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ABSTRACT 

Partial pre-computation for OLAP (On-Line Analytic Processing) databases has 

been a popular research topic in recent years. Obviously, a partial pre-computation 

scheme should be chosen such that the answering time of a particular query workload is 

optimised. The query workload of an OLAP application is the set of queries users 

expect. Most of the papers published only deal with the optimisation for the workload of 

views within the context of ROLAP (Relational OLAP). The partial pre-computation 

schemes optimised for views have been criticized for lack of support to ad-hoc querying 

and that a view may be too large a unit for pre-computation for queries that fetch very 

small answers. 

In this thesis, we study the problem of partial pre-computation for the workload of 

point queries, which is suited for MOLAP (Multidimensional OLAP) systems. The point 

queries in our workload are range queries defined by the dimension hierarchies. Our 

study shows that without careful coordination between pre-computation and query 

processing, it would be difficult to realize any significant gain in query performance from 

the pre-computation for point queries. We present a new organization of pre-computed 

cells, Pre-computation Cube or PC Cube, upon which we devise a cover-based querying 

processing method that is efficient and effective. We also design an algorithm for the 

selection of the PC Cube. Experiments are performed to show (i) the efficiency of the 

cover-based query processing method, (ii) the effectiveness of the PC Cube and our 

selection algorithm, and (iii) the performance comparison of variations of our selection 

algorithms. 
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CHAPTER 7 .  INTRODUCTION 

CHAPTER 1 

INTRODUCTION 

1.1 Data Warehousing 

Since the late seventies, relational database technology has been gaining wide 

acceptance. Almost every organization relies on it to store, organize, and update their 

inventories, sales history, customers' information, marketing information, etc., in a 

collection of large databases. But the fast-growing, tremendous amounts of data 

collected have far exceeded the human ability for comprehension and examination. As a 

result, large databases become 'data tombs' and this phenomenon has been described 

as 'data rich but information poor' problem [FPS96aj. Howevei, in current highly 

competitive world, the decision makers need to have the right information at the right 

time. Traditional systems, based on transaction processing, are not well suitea for the 

new requirements. This gives rise to new database technologies, called Data 

Warehousing and On-line Analytical Processing (OLAP), and in general, to what is 

called Decision Support Systems (DSS). 

Broadly speaking, data warehousing refers to architectures, algorithms, tools and 

techniques for bringing together data from multiple databases or other information 

sources, into a single repository suited for querying or analysis [Vas98]. This repository 
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is called as a Data Warehouse. In [lnm92], the data warehouse is defined as a 

subject-oriented, integrated, time-variant, and non-volatile collection of data in support of 

management's decision-making process. 

1.2 On-line Analytical Processing 

Among many available technologies of analysing data in a data warehouse, On- 

line Analytical Processing (OLAP) is one of the most popular ones for on-line, fast, and 

effective multidimensional data analysis [CD97]. 

OLAP is a category of software technologies that enable analysts, managers and 

executives to gain insights into data through fast, consistent, interactive access to a wide 

variety of possible views of information transformed from raw data to reflect the real 

dimensionality of the enterprise as understood by the user [OLAP97]. OLAP, as an 

interactive decision-support process, has been used extensively in both database and 

data warehouse applications, and enjoys continuous increase of market share in recent 

years. 

1.3 Multidimensional Model 

Current OLAP applications are based on a multidrmensional data model that 

employs multidimensional arrays for modelling data [CD97]. Data are considered as 

points in a multidimensional array (also called as Hypercube, or Cube). A cube is 

defined in [OLAP97] as a group of data cells arranged by the dimensions of the data. 

Each cell is uniquely defined by the corresponding values of the dimensions of the cube. 

The content of the cell is named measure, which is of users' interest. 
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The following example considers a database that consists of records of sales 

information for products sold in some city at some time. There are three dimensions: 

product, Location, and time. The measure of interest is the sales. The three-dimensional 

array below can be viewed as a cube with each dimension forming a side of the cube 

([Figure 1 .I] ). 

dimension- 
member 

dimension 

Figure 1.1 A multidimensional cube 

A Dimension is a structural attribute of a cube, which is a list of members that are 

of a similar type in the user's perception of the data [OLAP97]. A dimension acts as an 

index for identifying values within a multi-dirnensional array. If one member of a 

dimension is selected, the remaining dimensions in which ranges of members (or all 

members) are selecte: define a sub-cubs. If all dimensions have a single member 

selected, then a single cell is defined. 

A dimension shows all possible ways in which the user can meaningfully group 

the detailed information stored in the multidimensional database. Each dimension is 

organized in a hierarchy of levels, corresponding to data domains at different 

granularities. Each level is associated with a set of members. Among the different levels 

of a dimension hierarchy, the highest level is the level All, so that we can group all the 
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values of the dimension into the single value 'Alf. The lowest level is called the detailed 

level of the dimension. The members in the lowest level are called as primary members, 

and all other members in the higher levels of the dimension hierarchy are called as 

group members [LukOl]. The following graph (Figure 1.2) is an example hierarchy of 

dimension Location. Province BC is a group member; sf and s2 are primary members. 

All 
,-, 

Figure 1.2. Hierarchy of dimension Location 

1.4 Implementation Approaches for OLAP 

According to the actual physical storage of data, there are two main 

implementation approaches fw OLAF systems: Relational OLAP (ROLAP) and 

Multidimensional OLAP (MOLAP). 

ROLAP is based on a relational database server, extended with capabilities such 

as extended aggregation and partitioning of data [CD97]. The aggregates and metadata 

are stored in tables. An extra module or application is needed to translate the tables into 

cubes for multidimensional data analysis. The schema of the database can be a star, 

snowflake, or fact constellation schema [CD97]. 

MOLAP is based on "pure" Multidimensional Database (MDB), which logically 

stores data in multidimensional arrays. The multidimensional arrays are heavily 
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compressed and indexed on the physical level for space and performance reasons 

[Vas98]. 

The following table (Table 1.1) shows some important differences between 

ROLAP and MOLAP architectures [Vai98]. 

Storage and Access 

Usage 

Database size 

ROLAP 

- Tables/tupels 

- SQL access language 

- Third party tools 

- Variable performance 

- Relational engine 

- Gigabyte -Terabyte 

- Large space for indexes 

- Easy updating 

-- 

MOLAP 

- Proprietary arrays 

- Lack of a standard language 

- Sparse data compression 

- Good performance 

- Multidimensional engine 

- Gigabyte 

- 2% index space 

- Difficult updating 

- 

Table 1.1 ROLAP Vs MOLAP 

QOCAP systems usually bring a larger storing capacity and are more s c e l ~ ! ? ~  

than MOLAP systems. However, MOLAP systems tend to offer better performance than 

ROLAP systems. Actually, there was a long debate in the database community about 

which approach should be used. However, the debate seems to be settled at present 

because few pure ROLAP systems survive and many major ROLAP vendors have 

recently incorporated MOLAP facility into their products, like the Oracle 9i and 

Microstrategy 7i. 
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1.5 OLAP Query Performance 

An OLAP query usually involves an aggregation over a large amount of data in 

database, which may take a long time to complete. Therefore, improving the response 

time of OLAP queries is of the interests to many researchers, and many techniques have 

been developed. Those techniques can be categorized into two classes: the techniques 

using pre-computation and those without pre-computation. The techniques that do not 

involve pre-computation mainly use some special data structures or physical storage 

methods [DRT99], which may allow fast access to the primary database and provide 

support to ad hoc querying. These techniques are only suitable for the databases in 

modest size. As a result, many researchers adopt the pre-computation as the approach 

to improve the OLAP query performance. 

1.5.1 CUBE BY Operator 

The CUBE BY operator is introduced in [GBLP96] for conveniently supporting the 

computation of multiple group-bys in OLAP. The computation of CUBE BY is useful for 

answering the OLAP queries that use aggregation on different combinations of 

dimension attributes. The CUBE BY operation computes the group-bys corresponding to 

all poss~ble combmations of a list of attributes. That is, a CUBE BY on t~ attributes 

corresponds to 2" group-bys. 

For the example database with 3 attributes: Product(P), Location(L) and Time(T), 

the collection of aggregate queries can be expressed using the CUBE BY operator as 

the following: 

SELECT P, L, T, SUM(sales) 

FROM R 

CUBE BY P, L, T; 
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The CUBE BY operation will result in the computation of 8 possible group-bys: 

PLT, PL, PT, LT, P, L, T, ALL, where ALL denotes the empty group-by. Each group-by is 

often called as a view or cuboid. The views can be store as tables in ROLAP systems or 

arrays in MOLAP systems. 

1.5.2 Efficient Computation of CUBE BY 

Obviously, one can use a brute-force approach to compute each view in the 

CUBE BY independently. The performance of this approach is very poor. Therefore, 

many researchers study the efficient computation of CUBE BY, i.e., how to compute 2" 

views for a relation with n dimension attributes. Some more efficient pre-computation 

algorithms have been presented in [AAD+96, SS99, YL99] by using a number of 

optimisations, such as computing a view from another previously computed view and 

overlapping the computation of several different views. In [ZDN97, LRS991, algorithms 

for the pre-computation of aggregates in MOLAP have proposed, where aggregates are 

stored in one array or multiple arrays. Another efficient computation algorithm in MOLAP 

is introduced in [LukOl], which considers the relationships among the individual 

aggregates and stores a!l the aggregates in one multidimensional array that is 

com~:essed into a single linear array in physical level. 

