7),(4,17),(5,21), (4, 18),
(3,18),(2,18),(1,3),(2,19), (3,19), (4,19))

Ci = ((5,18),(1,5),(2,5),(1,4),(2,20),(3,20), (4,20), (5,22), (4,21),

(3,21),(2,21), (1,7), (2,22), (3,22), (4, 22)).
F’ is obtained from F by swapping vertex (2,11) with vertex (2,9) and vertex (2, 7)
with vertex (2, 5).
Case 6. (a,b) = (7,19). Let F contain these cycles:

c = ((5,13),(1,13),(5,12),(1,14),(2,1),(3,1),(4,1))
C. = ((5,10),(1,16),(5,9),(1,17),(2,2),(3,2),(4,2))
s = ((5,7),(1,19),(5,6),(1,20),(2,3),(3,3),(4,3))
C, = ((5,4),(1,22),(5,3),(1,23),(2,4),(3,4), (4,4))
C, o= ((5,2),(1,25),(51),(1,26),(2,5),(3,5),(4,5))
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1 ) (2 17), (1,10), (2,18), (3, 18), (4, 16), (5, 17),

17),(3 19), (4, 18))

5,26), (1,21), (2,21), (1, 18), (2, 19), (3,20), (2, 20), (1, 11),
2),(3,21), (4, 19), (5, 18), (4, 20), (3, 22), (2, 23), (1, 12),

1), (3,23), (4,21))

(5, 19), (1,15), (2,15), (3, 15), (2, 16), (3, 16), (4, 22), (5, 20),
4,23),(3,24), (2,25), (1, 24), (2, 26), (3, 25), (4, 24), (5, 21),

(4,25), (3,26), (4,26))
F' is obtained from F by swapping vertex (2,21) with vertex (2, 16).

Case 7. (a,b) = (11,15). F will consist of the following 10 cycles:
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G = ((513),(1,13),(5,12),(1,14),(2,1),(3,1), (4, 1), (5,5), (4,2),
(3,2),(2,2),(1,1),(2,3),(3,3),(4,3))

C: = ((5,10),(1,16),(5,9),(1,17),(2,4), (3,4), (4,4), (5,8), (4,5),
(3,5),(2,5),(1,8),(2,6),(3,6), (4,6))

Cs = ((57),(1,19),(5,6),(1,20),(2,7),(3,7), (4,7),(5,11), (4,8),
(3,8),(2,8),(1,9),(2,9),(3,9), (4,9)

Cs = ((54),(1,22),(5,3),(1,23), (2,10), (3, 10), (4, 10), (5, 16),
(4,11),(3,11), (2, 11), (1, 10), (2, 12), (3,12), (4, 12))

Cs = ((5,2),(1,25),(5,1),(1,26), (2,13), (3, 13), (4, 13), (5, 17),
(4,14), (3,14), (2,14), (1,11), (2, 17), (3, 17), (4, 15))

Cs = ((5,14),(1,5),(5,15),(1,4), (2,18), (3,18), (4, 16), (5, 18),
(4,17),(3,19), (4,18))

C: = ((524),(1,3),(5,25),(1,2), (2, 19), (3,20), (4, 19), (5, 20),
(4,20), (3,21), (4, 21))
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Cs = ((5,23),(1,6),(5,22),(1,7),(2,20),(3,22),(2,22),(1,12),
(2,23),(3,23), (4,22))

Cy = ((5,26),(1,21),(2,21),(1,18),(2,24),(3,24),(4,23),(5,21),
(4,24), (3,25), (4, 25))

Co = ((519),(1,15),(2,15),(3,15),(2,16), (3, 16), (2, 25), (1, 24),

(2,26), (3,26), (4, 26)).
F’ is obtained from F by swapping vertex (2,21) with vertex (2, 16). m

Combining Lemmas 4.2.7 and 4.2.8, we obtain the following:

Lemma 4.2.9 Let 5 < a < b be odd integers, let n = a+ b and let G = Cs 1 K.
Then OP(G;a® b°) has a solution.m

4.3 Construction of OP(a",b")

The following lemma, which was proven in [7], will help us decompose Kp(,4s) into

the desired component graphs.

Lemma 4.3.1 Let n be a positive integer other than 3 or 5. Then Konty has a

2-factorization in which each 2-factor consists of 3-cycles and 5-cycles only. w

Theorem 4.3.2 Let n # 7,11 be odd. Further, let 5 < a < b be odd integers. Then
OP(a™,b") has a solution.

