
EFFICIENT ALGORITHMS FOR

CLAUSE-LEARNING SAT SOLVERS

Lawrence Ryan

B.Sc., Simon Fraser University, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

M.Sc.

in the School

of

Computing Science

@ Lawrence Ryan 2004

SIMON FRASER UNIVERSITY

February 2004

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Lawrence Ryan

Degree: M.Sc.

Title of thesis: Efficient Algorithms for Clause-Learning SAT Solvers

Examining Committee: Dr. Pavol Hell

Chair

-
Dr. David G. Mitchell, Senior Supervisor

Dr. 46;\ ~ & & ~ u ~ e r v i s o r

Dr. ~ e l ~ r a n d e , SFU ~ x a m i n e r

Date Approved:

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis,
project and extended essay (the title of which is shown below) to
users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its
own behalf or for one of its users. I further agree that permission for
multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be
allowed without my written permission.

Title of Thesis/Project/Extended Essay

Efficient Algorithms for Clause-Learning SAT Solvers

Author:

Lawrence Ryan

(name)

(date)

Abstract

Boolean satisfiability (SAT) is NP-complete. No known algorithm for SAT is of polynomial

time complexity. Yet, many of the SAT instances generated as a means of solving real-world

electronic design automation problems are simple enough, structurally, that modern solvers

can decide them efficiently. Consequently, SAT solvers are widely used in industry for logic

verification. The most robust solver algorithms are poorly understood and only vaguely

described in the literature of the field. We refine these algorithms, and present them clearly.

We introduce several new techniques for Boolean constraint propagation that substantially

improve solver efficiency. We explain why literal count decision strategies succeed, and on

that basis, we introduce a new decision strategy that outperforms the state of the art. The

culmination of this work is the most powerful SAT solver publically available.

Contents

Approval ii

Abstract iii

Contents iv

List of Tables vi

1 Introduction 1

1.1 Overview . 1

1.2 Experimental Data . 3

. 1.2.1 Standard Benchmarks 3

. 1.2.2 The SAT2003 Competition 3

1.3 Basics . 4

1.4 The DP and DLL Algorithms . 6

1.4.1 The Davis-Putnam Algorithm . 6

1 A.2 The Davis-Logemann-Loveland Algorithm 8

. 1.5 Resolution Refutations 9

2 Clause Learning 11

2.1 Overview . 11

2.2 DLLRevisited . 12

2.3 Derivation of Implicates . 15

2.4 Participation Traces . 19

2.5 Intermediates . 22

2.6 Omissions . 26

3 Boolean Constraint Propagation 2 7

3.1 Overview . 27

3.2 Breadth-first BCP . 28

3.3 Intermediates . 29

3.4 The Two Watched Literals Algorithm . 30

3.5 Refinements . 34

3.5.1 Binary Clause BCP . 36

3.5.2 Ternary Clause BCP . 37

3.5.3 Clause Compression . 39

3.5.4 Receding Boundary Sentinels . 40

4 Decision Strategy 43

4.1 Overview . 43

4.2 Strategies for DLL . 44

4.3 Strategies for DLL with CDCL . 45

4.3.1 VSIDS . 45

4.3.2 VMTF 47 .
4.3.3 Berkmin 49 .

5 Related Work 51

6 Conclusions 5 2

Bibliography

List of Tables

1.1 Runtime in seconds on a SunBladelOOO 750MHz Ultra I 3

1.2 Results for industrial benchmarks . 4

1.3 Results for handmade benchmarks . 5

. . . 2.1 Trace redundancy (TR) and trace length (TL) for non-random instances 20

2.2 Trace redundancy for random instances . 20

2.3 Average literals per implicate added: first-UIP vs . all-UIP 25

. 2.4 Average resolutions per implicate added: first-UIP vs . all-UIP 25

2.5 Solver runtime in seconds on a SunBladelOOO 750MHz Ultra I 25

4.1 Number of decisions used to complete proof 48

Chapter 1

Introduction

1.1 Overview

Boolean satisfiability (SAT) is NP-complete. If P is a proper subset of NP, there exists no

algorithm g such that for some polynomial function, f , g decides any given SAT instance

in time bounded above by f applied to the instance's length.

By sufficiently restricting an intractable problem, one can always obtain a tractable

problem. Some SAT instance classes are solvable in polynomial time. For example, instances

containing no clause with more than two different literals can be solved in linear time[9].

Instances containing no clause with more than one positive literal are solvable in linear

time[9]. Algorithms that take exponential time for some classes may take polynomial time

for others. We are interested in algorithms with the capacity to

0 solve all SAT instances; and

0 solve efficiently many instances generated through the application of SAT to practical

problems arising in contemporary industry.

This work is concerned primarily with solving SAT instances that have been generated

as a means of solving real-world electronic design automation problems. It is empirically

evident that many of these instances are characterized by structural properties permitting

efficient solution[7]. But, it is also the case that many interesting formulas are challenging or

even impossible in reasonable time for current solvers. Through careful implementation and

CHAPTER 1. INTRODUCTION 2

the use of powerful new search techniques we produce a solver that dramatically outperforms

state of the art SAT solvers such as zChaff[30] and berkmin56[16].

Boolean satisfiability is well-studied, and SAT solvers have a long history. The Davis-

Putnam (DP) algorithm[l2], published in 1960, is typically cited as the first entry in the

solver timeline. But, as noted in [8], an essentially identical algorithm was in fact developed

half a century earlier, by L. Lowenheim[l7]. DP is very inefficient at finding a satisfying

assignment when one exists. This fact, and the fact that DP's memory consumption is ex-

plosive in practice, motivated the subsequent development of the Davis-Logemann-Loveland

(DLL) algorithm[ll] .

Over the past decade, several powerful DLL solvers have been introduced, including

POSIT[14], Satz[25], and most recently, kcnfs[l3]. These solvers deviate from the origi-

nal DLL algorithm primarily in that they use better decision heuristics. Such solvers are

still state of the art for proving random instances unsatisfiable. (Incomplete local-search

programs, such as unitwalk[l8], are more successful on satisfiable random instances.)

Conflict-driven clause learning was first used in the solvers GRASP[29] and Relsat[3].

By appending implicates to the formula, and by using these implicates to achieve non-

chronological backtracking, these solvers far outperform the best DLL solvers on non-random

instances. These techniques are the basis of all the most successful modern solvers for

structured industrial instances.

The Chaff solver made GRASP and Relsat obsolete. Chaff's most important innovation

was a decision strategy that allowed it to take better advantage of conflict-driven clause

learning. Chaff also introduced a variation on the two-pointer BCP algorithm published

several years earlier as part of the SAT0 solver[40]. Because Chaff was designed to be

applied in an industrial setting, heavy emphasis was placed on efficient implementation.

Our work extends along the lines laid out by Chaff. We have developed a SAT solver

that is much faster than the best of the Chaff variants on many interesting problem classes.

This progress is guided by our new explanations for the power of modern solver algorithms.

In Chapter 2, we present basic learning and non-chronological backtracking algorithms.

We also propose and support an explanation for the remarkable power of conflict-driven

clause learning. In Chapter 3, we explain why two-pointer BCP algorithms are fast. We

then introduce some straightforward, but very effective, improvements to the state of the

art. Finally, in Chapter 4, we provide the first plausible explanation for why Chaff's decision

strategy succeeds. This explanation accurately predicts the superiority of an elegant new

CHAPTER 1. INTRODUCTION

decision strategy, which we describe in detail.

1.2 Experimental Data

1.2.1 Standard Benchmarks

In Table 1.1, we present solver runtimes for several well-known benchmarks. Our siege

SAT solver implements our powerful new VMTF decision strategy and the BCP techniques

described in Chapter 3. Results are listed for version 1 of siege. Version 1 is a slight variation

on version 0, the program that competed in the SAT2003 competition. Berkmin561 is not

evaluated here, because (a) it uses an unpublished decision strategy, and (b) for legal reasons,

the company that owns berkmin has stopped distributing executables to the public at this

time.

Note that berkmin's performance on the hanoi planning benchmarks differs from what

is reported in [16]. This is a result of the SAT2002 instance shuffling. Berkmin is "lucky" on

the original instance, but randomization reveals that it is not actually able to solve hanoi6

fast.

Table 1.1: Runtime in seconds on a SunBladelOOO 750MHz Ultra I

suite
fvp-unsat .l.0[37]

vliw-sat 1 .OD71

1.2.2 The SAT2003 Competition

Version 0 of siege participated in the first round of the SAT2003 competition. It performed

well in both of the non-random benchmark categories. But, because it was entered late,

siege was barred from participating in the second round.

Competition benchmark instances are clustered into series. A solver is said to have

solved a series if it has solved at least one instance in the series. Every solver was given

15 minutes to decide each instance on an 1800 MHz Athlon with 1 gigabyte of RAM. The

#instances
4

100

zChaff
1,032
7.956

berkmin56
953

5.307

siege-vl
138
434

CHAPTER 1. INTRODUCTION

siege-v0 1 32 1 135 1) opensat 1 24 1 94
berkmin62 1 32 1 133 I satzilla 1 18 1 83

solver
forklift

berkmin561

series
34
32

bmsat
satzool

instances
143
136

31
31 ,

jquest2
zchaff

I I I I I

Table 1.2: Results for industrial benchmarks

123
126
127
116

satzoo0
oepir
funex
satnik

jerusatlb
jerusatla

limmat

solvers were ranked, first by the number of series solved, then by the number of benchmarks

solved. The reader is referred to [33] for further details.

We list the first round results for the non-random benchmark categories in Tables 1.2

and 1.3. In the industrial category, siege ranked third, ahead of berkmin62 (an unpublished

solver, superior to berkmin56). Siege was outperformed by forklift (an improvement on the

unreleased berkmin621) and berkmin561. zChaff ranked 1 2 ~ ~ .

In the handmade category, siege took first place. Note that forklift and the other berkmin

solvers did poorly, worse even than zChaff. The difference between the handmade and

industrial categories is that the former includes instances that do not encode electronic

design automation problems.

solver
jerusatlc

sat0

132
124

31
30
29
29
29
29

1.3 Basics

marchsp
xqingting

lsat
farseer

28
28
28

A literal is a signed Boolean variable. If x is a Boolean variable, we use x to denote its

non-negated literal, and Z to denote its negated literal. If the variable x is true, the literal

x is true and the literal ?f is false. If the variable x is false, the literal x is false and

the literal ?f is true. If the variable x has not been assigned a truth value, it is described

as free. This term extends to (the necessarily unvalued) literals of a free variable. The

series
27
25

satzilla2
marchtt

116
115

instances
119
101

17
9
8
8

120
119
114

18
18

63
44
46
28

tts
kcnfs

82
67

qingting
unitwalk

saturn

7
6

20
17

4
4
3

17
15
22

CHAPTER 1. INTRODUCTION

--

satzool 1 21 1 102 11 kcnfs 1 16 1 51 1

solver
siege-v0 - I,

series
22

ierusatlb 1 22 1 8 1

instances
97

iauest2 1 16 1 57

I I II I I

series
16

solver
berkmin62

satzilla2 1 21 1 90
I I

instances
60

lsat 1 15 1 128
satzilla 1 21 1 89
satnik

jerusatla

bmsat 1 15 1 53

marchsp 1 19 1 84

20
20

limmat 1 14 1 52
jerusatlc
marchtt
satzoo0

zchaff
oepir

forklift

Table 1.3: Results for handmade benchmarks

88
82

19
18
18

I I 1 I I

negation of the literal x is :, and vice versa. A literal takes on a value only with respect to

17
17
17

berkmin561 (16 1 65

an assignment of truth values to variables. If it is clear from context, we do not explicitly

cite the causative assignment when describing a literal as true, f a1 se, or free.

A clause represents a disjunction of literals. For simplicity, henceforth the logical rela-

tionship between elements of a clause is left implicit; clauses will be treated as sets of literals.

funex
sat0

63
83
82

Where the contents of a clause are specified, the following notation is used. Square brackets

are used for delimitation. Between them, individual literals are denoted as described above,

67
64
63

I qingting (3

and uppercase letters stand for sets of literals. For example, [a] denotes a clause containing

only the literal a. [a&] denotes a clause containing the literals a and 6. [abR] denotes a

clause that contains a, 6, and in addition, the (perhaps empty) set of literals, R. The term

unit clause refers to a clause with exactly one literal. If a clause c contains one or more

15
15

tts
xqingting

opensat

12

literals that evaluate to true under truth assignment t, we say c is satisfied under t.

An instance of the SAT problem consists of a conjunction of clauses, F. The term CNF

is used to refer to such formulas. Normally we will treat a CNF as if it were simply a set of

clauses. Let V be the set of those variables that have a literal in formula F. If there exists

an assignment of truth values to members of V under which every clause in F is satisfied,

F is satisfiable. Otherwise, F is unsatisfiable.

53
52

saturn
farseer

unitwalk

10
10
8

68
38
25

7
6
5

29
14
20

CHAPTER 1. INTRODUCTION

1.4 The DP and DLL Algorithms

Most competitive modern SAT solvers are, essentially, derivatives of the Davis-Logemann-

Loveland (DLL) algorithm[ll]. The DLL algorithm is a variation on the Davis-Putnam

(DP) algorithm[l2]. The following exposition sets out a foundation for later refinement.

1.4.1 The Davis-Putnam Algorithm

The input to the algorithm is a CNF, F

PR. In case the input contains an empty clause, return L'unsatisfiable".

P O . Remove from F all clauses that contain at once both literals x and 3 of some variable

x. If F is now empty, return "satisfiable".

PI. If there is a variable x such that F contains both [XI and [TI, return "unsatisfiable".

P2. If there is a literal x for which F contains [XI, delete from F all clauses containing

x, and remove the negation of x from all clauses in which it is present. If F is now

empty, return "satisfiable". If F contains a unit clause, go back to step PI.

P3. While there is a pure literal in F, delete all clauses in which a pure literal is present.

If F is now empty, return "satisfiable".

