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Abstract 

Boolean satisfiability (SAT) is NP-complete. No known algorithm for SAT is of polynomial 

time complexity. Yet, many of the SAT instances generated as a means of solving real-world 

electronic design automation problems are simple enough, structurally, that modern solvers 

can decide them efficiently. Consequently, SAT solvers are widely used in industry for logic 

verification. The most robust solver algorithms are poorly understood and only vaguely 

described in the literature of the field. We refine these algorithms, and present them clearly. 

We introduce several new techniques for Boolean constraint propagation that substantially 

improve solver efficiency. We explain why literal count decision strategies succeed, and on 

that basis, we introduce a new decision strategy that outperforms the state of the art. The 

culmination of this work is the most powerful SAT solver publically available. 
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Chapter 1 

Introduction 

1.1 Overview 

Boolean satisfiability (SAT) is NP-complete. If P is a proper subset of NP, there exists no 

algorithm g such that for some polynomial function, f ,  g decides any given SAT instance 

in time bounded above by f applied to the instance's length. 

By sufficiently restricting an intractable problem, one can always obtain a tractable 

problem. Some SAT instance classes are solvable in polynomial time. For example, instances 

containing no clause with more than two different literals can be solved in linear time[9]. 

Instances containing no clause with more than one positive literal are solvable in linear 

time[9]. Algorithms that take exponential time for some classes may take polynomial time 

for others. We are interested in algorithms with the capacity to 

0 solve all SAT instances; and 

0 solve efficiently many instances generated through the application of SAT to practical 

problems arising in contemporary industry. 

This work is concerned primarily with solving SAT instances that have been generated 

as a means of solving real-world electronic design automation problems. It is empirically 

evident that many of these instances are characterized by structural properties permitting 

efficient solution[7]. But, it is also the case that many interesting formulas are challenging or 

even impossible in reasonable time for current solvers. Through careful implementation and 
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the use of powerful new search techniques we produce a solver that dramatically outperforms 

state of the art SAT solvers such as zChaff[30] and berkmin56[16]. 

Boolean satisfiability is well-studied, and SAT solvers have a long history. The Davis- 

Putnam (DP) algorithm[l2], published in 1960, is typically cited as the first entry in the 

solver timeline. But, as noted in [8], an essentially identical algorithm was in fact developed 

half a century earlier, by L. Lowenheim[l7]. DP is very inefficient at finding a satisfying 

assignment when one exists. This fact, and the fact that DP's memory consumption is ex- 

plosive in practice, motivated the subsequent development of the Davis-Logemann-Loveland 

(DLL) algorithm[ll] . 

Over the past decade, several powerful DLL solvers have been introduced, including 

POSIT[14], Satz[25], and most recently, kcnfs[l3]. These solvers deviate from the origi- 

nal DLL algorithm primarily in that they use better decision heuristics. Such solvers are 

still state of the art for proving random instances unsatisfiable. (Incomplete local-search 

programs, such as unitwalk[l8], are more successful on satisfiable random instances.) 

Conflict-driven clause learning was first used in the solvers GRASP[29] and Relsat[3]. 

By appending implicates to the formula, and by using these implicates to achieve non- 

chronological backtracking, these solvers far outperform the best DLL solvers on non-random 

instances. These techniques are the basis of all the most successful modern solvers for 

structured industrial instances. 

The Chaff solver made GRASP and Relsat obsolete. Chaff's most important innovation 

was a decision strategy that allowed it to take better advantage of conflict-driven clause 

learning. Chaff also introduced a variation on the two-pointer BCP algorithm published 

several years earlier as part of the SAT0 solver[40]. Because Chaff was designed to be 

applied in an industrial setting, heavy emphasis was placed on efficient implementation. 

Our work extends along the lines laid out by Chaff. We have developed a SAT solver 

that is much faster than the best of the Chaff variants on many interesting problem classes. 

This progress is guided by our new explanations for the power of modern solver algorithms. 

In Chapter 2, we present basic learning and non-chronological backtracking algorithms. 

We also propose and support an explanation for the remarkable power of conflict-driven 

clause learning. In Chapter 3, we explain why two-pointer BCP algorithms are fast. We 

then introduce some straightforward, but very effective, improvements to the state of the 

art. Finally, in Chapter 4, we provide the first plausible explanation for why Chaff's decision 

strategy succeeds. This explanation accurately predicts the superiority of an elegant new 
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decision strategy, which we describe in detail. 

1.2 Experimental Data 

1.2.1 Standard Benchmarks 

In Table 1.1, we present solver runtimes for several well-known benchmarks. Our siege 

SAT solver implements our powerful new VMTF decision strategy and the BCP techniques 

described in Chapter 3. Results are listed for version 1 of siege. Version 1 is a slight variation 

on version 0, the program that competed in the SAT2003 competition. Berkmin561 is not 

evaluated here, because (a) it uses an unpublished decision strategy, and (b) for legal reasons, 

the company that owns berkmin has stopped distributing executables to the public at this 

time. 

Note that berkmin's performance on the hanoi planning benchmarks differs from what 

is reported in [16]. This is a result of the SAT2002 instance shuffling. Berkmin is "lucky" on 

the original instance, but randomization reveals that it is not actually able to solve hanoi6 

fast. 

Table 1.1: Runtime in seconds on a SunBladelOOO 750MHz Ultra I 

suite 
fvp-unsat .l.0[37] 

vliw-sat 1 .OD71 

1.2.2 The SAT2003 Competition 

Version 0 of siege participated in the first round of the SAT2003 competition. It performed 

well in both of the non-random benchmark categories. But, because it was entered late, 

siege was barred from participating in the second round. 

Competition benchmark instances are clustered into series. A solver is said to have 

solved a series if it has solved at least one instance in the series. Every solver was given 

15 minutes to decide each instance on an 1800 MHz Athlon with 1 gigabyte of RAM. The 

#instances 
4 

100 

zChaff 
1,032 
7.956 

berkmin56 
953 

5.307 

siege-vl 
138 
434 
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siege-v0 1 32 1 135 1) opensat 1 24 1 94 
berkmin62 1 32 1 133 I satzilla 1 18 1 83 

solver 
forklift 

berkmin561 

series 
34 
32 

bmsat 
satzool 

instances 
143 
136 

31 
31 , 

jquest2 
zchaff 

I I I I I 

Table 1.2: Results for industrial benchmarks 

123 
126 
127 
116 

satzoo0 
oepir 
funex 
satnik 

jerusatlb 
jerusatla 

limmat 

solvers were ranked, first by the number of series solved, then by the number of benchmarks 

solved. The reader is referred to [33] for further details. 

We list the first round results for the non-random benchmark categories in Tables 1.2 

and 1.3. In the industrial category, siege ranked third, ahead of berkmin62 (an unpublished 

solver, superior to berkmin56). Siege was outperformed by forklift (an improvement on the 

unreleased berkmin621) and berkmin561. zChaff ranked 1 2 ~ ~ .  

In the handmade category, siege took first place. Note that forklift and the other berkmin 

solvers did poorly, worse even than zChaff. The difference between the handmade and 

industrial categories is that the former includes instances that do not encode electronic 

design automation problems. 

solver 
jerusatlc 

sat0 

132 
124 

31 
30 
29 
29 
29 
29 

1.3 Basics 

marchsp 
xqingting 

lsat 
farseer 

28 
28 
28 

A literal is a signed Boolean variable. If x is a Boolean variable, we use x to denote its 

non-negated literal, and Z to denote its negated literal. If the variable x is true, the literal 

x is true and the literal ?f is false. If the variable x is false, the literal x is false and 

the literal ?f is true. If the variable x has not been assigned a truth value, it is described 

as free. This term extends to (the necessarily unvalued) literals of a free variable. The 

series 
27 
25 

satzilla2 
marchtt 

116 
115 

instances 
119 
101 

17 
9 
8 
8 

120 
119 
114 

18 
18 

63 
44 
46 
28 

tts 
kcnfs 

82 
67 

qingting 
unitwalk 

saturn 

7 
6 

20 
17 

4 
4 
3 

17 
15 
22 
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-- 

satzool 1 21 1 102 11 kcnfs 1 16 1 51 1 

solver 
siege-v0 - I, 

series 
22 

ierusatlb 1 22 1 8 1 

instances 
97 

iauest2 1 16 1 57 

I I II I I 

series 
16 

solver 
berkmin62 

satzilla2 1 21 1 90 
I I 

instances 
60 

lsat 1 15 1 128 
satzilla 1 21 1 89 
satnik 

jerusatla 

bmsat 1 15 1 53 

marchsp 1 19 1 84 

20 
20 

limmat 1 14 1 52 
jerusatlc 
marchtt 
satzoo0 

zchaff 
oepir 

forklift 

Table 1.3: Results for handmade benchmarks 

88 
82 

19 
18 
18 

I I 1  I I 

negation of the literal x is :, and vice versa. A literal takes on a value only with respect to 

17 
17 
17 

berkmin561 ( 16 1 65 

an assignment of truth values to variables. If it is clear from context, we do not explicitly 

cite the causative assignment when describing a literal as true, f a1 se, or free. 

A clause represents a disjunction of literals. For simplicity, henceforth the logical rela- 

tionship between elements of a clause is left implicit; clauses will be treated as sets of literals. 

funex 
sat0 

63 
83 
82 

Where the contents of a clause are specified, the following notation is used. Square brackets 

are used for delimitation. Between them, individual literals are denoted as described above, 

67 
64 
63 

I qingting ( 3 

and uppercase letters stand for sets of literals. For example, [a] denotes a clause containing 

only the literal a. [a&] denotes a clause containing the literals a and 6. [abR] denotes a 

clause that contains a, 6, and in addition, the (perhaps empty) set of literals, R. The term 

unit clause refers to a clause with exactly one literal. If a clause c contains one or more 

15 
15 

tts 
xqingting 

opensat 

12 

literals that evaluate to true under truth assignment t, we say c is satisfied under t. 

An instance of the SAT problem consists of a conjunction of clauses, F. The term CNF 

is used to refer to such formulas. Normally we will treat a CNF as if it were simply a set of 

clauses. Let V be the set of those variables that have a literal in formula F. If there exists 

an assignment of truth values to members of V under which every clause in F is satisfied, 

F is satisfiable. Otherwise, F is unsatisfiable. 

53 
52 

saturn 
farseer 

unitwalk 

10 
10 
8 

68 
38 
25 

7 
6 
5 

29 
14 
20 
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1.4 The DP and DLL Algorithms 

Most competitive modern SAT solvers are, essentially, derivatives of the Davis-Logemann- 

Loveland (DLL) algorithm[ll]. The DLL algorithm is a variation on the Davis-Putnam 

(DP) algorithm[l2]. The following exposition sets out a foundation for later refinement. 

1.4.1 The Davis-Putnam Algorithm 

The input to the algorithm is a CNF, F 

PR. In case the input contains an empty clause, return L'unsatisfiable". 

P O .  Remove from F all clauses that contain at once both literals x and 3 of some variable 

x. If F is now empty, return "satisfiable". 

PI. If there is a variable x such that F contains both [XI and [TI, return "unsatisfiable". 

P2. If there is a literal x for which F contains [XI, delete from F all clauses containing 

x, and remove the negation of x from all clauses in which it is present. If F is now 

empty, return "satisfiable". If F contains a unit clause, go back to step PI.  

P3. While there is a pure literal in F, delete all clauses in which a pure literal is present. 

If F is now empty, return "satisfiable". 

P4. Select some variable, x, that has a literal in one of the shortest clauses in F. Let 

A be the conjunction of all clauses from F that contain the literal x. Let B be the 

conjunction of all clauses from F that contain the literal :. Let C be the conjunction 

of all clauses that contain neither x nor 3. Shorten every clause in A by removing x, 

to produce A'. Shorten every clause in B by removing :, to produce B'. Replace F 

with (A' V B') A C. Use distribution to transform F into a conjunction of clauses. Go 

back to step PO. 

Step PO removes clauses that are trivially satisfied. If all clauses in F are of this type, 

F is itself trivially satisfiable. 

Steps P1 and P2 constitute boolean constraint propagation (BCP). It is the need to 

perform BCP efficiently that drives much of the work reflected in competitive modern SAT 

solvers. In step PI,  the formula is checked for contradictory unit clauses. The presence of 
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[XI implies that x must be true; the presence of [T] implies that x must be false. If both are 

present the formula is unsatisfiable. 

In step P2, the occurence of a literal x in a unit clause is used to justify simplification 

of F. If x is false then the unit clause [XI is unsatisfiable. Thus x being true is a necessary 

consequence of any truth assignment that satisfies all clauses in F. All instances of x are 

removed through unit-subsumption: if a clause has as a subset the satisfied clause [XI, it 

must itself be satisfied and so can be removed from further consideration. All instances of 

the negation of x are eliminated through unit-resolution. Since the negation of x is false, 

it cannot contribute to satisfying a clause in which it occurs. Therefore it may be excised 

from such clauses-they will necessarily be satisfied through other means, if at all. 

