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Abstract 

The emergence of automated high-throughput sequencing technologies has resulted in a 

huge increase of the amount of DNA and protein sequences available in public databases. 

A promising approach for mining such biological sequence data is mining frequent subse- 

quences. One way to limit the number of patterns discovered is to determine only the most 

specific frequent subsequences which subsume a large number of more general patterns. In 

the biological domain, a wealth of knowledge on the relationships between the symbols of the 

underlying alphabets (in particular, amino-acids) .of the sequences has been acquired, which 

can be represented in concept graphs. Using such concept graphs, much longer frequent 

patterns can be discovered which are more meaningful from a biological point of view. In 

this paper, we introduce the problem of mining most specific frequent patterns in biological 

data in the presence of concept graphs. While the well-known methods for frequent sequence 

mining typically follow the paradigm of bottom-up pattern generation, we present a novel 

top-down method (ToMMS) for mining such patterns. ToMMS (1) always generates more 

specific patterns before more general ones and (2) performs only minimal generalizations of 

infrequent candidate sequences. Due to these properties, the number of patterns generated 

and tested is minimized. Our experimental results demonstrate that ToMMS clearly out- 

performs state-of-the-art methods from the bioinformatics community as well as from the 

data mining community for reasonably low minimum support thresholds. 
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Chapter 1 . 

Introduction 

1.1 Motivation 

The emergence of automated high-throughput sequencing technologies has resulted in a sig- 

nificant increase of the amount of DNA and protein sequences available in public databases 

such as GenBank [4] and SWISS-PROT [5]. To make sense of this flood of data, molecular 

biologists now try to uncover the function of different genes and proteins in the correspond- 

ing biological systems. For example, they want to identify genes in the DNA sequences or 

assign a protein sequence to one of the well-known protein families. Manual analysis of the 

large databases is infeasible, and data mining solves some of the challenge. A good number 

of methods for classification of sequences, finding frequent sequences or finding motifs have 

been presented in the literature. 

One promising approach for mining biological sequence data is mining frequent patterns, 

i.e. patterns which occur in at least as many sequences as specified by some threshold 

(minimum support). This approach is motivated by two fundamental biological facts: (1) 

similar sequences have the same or similar function with a high probability and (2) typically 

large portions of DNA or protein sequences are considered to be noise. Thus, the sequential 

patterns determining the function are expected to be relatively short (compared to the 

sequence length) and to occur much more frequently than (random) noise patterns. 

In the KDD community, methods for mining frequent sequences have received a lot of 

attention (GSP [25], Prefixspan [20], SPADE [30], SPAM [3]). All these methods belong 

to the class of bottom-up pattern enumeration methods, i.e. they start with short frequent 

patterns and continue to extend them until they become infrequent. Unfortunately, most 
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of these methods suffer from two major weaknesses which seriously limit their usefulness in 

the biological domain: 

These methods generate all frequent patterns which typically leads to very large num- 

bers of patterns since each subpattern of a frequent pattern is also frequent. 

The frequent patterns are typically too short to be meaningful when using only the 

original alphabet for the patterns. 

To overcome these limitations, we present a new method for frequent sequence mining 

with the following properties: 

We restrict the result of pattern mining to the subset of most specific frequent patterns, 

i.e. frequent patterns for which no specialization is still frequent. All other frequent 

patterns can be derived from these patterns on demand. 

0 Often some symbol can be replaced by a similar one without loss of function of the 

whole pattern. In particular for proteins, a wealth of knowledge on the relationships 

between different amino-acids has been acquired, which can be represented in concept 

graphs. Using such concept graphs, much longer frequent patterns can be discovered 

which are more meaningful from a biological point of view. 

In the bioinformatics community, the Teiresias algorithm [21] has been proposed which 

takes a similar approach. It determines the set of all closed frequent patterns, which is 

the set of all frequent patterns for which all extensions have a smaller support. Teiresias 

also uses concept graphs to discover generalized patterns. Like the methods from the KDD 

community, Teiresias adopts the paradigm of bottom-up pattern enumeration. 

1.2 Contribution 

In this thesis, we introduce a novel approach for mining most specific frequent patterns 

performing top-down pattern enumeration. The notion of most specific frequent patterns 

generalizes the notion of maximal frequent patterns in the presence of concept graphs. A 

frequent pattern is most specific if no specialization of this pattern is frequent, where a 

specialization can either be an extension of the pattern by one element or a replacement 

of one element of the pattern by a predecessor from the concept graph. Top-down pattern 
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enumeration starts with infrequent patterns of maximal length and performs generalizations 

(the inverse operation of a specialization) until the patterns become frequent. This approach 

is more appropriate than the classic bottom-up approach for mining most specific (not all) 

patterns if these patterns are long and if we can reliably estimate the maximal length of 

frequent patterns. We will show later how to efficiently determine even the exact value of 

this maximal length. Our experimental evaluation on real life biological sequence datasets 

will demonstrate that the proposed top-down method clearly outperforms the state-of-the- 

art methods from the KDD as well as from the bioinformatics community for low minimum 

support values. Low minimum support values are necessary to discover frequent patterns 

long enough to be biologically meaningful. 

ToMMS has the following advantages that existing algorithms do not have. First, ToMMS is 

a pure top-down approach. Although some existing algorithms employ mechanisms such as 

look-ahead to discover long patterns first, their basic approach is still using short patterns 

to generate longer patterns, i.e. bottom-up search. Second, ToMMS will never enumerate a 

potential pattern which does not exist in the database, i.e. the enumerated patterns at least 

have one supporting sequence. This will greatly reduce the effort of exploring the search 

space. Third, ToMMS can efficiently determine the maximal length of all frequent patterns 

before enumerating all of them. 

1.3 Organization of the Thesis 

The rest of this thesis is organized as follows. Chapter 3 surveys related work. In chapter 

4, we introduce our notion of most specific frequent patterns and present ToMMS, a new 

top-down method for mining such patterns. In chapter 5, we report the results of an exper- 

imental evaluation and comparison with state-of-the-art methods. Chapter 6 summarizes 

our contributions and outlines directions for future research. 



Chapter 2 

Background Information 

This section provides readers with enough information so that they can comfortably follow 

the biological background of this thesis. The characteristics of cells, proteins, DNA and 

RNA will be described in detail. There are excellent books [12] [28] that provide a full 

fledged introduction to Molecular Biology. 

2.1 Cells 

Life is the subject of Biology. In nature we find both living and non-living things. Yet 

research in the past centuries reveals that both kinds of matter are composed by the same 

atoms and conform to the same physical and chemical rules. What distinguishes living 

from non-living chemical forms? Life can be characterized by its properties. Living things 

can move, reproduce, grow, eat, and so on. They have an active participation in their 

environment, as opposed to non-living things.A system is thought to be "living" if it has 

following three general characteristics: 

metabolism 

growth 

reproduction 

The most elementary unit exhibiting these properties is the cell. Cells come in two ba- 

sic varieties. Procaryotic cells are the simplest form, composed of a single compartment 

which is protected from the outside with a membrane called the cell wall. Eucaryotic cells 
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have a central, all encompassing compartment which contains many smaller compartments. 

The most important among these compartments is the nucleus, which contains the genetic 

material of the eucaryotic cells. Procaryotic cell are found only in bacteria while higher 

organisms are composed of one or more eucaryotic cells. 

About 90% of the cell is water. The remaining 10% contains two types of molecules: 

0 Elementary molecules: these are small molecules created by a variety of chemical 

reactions in the cell. Most important among them are the nucleotides and the amino 

acids. Elementary.molecules provide the building material for polymeric molecules. 

0 Polymeric molecules: these are the structural components of the cell. They are formed 

when elementary molecules bind together into long chains. The two important poly- 

meric molecules are (I) the ,nucleic acids (DNA, RNA) and (2) the proteins. Nucleic 

acids are polymeric assemblies of nucleotides while the proteins are chains of amino 

acids. Nucleic acids and proteins are sometimes collectively referred to as macro- 

molecules or biosequences or biological sequences. 

2.2 Proteins 

Proteins are the most important macromolecules. They are responsible for almost the entire 

repertoire of biochemical reactions taking place inside the cell. Most substances in our bodies 

are proteins, of which there are many different kinds. Some of them include: 

0 Structural proteins: they are the building blocks of the various tissues. 

0 Enzymes: they catalyze vital chemical reactions that would otherwise take too long 

to complete 

0 Transporters: they carry chemical elements form one part of the organism to another. 

0 Antibody proteins: they are part of the immune system. 

Proteins are chains of simpler molecules called amino acids. There are 20 different 

amino acids. Examples of amino acids can be seen in Figure 2.1. Every amino acid has one 

central carbon atom to which four chemical groups attached via covalent bonds: a hydrogen 

atom(H), an amino group (NH2), a carboxyl group (COOH) and a side chain (R). It is the 

side chain that distinguishes one amino acid from another. Side chains can be as simple as 
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one hydrogen atom or as complicated as two carbon rings. Table 2.1 lists all the 20 amino 

acids along with the three-letter and one-letter codes used for each. 

side chains 

H2N - - 
c a  

COOH H2N - - 
c a  

COOH 

Figure 2.1: ~ x a m ~ l e s  of amino acids: alanine and threonine. 

Amino acids can be partitioned into different sets by their physio-chemical properties 

[26] [24] or empirical results got from experiments performed on protein databases [11] 

[29]. Figure 2.2 shows a well known hierarchical group where amino acids are categorized 

according to the chemical nature of the R-group. Amino acids belonging to the same class 

are said to be chemically similar. Please note that the relationship is not necessarily tree 

structure. Sometime it can be graph. 

In a protein, amino acids are joined by peptide bonds. For this reason, proteins are 

polypeptides chains. Binding occurs when the carboxyl group of an amino acid interacts 

with the amino group of the next amino acid. The result of this process is (1) the formation 

of a bond between the two amino acids and (2) the generation of a water molecule from 

atoms released from the carboxyl group and the amino group. Hence, what we really find 

inside a polypeptide chain is a residue of the original amino acid. Thus we generally speak 

of a protein having 100 residues, rather than 100 amino acids. Typical proteins contain 

about 300 residues, but there are proteins with as few as 100 or with as many as 5,000 

residues. 

The peptide bond makes every protein have a backbone, given by repetitions of the basic 

block -N-C,-(C0)-. To every C, there corresponds a side chain. See figure 2.3 for a 
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I Name I One-letter code I Three-letter code I 

Table 2.1: The 20 amino acids along with their three and one letter codes. 

Threonine 
Valine 
Tryptophan 
Tyrosine 

T 
V 
W 
Y 

Thr 
Val 

T ~ P  
Tyr 
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non-Polar Polar 

Aliphatic Sulful Hydroxyl ~c i ' d i c  Amide Basic containing 

G A V L I P F Y W C M  S T D E N O K R H  

Figure 2.2: Amino acids categorized according to the chemical nature of the R-group. 

schematic view of a polypeptide chain. Because we have an amino group at  one end of the 

backbone and a carboxyl group at the other end, it is possible to use these two groups in 

order to impose a notion of direction on a protein. The convention is that polypeptides 

begin at the amino group (N-terminal) and end at the carboxyl group (C-terminal). 