P4. Select some variable, x, that has a literal in one of the shortest clauses in F. Let

A be the conjunction of all clauses from F that contain the literal x. Let B be the

conjunction of all clauses from F that contain the literal :. Let C be the conjunction

of all clauses that contain neither x nor 3. Shorten every clause in A by removing x,

to produce A'. Shorten every clause in B by removing :, to produce B'. Replace F

with (A' V B') A C. Use distribution to transform F into a conjunction of clauses. Go

back to step PO.

Step PO removes clauses that are trivially satisfied. If all clauses in F are of this type,

F is itself trivially satisfiable.

Steps P1 and P2 constitute boolean constraint propagation (BCP). It is the need to

perform BCP efficiently that drives much of the work reflected in competitive modern SAT

solvers. In step PI, the formula is checked for contradictory unit clauses. The presence of

CHAPTER 1. INTRODUCTION 7

[XI implies that x must be true; the presence of [T] implies that x must be false. If both are

present the formula is unsatisfiable.

In step P2, the occurence of a literal x in a unit clause is used to justify simplification

of F. If x is false then the unit clause [XI is unsatisfiable. Thus x being true is a necessary

consequence of any truth assignment that satisfies all clauses in F. All instances of x are

removed through unit-subsumption: if a clause has as a subset the satisfied clause [XI, it

must itself be satisfied and so can be removed from further consideration. All instances of

the negation of x are eliminated through unit-resolution. Since the negation of x is false,

it cannot contribute to satisfying a clause in which it occurs. Therefore it may be excised

from such clauses-they will necessarily be satisfied through other means, if at all.

Unit-resolution is a special case of resolution. Suppose a formula G contains the two

clauses [rM] and [FN]. Resolution of these two clauses on the variable r produces [MN],

which may be may be inserted into G to produce G'. What makes this useful is that G' is

satisfiable if and only if G is satisfiable. A proof of this fact follows.

Suppose G has a satisfying truth assignment, t. If r is true under t, then the fact that

[FN] is satisfied implies t sets some literal from N true. Thus [MN] is satisfied. Similarly,

if r is false then a literal from M must be true, and again [MN] is satisfied. In the other

direction, because G1 subsumes G, a satisfying assignment for the former must satisfy the

latter.

Once unit-subsumption and unit-resolution have been performed, if F contains no clauses,

it must be satisfiable. Therefore, the original CNF input to the algorithm is satisfiable. Oth-

erwise steps P1 and P2 are repeated until there remain no unit clauses.

Step P3 purges every pure literal from the formula. A literal is pure in F if it occurs in

F while its negation does not. It is safe to make these true because if F has a satisfying

assignment, it has one which makes every pure literal true. Most SAT solvers do not

actually implement this procedure, because it is prohibitively expensive to monitor how

many instances of each literal are embedded in satisfied clauses, particularly if lazy BCP

algorithms (as described in Chapter 3) are employed.

Once execution reaches step P4, no variable in F is susceptible to removal through

BCP or pure literal elimination. To continue the simplification process, some variable, x, is

selected to be removed through other means. The method of selection, or decision strategy,

plays an important role in determining the overall efficiency of the search. The strategy

described in the listing above is only slightly different from the one in the original DP

CHAPTER 1. INTRODUCTION 8

listing in [12].

Now, F is manipulated (without changing its satisfiability) to exclude the chosen vari-

able, x. Using symbols as defined in the listing, F is logically equivalent to A A B A C.

Substituting for A the logically equivalent expression A' V x, and for B the logically equiv-

alent expression B' V :, yields (A' V x) A (B' V T) A C. F is unsatisfiable if and only if there

is no satisfying truth assignment where x is true, and no satisfying truth assignment where

x is false. So, F is unsatisfiable if and only if (B' A C) V (A' A C) is unsatisfiable. Thus F

is equivalent (with respect to satisfiability) to (B' V A') A C, an expression in which x no

longer occurs. This expression is not necessarily a conjunction of clauses. In case it is not,

a conversion is required before execution can return to step PO.

It is in this conversion that a weakness of the algorithm manifests itself. If A' contains n

clauses, and B' contains m, distribution of one over the other can produce as many as mn

clauses. There is potential for quadratic formula expansion each time a variable is removed

in step P4.

Another way to see this is to understand that P4 amounts to reformulating F as D A C,

in which D is a conjunction of the clauses produced by resolving (on x) each clause in A

against every clause in B.

1.4.2 The Davis-Logemann-Loveland Algorithm

The Davis-Putnam algorithm has potential to produce exponential (in the number of vari-

ables) formula growth. In practice, although nothing approaching this worst case expansion

is typically realized, the growth does pose a problem. For this reason, the DLL variation on

the DP algorithm is preferred; it uses additional space only linear in the number of variables.

The input is a conjunction of clauses, F .

LO. If there exists no unit clause in F, go to step L2.

L1. Let [XI be a unit clause in F. Remove from F all clauses that contain the literal x.

Remove the negation of x from all clauses in which it appears. Go back to step LO.

L2. If F contains an empty clause, return "unsatisfiable". Otherwise, while there is a pure

literal in F, delete all clauses in which a pure literal is present. If F is now empty,

return "satisfiable".

L3. Select some variable x that has a literal in F.

CHAPTER 1. INTRODUCTION

L4. Recurse on F A [XI. If the call returns "satisfiable" then return "satisfiable".

L5. Recurse on FA [T I . If the call returns "satisfiable" then return "satisfiable", else return

"unsatisfiable" .

Steps LO and L1 implement boolean constraint propagation. The BCP procedure as

described in the previous section is only superficially different.

Step L2 determines first whether the formula contains an empty (unsatisfiable) clause.

If it does not, then the formula may still be satisfiable, and pure literal elimination is

performed. This may result in the deletion of all clauses from F, in which case the formula

has been proven satisfiable. As discussed previously, a procedure to take advantage of pure

literals may be (and in practice, usually is) omitted without affecting the correctness of the

algorithm.

In step L3, a decision strategy is employed to choose x. As for the DP algorithm, the

method of choosing variables for removal can have an important impact on overall efficiency.

F is satisfiable if and only if either it has a satisfying assignment under which x is true, or

it has one under which x is false. Steps L4 and L5 test these two possibilities. F A [XI is

F altered so that BCP will force x to be true. F A [TI is F altered so that BCP will set

x false. If F is satisfiable under either restriction, it is satisfiable. If F is not satisfiable

under either restriction, it is unsatisfiable.

1.5 Resolution Refutations

A general resolution refutation (GRR) of CNF F is a series S of clauses {C1, C2, ..., Cn)

such that Cn is empty, and every Ck is either copied from F or a product of the resolution

of some pair {Ci, C j) for i < j < k. Clauses from F may be copied into S more than

once. A tree-like resolution refutation (TRR) is a GRR, except each Ck is restricted to be

antecedent in at most one resolution step.

Every TRR is also a GRR. Furthermore, it has been proven there exist unsatisfiable

formulas of size n for which the shortest TRR is of size exponential in n, and yet the shortest

GRR is of size polynomial in n. Therefore general resolution is strictly more powerful than

tree-like resolution[5].

If DLL terminates and returns "satisfiable", it has discovered a satisfying truth assign-

ment for F. It is easy to see that the assertions leading to an empty F are available to

CHAPTER 1. INTRODUCTION 10

be gathered during execution, although the algorithm described above does not explicitly

record them. If DLL terminates, returning "unsatisfiable", the particular pattern of execu-

tion that produced this result can be efficiently translated into a TRR of F. It is also true

that any TRR for a CNF F can be efficiently translated into a DLL refutation of F. In

fact, translations in either direction are of linear complexity[l5]. The refutation capacity of

DLL is equivalent in both a theoretical and practical sense to that of tree-like resolution.

Although the solvers we study are derivative of DLL, they are at the same time funda-

mentally different. The essence of the difference is that every resolvent clause used in the

refutation is also assimilated into the formula. With DLL, analogous information is present

only implicitly, as the execution state of the program (e.g., which step is being executed

by each recursive call). Because the solvers we study may reuse resolvents, the resolution

proofs of unsatisfiability they produce need not be tree-like.

The DP algorithm does add resolvents explicitly. DP resolves clauses in steps P2 and

P4: in P2, the unit resolutions of BCP; in P4, all possible resolutions on some variable x.

Obviously missing is the flexibility of general resolution, and it has been proven that this

constraint renders DP's proof efficiency stricly inferior to that of general resolution.

The solvers we study generate resolvents through a process that is not intrinsically in-

capable of any sequence of resolutions. Except for limits imposed by particular decision

and restart strategies, the solvers have potential to produce any GRR[4]. One of our major

concerns is taking advantage of this difference. Instead of attempting to backtrack exhaus-

tively through the space of possibilities, we aim to accumulate clauses that will contribute

to producing a refutation.

Chapter 2

Clause Learning

2.1 Overview

Let F be a CNF over variables vl, ..., v,. F may be understood in the obvious way as

a Boolean function f (vl, .. ., v,). For our purposes, a clause may be added to F as long

as doing so does not change the corresponding function f . All clauses derivable from F

through a sequence of resolution steps meet this requirement. We are interested only in

adding clauses that facilitate determination of satisfiability.

Various approaches to adding clauses have been suggested. Some are preprocessing

methods: generally speaking, these work to augment the clause set through operations that

are normally too costly to be beneficial if applied in the course of DLL. Search begins once

preprocessing is complete. For example, length-restricted resolution resolves pairs of short

clauses and accumulates (e.g.) unary, binary, and ternary resolvents. Empirical evidence

indicates this is typically too expensive and not helpful enough to be worthwhile[26].

A more powerful preprocessing technique is recursive learning (RL). The concept relates

closely to some ideas underlying Stiilmarck's solver[32]. Short clauses from F are considered;

take c to be such a clause. Any assignment that satisfies F must make true some literal in

c. For each literal 1 of c, RL determines the conditions that must hold in case 1 becomes

true. All conditions found to hold for every 1 individually must hold if F is to be satisfied.

Therefore F may be further constrained to reflect the assertion of all such conditions. A

natural suggestion is that RL could be used as a source of implications during search, but

evidently this contributes too little to justify the overhead incurred[l].

In contrast to the foregoing, confEict-driven clause learning (CDCL) adds to the formula

CHAPTER 2. CLAUSE LEARNING 12

during search, each time DLL empties a clause. CDCL represents a fundamental improve-

ment over DLL, and all substantial recent advances in SAT solver technology are closely

related to it. Relsat implemented a simple and effective version of the method[3]. A baroque

and inefficient variant became the core of the GRASP solver[29]. Chaff coupled a technique

used in GRASP with Relsat's simple overall approach to arrive at a scheme that has yet

to be improved upon[30]. In this chapter, we describe the mechanics of CDCL. Then we

explain why it is often better to learn a long clause when you could just as easily learn a

short one instead.

2.2 DLL Revisited

Extend the term unit clause to encompass a disjunct in which one literal is free and all

others are false. Boolean constraint propagation (BCP) sets the free literal of a unit clause

true until there exists no unit clause in F.

Henceforth, we assume pure literals are not eliminated.

By branching, DLL is able to try both assignments to each decision variable x. First,

x is set and the Boolean space under that restriction is explored. If and only if this search

does not yield a satisfying assignment, x is set the opposite way, and DLL operates on

the resulting Boolean space. In case this second recursion fails also to produce a satisfying

assignment, DLL returns that, if the formula is to be satisfied, an earlier restriction must

be undone.

The assignment stack concept follows from the recursive character of the algorithm.

When a variable takes on a truth value, a record of the event is pushed onto the assignment

stack. When a call to DLL returns, the records it pushed are popped, and the corresponding

variables become free.

The assignment stack can be viewed as a stack of decision levels (singular abbreviation,

dl). Each dl is numbered according to its depth on the assignment stack: deepest is dl 0,

second deepest is dl 1, and so forth. Decision level 0 is anomalous; it contains records of

all assignments made prior to the first decision, i.e., products of BCP in the root DLL call.

Every dl after 0 consists of (a) an assignment to exactly one decision variable, and (b) any

assignments generated through BCP as a result of that decision.

CDCL appends clauses to the formula at the leaves of the DLL tree. We outline here

an iterative form of DLL, extended to efficiently encompass CDCL and nonchronological

CHAPTER 2. CLAUSE LEARNING

backtracking (NCB), both of which are covered in [3] and [29].

Input to the algorithm is a formula, F. The number of the current dl is stored in y.

10. If F contains an empty clause, return "unsatisfiable". Else, initialize y to 0.

11. Perform BCP. Push assignment records as part of dl y. If a clause is now all- false,

go to step 14.

12. If no variable is free, return "satisfiable".

13. Increment y. Select some free literal and set it true. Push a record of this assignment

to begin dl y. Go to step 11.

14. If y is 0, return 'Lunsatisfiable".

15. Derive from F a set of implicates, i, with some element, a, an asserting clause (defined

below). Revise F to include a and perhaps some other members of i.

16. If a has exactly one literal, let y' be 0. Else, let y' be the numeric label of the shallowest

dl, deeper than dl y, at which some literal of a became false. For every dl > y', pop

all records and unassign the variables they mention. Let y equal y'. Go to 11.

In step 11, assignments are deduced through BCP and records are pushed onto the

assignment stack. If there subsequently exists a clause consisting of false literals only, a

conflict condition has been reached. (A conflict condition will never hold prior to BCP.) In

response to a conflict, execution continues at step 14.

On entry to 12, there is no conflict and BCP can deduce nothing more. If all variables

are assigned, then F has been satisfied, since all literals are either true or false, and no

clause contains false literals only.

A decision is made in step 13. Some decision strategy is used to select a free literal.

The literal is asserted, and a record of this event is pushed onto the assignment stack. This

record is the first (i.e., deepest) element of a new dl. Execution returns to 11, where the dl

will be completed through BCP.

The procedure for conflict handling begins in step 14. Let c denote some particular

clause containing false literals only. There may be several such clauses. BCP deductions

at decision level 0 are made in the absence of decision assignments. Thus, if y is 0 then c is

falsified unconditionally and F is unsatisfiable.