However, the pre-computation of all views in CUBE BY usually is not feasible 

because it often exceeds the available storage limit and incurs a high maintenance cost. 

Pre-computing all views has also been thought as not the most cost beneficial approach. 

It has been pointed out in [SDN98] that the gains from more pre-computation outweigh 

the cost of additional disk space after some degree of pre-computation. So, a practical 



CHAPTER 2. RELATED WORKS 

alternative is partial pre-computation of OLAP databases, which is also the subject 

matter of this thesis. 

1.6 Partial Pre-computation 

The objective of a partial pre-computation strategy is to select a certain amount 

of aggregates to compute before querying time, so that the query answering time is 

optimised. Two major issues about this optimisation process are: ( i )  How many 

aggregates should be computed? (ii) What kind of queries that a pre-computation 

strategy is optimised for? The first question depends very much on the storage available. 

Microsoft, as the vendor of one of the popular OLAP systems, also suggests that 20% of 

all possible aggregates should be computed. 

The most obvious answer to the second question is that these queries should be 

those that users of an OLAP application expect. This answer though is not easy to 

characterize because it varies from one application to another, sometimes, from one 

user to another. In order to study this important question systematically, one needs to 

precisely identify the set of queries as an object for optimisation. In this thesis, we call 

this set of queries that the users expect, the q u ~ r y  workload1. 

The workload is characterized by the user's explorative and navigational data analysis 
task and shows specific high-level patterns that stem from the structure of the 
analytical task the user is solving [SAP99]. 
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1.6.1 Views as Workload 

Most researchers have chosen the set of all possible views as the query 

workload, based on which their partial pre-computation strategies are devised. The 

workload in [HCKLOO] is a given set of views. In [BPT97], all possible views with varying 

weights are considered. The workload of all possible views with identical weights is 

studied in [HRU96, GHRU97, SDN981. In those papers, different schemes are proposed 

to select a set of views for materialization under some constraints, which are optimised 

to answer the view queries. A constraint can be a limitation of storage space or a 

restriction on maintenance time. They assume that the cost of answering a query is 

related to the sizes of views from which the answer of the query can be computed, even 

for the queries that may ask for the single cells. 

Partial pre-computation schemes that are optimised for views have been 

criticized for lack of support for ad-hoc querying ([BK99, DRT99, KR991). The 

optimizations for the workload of views may not be suitable for ad-hoc querying. It has 

also been mentioned in [KR99] that many OLAP queries may fetch very small answers, 

for example, the total sales of a product sold in last ten years. With workload expressed 

in terms of views, their proposed solutions cannot be guaranteed to always work well for 

all possible queries, including non-view ones. 

1.7 Thesis Objective 

In thesis, we study the same optimisation problem, how to select the aggregates 

for pre-computation such that the query answering time is optimised, but with a different 

query workload. We will first describe what this workload is and then justify why we 

adopt this query workload. 



CHAPTER 2. RELATED WORKS 

1.7.1 Extended Multidimensional Space and Point Queries 

In the multidimensional model, data are considered as points in a 

multidimensional array. For example, tuples in the primary database in an OLAP system 

can be thought of as points in a muitidimensional space. This is a cube, each side of 

which consists of all primary members of that dimension. The primary members are the 

members in the lowest level of a dimension's hierarchy and are values that have been 

exposed in the primary database. Moreover, the tuples in the primary database and the 

aggregates can also be modelled into points in one single multidimensional space, 

called as extended multidimensional space in [LukOl]. This can be seen as a cube, each 

side of which consists of the primary members and all group members. Group members 

are those in the higher levels of a dimension's hierarchy. In the extended 

multidimensional space, the cells that correspond to the tuples in primary database are 

called as primary cells, and other cells as aggregation cells. 

A point query is to ask for the content of a cell in the extended multidimensional 

space. More specifically, we are interested in the point queries on the aggregation cells. 

Actually, the point queries on aggregation cells are range queries over the primary cells. 

Let's consider an example database with 3 attributes: Product(P), Location(L) 

and Time(T). A point query can be: 

Q7 (P7, BC, 2002): What is the total sale of product P I  sold in province BC in 

2002? 

P7 is a primary member in dimension Product. Province BC and 2002 are group 

members in dimension Location and Time. This query asks for the content of an 

aggregation cell, ( P I ,  BC, 2002). This query requires an aggregation over the 

cells that contain the sales of P I  sold in all cites in province BC from January of 

2002 to December of 2002 

10 
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Q2 (PI, Canada, 2002): What is the total sale of product P I  sold in Canada in 

2002? 

P l  is a primary member in dimension Product, and Canada and 2002 are group 

members in dimension Location and Time. This query asks for the content of an 

aggregation cell, (P l ,  All, 2002), which is a summation of the sales of PI  sold in 

all cites in Canada from January of 2002 to December of 2002. 

If the content of an aggregation cell that a point query asks for has been 

pre-computed, we can directly return the answer to user. If not, the answer of a point 

query can be computed by accessing the primary cells and/or the pre-computed 

aggregation cells. 

Obviously, the pre-computation of some point queries may help the answering of 

other point queries. In the above example, if the answer of point query Q1 has been 

pre-computed and used to answer the point query Q2, then we do not need to access 

the primary cells which contains the sales of P l  sold in all cites in province BC from 

January 2002 to December of 2002. 

1.7.2 Justification for Workload of Point Queries 

We define our query workload as the set of point queries that ask for the contents 

of the aggregation cells in an extended multidimensional space. The point queries in our 

workload are actually range queries over the primary cells, whose ranges are 

pre-defined by the natural dimension hierarchies, like the example in section 1.7.1. It is 

more rational to consider the range queries whose ranges are defined according to the 

dimension hierarchies than the queries with arbitrary ranges. For many practical 

situations, arbitrary ranges are not really meaningful to users. For instance, grouping 
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products by a range of item numbers does not make much sense. Users usually 

categorize the products in a way that is meaningful to them; this categorization is often 

registered in the dimension hierarchy. 

As pointed out in [KR99], many OLAP queries only ask for the contents of few 

aggregation cells, like, the total sales of a product sold in last 10 years. The optimization 

for the workload of point queries is well suited for those OLAP queries that require small 

answers. To the best of our knowledge, there is no published paper about the 

optimization for point queries. Moreover, many OLAP queries are ad hoc queries 

[SWS02], which may require computation on demand. Those ad hoc queries may be 

decomposed into a set of point queries in the extended multidimensional space or 

require the answer of a set of point queries for computation. The fast computation and 

processing of the point queries may help to answer those ad hoc queries. 

The workload of point queries can be easily fitted into a MOLAP architecture, 

which stores data in multidimensional arrays and is credited for fast access to individual 

records in the database. In MOLAP systems, queries are modelled as points or 

sub-cubes with ranges in several dimensions [Goi199], which can most likely be seen as 

a set of point queries. The queries are processed and answered by accessing the points, 

nod ranges, in a multidimensional array because cells in a multidimensional array can be 

only sequentially stored in one combination of attributes at the level of physical storage. 

Our optimisation scheme for point queries can be easily adapted to MOLAP systems. 

1.7.3 Our Approach 

There are some special concerns about the point queries. First, there are 

numerous point queries in our workload. It is impractical to propose a partial 
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pre-computation scheme which evaluates every single point query and then decides a 

set of point queries for pre-computation. 

There are two types of cost associated with the answering of a query, the 

processing overhead and the cost of accessing. The processing overhead is defined to 

be the cost of searching for relevant pre-computed cells. The cost of accessing is related 

to how many precomputed cells that should be accessed in order to compute the 

answer of a given query. Most optimisation schemes for the view queries ignore the 

processing overhead. But for the answering of the point queries, the processing 

overhead is an important consideration because point queries are much more numerous 

and the answers of point queries are usually smaller. It is unacceptable to spend a lot of 

time in just locating cells for accessing. So, when we design an optimisation scheme for 

point queries, we will consider devising a strategy that is low in the processing overhead 

and cost of accessing. 

I .  8 Thesis Organization 

In Chapter 2, we review some of the related works in OLAP. In Chapter 3, we 

first demonstrate the challenges associated with processing point queries, and then 

snow how we meet these challenges by introducing a cover-based query processing 

method. This method requires all pre-computed cells form one cube, Pre-computation 

Cube or PC Cube. In Chapter 4, we describe a method for the selection of PC Cube. In 

Chapter 5, we present the experimental results that show the overhead of the query 

processing and the comparisons of the effectiveness of the member selection method. 

Chapter 6 summarizes this study and discusses the future research issues. 
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CHAPTER 2 

RELATED WORKS 

In this chapter, we introduce the view lattice that depicts the relationships existing 

between views. Then we briefly review the algorithms on the pre-computation of views, 

view selection and answering query using the materialized views. 

2. I The View Lattice Framework 

The CUBE BY in [GBLP96] will result in the computation of views, which 

~sirespond to the SQL queries grouping on all possible combinations of the dimensim 

attributes. Those views are usually denoted by the grouping attributes, e.g.: PLT, PL, PT, 

LT, P, L, T, and All for the example database with three attributes Product(P), Location(L) 

and Time(Q, in Section 1.5. 