Up to now, we have been thinking that a protein is a linear sequences of residues. This 

will be the norm throughout this thesis. The representation of a protein as a string of 

its constituent amino acids is known as its 1-dimensional or pr imay structure. Proteins 

actually fold in three dimensions, presenting secondary, tertiary, and quaternamj structures. 

The fold of a protein is of extreme importance because it typically provides clues about 

the function of the protein. A protein's secondary structure is formed through interactions 

between backbone atoms only and results in local structures such as helices. Tertiary struc- 

tures are the result of secondary structure packing on a more global level. Yet another level 

of packing, or a group of different proteins packed together, receives the name of quaternary 

structure. Figure 2.4 depicts these structures schematically. 

Proteins can fold in three dimensions because the plane of the bond between the C, 

atom and the nitrogen atom may rotate, as can the plan between the C, atom and the 

other C atom. These rotation angles are known as q!I and $, respectively, and are illustrated 

in figure 2.3. Side chains can also move, but it is a secondary movement with respect 

to the backbone rotation. Thus if we specify the values of all q!I - + pairs in a protein, 

we know its exact folding. Determining the folding, or three-dimensional structure, of a 

protein is one of the main research areas in molecular biology, for three reasons. First, 
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the three-dimensional shape of a protein is related to its function. Second, the fact that 

a protein can be made out of 20 different kinds of amino acids makes the resulting three- 

dimensional structure in many cases very complex and without symmetry. Third, no simple 

and accurate method for determining the three-dimensional structure is known. Existing 

techniques for solving protein structures, such as X-ray crystallography and NMR, are very 

time consuming. Furthermore, there are many proteins which are not amenable to study 

by either of these two techniques. 

Figure 2.3: A polypeptide chain. 

The three-dimensional shape of a protein determines its function in the following way. 

A folded protein has an irregular shape. This means that it has varied nooks and bulges, 

and such shapes enable the protein to come in closer contact with, or bind to, some other 

specific molecules a protein can bind to depend on its shape. For example, the shape of a 

protein can be such that it is able to bind with several identical copies of itself, building, 

say, a thread of hair. Or the shape can be such that molecules A and B bind to the protein 

and thereby start exchanging atoms. In other words, a reaction takes place between A and 

B, and the protein is fulfilling its role as a catalyst. 

2.3 Genetic Sequences 

Living organisms contain two kinds of nucleic acids: deoxyribonucleic acid, better known as 

DNA, and ribonucleic acid, or RNA. 
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Figure 2.4: Primary, secondary, tertiary, and quaternary structures of proteins. 

2.3.1 DNA 

Molecules of DNA are chains of nucleotides. A single DNA molecule can be millions of bases 

long (nucleotides are alternatively called base). There are four different bases, i.e, adenine 

(A), guanine ( G ) ,  cytosine(C) and thymine (T). 

The mechanics of DNA formation are similar to that of proteins. Nucleotides have a basic 

part which is common to all of them. The side group attached to the basic part distinguishes 

one nucleotide from the other. Long chains are formed when series of nucleotides bind 

together through sugar-phosphate bonds. These bonds hold together the basic parts of 

successive nucleotides, in the same way that peptide bonds hold together the amino acids 

of a protein, which is shown in figure 2.5. The assembly of the basic parts in a DNA 
molecule is referred to as the backbone. DNA molecules are double stands. The two strands 

are tied together in a helical structure. Each base in one strand is paired with a base in 

the other strand. Base A is always paired with base T ,  and C is always paired with G. 

Because of these rules, either of the two strands uniquely defines the other and can be used 

to describe the corresponding DNA molecule. Figure 2.6 presents a A schematic molecular 

structure view of a double strand of DNA. The two strands are connected through hydrogen 

bonds between the side groups of facing nucleotides. Aa a result, a DNA molecule can be 

represented as a single string over the alphabet of the nucleotides. 

The entire DNA of an organism comprises that organism's genome. The size of a genome 

depends on the complexity of the host organism. The human genome, for example, has an 

estimated 3 x 10' base pairs (a base pair is another way to refer to a pair of facing nucleotides 
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sugar-phosphate bonds 
I -._ 

Figure 2.5: A schematic molecular. structure view of one DNA strand. 

t I ' \ 

backbone: 
\\,, 6 

Basic 
Unit 

Hydrogen bonc: 

............... . . . . . . . . . I . .  . . . . . . . . I . .  
i Basic Basic, , Basic- 
i Unit Unit Unit 
........................................................................................................................ 

I I I 

Basic 
Unit 

Figure 2.6: A schematic molecular structure view of a double strand of DNA. 

within the DNA double helix.) 

DNA is genetic material. It carries hereditary information from parents to children. 

DNA encode information for building proteins. DNA is broken into triplets and every 

triplet is translated into an amino acid. Each nucleotide triplet is called a codon. The 

mapping between triplets of DNA bases and amino acids is called the genetic  code. The 

genetic code is shown in Table 2.2. Notice that there are 64 possible nucleotide triplets, 

but there are only 20 amino acids to specify. The consequence is that different triplets 

correspond to the same amino acid. There are three codons do not code for any amino acid 

and are used to signal the end of a protein coding region on a large DNA molecule. It is 

interesting to note that based on the genetic code, each concept graph on amino acids also 

implies a corresponding concept graph on codons. 

Not all of the genome is used for coding proteins. Only certain contiguous stretches 

Basic- 
Unit 

along DNA encode the information for building proteins. This coding parts are organized in 

genes, i.e. distinct regions of consecutive bases. Every gene codes for one particular protein. 

. . .  
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position 
A 

Glu 
Glu 

Asp 
Asp 
L Y ~  
L Y ~  
Asn 
Asn 
Gln 
Gln 
His 
His 

STOP 
STOP 

Tyr 
% 

- 
C - 

Ala 
Ala 
Ala 
Ala - 
Thr 
Thr 
Thr 
Thr - 
Pro 
Pro 
Pro 
Pro - 
Ser 
Ser 
Ser 
Ser - 

1 1  Third 

Val U 

Leu 
Leu 

Phe 
Phe U 

Table 2.2: The genetic code mapping codons to amino acids. 
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Gens are flanked by control regions which mark the beginning and the end of these genes. 

The remaining DNA seems to be non-operational and is known as junk DNA. Interesting 

enough, the largest part of the genome in higher organisms is composed of junk DNA. In 

humans for example, about 95% of the DNA is non-coding. 

2.3.2 RNA 

RNA molecules are much like DNA molecules, with the following basic compositional and 

structural differences: 

RNA uses the nucleotide Uracil (U) where DNA would have used Thymine(T). 

The backbone-forming basic unit of the RNA nucleotides. 

0 RNA is single stranded. Sometimes we see RNA-DNA hybrid helices; also, parts of 

an RNA molecule may bind to other parts of the same molecule by complementarity. 

The three-dimensional structure of RNA is far more varied than that 

Transcription Translation 
* Protein 

of DNA. 

Figure 2.7: Genetic information flow in a cell. 

How a the information in the DNA results in proteins? A cell mechanism recognizes 

the beginning of a gene thanks to a promoter. The promoter is a region before each gene 

in the DNA that serves as an indication to the cellular mechanism that a gene is ahead. 

Having recognized the beginning of a gene, a copy of the gene is made on an RNA molecule. 

This resulting RNA is the messenger RNA, or mRNA for short, and will have exactly the 

same sequence as one of the strands of the gene but substituting U for T .  This process is 

called transcription. The mRNA will then be used in cellular structures called ribosomes to 

manufacture a protein. After transcription phase, another phase called translation will reds 

the mRNA and creates the final protein. The translation is accomplished by the ribosomes, 

complex bodies built from proteins and RNA (the ribosomal RNA is referred to as rRNA). 

Ribosomes are the chemical factories of the cell. They operate by walking over an mRNA 

molecule, reading the codons on the mRNA one by one, getting the appropriate amino acid 

for each codon and binding these amino acids together into the final protein chain. Transfer 
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RNAs, or tRNA are the molecules that actually implement the genetic code. They make 

the connection between a codon and the specific amino acid this codon codes for. Each 

tRNA molecule has, on one side, a conformation that has high affinity for a specific codon 

and, on the other side, a conformation that binds easily to the corresponding amino acid. 

As the mRNA passes though the interior of the ribosome, a tRNA matching the current 

codon, i.e. the codon in the mRNA currently inside the ribosome, binds to it, bringing along 

the corresponding amino acid (a generous supply of amino acids is always floating around 

in the cell). The three-dimensional position of all these molecules in this moment is such 

that, as the tRNA binds to its codon, its attached amino acid falls in place just next to the 

previous amino acid in the protein chain being formed. A suitable enzyme then catalyzes 

the addition of this current amino acid to the protein chain, releasing it from the tRNA. 

A protein is constructed residue by residue in this fashion. When a STOP codon appears, 

no tRNA associates with it, and the synthesis ends. The mRNA is released and degraded 

by cell mechanisms into ribonucleotide, which will be then recycled to make other RNA. 

Figure 2.7 summarizes the process just described. 



Chapter 3 

Related Work 

The topic of mining frequent sequential patterns has received significant attention in the 

KDD community [2] [lo] [27] [20]. In the bioinformatics community, a lot of research on 

mining patterns in biological sequence data has been conducted 1241 [23] 1211. In this section, 

we survey important methods from both of these areas. Ignoring differences in definition 

of pattern language, existing sequential pattern discovery algorithm can be categorized into 

two categories: algorithms that concentrate on pruning search space and algorithms using 

special data structure for fast support counting. The following criteria will be used through 

the survey: 

In which direction is the pattern search space enumerated: Bottom-up or top-down? 

In which order is the pattern space searched: Depth-First or Breadth-First? 

Which patterns are reported: Maximal, closed or all patterns? 

Can the method handle concept graphs, i.e. does it find also generalized patterns 

using a given concept graph? 

3.1 Pattern Enurnerat ion Met hods 

Sequence pattern discovery problems are provably hard 1131. For example if we want to 

find amino acids pattern of length 10, there are potentially 201•‹ such patterns. Much 

research has been done on how to efficiently explore the huge search space. Many elegant 
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pruning techniques are proposed that make the search feasible for typical input data. In 

this subsection, we survey the algorithms that focus on these techniques. 

3.1.1 GSP Algorithm 

The sequential pattern mining problem was first introduced in KDD community by Agr- 

wal and Srikant in [2]: Given a set of sequences, where each sequence consists of a list of 

elements and each element consists of a set of i tems,  and given a user  specified m i n i m u m  

support thhreshold, sequetial pattern mining is  to  find all of the frequent subsequences, i.e, 

the subsequences whose occurrence frequency in the set of sequences i s  n o  less than  m i n i m u m  

support. In [2] three algorithms are presented. The algorithm AprioriAll shown to perform 

better to the other two algorithms. The same authors in a later work [25] presented the 

GSP algorithm that outperforms AprioriAll by up to 20 times. 