Unit-resolution is a special case of resolution. Suppose a formula G contains the two 

clauses [rM] and [FN]. Resolution of these two clauses on the variable r produces [MN], 

which may be may be inserted into G to produce G'. What makes this useful is that G' is 

satisfiable if and only if G is satisfiable. A proof of this fact follows. 

Suppose G has a satisfying truth assignment, t. If r is true under t, then the fact that 

[FN] is satisfied implies t sets some literal from N true. Thus [MN] is satisfied. Similarly, 

if r is false then a literal from M must be true, and again [MN] is satisfied. In the other 

direction, because G1 subsumes G, a satisfying assignment for the former must satisfy the 

latter. 

Once unit-subsumption and unit-resolution have been performed, if F contains no clauses, 

it must be satisfiable. Therefore, the original CNF input to the algorithm is satisfiable. Oth- 

erwise steps P1 and P2 are repeated until there remain no unit clauses. 

Step P3 purges every pure literal from the formula. A literal is pure in F if it occurs in 

F while its negation does not. It is safe to make these true because if F has a satisfying 

assignment, it has one which makes every pure literal true. Most SAT solvers do not 

actually implement this procedure, because it is prohibitively expensive to monitor how 

many instances of each literal are embedded in satisfied clauses, particularly if lazy BCP 

algorithms (as described in Chapter 3) are employed. 

Once execution reaches step P4, no variable in F is susceptible to removal through 

BCP or pure literal elimination. To continue the simplification process, some variable, x, is 

selected to be removed through other means. The method of selection, or decision strategy, 

plays an important role in determining the overall efficiency of the search. The strategy 

described in the listing above is only slightly different from the one in the original DP 
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listing in [12]. 

Now, F is manipulated (without changing its satisfiability) to exclude the chosen vari- 

able, x. Using symbols as defined in the listing, F is logically equivalent to A A B A C. 

Substituting for A the logically equivalent expression A' V x, and for B the logically equiv- 

alent expression B' V :, yields (A' V x) A (B' V T )  A C. F is unsatisfiable if and only if there 

is no satisfying truth assignment where x is true, and no satisfying truth assignment where 

x is false. So, F is unsatisfiable if and only if (B' A C) V (A' A C) is unsatisfiable. Thus F 

is equivalent (with respect to satisfiability) to (B' V A') A C, an expression in which x no 

longer occurs. This expression is not necessarily a conjunction of clauses. In case it is not, 

a conversion is required before execution can return to step PO. 

It is in this conversion that a weakness of the algorithm manifests itself. If A' contains n 

clauses, and B' contains m, distribution of one over the other can produce as many as mn 

clauses. There is potential for quadratic formula expansion each time a variable is removed 

in step P4. 

Another way to see this is to understand that P4 amounts to reformulating F as D A C, 

in which D is a conjunction of the clauses produced by resolving (on x) each clause in A 

against every clause in B. 

1.4.2 The Davis-Logemann-Loveland Algorithm 

The Davis-Putnam algorithm has potential to produce exponential (in the number of vari- 

ables) formula growth. In practice, although nothing approaching this worst case expansion 

is typically realized, the growth does pose a problem. For this reason, the DLL variation on 

the DP algorithm is preferred; it uses additional space only linear in the number of variables. 

The input is a conjunction of clauses, F .  

LO. If there exists no unit clause in F, go to step L2. 

L1. Let [XI be a unit clause in F. Remove from F all clauses that contain the literal x. 

Remove the negation of x from all clauses in which it appears. Go back to step LO. 

L2. If F contains an empty clause, return "unsatisfiable". Otherwise, while there is a pure 

literal in F, delete all clauses in which a pure literal is present. If F is now empty, 

return "satisfiable". 

L3. Select some variable x that has a literal in F. 



CHAPTER 1. INTRODUCTION 

L4. Recurse on F A [XI. If the call returns "satisfiable" then return "satisfiable". 

L5. Recurse on FA [ T I .  If the call returns "satisfiable" then return "satisfiable", else return 

"unsatisfiable" . 

Steps LO and L1 implement boolean constraint propagation. The BCP procedure as 

described in the previous section is only superficially different. 

Step L2 determines first whether the formula contains an empty (unsatisfiable) clause. 

If it does not, then the formula may still be satisfiable, and pure literal elimination is 

performed. This may result in the deletion of all clauses from F, in which case the formula 

has been proven satisfiable. As discussed previously, a procedure to take advantage of pure 

literals may be (and in practice, usually is) omitted without affecting the correctness of the 

algorithm. 

In step L3, a decision strategy is employed to choose x. As for the DP algorithm, the 

method of choosing variables for removal can have an important impact on overall efficiency. 

F is satisfiable if and only if either it has a satisfying assignment under which x is true, or 

it has one under which x is false. Steps L4 and L5 test these two possibilities. F A [XI is 

F altered so that BCP will force x to be true. F A [TI is F altered so that BCP will set 

x false. If F is satisfiable under either restriction, it is satisfiable. If F is not satisfiable 

under either restriction, it is unsatisfiable. 

1.5 Resolution Refutations 

A general resolution refutation (GRR) of CNF F is a series S of clauses {C1, C2, ..., Cn) 

such that Cn is empty, and every Ck is either copied from F or a product of the resolution 

of some pair {Ci, C j )  for i < j < k. Clauses from F may be copied into S more than 

once. A tree-like resolution refutation (TRR) is a GRR, except each Ck is restricted to be 

antecedent in at most one resolution step. 

Every TRR is also a GRR. Furthermore, it has been proven there exist unsatisfiable 

formulas of size n for which the shortest TRR is of size exponential in n, and yet the shortest 

GRR is of size polynomial in n. Therefore general resolution is strictly more powerful than 

tree-like resolution[5]. 

If DLL terminates and returns "satisfiable", it has discovered a satisfying truth assign- 

ment for F. It is easy to see that the assertions leading to an empty F are available to 
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be gathered during execution, although the algorithm described above does not explicitly 

record them. If DLL terminates, returning "unsatisfiable", the particular pattern of execu- 

tion that produced this result can be efficiently translated into a TRR of F. It is also true 

that any TRR for a CNF F can be efficiently translated into a DLL refutation of F. In 

fact, translations in either direction are of linear complexity[l5]. The refutation capacity of 

DLL is equivalent in both a theoretical and practical sense to that of tree-like resolution. 

Although the solvers we study are derivative of DLL, they are at the same time funda- 

mentally different. The essence of the difference is that every resolvent clause used in the 

refutation is also assimilated into the formula. With DLL, analogous information is present 

only implicitly, as the execution state of the program (e.g., which step is being executed 

by each recursive call). Because the solvers we study may reuse resolvents, the resolution 

proofs of unsatisfiability they produce need not be tree-like. 

The DP algorithm does add resolvents explicitly. DP resolves clauses in steps P2 and 

P4: in P2, the unit resolutions of BCP; in P4, all possible resolutions on some variable x. 

Obviously missing is the flexibility of general resolution, and it has been proven that this 

constraint renders DP's proof efficiency stricly inferior to that of general resolution. 

The solvers we study generate resolvents through a process that is not intrinsically in- 

capable of any sequence of resolutions. Except for limits imposed by particular decision 

and restart strategies, the solvers have potential to produce any GRR[4]. One of our major 

concerns is taking advantage of this difference. Instead of attempting to backtrack exhaus- 

tively through the space of possibilities, we aim to accumulate clauses that will contribute 

to producing a refutation. 



Chapter 2 

Clause Learning 

2.1 Overview 

Let F be a CNF over variables vl, ..., v,. F may be understood in the obvious way as 

a Boolean function f (vl, .. ., v,). For our purposes, a clause may be added to F as long 

as doing so does not change the corresponding function f .  All clauses derivable from F 

through a sequence of resolution steps meet this requirement. We are interested only in 

adding clauses that facilitate determination of satisfiability. 

Various approaches to adding clauses have been suggested. Some are preprocessing 

methods: generally speaking, these work to augment the clause set through operations that 

are normally too costly to be beneficial if applied in the course of DLL. Search begins once 

preprocessing is complete. For example, length-restricted resolution resolves pairs of short 

clauses and accumulates (e.g.) unary, binary, and ternary resolvents. Empirical evidence 

indicates this is typically too expensive and not helpful enough to be worthwhile[26]. 

A more powerful preprocessing technique is recursive learning (RL). The concept relates 

closely to some ideas underlying Stiilmarck's solver[32]. Short clauses from F are considered; 

take c to be such a clause. Any assignment that satisfies F must make true some literal in 

c. For each literal 1 of c, RL determines the conditions that must hold in case 1 becomes 

true. All conditions found to hold for every 1 individually must hold if F is to be satisfied. 

Therefore F may be further constrained to reflect the assertion of all such conditions. A 

natural suggestion is that RL could be used as a source of implications during search, but 

evidently this contributes too little to justify the overhead incurred[l]. 

In contrast to the foregoing, confEict-driven clause learning (CDCL) adds to the formula 
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during search, each time DLL empties a clause. CDCL represents a fundamental improve- 

ment over DLL, and all substantial recent advances in SAT solver technology are closely 

related to it. Relsat implemented a simple and effective version of the method[3]. A baroque 

and inefficient variant became the core of the GRASP solver[29]. Chaff coupled a technique 

used in GRASP with Relsat's simple overall approach to arrive at a scheme that has yet 

to be improved upon[30]. In this chapter, we describe the mechanics of CDCL. Then we 

explain why it is often better to learn a long clause when you could just as easily learn a 

short one instead. 

2.2 DLL Revisited 

Extend the term unit clause to encompass a disjunct in which one literal is free and all 

others are false. Boolean constraint propagation (BCP) sets the free literal of a unit clause 

true until there exists no unit clause in F. 

Henceforth, we assume pure literals are not eliminated. 

By branching, DLL is able to try both assignments to each decision variable x. First, 

x is set and the Boolean space under that restriction is explored. If and only if this search 

does not yield a satisfying assignment, x is set the opposite way, and DLL operates on 

the resulting Boolean space. In case this second recursion fails also to produce a satisfying 

assignment, DLL returns that, if the formula is to be satisfied, an earlier restriction must 

be undone. 

The assignment stack concept follows from the recursive character of the algorithm. 

When a variable takes on a truth value, a record of the event is pushed onto the assignment 

stack. When a call to DLL returns, the records it pushed are popped, and the corresponding 

variables become free. 

The assignment stack can be viewed as a stack of decision levels (singular abbreviation, 

dl). Each dl is numbered according to its depth on the assignment stack: deepest is dl 0, 

second deepest is dl 1, and so forth. Decision level 0 is anomalous; it contains records of 

all assignments made prior to the first decision, i.e., products of BCP in the root DLL call. 

Every dl after 0 consists of (a) an assignment to exactly one decision variable, and (b) any 

assignments generated through BCP as a result of that decision. 

CDCL appends clauses to the formula at the leaves of the DLL tree. We outline here 

an iterative form of DLL, extended to efficiently encompass CDCL and nonchronological 
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backtracking (NCB), both of which are covered in [3] and [29]. 

Input to the algorithm is a formula, F. The number of the current dl is stored in y. 

10. If F contains an empty clause, return "unsatisfiable". Else, initialize y to 0. 

11. Perform BCP. Push assignment records as part of dl y. If a clause is now all- false, 

go to step 14. 

12. If no variable is free, return "satisfiable". 

13. Increment y. Select some free literal and set it true. Push a record of this assignment 

to begin dl y. Go to step 11. 

14. If y is 0, return 'Lunsatisfiable". 

15. Derive from F a set of implicates, i, with some element, a, an asserting clause (defined 

below). Revise F to include a and perhaps some other members of i. 

16. If a has exactly one literal, let y' be 0. Else, let y' be the numeric label of the shallowest 

dl, deeper than dl y, at which some literal of a became false. For every dl > y', pop 

all records and unassign the variables they mention. Let y equal y'. Go to 11. 

In step 11, assignments are deduced through BCP and records are pushed onto the 

assignment stack. If there subsequently exists a clause consisting of false literals only, a 

conflict condition has been reached. (A conflict condition will never hold prior to BCP.) In 

response to a conflict, execution continues at step 14. 

On entry to 12, there is no conflict and BCP can deduce nothing more. If all variables 

are assigned, then F has been satisfied, since all literals are either true or false, and no 

clause contains false literals only. 

A decision is made in step 13. Some decision strategy is used to select a free literal. 

The literal is asserted, and a record of this event is pushed onto the assignment stack. This 

record is the first (i.e., deepest) element of a new dl. Execution returns to 11, where the dl 

will be completed through BCP. 

The procedure for conflict handling begins in step 14. Let c denote some particular 

clause containing false literals only. There may be several such clauses. BCP deductions 

at decision level 0 are made in the absence of decision assignments. Thus, if y is 0 then c is 

falsified unconditionally and F is unsatisfiable. 
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In practice, we do not actually compare y against 0 each time an inconsistency arises. 