A lattice is used in [HRU96] and [BPT97] to depict the relationships that exists 

between views. Each node in the lattice represents an aggregate view (can also be 

called as cuboid or group-by). An edge exists in the lattice from node i to node j 
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whenever view j can be computed from view i and view j contains exactly one attribute 

less than view i. In this case, view i is called a parent of view j. In the lattice, there is a 

basic view upon which every view is dependent. There is a complete aggregation view 

'ALL', which can be computed from any other view in the lattice 

The Figure 2.1 shows the lattice of views for the example database with three 

dimensions, Product, Location, and Time, which are represented by P, L and T 

respectively. A view is labelled by the name of the dimension it is aggregated on. In 

Figure 2.1, view PLT is the basic view and a parent of view PL. 

Figure 2.1 A view lattice 

2.2 Pre-computation of Aggregates 

OLAP queries usually involve a lot of aggregation on a large amount of data in 

dat.; \~arehouses. The pre-computation of aggregates can greatly icprcve ~ x r y  

performance. By utilizing the computation dependence among views, many researchers 

develop their pre-computation algorithms to efficiently compute all possible views, which 

is so called view materialization. 

In [AAD+96, DANR961, several efficient view materialization algorithms have 

been presented, e.g., Pipesoft, PipeHash and Overlap, which incorporate several 

optimisation techniques, such as computing a view from its smallest previously 

computed parent, using the data sorting in a particular order to compute all views that 

15 
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are prefixes in that order, and computing the views with common prefixes in a pipelined 

fashion. In [YL99], there are some efforts to study how the skewed data may affect the 

pre-computation of aggregates and an approach to dynamically manage the memory 

usage is proposed. 

A comparison is shown in [ZDN97] about the difference between the view 

materialization in ROLAP and MOLAP, and an array-based pre-computation algorithm 

for MOLAP is proposed. This algorithm stores the partitions of views in main memory 

arrays, and overlaps the computation of different views while using minimal memory for 

each view. In [LRS99], the pre-computation on compressed MOLAP database is 

examined and some algorithms for the computation of views without decompression are 

suggested. 

In [LukOl], another pre-computation algorithm for MOLAP is presented. One 

distinct feature of the ADODA in [LukOl] is that the aggregation cells are treated in the 

same way as the source data (primary cells). Both the aggregation cells and the primary 

cells are stored together in one single data structure, one multidimensional array, which 

allows them to be quickly accessed. The pre-computation in ADODA considers the 

points in multidimensional space. ADODA examines the coordinates of the cells and 

relies on the relationships among cells to defermine how to perform aggregation. A 

graph-theoretic model is employed to ensure the correctness of the summation 

computation. The complexity of ADODA has been so gracefully managed that only a 

single scan of the database is required. 
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2.3 View Selection 

A full pre-computation, which pre-computes all possible aggregates, can provide 

the best query performance, but usually it is not advisable for the following reasons: 

A full pre-computation usually requires a great amount of space to store the 

aggregates. It often exceeds the amount of space available. 

A full pre-computation is not the most cost-beneficial approach. In [SDN98], it 

has been mentioned that the gains from more pre-computation outweigh the cost 

of additional disk space after some degree of pre-computation. 

A full pre-computation usually incurs a high maintenance cost. 

Because of these reasons, many researchers study the problem of partial 

pre-computation, which is to choose a set of views for materialization. In [HRU96], an 

approach is proposed on how to choose a set of views for materialization under a limited 

storage space. They introduce a linear cost model, which assumes that the cost of 

answering a query is related to the size of view from which the answer of the query can 

be computed. The linear cost model has been verified by the experiments. The greedy 

view selection algorithm in [HRU96] tries to decide which aggregate views to be 

pre-computed in order to minimize thb query cost. The greedy view selection algorithm 

first chooses the base view, which is the root in the view lattice. Materializing one more 

view may allow some queries be answered by a smaller materialized view, so that the 

query cost can be reduced. Thus, their algorithm chooses the view that produces the 

largest reduction in query cost. The greedy algorithm repeats this selection process and 

terminates when the total size of the selected views exceeds the space limit. In [HRU96], 

it has been proved that the benefit of the aggregate views selected by greedy algorithm 

is no worse than (0.63 - f )  times the benefit of an optimal selection, if no aggregate view 
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occupies more than some fraction f of the total space available for pre-computation. The 

time complexity of greedy algorithm is O(k * n2), where k is the number of views selected 

and n is the number views in the lattice. 

In [SDN98], another view selection algorithm, PBS (Pick by Size), is proposed to 

address the same problem. The difference is that PBS selects the views solely based on 

the size of the views. In each round, the view with the smallest size among the 

unselected views is chosen until the total size of the selected views reaches the space 

limit. PBS is much simpler and faster than the greedy algorithm in [HRU96]. It has been 

stated in [SDN98] that PBS is so fast that it will enable database administrators to 

determine the points, at which diminishing returns outweigh the cost of additional 

storage space, and how much space should be allocated for pre-computation. It has 

been proven in [SDN98] that the PBS has the same performance as the greedy 

algorithm in terms of the optimal benefit for a subclass of viewlcube lattice called 

SizeRestricted (SR) Hypercube. 

2.4 Query Processing 

For efficient processing of OLAP queries, a commonly used approach is to store 

the results of frequently issued queries in summary tables, i.e., materialized views (or 

cubes), and makes use of them to evaluate other queries. This approach involves 

rewriting queries using materialized views (cubes). 

In [CKPS95], the traditional query optimisation algorithms are generalized to 

optimise the query in the presence of materialized views. Some techniques of rewriting a 

given SQL query are proposed in [SDJL96] such that it uses one or more materialized 
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view. They also suggest a semantic approach to determine whether the information 

existing in a view is sufficient to answer a query. 

An efficient query rewriting method is suggested in [PKL02], which can utilize the 

materialized views having different granularities, selection regions and aggregation 

granularities. In general, for a given OLAP query, there can be many equivalent 

rewritings using different materialized views/cubes in various ways. Their execution 

costs are different from one another. An algorithm is also presented in [PKLOZ] to 

determine the set of materialized views used in query rewriting. 
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CHAPTER 3 

COVER-BASED QUERY PROCESSING 

In this chapter, we first explain some multidimensional terminology that will be 

used frequently in the rest of this thesis. Then, we discuss how to answer a point query 

when the contents of a certain amount of points in the extended multidimensional space 

have been pre-computed. We show that without careful coordination between 

pre-computation and query processing, it is difficult to realize any significant gain in 

query performance from the pre-computation. As a result, we propose a query 

processing method that will make effective use of the pre-computed points provided that 

all prc-computed points form a cube. Finally, we discuss how we devise the strategy for 

efficiently processing the point queries. 

3.1 Multidimensional Terminology 

3.1.1 Dimension Hierarchy 

Data are considered as points in a multidimensional cube. Each dimension of the 

data cube is organized as a hierarchy of levels corresponding to data domains at 
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different granularities. Each level is associated with a set of members. Based on this, we 

define the following terminology: 

o primary member : members at the lowest level of the dimension hierarchy. 

Primary members essentially are the values that are exposed in the primary 

database. 

o group member: all other members in a higher level of the dimension hierarchy. A 

group member is an aggregation of some other members (primary members or 

group members) 

There exists a child-parent relationship between the members in the dimension 

hierarchy. 

o child member of a group member, m : a member that is aggregated into the 

group member m and is at one level below m. 

o descendent member of a group member, m : a child member of m, or a child of a 

descendent member of m. 

o parent member of a member, m : the member which m should be aggregated 

into and is one level above m. In this thesis, we assume that a member can 

only have one parent member. 

o ancestor member of a member, m : parent member of m, or parent of an 

ancestor member of m. 

For the example dimension hierarchy in the following figure (Figure 3.1), {a,, a2, 

as, a4, as, a6) is a set of descendent members of a7. {a5, a6} is a set of children members 

of a,. 
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Figure 3.1 An example dimension hierarchy 

3.1.2 Cell and Cell Addressing 

As mentioned in section 1.7.1, both the aggregates and the tuples in the primary 

database can be considered as cells in the extended multidimensional space. A cell is 

uniquely defined by its corresponding members of the dimensions of the extended 

multidimensional space. The address of a cell T is (ml, m2, ..., mk), where k is the 

number of dimensions and mi is the corresponding member in the i-th dimension. The 

address of a cell can also be called as the coordinate of a cell. We can define the 

primary cell and aggregation cell as the following: 

o primary cell (tuple): the cell whose coordinate contains only the primary members. 

o aggregation cell (tuple): the cell whose coordinate contains at lenst one group 

member 

Aggregation cells and primary cells are related to each other on the basis of 

child-parent relationship among the members in the same dimension hierarchy. A cell Tl 

is said to be a child cell of another cell T2 restricted to dimension i if the coordinate of Tl 

is identical to the coordinate of T2 except that the i-th member of TI is a child member of 

the i-th member of T2. The descendent cell, parent cell and ancestor cell can also be 

defined in the same way. 
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3.1.3 Point Query 

In chapter 1, we introduced the extended multidimensional space and point 

query. In this section, we present the formal definition of the point query. 