GSP is based on the apriori heuristic proposed in association mining [I]. The heuristic 

states the fact that any superpattern of a non frequent pattern cannot be frequent. The 

GSP algorithm is shown in figure 3.1. 

Algorithm 3.1 Algorithm GSP 
Input: a sequence database D and minimum support value 6 
Output: the set of all frequent patterns 
Method: 
1. Function GSP(D, 6) 
2. F1 = {frequent 1-sequences) 
3. F=F1; /*set of all frequent patterns*/ 
4. for (k=2; Fk-1 # 0; k++) do 
5. Ck=set of candidate k-sequences; 
6. for all sequences s in database D do 
7. increment count of all unique a: E Ck la is a subseqeunce of s; 
8. Fk={a E Ckla is frequent); 
9. F=FUFI,; 
10. .return F;  

Figure 3.1: The GSP Algorithm 

GSP adopts a bottom-up, breadth first search strategy, outlined as follows. The first 

database scan finds all of the frequent items which form the set of single item frequent 

sequences. Each subsequent pass starts with a seed set of sequential patterns, which is the 

set of sequential patterns found in the previous pass. This seed set is used to generate new 

potential patterns, called candidate sequences. Each candidate sequence contains one more 



CHAPTER 3. RELATED WORK 17 

item than a seed sequential pattern, where each element in the pattern may contain one 

more item than a seed sequential pattern, where each element in the pattern may contain 

one item or multiple items. All the candidate sequences in a pass will have the same length. 

The scan of the database in one pass finds the support for each candidate sequences. All 

the candidates whose support in the database is no less than minimum support form the 

set of the newly found sequential patterns. This set then becomes the seed set for the next 

pass. The algorithm terminates when no new sequential pattern is found in a pass, or when 

no candidate sequence can be generated. 

In candidate generation step, for any given pair of frequent length k - 1 sequence (p,pl), 

where discarding the first item of p and last item of p' results in identical patterns, create a 

new candidate pattern of length k by appending the last element of p' to p. Hence, it uses 

the apriori heuristic. For example, given frequent length 2 patterns AB and BC, they can 

be used to create a new candidate sequence ABC. 

In GSP concept graphs are incorporated by simply transforming a sequence when count- 

ing its support. 

3.1.2 TEIRESIAS 

In the bioinformatics community, a wealth of methods for determining frequent sequential 

patterns has been developed [24] [23] [21]. [7] presents a good overview on this research. 

TEIRESIAS [21] can be considered as state-of-the-art method for mining all closed (called 

maximal in their paper) frequent patterns in a database. Closed patterns are patterns for 

which all extensions have a smaller support, and the set of closed patterns is typically a 

significantly larger superset of the set of all maximal patterns. We will next follow the 

author's definition and call the patterns reported by TEIRESIAS maximal patterns. While 

the original proposal did not involve concept graphs, it has later been extended to support 

this functionality. 

TEIRESIAS searches for patterns consisting of characters of the alphabet C and wild- 

card characters '.'. Moreover, the patterns must satisfy certain density constraint, limiting 

the number of wild-cards occurring in any stretch of pattern, that is any subpattern of p 

containing exactly 1 non-wildcard characters has length at most I. Such patterns are called 

< I ,  w > patterns, where 1 and w are specified by user. 

The basic idea of TEIRESIAS algorithm is that if a pattern p is a < I,.w > pattern 

occurring in at least k sequences, then its subpatterns are also < 1, w > patterns occurring at 
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least k sequences. Therefore the algorithm assembles the patterns from smaller subpatterns. 

TEIRESIAS works in two phases. In the first phase, called scanning phase, it finds all 

< 1, w > patterns occurring in at least k sequences that contain exactly 1 non-wildcards. In 

the second phase, convolution phase, these elementary patterns is are extended by combining 

them together. The basic operation is to take two patterns p and q created so far, take the 

suffix of p containing exactly 1 - 1 non-wildcards, take prefix of q containing exactly 1 - 1 

non-wildcards. If the suffix and the prefix are equal, p and q can be combined together so 

that the 1 - 1 non-wildcards overlap. If the resulting pattern occurs at least k times, we 

keep it, otherwise we discard it. For example let p = AB.CD.E and q = DFE.G. Then p 

and q cannot be combined together, because D .E  # D F .  However if q = D.E.G, they can 

be combined together obtaining AB.CD.E.G. 

The efficiency of TEIRESIAS is primarily due to a special join operation (convolution) 

which allows the extension of a pattern by more than one element at a time. The convolution 

phase of the TEIRESIAS algorithm can be described as follows: for each elementary pattern 

 starting with the largest pattern in prefix ordering), try to extend pattern p with other 

elementary patterns. The figure below shows the procedure of how to extend pattern p. 

Algorithm 3.2 Extend an element pattern(1n convolution phase of Teiresias) 
Input: an elementary pattern p and the set of all elementary patterns EP 
Output: a potential closed pattern 
Method: 
1. F'uction ExtendPattern(p, EP) 
2. While there exists a pattern ~ E E P ,  which can be combined to the left side of p 
3. Take such q wich is largest in suffix ordering; 
4. Let r be the pattern resulting from combining q t the left of p; 
5 .  If pattern r has number of occurrences at least k and is maximal so far 
6. Try to extend pattern r with other elementary patterns; 

/*using the procedure "ExtendPattern" recursively*/ 
7. If pattern r has the same number of occurrences as pattern p, then pattern p 

is not maximal and we do not need to search for other extensions of p; 
/*exit the procedure*/ 

8. otherwise pattern r is not significant pattern; 
9. Repeat the same process for the elementary patterns which can be combined 

to the right side of p (starting with the largest pattern in prefix ordering); 
10. Report pattern p; 

Figure 3.2: ExtendPattern 

In the convolution phase we produce all possible patterns in this way. We take each 
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elementary pattern, and we try to extend it on both sides by gluing it with other elementary 

patterns in all possible ways(depth first search). The figure below shows an example of 

extending elementary pattern F.AS. Any pattern that cannot be extended without loss of 

support can be potentially maximal. However still we can obtain non-maximal patterns in 

the output and some patterns can be generated more than once. Therefore we keep a list of 

patterns written to output so far. We check any newly generated pattern(even if it can be 

further extended) with the list and if the list contains more specific pattern with the same 

occurrences we simply discard the new pattern. The search for new patterns is organized 

so that any maximal pattern p is written to output before any non-maximal patterns less 

specific than p. In this way we never need to remove pattern already written to the output. 

I 1 

Elementary patterns 

Figure 3.3: Convolution phase of TEIRESIAS 

Then order of generating patterns is achieved by careful organization of the depth first 

search. For this purpose we define prefix and suffix ordering of the set of patterns. 

Prefix ordering is defined as follows. Take both patterns and replace all wildcard charac- 

ters with 0 and other characters with 1. Compare the resulting string lexicographically. The 

suffix ordering is defined in similar way, except we compare reversed strings. For example 

AB.C is smaller than AC.B.D in prefix ordering but it is greater in suffix ordering. 

To filtering out non closed patterns, every pattern is assigned a hash value. However, 

the hash function used by TEIRESIAS can not guarantee that no two closed patterns take 

the same value. Therefore subsequence matching must be performed to identify non closed 

patterns. For more details, please refer to [8]. 

3.1.3 Pattern Growth Method 

Prefixspan [20] method explores prefix-projection in mining of sequential patterns. It greatly 

reduces the efforts of candidate generation. Moreover, the prefix-projection also reduces the 

size of projected databases and leads to an efficient processing. Its general idea is to examine 
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only the prefix subsequence into projected diabases. In each projected database, sequential 

patterns are grown by exploring only local frequent patterns. To further improve the mining, 

two kinds of database projections are considered. 

The algorithm starts by finding all frequent events in the input data. The search space 

is then divided by partitioning the sequential patterns into subsets having the distinct 

frequent events as prefixes. This results in the same number of subsets as there are frequent 

events, the patterns in each subset starting with corresponding event. The subsets can then 

be mined by constructing corresponding projected databases and mine each recursively 

as follows. First, the database is scanned in order to find frequent events that can be 

assembled to the last element or added as such to the end of the prefix to form a sequential 

pattern. Each such pattern is then output and a respective new prefix-projected database 

is constructed and explored similarly. The process ends when no new frequent sequences 

can be generated. 

There are two optimizations of the process. The cost of constructing the projected 

databases can be cut by using bi-level projection, which reduces the number and the size 

of the projected databases. Secondly, the pseudo-projection can be used to reduce the 

projection costs when a projected database can be held in the main memory. 

PrefixSpan [20] determines all frequent patterns and induces a bottom-up, depth-first 

search strategy. PrefixSpan is proved much more efficient than GSP [20] but does not 

support concept graphs, and there is no straightforward way of incorporating them as far 

as we know. 

3.2 Efficient Support Counting 

The general approach of pattern discovery of algorithms is candidate pattern generation 

and test. That is they hypothesize possible pattern in turn and verify whether its support 

exceeds the predefined user threshold. The verification process is critical because it has to 

be performed for each candidate pattern. The second category algorithms propose elegant 

data structure for fast support counting to improve the efficiency. PSP [14] used prefix 

tree, while SPADE [30] and SPAM [3] proposed vertical representation of database for this 

purpose. 
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3.2.1 PSP 

The PSP algorithm follows the same approach as GSP. However, the authors use prefix 

tree instead of hash tree, which is used in GSP, as their internal data structure for support 

counting. Figure 3.4 shows the prefix tree and hash tree used by of PSP and GSP. 

PSP Candidate Tree 

Root 
\ 

A B 
I I /7\ 

B D A B  D 
I I I I / \ 

C B D C A  B 

GSP Candidate Tree 
Hash Function: h(A)=h(B)=O; h(C)=h(D)=l 

Figure 3.4: Prefix tree vs. Hash tree 

During the support counting phase in GSP, for all length k subsequence of each database 

sequence, the hash tree is navigated until reaching a leaf node storing several candidate 

patterns. Then each candidate pattern is examined for a match. However, using the prefix 

tree in PSP, the search for a length k subsequence is terminated when for any j < k ,  no 

length j subsequence is present in the prefix tree. Once the leaf node is reached, the only 

operation to perform is to increment its support value. Other benefits of using prefix tree are 

that it requires less storage space and improves efficiency during the candidate generation 

phase. This approach proves to be more efficient than GSP in [14]. Since PSP adopts the 

level wise candidate generation and test approach, it suffers the same problems as GSP. 