BCP at dl 0 occurs (a) before the first decision, and (b) each time a dl 0 unit clause is 

derived. It suffices to check for conflicts on these rare occasions and claim unsatisfiability if 

a conflict is found. This is more elegant, since these are dealt with as special cases anyway. 

Step I5 is a main concern of this chapter. Implicates are generated by resolving an all- 

false clause against clauses that became unit and played causative role in BCP assignments. 

Prior to the backtracking of step 16, all literals in these implicates are false.  One or more 

implicates are added to the formula. 

We require that some added clause contains exactly one literal whose variable became 

assigned at decision level y. The term asserting is used to refer to such clauses. Asserting 

clauses permit a simple coupling of CDCL and NCB. 

Nonchronological backtracking takes place in step 16. First, the algorithm determines 

dl y', the deepest dl at which a is unit. If a is independently unit, y' is 0. Otherwise, the 

literals of a are considered. Each was made false at some decision level, and y' is the largest 

numeric label < y of a dl involved in this way. 

Variables that became assigned within decision levels shallower than dl y' are unbound, 

and dl y' is exposed. Let 1 denote the single literal from a that was made false in dl y. 

Since 1 is now free, a is unit. Execution returns to 11, where BCP sets 1 t rue  and dl y' is 

extended. 

Typically, an efficient implementation diverges from this simplified form of the algorithm. 

Instead of requiring BCP to find and process a,  I is directly asserted. One benefit of this 

arrangement is that BCP always begins with a seed assignment. The initial population of 

dl 0 derives from singleton clauses of F. All BCP within any other dl is traceable back to a 

decision assignment. And BCP after backtracking must directly or indirectly stem from 1. 

Propagation begins with clauses containing the negation of the seed. 

The NCB procedure revokes decision levels between dl y and dl y' that did not contribute 

to the conflict. If the iterative DLL algorithm as a whole is suitably modified, it suffices to 

remove the shallowest dl involved in falsifying a.  For example, see [29]. 

NCB as described in I6 has a heuristic aspect, since it may revoke in the absence of 

necessity. An interesting open question: is it beneficial to also remove noncontributing 

levels between dl y' and dl O? 

NCB will not induce nontermination. The following constitutes a proof of that fact. If 

F has n variables, the assignment stack will never be more than n + 1 decision levels deep. 



CHAPTER 2. CLAUSE LEARNING 15 

A dl population vector (DPV) is a sequence {co, cl, cz, ..., c,). Element cj is the number of 

assignment records in (i.e., the size of) dl j .  If dl j is not present, cj is 0. 

For F, a DPV, P, is > some other DPV, Q, if and only if there is an i between 0 and 

n (inclusive) such that Pi > Qi, and Pj = Qj for all 0 5 j < i. That is, if and only if there 

is an i such that, prior to element i, P matches Q, and the ith element of P is greater than 

the ith element of Q. This relation is obviously transitive. 

The initial DPV is {0,0, ..., 0). It is invariant that, if the DPV changes from P to Q then 

Q > P. That is, the DPV magnitude increases monotonically. First, elements of the DPV 

are increased, and not decreased, by new assignments. Second, when there is backtracking 

from dl y to dl y', elements cy through cy,+l (inclusive) are zeroed. But, elements prior to 

cyt in the sequence are left unchanged, and cy, is increased. Thus the DPV is greater than 

it was before. 

Since a finite number of variables implies a finite number of distinct DPVs, the algorithm 

must terminate. The greatest DPV is {n, 0, ..., 0). Once all variables are assigned at dl 0, 

either there is a conflict and the algorithm returns "unsatisfiable", or there is no conflict 

and the algorithm returns "satisfiable". 

2.3 Derivation of Implicates 

Effective modern solvers work to derive, through resolution, short clauses. If the formula 

is unsatisfiable this tends toward building a refutation. If the formula is satisfiable, these 

clauses prune away vast solutionless spaces. 

A machine with the capacity for nondeterministic computation may wield the full power 

of general resolution. Such a device may explore in parallel all binary resolution sequences. 

If a polynomial length GRR exists, it is discovered in polynomial time. For the moment 

this computer is unavailable, so we must resort to deterministic means. That this implies 

strictly reduced potential efficiency is unproven, but plausible and widely suspected. 

Required is a proof search strategy to supplant the brute force of nondeterminism. 

Almost every complete algorithm used for SAT applies resolution guided by some such 

strategy. DP does unit resolutions and all possible resolutions on each decision variable. 

DLL works to implicitly construct a tree-like resolution refutation, the structure of which is 

dictated in large part by the decision heuristic. Width-bounded search[5] collects clauses, 

performing binary resolutions that have resolvents (a) not yet collected, and (b) of length 
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up to some bound. Upon deriving an empty clause, the procedure halts. When nothing else 

is possible, the bound is increased. 

Conflict-driven clause learning is a resolution strategy. At each leaf in the search tree, 

CDCL resolves clauses that were involved in BCP along the path to that leaf. These clauses 

were made unit or false by subsets of the same set of assignments. Thus the tendency is to 

resolve sets of compositionally similar clauses (i.e., clauses that share literals). Empirically, 

it appears this is a relatively good heuristic for many interesting formulas, in the sense that 

it facilitates derivation of useful clauses. 

We now describe our refined implementation of the so-called first-UIP learning scheme, 

a simple and efficient means of deriving conflict implicates[41]. The main benefit of this 

scheme is that an asserting clause is arrived at through relatively few resolutions. The 

following are taken as input: 

CNF formula F .  (Fi denotes the ith clause of F.) 

Assignment stack S. (Si denotes the ith element of S .  Deepest is So; shallowest is ST. 

Each element is a true literal.) 

Flag set U .  (Associated with each variable, v, is a flag, U,. If v is assigned at dl 0, U, 

is initially true. Otherwise, U, is initially false.) 

Antecedent function C. (C(v) is the index of the clause that became unit and was 

used to assign variable v during BCP. Undefined for decision variables.) 

Level function L. (L(v) is the number of the decision level at which variable v became 

assigned. Undefined for free variables.) 

Clause index X. (Fx is the all-false clause from step 11.) 

The output is a,  an asserting clause. It is straightforward to adapt this procedure to 

select and return clauses intermediate in the production of a. For clarity, we present only 

the basic algorithm here. 

Several integers are employed in coordinating the process. i is the index of the clause 

being absorbed. y is the numeric label of the shallowest (i.e., conflict) dl, a constant after 

step RO. m keeps count of the variables from dl y that are flagged, but have yet to be either 

resolved on, or included as a literal in a. p is a pointer into the assignment stack, used for 

backward traversal. 
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RO. Set a = [I,  i = X, m = 0, and p = T. Set y = L(v), where v is the variable of ST. 

R1. For each literal 1 in Fi: 

[Rla.] Let v be the variable of 1. If Uv = true, skip Rlb. 

[Rlb.] Set U, = true. If L(v) < y, put 1 into a. Else, set m = m + 1. 

R2. Let v be the variable of S,. If Uv = true, go to R4. 

R3. Set p = p - 1. Go to R2. 

R4. If m = 1, put into a and return the result. Else, set p = p - 1. 

R5. Set m = m - 1. Set i = C(v). Go to R1. 

Before explaining the above machinery, we clarify essentially what it operates to achieve. 

First, we prove Fx contains at least two literals made false within the conflict dl, y. We 

refer to these as pivot literals. If Fx contains none, then the conflict occurred prior to dl y; 

contradiction. If Fx contains exactly one, then Fx was unit prior to dl y, and at that time 

BCP would have satisfied it or falsified it; contradiction. 

Let clause w initially be a copy of Fx. The procedure resolves pivot literals out of w 

until exactly one remains. An iteration begins with the selection of the literal from w whose 

negation appears shallowest in S. Necessarily, this is a pivot literal; call it r .  It cannot 

be that F was a decision, since w contains > 2 literals made false in dl y, and a decision 

assignment is always the single deepest component of its dl. Thus there exists a clause, F,, 

that became unit at dl y, causing BCP to assert P. 

Because w contains r, and F, contains P, the two clauses are resolvable. Furthermore, 

the resolvent is all- f alse, and so cannot be tautologous, since w is all- f alse and F, is all- 

false except for 'i;. Let w be replaced by this resolvent. The number of pivot literals in w 

may have increased, decreased, or stayed the same, but certainly all the pivot literals were 

falsified earlier (i.e., deeper) than r .  

If w contains only one pivot literal, the process is complete. Otherwise, another iteration 

is needed. Because dl y is of finite length, and all assignments it records are causally linked 

to a single decision, termination is inevitable. 

Record ST is the literal on which BCP failed. Immediately after ST was pushed onto 

the stack and set true, BCP inspected clauses containing to identify those made unit 
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by the assignment. In the process, Fx was revealed to be all- f alse, and BCP halted. The 

details of breadth-first BCP are left for a later chapter. 

Step RO is responsible for initialization. a begins empty and i begins as a reference to 

Fx. No variables at the conflict dl have been flagged yet, so m is zero. p points to ST. The 

numeric label of the conflict dl is determined, then stored to y. 

The first time it is executed, step R1 simply recasts Fx. However, every subsequent 

execution of R1 corresponds to a resolution. Each literal 1 from Fi is considered. If 1's 

variable has been flagged, 1 is ignored. Allowing Rla  to bypass Rlb  serves to (a) ensure m 

is incremented just once for each pivot, (b) prevent duplication of literals within a, and (c) 

filter out literals made false in dl 0. 

Otherwise, 1's variable is not yet flagged, and Rlb  is executed. Immediately, the flag 

is inverted. 1 is a non-pivot literal if and only if it was made false prior to dl y. If 1 is a 

non-pivot literal, it will certainly be present in the output clause. So, it is put directly into 

a. Variables of non-pivot literals are flagged to ensure the procedure will never put one such 

literal into a twice. 

On the other hand, if 1 is a pivot literal, it may later be resolved out. Therefore, step 

Rlb  does not insert pivots into a. Rather, m is incremented to reflect the fact that the 

implicit intermediate clause now includes 1. Pivot variables are flagged to distinguish in S 

the negations of pivot literals, and to avoid overcounting. 

Together, steps R2 and R3 implement a descent through dl y. Until Sp7s variable is 

found to be flagged, p is decremented. When the branch to R4 is taken, Sp is the shallowest 

negation of an unprocessed pivot literal. Since literals are arranged on the stack in the order 

they were asserted, any assignments causally involved in the assertion of Sp are necessarily 

deeper on the stack than Sp itself. Note that, the first time R2 is executed, Sp7s variable is 

found flagged, since p = T and is in Fx. 
Step R4 checks m, the number of pivot literals in the implicit intermediate clause, 

including $. If m = 1, the intermediate is now an asserting clause, so the single remaining 

pivot literal is inserted into a and the procedure returns. (Note that if v is a decision variable 

then m = I.) Otherwise, p is pointed deeper, past the current Sp, in preparation for the 

next execution of R2. 

Step R5 decrements m in anticipation of the pivot being resolved out. i points to the 

antecedent clause of the pivot's negation (the clause that became unit, causing BCP to set 

the pivot literal f a1 se), and execution reenters R1. 
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Of course, it is inefficient to initialize U before every call to the derivation procedure. 

In a good implementation, the set is persistent, maintained seperately. Once the CNF is 

available to the solver, all flags in U are set false. Whenever some variable, v, becomes 

assigned at dl 0, U, is set permanently true.  This allows unconditionally false literals to be 

excluded from every new implicate, without requiring additional comparisons or complexity 

in the derivation code. (The implicate derivation routine is the second most expensive part 

of our solver, accounting for between 3 and 9 percent of the total runtime.) Flags set true in 

step Rlb  are set false before the derivation procedure returns. Pivot variables are unflagged 

as soon as they have been resolved out, i.e., after R1 completes. All the other temporary 

flags are cleared during R4, once has been put into a. At that point, it suffices to clear 

flags for only those variables having a literal in a. 

2.4 Participation Traces 

CDCL solvers use BCP for two purposes simultaneously. First, BCP is used in the construc- 

tion of exploratory truth assignments. This improves search efficiency by removing from 

consideration many non-satisfying points in the Boolean space. 

Second, BCP is used to discover clusters of resolvable clauses. A heuristic benefit of this 

approach is that the clusters discovered tend to be populated by clauses that share literals. 

The clusters are made up of clauses involved in BCP along the path to a particular conflict. 

Loosely speaking, the more literals two clauses share, the more likely it is that they are both 

made unit or false by a given truth assignment. 

A CDCL participation trace, P, consists of a sequence of n 2 2 clauses, {PI, P2, ..., P,). 

P is a list of the clauses resolved together by CDCL to generate a particular asserting clause. 

Implicit in P is a sequence of n intermediate clauses, {ml, m2, . .., m,), where ml = PI, and 

for all i E [2, n], clause mi is the resolvent of Pi and mi-1. The correspondence is, Pl = Fx 
and m, is the asserting clause. 