Proof. For n = 1, the result follows from Theorem 2.3.9. For n > 1, we need to prove
that Kpa+s) — 1 has a 2-factorization in which each 2-factor consists of n a-cycles and
n b-cycles. Kp(a+s) — I is a vertex-disjoint union of n copies of K, — I, plus a copy
of K, 1 Ko,y Each copy of Ku4p — I has an OP(a,b) by Theorem 2.3.9. Therefore,
the vertex-disjoint union of these K,., —I has a 2-factorization in which each 2-factor
consists of n a-cycles and n b-cycles. It remains to prove that K, 1 K, also has such

a 2-factorization. To this end, note that, by Lemma 4.3.1, K, has a 2-factorization
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in which each cycle of every 2-factor is a 3-cycle or a 5-cycle (note that for Lemma
4.3.1 to apply, we need n # 7, 11). This 2-factorization induces a division of Kp1 Ka4s
into a collection of (n — 1)/2 2(a + b)— factors, each of which consists exclusively of
disjoint copies of C3 1 Kqtb and Cs ! K4 One can easily see that the proof will be
completed if we can show that Cs 1 K4 has a 2-factorization in which each 2-factor
consists of three a-cycles and three b-cycles and that Cs ! K, has a 2-factorization
in which each 2-factor consists of five a-cycles and five b-cycles. However, this is true

by Lemmas 4.1.10 and 4.2.9.m




Chapter 5

Final Remarks

5.1 Possible Extensions of Our Results

In the thesis, we solved the Oberwolfach Problem in case OP(a, b) where a and b are
odd. We believe that our methods can be used to prove all possible cases OP(a, b)
except when a + b is congruent to one modulo 4. The conjecture below, if true, would
give us more freedom in selecting the starting 2-factor F' and, we believe, would go a
long way towards settling the remaining cases of the form OP(a,b).

When n = a+b is congruent to one modulo 4, the methods presented in the thesis
do not work without modification. The reason for this is that, for the methods to
work, each of the edges that we use has to be in an edge-orbit of cardinality t = |25 ].
However, when t is even, our construction produces two orbits of cardinality ¢/2 each.
When n is even, we are decomposing K, — I, and we are able to avoid the edges in
these orbits, which then form part of the one-factor I. However, when n is odd, we
are decomposing K, so we cannot avoid any edges. Therefore, in the case when n is
odd and ¢ is even (i.e., the case n congruent to one modulo 4), the construction does

not work.

Conjecture 5.1.1 Letn > 1 be an integer. Then there is a graceful path on n vertices

with endpoints a and b if and only if all of the following conditions hold true:
(i) a #b,

87
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(1) 1 < a,b<n,

(iii) |a — b| has the same parity as |n/2],
(iv) la — b| < n/2, and

(v) (n+3)/2<a+b< (3n+1)/2.

We will prove that these conditions are necessary for the existence of the desired
graceful labeling.

To this end, we define the label length of a path P with the vertex set {1,2,3,...,n}
(denoted by lI(P)) as

I(P) = > lu —v].

(u,v),(u,v)EE(P)

For a given n and 1 < a,b < n, we define ll,(a, b) to be the maximum label length
over all paths on n vertices with one endpoint a and the other b. A path that attains
the maximum is a mazimum label length path.

The following lemma provides us with insight into structural properties of paths

with maximum label length.

Lemma 5.1.2 Let P be a mazimum label length path for given n,a and b. Then there

is no pair of edges (u,u’) and (v,v’) in P such that max(u,u’') < min(v,v’).

Proof. Suppose the lemma is false. Choose a path P, and edges (u,v’) and (v, v’) that
contradict the lemma. Then P can be broken down into five subpaths Py, (u, '), Ps,
(v,v"), P3 such that each pair of consecutive paths intersect in a single vertex (without
loss of generality, we may assume that u,u’,v and v’ appear in this order). We allow
degenerate paths P;, P, and P; consisting of a single vertex.

Let P, denote the path P, traversed backwards and consider the path P’ = P,
(u,v), Py, (¢, v"), P3. Then

WPY=UIP)—|lu—u|—|v—0]+|u—v|+ | =] > UP).
Since P’ has the same endpoints a and b as P, we reach a contradiction.m

Lemma 5.1.3 calculates ll,(a,b) for some n,a and b.
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Lemma 5.1.3 Let n,a and b be such that a < (n+1)/2 and b > (n+ 1)/2. Then
lU.(a,b) = [n?/2] — (b—a).

Proof. Let P be a maximum label length path with endpoints a and b. We will divide
the proof into two cases.

Case 1. n=2k. P contains as many vertices less than or equal to & as vertices
greater than k. Therefore, if P contains an edge with both endpoints less than or
equal to k, then P must also contain an edge with both endpoints at least £+ 1 (and
vice versa). However, this would contradict Lemma 5.1.2. Therefore, each edge of P
must have one endpoint less than or equal to k¥ and the other endpoint at least k + 1.
Then

Uy(a,b) =UP)= ¥ |u—v|=

(u,v),(u,v)€E(P)

Z 2i) — b) — ZZ)—CI,)_Zkz (b—a) = [n?/2] — (b—a).

i=k+1

Case 2. n=2k+1. Similar reasoning as in the even case shows that P does not
contain any edges with both endpoints either less than k + 1 or greater then k + 1,
and that one of the edges with the endpoint £ + 1 has the other endpoint less then
k + 1 while the other one has the other endpoint greater than k + 1. Then

Ua(a,b)=UP) = ¥ |ju-—v=

(u,v),(u,v)eE(P)

2k+1
(> 2i)—b) — ZZ)—a)—2k2+2k( o) = [n?/2] - (b—a)m

1=k+2

Lemma. 5.1.4 provides upper bounds on some Il,(a, b) not addressed by Lemma

5.1.3.