3.2.2 SPADE 

All algorithms explained so far work on a horizontal database format. In horizontal formate 

the database contains a list of sequences (sid), each with its own list of elements (eid). In 

SPADE, the database layout is transformed from horizontal to vertical. That is, the database 

is reorganized so that, each element is associated with a id-list. Id-list contains the sequence 

id (sid) and position id (pid). The (sid, pid) pairs of an element record sequences in which 

it occurs and where it occurs in that sequence. For example, figure below shows how an 



CHAPTER 3. RELATED WORK 22 

original database can be transformed to a vertical represtation. From this database format, 

it is easy to generate the id-list of a new generated candidate pattern by intersecting of 

the id-lists of two its generating sequences. For example, using the vertical representation 

shown in figure below, pattern BA will have id-list < (2,3), (3,4) >, CB will have id-list 

Original Database Vertical Representation 

Figure 3.5: Horizontal vs Vertical Representation of Database 

Both breadth first and depth first search can be applied to find out frequent patterns. 

The draw back of depth first search is that we only use two id-lists to generate the next 

level's patterns and do not fully take advantage of the a priori heuristic, we may unnecessarily 

generate a larger set of candidate patterns, some of which may not even exist in the database. 

The draw back of breadth first search is that the huge number of candidate patterns can not 

be hold in the main memory. However, the author proposed to decompose the search space 

into equivalence classes such that each equivalence class can be processed independently. 

For additional details on splitting the search space, we refer the reader to [30]. 

3.2.3 SPAM 

The recently proposed SPAM [3] method is similar to SPADE. The major difference is that 

bitmaps are used instead of id-lists for the vertical representation. Experiments demonstrate 

that SPAM outperforms all other methods for finding all frequent sequential patterns. Both, 

SPADE and SPAM do not support concept graphs, but they can be extended in a straight- 

forward way by extending the alphabet to include the concepts from a concept graph. This 

will be discussed in more detail later. 

For each item in the database, a bitmap is created. And each bitmap has a bit corre- 

sponding to each element in the dtabase. If an element i appears in sequence j at position 

I c ,  then the bit corresponding to sequences j at position k of the bitmap for item i is set 
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to 1; otherwise the bit is set to 0. The figure below shows how orignal database can be 

reorganized to its vertical representation. 

Original Database Bitmap Representation 

A B C D 

Figure 3.6: Horizontal vs Bitmap Representation of Database 

Efficient counting of support is the main advantage of the vertical bitmap representation 

of data. Support counting for each pattern then becomes a simple check as to whether there 

exists a 1 in the corresponding sequence. To create the bitmap of a newly generated pattern, 

use bit operations shift and and will be used. For example, in order to get the bitmap of 

pattern BA, we first shift bitmap of B 1 bit to the right, and then and with the bitmap of 

A. The figure below shows the procedure. 

Bitmap of B Shifted Bitmap of B 

shift to right 
b 

Bitmap of A 

1 Bitmap of BA 

Figure 3.7: Generation of a new bitmap 

3.3 Version Space 

Besides previous surveyed work done in KDD area, version space, which has been widely 

studied in Machine Learning community, is closely related to our work. Roughly speaking, 
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the version space is the subset of hypothesis space consistent with all training examples. 

Search in version space will either lead from specific to general, driven by positive examples 

(bottom-up), or from general to specific, driven by negative examples (top-down). The 

Candidate-Elimination Algorithm combines a bottom-up and a top-down search. In this 

section, we introduce the concept of version space and the search strategies used to explore 

it. At the end of this section, we discuss the relationship of the version space to the problem 

of frequent pattern mining. 

Concept learning is one of the central tasks of machine learning. It acquires the definition 

of a general category given a sample of positive and negative training examples of the 

category. 

The set of items over which the concept is defined is called the set of instances X .  The 

concept to be learned is called the target concept c. In general, c can be any boolean-valued 

function defined over the instances X, i.e., c : X -+ (0,l) .  Training data are instances 

(records) from an instance space X, along with their concept value: < X I ,  c(xl) >, . . . , < 
x,, c(x,) >. Often, X Dl x . . . x Dd, where Di is domain of attribute i. Given a set 

of training data of target concept c, the problem is to hypothesize c. However, due to 

training data can not cover the whole instance space, inductive learning algorithms can at 

best guarantee that the output hypothesis fits the target concept over the training data. 

More formally, learner wants to induce hypotheses h : X -+ { O , l )  from a set of all possible 

hypotheses H such that h(x) = c(x) for all x in D. 
Concept learning can be viewed at the task of searching through a large space of hy- 

potheses implicitly defined by the hypothesis representation. The goal of this search is to 

find the hypothesis that best fits the training examples. However, even for trivial examples, 

the space of hypotheses is very large. To explicitly represent the structure of this space, 

even for rather simple concepts, can involve representing millions of possible hypotheses! 

For example, if we use 5 dimensions where each dimension can take on one of two values 

than there are 2 to the 5 or 32 possible instances. The size of this power set is 2 to the 32 

or 4,294,967,296. This is a large space to explicitly represent and hold in memory. 

Tom Mitchell demonstrated in his research [15] [16] [17] how this structure could be 

efficiently exploited. Essentially he developed a way in which to implicitly represent and 

use a structured space of hypotheses. The space was called a version space. 

A hypothesis h is consistent with a set of training examples D of target concept C iff 

h(x) = c(x) for each < x, c(x) > in D. The verszon space is the subset of hypotheses from 
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H consistent with all training examples. 

One obvious way to represent the version space is simply to list all of its members. For 

example, we first initializes the version space to contain all hypotheses in H, the eliminates 

any hypothesis found inconsistent with any training example. The version space of candidate 

hypotheses thus shrinks as more examples are observed, until ideally just one hypothesis 

remains that is consistent with all the observed examples. If insufficient data is available to 

narrow the version space to a single hypothesis, the the algorithm can output the entire set of 

hypotheses consistent with the observed data. This naive approach need us to exhaustively 

enumerate all hypotheses in H. 

The Candidate-Elimination algorithm works on the same principle as above naive ap- 

proach. However, it employs a much more compact representation of the version space. In 

particular, the version space is represented by its general boundary G, which is the set of its 

maximally general members and its specific boundary S, which is the set of its maximally 

specific members. Every member of the version space lies between these boundaries. Figure 

3.8 shows the algorithm Candidate-Elimination. 

The basic idea of Candidate-Elimination algorithm is to start an inductive learning task 

with two of the possible hypotheses, the most general hypothesis and the most specific 

hypothesis. Then, positive examples will always be consistent with the most general hy- 

pothesis, but will be inconsistent with the most specific hypothesis. Consequently, this most 

specific hypothesis will be made more general. A negative example will be consistent with 

the most specific hypothesis, but inconsistent with the most general hypothesis. Conse- 

quently, this most general hypothesis will be made more specific. Thus, at any point in the 

training sequence the learner will maintain two hypothesis; and, the true hypothesis must 

lie somewhere in the area of the hypothesis space that connects these two hypotheses. If at 

some point the most general hypothesis is the same as the most specific hypothesis, then 

the learner has arrived at a unique definition of the concept. Thus, with a method of this 

sort the definition of a concept is usually not uniquely determined until enough training 

instances have,been observed that force the learner to a unique determination of the correct 

hypothesis. Thus, without enumerating the whole search space, Candidate-Elimination find 

every hypothesis consistent with the training data. 

It is interesting to notice the relationships of the version space to the problem of mining 

frequent pattern, in particular, to the problem of mining most specific frequent patterns 

which will be formally introduced in chapter 4. First, the general boundary and specific 
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Algorithm 3.3 Candidate-Elimination Algorithm 
Input: a set of training data 
Output: general boundary G and specific boundary S of the version space 
Method: 
1. F'uction Candidate-Elimination 
2. G e maximally general hypotheses in H; 
3. S +- maximally specific hypotheses in H; 
4. for each training example d =< z, c ( x )  > 
5. if d is a positive example 
6. remove from G any hypothesis that is inconsistent with d; 
7. for each hypothesis s in S that is not consistent with d 
8. remove s from S; 
9. add to S all minimal generalizations h of s such that 
10. (1) h is consistent with d; 
11. (2) some member of G is more general than h 
12. remove from S any hypothesis more general than another hypothesis in S; 
13. if d is a negative example 
14. remove from S any hypothesis that is inconsistent with d; 
15. for each hypothesis g in G that is not consistent with d 
16. remove g from G; 
17. add to G all minimal specialization h of g such that 
18. (1) h is consistent with d; 
19. (2) some member of S is more specific than h 
20. remove from G any hypothesis less general than another hypothesis in G;  

Figure 3.8: Candidate-Elimination Algorithm 

boundary provide a compact representation of the version space. Every member of the 

version space lies between these boundaries. In the problem of mining most specific frequent 

patterns, the set of all most specific frequent patterns is the specific boundary for the set 

of all frequent patterns. And the set of the maximal generalizations 20 amino acids is the 

general boundary of the set of all frequent patterns. All frequent patterns lie between these 

two boundaries. Second, in order to find the general and specific boundary of version space, 

Candidate-Elimination combines bottom-up and top-down search. It keeps generalizing the 

specific boundary and silicifying the general boundary to reach the final boundaries. Our 

approach ToMMS, in order to find the set of most specific frequent patterns, keeps generalizing 

the patterns found to be infrequent, i.e. keep generalizing the boundary until the patterns 

on it are frequent. Although there are some interesting relationships between the version 
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space and our problem, they are conceptually different problems and the detail approaches 

to solve them, as a consequence, are different. We will discuss the problem of mining most 

specific frequent pattern in chapter 4. 



Chapter 4 

The Algorithm 

This chapter provides an in-depth discussion of mining most specific frequent patterns in 

biological data. A precise definition of the problem is given. A new pattern discovery 

algorithm called ToMMS is introduced and its design and its efficiency is discussed in detail. 

Section 4.1 introduces notions of most specific frequent patterns and the problem definition. 

Section 4.2 presents ToMMS, a top-down method for mining such patterns. Section 4.3 shows 

an example and analyzes the search space of the concrete patterns. Concept graphs blow up 

the search space. Their efficient treatment is discussed in section 4.4. How to determine the 

maximal length of frequent patterns is discussed in section 4.5. The correctness of ToMMS 

is shown in section 4.6. Section 4.7 discusses the implementation of ToMMS. 

4.1 Terminologies and Problem Definition 

In this subsection, we introduce terminologies will be used and describe the problem of 

mining most specific frequent patterns. 

Let C be a set of symbols, the alphabet. The database D consists of n database sequences 

s = s l sz . .  . sl with si E C for 1 5 i 5 1, 1 is the length of s. For protein sequence databases, 

e.g., C = {A ,C ,D,E ,F ,G,H, I ,K ,L ,M,N,P ,Q,R ,S ,T ,V ,  W , Y ) ,  i.e. the one-letter codes 

of the 20 amino acids. 