Definition 3.1. Point query is defined as: Q(m,, m2, ..., mk), which asks for the 

content of a cell at (m,, m2, ..., mk) in the extended multidimerkional space, where mi is 

a member in dimension i, and k is the number of the dimensions in the relation. 

A point query will return the measure of a cell in the extended multidimensional 

space. If any of the members in the coordinate of the point query Q is a group member, 

the answer of Q will be the measure of an aggregation cell, which is an aggregation over 

a set of primary cells. 

Definition 3.2. The processing overhead of a query is the time spent in 

determining the set of cells that should be accessed in order to compute the answer of a 

given query. 

Definition 3.3. The accessing cost of a query is the time spent in accessing a 

set of cells required and is defined to be the number of cells accessed in computing the 

answer of a given queiy. 

Definition 3.4. The cost of answering a query is defined to be the sum of 

processing overhead and accessing cost of a given query. 

In next few sections, we will study how to use the pre-computed cells to answer 

the point query in the partial pre-computation of OLAP database. Our focus is on how to 

devise a query processing strategy with low processing overhead. 
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3.2 Process of the Point Query 

3.2.1 Query Processing --- No Pre-computation 

The answer of a point query is the measure of the cell that corresponds to the 

query. We define the measure of a cell T to be a non-holistic aggregate function 

([GBLP96]) of all measures of cells that are collectively represented by T. The measure 

is recursively defined: 

1) If the children of Tare primary cells, the measure of T is a function of measures 

of all these children. 

2) If the children of T are aggregation cells, the measure of T is a function of 

measures of all its children of T along any dimension i. 

The desired measure can be computed via the above recursive method in a top 

down manner. Alternatively, the result that follows from the above definition, and is 

proven in [LukOl], offers another way to compute the measure of a cell. 

Lemma 1: The measure of T is an aggregate function of measures of all primary 

cells that are also descendent of T. 

Lemma 1 shows that the measure of an aggregation cell can be computed from 

the set of all its primary descendent cells. 

The above discussion suggests two methods to compute the answer of a poini 

query in case of no pre-computation. The top down approach used in [LukOl] is probably 

the one that most would choose. Starting from a given query Q, the top down approach 

locates the children of Q along one dimension, and so on, in a way that follows the 

definition of the measure of a cell. Alternatively, we can follow a "bottom up" approach 



CHAPTER 3. COVER-BASED QUERY PROCESSING 

according to Lemma 1, which is to compute the answer of Q from the set of all primary 

descendent cells of Q. 

3.2.2 Query Processing and Partial Pre-computation 

The strategies in section 3.2.1 work fine in case of no pre-computation. But in 

partial pre-computation, neither of the strategies would work out if we do not carefully 

choose what to pre-compute. Let us, for example, take a greedy approach to select the 

cells for pre-computation, which is similar to the greedy algorithm in [HRU96] for view 

selection. After the pre-computation phase, a set of cells, say S, has been 

pre-computed. Now we will try to answer a point query Q(ml, ..., m,,) by using the 

pre-computed aggregation cells. We definitely do not use the bottom-up method, 

because it will bypass the set of pre-computed aggregation cells entirely. The top down 

method, on the other hand, has to deal with two issues associated with query 

decomposition: how to efficiently determine the child-parent relationships between the 

query and the pre-computed aggregates, and how to find a good decomposition. 

Iri the top down approach, the query Q will be first decomposed into its childm. 

For each child of Q, the set of pre-computed cells S will be searched to check whether 

h e  r,;z;sure of each child of Q is available. If some of Ihe children of Q havs ra t  be;;, 

pre-computed, they have to be decomposed and processed against S repeatedly. This 

can be a fairly expensive process. 

Assuming now that we somehow are able to determine all child-parent 

relationships of cells efficiently, let us consider how a query may be decomposed against 

the pre-computed cells. Figure 3.2 shows an example of the dimension hierarchies of a 

2-dimensional database. The dimension attributes are A and B. The members that are 
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numbered within the interval [1,4] are primary members, and the remaining ones are 

group members. 

Figure 3.2 Dimension hierarchies for dimension A and B 

The following figure (Figure 3.3) shows how every cell (or point query) in the 

OLAP database can be decomposed. 

a lb l  alb2 alb3 alb4 a2bl a2b2 a2b5 a2b4 a3bl a3b2 a3b3 a3b4 a4bl a4b2 a4b3 a4b4 

Figure 3.3 Query decomposition -All queries 

We will use the above figure to show that it is not easy fcr top-down query 

decomposition method to choose a good decomposition. Suppose that the query Q is 

(a7, b,) and there are two pre-computed aggregation cells, (a5, b7) and (a6, b7). The 

above graph (Figure 3.3), which shows one possible decomposition of each cell, cannot 

utilize the pre-computed cells to help to answer the query Q. The decomposition of Q in 

Figure 3.3 requires 4 rounds of decompositions and accessing total 30 cells. Indeed, the 
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query Q(a7, b7) can be decomposed into (a5, b7) and (a6, b,), which is obviously a much 

better choice. Unfortunately, this decomposition could not be chosen unless we are 

aware of these child-parent relationships before the top-down decomposition begins. 

To conclude, the top down method is not a good choice in case of partial 

pre-computation. We have to resort to some version of bottom-up method. But 

straightforward bottom-up method, which accesses all primary descendent cells of the 

query, would not help as it would bypass all pre-computed aggregates. One alternative 

approach is to carefully choose the cells for pre-computation such that it will make the 

query processing efficient. In the remaining of this chapter, we will present a query 

processing strategy, assuming that the set of pre-computed cells satisfy certain 

conditions. 

3.2.3 Query Processing in I-Dimensional Database with Partial 
Pre-computation 

In order to gain an appreciation of how the point query can be efficiently 

processed and answered by using the pre-computed cells, we will start with a very 

simple OLAP database, e.g., a I-dimensinoal database. In the dimension's hierarchy, 

we define: 

Definition 3.5. Primary Descendent Members of a member m, pdm(m), is the 

set of primary members that are also descendents of m. 

In a 1-dimensional database, the primary descendent members of a member m 

can be thought as the primary descendent cells of m. According to Lemma 1, the 

measure of m is computable from its primary descendent members. 
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Definition 3.6. Cover of a member m, {m,, ..., m,,), is a set of members if 

n 

Updm(m, )=pdm(m) and pdm(m, ) fl pdm(m, )=0 for Is i f j ln.  
i= I 

The following lemma, which is a strict forwardness of non-holistic function in 

[GBLP96], will be stated without proof and shows the relationship between a member 

and its cover. 

Lemma 2: The measure of m, which is the result of a non-holistic aggregate 

function over pdm(m), is computable from the cover of m. 

Let's consider an example of I-dimensional database, whose dimension 

hierarchy has 3 levels (as in Figure 3.4). Each member in the dimension hierarchy is 

also a cell in the database, a I-dimension array (as in figure 3.5). 

Figure 3.4 Dimension Hierarchy 

Figure 3.5 Extended I-dimensinal space 

Let Q(m) be a query on this database and m be a7, the root of the hierarchy that 

has not been computed. Query Q(a7) can be computed from pdm(a7), one of a,'$ covers. 

This will require accessing 4 cells, {a,, a*, a3, a4). Now, suppose another cover of a7, 

i.e., {a5, a6), has been pre-computed. Then the query Q(a,) can be answered by 
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accessing 2 cells associated with members in the cover {a5, as). Obviously, the query 

accessing cost is lowered. 

In the partial pre-computation of I-dimensional database, a cover is said to be 

available if every member in the cover is either a primary member or a pre-computed 

member. For any member m, there exists at least one available cover, which is the set of 

primary descendent members of m. If there is more than one cover available for a point 

query in a partially pre-computed I-dimensional database, we should choose one with 

smallest cardinality, which is called MinCover, because the smaller the available cover 

is, the faster the query is answered as less cells will be accessed. A MinCover of a given 

point query in I-dimensional database can be found by the following algorithm in case of 

partial pre-computation. 

FindMinCover Algorithm: 

Input: the dimension hierarchy of I-dimensional database, a set of pre-computed 

mem:,ers and any member m. 

Output: C, a set of members 

1) Initially, let C be the set of primary members that are also descendents of m, 

which is an available cover of m. 

2) For each member, mi, in C. 

a) Locate the path from mi to m. 

b) Find the pre-computed member, miJ, which is closest to m in the path and 

add mi' into C. 

c) Remove from C the members which are descendent of miJ. 
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Lemma 3. If C and C' are two covers of a member m and every member in C' is 

a member in C or a descendent of some member in C, then ICll lCl. 

Proof: Let C and C' be two sets of members, {ml, m2, ..., m,} and {mJl, m6  ..., 

m;}. Divide C'into a set of n  subsets, {sf, SZ, ..., s,}, such that each subset Si contains mi 

or all members in C'that are descendents of mi in C. First, we will prove that Si fl s, = 0 if 

l l i f j l n .  Suppose there is a member m: in C'which is a descendent of two members, mi 

and mj, in C. Then, a primary descendent member of m', will be descendent of mi and m, 

too, which means that there is overlap between pdm(mi) and pdm(mj). This contradicts 

the definition of cover. Moreover, each subset is also non-empty, or else there will be 

some primary members that are descendents of a member in C but not descendents of 

any member in C', which also contradicts the definition of cover. Thus, we have IClllCI. 