CHAPTER 2. CLAUSE LEARNING 14

In practice, we do not actually compare y against 0 each time an inconsistency arises.

BCP at dl 0 occurs (a) before the first decision, and (b) each time a dl 0 unit clause is

derived. It suffices to check for conflicts on these rare occasions and claim unsatisfiability if

a conflict is found. This is more elegant, since these are dealt with as special cases anyway.

Step I5 is a main concern of this chapter. Implicates are generated by resolving an all-

false clause against clauses that became unit and played causative role in BCP assignments.

Prior to the backtracking of step 16, all literals in these implicates are false. One or more

implicates are added to the formula.

We require that some added clause contains exactly one literal whose variable became

assigned at decision level y. The term asserting is used to refer to such clauses. Asserting

clauses permit a simple coupling of CDCL and NCB.

Nonchronological backtracking takes place in step 16. First, the algorithm determines

dl y', the deepest dl at which a is unit. If a is independently unit, y' is 0. Otherwise, the

literals of a are considered. Each was made false at some decision level, and y' is the largest

numeric label < y of a dl involved in this way.

Variables that became assigned within decision levels shallower than dl y' are unbound,

and dl y' is exposed. Let 1 denote the single literal from a that was made false in dl y.

Since 1 is now free, a is unit. Execution returns to 11, where BCP sets 1 t rue and dl y' is

extended.

Typically, an efficient implementation diverges from this simplified form of the algorithm.

Instead of requiring BCP to find and process a, I is directly asserted. One benefit of this

arrangement is that BCP always begins with a seed assignment. The initial population of

dl 0 derives from singleton clauses of F. All BCP within any other dl is traceable back to a

decision assignment. And BCP after backtracking must directly or indirectly stem from 1.

Propagation begins with clauses containing the negation of the seed.

The NCB procedure revokes decision levels between dl y and dl y' that did not contribute

to the conflict. If the iterative DLL algorithm as a whole is suitably modified, it suffices to

remove the shallowest dl involved in falsifying a. For example, see [29].

NCB as described in I6 has a heuristic aspect, since it may revoke in the absence of

necessity. An interesting open question: is it beneficial to also remove noncontributing

levels between dl y' and dl O?

NCB will not induce nontermination. The following constitutes a proof of that fact. If

F has n variables, the assignment stack will never be more than n + 1 decision levels deep.

CHAPTER 2. CLAUSE LEARNING 15

A dl population vector (DPV) is a sequence {co, cl, cz, ..., c,). Element cj is the number of

assignment records in (i.e., the size of) dl j . If dl j is not present, cj is 0.

For F, a DPV, P, is > some other DPV, Q, if and only if there is an i between 0 and

n (inclusive) such that Pi > Qi, and Pj = Qj for all 0 5 j < i. That is, if and only if there

is an i such that, prior to element i, P matches Q, and the ith element of P is greater than

the ith element of Q. This relation is obviously transitive.

The initial DPV is {0,0, ..., 0). It is invariant that, if the DPV changes from P to Q then

Q > P. That is, the DPV magnitude increases monotonically. First, elements of the DPV

are increased, and not decreased, by new assignments. Second, when there is backtracking

from dl y to dl y', elements cy through cy,+l (inclusive) are zeroed. But, elements prior to

cyt in the sequence are left unchanged, and cy, is increased. Thus the DPV is greater than

it was before.

Since a finite number of variables implies a finite number of distinct DPVs, the algorithm

must terminate. The greatest DPV is {n, 0, ..., 0). Once all variables are assigned at dl 0,

either there is a conflict and the algorithm returns "unsatisfiable", or there is no conflict

and the algorithm returns "satisfiable".

2.3 Derivation of Implicates

Effective modern solvers work to derive, through resolution, short clauses. If the formula

is unsatisfiable this tends toward building a refutation. If the formula is satisfiable, these

clauses prune away vast solutionless spaces.

A machine with the capacity for nondeterministic computation may wield the full power

of general resolution. Such a device may explore in parallel all binary resolution sequences.

If a polynomial length GRR exists, it is discovered in polynomial time. For the moment

this computer is unavailable, so we must resort to deterministic means. That this implies

strictly reduced potential efficiency is unproven, but plausible and widely suspected.

Required is a proof search strategy to supplant the brute force of nondeterminism.

Almost every complete algorithm used for SAT applies resolution guided by some such

strategy. DP does unit resolutions and all possible resolutions on each decision variable.

DLL works to implicitly construct a tree-like resolution refutation, the structure of which is

dictated in large part by the decision heuristic. Width-bounded search[5] collects clauses,

performing binary resolutions that have resolvents (a) not yet collected, and (b) of length

CHAPTER 2. CLAUSE LEARNING 16

up to some bound. Upon deriving an empty clause, the procedure halts. When nothing else

is possible, the bound is increased.

Conflict-driven clause learning is a resolution strategy. At each leaf in the search tree,

CDCL resolves clauses that were involved in BCP along the path to that leaf. These clauses

were made unit or false by subsets of the same set of assignments. Thus the tendency is to

resolve sets of compositionally similar clauses (i.e., clauses that share literals). Empirically,

it appears this is a relatively good heuristic for many interesting formulas, in the sense that

it facilitates derivation of useful clauses.

We now describe our refined implementation of the so-called first-UIP learning scheme,

a simple and efficient means of deriving conflict implicates[41]. The main benefit of this

scheme is that an asserting clause is arrived at through relatively few resolutions. The

following are taken as input:

CNF formula F . (Fi denotes the ith clause of F.)

Assignment stack S. (Si denotes the ith element of S . Deepest is So; shallowest is ST.

Each element is a true literal.)

Flag set U . (Associated with each variable, v, is a flag, U,. If v is assigned at dl 0, U,

is initially true. Otherwise, U, is initially false.)

Antecedent function C. (C(v) is the index of the clause that became unit and was

used to assign variable v during BCP. Undefined for decision variables.)

Level function L. (L(v) is the number of the decision level at which variable v became

assigned. Undefined for free variables.)

Clause index X. (Fx is the all-false clause from step 11.)

The output is a, an asserting clause. It is straightforward to adapt this procedure to

select and return clauses intermediate in the production of a. For clarity, we present only

the basic algorithm here.

Several integers are employed in coordinating the process. i is the index of the clause

being absorbed. y is the numeric label of the shallowest (i.e., conflict) dl, a constant after

step RO. m keeps count of the variables from dl y that are flagged, but have yet to be either

resolved on, or included as a literal in a. p is a pointer into the assignment stack, used for

backward traversal.

CHAPTER 2. CLAUSE LEARNING

RO. Set a = [I, i = X, m = 0, and p = T. Set y = L(v), where v is the variable of ST.

R1. For each literal 1 in Fi:

[Rla.] Let v be the variable of 1. If Uv = true, skip Rlb.

[Rlb.] Set U, = true. If L(v) < y, put 1 into a. Else, set m = m + 1.

R2. Let v be the variable of S,. If Uv = true, go to R4.

R3. Set p = p - 1. Go to R2.

R4. If m = 1, put into a and return the result. Else, set p = p - 1.

R5. Set m = m - 1. Set i = C(v). Go to R1.

Before explaining the above machinery, we clarify essentially what it operates to achieve.

First, we prove Fx contains at least two literals made false within the conflict dl, y. We

refer to these as pivot literals. If Fx contains none, then the conflict occurred prior to dl y;

contradiction. If Fx contains exactly one, then Fx was unit prior to dl y, and at that time

BCP would have satisfied it or falsified it; contradiction.

Let clause w initially be a copy of Fx. The procedure resolves pivot literals out of w

until exactly one remains. An iteration begins with the selection of the literal from w whose

negation appears shallowest in S. Necessarily, this is a pivot literal; call it r . It cannot

be that F was a decision, since w contains > 2 literals made false in dl y, and a decision

assignment is always the single deepest component of its dl. Thus there exists a clause, F,,

that became unit at dl y, causing BCP to assert P.

Because w contains r, and F, contains P, the two clauses are resolvable. Furthermore,

the resolvent is all- f alse, and so cannot be tautologous, since w is all- f alse and F, is all-

false except for 'i;. Let w be replaced by this resolvent. The number of pivot literals in w

may have increased, decreased, or stayed the same, but certainly all the pivot literals were

falsified earlier (i.e., deeper) than r .

If w contains only one pivot literal, the process is complete. Otherwise, another iteration

is needed. Because dl y is of finite length, and all assignments it records are causally linked

to a single decision, termination is inevitable.

Record ST is the literal on which BCP failed. Immediately after ST was pushed onto

the stack and set true, BCP inspected clauses containing to identify those made unit

CHAPTER 2. CLAUSE LEARNING 18

by the assignment. In the process, Fx was revealed to be all- f alse, and BCP halted. The

details of breadth-first BCP are left for a later chapter.

Step RO is responsible for initialization. a begins empty and i begins as a reference to

Fx. No variables at the conflict dl have been flagged yet, so m is zero. p points to ST. The

numeric label of the conflict dl is determined, then stored to y.

The first time it is executed, step R1 simply recasts Fx. However, every subsequent

execution of R1 corresponds to a resolution. Each literal 1 from Fi is considered. If 1's

variable has been flagged, 1 is ignored. Allowing Rla to bypass Rlb serves to (a) ensure m

is incremented just once for each pivot, (b) prevent duplication of literals within a, and (c)

filter out literals made false in dl 0.

Otherwise, 1's variable is not yet flagged, and Rlb is executed. Immediately, the flag

is inverted. 1 is a non-pivot literal if and only if it was made false prior to dl y. If 1 is a

non-pivot literal, it will certainly be present in the output clause. So, it is put directly into

a. Variables of non-pivot literals are flagged to ensure the procedure will never put one such

literal into a twice.

On the other hand, if 1 is a pivot literal, it may later be resolved out. Therefore, step

Rlb does not insert pivots into a. Rather, m is incremented to reflect the fact that the

implicit intermediate clause now includes 1. Pivot variables are flagged to distinguish in S

the negations of pivot literals, and to avoid overcounting.

Together, steps R2 and R3 implement a descent through dl y. Until Sp7s variable is

found to be flagged, p is decremented. When the branch to R4 is taken, Sp is the shallowest

negation of an unprocessed pivot literal. Since literals are arranged on the stack in the order

they were asserted, any assignments causally involved in the assertion of Sp are necessarily

deeper on the stack than Sp itself. Note that, the first time R2 is executed, Sp7s variable is

found flagged, since p = T and is in Fx.
Step R4 checks m, the number of pivot literals in the implicit intermediate clause,

including $. If m = 1, the intermediate is now an asserting clause, so the single remaining

pivot literal is inserted into a and the procedure returns. (Note that if v is a decision variable

then m = I.) Otherwise, p is pointed deeper, past the current Sp, in preparation for the

next execution of R2.

Step R5 decrements m in anticipation of the pivot being resolved out. i points to the

antecedent clause of the pivot's negation (the clause that became unit, causing BCP to set

the pivot literal f a1 se), and execution reenters R1.

CHAPTER 2. CLAUSE LEARNING 19

Of course, it is inefficient to initialize U before every call to the derivation procedure.

In a good implementation, the set is persistent, maintained seperately. Once the CNF is

available to the solver, all flags in U are set false. Whenever some variable, v, becomes

assigned at dl 0, U, is set permanently true. This allows unconditionally false literals to be

excluded from every new implicate, without requiring additional comparisons or complexity

in the derivation code. (The implicate derivation routine is the second most expensive part

of our solver, accounting for between 3 and 9 percent of the total runtime.) Flags set true in

step Rlb are set false before the derivation procedure returns. Pivot variables are unflagged

as soon as they have been resolved out, i.e., after R1 completes. All the other temporary

flags are cleared during R4, once has been put into a. At that point, it suffices to clear

flags for only those variables having a literal in a.

2.4 Participation Traces

CDCL solvers use BCP for two purposes simultaneously. First, BCP is used in the construc-

tion of exploratory truth assignments. This improves search efficiency by removing from

consideration many non-satisfying points in the Boolean space.

Second, BCP is used to discover clusters of resolvable clauses. A heuristic benefit of this

approach is that the clusters discovered tend to be populated by clauses that share literals.

The clusters are made up of clauses involved in BCP along the path to a particular conflict.

Loosely speaking, the more literals two clauses share, the more likely it is that they are both

made unit or false by a given truth assignment.

A CDCL participation trace, P, consists of a sequence of n 2 2 clauses, {PI, P2, ..., P,).

P is a list of the clauses resolved together by CDCL to generate a particular asserting clause.

Implicit in P is a sequence of n intermediate clauses, {ml, m2, . .., m,), where ml = PI, and

for all i E [2, n], clause mi is the resolvent of Pi and mi-1. The correspondence is, Pl = Fx
and m, is the asserting clause.

Trace redundancy (TR) is a measure of literal duplication among clauses in a CDCL

participation trace. The TR of trace P is d if and only if, on average, each literal occurring

in P does so as a member of d distinct clauses. For a variety of non-random benchmarks,

Table 2.1 reports the average TR over all derivations performed by our solver. Evidently,

duplicates are abundant.

These non-random formulas encode modular structures, e.g., circuits. It could be argued

CHAPTER 2. CLAUSE LEARNING

Table 2.1: Trace redundancy (TR) and trace length (TL) for non-random instances

instance
average TR
average TL

- - -

Table 2.2: Trace redundancy for random instances

7pipe
2.31
29

instance
average TR

that, in such formulas, when clauses are resolvable, often they express constraints that

involve many of the same variables; so, extensive literal duplication is to be expected,

regardless of the resolution strategy employed. To illustrate that the trend holds even if

modular structure is absent, we report average TR for random benchmarks in Table 2.2.

Included below are four participation traces produced in the course of solving some

well-known benchmark instances[37] [35] [34]. These are typical traces, representative of the

derivations performed by our CDCL solver. Clauses are delimited with square brackets.