Let C? be a set of concepts, C n fl = 8. For example, concepts may represent subsets of 

the set of all amino acids with the same physico-chemical properties. In this thesis, small 

letters are used to denote the concepts. For example, s may represent the property small, 

p the property polar. 
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Based on C and R, we define a concept graph as a directed acyclic graph C (CUR) x R, 

where a directed edge (X, Y) (C U 0) x R represents an is-a relationship "X is-a Y " ,  i.e. 

the concept Y subsumes the concept or symbol X .  Usually concept graphs are provided by 

biology experts. Figure 4.1 shows a simple concept graph. We will use it as the running 

example in this paper. The distance of two vertexes vi and vj in r, denoted by dist(vi, vj), 

is the number of the edges of the shortest path between vi and vj. 

Figure 4.1: Example of a concept graph 

The level of a symbol X E C U R w.r.t. concept graph r is defined as following: 

2. VX E S1 : level(X) = max{dist(X,Y)JY E C). 

In figure 4.1, for example, level(A) = 0, level(d) = 2. 

A concept graph F induces a relation more specific, denoted by <r, on as follows: 

We can extend <r to Sr by adding Ve E C U R : e Sr e. 

The relation has the following properties: 

1. Ve, f E C U R : (e f )  A (f i r  e) =+ (e = f )  (antisymmetric); 

Thus Sr is a partial order. Intuitively, if X Sr Y , then Y subsumes X, i.e. Y is either 

identical to X or Y generalizes X .  Using concept graph in figure 4.1, for example, A <r a ,  

a < r  C, sp(A, C) = A. 
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The most specific common predecessor Z of two symbols or concepts X , Y  E C U R, 

denoted by mscp(X, Y) = Z E C U R, is defined by the following two properties: 

A pattern is a sequence p = ele2 . . . el with ei E C U R, and 1 is the length of the pattern, 
I 1 1  

denoted by length(p). A pattern p = ele2 . . . ej is a subsequence of a pattern p = ele2. . . el, 

if 3a, 1 5 a 5 i : Vb, 1 5 b < j : eh+b-l = eb. For example, C D  is a subsequence of CDE. A 

concrete pattern contains only symbols from C, for example CDE.  A non-concrete pattern 

such as CbE is called a generalized pattern. 

We extend the definition of the level and the partial order <r from single symbols to 

whole patterns as follows. 

The level of a pattern w.r.t. graph r is the sum of the levels of all elements of the 

pattern in the graph r, i.e. the level of a pattern p = ele2 . . . el is: 

1 

level (p) = level (ei) . 
i=l 

For example, using the concept graph shown in figure 1, pattern C D E  has level 0, pattern 

cbE has level 3. 

A pattern p' is called to be more specific than a pattern p if can be generated from p 

by specializing one or more of its elements (using the concept graph) and / or by extending 

it by one or more elements. In this case, we also say that pattern p generalizes pattern pl 
I  1 1  

or p is more general than p'. More formally, a pattern p = ele2 . . . el is called to be more 

specific than a pattern p = ele2.. . ej(i L j), denoted by p' <r p, if 

1. p' # p, and 

For example, a E D  <r abD w.r.t. the concept graph shown in figure 1. Note that a pattern 

is not more specific than itself. We again extend <r to Sr by adding: for all p over 

C U R : p sr p. From the definition, <r defined on patterns is also a partial order. 

A database sequence s supports a pattern p if s is more specific than or equal to p, 

i.e. s <r p . Sequence s is called a supporting sequence of p. A subsequence pl of s with 

properties: 
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1. length(i)  = length(p), and 

is a supporting pattern of p. The support of a pattern p in database D ,  denoted by sup(p), 

is the number of supporting sequences of p in D. The set of all supporting sequences of a 

pattern p is denoted by SupSeqs(p). Assuming the concept graph of figure 1, for example, 

sequence C D E  supports all of the following patterns: CDE,  CbE, CDb, dD, Cb, etc. The 

supp&ting patterns are C D E  for the first three of these patterns and C D  for the remaining 

two ones. 

A pattern is frequent in database D if its support is at least equal to minimum support 

6, a user supplied threshold. A frequent pattern p is called a most specific frequent pattern 

if there is no frequent pattern which is more specific than p. More precisely, the set of all 

most specific frequent patterns w.r.t. minimum support 6 and concept graph I? is the set S 

of patterns with the following properties: Vp E S 

The following theorem shows that the set of all frequent patterns can be derived from 

the set of all most specific frequent patterns by generalizing one of these patterns. 

Theorem 4.1.1 Let S be the set of all most specific frequent patterns in database D w.r.t. 

minimum support 6 and concept graph I?. Then, b'p : sup(p) > 6 * 3q E S : q <r p. 

Proof (1) If p E S, we are done. (2) If p $? S, then 3pl : (sup(pl) > 6) A (pl Fr p) because 

p is not most specific. The same reasoning can now recursively be applied to pl ,  i. e. 

either case (1) or case (2) applies to pl .  We obtain a (potentially infinite) chain of patterns: 

. .p, <r . . .  Fr p2 3 p1 sr p with sup(pi) > 6, 1 5 i < n. This chain must be finite, 

since there is only a finite number of frequent patterns in D w.r.t. 6 (because a frequent 

pattern generalizes all its supporting database sequences and, therefore, cannot be longer 

than these sequences), i.e., the case (1) must eventually apply to q = p and we obtain a 

pattern q E S with q = p, Lr . . . p2 <r p1 Sr p. Because of the transitivity of sr, we 

conclude q <r p. I 

Using the above definitions we succinctly describe the problem addressed by ToMMS as 

fo~lows: 
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Problem Definition Given database D = {sl, sz,. . . , s,) of sequences over alphabet C ,  

concept graph r and minimum support 6, construct the set of all most specific frequent 

patterns with support at least 6 in D w.r.t I?. 

4.2 ToMMS 

Given a sequence database D, a concept graph r and a minimum support value 6, the set 

of all most specific frequent patterns shall be discovered. In this subsection, we present the 

algorithm ToMMS which efficiently mines all such patterns. 

ToMMS is based on the following key observations: 

Frequent concrete patterns must be subsequences of data sequences. 

More specific patterns should be generated before less specific ones in order to avoid 

the unnecessary generation of frequent patterns which are not most specific. 

To exploit these observations, instead of using the traditional bottom-up approach, we 

propose a top-down approach to explore the search space. We start with all subsequences 

of the data sequences (of some specified length maximum-length) and continue to shorten 

them by one element until they become frequent. Furthermore, infrequent patterns are also 

generalized using the concept graph until they become frequent. 

Figure 4.2 shows the algorithm ToMMS using the notations introduced in Table 4.1. 

Table 4.1: Notations 

Set 
MSFPi 

CPi 
ICPi 
FCPi 

GPi 
IGPij 
FGP;; 

In the function Generalize, the infrequent concrete patterns of length i are minimally 

generalized until they become frequent. In order to perform a minimal generalization, 

Contains 
Most Specific Frequent Patterns of length i 
Concrete Patterns of length i 
Infrequent Concrete Patterns of length i 
Frequent Concrete Patterns of length i 
Generalized Patterns of length i 
Infrequent Generalized Patterns of length i at level j 
Freauent Generalized Patterns of length i at level j 
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Algorithm 4.2.1 Algorithm ToMMS 
Input: a sequence database D, concept graph F and minimum support value 6 
Output: the set of most specific frequent patterns in D 
Method: 
1. Function ToMMS (D, J?, 6) 
2. /*Returns maximal length of most specific frequent pattern*/ 

maxlength t Maxlength (D, r, 6); 
3. i t maxlength; 
4. /*Return all subsequences of length maxlength in D*/ 

CPi t Preprocess(D, maxlength) ; 
5. while CPi # Q) do 
6. MSFPi + {clc€CPi, c is frequent); 
7. FCP, t FCPi U { c l c ~ C P ~ ,  c is frequent); 
8. ICPi t {c/c€CPi, c is infrequent); 
9. MSFPi t MSFPi U Generalize(ICPi, FCPi); 
10. MSFPi t Subseqcheck (MSFPi); 
11. CPiPl t Shorten(ICPi); 
12. FCPi-l t Shorten(FCPi); 
13. i t i-1; 
14. end-while 
15. return Ui MSFPi; 

Figure 4.2: The ToMMS Algorithm 

pairs of two infrequent patterns are matched and generalized using the concept graph. For 

example, using the concept graph of figure 1, the infrequent candidates RQK and R E K  

can be minimally generalized to RbK. The function Generalize returns all most specific 

frequent generalized patterns of length i. The details of generalizing infrequent patterns 

will be discussed in section 4.4. 

The function Shorten shortens all patterns qontained in the input set by 1 element. For 

example, the set {RKQ, KQA) is shortened to the set {RK, KQ,  QA). 

For fast support counting of pattern p, we use bitmaps to record SupSeq(p). Support 

counting for the patterns in CP, is not explicitly mentioned in the pseudo-code, because it is 

performed implicitly when inserting new patterns into the data structure CP,. Whenever a 

newly generated pattern already exists in CPi, the corresponding support count is updated 

according to the supporting sequences of the newly generated pattern. This method is 

correct since all the information of the original database is contained in the sets of FCP, 

and ICP,. Thus, we do not need to scan the original database for support counting. A 
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similar method can be applied to count the support of generalized patterns (see section 

4.4). 

For the purpose of avoiding redundancy, the function Subseqcheck is used to remove 

those frequent patterns which are not most specific. 

The function Maxlength returns the maximum length of frequent patterns, which is 

also the maximum length of most specific frequent patterns. We will discuses it further in 

section 4.5. 

4.3 Concrete Patterns: Example and Analysis 

In this subsection, we show an example of the search space of concrete patterns and analyze 

its complexity. The problem of mining most specific general patterns is the crucial part of 

ToMMS and will be elaborated in section 4.4. 

Let the data sequences be the sequences shown in figure 4.3, which will be used as our 

running example throughout this thesis. 

RKQA 

KRQP 

KKE 

Figure 4.3: Dataset of running example 

Now let us assume that max-length is 4. ToMMS starts from the subsequence of length 4, 

e.g. the data sequence RKQA, and checks the support of this sequence. If it turns out to be 

infrequent, all subsequences of length 3 are generated, i.e. the two subsequences RKQ and 

KQA. If any one of them is frequent, we output it and stop generating its subsequences. 

For example, if RKQ turns out to be frequent, we do not check the subsequences R K  and 

KQ. Figure 4.4 depicts the search space of all concrete patterns generated by sequence 

RKQA. 

Suppose the maximum length of the database sequences (not the patterns) is 1 and the 

number of the sequences in the database is n ,  then the maximal number of concrete patterns 

is n . I . (1 - 1)/2 = O(n . 12). For typical biological databases, this number is much smaller 

than the worst case number of candidate patterns for the bottom-up approach which is 
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O(IClm) where 1x1 denotes the size of the alphabet and m is the maximum length of fre- 

quent patterns. For example if there are 10 concepts and the length of the longest pattern 

is 20, then the number of potential frequent patterns is 3020 for bottom-up enumeration. 