Q.E.D. 

Theorem 1. Algorithm FindMinCover correctly outputs an available MinCover of 

any member m in the dimension hierarchy of I-dimensional database in case of partial 

pre-computation. 

Proof: Obviously, the output C is an available cover, since none of members in C 

can be a descendent of any other members in C. And C initially contains all the primary 

crscendent members of m and a primary member will be removed from C only when its 

pre-computed ancestor has been added into C. 

We are going to prove that the size of C is no larger than that of any other 

available cover of m in a partially pre-computed I -dimensional database. Suppose there 

is another available cover of m, C'. According to the definition of cover, for any primary 

descendent member of m, pi, either pi is a member in C' or there is one member p' in C', 

which is the ancestor of pi. Moreover, according to the FindMinCover Algorithm, either pi 

is a member in C or there is one member p in C, which is the pre-computed ancestor of 
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pi that is closest to m. Thus, p' is either p itself or a descendent of p. So, for available 

covers of m, C and C', any member in C' is either a member in C or a descendent of 

some member in C. According to Lemma 3, we have JCII(C1. Q.E.D. 

So, the FindMinCover algorithm is able to find an available cover with smallest 

cardinality for any member in the dimension hierarchy of a I-dimensional database in 

case of partial pre-computation. The time complexity of the FindMinCover algorithm is 

linear to the number of primary descendents a member has. We now formulate our 

query processing strategy for I-dimensional databases, which is: 

Query Processing in partially pre-computed I-dimensional database: 

1) [preparation] For any members in the dimension hierarchy, mi, compute a 

MinCover of mi. 

2) [processing] For any point query Q(m), retrieve the MinCover of m computed in 

step 1). 

3) [accessing] Access the cells associated with members in MinCover of m and 

compute the answer of Q. 

!ri t r : ~  preparation phase sf the above algorithm, we can compute a MinCover for 

every member in the dimension hierarchy, i.e. by applying the FindMinCover for each 

group member in the hierarchy and storing them in a table. A Mincover of any member 

can be retrieved during the processing phase. The above query processing strategy has 

a very low processing overhead because only one simple table lookup operation is 

required when a query is posed. This query processing strategy is also effective 

because the point query is computed from its MinCover, which is one of the smallest 

p f r  ~f members from which the answer of a given query can be computed. 

3 1 
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3.2.4 Query Processing in Multidimensional Database 

Intuitively, the query processing in I-dimensional database can be extended for 

multidimensional database as the following: 

For a point query Q(ml, m2, ..., mk), 

1) find a MinCover for each member in the coordinate of Q: MinCover(ml), 

MinCover(mp), . . ., MinCover(mk). 

2) compute the answer of the query Q from the set of cells in the Cartesian 

product of MinCovers: MinCover(m,)x MinCover(m2)x . .. x MinCover(mk) 

However, this simple extension from I-dimensional database is not always 

correct because there is no guarantee that the MinCovers for all members in the 

coordinate of Q exist and all the cells in the Cartesian product of MinCovers have been 

pre-computed. One method of making this query processing feasible is to make sure all 

cells in the above Cartesian product are pre-computed. 

3.3 Cover-based Query Processing 

In our scheme, we assume there is a subcube of the extended multidimensional 

space, every cell of which has been pre-computed. We call that subcube as 

Pre-computation Cube or PC Cube. Each side of PC Cube contains a subset of all 

members of that dimension, Selected Members Set, which is carefully chosen such that 

we can compute a MinCover for any member from the Selected Members Set of that 

dimension. So if we want to compute the answer of query Q(ml, ma ..., mk), we will be 

able to use the Cartesian product of MinCovers: MinCover(ml)x MinCover(mp)x ... x 

MinCover(mk) because all cells in that Cartesian product of MinCovers have been pre- 



CHAPTER 3. COVER-BASED QUERY PROCESSING 

computed and included in the PC Cube. We will address the selection of members for 

the PC Cube in Chapter 4 and the computation of PC Cube in Chapter 5. 

With the presence of the Pre-computation Cube, any given point query will be 

able to be processed by the following method: 

Cover-based Query Processing 

1) [preparation] Compute a MinCover of each member in every dimension, 

2) [processing] For any point query Q(mr, m2, ..., mk), get a MinCover for each 

member in Q's coordinate. 

3) [accessing] Access the set of cells in the Cartesian product of MinCovers: 

In our strategy, the MinCover for each member in every dimension is computed 

and stored in tables in the preparation phase. Thus, in the processing phase, only k 

table lookup operations are required, where k is the number of dimensions. This gives us 

a very low processing overhead. In cover-based query processing method, the 

accessing cost of a query, which is defined as the number of cells accessed, is the 

cardinality of the above Cartesian product of MinCcvers. We now will show that the 

accessing cost of a query is the lowest one, given the presence of PC Cube. 

We define the primary descendent cells of a cell T(mr, m2, . ..,mk), pdc(T), as the 

set of all primary cells that are descendents of T. The primary descendent cells of Tare, 

pdm(ml)x pdm(m2)x ... x pdm(mk), the Cartesian product of the primary descendent 

members of members in T's coordinate. According to Lemma 1, the measure of a cell T 

can be computed from its primary descendent cells, pdc(T). 
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Having defined the cover for a member in 1-dimensional database (section 

3.2.3), we now extend the concept of cover into multidimensional database. 

Definition 3.7. Multidimensional Cover of a cell T is a set of cells, {Tl, ..., Tn}, in 

n 

extended multidimensional space if Updc(~;)=pdc(~) and pdc(T)npdc(T,)=0 for 
i= I 

Obviously, the measure of T, which is the result of a non-holistic aggregate 

function over pdc(T), is computable from a multidimensional cover of T. In the partial 

pre-computation of multidimensional OLAP database, a multidimensional cover of a cell 

is said to be available if every cell in the multidimensional cover is either a primary cell or 

a pre-computed aggregation cell. For any cell in the extended multidimensional space, 

there always exists at least one available multidimensional cover, its primary descendent 

cells. 

We will now prove that the set of cells used to answer a given point query in 

cover-based query processing is one available multidimensional cover with smallest 

cardinality, with the presence of PC Cube. 

Lemma 4: Suppose S and S' are two multidimensional covers of a cell T. If every 

c.-!! % .?' is. 5 cell in S or a descendent of some cell in S, then ISI<=IS1 

Proof: Let S and S' be two sets of cells, {cl, c2, ..., en} and {c',, c;, . ., c;}. First, 

we will prove that if a cell in S' is a descendent of some cell in S, then it cannot be a 

descendent of more than one cell in S. Suppose that a cell c' in S' is a descendent of two 

cells, c, and c2, in S. Then primary descendent cells of c' are descendents of c, and c2, 

which means that there is overlap between pdc(cl) and pdc(c2). This contradicts the 

definition of the multidimensional cover. 
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Now, let's divide S'into a set of n subsets, {s,, s2, ..., s,,), such that each subset 

q contains ci or all cells in S' that are descendents of sj. Each subset will have no 

overlap with any other subsets because a cell in S' can only be a descendent of one cell 

in S. Each subset is also non-empty, or else there will be some primary cells that are 

descendents of a cell in S but not descendents of any cell in S', which contradicts the 

definition of multidimensional cover. Thus, we have ISll lSl. Q.E.D. 

Theorem 2. With the presence of PC Cube, for any point query Q(ml, m2, ..., 

mk), the set of cells in the Cartesian product of the MinCovers of the members in the Q's 

coordinate is one of the smallest available multidimensional covers of Q . 

Proof: We first prove that for any point query Q(ml, m2, ..., mk), the set of cells in 

the Cartesian product of the MinCovers of the members in Q's coordinate, is an 

available multidimensional cover of Q. Let S denote the Cartesian product of the 

MinCovers of the members in Q's coordinate. Suppose T,(fjl, tj2, ..., tjk) is a cell in S, 

where tu is the j-th member in the coordinate of 6 and tu€ MinCover(mi) for 1 l i  Sk. Then, 

the primary descendent cells of T, are pdm(fjr)x pdm(ti2)x . .. x pdm(tjk). According to the 

definition of MinCover, it is easy to prove that the union of pdc(6) is equal to the pdc(Q), 

and there is no intersection between the sets of primary descendent cells of any two 

c ~ l l s  irl S. Thus, for point query Q, the Csrtesian ?rodl~ct of the MinCnvers nf !he 

members in the coordinate of Q, is a multidimensional cover of Q. Obviously, every cell 

in S is included in PC Cube, which means S is available. 

We now prove that S is one of the smallest available multidimensional covers of 

Q. Assume there exists another available multidimensional cover of Q in PC Cube, S'. 

Obviously, the union of primary descendent cells of cells in S' should be equal to the set 

of primary descendent cells of Q. Suppose a primary cell P(pl, p2, ..., pk) is a 

descendent of Q(ml, mn, ..., mk). There must exist a cell T'(tl,, tJ2, ..., t i )  in S', such that 
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P is either T'or a primary descendent of T'. The i-th member in the coordinate of T', t;, is 

then pi or an ancestor of pi. Meanwhile, T' is a descendent of Q, so t\ is either mi or 

descendent of mi. Thus, t: is a member in the path from pi to mi. According to the 

definition of FindMinCover, there exists a member in the MinCover(mi), which is the 

member closest to mi in the path from pi to m,. So, for any member t; in the coordinate of 

T: there exists a member ti in MinCover(mi), which is either t; or an ancestor of t;. Then 

there always is a cell in the Cartesian product of MinCoveflmi), which is T' or an 

ancestor of T: And we already have S is the such Cartesian product of MinCover(mi). 