Each clause is numbered, to capture sequence of use. Comma-separated integers within a

clause denote literals in the obvious way. The asserting implicate is labelled "resolvent".

resolvent: C1453,1465,1473,1505,1514,1534,1587,1627,

1635,1648,1668,1675,1687,-1786,-17971

uuf100-01
2.65

9vliw-bpmc
2.50
2 1

longmult15
3.29
92

uuf250-01
2.57

hanoi5
3.10
15

c3540
2.56
45

2bitadd-10
3.75
14

uuf250-02
2.51

RTI-k3-nlOO-m429-0
2.61

CHAPTER 2. CLAUSE LEARNING

resolvent: [-508,-5231

resolvent: [231,-283,-298,-330,-331,-600,-744,-829,-844,-861,-883]

CHAPTER 2. CLAUSE LEARNING

resolvent: [282,-5155,5171]

Our solver implements a BCP policy favoring binary and ternary antecedents. This

policy has a substantial positive impact, facilitating, for example, resolution patterns as

exhibited in the latter trace.

2.5 Intermediates

The first-UIP learning scheme resolves until the intermediate clause contains only one literal

set false at the conflict decision level, dl y. Refer to this literal as x. When a literal is

resolved out, it is replaced by the literals that made it false. Clearly, then, in combination

with zero or more assignments from before dl y, x being false directly or indirectly caused

every pivot literal in Fx to become false.

Either : was a decision, or I: was asserted through BCP. Suppose literal d was the

decision at dl y, and d # :. Then, d was involved in the conflict only insofar as it caused :
to be asserted. All implications of d that played a role in the conflict were implications of :.

If the decision at dl y had been 3, rather than d, an identical conflict would have occurred.

So, : is called the first-UIP, or first unique implication point.

Conflict-directed resolutions are often still possible once an asserting clause has been

achieved. Unless only literals of decision variables are present, BCP antecedents are avail-

able, and CDCL may resolve them in. For example, if the pivot literal from an asserting

clause became false through BCP, CDCL can resolve it out. Then, it is always possible to

produce a new asserting clause from the resulting intermediate. Of course, CDCL can also

resolve out any non-pivot literal that was assigned through BCP.

Consider the all- UIP learning scheme [41]. The asserting clause produced by this method

involves no more than one variable from any dl. Although it usually contains literals from

a larger number of decision levels, the all-UIP clause is typically much shorter, on average,

than the clause produced by the first-UIP scheme (see Table 2.3).

CHAPTER 2. CLAUSE LEARNING 23

We include only a brief description of the all-UIP derivation procedure. Essentially, the

first-UIP is isolated for each participating dl in turn, from shallowest to deepest. (No BCP

antecedent resolution on variable v ever introduces a literal that became assigned shallower

on the stack than v.) Our implementation is a straightforward extension of our code for the

first-UIP learning scheme.

Let clause w initially be a copy of Fx. The following is repeated until the procedure

returns. Take y to be the label of the shallowest dl in which two or more literals from w

were made false. If there exists no such y, return w. Otherwise, resolve out of w the literal

that was falsified shallowest in dl y.

Our solver using the first-UIP learning scheme performs far better on many benchmark

instances than our solver using the all-UIP learning scheme (see Table 2.5). Similar results

have been published elsewhere. For example, several learning procedures were integrated

into Chaff and experimentally evaluated in [41]. The first-UIP scheme was shown to be

superior to various other schemes (every one of which applies more resolutions, on average,

to produce each asserting clause).

It has been suggested that differences in learning scheme performance stem from dif-

ferences in average cost of implicate derivation[2]. This is certainly wrong. First, even

all-UIP learning code typically accounts for only a small fraction of total solver runtime.

Second, compared to our first-UIP solver, our all-UIP solver consistently requires many

more decisions and conflicts to solve a given instance.

Furthermore, the disparity is not a product of the learning-based decision strategies used

in Chaff and its successors. These heuristics select variables that have literals in recently

learned clauses. Different learning schemes yield different learned clauses. So, does the first-

UIP scheme outperform the all-UIP scheme because it leads to better decisions? Evidently

not. If branching decisions are made according to an arbitrary static variable ordering, the

same pattern of learning scheme superiority holds[41].

The all-UIP scheme derives clauses that are shorter on average, but the first-UIP scheme

is more successful at deriving the very short clauses that allow instances to be solved. Our

conjecture is that the first-UIP learning scheme works relatively well because it uses fewer

resolutions to generate the clauses that are appended to the formula (see Table 2.4). Fewer

resolutions per implicate implies greater proof-search flexibility. The larger the average

number of resolutions each added clause represents, the larger the number of unavailable

derivation intermediates. Such intermediates are potentially more useful than the clause

CHAPTER 2. CLAUSE LEARNING 24

actually added to the formula. For example, the first-UIP implicate is an intermediate in

the production of the all-UIP implicate.

The published experimental results, all of which we have independently reproduced,

may be interpreted as showing a strong negative correlation between average resolution

counts and solver performance. Broadly, holding the input formula constant, the more

resolutions that go into producing each implicate, the worse the solver pkrforms. This

suggests that it might be worthwhile to pursue a reduction in the coupling between learning

and nonchronological backtracking. Restricting CDCL to produce an asserting clause forces

it to resolve until an asserting clause is produced. Perhaps the solver should also learn

clauses that serve no backtracking function.

The asserting clauses generated by CDCL aid in the search for a satisfying assignment

by increasing the deductive power of BCP, and by facilitating NCB. There is a separate,

but closely related, need for some of these implicates to be useful in the derivation of short

clauses. The latter make explicit simple patterns present implicitly in the formula. It is by

working with the explicit representations of these patterns that modern solvers are able to

determine the satisfiability of enormous, but structurally simple, formulas.

A CDCL derivation begins with a falsified clause, Fx. Resolutions are applied until an

asserting clause, c, is produced. The first intermediate is Fx. The second intermediate is

the resolvent of Fx against a BCP antecedent. The third intermediate is the resolvent of the

second intermediate against a BCP antecedent. And so on, with the final resolvent being

the last intermediate, c. With the exception of Fx, no intermediate in a CDCL derivation is

already present in the formula at the time the derivation is undertaken. So, we may append

any intermediate, except the first, onto the formula, without introducing a duplicate clause.

This is proven in Chapter 3.

An intermediate clause may be extracted between steps R l and R2 in our implementation

of the first-UIP learning scheme. Simply, append to a the negations of the flagged literals

in dl y that have stack positions 5 p, and store the result.

The first-UIP learning scheme derives an asserting clause through the minimum sufficient

number of antecedent resolutions. Although this minimum tends to be low on average, it is

occasionally high. In these degenerate cases, intermediate clauses are often shorter than the

final resolvent. Also, the set of variables represented in an early intermediate usually bears

little resemblance to the set represented in the asserting clause. (When the all-UIP scheme

is applied, it is common for the set of represented variables to change completely, or almost

CHAPTER 2. CLAUSE LEARNING

instance I first-UIP I all-UIP 1 1 instance I first-UIP I all-UIP I

Table 2.3: Average literals per implicate added: first-UIP vs. all-UIP

- - , 2

7pipe_bug[37]
c3540 [28]

Table 2.4: Average resolutions per implicate added: first-UIP vs. all-UIP

236
97

instance
dlx2-cc [36]

3pipe[37]
6pipe[37]
7pipe[37]

7pipe_bug[37]
c3540 [28]
c7552[28]

Table 2.5: Solver runtime in seconds on a SunBladelOOO 750MHz Ultra I

26
17

first-UIP
16
15
23
29
21
45
36

instance
dlx2_cc[36]

3pipe[37]
6pipe[37]
7pipe[37]

7pipe_bug[37]
c3540[28]
c7552[28]

L 1

longmult 15 [6]
barrel9 161

all-UIP
48
69
163
185
163
876

2525

first-UIP
1
1

73
282
8
28
14

104
119

instance
logistics.c[22]

2bitadd-10 [lo]
avg-check-5-35[34]

9vliw-bpmc[37]
longmult 15 [6]

barrel9[6]
hanoi6[34]

all-UIP
211

>3600
>3600
>3600

170
>3600
>3600

11
27

first-UIP
5
14
15
2 1
92
55
20

instance
logistics.c[22]

2bitadd-10[10]
avg-check-5-35 [34]

9vliw_bpmc[37]
longmult 15 [6]

barrel9 [6]
hanoi6 [34]

all-UIP
13
55
48
102
675
2507
103

first-UIP
1

341
244
53

236
4 1
760

all-UIP
1

945
2318

>3600
642

>3600
>3600

CHAPTER 2. CLAUSE LEARNING 26

completely, over the course of a derivation.) It may be beneficial to append intermediates

onto the formula, along with the asserting clause. This must be done sparingly, since BCP

is more expensive on a formula that contains more clauses.

We have only preliminary experimental results in this area. For example, adding the

second intermediate allows our solver to prove 3pipe unsatisfiable in less than two minutes,

using a static decision strategy. If only the first-UIP asserting clause is added, more than

20 hours are required. However, it is not yet clear that such an approach is useful over a

wide range of interesting formulas. There are many examples of instances for which storing

the second intermediate appears to provide no benefit. Further research along these lines

seems to be justified.

2.6 Omissions

Several important aspects of modern solvers have not been covered at length in this thesis.

Although clause deletion and search restarts are used in our solver, our implementation is

standard and unremarkable. We refer the reader to [30] for an overview of the methods we

have adopted.

Memory constraints and BCP cost dictate that the formula cannot be allowed grow

without bound. Learned clauses must be deleted as they become too numerous. Periodically,

our solver deletes a random selection of learned clauses that exceed some threshold length.

Extremely long clauses are deleted during backtracking, as in Chaff.

Our solver restarts periodically, every 16,000 conflicts. When the solver restarts, every

variable that has become assigned as a direct or indirect result of a decision assignment is

set free. Iterative DLL resumes in step I3 at decision level 0. Restarting acts to change the

space in which the solver is searching for a satisfying assignment. It also tends to change

the set of clauses that CDCL resolves.

Chapter 3

Boolean Constraint Propagation

3.1 Overview

As first emphasized in the Chaff literature, typically about 90 percent of the runtime of a

clause-learning DLL solver is spent performing BCP[3O]. There are two reasons for this.

First, the BCP procedure is executed frequently, every time a variable is assigned a truth

value. Second, BCP operates both broadly and nonsequentially over a data structure that

is normally many times larger than the L2 cache of the host computer. This diffuse access

pattern means data cache is frequently missed. When L1 and L2 are missed, a cache line

is brought in from main memory (assuming no L3). Because of the gap between processor

speed and main memory access speed, this fetch is a bottleneck, very expensive relative

to other solver procedures, which saturate the CPU. The extraordinary cost of BCP stems

from a memory latency problem.

Our focus is the two watched literals (TWL) BCP algorithm introduced in Chaff[SO].

TWL is a simplification of the head/tail lists (HTL) algorithm[39] introduced in SAT0[40].

The main benefit of these two-pointer schemes is that they load fewer cache lines than, e.g.,

the counter-based schemes in Relsat and GRASP. Although an elaborate HTL implemen-

tation can have superior expected-case abstract efficiency characteristics, HTL is reliably

outperformed in practice by TWL.

We detail breadth-first BCP and prove a property used in Chapter 2. Then, we explain

TWL and describe the various refinements that allow our solver to perform BCP faster than

any other solver publically available.

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION

3.2 Breadth-first BCP

To begin, we present the basic algorithm, abstracting away the details of the link between

a literal and the clauses that contain its negation. For the moment, the reader may assume

that each literal, I , is linked to every clause in which 1 occurs.

We assume a queue to store and dispense (literal, antecedent) pairs in FIFO order. The

procedure requires access to the formula, F; the assignment stack, S; and the structure used

to store variable information, V.

The input is a seed literal, d; an antecedent reference, a; and the numeric label of a

decision level, y. If d was a decision, a is null and y is the index of the dl that d has been

selected to originate. Otherwise, the solver has just backtracked, a is the index of the newly

derived clause, and y is the deepest dl at which a is unit.

Two pieces of memory are used within the procedure for coordination. The first is a

literal, 1, and the second is an antecedent clause reference, c.

BO. Set 1 = d, and c = a. The queue is initially empty.

B1. Write to V that 1 is true at dl y because of c. Push 1 onto S.

B2. For each clause, x, in F, to which 1 has a link:

[B2a.] If x contains a true literal or 2 2 free literals, skip B2b.

[B2b.] If x contains a free literal, t, enqueue (t,x). Else, return "conflict at x".

B3. If the queue is empty, return "no conflict".

B4. Dequeue one pair, assign it to (1,c)

B5. If 1 is true, go to B3. Else, go to Bl.

The seed literal is free when it is passed into the BCP procedure. It becomes assigned

in step Bl, and then is pushed onto the assignment stack. If the seed was a decision, this

begins dl y. Else, this begins an extension of dl y made possible by the new implicate, a.

In step B2, the procedure visits all clauses to which 1 is linked. Every one of these clauses

contains 1. It is absolutely essential that 1 have a link to every clause that could become

unit or false as an immediate result of 1 becoming true. Two-pointer algorithms, like HTL

and TWL, simply minimize the number of links. They permit 1 to not be linked to some

clauses, even though the clauses contain 1.

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 29

Step B2a identifies clauses that are inconsequential, neither unit nor false. In step B2b,

x is not satisfied and it contains fewer than two free literals. If x has one free literal, t, then

t must be true if F is to be satisfied. So, t is scheduled to become assigned, with x as its

antecedent clause.

If x is all- false, step B2b halts the process. In general, the following must occur for a

conflict to arise. Some suitable literal, z, whose negation is an element of x, is enqueued

prior to 1. Before, or when, z is dequeued and asserted, 1 is enqueued. Subsequently, as

a result of z being dequeued and asserted, x becomes unit, and so 1 is enqueued. Finally,

when 1 is dequeued and asserted, x is falsified.