RKQA 

Figure 4.4: Example of search space of concrete pattern 

4.4 Incorporating Concept Graphs 

Although we have reduced the search effort for concrete patterns, concept graphs blow up 

the size of the search space dramatically. For example, a single concrete pattern of length 

I can be generalized in 2l ways even if we consider the simplest case of a one-level concept 

tree (instead of a general non-hierarchical concept graph). In this section, we elaborate 

our method for searching the space of generalized patterns. The correctness of the ToMMS 

algorithm is shown in section 4.6. 

We want to avoid any unnecessary generalizations of infrequent patterns, i.e. general- 

izations which either do not increase the support of the pattern or create frequent patterns 

which are not most specific. We achieve this goal by two features: 

0 We again perform a top-down search, i.e. only infrequent patterns are generalized 

using the concept graph. 

For such patterns, we apply only a small subset of all possible generalizations, i.e. 

only generalizations which actually increase the support. 

Note that a generalization operation need not necessarily increase the support of a 

pattern. Our key idea is to generate only patterns which generalize two (not one) infrequent 
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patterns. Assuming that the sets of supporting sequences of the two input patterns are 

not proper subsets of each other, the generalized pattern must have a larger support than 

any of the input patterns. Since the procedure Shorten already considers subsequences of 

the current infrequent patterns, here we consider only generalizations of two same length 

patterns. 

We define a match of n patterns as a set of all patterns of the same length generalizing 

all input patterns such that there is no more specific pattern with the same property. More 

formally, a match @ of n patterns pl , p2, . . . , p,, denoted by S = @(pl, p2, . . . , p,) , is defined 

as the set of all patterns p with the following properties: 

(1) 'v'i, 1 < i 5 n : length(p) = length(pi), 

(2) Vi, i 5 i 5 n : pi I r  p, 

(3) ~6 # P : (PI I r  6) A ( ~ 2  Fr 6) A (pn I r  6) * ~ ( 6  I r  P). 

Such a match does not exist for all pairs of patterns, i.e. the match may be the empty 

set. The match of two patterns is at most a single pattern as long as the concept graph is 

tree-structured, i.e. if there is at most one predecessor for any concept or symbol from the 

alphabet. For non tree-structured concept graphs, however, there may be several match- 

ing patterns of two input patterns. For example, using the concept graph of figure 1, 

ACE @ ADE = {AcE, AdE), while ACD @ ECD = 0 since there is no common predeces- 

sor for A and E in the concept graph. 

The following theorem states that all generalizations of a set of input patterns can be 

derived from the match of these patterns. 

Theorem 4.4.1 Let S = @(PI, p2, . . . , p,) for pattern pl, pa, . . . , p, over C U R. For every 

pattern 6 with the following two properties (1) length(p') = length(pi), i = 1,2, . . , n and 

(2) (pl 6) A (p2 Fr A (p, Ir $), there is a pattern p E S such that p Fr 6 .  

Proof Similar to the proof of Theorem 3.1.1. 1 

The next theorem shows that any match of more than two patterns is equivalent to a 

sequence of pair-wise matches of the same patterns. 

Theorem 4.4.2 Let p E @(pl,p2,. . . ,p,) for patterns pl,p2,. . . ,p, over CUR, then 3pm E 

@(PI, ~ 2 ,  . . . , pn-1) such that P E @(pm, pn). 
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Proof If the theorem does not hold, we have 'v'p, E @(pi, pz, . . . , pn-I), p $ @(pm, p,). 
I I 

That means 3; # p,p, <r ;,pn sr p , p  <r p. So we have Vi,1 < i I n - 1 : pi Lr 
p, <r ;, pn sr ; <r p. This is a contradiction to the assumption p E $(pl, p2, . . . , p,) 

which implies that p is a minimal generalization of pl, pa, . . . , p,. I 

The match of two patterns can be efficiently implemented: for each pair of corresponding 

elements of the two input patterns, determine all most specific common predecessors in the 

concept graph and form all possible combinations of them. This is obviously correct from the 

definition of most specific common predecessor and the definition of most specific frequent 

pattern. 

Although the proposed approach of pairwisely generalizing infrequent sequences drasti- 

cally reduces the search space, many redundant matches (patterns) will be generated by a 

naive adoption of this approach. This is due to the fact that two different pairs of infrequent 

patterns may yield two matching patterns ml and m2 with ml Sr m2. While the case of 

ml = m2 is easy to detect, the case of ml <r m2 is much more difficult to determine. To 

speed-up the necessary tests for <r relationships among the set of all matches, we exploit 

the following dependencies between the levels of two patterns and their order w.r.t. <r. 
First, if two same length patterns pl and p2 have the same level, then neither pl is more 

specific than p2, nor p2 is more specific than pl. Second, if a pattern pl has a smaller level 

than another pattern pa, then pl cannot be more general than p2. These two properties are 

formalized in the following two lemmas. 

Lemma 4.4.3 Let pl and pa be patterns over C U R with length(pl) = length(p2). Then 

the following holds: level(p1) = level(p2) + 7(pl <r p2) A 7(p2 <r pl). 

I I 
Proof Suppose pl = ele2 . . . en and p2 = e1e2 . . . e:. If level(el) = level(e;), level(e2) = 

level (ei), . . . , level (en) = level (e:), we have i (p l  <r p 2 )  If for some i, level (ei) < level (ei), 

since length(pl) = length(p2) and level(pl) = level (p2), there must be some j, such that 

level(ei) > level(e;.). We have 7(pl <r p 2 )  The rest part can be proved similarly. I 

Lemma 4.4.4 Let pl and pa be patterns over C U R with length(pl) = length(p2). Then 

the following holds: level(pl) < level(p2) + 7(pl >r p2). 

Proof Similar to the proof of lemma 4.4.3. 1 
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Exploiting these two lemmas, we partition the set of all pairwise matches of infrequent 

patterns of a given length into subsets of patterns of the same level. We consider these 

subsets separately in ascending order of their level. According to lemma 4.4.3, we do not 

have to test for <r relationships among patterns of the same level (the = relationship is still 

possible). According to lemma 4.4.4, this method guarantees that a generalized pattern 

is never considered before one of its specializations. Therefore, we can immediately test 

whether a current candidate pattern generalizes any already discovered frequent pattern of 

the same length and smaller level (if yes, it is not reported). This means that we do not 

have to delay the test for <r relationships among the generalized frequent patterns until we 

have determined all of them. 

Algorithm 4.4.1 Algorithm Generalize 
Input :  set of infrequent and frequent concrete patterns of length i ICPi and FCPi 
Output :  the set of most specific frequent general patterns of length i 
Method: 
1. Function Generalize(ICP,, FCPi) 

for j =l t o  maxlevel d o  

GPij +-- {P I P = P ~ $ P ~ ,  prn,pn€ICPi, j=level(p)); 
end-for; 
for j = l  t o  maxlevel d o  

for each p€FCPi do;  
mark p' where pt€GPij, P ' > ~ ~ ,  j=level(p); 
end-for ; 
IGPij +- {p I p€GPij1 p is infrequent and unmarked); 
for each pair (pa, pb), pa€ICPi, pb€IGPij do;  

if ( s u ~ s e q ( ~ a )  @ $ s u ~ s e q ( ~ b ) )  
GPil + GPil U {p ( p=pa@pb, l=level(p)); 

end-for; 
FGPij + {p I p€GPij1 p is frequent); 
for each p€FGPij d o  

mark p' where p l ~ G P i j ,  ~ ' > ~ p ,  l = l e ~ e l ( ~ ) ;  
end-for; 

end-for; 
r e t u rn  Uj FGPZj; 

Figure 4.5: Function Generalize 

Figure 4.5 presents the pseudo-code of the generalization method which takes the sets 

of all infrequent / frequent concrete patterns of length i and returns the set of all most 

specific, non-concrete frequent patterns of length i. 
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The purpose of the marking in function Generalize is to avoid the overhead of redundant 

matching operations. Every time a pattern p turns out to be frequent, all its generalizations 

must be frequent and cannot be most specific patterns. Therefore, we mark all generaliza- 

tions of p in higher level generalized pattern sets which will not be generalized further. 

We use an example to illustrate the ToMMS algorithm. Let us use again the concept 

graph in table 4.1 and dataset in figure 4.3. We simply start from the length of the longest 

data sequences (how to find out the maximal length will be discussed in next subsection), 

i.e. from length 4 and minimum support is 3. We have ICP4 as shown in table 4.2(a). 

The ids of the supporting sequences are also given, for example, the supporting sequence of 

R K Q A  is sequence 1. Using the concept graph, we pairwisely generalize patterns in ICP4, 

i.e, match R K Q A  and K R Q P .  After matching infrequent concrete patterns, the resulting 

sets GP4i are shown in table 4.2(b). Please note pattern aaQg has level 4 according to 

the example concepts. Since both sets of supporting sequences of the patterns in ICP4 are 

proper subset of the set of supporting sequences of aaQg, we finish length 4 and go to length 

3. 

(a) ICP4 = {RKQA:[l], KRQP[2]); 
(b) GP41 = 0, 

GP42 = @, 
GP43 = 0, 
GP44 = {aaQg: [1,2]); 

Table 4.2: Example of function Generalize: length 4 

The patterns in ICP4 are shortened. Thus we get ICP3 which is shown in table 4.3 (a). 

Note the data sequence K K E  is also added in ICP3. Again, using the concept graph, we 

pairwisely generalize patterns in ICP3. The resulted patterns are inserted to corresponding 

sets according to their levels as shown in table 4.3 (b). Starting from the lowest level 

nonempty generalized pattern set GP32, we match the infrequent patterns in GP32 with the 

patterns in ICP3. For example, R K Q  match Kab will get aab. Note that RKQ does not to 

match with aaQ because the set of supporting sequences of R K Q  is subset of that of aaQ. 

All the possible 3 matches (where the sets of supporting sequences are not subsets of each 

other) of one pattern in ICP3 and one pattern in GP32 yield the same result aab. The result 

of this generalization is shown in table 4.3(c). Since all patterns in GP32 is infrequent, we 
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go to higher level GP33. Frequent pattern aab is then outputted. Since matching K K E  and 

aQg we get empty set, all generalized patterns are checked and length 3 is done. 

(a) ICP3 = {RKQ:[l], KQA:[l], KRQ[2], RQP[2], KKE[3]); 
(b) GP31 = 0, 

GP32 = {aaQ: [1,2], aKb:[1,3], Kab: [2,3]), 
GP33 = {aQg:[1,2]); 

(c) GP31 = 0, 
GP32 = {aaQ:[1,2], aKb:[1,3], Kab:[2,3]), 
GP33 = {aQg:[l,2], aab:[1,2,3]) 

Table 4.3: Example of function Generalize: length 3 

We then proceed length 2 patterns. Patterns in ICP3 are shortened to length 2 and 

inserted to ICPz as shown in table 4.4 (a). Perform pairwisely matching operation on all 

infrequent length 2 concrete patterns, we get general patterns and their current set of sup- 

porting sequences shown in 4.4 (b). Since no pattern in GP1 is frequent, we generalize them 

against all infrequent concrete patterns. After this, some patterns' supporting sequences are 

updated, e.g. patterns K a  and aa. We output K a  as frequent patterns, and mark all its 

generalizations: aa, Kc, and ac, as shown in 4.4 (c). We continue generalize higher levels 

and mark those generalizations of frequent patterns. The frequent patterns reported by 

function Generalize are shown in 4.4 (d). Since pattern ab is a subsequence of previously 

reported most specific frequent pattern aab, it is discarded. 