Trace redundancy (TR) is a measure of literal duplication among clauses in a CDCL 

participation trace. The TR of trace P is d if and only if, on average, each literal occurring 

in P does so as a member of d distinct clauses. For a variety of non-random benchmarks, 

Table 2.1 reports the average TR over all derivations performed by our solver. Evidently, 

duplicates are abundant. 

These non-random formulas encode modular structures, e.g., circuits. It could be argued 
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Table 2.1: Trace redundancy (TR) and trace length (TL) for non-random instances 

instance 
average TR 
average TL 

- - - 

Table 2.2: Trace redundancy for random instances 

7pipe 
2.31 
29 

instance 
average TR 

that, in such formulas, when clauses are resolvable, often they express constraints that 

involve many of the same variables; so, extensive literal duplication is to be expected, 

regardless of the resolution strategy employed. To illustrate that the trend holds even if 

modular structure is absent, we report average TR for random benchmarks in Table 2.2. 

Included below are four participation traces produced in the course of solving some 

well-known benchmark instances[37] [35] [34]. These are typical traces, representative of the 

derivations performed by our CDCL solver. Clauses are delimited with square brackets. 

Each clause is numbered, to capture sequence of use. Comma-separated integers within a 

clause denote literals in the obvious way. The asserting implicate is labelled "resolvent". 

resolvent: C1453,1465,1473,1505,1514,1534,1587,1627, 

1635,1648,1668,1675,1687,-1786,-17971 

uuf100-01 
2.65 

9vliw-bpmc 
2.50 
2 1 

longmult15 
3.29 
92 

uuf250-01 
2.57 

hanoi5 
3.10 
15 

c3540 
2.56 
45 

2bitadd-10 
3.75 
14 

uuf250-02 
2.51 

RTI-k3-nlOO-m429-0 
2.61 
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resolvent: [-508,-5231 

resolvent: [231,-283,-298,-330,-331,-600,-744,-829,-844,-861,-883] 
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resolvent: [282,-5155,5171] 

Our solver implements a BCP policy favoring binary and ternary antecedents. This 

policy has a substantial positive impact, facilitating, for example, resolution patterns as 

exhibited in the latter trace. 

2.5 Intermediates 

The first-UIP learning scheme resolves until the intermediate clause contains only one literal 

set false at the conflict decision level, dl y. Refer to this literal as x. When a literal is 

resolved out, it is replaced by the literals that made it false. Clearly, then, in combination 

with zero or more assignments from before dl y, x being false directly or indirectly caused 

every pivot literal in Fx to become false. 

Either : was a decision, or I: was asserted through BCP. Suppose literal d was the 

decision at dl y, and d # :. Then, d was involved in the conflict only insofar as it caused : 
to be asserted. All implications of d that played a role in the conflict were implications of :. 

If the decision at dl y had been 3, rather than d, an identical conflict would have occurred. 

So, : is called the first-UIP, or first unique implication point. 

Conflict-directed resolutions are often still possible once an asserting clause has been 

achieved. Unless only literals of decision variables are present, BCP antecedents are avail- 

able, and CDCL may resolve them in. For example, if the pivot literal from an asserting 

clause became false through BCP, CDCL can resolve it out. Then, it is always possible to 

produce a new asserting clause from the resulting intermediate. Of course, CDCL can also 

resolve out any non-pivot literal that was assigned through BCP. 

Consider the all- UIP learning scheme [41]. The asserting clause produced by this method 

involves no more than one variable from any dl. Although it usually contains literals from 

a larger number of decision levels, the all-UIP clause is typically much shorter, on average, 

than the clause produced by the first-UIP scheme (see Table 2.3). 
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We include only a brief description of the all-UIP derivation procedure. Essentially, the 

first-UIP is isolated for each participating dl in turn, from shallowest to deepest. (No BCP 

antecedent resolution on variable v ever introduces a literal that became assigned shallower 

on the stack than v.) Our implementation is a straightforward extension of our code for the 

first-UIP learning scheme. 

Let clause w initially be a copy of Fx. The following is repeated until the procedure 

returns. Take y to be the label of the shallowest dl in which two or more literals from w 

were made false. If there exists no such y, return w. Otherwise, resolve out of w the literal 

that was falsified shallowest in dl y. 

Our solver using the first-UIP learning scheme performs far better on many benchmark 

instances than our solver using the all-UIP learning scheme (see Table 2.5). Similar results 

have been published elsewhere. For example, several learning procedures were integrated 

into Chaff and experimentally evaluated in [41]. The first-UIP scheme was shown to be 

superior to various other schemes (every one of which applies more resolutions, on average, 

to produce each asserting clause). 

It has been suggested that differences in learning scheme performance stem from dif- 

ferences in average cost of implicate derivation[2]. This is certainly wrong. First, even 

all-UIP learning code typically accounts for only a small fraction of total solver runtime. 

Second, compared to our first-UIP solver, our all-UIP solver consistently requires many 

more decisions and conflicts to solve a given instance. 

Furthermore, the disparity is not a product of the learning-based decision strategies used 

in Chaff and its successors. These heuristics select variables that have literals in recently 

learned clauses. Different learning schemes yield different learned clauses. So, does the first- 

UIP scheme outperform the all-UIP scheme because it leads to better decisions? Evidently 

not. If branching decisions are made according to an arbitrary static variable ordering, the 

same pattern of learning scheme superiority holds[41]. 

The all-UIP scheme derives clauses that are shorter on average, but the first-UIP scheme 

is more successful at deriving the very short clauses that allow instances to be solved. Our 

conjecture is that the first-UIP learning scheme works relatively well because it uses fewer 

resolutions to generate the clauses that are appended to the formula (see Table 2.4). Fewer 

resolutions per implicate implies greater proof-search flexibility. The larger the average 

number of resolutions each added clause represents, the larger the number of unavailable 

derivation intermediates. Such intermediates are potentially more useful than the clause 
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actually added to the formula. For example, the first-UIP implicate is an intermediate in 

the production of the all-UIP implicate. 

The published experimental results, all of which we have independently reproduced, 

may be interpreted as showing a strong negative correlation between average resolution 

counts and solver performance. Broadly, holding the input formula constant, the more 

resolutions that go into producing each implicate, the worse the solver pkrforms. This 

suggests that it might be worthwhile to pursue a reduction in the coupling between learning 

and nonchronological backtracking. Restricting CDCL to produce an asserting clause forces 

it to resolve until an asserting clause is produced. Perhaps the solver should also learn 

clauses that serve no backtracking function. 

The asserting clauses generated by CDCL aid in the search for a satisfying assignment 

by increasing the deductive power of BCP, and by facilitating NCB. There is a separate, 

but closely related, need for some of these implicates to be useful in the derivation of short 

clauses. The latter make explicit simple patterns present implicitly in the formula. It is by 

working with the explicit representations of these patterns that modern solvers are able to 

determine the satisfiability of enormous, but structurally simple, formulas. 

A CDCL derivation begins with a falsified clause, Fx. Resolutions are applied until an 

asserting clause, c, is produced. The first intermediate is Fx. The second intermediate is 

the resolvent of Fx against a BCP antecedent. The third intermediate is the resolvent of the 

second intermediate against a BCP antecedent. And so on, with the final resolvent being 

the last intermediate, c. With the exception of Fx, no intermediate in a CDCL derivation is 

already present in the formula at the time the derivation is undertaken. So, we may append 

any intermediate, except the first, onto the formula, without introducing a duplicate clause. 

This is proven in Chapter 3. 

An intermediate clause may be extracted between steps R l  and R2 in our implementation 

of the first-UIP learning scheme. Simply, append to a the negations of the flagged literals 

in dl y that have stack positions 5 p, and store the result. 

The first-UIP learning scheme derives an asserting clause through the minimum sufficient 

number of antecedent resolutions. Although this minimum tends to be low on average, it is 

occasionally high. In these degenerate cases, intermediate clauses are often shorter than the 

final resolvent. Also, the set of variables represented in an early intermediate usually bears 

little resemblance to the set represented in the asserting clause. (When the all-UIP scheme 

is applied, it is common for the set of represented variables to change completely, or almost 
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instance I first-UIP I all-UIP 1 1  instance I first-UIP I all-UIP I 

Table 2.3: Average literals per implicate added: first-UIP vs. all-UIP 

- - ,  2 

7pipe_bug[37] 
c3540 [28] 

Table 2.4: Average resolutions per implicate added: first-UIP vs. all-UIP 

236 
97 

instance 
dlx2-cc [36] 

3pipe[37] 
6pipe[37] 
7pipe[37] 

7pipe_bug[37] 
c3540 [28] 
c7552[28] 

Table 2.5: Solver runtime in seconds on a SunBladelOOO 750MHz Ultra I 

26 
17 

first-UIP 
16 
15 
23 
29 
21 
45 
36 

instance 
dlx2_cc[36] 

3pipe[37] 
6pipe[37] 
7pipe[37] 

7pipe_bug[37] 
c3540[28] 
c7552[28] 

L 1 

longmult 15 [6] 
barrel9 161 

all-UIP 
48 
69 
163 
185 
163 
876 

2525 

first-UIP 
1 
1 

73 
282 
8 
28 
14 

104 
119 

instance 
logistics.c[22] 

2bitadd-10 [lo] 
avg-check-5-35[34] 

9vliw-bpmc[37] 
longmult 15 [6] 

barrel9[6] 
hanoi6[34] 

all-UIP 
211 

>3600 
>3600 
>3600 

170 
>3600 
>3600 

11 
27 

first-UIP 
5 
14 
15 
2 1 
92 
55 
20 

instance 
logistics.c[22] 

2bitadd-10[10] 
avg-check-5-35 [34] 

9vliw_bpmc[37] 
longmult 15 [6] 

barrel9 [6] 
hanoi6 [34] 

all-UIP 
13 
55 
48 
102 
675 
2507 
103 

first-UIP 
1 

341 
244 
53 

236 
4 1 
760 

all-UIP 
1 

945 
2318 

>3600 
642 

>3600 
>3600 
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completely, over the course of a derivation.) It may be beneficial to append intermediates 

onto the formula, along with the asserting clause. This must be done sparingly, since BCP 

is more expensive on a formula that contains more clauses. 

We have only preliminary experimental results in this area. For example, adding the 

second intermediate allows our solver to prove 3pipe unsatisfiable in less than two minutes, 

using a static decision strategy. If only the first-UIP asserting clause is added, more than 

20 hours are required. However, it is not yet clear that such an approach is useful over a 

wide range of interesting formulas. There are many examples of instances for which storing 

the second intermediate appears to provide no benefit. Further research along these lines 

seems to be justified. 

2.6 Omissions 

Several important aspects of modern solvers have not been covered at length in this thesis. 

Although clause deletion and search restarts are used in our solver, our implementation is 

standard and unremarkable. We refer the reader to [30] for an overview of the methods we 

have adopted. 

Memory constraints and BCP cost dictate that the formula cannot be allowed grow 

without bound. Learned clauses must be deleted as they become too numerous. Periodically, 

our solver deletes a random selection of learned clauses that exceed some threshold length. 

Extremely long clauses are deleted during backtracking, as in Chaff. 

Our solver restarts periodically, every 16,000 conflicts. When the solver restarts, every 

variable that has become assigned as a direct or indirect result of a decision assignment is 

set free. Iterative DLL resumes in step I3 at decision level 0. Restarting acts to change the 

space in which the solver is searching for a satisfying assignment. It also tends to change 

the set of clauses that CDCL resolves. 



Chapter 3 

Boolean Constraint Propagation 

3.1 Overview 

As first emphasized in the Chaff literature, typically about 90 percent of the runtime of a 

clause-learning DLL solver is spent performing BCP[3O]. There are two reasons for this. 

First, the BCP procedure is executed frequently, every time a variable is assigned a truth 

value. Second, BCP operates both broadly and nonsequentially over a data structure that 

is normally many times larger than the L2 cache of the host computer. This diffuse access 

pattern means data cache is frequently missed. When L1 and L2 are missed, a cache line 

is brought in from main memory (assuming no L3). Because of the gap between processor 

speed and main memory access speed, this fetch is a bottleneck, very expensive relative 

to other solver procedures, which saturate the CPU. The extraordinary cost of BCP stems 

from a memory latency problem. 

Our focus is the two watched literals (TWL) BCP algorithm introduced in Chaff[SO]. 

TWL is a simplification of the head/tail lists (HTL) algorithm[39] introduced in SAT0[40]. 

The main benefit of these two-pointer schemes is that they load fewer cache lines than, e.g., 

the counter-based schemes in Relsat and GRASP. Although an elaborate HTL implemen- 

tation can have superior expected-case abstract efficiency characteristics, HTL is reliably 

outperformed in practice by TWL. 

We detail breadth-first BCP and prove a property used in Chapter 2. Then, we explain 

TWL and describe the various refinements that allow our solver to perform BCP faster than 

any other solver publically available. 
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3.2 Breadth-first BCP 

To begin, we present the basic algorithm, abstracting away the details of the link between 

a literal and the clauses that contain its negation. For the moment, the reader may assume 

that each literal, I ,  is linked to every clause in which 1 occurs. 