As a result, for any cell T' in S', there is a cell T in S, which is either T' or an ancestor of 

T: According to Lemma 4, we have ISISIS'I. Q.E.D. 

To conclude this chapter, we devise a cover-based query processing strategy at 

the presence of PC Cube. Our strategy has a low processing overhead and can use a 

set of cells with smallest cardinality to answer any given point query, which gives us the 

lowest accessing cost. 
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CHAPTER 4 

MEMBER SELECTION ALGORITHM 

In the section 3.3, we introduced a new organization of pre-computed cells, PC 

Cube, which is crucial to our query processing strategy. Each dimension of the PC Cube 

contains a subset of members in that dimension. In this chapter, we will present our 

methods of selecting members for inclusion into PC Cube. 

4.1 Member Selection Algorithm -- Greedy 

The motivation for developing Member Selection Algorithm (MSA) -- Greedy is to 

find a member-based version of greedy algorithm /i7 jHRU961. Ths greedy algorithm in 

[HRU96] chooses the "bestn view for materialization, one at a time. 

Following a similar approach, our Member Selection Algorithm -- Greedy is to 

look for a member for selection that would achieve maximum benefit per unit of storage, 

on the basis of the additional amount of storage that would be taken up by the 

pre-computation. A sketch of MSA-Greedy would look like: 

Member Selection Algorithm ---Greedy (Sketch) 

3 7 
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Input: Dimension hierarchy for each dimension and space limit 

Output: PC Cube formed by the selected members set on each dimension 

k: Number of dimensions 

1) Initially, let the PC Cube be the primary database, and selected members set 

in each dimension be all the primary member of that dimension 

2) Repeat 

a) Find the member with highest benefit per unit storage among all 

dimensions, say mi. 

b) Include m, as a new member of the j-th dimension in the PC Cube 

Until PC Cube is larger than a pre-set space limit. 

Obviously, we have to compute the amount of storage the pre-computation would 

take up, and the benefit that the selection of a certain member would bring. 

Suppose we use Cube(SMS,, ..., SMS,, ... , SMSk) to denote the PC Cube, 

where SMS, is the set of selected members in the i-th dimension. If a member in the i-th 

dimension, say M, is added as a new member in the i-th dimension of the PC Cube, then 

th t  new PC Cube becomes Cube'(SMS,, .. ., SMS',, . . . , SMSk), where SMS,' = S!dS, 

u {M). Thus, the amount of the additional storage required is the difference between the 

sizes of two cubes, Cube drrd C&e: The size 3T a cube may be estimated by using a 

method in [SDNR96]. 

The benefit of the pre-computation is equal to the reduction in the accessing cost 

of all possible queries in the query workload. Our query workload, as defined in section 

1.7.2, is a set of all point queries in the extended multidimensional space. The accessing 

cost of a query is defined to be the number of cells that must be accessed in order to 

compute the answer of the query. Suppose Q is a query in the workload. Let C(Q) be the 

accessing cost of answering the query Q. The number of c4!s that must be accessed to 
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answer the query Q is the size of the Cartesian product of MinCovers of members in Q's 

coordinate according to our query processing method. When an additional member is 

selected for inclusion into the PC Cube, the MinCovers of some members in Q's 

coordinate may be different. Let CYQ) be cardinality of Cartesian product of new 

MinCovers. Thus, the reduction of accessing cost for answering Q is C(Q)-C1(Q). The 

total reduction of the accessing cost, also the benefit, is CC(Q)-C'(QJ over all possible 

queries in the query workload. The benefit per unit storage is then the benefit divided by 

the additional storage space required. In order to gain an appreciation of how the benefit 

may be calculated, we will start with an example in the following section. 

4.2 Example Benefit Analysis 

In this benefit analysis, we use a very simple 2-dimensional database in Section 

3.2.2, which has two dimension attributes, dimension A and 6. Both dimension A and B 

consists of 7 members. Their dimension hierarchies are shown in Figure 3.2. In the 

following table (Table 4.1), we show the accessing cost of all point queries in case of no 

pre-computation. For example, the accessing cost of query (a5, b5) is 4, since 4 cells in 

{a,,  a*} x {by, b2} need to be accessed. 

Table 4.1 Cost of answering all queries -- no pre-computation 
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Let's consider the accessing cost when b5 has been selected for pre- 

computation. Table 4.1 is then updated into Table 4.2, which shows the new accessing 

costs of all point queries. 

Table 4.2 Cost of answering all queries -- After the pre-computation of b5 

Note that only the columns b5 and b7 need be updated, i.e., all queries (*, b5) and 

(*, b7), where * stands for all members in the dimension A. For example, only 2 cells 

need to be accessed to answer the query (a5, b5) now, i.e., {a l ,  a2} x {b5}. For query (a5, 

b7), only 6 cells need to be accessed, i.e. {a l ,  a2} x {b3, b4, b5}. The benefit of 

pre-computation of b5 is the sum of the reduction in costs of answering (*, b5) and (*, b7) 

queries. 

Suppose a5 is the next choice for selection. This time, the rows a5and a7 in Table 

4.2 are to be updated. The benefit of pre-computation of a5 can be calculated 

accordingly (Table 4.3). 

Table 4.3 Cost of answering all queries --After the pre-computation of b5 and a5 
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According to our cover-based query processing method, a point query is 

computed from the Cartesian product of the MinCovers of the members in the query's 

coordinate. So, at any point of this selection process, the total accessing cost of 

answering all point queries is: 

CCIMinCover(ai)x MinCover(b,)l=(CIMinCover(ai)I)*(CJMinCover(bj)I), where i 
i j I i 

and j range from 1 to 7 respectively. 

The expression is valid because the MinCover of a member in a particular 

dimension hierarchy is independent of the contents of any other dimensions. Each time 

a new member is selected and included into the PC Cube, the MinCovers of some 

members in that dimension are updated. We can compute the reduction in the total 

accessing cost of answering all queries, or equivalently, the benefit of pre-computation 

of a member in dimension A, which is 

(~~MinCover [a j )~-~~MinCovef (a i )~)* (~~MinCover(b j )~) ,  where MinCover'(aj) is the 
i i 1 

new MinCover for the members in dimension A after a member is selected. 

The above example shows how to calculate the benefit of the selection of a 

member in 2-dimensional database. In next section, we will consider how to calculate 

&I-- -,., benef. nf th= members in multidimensional database, so that we can greedily select 

the 'best' member. 

4.3 Benefit Calculation 

We now present a general method to calculate the benefit of inclusion a new 

member for pre-computation. Suppose in certain stage of the selection process, we have 
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a PC Cube, which is the Cartesian product of the selected members set in each 

dimension: 

Pi = SMSi x . .. x SMSi x . .. x SMSk, where SMS, is the selected members set in 

the i-th dimension (the initial value of SMSi is the set of all primary members in the i-th 

dimension). 

The cost of answering all possible point queries is: 

CI = (CIMinCover(ml)l) * . .. * (CIMinCover(rni)l) * ... * (CIMinCover(mk)l), where 

mi ranges over all members of the i-th dimension hierarchy 

Without losing generality, suppose a member in the 1'' dimension, say M, is 

added as a new member of the PC Cube, then the PC Cube becomes 

P2 = (SMS1 u {M))  x . . . x SMSi x . . . x SMSk 

The new cost of answering all possible point queries is: 

C2 = (ClMinCover'(mi)l) * . . . * (ClMinCover(m,)l) * . . . * (CIMinCover(mk)l), where 

mi ranges over all members of the i-th dimension hierarchy and MinCover'(mi) is the 

new MinCcwer for the members in the lS' dimension after M is selected. 

We define the benefit of member as the saving in the total accessing cost of 

answering all point queries, and the benefit per unit space as the benefit of a member 

divided by tlre number of cells added: 

- - XI MinCover(m,) x ... x MinCover(m,)l-21 MinCover'(m,) x ... x MinCover(m,)I 
l{M} x SMS, x ... x SMSi x .. . x SMS, I 
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From the above formula, we can find that the member, which gives the maximum 

(CIMinCover(m1)l - CIMinCovet(ml)l ), has the greatest benefit among the unselected 

members in the lSt dimension. Let's consider how to calculate (CIMinCover(rn1)l - 

CIMinCovef(m~)l). When a new member M in the lSt dimension is selected, only the 

MinCovers of M and the consecutive un-selected parents of M in the lSt dimension will 

be affected. We have the 

MinCover' (ml) = MinCover (ml) - Minmver (M) + 1 , if ml is one of the consecutive 

unselected parents of M. 

So, (CIMinCover(ml)( - CI MinCwer'(m,)l) = (n+l) (IMinCover (M)I -I), whsrs n 

is the number of consect~tive un-selected parents of M. 