If no assignments are pending in step B3, then BCP halts, without having produced a

conflict. Otherwise, the oldest pair is dequeued, overwriting 1 and c. If the implied literal, 1,

is already true, then the implication is redundant, so the pair is ignored. Else, 1 is asserted

and the consequences are determined.

Consider the following change to the above algorithm. As soon as t is known to be the

only free literal in clause x, t is made true and is pushed onto the assignment stack. That

is, instead of enqueuing (t,x), t is asserted and pushed, as in step B1. This allows BCP

to continue after falsifying a clause, but conflict is detected eventually whenever it occurs.

A separate queue is not necessary. It suffices to read literals off S , stopping once all those

shallower than d have been processed. No literal enters the stack twice during one execution

of the procedure. The modified algorithm is simpler and faster.

Furthermore, it forces the same set of literals as breadth-first BCP. The order in which

assertions are made is immaterial to BCP correctness and power. Depth-first, breadth-first,

arbitrary: sequence has no bearing on the set of literals deduced.

But, solver performance is slightly impaired on some CNFs, relative to when breadth-

first BCP is applied. Apparently, the problem is that the simplified algorithm asserts earlier

than the breadth-first algorithm. This seems to result in selection of longer antecedents,

conflicts that involve more variables, and so on.

3.3 Intermediates

With the obvious exception of the initially falsified clause, x, no intermediate in a CDCL

derivation is subsumed by a clause that is present in the formula when the derivation begins.

A proof follows.

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 30

Every intermediate, i, except x, is the resolvent in a CDCL resolution. Every such

resolution involves some other all- f alse intermediate, w. (It may be that w is z.) CDCL

resolves on z, the shallowest literal in w, using a, the antecedent clause for Z. The resolution

of w and a produces i.

Without loss of generality, take w to be [zJ]. Set J consists of one or more literals, each

of which was made false earlier than z. Similarly, take a to be [ZK]. Set K consists of

literals that became false before z became true.

Suppose some clause, u E F, subsumes i. When z was set false, step B1 was executed

with 1 = 2. Immediately before Z became true, both J and K must have been all- false.

Thus, u C i = [JK] must have been falsified by some earlier assertion. However, BCP

always halts during step B2 after it makes an assertion in step B1 that falsifies a clause.

Contradiction.

3.4 The Two Watched Literals Algorithm

We assume that a clause is realized as an array of literal instances. Neither unit clauses nor

empty clauses are represented. The first and last literals in every clause's array are sentinels

that evaluate true or free.

A literal instance has three fields: the sign flag, the watched flag, and the variable index.

The sign flag is one bit, indicating whether or not the variable is negated. The watched

flag is one bit, indicating whether or not there exists a watch structure that points to the

instance. The variable index uniquely identifies the variable of the literal. No clause contains

two non-sentinel literal instances that have the same variable index.

A watch structure has two fields: the direction flag, and the literal instance pointer.

The direction flag is one bit, indicating either that the watch has been moving toward the

first literal in the clause, or that it has been moving toward the last literal in the clause.

The instance pointer is the memory address of a particular literal instance within a clause.

Each variable is associated with two lists of watch structures. List W(1) contains all watch

structures that point to instances of literal 1.

For every variable, v, both W(v) and W(V) begin empty. For every literal instance,

the watched flag begins false. Then, two watch structures are added per clause, and all

pointed-to literal instances have their watched flags inverted. In detail: given a clause of

length n, [s,l l...l,~b], where s, and s b are sentinels; any two literal instances, li and lj, are

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 3 1

selected, such that i, j E [I, n] and i # j. A watch structure, with an arbitrary direction

flag and a pointer to li, is appended to W(li). Similarly for Ij. Finally, instances li and lj

have their watched flags set true.

To integrate TWL data structures into the breadth-first BCP algorithm of section 3.2,

replace step B2 with step WO, below. In the following, watch structures are represented by

(direction flag, ~ointer) pairs. Literal instances are represented by (sign flag, watched flag,

variable index) triples. A (sign flag, variable index) pair is translated into a literal in the

obvious way, taking, say, a sign flag of true to imply negation.

WO. For each watch structure, w = (r,p) E ~ (f) :

[WOa.] Let q = p, e = 0, and o = null. x is not initialized.

[WOb.] If r = 0 then p = p - 1, else p = p + 1. Let (s, t, v) be the instance at p.

[WOc.] Let literal u be (s, v). If u is false then go to WOb.

[WOd.] If u is not a sentinel, go to WOi.

[Woe.] If r = 0, then let x = p.

[WOf.] If e = 0, then let e = 1, p = q, r = 1 - r; then go to WOb.

[WOg.] If o = null, then return "conflict at clause x".

[WOh.] If o is free, then enqueue (o,x). Skip WOi, WOj, and Wok.

[WOi.] If t is true, then let o = u and go to WOb.

[WOj.] Remove w from W(f). Set the watched flag false at q .

[Wok.] Append (r,p) to W(u). Set the watched flag true at p.

The procedure works with each element of W(f) in turn. Each of these watch structures

is a BCP link from 1 to a clause in F. If some clause, c, is susceptible to immediately become

unit or false when 1 is asserted, then there is a watch in W(i) that points into c. TWL

succeeds by maintaining the condition that no false literal is watched in any clause that

contains an unwatched literal that is true or free. When 1 is true, instances of 1 cannot be

watched, except in clauses where all unwatched literals are false.

The procedure visits every clause that contains a watched instance of i. Each of these

clauses is visited with the intent to find an unwatched literal, x, that is true or free. If

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 32

such an x is found, a new watch structure is added to W(x), and the current watch on 1 is

removed from W(1). So, there remain two watch structures per clause.

If no such x is found, every unwatched literal in the clause must already be false. In

this case, the watch on 1 persists. The clause is satisfied, unit, or false, depending on the

status of the other watched literal, k . If k is false, the clause is false. If k is true, the

clause is satisfied. If k is free, the clause became unit as 1 became true.

Within the breadth-first BCP framework, this ensures that all unit clauses are detected

as they arise. If a clause becomes unit, there is an assignment responsible for the transition.

Immediately prior to the transition, the clause has exactly two free literals, both of which

must be watched. After one of the two becomes false in step B1, step WO (standing in for

step B2) must fail to find an unwatched non- f a1 se literal in the clause. Therefore, detection.

A similar argument may be used for clauses that become falsified.

TWL adjusts pointers only during BCP. Watch structures need not be manipulated

during backtracking. In contrast, the headltail lists (HTL) algorithm often needs to adjust

pointers during backtracking. A good HTL implementation incurs only amortized O(1)

backtracking cost, since pointer movement during an ascent through the search tree is

simply a reversal of the pointer movement performed during descent. However, the cost

of visiting clauses is enormous in practice, since L2 cache is frequently missed. Thus,

while backtracking inflicts O(1) overhead for both HTL and TWL, the constant for HTL is

significantly larger.

Backtracking frees assigned variables. It never violates the TWL requirement, i.e., that

no false literal be watched in any clause that contains an unwatched non- f alse literal.

Suppose that, before backtracking, a false literal, x, is watched in clause c. Then all

unwatched literals in c are false, and none became false shallower on the assignment stack

than x. This holds because it must be that all unwatched literals in c were false when

x became false. Otherwise, the watch on x would have been replaced by a watch on a

non- f alse literal in c. During backtracking, variables are unassigned in the same order their

literals are popped off the assignment stack. Thus, for any particular clause, backtracking

frees the watched false literals before it frees the unwatched false literals.

In step WOa, memory is initialized. First, p is copied to q, so that both p and q point to

the same watched instance of 1. Since p is altered in step WOb, q is kept to support efficient

inversion of the watched flag on 1, which occurs when some other literal becomes watched.

Also, q is used as a starting point for movement in the opposite direction when search for a

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION

non- f alse literal runs off one end of the clause (i.e., encounters a sentinel).

Second, e is zeroed. e records the number of sentinel encounters. Once the search

has encountered both sentinels, the entire clause has been explored, and every one of its

unwatched literals is known to be false. On the first sentinel hit, e is incremented from 0

to 1. Then, if a sentinel is hit while e is 1, the clause is all- f a1 se, except for, perhaps, the

other watched literal. We use the term active to describe such a clause.

Third, literal instance o is initialized to null. o will store the other watched literal so

that it may be inspected efficiently if the clause is found to be active. The TWL algorithm

must fully explore a clause before declaring it active. Therefore, if the clause is declared

active, the other watched literal, k, was encountered during the search. If k is false, it

is not copied, and o remains null. Otherwise, o = k. Using o, the procedure can quickly

determine whether an active clause is falsified, satisfied, or unit.

Finally, pointer x is declared, but not initialized. x is used to record the first memory

address of the clause. This information facilitates access to the clause's literals during

conflict-driven clause learning.

Step WOb alters the content of p, depending on w's direction flag, r . If r = 0, p is made

to point at the instance preceding the instance at which it currently points. If r = 1, p

is moved to the next instance in the opposite direction. The sign flag, watched flag, and

variable index of the newly pointed-to instance are cached in s, t, and v, respectively.

In WOc, literal u is derived from sign s and variable index v. If u is false, p is neither

pointing at a sentinel, nor pointing at a literal that can become watched; execution returns

to WOb. This tight loop searches the clause for a non-false literal. Note that a good

implementation does not actually use a comparison in step WOb.

Sentinel literals are perpetually non- f alse. Furthermore, they are easily distinguishable

from non-sentinel literals. Suppose some variable, h, does not participate in the CNF. If

variable h is kept either true or free, literal h may be used as a sentinel. Step WOd checks

whether u is a sentinel. If it is, execution continues into step Woe. Otherwise, it may be

possible to watch u instead of 1; execution jumps to WOi.

In step Woe, search has reached a clause boundary sentinel. If r = 0, it is the low

memory boundary that has been hit, so p is stored to x. The procedure uses x only after

determining the clause is active. To determine the clause is active, TWL must encounter

both boundaries. Therefore, x is always initialized before use.

If e # 0 in step WOf, the search has reached both boundaries. Therefore, all unwatched

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 34

literals in the clause are false. Execution falls through into step WOg. Otherwise, only one

boundary has been reached. Execution reenters step WOb; search resumes at 1, but in the

opposite direction.

If o is null in step WOg, both watched literals are false. In step WOi, o becomes a copy

of the literal instance at p, if the watched flag at p is true. But, step WOi is never executed

for a false literal. The loop over WOb and WOc breaks only when p points to a literal that

is either true or free.

(Suppose clause c has two false watched literals, l1 and 12. Further, suppose l1 was set

before 12. It must be that falsifying l2 falsified c: if ll is both false and watched, then c is

active and l2 must already be queued for assertion. Thus, a clause may be declared false

immediately if the WOb/WOc loop encounters a false watched literal.)

Otherwise, the clause is active and the second watched literal is non- f alse. If o is true,

the clause is satisfied. Else, o is queued to be set true with antecedent x. In both cases,

control returns to the outermost loop.

If u is neither false nor a sentinel, step WOi is executed. p points to an instance of

literal u that has watched flag t . If t is true, the literal is already being watched, so u is

copied and the search loop is reentered. Otherwise, the literal at p is available to be watched

in place of 1. Steps WOj and Wok implement the transition from watching 1 to watching u.

The watched flag on 1 is set false. The watched flag on u is set true. The current 1 watch

structure is deleted and a new watch structure is added to W(u).

The new watch structure takes on the current direction flag, r. This guides future search

(when u is set false) away from the segment of the clause that was just explored. If a clause

is visited several times between backtracks, this tends to slightly reduce the average time

spent searching for a literal to watch.

3.5 Refinements

A typical CPU operates only on data in its registers. If a machine word is to be, e.g.,

compared, it must first be copied into a register on the chip. Suppose a program operates

on the word at main memory address x. A load instruction is used to copy the appropriate

word into a register. If a duplicate of the word at address x is already present in the L1 cache,

the load finishes in one or two CPU cycles. If not, the program has suffered an L1 miss. In

response, the L2 cache is probed. If the word at x is cached in L2, the load completes in

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 35

roughly five to ten cycles. Otherwise, an L2 cache miss occurs, and the word is copied in

from main memory at a cost of 50 to 250 cycles[21]. (This is a simplified description of a

very complex system. We are primarily concerned with broad trends in cost.)

Memory is copied through the cache hierarchy in blocks, called cache lines. A cache line

is a series of consecutively addressed bytes. In most modern computer architectures, cache

lines are 32 bytes long (although the L1 line length may differ from the L2 line length[21]).

For lines of length L, two addresses, a1 and a2, are on the same cache line if and only if

[al/LJ = la2/LJ. When a byte is pulled into cache, every other byte on the same line is

also pulled in. If Ll is missed but L2 is hit, a cache line is copied from L2 into L1. If L2 is

missed, a cache line is copied from main memory into both L1 and L2.

It is not uncommon for industrial formulas to contain hundreds of thousands of clauses,

and millions of literal instances. And, clause learning leads to rapid formula growth. Every

leaf in the DLL search tree induces an implicate. Frequently, these implicates are hundreds

of literals long. Formulas expand to be many tens or hundreds of megabytes in size. In

contrast, a Pentium 4 chip has 8 kilobytes of L1 for data, and 512 kilobytes of L2[21].

The disparity between cache size and formula size means that only a tiny fraction of the

formula is ever cached. Furthermore, assignments tend to impact many clauses. Suppose a

formula contains i literal instances, over v variables. Since no clause contains two identical

literals, setting a literal false shortens i/2v clauses, on average. Even for counter-based

schemes, where shortening a clause usually only involves decrementing a counter, clause

updates frequently miss cache. There are so many clauses that just a 4-byte record for each

amounts to a structure that does not fit in the cache. And, clause traversals import numerous

lines, polluting the cache, displacing other data. Recent additions are hit repeatedly during

sequential clause traversals, but otherwise, lines tend to be displaced from cache before

being reused. This is true of all known BCP schemes.