We assume a queue to store and dispense (literal, antecedent) pairs in FIFO order. The 

procedure requires access to the formula, F; the assignment stack, S; and the structure used 

to store variable information, V. 

The input is a seed literal, d; an antecedent reference, a; and the numeric label of a 

decision level, y. If d was a decision, a is null and y is the index of the dl that d has been 

selected to originate. Otherwise, the solver has just backtracked, a is the index of the newly 

derived clause, and y is the deepest dl at which a is unit. 

Two pieces of memory are used within the procedure for coordination. The first is a 

literal, 1, and the second is an antecedent clause reference, c. 

BO. Set 1 = d, and c = a. The queue is initially empty. 

B1. Write to V that 1 is true at dl y because of c. Push 1 onto S. 

B2. For each clause, x, in F, to which 1 has a link: 

[B2a.] If x contains a true literal or 2 2 free literals, skip B2b. 

[B2b.] If x contains a free literal, t, enqueue (t,x). Else, return "conflict at x". 

B3. If the queue is empty, return "no conflict". 

B4. Dequeue one pair, assign it to (1,c) 

B5. If 1 is true, go to B3. Else, go to Bl. 

The seed literal is free when it is passed into the BCP procedure. It becomes assigned 

in step Bl,  and then is pushed onto the assignment stack. If the seed was a decision, this 

begins dl y. Else, this begins an extension of dl y made possible by the new implicate, a. 

In step B2, the procedure visits all clauses to which 1 is linked. Every one of these clauses 

contains 1. It is absolutely essential that 1 have a link to every clause that could become 

unit or false as an immediate result of 1 becoming true. Two-pointer algorithms, like HTL 

and TWL, simply minimize the number of links. They permit 1 to not be linked to some 

clauses, even though the clauses contain 1. 



CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 29 

Step B2a identifies clauses that are inconsequential, neither unit nor false. In step B2b, 

x is not satisfied and it contains fewer than two free literals. If x has one free literal, t, then 

t must be true if F is to be satisfied. So, t is scheduled to become assigned, with x as its 

antecedent clause. 

If x is all- false, step B2b halts the process. In general, the following must occur for a 

conflict to arise. Some suitable literal, z, whose negation is an element of x, is enqueued 

prior to 1. Before, or when, z is dequeued and asserted, 1 is enqueued. Subsequently, as 

a result of z being dequeued and asserted, x becomes unit, and so 1 is enqueued. Finally, 

when 1 is dequeued and asserted, x is falsified. 

If no assignments are pending in step B3, then BCP halts, without having produced a 

conflict. Otherwise, the oldest pair is dequeued, overwriting 1 and c. If the implied literal, 1, 

is already true, then the implication is redundant, so the pair is ignored. Else, 1 is asserted 

and the consequences are determined. 

Consider the following change to the above algorithm. As soon as t is known to be the 

only free literal in clause x, t is made true and is pushed onto the assignment stack. That 

is, instead of enqueuing (t,x), t is asserted and pushed, as in step B1. This allows BCP 

to continue after falsifying a clause, but conflict is detected eventually whenever it occurs. 

A separate queue is not necessary. It suffices to read literals off S ,  stopping once all those 

shallower than d have been processed. No literal enters the stack twice during one execution 

of the procedure. The modified algorithm is simpler and faster. 

Furthermore, it forces the same set of literals as breadth-first BCP. The order in which 

assertions are made is immaterial to BCP correctness and power. Depth-first, breadth-first, 

arbitrary: sequence has no bearing on the set of literals deduced. 

But, solver performance is slightly impaired on some CNFs, relative to when breadth- 

first BCP is applied. Apparently, the problem is that the simplified algorithm asserts earlier 

than the breadth-first algorithm. This seems to result in selection of longer antecedents, 

conflicts that involve more variables, and so on. 

3.3 Intermediates 

With the obvious exception of the initially falsified clause, x, no intermediate in a CDCL 

derivation is subsumed by a clause that is present in the formula when the derivation begins. 

A proof follows. 
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Every intermediate, i, except x, is the resolvent in a CDCL resolution. Every such 

resolution involves some other all- f alse intermediate, w. (It may be that w is z.) CDCL 

resolves on z, the shallowest literal in w, using a, the antecedent clause for Z. The resolution 

of w and a produces i. 

Without loss of generality, take w to be [zJ]. Set J consists of one or more literals, each 

of which was made false earlier than z. Similarly, take a to be [ZK]. Set K consists of 

literals that became false before z became true. 

Suppose some clause, u E F, subsumes i. When z was set false, step B1 was executed 

with 1 = 2. Immediately before Z became true, both J and K must have been all- false. 

Thus, u C i = [JK] must have been falsified by some earlier assertion. However, BCP 

always halts during step B2 after it makes an assertion in step B1 that falsifies a clause. 

Contradiction. 

3.4 The Two Watched Literals Algorithm 

We assume that a clause is realized as an array of literal instances. Neither unit clauses nor 

empty clauses are represented. The first and last literals in every clause's array are sentinels 

that evaluate true or free. 

A literal instance has three fields: the sign flag, the watched flag, and the variable index. 

The sign flag is one bit, indicating whether or not the variable is negated. The watched 

flag is one bit, indicating whether or not there exists a watch structure that points to the 

instance. The variable index uniquely identifies the variable of the literal. No clause contains 

two non-sentinel literal instances that have the same variable index. 

A watch structure has two fields: the direction flag, and the literal instance pointer. 

The direction flag is one bit, indicating either that the watch has been moving toward the 

first literal in the clause, or that it has been moving toward the last literal in the clause. 

The instance pointer is the memory address of a particular literal instance within a clause. 

Each variable is associated with two lists of watch structures. List W(1) contains all watch 

structures that point to instances of literal 1. 

For every variable, v, both W(v) and W(V) begin empty. For every literal instance, 

the watched flag begins false. Then, two watch structures are added per clause, and all 

pointed-to literal instances have their watched flags inverted. In detail: given a clause of 

length n, [s,l l...l,~b], where s, and s b  are sentinels; any two literal instances, li and lj, are 
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selected, such that i, j E [I, n] and i # j. A watch structure, with an arbitrary direction 

flag and a pointer to li, is appended to W(li). Similarly for Ij. Finally, instances li and lj 

have their watched flags set true. 

To integrate TWL data structures into the breadth-first BCP algorithm of section 3.2, 

replace step B2 with step WO, below. In the following, watch structures are represented by 

(direction flag, ~ointer)  pairs. Literal instances are represented by (sign flag, watched flag, 

variable index) triples. A (sign flag, variable index) pair is translated into a literal in the 

obvious way, taking, say, a sign flag of true to imply negation. 

WO. For each watch structure, w = (r,p) E ~ ( f ) :  

[WOa.] Let q = p, e = 0, and o = null. x is not initialized. 

[WOb.] If r = 0 then p = p - 1, else p = p + 1. Let (s, t, v) be the instance at p. 

[WOc.] Let literal u be (s, v). If u is false then go to WOb. 

[WOd.] If u is not a sentinel, go to WOi. 

[Woe.] If r = 0, then let x = p. 

[WOf.] If e = 0, then let e = 1, p = q, r = 1 - r; then go to WOb. 

[WOg.] If o = null, then return "conflict at clause x". 

[WOh.] If o is free, then enqueue (o,x). Skip WOi, WOj, and Wok. 

[WOi.] If t is true, then let o = u and go to WOb. 

[WOj.] Remove w from W(f). Set the watched flag false at q .  

[Wok.] Append (r,p) to W(u). Set the watched flag true at p. 

The procedure works with each element of W(f) in turn. Each of these watch structures 

is a BCP link from 1 to a clause in F. If some clause, c, is susceptible to immediately become 

unit or false when 1 is asserted, then there is a watch in W(i) that points into c. TWL 

succeeds by maintaining the condition that no false literal is watched in any clause that 

contains an unwatched literal that is true or free. When 1 is true, instances of 1 cannot be 

watched, except in clauses where all unwatched literals are false. 

The procedure visits every clause that contains a watched instance of i. Each of these 

clauses is visited with the intent to find an unwatched literal, x, that is true or free. If 
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such an x is found, a new watch structure is added to W(x), and the current watch on 1 is 

removed from W(1). So, there remain two watch structures per clause. 

If no such x is found, every unwatched literal in the clause must already be false. In 

this case, the watch on 1 persists. The clause is satisfied, unit, or false, depending on the 

status of the other watched literal, k .  If k is false, the clause is false. If k is true, the 

clause is satisfied. If k is free, the clause became unit as 1 became true. 

Within the breadth-first BCP framework, this ensures that all unit clauses are detected 

as they arise. If a clause becomes unit, there is an assignment responsible for the transition. 

Immediately prior to the transition, the clause has exactly two free literals, both of which 

must be watched. After one of the two becomes false in step B1, step WO (standing in for 

step B2) must fail to find an unwatched non- f a1 se literal in the clause. Therefore, detection. 

A similar argument may be used for clauses that become falsified. 

TWL adjusts pointers only during BCP. Watch structures need not be manipulated 

during backtracking. In contrast, the headltail lists (HTL) algorithm often needs to adjust 

pointers during backtracking. A good HTL implementation incurs only amortized O(1) 

backtracking cost, since pointer movement during an ascent through the search tree is 

simply a reversal of the pointer movement performed during descent. However, the cost 

of visiting clauses is enormous in practice, since L2 cache is frequently missed. Thus, 

while backtracking inflicts O(1) overhead for both HTL and TWL, the constant for HTL is 

significantly larger. 

Backtracking frees assigned variables. It never violates the TWL requirement, i.e., that 

no false literal be watched in any clause that contains an unwatched non- f alse literal. 

Suppose that, before backtracking, a false literal, x, is watched in clause c. Then all 

unwatched literals in c are false, and none became false shallower on the assignment stack 

than x. This holds because it must be that all unwatched literals in c were false when 

x became false. Otherwise, the watch on x would have been replaced by a watch on a 

non- f alse literal in c. During backtracking, variables are unassigned in the same order their 

literals are popped off the assignment stack. Thus, for any particular clause, backtracking 

frees the watched false literals before it frees the unwatched false literals. 

In step WOa, memory is initialized. First, p is copied to q, so that both p and q point to 

the same watched instance of 1. Since p is altered in step WOb, q is kept to support efficient 

inversion of the watched flag on 1, which occurs when some other literal becomes watched. 

Also, q is used as a starting point for movement in the opposite direction when search for a 
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non- f alse literal runs off one end of the clause (i.e., encounters a sentinel). 

Second, e is zeroed. e records the number of sentinel encounters. Once the search 

has encountered both sentinels, the entire clause has been explored, and every one of its 

unwatched literals is known to be false. On the first sentinel hit, e is incremented from 0 

to 1. Then, if a sentinel is hit while e is 1, the clause is all- f a1 se, except for, perhaps, the 

other watched literal. We use the term active to describe such a clause. 

Third, literal instance o is initialized to null. o will store the other watched literal so 

that it may be inspected efficiently if the clause is found to be active. The TWL algorithm 

must fully explore a clause before declaring it active. Therefore, if the clause is declared 

active, the other watched literal, k, was encountered during the search. If k is false, it 

is not copied, and o remains null. Otherwise, o = k. Using o, the procedure can quickly 

determine whether an active clause is falsified, satisfied, or unit. 

Finally, pointer x is declared, but not initialized. x is used to record the first memory 

address of the clause. This information facilitates access to the clause's literals during 

conflict-driven clause learning. 

Step WOb alters the content of p, depending on w's direction flag, r .  If r = 0, p is made 

to point at the instance preceding the instance at which it currently points. If r = 1, p 

is moved to the next instance in the opposite direction. The sign flag, watched flag, and 

variable index of the newly pointed-to instance are cached in s,  t, and v, respectively. 

In WOc, literal u is derived from sign s and variable index v. If u is false, p is neither 

pointing at a sentinel, nor pointing at a literal that can become watched; execution returns 

to WOb. This tight loop searches the clause for a non-false literal. Note that a good 

implementation does not actually use a comparison in step WOb. 

Sentinel literals are perpetually non- f alse. Furthermore, they are easily distinguishable 

from non-sentinel literals. Suppose some variable, h, does not participate in the CNF. If 

variable h is kept either true or free, literal h may be used as a sentinel. Step WOd checks 

whether u is a sentinel. If it is, execution continues into step Woe. Otherwise, it may be 

possible to watch u instead of 1; execution jumps to WOi. 

In step Woe, search has reached a clause boundary sentinel. If r = 0, it is the low 

memory boundary that has been hit, so p is stored to x. The procedure uses x only after 

determining the clause is active. To determine the clause is active, TWL must encounter 

both boundaries. Therefore, x is always initialized before use. 