(4 ICP2 = {RK:[l], KQ:[lI,QA:[ll, KR[21, RQ[21, QP[2], K W ] ,  KE[31); 
(b) GP31 = {aK:[1,3], aQ:[1,2], Kb:[1,3], Ka:[2,3]), 

GP32 = {aa: [1,2], Rc: [1,2], Rd: [1,2], Kc: [I ,2], Kd: [1,3], Qg: [I ,2], ab: [2,3]), 
GP33 = {ad:[1,2,3], ac:[2,3]}; 

(c) GP31 = {aK:[1,3], aQ:[1,2], Kb:[1,3], Ka:[1,2,3]), 
GP32 = {aa:[1,2,3] x ,  Rc:[1,2], Rd:[1,2], Kc:[1,2] x ,  Kd:[1,3], Qg:[1,2], ab:[1,2,3]), 
GP33 = {ad:[1,2,3], ac:[1,2,3] x}; 

(d) MSFP2 = {Ka:[1,2,3], ab:[1,2,3], ad: [l,2,3]); (before subsequence checking) 

Table 4.4: Example of function Generalize: length 2 

Note that when we try. to filter out non most specific frequent pattern p, we do not 

need to check whether a specification of p with the same length, p', is a subsequence of 
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previously reported patterns. For example, for pattern Ka ,  we do not need to check whether 

its specification K K  is a subsequence of already reported patterns. Its correctness will be 

discussed in section 4.6. In this way, we can efficiently identify redundant patterns. Since 

to check the generalization relationship is much harder than subsequence checking. 

4.5 Determining the Maximum Length 

In order not to miss some most specific frequent patterns, ToMMS needs to first determine the 

maximum length of (most specific) frequent patterns, and then starts its top-down search 

from all data subsequences of this maximum length. The maximum length can be calculated 

in a bottom-up manner by performing a binary search using the ToMMS algorithm as follows: 

We start with a current length of 1, the minimum maximum length. In the first 

phase, we keep doubling the current length and apply a simplified ToMMS .algorithm 

with maxlength = currentlength until we find a current length without any frequent 

patterns. 

In a second phase, we perform a binary search on this interval of possible maximum 

length values applying again the simplified ToMMS algorithm until we find a length 1 

such there is a frequent pattern of length 1 but no frequent pattern of length 1 + 1. 

The simplified ToMMS algorithm does not determine the actual maximum length and does 

not consider shorter patterns. Instead, it searches only for frequent patterns of exactly the 

length specified by its parameter value. Furthermore, the modified ToMMS algorithm does 

not have to find all most specific frequent patterns but stops as soon as the first such pattern 

has been discovered. The simplified ToMMS algorithm will possibly be called several times (for 

too large length values) without finding any frequent pattern of this given length, but these 

runs are relatively inexpensive because of the following reason. If no pattern is frequent 

of length 1, it means that very few generalized patterns will be generated by matching 

infrequent concrete patterns. And the major overhead of ToMMS is matching infrequent 

concrete patterns with infrequent generalized patterns. To conclude, the simplified ToMMS 

and the proposed method for determining the maximum length are quite efficient which will 

also be confirmed by our experimental evaluation. 
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4.6 Correctness of ToMMS 

Based on the above lemmas and theorems, we will now show the correctness of ToMMS, i.e. 

we will show that ToMMS reports all most specific frequent patterns theorem 4.6.1 and only 

most specific frequent patterns are reported theorem 4.6.2. 

Theorem 4.6.1 ToMMS reports all most specific frequent patterns in database D w.r.t. con- 

cept graph I' and minimum support 6. 

Proof 1) Let p be a concrete most specific frequent patterns in database D w.r.t. concept 

graph r and minimum support 6. Let S denote the set of all (consecutive) subsequences of 

all database sequences in D. ToMMS generates the elements of S in descending order of length 

and stops shortening a pattern (subsequence) if it is frequent. Since p is a concrete most 

specific frequent pattern, and no supersequence of p is frequent. Thus, p will be generated 

and reported by ToMMS. 

2) Let p be a non-concrete most specific frequent patterns in database D w .r .t . concept graph 

I' and minimum support 6. Without loss of generality, let SupSeq(p) = {sl, s2, . . . , s,), m 2 
6. From each supporting sequence of p, we choose a supporting pattern of p and construct 

a set of supporting patterns {pl,p2, . . + , p,) of p. (i) From theorem 4.4.1 we know that 

there is a q E $(pl,p2,. . . ,pm) with q Sr p .q is frequent since it has support m 2 6. Since 

p is most specific, we conclude that q = p, i.e. p E $(pl, p2, . . . , p,). According to theorem 

4.4.2, any match of more than two patterns is equivalent to a sequence of pair-wise matches 

of the same patterns. So p will be generated by pair-wisely matching pl,p2,. . . ,pm. (ii) 

Furthermore, Vi, 1 5 i 5 m, p, is infrequent because of the following reason. Since all pi 

are concrete patterns, V1 < i 5 m : pi Lr p, i.e. V1 < i 5 m : sup(pi) < sup(p). p is 

most specific, therefore all p, are infrequent. Because of (i) and (ii), $(pl, p2, . . . , p,) will 

be constructed and this generates p. I 

Theorem 4.6.2 All patterns reported by ToMMS are most specific frequent patterns in database 

D w.r.t. concept graph r and minimum support 6. 

Proof (1) p is frequent. ToMMS reports only patterns which have been tested and found to 

be frequent. 

(2) p is most specific. First we show that ToMMS never generates a pattern q,q >r p 

before pattern p. If length(q) < length(p), since ToMMS generates patterns in descending 
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order of length, q will not be generated before p. If l eng th (q )  = l e n g t h ( p ) ,  since ToMMS 

generates same length patterns in ascending order of level, q will not be generated before 

p. According to lemma 4.4.3 and lemma 4.4.4, this implies that more specific patterns are 

always generated before their generalizations. Second, a pattern is only reported if no more 

specific pattern (of larger length) has been previously reported. Therefore, any pattern 

reported by ToMMS is most specific. 

In the second last sentence of above proof, we said that a pattern is only reported if 

no more specific pattern of larger length has been reported. However, to verify whether 

there is a more specific pattern of larger length will became harder when the number of 

reported patterns grows. For example, for pattern p, all its specifications have to been 

checked against all reported patterns. The following lemma gives us a more efficient way to 

remove redundant patterns. It says performing subsequence checking is enough to filter out 

redundant pat terns. 

Lemma 4.6.3 For any pattern p reported by function Generalize, if p i s  no t  a subsequence 

of any  previously reported patterns, p i s  a most  specific frequent pattern. 

Proof Since p is reported by function Generalize, from the proof of theorem 4.6.2, we 

know that all its specifications with same length are infrequent. Thus any longer pattern, 

q, containing one of p's specification as its subsequence is infrequent. Such pattern would 

not have been reported previously. I 

4.7 Efficient Implement at ion of the Match Operation 

The major data structure used to store the sets of patterns is a modified prefix tree, one 

separate prefix tree for each of the sets listed in table 1. Each path of a prefix tree represents 

a pattern. For each leaf of the tree, we attach the bitmap of the set of supporting sequences 

of the pattern represented by the corresponding path. The support of a pattern is updated 

every time when a new pattern is inserted to the tree. Figure 4.6 shows an example of 

the modified prefix tree which stores the set of infrequent concrete patterns of length 3, i.e. 

ICP3, from previous example. 

The major overhead of ToMMS is using infrequent concrete patterns to match (generalize) 

infrequent generalized (or concrete) patterns of different levels. In order to optimize the 
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root 

Figure 4.6: Example of modified prefix tree 

match operation, we perform prefix tree against prefix tree generalization instead of one 

pattern against one pattern generalization. Infrequent concrete patterns and generalized 

patterns of different levels are indexed by separate prefix trees. When using infrequent 

patterns to match generalized patterns with same level, we perform breadth first search of 

the two corresponding prefix trees. At each pair of the interior nodes of the two trees, if 

the two symbols represented by the interior nodes have common predecessors, we continue 

checking children of the two nodes. Otherwise, the whole subtrees of the two nodes pruned, 

because the two patterns, presented by the branches of trees, can not be matched to get a 

more general pattern. The figure 4.7 shows the pseudo code of the procedure of tree against 

tree generalization. 

However, by using the tree against tree generalization, we will generate more patterns 

than stated in the pseudo code of Generalize, because we can not check whether the set of 

supporting sequences of p is proper subset of the set of supporting sequence But this 

will not change the correctness of ToMMS. There are simply more pair of patterns will be 

matched. But as a trade off, using tree against tree generalization improve the performance 

a lot. 
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Algorithm 4.7.1 Algorithm Gen-tree 
Input :  a prefix tree storing the set of infrequent concrete patterns and a prefix tree storing 
set of infrequent general patterns 
Output :  the set of patterns which are generated by pairewisely generalize infrequent 
concrete patterns and general patterns 
Method: 
1. Function Gen-tree ( prefixtree rootl, prefixtree root2) 

entry.ptr1 t rootl; 
entry.ptr2 t root2; 
entry.pattern t empty string; 
push entry to stack s; 
while s is not empty do; 

entry t s.pop; 
entry.ptr1 t entry.ptrl.firstchi1d; 
entry.ptr2 t entry.ptr2.firstchild; 
if (entry.ptr1 = NULL) d o  

update SupSeq(entry.pattern) and 
insert entry.pattern into GPi, where i=level(entry.pattern); 

end-if; 
while entry.ptr1 # NULL d o  

while entry.ptr2 # NULL d o  
for each most specific cornmon predecessors, en, 
of entry.ptrl.element and entry.ptrl.element d o  

entry.pattern t entry.pattern+e,; 
/*concatenate en to the entry.pattern*/ 
push entry to stack s; 

end-for; 
entry.ptr2 t entry.ptr2.sibling; 

end-while; 
entry.ptr1 t entry.ptr1 .sibling; 

end-while; 
end-while; 

Figure 4.7: Function Generalize 



Chapter 5 

Experiment a1 Evaluation 

5.1 Datasets 

We performed experimental evaluations on three different protein sequence datasets. Two 

of them, the outer membrane protein dataset and the non outer membrane protein dataset, 

were produced by the Department of Molecular Biology and Biochemistry at Simon Fraser 

University, as part of our collaborative efforts to tackle the outer membrane protein iden- 

tification problem [22]. For proper functioning, a protein has to be transported to the 

correct intra- or extra-cellular compartments in a soluble form or attached to a membrane; 

hence the cellular location of a protein sequence plays a key role with regard to its func- 

tions. In particular, proteins attached to the outer membrane of cells fulfill a number 

of tasks that are very crucial, such as solute and protein translocation as well as signal 

transduction. Outer membrane proteins - which are exposed on the surface of the cell - 

represent potential drug and vaccine targets, and the ability to identify such potential tar- 

gets from sequence information alone would allow researchers to quickly prioritize a list of 

proteins for further study. The dataset was created by extracting all Gram-negative pro- 

teins with an annotated subcellular localization site from the SWISSPROT database [5]. 