Two-pointer BCP algorithms are more efficient than counter-based BCP algorithms,

since minimizing the number of links from literals to clauses reduces the number of clause

visits during BCP. Both HTL and TWL maintain just two links per clause. A clause is

visited during BCP if and only if one of its watched literals is made f a1 se. If literal 1 is not

watched in clause c, clause c is not visited when 1 becomes false.

Regardless of memory latency, TWL is cheaper than counter-based BCP algorithms.

Fewer links implies a reduced average amount of work per assignment, and no computation

is necessary during backtracking. Counter-based BCP is simple, but it imposes a much

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 36

heavier CPU load than TWL.

However, the primary strength of TWL lies in its memory access pattern. It is expensive

to visit clauses, because doing so frequently results in an L2 cache miss. Having two links

per clause reduces the average number of visits triggered by each assignment, and no clause

is visited during backtracking. On the other hand, it is relatively inexpensive to traverse a

clause upon visiting it, because contiguous reads put cache lines to good use. Most clause

traversals complete within a single cache line, and therefore hit L1 every time a literal is

loaded. In an average clause traversal, step WOb is executed less than three times.

3.5.1 Binary Clause BCP

Here, we apply the term binary clause to refer to clauses with exactly two literals, false

literals included. Constraint propagation through binary clauses is particularly simple. If the

formula contains [loll], then for x E (0, l), if 1, is false, 11-, must be true. It is inefficient to

use a fully general BCP mechanism to capture this. In binary clauses, TWL is at its most

degenerate, since every literal must be watched. Boundary sentinels double the memory

footprint of each clause, and the entire footprint is traversed on every visit. Attempts to

find another literal to watch are wasted effort. The inefficiency is significant because binary

clauses are abundant in the formulas we are concerned with solving. In standard bounded

model checking benchmarks[38] more than 70 percent of the clauses are binary. More than

90 percent are binary in standard microprocessor verification benchmarks[37].

A better method relies on a specialized binary clause representation. Each variable, v,

is associated with two lists of literals, B(v) and B(v). Each clause, [loll], is represented by

a pair of list entries: an instance of l1 in B(lo), and an instance of lo in B(Z1). If a literal,

1, becomes true, all literals in B(i) are implied.

Binary clause BCP for 1 occurs in a single pass through B(2). For each literal x E B(1):

If x is true, then x is ignored. If x is false, there is a conflict, and falsified clause [tx] is

returned explicitly. Otherwise, x is free, so x is queued for assertion. In the queue, x is

paired with 1, rather than a pointer to an antecedent clause. Antecedent records are flagged

to indicate their correct interpretation, as a literal or as a pointer. The CDCL procedure is

readily adapted to distinguish and handle both cases. In particular, note that the literal 1
is sufficient antecedent information to support a CDCL resolution on x.

Together, TWL and the above procedure implement step B2 of the breadth-first BCP

algorithm. Once 1 is assigned in step B1, binary BCP is performed via B(1). Then, TWL

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 37

performs non-binary BCP via W(t). Sequencing BCP this way favors binary antecedents,

and so promotes binary clause resolutions in CDCL derivations.

The described method is highly efficient. First, if B(t) is implemented as a contiguous

array, the memory access pattern of a natural traversal is ideal. In contrast, suppose each

binary clause is represented as a pair of adjacent literal instances. Each clause is twice the

size, so half as many fit on a cache line. TWL boundary sentinels aggravate this. Also,

clauses that contain 1 are not necessarily grouped together in memory. Worst case, it could

be that no two are on the same cache line together.

Second, the traversal procedure can be very computationally inexpensive. Usually, when

BCP visits a binary clause, the implied literal is already true. The procedure first checks

whether the current element of B(t) is true. If it is, a clause has been dispensed with in a

single comparison.

Also, bounds checking overhead is easily cut from the loop that iterates through B(t).

If a false sentinel literal is appended to each list, the bounds test may be embedded in the

conflict code. Whenever a false literal is encountered in ~ (i) , a test is done to determine

whether or not the literal is a sentinel. Because real conflict is relatively rare, and the

procedure is so simple, the savings are significant.

(Tangentially, we note here a useful property of TWL. Suppose a clause consists of n

literals. Further, suppose two of them are free, while the other n - 2 are false. We term

such clauses conditionally binary. When BCP finishes without conflict, both free literals

must be watched in every clause that is conditionally binary. Therefore, if a literal, 1, is free

in a conditionally binary clause, c, then W(1) contains a watch structure that points into

c. To determine how many conditionally binary clauses 1 participates in, it suffices to count

how many clauses referenced in W(1) are conditionally binary.)

3.5.2 Ternary Clause BCP

In most of the formulas we are concerned with, ternary clauses are much less common than

binary clauses. There are some exceptions, e.g., miters for circuit equivalence checking[33].

Ternary clauses appear frequently in formulas derived via basic translation from logic gate

networks. Through such translation, an AND gate with inputs {x, y} and output z becomes

{[Zx], [Zy], [zETj]). Similarly, an OR gate is captured by {[z:], [z?j], [~xy]}. About one

third of the clauses are ternary in the two most challenging public domain microprocessor

verification suites, fvp-sat .3.O and fvp-unsat.3.0[35]. Furthermore, CDCL tends to generate

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 38

a larger number of ternary implicates than binary implicates.

So, it is worthwhile to perform ternary clause BCP through a specialized mechanism.

Doing so allows us to favor ternary clause resolutions in CDCL derivations, and also makes

BCP faster. The approach we adopt represents each clause with a set of stub structures.

A stub is a 4-tuple, (la,lb,pa,pb). Both 1, and lb are literals, while pa and pb are position

indexes used to construct antecedents for CDCL. These four fields are packed into 64 bits:

20 bits per literal, 12 bits per index.

Each variable, v, is associated with two lists of stubs, T(v) and T(u). Every stub in T(1)

encodes a binary clause that is implied as a result of literal 1 being set true. Each ternary

clause, [loll12], is represented by three list entries:

stub (11 ,12,pl ,p2) at position po in T(lo),

0 stub (lo,12,po,p2) at position pl in T(ll), and

0 stub (lo,ll,p~,pl) at position pa in T(12).

Position indexes connect together the three stubs that represent a clause. Each stub

records the positions of the other two. Before the stubs are inserted, the position indexes

are calculated. For all i E {0,1,2), position pi = (T(li)l. That is, the position index for a

list is its cardinality. If T(li) contains n stubs, then positions { O , l , ..., n - 1) are occupied.

The new stub for T(li) will be inserted at position n = IT(&)[.

Suppose a literal, I, is set true in BCP step B1. The following procedure is called after

binary clause BCP finishes, but before TWL begins. Ternary clause BCP for 1 occurs in a

single pass through T(1):

EO. For each stub (la, lb, pa, pb) E T(1):

[EOa.] If 1, is true, skip EOb ,..., EOf.

[EOb.] If l6 is true, skip EOc ,..., EOf.

[EOc.] If 1, is free, go to EOf.

[EOd.] If lb is false, return "falsified [lalbi]".

[EOe.] Enqueue (lb,pb), and skip EOf.

[EOf.] If lb is false, enqueue @,,pa).

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 39

Each pair (la,lb) is a binary clause induced through the falsification of 1. Empirically,

most of these clauses have already been satisfied by the time they are considered. It is for

this reason that the first two steps, EOa and EOb, check for true literals. This speeds BCP,

since most clauses are dealt with in one or two comparisons.

When step EOc is reached, each of 1, and lb are either false or free. Thus, there are four

cases to distinguish. If 1, is free, the process enters step EOf, where two of the four cases

are handled. Otherwise, execution falls through into step EOd.

In step EOd, 1, is known to be false. If lb is also false, there is a conflict, and so

falsified clause [lalbi] is returned explicitly. Else, lb is free and implied; it is inserted into

the BCP queue with position index pb as its antecedent. CDCL interprets this antecedent

as a reference to the stub at position pb in T(lb). This stub contains la and 1, sufficient

antecedent information to support a CDCL resolution on lb. To ease correct interpretation,

antecedent information of this variety must be labeled to distinguish it from the pointer

antecedents of TWL and the literal antecedents of binary BCP.

If step EOf is reached, la is free. If lb is false, la is queued for assertion. Else, lb is free,

and so the current ternary clause has no BCP consequence.

In TWL, only two of the literals in any ternary clause are watched. There is always one

literal without a link to the clause. In the above scheme, all three literals have a link. But,

the scheme is so efficient that this weakness is more than compensated for. It is efficient for

the same reasons the mechanism of section 3.5.1 is efficient. Compared to ternary BCP via

TWL, fewer instructions are executed per clause. Use of a bounds-test sentinel in each stub

list provides further savings. A contiguous representation of T(%) fits as many as four stubs

on a 32-byte cache line. Sequential traversal makes good use of L1, and relative to TWL,

fewer lines are pulled into cache.

Having position indexes 12 bits wide implies that a ternary clause, [lolllz], cannot be

represented with stubs if (T(li)J = 4096, for some i E {O,1 , 2). Instead, the general purpose

TWL representation is used. However, in our experience, it is rare for any one literal to be

present in 100 ternary clauses, let alone 4096.

3.5.3 Clause Compression

In a ternary clause stub, each literal is allocated 20 bits. Setting aside one bit for the sign

leaves 19 bits for the variable index. Therefore, the maximum index that may be encoded

is 219 - 1. As a result, the solver supports no more than 524,288 variables. This restriction

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 40

reduces the set of instances to which the solver is applicable. But, to put this in perspec-

tive, we know of just one benchmark suite with formulas having > 100,000 variables[24].

(Although these formulas are large, they are not difficult, and Chaff solves them quickly.

The benchmark authors state the formula sizes are a product of inefficient encoding.) Most

interesting benchmarks contain < 40,000 variables. It is reasonable to sacrifice the capacity

to solve abnormal, gargantuan formulas if doing so allows us to better solve the formulas

we expect will normally arise.

The TWL procedure we have described operates on clauses that are represented by

arrays of literal instances. A literal instance consists of a 20-bit literal, paired with a 1-bit

watched flag. Clearly, it is possible to pack three 21-bit literal instances into 64 bits of

memory. It is straightforward to arrange fields so that unpacking is inexpensive. One such

arrangement allows two instances to each be isolated in a single bitwise operation, while the

third instance is available in four bitwise operations on a 32-bit machine (two on a 64-bit

machine). In contrast, Chaff maintains a 32-bit structure for each literal occurrence.

A more compact representation decreases the width in memory of each clause. Storing

three literals, instead of two, in each 64-bit block allows 12 literals, instead of 8, per 32-

byte cache line. So, fewer cache lines are touched in the course of TWL clause traversals.

Short searches, which are very common for TWL, complete more often within a single cache

line. Long searches have lessened impact. Because of TWL's relaxed watch placement rules

(versus HTL), an assignment is deduced only after full traversal of its antecedent clause.

The reader is referred back to Table 2.3, in which some average first-UIP clause lengths are

listed. Using 21 bits instead of 32, a clause with 100 literals occupies 4 fewer cache lines.

A clause with 600 literals occupies 25 fewer. Less main memory is copied into cache, so

latency costs and cache pollution are reduced.

3.5.4 Receding Boundary Sentinels

The TWL procedure we have presented takes advantage of boundary sentinels to improve

the efficiency of the WOb/WOc search loop. These sentinels are literals that evaluate true

or free. Rather than testing at every literal whether the search pointer has been directed

outside the clause array, this test occurs only when a non-false literal is encountered.

Because the search loop is so simple, the removal of a comparison is significant (cf. Knuth's

discussion of linear search[23]). Boundary sentinels also contribute to another refinement

we have developed.

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 41

The technique excludes some false literal instances from being considered during BCp.

If a literal is made false at decision level y, it will remain false until dl y is removed

through backtracking. Empirically, less than four decision levels, on average, are removed

by a backtrack-typically, only a small fraction of the current branch. DLL lingers in the

fringe of its tree, even with nonchronological backtracking. Literal instances become false

and then remain that way through long periods of search.

This motivates the omission of false literals from clauses in which they occur. Clearly,

if TWL works with fewer literals, BCP will execute faster. It is less apparent that such

literals can be removed efficiently. Already, TWL handles false literals very fast. The gain

must outweigh the cost if the technique is to be advantageous.

In fact, it is possible to remove numerous false literals from the formula at minor

expense. A conflict occurs when a clause, Fx, is falsified. In response, CDCL introduces an

implicate clause, FI, that is also entirely false. Before backtracking to make FI unit, we

consider truncating both Fx and FI.

For each c E {Fx, FI), the following procedure is applied. If c is less than some threshold

length, it is not truncated. This helps to avoid situations where the improvement to BCP is

offset by the truncation cost. Otherwise, the literal instances within c are sorted according

to decision level. To clarify, let c be [111 2...1,]. Suppose each literal x E c became false at

decision level d(x). The contents of the array representing c are rearranged so that, for all

li, lj E c: if d(li) < d(lj), the memory address of li is less than that of lj. Bentley-McIlroy

3-way quicksort[31] is recommended for this task, since there are often many duplicate keys;

i.e., it is typical for several literals in c to have been set false together, at the same dl.

Once the array is sorted, the two literal instances highest in memory become watched.

Because the literals in c have been sorted by dl, the last literal is at the shallowest dl,

while its neighbor is either at the shallowest (if c = Fx) or second-shallowest (if c = FI).

Therefore, backtracking will not violate the TWL requirement.

Once the clause is watched, boundary sentinels are placed. One of the two sentinels,

SH, occupies the highest memory location in the array. The other sentinel, SL, is initially

positioned some small distance lower in memory than SH. The two watched literals for c

lie between SL and SH. SL serves to partition the array into two subarrays, AL and AH.

Subarray AH is bounded on either side by SL and SH. AL is the complement of AH, i.e.,

AL = c - AH. Because both watches are embedded in AH, the contents of AL are ignored

by TWL. This improves the efficiency of BCP. During backtracking, SL is moved through c

CHAPTER 3. BOOLEAN CONSTRAINT PROPAGATION 42

to ensure that every literal in AL is false. But, SL is only moved lower in memory, never

higher; backtracking widens AH and narrows AL.