If e # 0 in step WOf, the search has reached both boundaries. Therefore, all unwatched 
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literals in the clause are false. Execution falls through into step WOg. Otherwise, only one 

boundary has been reached. Execution reenters step WOb; search resumes at 1, but in the 

opposite direction. 

If o is null in step WOg, both watched literals are false. In step WOi, o becomes a copy 

of the literal instance at p, if the watched flag at p is true. But, step WOi is never executed 

for a false literal. The loop over WOb and WOc breaks only when p points to a literal that 

is either true or free. 

(Suppose clause c has two false watched literals, l1 and 12. Further, suppose l1 was set 

before 12. It must be that falsifying l2 falsified c: if ll is both false and watched, then c is 

active and l2 must already be queued for assertion. Thus, a clause may be declared false 

immediately if the WOb/WOc loop encounters a false watched literal.) 

Otherwise, the clause is active and the second watched literal is non- f alse. If o is true, 

the clause is satisfied. Else, o is queued to be set true with antecedent x. In both cases, 

control returns to the outermost loop. 

If u is neither false nor a sentinel, step WOi is executed. p points to an instance of 

literal u that has watched flag t .  If t is true, the literal is already being watched, so u is 

copied and the search loop is reentered. Otherwise, the literal at p is available to be watched 

in place of 1. Steps WOj and Wok implement the transition from watching 1 to watching u. 

The watched flag on 1 is set false. The watched flag on u is set true. The current 1 watch 

structure is deleted and a new watch structure is added to W(u). 

The new watch structure takes on the current direction flag, r. This guides future search 

(when u is set false) away from the segment of the clause that was just explored. If a clause 

is visited several times between backtracks, this tends to slightly reduce the average time 

spent searching for a literal to watch. 

3.5 Refinements 

A typical CPU operates only on data in its registers. If a machine word is to be, e.g., 

compared, it must first be copied into a register on the chip. Suppose a program operates 

on the word at main memory address x. A load instruction is used to copy the appropriate 

word into a register. If a duplicate of the word at address x is already present in the L1 cache, 

the load finishes in one or two CPU cycles. If not, the program has suffered an L1 miss. In 

response, the L2 cache is probed. If the word at x is cached in L2, the load completes in 
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roughly five to ten cycles. Otherwise, an L2 cache miss occurs, and the word is copied in 

from main memory at a cost of 50 to 250 cycles[21]. (This is a simplified description of a 

very complex system. We are primarily concerned with broad trends in cost.) 

Memory is copied through the cache hierarchy in blocks, called cache lines. A cache line 

is a series of consecutively addressed bytes. In most modern computer architectures, cache 

lines are 32 bytes long (although the L1 line length may differ from the L2 line length[21]). 

For lines of length L, two addresses, a1 and a2, are on the same cache line if and only if 

[al/LJ = la2/LJ. When a byte is pulled into cache, every other byte on the same line is 

also pulled in. If Ll  is missed but L2 is hit, a cache line is copied from L2 into L1. If L2 is 

missed, a cache line is copied from main memory into both L1 and L2. 

It is not uncommon for industrial formulas to contain hundreds of thousands of clauses, 

and millions of literal instances. And, clause learning leads to rapid formula growth. Every 

leaf in the DLL search tree induces an implicate. Frequently, these implicates are hundreds 

of literals long. Formulas expand to be many tens or hundreds of megabytes in size. In 

contrast, a Pentium 4 chip has 8 kilobytes of L1 for data, and 512 kilobytes of L2[21]. 

The disparity between cache size and formula size means that only a tiny fraction of the 

formula is ever cached. Furthermore, assignments tend to impact many clauses. Suppose a 

formula contains i literal instances, over v variables. Since no clause contains two identical 

literals, setting a literal false shortens i/2v clauses, on average. Even for counter-based 

schemes, where shortening a clause usually only involves decrementing a counter, clause 

updates frequently miss cache. There are so many clauses that just a 4-byte record for each 

amounts to a structure that does not fit in the cache. And, clause traversals import numerous 

lines, polluting the cache, displacing other data. Recent additions are hit repeatedly during 

sequential clause traversals, but otherwise, lines tend to be displaced from cache before 

being reused. This is true of all known BCP schemes. 

Two-pointer BCP algorithms are more efficient than counter-based BCP algorithms, 

since minimizing the number of links from literals to clauses reduces the number of clause 

visits during BCP. Both HTL and TWL maintain just two links per clause. A clause is 

visited during BCP if and only if one of its watched literals is made f a1 se. If literal 1 is not 

watched in clause c, clause c is not visited when 1 becomes false. 

Regardless of memory latency, TWL is cheaper than counter-based BCP algorithms. 

Fewer links implies a reduced average amount of work per assignment, and no computation 

is necessary during backtracking. Counter-based BCP is simple, but it imposes a much 
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heavier CPU load than TWL. 

However, the primary strength of TWL lies in its memory access pattern. It is expensive 

to visit clauses, because doing so frequently results in an L2 cache miss. Having two links 

per clause reduces the average number of visits triggered by each assignment, and no clause 

is visited during backtracking. On the other hand, it is relatively inexpensive to traverse a 

clause upon visiting it, because contiguous reads put cache lines to good use. Most clause 

traversals complete within a single cache line, and therefore hit L1 every time a literal is 

loaded. In an average clause traversal, step WOb is executed less than three times. 

3.5.1 Binary Clause BCP 

Here, we apply the term binary clause to refer to clauses with exactly two literals, false 

literals included. Constraint propagation through binary clauses is particularly simple. If the 

formula contains [loll], then for x E (0, l), if 1, is false, 11-, must be true. It is inefficient to 

use a fully general BCP mechanism to capture this. In binary clauses, TWL is at its most 

degenerate, since every literal must be watched. Boundary sentinels double the memory 

footprint of each clause, and the entire footprint is traversed on every visit. Attempts to 

find another literal to watch are wasted effort. The inefficiency is significant because binary 

clauses are abundant in the formulas we are concerned with solving. In standard bounded 

model checking benchmarks[38] more than 70 percent of the clauses are binary. More than 

90 percent are binary in standard microprocessor verification benchmarks[37]. 

A better method relies on a specialized binary clause representation. Each variable, v, 

is associated with two lists of literals, B(v) and B(v). Each clause, [loll], is represented by 

a pair of list entries: an instance of l1 in B(lo), and an instance of lo in B(Z1). If a literal, 

1, becomes true, all literals in B(i) are implied. 

Binary clause BCP for 1 occurs in a single pass through B(2). For each literal x E B(1): 

If x is true, then x is ignored. If x is false, there is a conflict, and falsified clause [tx] is 

returned explicitly. Otherwise, x is free, so x is queued for assertion. In the queue, x is 

paired with 1, rather than a pointer to an antecedent clause. Antecedent records are flagged 

to indicate their correct interpretation, as a literal or as a pointer. The CDCL procedure is 

readily adapted to distinguish and handle both cases. In particular, note that the literal 1 
is sufficient antecedent information to support a CDCL resolution on x. 

Together, TWL and the above procedure implement step B2 of the breadth-first BCP 

algorithm. Once 1 is assigned in step B1, binary BCP is performed via B(1). Then, TWL 
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performs non-binary BCP via W(t). Sequencing BCP this way favors binary antecedents, 

and so promotes binary clause resolutions in CDCL derivations. 

The described method is highly efficient. First, if B(t) is implemented as a contiguous 

array, the memory access pattern of a natural traversal is ideal. In contrast, suppose each 

binary clause is represented as a pair of adjacent literal instances. Each clause is twice the 

size, so half as many fit on a cache line. TWL boundary sentinels aggravate this. Also, 

clauses that contain 1 are not necessarily grouped together in memory. Worst case, it could 

be that no two are on the same cache line together. 

Second, the traversal procedure can be very computationally inexpensive. Usually, when 

BCP visits a binary clause, the implied literal is already true. The procedure first checks 

whether the current element of B(t) is true. If it is, a clause has been dispensed with in a 

single comparison. 

Also, bounds checking overhead is easily cut from the loop that iterates through B(t). 

If a false sentinel literal is appended to each list, the bounds test may be embedded in the 

conflict code. Whenever a false literal is encountered in ~ ( i ) ,  a test is done to determine 

whether or not the literal is a sentinel. Because real conflict is relatively rare, and the 

procedure is so simple, the savings are significant. 

(Tangentially, we note here a useful property of TWL. Suppose a clause consists of n 

literals. Further, suppose two of them are free, while the other n - 2 are false. We term 

such clauses conditionally binary. When BCP finishes without conflict, both free literals 

must be watched in every clause that is conditionally binary. Therefore, if a literal, 1, is free 

in a conditionally binary clause, c, then W(1) contains a watch structure that points into 

c. To determine how many conditionally binary clauses 1 participates in, it suffices to count 

how many clauses referenced in W(1) are conditionally binary.) 

3.5.2 Ternary Clause BCP 

In most of the formulas we are concerned with, ternary clauses are much less common than 

binary clauses. There are some exceptions, e.g., miters for circuit equivalence checking[33]. 

Ternary clauses appear frequently in formulas derived via basic translation from logic gate 

networks. Through such translation, an AND gate with inputs {x, y} and output z becomes 

{[Zx], [Zy], [zETj]). Similarly, an OR gate is captured by {[z:], [z?j], [~xy]}. About one 

third of the clauses are ternary in the two most challenging public domain microprocessor 

verification suites, fvp-sat .3.O and fvp-unsat.3.0[35]. Furthermore, CDCL tends to generate 
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a larger number of ternary implicates than binary implicates. 

So, it is worthwhile to perform ternary clause BCP through a specialized mechanism. 

Doing so allows us to favor ternary clause resolutions in CDCL derivations, and also makes 

BCP faster. The approach we adopt represents each clause with a set of stub structures. 

A stub is a 4-tuple, (la,lb,pa,pb). Both 1, and lb are literals, while pa and pb are position 

indexes used to construct antecedents for CDCL. These four fields are packed into 64 bits: 

20 bits per literal, 12 bits per index. 

Each variable, v, is associated with two lists of stubs, T(v) and T(u). Every stub in T(1) 

encodes a binary clause that is implied as a result of literal 1 being set true. Each ternary 

clause, [loll12], is represented by three list entries: 

stub (11 ,12,pl ,p2) at position po in T(lo), 

0 stub (lo,12,po,p2) at position pl in T(ll), and 

0 stub (lo,ll,p~,pl) at position pa in T(12). 

Position indexes connect together the three stubs that represent a clause. Each stub 

records the positions of the other two. Before the stubs are inserted, the position indexes 

are calculated. For all i E {0,1,2), position pi = (T(li)l. That is, the position index for a 

list is its cardinality. If T(li) contains n stubs, then positions { O , l ,  ..., n - 1) are occupied. 

The new stub for T(li) will be inserted at position n = IT(&)[. 

Suppose a literal, I, is set true in BCP step B1. The following procedure is called after 

binary clause BCP finishes, but before TWL begins. Ternary clause BCP for 1 occurs in a 

single pass through T(1): 

EO. For each stub (la, lb, pa, pb) E T(1): 

[EOa.] If 1, is true, skip EOb ,..., EOf. 

[EOb.] If l6 is true, skip EOc ,..., EOf. 

[EOc.] If 1, is free, go to EOf. 

[EOd.] If lb is false, return "falsified [lalbi]". 

[EOe.] Enqueue (lb,pb), and skip EOf. 

[EOf.] If lb is false, enqueue @,,pa). 
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Each pair (la,lb) is a binary clause induced through the falsification of 1. Empirically, 

most of these clauses have already been satisfied by the time they are considered. It is for 

this reason that the first two steps, EOa and EOb, check for true literals. This speeds BCP, 

since most clauses are dealt with in one or two comparisons. 

When step EOc is reached, each of 1, and lb are either false or free. Thus, there are four 

cases to distinguish. If 1, is free, the process enters step EOf, where two of the four cases 

are handled. Otherwise, execution falls through into step EOd. 

In step EOd, 1, is known to be false. If lb is also false, there is a conflict, and so 

falsified clause [lalbi] is returned explicitly. Else, lb is free and implied; it is inserted into 

the BCP queue with position index pb as its antecedent. CDCL interprets this antecedent 

as a reference to the stub at position pb in T(lb). This stub contains la and 1, sufficient 

antecedent information to support a CDCL resolution on lb. To ease correct interpretation, 

antecedent information of this variety must be labeled to distinguish it from the pointer 

antecedents of TWL and the literal antecedents of binary BCP. 

If step EOf is reached, la is free. If lb is false, la is queued for assertion. Else, lb is free, 

and so the current ternary clause has no BCP consequence. 

In TWL, only two of the literals in any ternary clause are watched. There is always one 

literal without a link to the clause. In the above scheme, all three literals have a link. But, 

the scheme is so efficient that this weakness is more than compensated for. It is efficient for 

the same reasons the mechanism of section 3.5.1 is efficient. Compared to ternary BCP via 

TWL, fewer instructions are executed per clause. Use of a bounds-test sentinel in each stub 

list provides further savings. A contiguous representation of T(%) fits as many as four stubs 

on a 32-byte cache line. Sequential traversal makes good use of L1, and relative to TWL, 

fewer lines are pulled into cache. 