The annotated localization sites were then confirmed through a manual search of the litera- 

ture, and those proteins with an experimentally verified localization site were added to the 

dataset. The third dataset is the yeast (Saccharomyces cerevisiae) protein data set available 

at http://www.maths.uq.edu.au/ fc/datasets/yeast~SC~gbll7/yeast~dataset.gbll7.html. It 

is constructed from gene data contained in GenBank [4] release 117. The most important 

properties of these three datasets are shown in the table 5.1. 
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Table 5.1: Description of the evaluation datasets. 

non-OM 
Yeast 

We use a typical concept graph of amino-acids as used in [19]. The table below shows 

the sets of amino acids corresponding to the concepts of this concept graph. These concepts 

represent the relevant physio-chemical properties of amino-acids. 

Max. Length 
3705 

Min. Length 
91 

Data 
OM 

Physio-chemical properties ( Amino Acids ( 

Ave. Length 
579 

Sequence Num. 
417 
620 
393 

Table 5.2: Concepts of amino acids and corresponding physio-chemical properties. 

68 
15 

- - 

Small 
Small hydroxyl 
Basic 
Aromatic 
Basic 
Small hydrophobic 
Medium hydrophobic 
Acidiclamid 
Small polar 

5.2 Design of the Experiments 

J 

AG 
ST 
KR 
FWY 
HKR 
ILV 
ILMV 
EDNQ 
AGPST 

We chose the competitors of ToMMS as follows. SPAM [20] has been shown to outperform all 

other algorithms for sequential pattern mining in the data mining community. We imple- 

mented SPAM in a modified version to incorporate concept graphs. Basically, the alphabet , 

is extended by the concepts. Thus the pattern language of SPAM is modified to be the same 

as that of ToMMS. We did not modify SPAM to filter out non most specific patterns, since this 

would require expensive post-processing due to the fact that SPAM does not necessarily gen- 

erate most-specific patterns before more general ones. The other algorithm we compared is 

Teiresias [21] which can be downloaded from http://cbcsrv.watson.ibm.com/download.phtml.html. 

1553 
1859 

392 
256 
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To the best of our knowledge, this is the best sequence mining algorithm in the bioinfor- 

matics community. 

All the experiments were performed on a 1.7 GHz Pentium PC machine with 1 Giga- 

bytes main memory, running Microsoft Windows 2000. All the programs are written in 

Microsoft/Visual C++6.0. 

5.3 Experimental Results 

Figures 5.1 to 5.3 show the runtimes of ToMMS, Teiresias and SPAM on the three test 

datasets at different minimum support values using the concept graph from (91. 

8 10 12 14 16 18 20 22 24 26 28 30 
Minrnurn Support 

100000 

90000 

80000 

70000 

Figure 5.1: Runtime on outer membrane protein sequence dataset. 

- I I I I I I 

ToMMS -3- 
Teiresias -t-- - SPAM -o-- - 

- 

- 

We obtained similar results for other concept graphs [la] [24]. Protein sequence datasets 

are in general much denser than transactional datasets which implies that the frequent pat- 

terns in protein sequence datasets usually are much longer than the frequent patterns in 

transactional datasets. The density of the three test datasets also varies significantly. For 

example, at a minimum support of 20, the outer membrane protein sequence dataset has 

599,307 frequent patterns, the non outer membrane protein sequence dataset has 503,895 

frequent patterns and the yeast protein sequence dataset has 123,002 frequent patterns. 
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I I I I I I I I J I I I I I  

ToMMS 6 
Teiresias -t- 

SPAM -0.-  

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
Minmum Support 

Figure 5.2: Runtime on non outer membrane protein sequence dataset. 

On all three datasets, ToMMS clearly outperformed SPAM and Teiresias up to minimum 

support values of around 10%. Note that the minimum support values must be in this 

relatively low range in order to discover frequent patterns that are long enough to be bio- 

logically meaningful. E.g., in the outer membrane protein sequence dataset, the length of 

the longest frequent patterns is 33 at a minimum support of 8, but only 12 at a minimum 

support of 16 and only 9 at a minimum support of 40. For the prediction of the localization 

of outer membrane proteins [22], beta-strand patterns are crucial which have a length of up 

to 20 amino-acids. 

We conclude that ToMMS is the method of choice for low minimum support values, whereas 

Teiresias is the most efficient method for high minimum support values. 

The runtime of both competitors increases exponentially with decreasing minimum sup- 

port. On the other hand, ToMMS, as shown in the results, exhibits a nearly constant runtime. 

This is due to the following reason. When the minimum support decreases, the generation 

of a single frequent pattern will require a smaller number of generalizations and, thus, will 

become cheaper. But, on the other hand, when minimum support decreases, more patterns 

will be frequent and will be discovered which is shown in figure 11. Because of this trade-off, 

ToMMS shows a nearly constant runtime. This is a very nice property since it allows us to 
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Figure 5.3: Runtime on yeast protein sequence dataset. 

reliably estimate the runtime of ToMMS. 

Figure 5.4 shows the runtime for determining the maximal length and the total runtime 

of ToMMS, again on the yeast sequence dataset. As we can see from this figure, the overhead 

of determining the maximal length before starting the top-down pattern enumeration is 

relatively small. This conforms the statement in section 4.5. Determining the maximal 

length of frequent patterns before enumerating all of them provides a powerful tool. The 

traditional bottom-up approach can not find out the maximal until the whole mining process 

ends. How to set proper minimum support to get patterns of expected length can not be 

solved efficiently by this approach. On one hand, at high minimum support, the longest 

pattern can still be too short to have any biological meaning. Using the bottom-up approach 

will have to performing the whole experiment again from the beginning at some lower 

minimum support to get longer patterns. On the other hand, the minimum support can not 

set to be too low, since this will result a huge number of patterns and the run time of the 

experiment can be unpredictably long. For example, the experiment on outer membrane 

protein sequence data, at minimum support 12, the whole mining procedure using SPAM is 

around 40 hours. By using bottom-up search strategy, ToMMS can efficiently discover the 

maximal length of patterns. Thus we can use it to get the proper minimum support easily. 
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Runtime Comparison 

V 

50 40 30 20 15 
Minimal Support 

Figure 5.4: Runtime of finding maximal length compare to runtime of ToMMS. 

Figure 5.5 shows the scalability of ToMMS with respect to the number of data sequences. 

Each time we randomly select a subset of the yeast sequence dataset. The result shows that 

ToMMS has a very good scalability. 

Figure 5.6 shows the number of patterns discovered by ToMMS, Teiresias and SPAM on 

the yeast sequence dataset. SPAM discovers the set of all frequent patterns. Teiresias finds 

the set of closed patterns where the definition of closed pattern is based on the occurrence, 

not the support. The number of patterns reported by Teiresias is quite close to the number of 

all frequent patterns, ToMMS, however significantly reduces the number of output patterns. 

This is a very desirable effect in most applications of frequent sequence mining, in particular 

if the patterns shall be analyzed by a domain expert. The set of most specific frequent 

patterns provides a compact representation of the set of all frequent patterns. 

In summary, ToMMS is the most efficient method at low minimum support values. De- 

termining the maximal length of frequent patterns before enumerating all of them provides a 

powerful tool to set the proper minimum support. And ToMMS scales very well on datasets 

of different size. 
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130 180 230 280 330 380 430 
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Figure 5.5: Scalability of ToMMS. 

ToMMS +- 
Teiresias -t- 

SPAM -u.. 

Figure 5.6: Number of patterns discovered by ToMMS, Teiresias and SPAM. 



Chapter 6 

Conclusion 

The explosive growth in the amount of biological information necessitates the use of com- 

puters to make sense of this flood of data. One promising approach for mining biological 

sequence data is mining frequent patterns. In this thesis, we addressed the problem of min- 

ing most specific frequent patterns in biological sequence data in the presence of concept 

graphs, and proposed an efficient algorithm which adopts top-down approach for mining 

such patterns. In this chapter, we summarize the thesis and discuss some future research 

directions. 

6.1 Summary of Thesis 

We summarized our contributions in this thesis as follow: 

a We introduced a novel approach for mining most specific frequent patterns in bio- 

logical sequence data, which performing top-down pattern enumeration. Infrequent 

patterns are generalized until they become frequent by either reducing a pattern to a 

subsequence or by replacing some of its elements by predecessors in the concept graph. 

This approach seems to be more appropriate than the classic bottom-up approach for 

mining most specific (not all) patterns if these patterns are long and if we can estimate 

the maximal length of frequent patterns. 

a The proposed ToMMS method includes an algorithm to efficiently determine the exact 

value of this maximal length without enumerating all of the frequent patterns. This 

is very helpful in setting proper minimum support to get patterns of ideal length. 
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Traditional bottom-up approach will have to explore the whole search space before 

determining the maximal length. 

a By shortening and pairwisely generalizing infrequent patterns, ToMMS will never enu- 

merate a potential pattern which does not exist in the database, i.e. the enumerated 

patterns at least have one supporting sequence. 

a A thorough experimental evaluation on real life biological sequence datasets demon- 

strated that ToMMS clearly outperforms the state-of-the-art methods from the KDD 

as well as from the bioinformatics community for reasonably low minimum support 

values. Different from the bottom-up methods, the runtime of ToMMS is very robust to 

the minimum support value which allows us to reliably estimate the runtime of ToMMS 

before starting potentially very expensive experiments. 

6.2 Future Research Directions 

Future work includes the following issues: 

First, we want to investigate the impact of different types and numbers of sequential 

patterns in different data mining applications. Frequent pattern-based data mining 

methods have been very successful, for instance, for the functional classification of 

biological sequences [22] or the clustering of large sets of proteins [9]. However, existing 

work does not address what kind of difference will occur by using different types and 

numbers of patterns. 

a Integrate the ultimate goal of KDD (e.g. clustering and classification) into the process 

of mining frequent patterns. Although frequent pattern mining has been extensively 

studied during past years, the usefulness of those patterns has not received so much 

attention. Usually the process of mining frequent patterns and the process of using 

the patterns are independent. How to integrate these two parts is one interesting 

direction we would like to explore. 

a In this thesis, we have focused on biological sequence data. However, the top-down 

pattern enumeration approach is promising whenever data sequences, and in partic- 

ular, frequent patterns are long. Therefore, other applications of this kind such as 

databases of text documents (a document is a sequence of terms) and web logs (a user 
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session is a sequence of actions) should be explored to get a better understanding of 

the merits of both, the top-down and bottom-up pattern enumeration paradigm. 
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