CI -c2 Therefore, B(M) = --- 
IP21-IP,I 

where n is the number of consecutive un-selected parents of M, SMSi is the 

selected members set in the i-th dimension, and my ranges over all members in the i-th 

dimension. 
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We now state our member selection algorithm. 

Member Selection Algorithm ---Greedy 

Input: Dimension hierarchy for each dimension and space limit 

Output: PC Cube formed by the selected members set on each dimension 

k: Number of dimensions 

3) Let the initial selected members set in each dimension be all the primary 

member of that dimension 

4) For i = 1 to k, Compute a MinCover of each member in i-th dimension 

5) Repeat 

c) For i = I to k 

Find the mi, among the un-pre-computed members in the i-th 

dimension hierarchy, which will give the highest benefit per unit 

storage 

d) Find the member with highest benefit per unit storage among all 

dimensions, say mi. 

e) Include mi as a new member of the j-th dimension in the PC Cube 

f )  Update cover of m, and all relevant parents of m, 

Until PC Cube is larger than a pre-set space limit. 

The step 2) of above algorithm is to compute the MinCover of each member by 

using the FindMinCover algorithm in section 3.2.3, whose time complexity is linear to the 

number of members in each dimension and which can be performed in advance. The 

step 3) is to greedily choose members for inclusion into the PC Cube and is the major 

loop of above algorithm. The time complexity of our Greedy Member Selection algorithm 

is O(k*n*l), where k is the number of dimensions, n is the average number members in 

each dimension and I is the number of members selected. 
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4.4 Variations of Member Selection Algorithm 

Besides greedy selection of members, we have other approaches to choose the 

members on each dimension. We introduce some variations of the member selection 

algorithm in this section. 

4.5.1 MSA --- Bottom Up 

In this approach, all primary members in each dimension are included into the 

selected members set of that dimension. This selection simply chooses the group 

members from the lowest level in the dimension hierarchy. The Figure 4.1 and 4.2 show 

an example dimension hierarchy with selected members, and the PC Cube. 

All All 

Figure 4.1 Nodes in shadow are selected members in dimension Product and Location 

Figure 4.2 The area in shadow is the resulting PC Cube by MSA-BottomUp 
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4.5.2 MSA --- Top Down 

Top down approach is an opposite of the bottom up approach. The members are 

chosen starting from the highest level in the dimension hierarchy. The example 

dimension hierarchy, the selected members and PC Cube can be depicted as the 

following figure (Figure 4.3). 

All All 

Figure 4.3 Nodes in shadow are selected members in dimension Product and Location 

M Food All 
PI - P8 Computer 

Figure 4.4 The area in shadow is the resulting PC Cube by MSA-TopDown 
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4.5.3 MSA --- No Redundancy 

In the member selection methods mentioned before, the primary members in a 

dimension are always included as a part of the selected members in that dimension. 

There is another variation. When a group member is selected, its primary children 

members will be removed from the selected members set of a perspective dimension. 

We call this selection method as MSA - No Redundancy. An example of the dimension 

hierarchies with the selected members and the PC Cube is shown as the following 

[Figure 4.5 and Figure 4.61. 

All All 

Figure 4.5 Green nodes are selected members in dimension Product and Location 

V) 
2 

V) 
w 

Food All 
Computer 

Figure 4.6 The area in shadow is the resulting PC Cube by MSA-NoRedundancy 
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Obviously, some other approaches to build the PC Cube are possible. For 

example, the selected members set for the PC Cube can be any subset of the set all 

members in a dimension. The selected members do not have to always contain all 

primary members in that dimension. Currently, we don't consider more variations of 

member selection algorithm. 
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CHAPTER 5 

IMPLEMENTATION AND 

EXPERIMENTATION 

In this chapter, we first examine the computation of the PC Cube. Then we will 

briefly introduce the implementation of our approaches. The experimentation is shown 

afterwards. 

5.1 Computation of PC Cube 

3zsically, we use P X ) D P  (jl.uk@l]) to compute the PC Cube. The PDODA 

summation algorithm is proposed mainly for the full pre-computation and to compute all 

aggregation cells in the extended multidimensional space. It cannot be directly deployed 

to compute the PC Cube, whose dimensions contain only the selected members. 

However, we find that the desired PC Cube can be obtained by a full pre-computation 

over the "modified" dimension hierarchies. 

Let's use the example of 2-dimensional database in section 4.5.2. Their 

dixerision hierarchies with the selected members are shown in Figure 5.1. WE can 
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modify the dimension hierarchies of Product and Location and leave only the selected 

members (Figure 5.2). 
All All 

Figure 5.1 Dimension hierarchies of Product and Location 

All All 

Figure 5.2 Modified dimension hierarchies with only the selected members 

A full pre-computation over the "modified" dimension hierarchies can be noted as 

the following Carteslan product. 

J 
1 Computer X 

All 1: 
The above Cartesian product exactly defines a PC Cube whose dimension 

contains only the selected members. So, we are able to apply the ADODA on modified 

dimension hierarchies to compute the PC Cube. 
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5.2 The Architecture of Our Implementation 

We have introduced our approaches in selection, pre-computation and query 

processing. In this section, we will present the architecture of our implementation. Our 

architecture has five components: Selection Manager, Computation Manger, Cube 

Manager, Storage Manger, and Query Manager, which are interacted with each other as 

shown in Figure 5.3. 

Processing bkmures Manager rn f-1 cube ' 
/ Query Manager 1 

R 
PC Cube n 

-. - -. -. . Selection 
User's Perference -,-4 Algorithm 

Selelction 
Manager 

Modified 
Adoda 

Computation 

Figure 5.3 Our implementation framework 

1. Selection Manger: Its main task is to generate the selected members set for each 

dimension of the PC Cube, which will be used for the pre-computation. The 
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selection manager can accept the dimension hierarchy as the input as well as the 

query log and users' preference. Thus, the selection manager can generate the 

selected member set, which is fine tuned according to the query log and users' 

preference. 

2. Computation Manager: It uses the modified ADODA Summation algorithm to 

generate the Pre-computation Cube defined by the selected members set 

obtained from the selection manager. 

3. Storage Manger: It takes care of the storage of the PC Cube generated by the 

Computation Manager. It also handles the organization and the compression of 

the PC Cube. 

4. Cube Manager: It mainly takes care of the retrieval of the pre-computed cells 

from the PC Cube. It accepts the retrieval requests issued from the Query 

Manager and returns the measures of the cells. 

5. Query Manager: It is the main module to handle the users' queries. Each user's 

query is processed by the cover-based query processing method, decomposed 

into a set of pre-computed cells in the PC Cube. After the Query Manager sends 

the retrieval requests to and get the desired measures back from the Cube 

Managar, the result is then formed and returned to the user. 

5.3 Experimentation 

The objective of the experimentation is to examine the feasibility of cover-based 

query processing method and the partial pre-computation scheme. We also compare the 

effectiveness of the various member selection algorithms. 
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5.3.1 Experiment Setup 

Test data set 

The test data set serves as the primary database, which contains all the primary 

tuples and is used to compute the aggregation tuples. In our experimentation, we use 

two data sets. The first one is a real data set that represents 5 years of enrolment data in 

SFU. The schema of this data set has 5 dimension attributes and 2 measure attributes. 

And there are about 20000 primary tuples in the fact table and about 5 million 

aggregation tuples. The second data set we use is a synthetic data set, whose scheme 

is adopted from the one in [SDN98]. The second data set has 5 dimensions, but its 

dimension hierarchies have more members on average and are more complicated than 

that of SFU enrolment data set. Each dimension of the second data set's schema has 6 

levels and has on each level (100, 50, 25, 5, 2, 1) members, starting from the bottom 

level. The second data set allow us to test the scalability of our approach with respect to 

the number of aggregation cells generated and the complexity of the dimension 

hierarchy. This test data set has 100,000 primary cells, which are uniformly distributed. 

The number of all possible aggregation cells that can be generated from the second data 

set is about 3.6*1 08. 

Tsst queries set 

Queries are randomly generated from the query workload we study in this thesis, 

i.e., all point queries in the extended multidimensional space. Two experimental 

parameters are available: the number of queries and the number of group members in 

the coordinate of point query. The number of group members in the coordinate of query 

shows the aggregation level of the query. The more group members in a query, the more 

aggregation is required. Through the test over different test queries, we can tell how the 

different selection schemes influence the query performance for queries at different 
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aggregation levels. In our experiments, we have 6 test query sets. The first 5 test sets 

are 10,000 random point queries with 1-5 group members in their coordinates 

respectively. The 6th test query set has 50,000 point queries, which is the union of the 

first 5 test query sets. 

Partial pre-computation 

Currently, we implement 5 partial pre-computation schemes: MSA - Greedy, 

MSA --- Top down, MSA --- Bottom up, MSA --- No redundancy, and MSA - Random. 

MSA-Random is to randomly choose the group members and is included for the 

comparison of query performance with MSA-Greedy. 

In our approach, we can specify the pre-computation ratio, which ranges from 0% 

to 100%. We are able to examine the query performance of selection schemes at 

different pre-computation ratio. 

Time measurement 

Processing overhead: the time spent in determining the set of cells that should 

be accessed in answering a given point query. 

Accessing cost: the time spent in accessing the set of cells determined by a 

query processing, which is related to the number of cells that must be accessed in order 

to compute the answer of a given point query. 