Let d(AL) be the label of the shallowest dl at which some literal in AL became false.

Because AL is sorted by decision level, d(AL) is the dl of the literal in AL with the highest

memory address. Unless AL is empty, the solver stores a link from decision level d(AL) to

sentinel SL. Such links allow sentinels to be moved efficiently in response to backtracking.

Whenever backtracking removes a dl, d, the solver moves all sentinels to which d is linked.

Then, some or all of these sentinels are relinked, and all of d's links are discarded.

When backtracking removes decision level d(AL), SL is moved. If possible, this narrows

AL to A/L, such that A: is not empty and d(AL) > d(A/L). If no such A: exists, SL is put

to rest at the lowest memory location in the array. Otherwise, decision level d(A:) is linked

to SL, and all links for decision level d(AL) are deleted.

To reiterate, boundary sentinels are used to efficiently truncate long, falsified clauses.

Whenever a false clause of sufficient length is available, the solver performs a truncation.

Suppose c is such a clause. First, the literals of c are arranged in order of increasing

decision level. Second, the two literals ranked highest in this ordering become watched.

This is necessary because sorting c may invalidate watch pointers into c. Third, a boundary

sentinel is placed at the high end of the clause. This sentinel need not be moved. Fourth,

another boundary sentinel is used to truncate c. Instead of being placed at the low end of

the clause, it is placed midway through, dividing c into AH and AL. AH is the shortened

clause; AL is an array of omitted false literals.

Shortened clauses are lengthened to include omitted literals that become free. AH must

be extended if a literal in AL becomes free. A clause is lengthened by moving its low

memory sentinel during backtracking. To facilitate this, each decision level, d, is linked to

every sentinel that must be repositioned when d is removed. When backtracking frees a

literal in AL, all literals in AH are already free. AH must be expanded to include the free

literals in AL. So, the low memory sentinel is moved to a lower address. If all literals in

AL are free, the sentinel is moved off the low end of the clause-AH expands to contain the

whole of c. Otherwise, a contiguous block of literals from the high end of AL is transferred

into AH, and the sentinel becomes linked to the dl of the highest memory literal in the

remainder of AL.

Chapter 4

Decision Strategy

4.1 Overview

The focus of Chapter 3 is efficient implementation of the procedures executed during search.

Efficient BCP is important because, all else being equal, a gain in BCP speed produces

a proportional gain in solver speed overall. But, what is most important is the solver's

capacity to find and take advantage of useful problem structure when it is available. Brute

force combinatorial search rapidly becomes futile as problem size increases, no matter how

efficiently it is implemented. The better the solver can exploit structural simplicity, the

more the difficulty of an instance can depend on its complexity rather than on its size.

Ideally, if a formula has a short resolution refutation, superficial characteristics, e.g., the

number of variables, should be immaterial.

Effective decision methods discover useful structural properties of the formula, and guide

search to exploit them. Good DLL decision strategies work to restrict search space, in order

to facilitate exhaustive search[l9]. They guide the solver to find tree-like refutations that

involve fewer resolutions. In contrast, good strategies for clause-learning DLL solvers work

to generate clusters of compositionally similar, resolvable clauses. Conflict-driven clause

learning takes advantage of these clusters, since it tends to resolve together clauses that

share literals.

First, we present a brief overview of the best general purpose decision strategies for DLL.

Then, we describe the VSIDS decision strategy used in Chaff, and explain why it works.

On that foundation, we introduce a new and superior decision strategy. Finally, we discuss

Berkmin's contribution.

CHAPTER 4. DECISION STRATEGY

4.2 Strategies for DLL

Heuristics may be designed to suit particular classes of instances. For example, SAT0

employs a specialized strategy to solve quasigroup problems[40]. Here, we consider general

purpose strategies only.

In DLL, the decision strategy selects a variable, v, to branch on. It also dictates the

order in which the literals of v are asserted, although this is relatively unimportant. The

decision strategy determines the search tree.

The strategies that seem to be most successful at producing desirable trees are guided by

formula simplification. Formula Fl is said to be "simpler" than formula F2 if g(Fl) > g(F2),

for g defined as follows. Function g computes an exponentially weighted sum of the clause

sizes for a given formula. That is, g(F) = CcEF k-S(C), where F is a CNF from which all

false literals and satisfied clauses have been removed; k is some experimentally determined

constant; and s is a function that returns the number of literals in a given clause. A clause

of size x contributes as much to the sum as k clauses of size x + 1.

The best DLL solvers, e.g., Satz[25] and POSIT[14], work to reduce the number of

decisions along each path from the root to a leaf. At each branching point in the tree, an

attempt is made to select a variable to minimize the number of decisions needed to complete

the tree rooted at that point. This is an efficient approach because most (or all, if the formula

is unsatisfiable) induced formulas will be refuted[l9]. Variables are ranked by their power

to simplify the formula. It is assumed, but not proved, that a larger g(F) implies a smaller

expected number of decisions to refute F . The intuitive justification that appears in the

literature is along the lines of: minimizing the number of free variables minimizes a loose

bound on the maximum tree size; a formula with more short clauses is more constrained,

and therefore closer to a conflict; and so on. The strong support is empirical.

Suppose a decision is needed for formula F . Let FI, denote the formula produced by

BCP, given the input F A [XI. An elementary decision strategy that is guided by formula

simplification chooses to branch on a variable, v, that maximizes g(FJ,) * g(FJv). More

sophisticated methods reduce the time spent making decisions by ignoring long clauses in

the computation of g, pruning the set of variables for which g is computed, etc.

Every DLL search tree is linearly equivalent to a tree-like resolution refutation[l5]. Each

decision corresponds to the resolution of two clauses, both of which were derived through

one or more resolutions. (Unless the decision variable did not play a role in one of the

CHAPTER 4. DECISION STRATEGY 45

subtree refutations.) But, each BCP assignment corresponds to a resolution involving a

clause from the input formula. Assertions that heavily simplify the formula are typically

those that generate numerous consequential assignments through BCP. And, short clauses

promote BCP. Therefore, simplification heuristics are essentially geared toward minimizing

the number of resolutions in the refutation.

4.3 Strategies for DLL with CDCL

Relsat's decision strategy[3] is closely related to the formula simplification heuristics used

in Satz and POSIT. The same is true of SATO's general purpose strategy[40]. In GRASP,

a variety of decision strategies are implemented. Several of them are just DLL formula

simplification heuristics. However, others are literal count (LC) heuristics. In fact, GRASP'S

default decision strategy is an LC heuristic[29].

The literal count heuristics introduced in GRASP rank variables according to the number

of times they appear in unsatisfied clauses. For example, the dynamic largest individual sum

(DLIS) strategy counts the number of unsatisfied clauses each literal occurs in. The literal

with the largest number of occurrences is set true. Experimental results indicate that

within the GRASP framework, DLIS does better than the best DLL formula simplification

heuristics on non-random formulas[27]. The published explanation for this result is that

(a) classical DLL strategies are too greedy, and (b) decision strategy is not important for

a clause-learning solver. The first claim is dubious, given the results in, e.g., [25]: greedier

heuristics seem to be preferable, except they are too expensive to compute. The second

claim is refuted by VSIDS.

4.3.1 VSIDS

Arguably, Chaff's most important contribution is the variable state independent decaying

sum (VSIDS) decision strategy[30]. VSIDS is a literal count heuristic that is dramatically

more powerful than DLIS. It allows Chaff to solve difficult industrial SAT problems much

faster, with far fewer decisions, than solvers like Relsat, GRASP, and SATO.

VSIDS is realized in zChaff as follows. Each literal, 1, has a score, s(l), and an occurrence

count, r(1). When a decision is necessary, a free literal with the highest score is set true.

Initially, for every literal, I, s(1) = r(1) = 0. Before search begins, s(1) is incremented for

each occurrence of a literal, I , in the input formula. When a clause, c, is learned during

CHAPTER 4. DECISION STRATEGY 46

search, r(1) is incremented for each literal 1 E c. Every 255 decisions, the scores are updated:

for each literal, 1, s(1) becomes r(1) + s(1)/2, and r(1) becomes zero.

VSIDS deviates from DLIS in two respects. First, literal occurrences within satisfied

clauses are not distinguished. As discussed in Section 3.5.4, search lingers in the fringe

of the tree; that is where most decisions are made. Normally, in the fringe, most variables

have been assigned a value, and many clauses are satisfied. Counting occurrences in satisfied

clauses makes a substantial difference in the literal ranking. Still, the published explanation

for why VSIDS is successful begins with the claim that VSIDS works to satisfy conflict

clauses. DLIS is described as working to satisfy clauses, but in a myopic way, ignoring the

impact of BCP in order to avoid excessive greed. VSIDS is described as a myopic, inaccurate

attempt at satisfying clauses (especially those recently derived). The explanation for VSIDS

is even less convincing than the explanation for DLIS.

Second, the influence of each occurrence is scaled according to the occurrence's recency.

Decisions are based on scores, not occurrence counts. As clauses are learned, occurrence

counts are incremented. Periodically, the scores are halved, the occurrence counts are added

to the scores, and the occurrence counts are zeroed. These updates are frequent: it depends

on the instance, but typically, 255 decisions translates to about 64 conflicts. It is the

emphasis on recent literal occurrences that is the crux of VSIDS' power. The published

explanation is that, on difficult problems, conflict clauses drive the search process; therefore,

favoring the information in recent clauses is valuable. Clearly, this explains nothing.

In our view it is a mistake to cast literal count heuristics as sloppy approximations

to DLL formula simplification heuristics. Instead, we propose VSIDS is actually a clause

learning heuristic that guides the solver to generate clusters of related, resolvable clauses.

At each leaf in the search tree, CDCL resolves clauses that were involved in BCP along

the path to that leaf. Suppose CDCL derives two implicates, io and il. Suppose both

derivations occur with many of the same literals asserted. Then, it is likely there are a

substantial number of literals that participate in both derivations. As a result, it tends to

be that io and il are compositionally similar. That is, they tend to contain the same literals.

We have confirmed this empirically.

Nonchronological backtracking typically removes only a small fraction of the path from

a leaf to the root. It is usual for most of the path to remain intact from one conflict to the

next. Therefore, from one conflict to the next, many of the same literals remain asserted.

Implicates produced in leaves that share a long path prefix (leaves that are, in the obvious

CHAPTER 4. DECISION STRATEGY

sense, nearby) are often compositionally similar.

VSIDS' exponential decay of variable scores shifts focus toward recently derived clauses,

i.e., those that tend to have been learned near the current search position in the DLL tree.

VSIDS selects a free literal, 1, that has the highest score, and makes it true. Since CDCL

implicates consist of false literals, this fosters the conflict-driven derivation of clauses that

contain f . Thus, VSIDS guides the solver to generate implicates resolvable against clauses

that are usually of similar composition.

4.3.2 VMTF

There are at least two problems with VSIDS as a method of learning related, resolvable

clauses. First, periodic score decay is an indirect and awkward means of choosing decision

literals from recently derived clauses. There is a delay in the use of gathered statistics,

so focus does not shift immediately. Until the literal scores are updated, the most recent

clauses are ignored. Ironically, because of the depth-first organization of DLL search, these

are the clauses produced in the leaves that are most likely to share a long path prefix with

the current search position in the DLL tree.

Second, if a pair of clauses clash on more than one variable, they cannot be resolved by

conflict-driven learning; a resolvent would be tautologous. For example, if [xyP] is resolved

against [-&I, the resolvent must contain both x and 3, or both y and y. Suppose two

literals, lo and 11, in a clause, c,, are set true along the path to a leaf in which a clause, cd,

is derived. It may happen that cd contains both and G, in which case c, and cd are not

resolvable. So, the solver should perhaps tend to avoid setting more than one literal true in

any of the recent clauses.

Primarily in response to the first problem, we introduce the variable move-to-front

(VMTF) decision strategy. VMTF is simple and extremely inexpensive to compute. More

importantly, if our solver uses VMTF instead of VSIDS, far fewer decisions are needed to

solve benchmarks from various interesting domains: planning, bounded model checking,

circuit equivalence checking, and so on, as shown in Table 4.1.

An occurrence count, r(l), is kept for each literal, 1. Initially, for every 1, r(1) = 0.

Before search begins, r(1) is incremented for each occurrence of a literal, 1, in the input

formula. An ordered list of the formula variables, W, is also maintained. Once the counts

have been determined for the input formula, W is arranged so that, for all variables vo, vl:

if r(vO) + r($ > r(vl) + r (q) , then vo precedes vl. The more often a variable occurs in

CHAPTER 4. DECISION STRATEGY 48

the input formula, the closer it begins to the front of the list.

When a clause, c, is learned during search, r(1) is incremented for each literal 1 E c.

Then, some of the variables in c are moved to the front of W. The number of variables

moved is a small constant, m, e.g., 8. If c contains only n < m literals, n variables are

moved. The moved variables are positioned at the front of the list in an arbitrary order.

When a decision is necessary, the free variable, v, that is nearest the front of W is set true

if r (v) > r (ZI) , f a1 se if r (77) > r (v), and randomly otherwise.

Recall that once a clause, c, is derived, the solver backtracks to the deepest decision level

at which c is unit. At that point, BCP satisfies c; every variable in the clause is assigned.

Therefore, none of the variables in c that are moved to the front of W are free when the

next decision is made. Clearly then, VMTF does not simply choose variables from the most

recently derived clause.

Because implicates that are learned near each other in the DLL tree tend to share literals,

it is often the case that many of the variables moved to the front are already near the front,

prior to being moved. But, if every variable is moved to the front for every learned clause,

performance degrades substantially, relative to VMTF as described above. That is, a larger

number of decisions are needed to solve the same instances. Moving only a few variables

from each clause prevents a single clause having too large an impact on the decision making

process.

It suffices to move to the front of W a random selection of m variables from c. However,

a more systematic approach leads to better results. It is not beneficial to favor moving the

variables at the shallowest decision levels, i.e., the variables that will become free earliest.