Lemma 5.1.4 Let n,a and b be such that a < (n+1)/2 and b < (n+1)/2. Then
n(a,b) <[22 ] + (a +b).
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Proof. As in Lemma 5.1.3, let P be a maximum label length path with endpoints a
and b. Again, we will divide the proof into the same two cases.

Case 1. n=2k. An application of Lemma 5.1.2 now implies that P contains exactly
one edge (w,w’) with both endpoints > k + 1 and that all other edges (u,%’) in P
satisfy min(u,v’) < k and max(u,u’) > k + 1. Further, we may assume that w < w'.

Therefore,

U(a,b) =UP)= > |Ju-v|=

(w,0),(u,v)EE(P)

(S 2)—w) = (X 2)—a—b+w)=2k>-2w+ (a+b) <

i=k+1 i=1

(n—1)2-4

5 J+(a+b).

2k2—2(k+1)+(a+b)=[

Case 2. n=2k+1. As before, we argue that all edges (u,u’) in P must satisfy
min(u,u’) < k + 1 and max(u,u’) > k + 1 except that there may be an edge e with
both endpoints greater than k + 1. If there is such an e, then one of the two edges
with k£ + 1 as an endpoint has the other endpoint less than k + 1, while the other one
has the other endpoint greater than k + 1. If e does not exist, then both edges with
one endpoint equal to k + 1 have the other endpoint greater than k + 1. We then get

Un(a,b) =U(P)= > |Ju—-1|<
(u,v),(uw)€E(P)

2k+1 k+1

(> 2i)—((;2i)—a—b)=2k2—2+(a+b)=

i=k+2

[(”—‘15)2—_—4J +(a+b)m

We can now prove the necessity of the conditions in Conjecture 5.1.1.
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Theorem 5.1.5 Let P be a graceful path on n vertices, with endpoints a andb. Then
the conditions (i)-(v) of Conjecture 5.1.1 are satisfied.

Proof. Conditions (i) and (ii) are obvious. For condition (iii), note that if the vertices

along the path are labeled consecutively as a = sy, s9, s3,..., 8, = b, then

la—b|=|s;—so| +|s2— 83|+ -+ |snm1—Sp|=1+243+---+(n—1) =

(n—1)n _ {nJ

5 =13 (mod 2).

Also note that lIl[(P) = ¥ i =n(n—1)/2.

To prove condition (iv), note that it is satisfied whenever either max(a,b) < (n +
1)/2 or min(a,b) > (n + 1)/2. Therefore, we may assume that the conditions of
Lemma 5.1.3 are satisfied. Then

-1
"—(”-é——) = ll(P) < ll,(a,b) = |n?/2] — |b—al.

However, this implies condition (iv).

For condition (v), we note that the first inequality in the condition is satisfied
whenever max(a, b) > (n+1)/2. When max(a,b) < (n+ 1)/2, we may apply Lemma
5.1.4 to get

n(n —1)
2

(n-1)2-4

_W(P) < lin(a,b) < [ )

J+(a+b).

Again, this implies the first inequality in condition (v). The second inequality is
equivalent to (n+3)/2 < (n—a+ 1)+ (n — b+ 1), and is thus symmetrical to the

first inequality.m

It is far less obvious that conditions (i)-(v) are sufficient for the existence of the
desired graceful labeling. However, we strongly suspect that the conjecture is true.
In practice, one will find the following:

When one of a and b is close to either 1 or to n, the graceful labelings are few but

they are easy to construct. When a and b are both further away from the endpoints,
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it becomes difficult to find a general construction. However, in this case, there are
usually many graceful labelings with the required endpoints.

We have tested the conjecture numerically by searching through all graceful label-
ings for paths with up to 20 vertices. Table below shows typical output. In this case,
the path has 16 vertices and the entry in the ath row and the bth column shows the
number of labelings in which the first vertex is labeled a and the last vertex is labeled
b.

. 1 .
. 56 . 49 .
. 304 . 268 . 157 .
528 . 880 . 852 . 237 .
. . 1270 . 1462 . 1032 . 237 .
. 528 . . . 2136 . 2014 . 1032 . 187 .
304 . 1270 . . . 2734 . 2014 . 852 .49
56 . 880 . 2136 . . . 2734 . 1462 . 268 .1
1 . 268 . 1462 . 2734 . . . 2136 . 880 . 96
49 . 852 . 2014 . 2734 . . . 1270 . 304
157 . 1032 . 2014 . 2136 . . . 528
237 . 1032 . 1462 . 1270 .
237 . 852 . 880 . 928
157 . 268 . 304
49 . 56

1

Although we believe that the conjecture is very likely true, we were unable to prove

it.
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