Query answering time: the sum of processing overhead and the accessing cost 

of a point query. 

Test machine 

Out experiments are performed on an Intel Pentium IV machine running 

Windows 2000. The machine has a physical memory of 1.5G bytes. 
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System status 

We assume a warm system in our tests, which is that all pre-computed cells have 

been loaded into memory. 

5.3.2 Experimental results 

Experiment A: Processing Overhead 

We examine the processing overhead, which is the time spent in determining the 

set of cells required to be accessed. Table 5.1 and Table 5.2 show the processing 

overhead of 10,000 point queries with different aggregation levels. 

Table 5.1 The processing overhead for 10,000 point queries (SFU enrolment data set) 

Query Complexity 
(# of group members in query) 

1 (# Query 
C;mplexity Pre-computation Ratio 

of group members in query) 10% 15% 

16ms 

Table 5.2 processing overhead for 10,000 point queries (synthetic data set) 

Pre-computation Ratio 
10% 

From Table 5.1 and Table 5.2, we find that the query processing overhead on 

two data sets are almost the same though the sizes of two data sets and the numbers of 

aggregation cells generated are quite different. There is also no obvious change for 

queries with different aggregation. The reason is that the processing overhead in our 

query processing method is only related to the number of dimensions of a relation. 

Pre-computation Ratio 
20% 



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTATION 

We also examine the percentage of processing overhead over query answering 

time for 10,000 point queries on different aggregation levels, which has been shown 

the following tables (Table 5.3 and 5.4). 

Table 5.3 The percentage of query processing overhead over query answering time 
(SFU enrolment data set) 

Query Complexity 
(# of group members in query) 

1 

Table 5.4 The percentage of query processing overhead over query answering time 
(synthetic data set) 

Pre-computation Ratio 
10% 

33% 

Query Complexity 
(# of group members in query) 

1 

3 

We observe that the relative processing overhead over the cost of answering 

Pre-computation Ratio 
20% 

29% 

queries is significant, but not high. We notice that the relative cost decrease quickly 

Pre-computation Ratio 
10% 

27.1 % 

23.6% 

whcn the set of test queries requires more agglsgation. It is also interesting to note :hat 

Pre-computation Ratio 
15% 

34.3% 

29.4% 

the relative cost increases as the pre-computation ratio increases. This is due to the fact 

that the processiqg time !-.as !Me chwgq, but i i ~ e  totai al?swering time is reducec! when 

more pre-computation has been done. 

Experiment B: Accessing Cost 

In this experiment, we mainly examine the accessing cost of queries at different 

pre-computation ratio. The accessing cost is calculated on the total number of cells 

accessed for answering all point queries in a test query set. The following graphs (Figure 

5.4 and Figure 5.5) show the number of cells accessed for 10,000 point queries with 1 
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and 2 group members at different pre-computation ratio on two data sets. The selection 

scheme is MSA---Greedy. 

r- - ..- 

For queries with 1 group member 

35000 
30000 
25000 
; 20000 

LO - 15000 
8 ioooo 
L 

5000 
0 

5% 10% 20% 30% 50% 70% 

pre-computation ratio 

I& Cover-based Query Processing I 

For queries with 2 group mrrbers 

5% 10% 20% 30% 50% 70% 

preconputation ratio 

+ Cover-based Query Processing 
I 

I 
Figure 5.6 Number of cells accessed for 10,000 point queries (SFU enrolment data set) 

-- - 

For queries with 1 group m h e r  

I pre-corrputation ratio 

t Cover-has4 Query ?missing 
I 

For queries with 2 group m h e r s  

pre-corrputation ratio 

- -  

I -t Cover-based Query Processing 

L-L -- I 1 ILL 
Figure 5.7 Number of cells accessed for 10,003 point queries (synthetic data set) 

From the above graphs, we observe that much fewer cells are accessed to 

answer point queries with the increase of partial pre-computation ratio. This experiment 

shows that our member selection algorithm is effective, and able to choose the cells that 

would reduce the total accessing cost. It also reflects that our cover-based query 

processing method is able to make use of the pre-computed cells. 
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Experiment C: MSA -- Greedy Vs. MSA -- Random 

Another way of showing the effectiveness of the MSA-Greedy is to compare it 

with an algorithm that randomly selects members for inclusion into PC Cube. In this 

experiment, we compare the query answering time on test query set 6 (50,000 point 

queries) for two selection methods: MSA-Greedy and MSA-Random. We use the 

cover-based query processing method in this experiment. 

pre-computation ratio 

Figure 5.8 Query answering time for MSA-Greedy and MSA-Random 
(SFU enrolment data set) 

- 
CT 

1% 3% 5% 8% 10% 13% 15% 

pre-computation ratio 

Figure 5.9 Query answering time for MSA-Greedy and MSA-Random 
(synthetic data set) 
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From the above graphs (Figure 5.6 and Figure 5.7), we observe that both the 

MSA-Greedy and MSA-Random can yield a better query performance when more 

pre-computation has been done. But, the MSA-Greedy outperforms the MSA-Random at 

all pre-computation ratio. Even the difference between the query answering time for two 

selection methods shrinks with the increase of pre-computation ratio, the query 

performance for MSA-Greedy is still at least 3 times better than that for MSA-Random at 

a high pre-computation ratio (50% for SFU and 15% for synthetic data set). 

For MSA -Greedy, the query answering time drops very quickly with the increase 

of the pre-computation ratio. The pre-computation at 10% of MSA-Greedy can produce a 

fairly good query performance and more pre-computation after that does not help much 

in reducing the query answering time for both test data sets. This implies that the 

pre-computation at 10% has a query performance that is pretty close to that of full 

pre-computation. 

Experiment D: Comparison of  various member selection algorithms. 

In this experiment, we study the impact of different selection methods to the 

query performance for queries at different aggregation level. We collect the query 

answering time for 10,000 queries with 1-5 group members at different pre-computation 

-ti9 on wnthetic d-7ta set. In the following figures, we use MSA.G to rqrersnt 

MSA - Greedy, and MSA - TD for MSA - Top down, MSA - BU for MSA - Bottom up, 

MSA - NR for MSA - No redundancy. 
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Figure 5.10 Query answering time for queries with 1 and 2 group Members 
(synthetic data set) 

pre-computation ratio 
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Figure 5.11 Query answering time for queries with 3 and 4 group Members 

(synthetic data set) 
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pre-computation ratio 
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Figure 5.12 Query answering time for queries with 5 group Members 
(synthetic data set) 

For queries at all aggregation levels, MSA-G, MSA -TD, and MSA -BU can 

produce great improvement in query performance with the increase of pre-computation. 

But, such improvement cannot be observed for MSA - NR for queries with 1-4 group 

members. The reason is that MSA - NR chooses the cells whose coordinates have 5 

group members, which cannot give benefit to queries with 1 - 4 group members. We 

~"r io  observe that MSA-NR gives us ihe best performance for queries with 5 group 

members. Other selection algorithms, however, have a much better overall performance. 
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CHAPTER 6 

CONCLUSION 

6.1 Summary 

The partial pre-computation is a popular topic in the OLAP research. However, 

most of the published papers for partial pre-computation are about optimization for views 

as the query workload. In this thesis, we present a new approach to this research topic, 

by studying the optimisation problem based on a different workload, i.e., the point 

queries in extended multidimensional space, which includes range queries over the 

primary database. We argue that this query workload is representative of queries with 

small answers, and is well suited for the MOLAP systems that features point style 

accessing at the lowest storage level. 

Most works on partial pre-cumputation do not consider the processing overhead, 

which is the time spent in determining how to answer a given query, when devising a 

partial pre-computation strategy. For the point queries, the processing overhead is an 

important consideration. Our study shows that without careful coordination between 

pre-computation and query processing, it would be difficult to realize any significant gain 

in query performance from the pre-computation. We propose a Cover-based Query 

Processing method, which presumes that the pre-computed aggregates form a cube, i.e., 

PC Cube. The cover-based query processing method is low in processing overhead. We 
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also prove that our method is able to find one of smallest sets of cells that must be 

accessed in order to answer a given point query. 

Member Selection Algorithm (MSA)-Greedy is proposed to construct a PC Cube. 

MSA-Greedy is efficient, and its time complexity is O(k*l*n), where k is the number of 

dimensions, I is the number of members selected and n is the average number of 

members in each dimension. Our experiments show that the selection by MSA-Greedy 

is also effective because the PC Cube generated by the MSA-Greedy leads to much 

shorter time required to answer point queries than a randomly selected PC Cube. It also 

has the best overall performance among variations of member selection algorithms. 

6.2 Future Work 

This thesis presents a new approach for the problem of partial pre-computation 

that is optimised for the workload of point queries. There are some interesting aspects 

with this approach that deserve more in-depth investigations. Some of them are listed 

here: 

In this thesis, we propose a Greedy Member Selection algorithm and some of its 

variations. It is stili interesting to find some other member selection algorithms, 

like the algorithm that may not always include all primary members. 

Our query processing method is proposed for handling point queries. It can be 

extended to process the region queries. The query decomposition for region 

queries can be performed in a way similar to that for point queries. But a simple 

extension may not be adequate. It will be interesting to study the optimisation 

problem involved in processing the region queries. 
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