Having position indexes 12 bits wide implies that a ternary clause, [lolllz], cannot be 

represented with stubs if (T(li)J = 4096, for some i E {O,1 ,  2). Instead, the general purpose 

TWL representation is used. However, in our experience, it is rare for any one literal to be 

present in 100 ternary clauses, let alone 4096. 

3.5.3 Clause Compression 

In a ternary clause stub, each literal is allocated 20 bits. Setting aside one bit for the sign 

leaves 19 bits for the variable index. Therefore, the maximum index that may be encoded 

is 219 - 1. As a result, the solver supports no more than 524,288 variables. This restriction 
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reduces the set of instances to which the solver is applicable. But, to put this in perspec- 

tive, we know of just one benchmark suite with formulas having > 100,000 variables[24]. 

(Although these formulas are large, they are not difficult, and Chaff solves them quickly. 

The benchmark authors state the formula sizes are a product of inefficient encoding.) Most 

interesting benchmarks contain < 40,000 variables. It is reasonable to sacrifice the capacity 

to solve abnormal, gargantuan formulas if doing so allows us to better solve the formulas 

we expect will normally arise. 

The TWL procedure we have described operates on clauses that are represented by 

arrays of literal instances. A literal instance consists of a 20-bit literal, paired with a 1-bit 

watched flag. Clearly, it is possible to pack three 21-bit literal instances into 64 bits of 

memory. It is straightforward to arrange fields so that unpacking is inexpensive. One such 

arrangement allows two instances to each be isolated in a single bitwise operation, while the 

third instance is available in four bitwise operations on a 32-bit machine (two on a 64-bit 

machine). In contrast, Chaff maintains a 32-bit structure for each literal occurrence. 

A more compact representation decreases the width in memory of each clause. Storing 

three literals, instead of two, in each 64-bit block allows 12 literals, instead of 8, per 32- 

byte cache line. So, fewer cache lines are touched in the course of TWL clause traversals. 

Short searches, which are very common for TWL, complete more often within a single cache 

line. Long searches have lessened impact. Because of TWL's relaxed watch placement rules 

(versus HTL), an assignment is deduced only after full traversal of its antecedent clause. 

The reader is referred back to Table 2.3, in which some average first-UIP clause lengths are 

listed. Using 21 bits instead of 32, a clause with 100 literals occupies 4 fewer cache lines. 

A clause with 600 literals occupies 25 fewer. Less main memory is copied into cache, so 

latency costs and cache pollution are reduced. 

3.5.4 Receding Boundary Sentinels 

The TWL procedure we have presented takes advantage of boundary sentinels to improve 

the efficiency of the WOb/WOc search loop. These sentinels are literals that evaluate true 

or free. Rather than testing at every literal whether the search pointer has been directed 

outside the clause array, this test occurs only when a non-false literal is encountered. 

Because the search loop is so simple, the removal of a comparison is significant (cf. Knuth's 

discussion of linear search[23]). Boundary sentinels also contribute to another refinement 

we have developed. 



CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 41 

The technique excludes some false literal instances from being considered during BCp. 

If a literal is made false at decision level y, it will remain false until dl y is removed 

through backtracking. Empirically, less than four decision levels, on average, are removed 

by a backtrack-typically, only a small fraction of the current branch. DLL lingers in the 

fringe of its tree, even with nonchronological backtracking. Literal instances become false 

and then remain that way through long periods of search. 

This motivates the omission of false literals from clauses in which they occur. Clearly, 

if TWL works with fewer literals, BCP will execute faster. It is less apparent that such 

literals can be removed efficiently. Already, TWL handles false literals very fast. The gain 

must outweigh the cost if the technique is to be advantageous. 

In fact, it is possible to remove numerous false literals from the formula at minor 

expense. A conflict occurs when a clause, Fx, is falsified. In response, CDCL introduces an 

implicate clause, FI, that is also entirely false. Before backtracking to make FI unit, we 

consider truncating both Fx and FI. 

For each c E {Fx, FI), the following procedure is applied. If c is less than some threshold 

length, it is not truncated. This helps to avoid situations where the improvement to BCP is 

offset by the truncation cost. Otherwise, the literal instances within c are sorted according 

to decision level. To clarify, let c be [111 2...1,]. Suppose each literal x E c became false at 

decision level d(x). The contents of the array representing c are rearranged so that, for all 

li, lj E c: if d(li) < d(lj), the memory address of li is less than that of lj. Bentley-McIlroy 

3-way quicksort[31] is recommended for this task, since there are often many duplicate keys; 

i.e., it is typical for several literals in c to have been set false together, at the same dl. 

Once the array is sorted, the two literal instances highest in memory become watched. 

Because the literals in c have been sorted by dl, the last literal is at the shallowest dl, 

while its neighbor is either at the shallowest (if c = Fx) or second-shallowest (if c = FI). 

Therefore, backtracking will not violate the TWL requirement. 

Once the clause is watched, boundary sentinels are placed. One of the two sentinels, 

SH, occupies the highest memory location in the array. The other sentinel, SL, is initially 

positioned some small distance lower in memory than SH. The two watched literals for c 

lie between SL and SH. SL serves to partition the array into two subarrays, AL and AH. 

Subarray AH is bounded on either side by SL and SH. AL is the complement of AH, i.e., 

AL = c - AH. Because both watches are embedded in AH, the contents of AL are ignored 

by TWL. This improves the efficiency of BCP. During backtracking, SL is moved through c 
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to ensure that every literal in AL is false. But, SL is only moved lower in memory, never 

higher; backtracking widens AH and narrows AL. 

Let d(AL) be the label of the shallowest dl at  which some literal in AL became false. 

Because AL is sorted by decision level, d(AL) is the dl of the literal in AL with the highest 

memory address. Unless AL is empty, the solver stores a link from decision level d(AL) to 

sentinel SL. Such links allow sentinels to be moved efficiently in response to backtracking. 

Whenever backtracking removes a dl, d, the solver moves all sentinels to which d is linked. 

Then, some or all of these sentinels are relinked, and all of d's links are discarded. 

When backtracking removes decision level d(AL), SL is moved. If possible, this narrows 

AL to A/L, such that A: is not empty and d(AL) > d(A/L). If no such A: exists, SL is put 

to rest at  the lowest memory location in the array. Otherwise, decision level d(A:) is linked 

to SL, and all links for decision level d(AL) are deleted. 

To reiterate, boundary sentinels are used to efficiently truncate long, falsified clauses. 

Whenever a false clause of sufficient length is available, the solver performs a truncation. 

Suppose c is such a clause. First, the literals of c are arranged in order of increasing 

decision level. Second, the two literals ranked highest in this ordering become watched. 

This is necessary because sorting c may invalidate watch pointers into c. Third, a boundary 

sentinel is placed at the high end of the clause. This sentinel need not be moved. Fourth, 

another boundary sentinel is used to truncate c. Instead of being placed at the low end of 

the clause, it is placed midway through, dividing c into AH and AL. AH is the shortened 

clause; AL is an array of omitted false literals. 

Shortened clauses are lengthened to include omitted literals that become free. AH must 

be extended if a literal in AL becomes free. A clause is lengthened by moving its low 

memory sentinel during backtracking. To facilitate this, each decision level, d, is linked to 

every sentinel that must be repositioned when d is removed. When backtracking frees a 

literal in AL, all literals in AH are already free. AH must be expanded to include the free 

literals in AL. So, the low memory sentinel is moved to a lower address. If all literals in 

AL are free, the sentinel is moved off the low end of the clause-AH expands to contain the 

whole of c. Otherwise, a contiguous block of literals from the high end of AL is transferred 

into AH, and the sentinel becomes linked to the dl of the highest memory literal in the 

remainder of AL. 



Chapter 4 

Decision Strategy 

4.1 Overview 

The focus of Chapter 3 is efficient implementation of the procedures executed during search. 

Efficient BCP is important because, all else being equal, a gain in BCP speed produces 

a proportional gain in solver speed overall. But, what is most important is the solver's 

capacity to find and take advantage of useful problem structure when it is available. Brute 

force combinatorial search rapidly becomes futile as problem size increases, no matter how 

efficiently it is implemented. The better the solver can exploit structural simplicity, the 

more the difficulty of an instance can depend on its complexity rather than on its size. 

Ideally, if a formula has a short resolution refutation, superficial characteristics, e.g., the 

number of variables, should be immaterial. 

Effective decision methods discover useful structural properties of the formula, and guide 

search to exploit them. Good DLL decision strategies work to restrict search space, in order 

to facilitate exhaustive search[l9]. They guide the solver to find tree-like refutations that 

involve fewer resolutions. In contrast, good strategies for clause-learning DLL solvers work 

to generate clusters of compositionally similar, resolvable clauses. Conflict-driven clause 

learning takes advantage of these clusters, since it tends to resolve together clauses that 

share literals. 

First, we present a brief overview of the best general purpose decision strategies for DLL. 

Then, we describe the VSIDS decision strategy used in Chaff, and explain why it works. 

On that foundation, we introduce a new and superior decision strategy. Finally, we discuss 

Berkmin's contribution. 
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4.2 Strategies for DLL 

Heuristics may be designed to suit particular classes of instances. For example, SAT0 

employs a specialized strategy to solve quasigroup problems[40]. Here, we consider general 

purpose strategies only. 

In DLL, the decision strategy selects a variable, v, to branch on. It also dictates the 

order in which the literals of v are asserted, although this is relatively unimportant. The 

decision strategy determines the search tree. 

The strategies that seem to be most successful at producing desirable trees are guided by 

formula simplification. Formula Fl is said to be "simpler" than formula F2 if g(Fl) > g(F2), 

for g defined as follows. Function g computes an exponentially weighted sum of the clause 

sizes for a given formula. That is, g(F) = CcEF k-S(C), where F is a CNF from which all 

false literals and satisfied clauses have been removed; k is some experimentally determined 

constant; and s is a function that returns the number of literals in a given clause. A clause 

of size x contributes as much to the sum as k clauses of size x + 1. 

The best DLL solvers, e.g., Satz[25] and POSIT[14], work to reduce the number of 

decisions along each path from the root to a leaf. At each branching point in the tree, an 

attempt is made to select a variable to minimize the number of decisions needed to complete 

the tree rooted at that point. This is an efficient approach because most (or all, if the formula 

is unsatisfiable) induced formulas will be refuted[l9]. Variables are ranked by their power 

to simplify the formula. It is assumed, but not proved, that a larger g(F) implies a smaller 

expected number of decisions to refute F .  The intuitive justification that appears in the 

literature is along the lines of: minimizing the number of free variables minimizes a loose 

bound on the maximum tree size; a formula with more short clauses is more constrained, 

and therefore closer to a conflict; and so on. The strong support is empirical. 

Suppose a decision is needed for formula F .  Let FI, denote the formula produced by 

BCP, given the input F A [XI. An elementary decision strategy that is guided by formula 

simplification chooses to branch on a variable, v, that maximizes g(FJ,) * g(FJv). More 

sophisticated methods reduce the time spent making decisions by ignoring long clauses in 

the computation of g, pruning the set of variables for which g is computed, etc. 

Every DLL search tree is linearly equivalent to a tree-like resolution refutation[l5]. Each 

decision corresponds to the resolution of two clauses, both of which were derived through 

one or more resolutions. (Unless the decision variable did not play a role in one of the 
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subtree refutations.) But, each BCP assignment corresponds to a resolution involving a 

clause from the input formula. Assertions that heavily simplify the formula are typically 

those that generate numerous consequential assignments through BCP. And, short clauses 

promote BCP. Therefore, simplification heuristics are essentially geared toward minimizing 

the number of resolutions in the refutation. 

4.3 Strategies for DLL with CDCL 

Relsat's decision strategy[3] is closely related to the formula simplification heuristics used 

in Satz and POSIT. The same is true of SATO's general purpose strategy[40]. In GRASP, 

a variety of decision strategies are implemented. Several of them are just DLL formula 

simplification heuristics. However, others are literal count (LC) heuristics. In fact, GRASP'S 

default decision strategy is an LC heuristic[29]. 

The literal count heuristics introduced in GRASP rank variables according to the number 

of times they appear in unsatisfied clauses. For example, the dynamic largest individual sum 

(DLIS) strategy counts the number of unsatisfied clauses each literal occurs in. The literal 

with the largest number of occurrences is set true. Experimental results indicate that 

within the GRASP framework, DLIS does better than the best DLL formula simplification 

heuristics on non-random formulas[27]. The published explanation for this result is that 

(a) classical DLL strategies are too greedy, and (b) decision strategy is not important for 

a clause-learning solver. The first claim is dubious, given the results in, e.g., [25]: greedier 

heuristics seem to be preferable, except they are too expensive to compute. The second 

claim is refuted by VSIDS. 