Rather, it is better to move the variables from c that appear earliest in the participation

trace for the derivation of c. The reasons for this are unclear.

Further gains are possible if a broader set of variables is considered while making each

decision. One approach that works well is choosing between the first two free variables

Table 4.1: Number of decisions used to complete proof

CHAPTER 4. DECISION STRATEGY 49

in W using a scoring scheme reminiscent of VSIDS. Each variable, v, has a score, s(v).

Initially, the score for each variable is zero. When a clause, c, is learned during search, s(v)

is incremented for each variable, v, that has a literal in c. Periodically, all the scores are

divided by a constant that is a power of two.

When a decision is needed, the following procedure is used. Let vo and vl be the first

two free variables in W. Assume vo precedes vl, and the number of list elements between

vo and vl in W is d. If the score for vl exceeds the score for vo by wide enough a margin,

vl is selected instead of vo. The larger d is, the wider the margin required. For example, if

s(vo) + 2d + 3 > s(vl) , then vo is selected, else vl is selected.

Finally, we note that VSIDS is very inexpensive to compute, compared to the most

effective formula simplification heuristics, and that VMTF is much cheaper to compute

than VSIDS. The VSIDS implementation in zChaff accounts for about ten percent of the

runtime. Most of that time is spent sorting literals by score. Our VMTF implementation

accounts for less than one percent of our solver's runtime.

4.3.3 Berkmin

One decision strategy that addresses both of the problems with VSIDS is the heuristic

introduced in [16], a paper that was published subsequent to our development of VMTF.

We neglect to include here a full and detailed description of the heuristic, since it is complex

and the cited source is sufficiently lucid.

The strategy is essentially as follows. Each variable has a score that is initially zero.

Each time a clause participates in the derivation of an implicate, the score for every variable

in the clause is incremented. Periodically, the scores are divided, as in VSIDS.

When a decision is necessary, the strategy considers c, the most recently derived clause

that is yet unsatisfied. If there is no such c, because there are no derived clauses, or because

all derived clauses are satisfied, a variable with the highest score overall is selected. Whether

this variable is set true or false depends on an estimate of which choice will generate more

assignments through BCP.

Otherwise, the heuristic selects v, one of the variables in c that has the highest score

among all variables in c. The literal of v that has occurred in the largest number of implicates

is set true. If both literals have appeared equally often, a random choice is made.

The published explanation for why this works is unconvincing, along the lines of: it is

like VSIDS, only more dynamic. But, our explanation for literal count strategies predicts

CHAPTER 4. DECISION STRATEGY 50

Berkmin's heuristic will be successful. It is clearly similar to VMTF.

We have experimentally verified several relevant facts. First, in general, sign selection

guided by counting BCP assignments is not beneficial. It suffices to make true the literal

that has occurred in the largest number of implicates.

Second, it is not important that decision variables be selected from unsatisfied clauses.

Rather, it is important that decision variables be selected from clauses that contain no more

than one true literal. For example, a variable may be drawn from a clause that already

contains exactly one true literal, unless doing so will produce a second true literal in the

clause. This works better than selecting from unsatisfied clauses, consistent with the notion

that the decision strategy operates to promote production of clauses that can be resolved

against recent implicates.

Chapter 5

Related Work

The headltail lists BCP algorithm was introduced in SAT0[40]. The two watched literals

BCP algorithm was introduced in Chaff[3O], and its memory access properties were noted.

Iterative DLL with clause learning and nonchronological backtracking was introduced

in [29] and improved in [3]. Conflict-driven clause learning was first used in the solvers

GRASP[29] and Relsat [3]. Chaff's first-UIP learning scheme was introduced in [41]. A very

thorough experimental evaluation of several learning schemes appears in [41].

The DLIS decision strategy was introduced in [29], and was experimentally compared

against DLL formula simplification heuristics in [27]. The VSIDS decision strategy was

introduced in [30]. Extensive improvements to VSIDS are published in [16].

Chapter 6

Conclusions

Many interesting problems are solved efficiently in practice through translation to SAT.

This is largely because modern satisfiability solvers are frequently able to derive and take

advantage of simple structures in problem instances. Although the heuristics these solvers

apply are crude and indirect, they are remarkably successful. We believe there is potential

for enormous improvement.

Boolean constraint propagation is used both to select clauses for resolution, and to

prune space during search for a satisfying assignment. BCP is slow because it operates

diffusely over a data structure that is much larger than the cache. We emphasize that the

most significant performance gains are achieved by reducing the number of accesses to main

memory. We have presented a very refined two-pointer BCP algorithm that is simpler and

more efficient than the one found in Chaff. We have proposed a pair of new binary and

ternary clause BCP algorithms that have ideal memory access properties. Recognizing that

a solver designed to handle a large number of variables should be quite different than a solver

designed to handle fewer variables, we have used packed representations to improve BCP

locality. We have developed our usage of clause boundary sentinels into a straightforward

and effective method of excluding false literals from consideration during BCP. Using these

improvements, our solver is dramatically faster than, for example, Chaff.

Conflict-driven clause learning is the most important difference between modern solvers

and DPLL solvers like POSIT and Satz. CDCL is usually discussed in terms of cuts through

literal implication graphs. For example, see [41] and [4]. We view this as a misleading

approach that obscures the essence of the technique, and have instead presented CDCL in

terms of resolution. This has facilitated our simple and complete coverage of the algorithm,

CHAPTER 6. CONCLUSIONS 53

including several clear proofs. We have illustrated that CDCL operates as a resolution

heuristic, and we have begun to explain why some learning schemes are better than others.

We suggest for future work a separation between clause learning and backtracking.

The success of decision strategies like VSIDS cannot be explained by an appeal to for-

mula simplification arguments. We realize this and have argued that literal count decision

heuristics are actually a means of guiding the solver to learn clauses that are both resolvable

and compositionally similar. Working with this hypothesis we have developed a new deci-

sion heuristic that allows our solver to perform extremely well over a wide range of problem

classes.

Bibliography

[l] F. Aloul and K. Sakallah, "An experimental evaluation of conflict diagnosis and recur-
sive learning in boolean satisfiability," in Proceedings of the International Workshop on
Logic Synthesis (IWLS), pp. 117-122, 2000.

[2] F. Aloul, B. Sierawski, and K. Sakallah, "Satometer: How much have we searched?," in
Proceedings of the 39th Design Automation Conference (DAC902), pp. 737-742, 2002.

[3] R. J. J. Bayardo and R. C. Schrag, "Using CSP look-back techniques to solve real-world
SAT instances," in Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI'97), (Providence, Rhode Island), pp. 203-208, 1997.

[4] P. Beame, H. Kautz, and A. Sabharwal, "Understanding the power of clause learning,"
in Proceedings of the 18th International Joint Conference on Artificial Intelligence,
(Acapulco, Mexico), 2003.

[5] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson, "Optimal seperation of treelike and
general resolution." To appear in Combinatorica.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, "Symbolic Model Checking without
BDDs," in Proceedings of Tools and Algorithms for the Analysis and Construction of
Systems (TACAS'99), number 1579 in LNCS, 1999.

[7] P. Chong and M. Prasad, "Why is atpg easy?," in Proceedings of the 36th Design
Automation Conference (DAC '99), pp. 22-28, June 1999.

[8] V. Chvtal and E. Szemerdi, "Many hard examples for resolution," Journal of the ACM
(JACM), vol. 35, no. 4, pp. 759-768, 1988.

[9] S. A. Cook and D. G. Mitchell, "Finding hard instances of the satisfiability problem:
A survey," in Satisfiability Problem: Theory and Applications (Du, Gu, and Pardalos,
eds.), vol. 35 of Dimacs Series in Discrete Mathematics and Theoretical Computer
Science, pp. 1-17, American Mathematical Society, 1997.

[lo] J. Crawford and D. Wang, "International competition and sympoisium on satisfiability
testing," March 1996. http://www.cirl.uoregon.edu/crawford/beijing/.

BIBLIOGRAPHY 55

[ll] M. Davis, G. Logemann, and D. Loveland, "A machine program for theorem-proving,"
in Communications of the ACM, vol. 5, pp. 394-397, 1962.

[12] M. Davis and H. Putnam, "A computing procedure for quantification theory," in Jour-
nal of the ACM, vol. 7, pp. 201-215, 1960.

[13] 0. Dubois and G. Dequen, "A backbone-search heuristic for efficient solving of hard
3-SAT formulae," in IJCAI, pp. 248-253, 2001.

[14] J. W. Freeman, Improvements to Propositional Satisfiability Search Algorithms. PhD
thesis, Departement of computer and Information science, University of Pennsylvania,
Philadelphia, 1995.

[15] A. V. Gelder, "Combining preorder and postorder resolution in a satisfiability solver,"
in Electronic Notes in Discrete Mathematics (H. Kautz and B. Selman, eds.), vol. 9,
Elsevier, 2001.

[16] E. Goldberg and Y. Novikov, "BerkMin: A fast and robust SAT-solver," in Design,
Automation, and Test in Europe (DATE 'OZ), pp. 142-149, Mar. 2002.

[17] P. L. Hammer and S. Rudeanu, Boolean Methods in Operations Research and Related
Areas. Springer-Verlag, Berlin, Heidelberg, New York, 1968.

[I81 E. Hirsch and A. Kojevnikov, "Unitwalk: A new SAT solver that uses local search
guided by unit clause elimination," 2001. PDMI preprint 9/2001, Steklov Institute of
Mathematics at St.Petersburg.

[19] J. N. Hooker and V. Vinay, "Branching rules for satisfiability," Journal of Automated
Reasoning, vol. 15, pp. 359-383, 1995.

[20] Proceedings of the Fijleenth International Joint Conference on Artificial Intelligence
(IJCAI'97), (Nagoya, Japan), August 23-29 1997.

[21] Intel, Pentium 4 Developer's Guide. 2000.

[22] H. A. Kautz and B. Selman, "Planning as satisfiability," in Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI'gZ), pp. 359-363, 1992.

[23] D. E. Knuth, Sorting and Searching, vol. 3 of The Art of Computer Programming.
Addison-Wesley, Reading MA, second ed., 1998.

[24] T . Leonard, "Bounded model checking an alpha design."
http://www.ftp.cl.cam.ac.uk/ftp/hvg/sat-examples/.

[25] C.-M. Li and Anbulagan, "Heuristics based on unit propagation for satisfiability prob-
lems," in IJCAI97 [20], pp. 366-371.

BIBLIOGRAPHY 56

[26] I. Lynce and J. P. Marques-Silva, "The puzzling role of simplification in propositional
satisfiability," in EPIA '01 Workshop on Constraint Satisfaction and Operational Re-
search Techniques for Problem Solving (EPIA-CSOR), December 2001.

[27] J. P. Marques-Silva, "The Impact of Branching Heuristics in Propositional Satisfiabilit~
Algorithms," in Proceedings of the 9th Portuguese Conference on Artificial Intelligence
(EPIA), September 1999.

[28] J. P. Marques-Silva and T. Glass, "Combinational Equivalence Checking Using Satisfi-
ability and Recursive Learning," in Proceedings of the IEEE/ACM Design, Automation
and Test in Europe Conference (DATE), 1999.

[29] J. P. Marques-Silva and K. A. Sakallah, "GRASP - A New Search Algorithm for Satis-
fiability," in Proceedings of IEEE/ACM International Conference on Computer-Aided
Design, pp. 220-227, November 1996.

[30] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, "Chaff: Engineer-
ing an Efficient SAT Solver," in Proceedings of the 38th Design Automation Conference
(DAC'OI), June 2001.

[31] R. Sedgewick,. Algorithms in C++. Addison-Wesley Longman Publishing Co., Inc.,
1992.

[32] M. Sheeran and G. Stiilmarck, "A tutorial on Stiilmarck's proof procedure for propo-
sitional logic," in Proceedings 2nd Intl. Conf, on Formal Methods in Computer-Aided
Design, FMCAD'98, Palo Alto, CA, USA, 4-6 Nov 1998 (G. Gopalakrishnan and
P. Windley, eds.), vol. 1522, pp. 82-99, Berlin: Springer-Verlag, 1998.

[33] L. Simon and D. L. Berre, "The SAT2003 competition."
http://www.satlive.org/SATCompetition/2003/index.jsp.

[34] L. Simon, D. L. Berre, and E. A. Hirsch, "The SAT2002 competition."
http://www.satlive.org/SATCompetition/20O2/index.jsp.

[35] M. Velev, "Using rewriting rules and positive equality to formally verify wide-issue
out-of-order microprocessors with a reorder buffer," in Design, Automation and Test
in Europe (DATE '02), pp. 28-35, March 2002.

[36] M. Velev and R. Bryant, "Superscalar processor verification using efficient reductions
of the logic of equality with uninterpreted functions to propositional logic," in Correct
Hardware Design and Verification Methods (CHARME '99), pp. 37-53, September
1999.

[37] M. Velev and R. Bryant, "Effective use of boolean satisfiability procedures in the for-
mal verification of superscalar and vliw microprocessors," in 38th Design Automation
Conference (DAC 'Ol), pp. 226-231, June 2001.

BIBLIOGRAPHY 57

[38] E. Zarpas, "IBM formal verification benchmarks library."
http://www.haifa.il.ibm.com/projects/verification/~~-~~mepage/bench~a~~s~~tm~~

[39] H. Zhang and M. E. Stickel, "An efficient algorithm for unit propagation," in Proceed-
ings of the Fourth International Symposium on Artificial Intelligence and Mathematics
(AI-MATH'96), (Fort Lauderdale (Florida USA)), 1996.

[40] H. Zhang, "SATO: an efficient propositional prover," in Proceedings of the International
Conference on Automated Deduction (CADE'97)' volume 1249 of LNAI, pp. 272-275,
1997.

[41] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik, "Efficient conflict driven
learning in a Boolean satisfiability solver," in International Conference on Computer-
Aided Design (ICCAD'OI), pp. 279-285, Nov. 2001.