4.3.1 VSIDS 

Arguably, Chaff's most important contribution is the variable state independent decaying 

sum (VSIDS) decision strategy[30]. VSIDS is a literal count heuristic that is dramatically 

more powerful than DLIS. It allows Chaff to solve difficult industrial SAT problems much 

faster, with far fewer decisions, than solvers like Relsat, GRASP, and SATO. 

VSIDS is realized in zChaff as follows. Each literal, 1, has a score, s(l), and an occurrence 

count, r(1). When a decision is necessary, a free literal with the highest score is set true. 

Initially, for every literal, I, s(1) = r(1) = 0. Before search begins, s(1) is incremented for 

each occurrence of a literal, I ,  in the input formula. When a clause, c, is learned during 
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search, r(1) is incremented for each literal 1 E c.  Every 255 decisions, the scores are updated: 

for each literal, 1, s(1) becomes r(1) + s(1)/2, and r(1) becomes zero. 

VSIDS deviates from DLIS in two respects. First, literal occurrences within satisfied 

clauses are not distinguished. As discussed in Section 3.5.4, search lingers in the fringe 

of the tree; that is where most decisions are made. Normally, in the fringe, most variables 

have been assigned a value, and many clauses are satisfied. Counting occurrences in satisfied 

clauses makes a substantial difference in the literal ranking. Still, the published explanation 

for why VSIDS is successful begins with the claim that VSIDS works to satisfy conflict 

clauses. DLIS is described as working to satisfy clauses, but in a myopic way, ignoring the 

impact of BCP in order to avoid excessive greed. VSIDS is described as a myopic, inaccurate 

attempt at satisfying clauses (especially those recently derived). The explanation for VSIDS 

is even less convincing than the explanation for DLIS. 

Second, the influence of each occurrence is scaled according to the occurrence's recency. 

Decisions are based on scores, not occurrence counts. As clauses are learned, occurrence 

counts are incremented. Periodically, the scores are halved, the occurrence counts are added 

to the scores, and the occurrence counts are zeroed. These updates are frequent: it depends 

on the instance, but typically, 255 decisions translates to about 64 conflicts. It is the 

emphasis on recent literal occurrences that is the crux of VSIDS' power. The published 

explanation is that, on difficult problems, conflict clauses drive the search process; therefore, 

favoring the information in recent clauses is valuable. Clearly, this explains nothing. 

In our view it is a mistake to cast literal count heuristics as sloppy approximations 

to DLL formula simplification heuristics. Instead, we propose VSIDS is actually a clause 

learning heuristic that guides the solver to generate clusters of related, resolvable clauses. 

At each leaf in the search tree, CDCL resolves clauses that were involved in BCP along 

the path to that leaf. Suppose CDCL derives two implicates, io and il. Suppose both 

derivations occur with many of the same literals asserted. Then, it is likely there are a 

substantial number of literals that participate in both derivations. As a result, it tends to 

be that io and il are compositionally similar. That is, they tend to contain the same literals. 

We have confirmed this empirically. 

Nonchronological backtracking typically removes only a small fraction of the path from 

a leaf to the root. It is usual for most of the path to remain intact from one conflict to the 

next. Therefore, from one conflict to the next, many of the same literals remain asserted. 

Implicates produced in leaves that share a long path prefix (leaves that are, in the obvious 
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sense, nearby) are often compositionally similar. 

VSIDS' exponential decay of variable scores shifts focus toward recently derived clauses, 

i.e., those that tend to have been learned near the current search position in the DLL tree. 

VSIDS selects a free literal, 1, that has the highest score, and makes it true. Since CDCL 

implicates consist of false literals, this fosters the conflict-driven derivation of clauses that 

contain f .  Thus, VSIDS guides the solver to generate implicates resolvable against clauses 

that are usually of similar composition. 

4.3.2 VMTF 

There are at least two problems with VSIDS as a method of learning related, resolvable 

clauses. First, periodic score decay is an indirect and awkward means of choosing decision 

literals from recently derived clauses. There is a delay in the use of gathered statistics, 

so focus does not shift immediately. Until the literal scores are updated, the most recent 

clauses are ignored. Ironically, because of the depth-first organization of DLL search, these 

are the clauses produced in the leaves that are most likely to share a long path prefix with 

the current search position in the DLL tree. 

Second, if a pair of clauses clash on more than one variable, they cannot be resolved by 

conflict-driven learning; a resolvent would be tautologous. For example, if [xyP] is resolved 

against [-&I, the resolvent must contain both x and 3, or both y and y. Suppose two 

literals, lo and 11, in a clause, c,, are set true along the path to a leaf in which a clause, cd, 

is derived. It  may happen that cd contains both and G, in which case c, and cd are not 

resolvable. So, the solver should perhaps tend to avoid setting more than one literal true in 

any of the recent clauses. 

Primarily in response to the first problem, we introduce the variable move-to-front 

(VMTF) decision strategy. VMTF is simple and extremely inexpensive to compute. More 

importantly, if our solver uses VMTF instead of VSIDS, far fewer decisions are needed to 

solve benchmarks from various interesting domains: planning, bounded model checking, 

circuit equivalence checking, and so on, as shown in Table 4.1. 

An occurrence count, r(l), is kept for each literal, 1. Initially, for every 1, r(1) = 0. 

Before search begins, r(1) is incremented for each occurrence of a literal, 1, in the input 

formula. An ordered list of the formula variables, W, is also maintained. Once the counts 

have been determined for the input formula, W is arranged so that, for all variables vo, vl: 

if r(vO) + r($ > r(vl) + r ( q ) ,  then vo precedes vl. The more often a variable occurs in 
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the input formula, the closer it begins to the front of the list. 

When a clause, c, is learned during search, r(1) is incremented for each literal 1 E c. 

Then, some of the variables in c are moved to the front of W. The number of variables 

moved is a small constant, m, e.g., 8. If c contains only n < m literals, n variables are 

moved. The moved variables are positioned at the front of the list in an arbitrary order. 

When a decision is necessary, the free variable, v, that is nearest the front of W is set true 

if r (v) > r (ZI) , f a1 se if r (77) > r (v), and randomly otherwise. 

Recall that once a clause, c, is derived, the solver backtracks to the deepest decision level 

at which c is unit. At that point, BCP satisfies c; every variable in the clause is assigned. 

Therefore, none of the variables in c that are moved to the front of W are free when the 

next decision is made. Clearly then, VMTF does not simply choose variables from the most 

recently derived clause. 

Because implicates that are learned near each other in the DLL tree tend to share literals, 

it is often the case that many of the variables moved to the front are already near the front, 

prior to being moved. But, if every variable is moved to the front for every learned clause, 

performance degrades substantially, relative to VMTF as described above. That is, a larger 

number of decisions are needed to solve the same instances. Moving only a few variables 

from each clause prevents a single clause having too large an impact on the decision making 

process. 

It suffices to move to the front of W a random selection of m variables from c. However, 

a more systematic approach leads to better results. It is not beneficial to favor moving the 

variables at the shallowest decision levels, i.e., the variables that will become free earliest. 

Rather, it is better to move the variables from c that appear earliest in the participation 

trace for the derivation of c. The reasons for this are unclear. 

Further gains are possible if a broader set of variables is considered while making each 

decision. One approach that works well is choosing between the first two free variables 

Table 4.1: Number of decisions used to complete proof 
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in W using a scoring scheme reminiscent of VSIDS. Each variable, v, has a score, s(v). 

Initially, the score for each variable is zero. When a clause, c, is learned during search, s(v) 

is incremented for each variable, v, that has a literal in c. Periodically, all the scores are 

divided by a constant that is a power of two. 

When a decision is needed, the following procedure is used. Let vo and vl be the first 

two free variables in W. Assume vo precedes vl, and the number of list elements between 

vo and vl in W is d. If the score for vl exceeds the score for vo by wide enough a margin, 

vl is selected instead of vo. The larger d is, the wider the margin required. For example, if 

s(vo) + 2d + 3 > s(vl) , then vo is selected, else vl is selected. 

Finally, we note that VSIDS is very inexpensive to compute, compared to the most 

effective formula simplification heuristics, and that VMTF is much cheaper to compute 

than VSIDS. The VSIDS implementation in zChaff accounts for about ten percent of the 

runtime. Most of that time is spent sorting literals by score. Our VMTF implementation 

accounts for less than one percent of our solver's runtime. 

4.3.3 Berkmin 

One decision strategy that addresses both of the problems with VSIDS is the heuristic 

introduced in [16], a paper that was published subsequent to our development of VMTF. 

We neglect to include here a full and detailed description of the heuristic, since it is complex 

and the cited source is sufficiently lucid. 

The strategy is essentially as follows. Each variable has a score that is initially zero. 

Each time a clause participates in the derivation of an implicate, the score for every variable 

in the clause is incremented. Periodically, the scores are divided, as in VSIDS. 

When a decision is necessary, the strategy considers c, the most recently derived clause 

that is yet unsatisfied. If there is no such c, because there are no derived clauses, or because 

all derived clauses are satisfied, a variable with the highest score overall is selected. Whether 

this variable is set true or false depends on an estimate of which choice will generate more 

assignments through BCP. 

Otherwise, the heuristic selects v, one of the variables in c that has the highest score 

among all variables in c. The literal of v that has occurred in the largest number of implicates 

is set true. If both literals have appeared equally often, a random choice is made. 

The published explanation for why this works is unconvincing, along the lines of: it is 

like VSIDS, only more dynamic. But, our explanation for literal count strategies predicts 
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Berkmin's heuristic will be successful. It is clearly similar to VMTF. 

We have experimentally verified several relevant facts. First, in general, sign selection 

guided by counting BCP assignments is not beneficial. It suffices to make true the literal 

that has occurred in the largest number of implicates. 

Second, it is not important that decision variables be selected from unsatisfied clauses. 

Rather, it is important that decision variables be selected from clauses that contain no more 

than one true literal. For example, a variable may be drawn from a clause that already 

contains exactly one true literal, unless doing so will produce a second true literal in the 

clause. This works better than selecting from unsatisfied clauses, consistent with the notion 

that the decision strategy operates to promote production of clauses that can be resolved 

against recent implicates. 



Chapter 5 

Related Work 

The headltail lists BCP algorithm was introduced in SAT0[40]. The two watched literals 

BCP algorithm was introduced in Chaff[3O], and its memory access properties were noted. 

Iterative DLL with clause learning and nonchronological backtracking was introduced 

in [29] and improved in [3]. Conflict-driven clause learning was first used in the solvers 

GRASP[29] and Relsat [3]. Chaff's first-UIP learning scheme was introduced in [41]. A very 

thorough experimental evaluation of several learning schemes appears in [41]. 

The DLIS decision strategy was introduced in [29], and was experimentally compared 

against DLL formula simplification heuristics in [27]. The VSIDS decision strategy was 

introduced in [30]. Extensive improvements to VSIDS are published in [16]. 



Chapter 6 

Conclusions 

Many interesting problems are solved efficiently in practice through translation to SAT. 

This is largely because modern satisfiability solvers are frequently able to derive and take 

advantage of simple structures in problem instances. Although the heuristics these solvers 

apply are crude and indirect, they are remarkably successful. We believe there is potential 

for enormous improvement. 

Boolean constraint propagation is used both to select clauses for resolution, and to 

prune space during search for a satisfying assignment. BCP is slow because it operates 

diffusely over a data structure that is much larger than the cache. We emphasize that the 

most significant performance gains are achieved by reducing the number of accesses to main 

memory. We have presented a very refined two-pointer BCP algorithm that is simpler and 

more efficient than the one found in Chaff. We have proposed a pair of new binary and 

ternary clause BCP algorithms that have ideal memory access properties. Recognizing that 

a solver designed to handle a large number of variables should be quite different than a solver 

designed to handle fewer variables, we have used packed representations to improve BCP 

locality. We have developed our usage of clause boundary sentinels into a straightforward 

and effective method of excluding false literals from consideration during BCP. Using these 

improvements, our solver is dramatically faster than, for example, Chaff. 

Conflict-driven clause learning is the most important difference between modern solvers 

and DPLL solvers like POSIT and Satz. CDCL is usually discussed in terms of cuts through 

literal implication graphs. For example, see [41] and [4]. We view this as a misleading 

approach that obscures the essence of the technique, and have instead presented CDCL in 

terms of resolution. This has facilitated our simple and complete coverage of the algorithm, 
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including several clear proofs. We have illustrated that CDCL operates as a resolution 

heuristic, and we have begun to explain why some learning schemes are better than others. 

We suggest for future work a separation between clause learning and backtracking. 

The success of decision strategies like VSIDS cannot be explained by an appeal to for- 

mula simplification arguments. We realize this and have argued that literal count decision 

heuristics are actually a means of guiding the solver to learn clauses that are both resolvable 

and compositionally similar. Working with this hypothesis we have developed a new deci- 

sion heuristic that allows our solver to perform extremely well over a wide range of problem 

classes. 
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