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Abstract 

Nonregular factorial designs can be used to conduct screening experiments involving many 

factors and their interactions, using a small number of runs. Linear model selectioli is 

<:hallenging in this case because the design is not  orthogonal^ the numbcr of potentia.1 models 

is huge, and the number of ohserva.tions is small. A new procedure is proposed to a,id 

lriodel selection in sucli cases. A non-convcrgcnt sirnuhted aunealing algorithm is used t,o 

generate a large set of good models that, arc too big; common submodels within this set are 

then identified using visualization techniques. An automatic method of extracting the best 

smaller irloclel from the oversized-model set is also proposed. The new method has good 

perforlnance, a,nd provides graphical output that can be very helpful in decision making. 

Although developed for industrial screening experinlents; it can be applied to any suitable 

regression problem. 

Keywords: linear regression; model selection; nonregular factorial designs; silnulat,cd all- 

nealing; effect sparsitjy effect heredity 

Subject Terms: regression ana.lysis; experimental design 
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Chapter 1 

Introduction 

One of t,he nlost common goals in sta.tistica1 work is to identifii which variables have a11 

important cffect oil a. process. A11 iilvestigat,or inay have a la.rge collection of poteiltial 

predictor variables, and the goal of thc study is to find a small number of variables from 

this collectioii that, together, lmve the biggest influence on a response of intercst. 

Frequently, the investigator will use the standard ir~iiltiple linear regression model to 

a.nalyze the da.ta. In this case, the problem of choosing important va,riables is called lirrew 

modcl selection or subset selcction. It is vital tlmt the model selection step be done well, 

sincc all subsequent inferenc:es assume that the chosen model is, in fact: tri~c. 

Industrial screening expcrinrcnts constitute one case in w11ic:li inodel selection is difficult 

to do well. This type of experiment involves considering a largc i~umber of variables in a 

sinall number of cxperirnental runs. The goal is not to build a precise final model, but ratlier 

to reduce the pool of possiblc predictor varia.bles in tlie most cost-efficient way. 

Thc small number of data points in screening experiments can makc the results subject, 

t,o significaiit sampling va.riability, and the large number of varia,bles ineans tl~crc are a, liugc 

ninnber of possible models to consider. Tliese features combine to pose a. serious challenge 

to exist,ing model selectioi~ methods. The present work proposes iinproved niodel selectioii 

tools for finding the set of active varial>les in a screeiling experiment. 

1.1 The Problem: Model Selection 

In a broad sense, model selection describes thc task of choosing a matlieinatical representa- 

tion for the system under study-A ubiquitoiis task in empirical disciplines. I11 the prescnt 
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case, a more restricted definition is used. It  is assunled that linear regression will be used to 

model the response, and that, a fixed (though large) pool of candidat,e predi~t~ors has beell 

established. The model selection problem then becomes a question of choosing the sul>set, 

of predictors that best explains the variation in the response. 

Linear Model Selection 

One goal of regression is to describe the dependence of a single response variable, Y ;  on a 

set of k predictor variables, {Z1, Z2,  . . . Z k ) .  This pool of availthle predictors is asslimed to 

contain all of the variables wit,h significant inflnence on Y. The multiplc regression model 

posits the following relationship between Y and the 2's: 

In an experinlent, a responsc will bc measured for each of n trials, called mns.  Let Zij 

be the value of the i l lL predictor in nu1 j. Each run will obey equation (1.1), so the model 

for the experiment can he written as 

or, more compactly: 

Y =  Z p + € .  
( n x  1 )  +  ( ( + l ) x  1 )  (nx L )  

(1.2) 

The ( k +  1) P's in (1.1) and (1.2) are the true coejqicicnts, which are unlmowi~. The term 

,Oo is the intercept and accounts for the overall mean value of Y. The vector Y is a random 

vector of observat,ions; when referring to ol>served data, it will be denot,ed y. The matrix Z 

will be called the fu,ll rnnt~ix. Each of its columns represents a particular predictor variable, 

and its columns, together; represent the entire universe of potentvial predictor va.riables. 

Note tl1a.t the first column of Z is a column of ones, to account for the intercept term. The 

column of Z corresponding to the jCh variable will be denoted Zj, so tallat the full matrix is 

formed by a,ppending these columns onto an intercept colunln: Z = [l )Z1 1 2 2  1 . . . I Z k ]  . 
The term 6 represents the error variability or noise in the process. Under t,he model 

assumptions, the ci terms are assumed to be independent and identically distributed nonnal 
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random variables, so that E is an 71,-variate normal random vector: E - &(O, a21). The 

uiiknown quantity a is referred to as the ~esidual stmdard deuiation,, and a2 the em7. 

vuriance. The set {P ,  a2)  constitute the k + 2 unlmown pammeters in the model. 

The inodcl formed l ~ y  including the entire list of predictors is known as t,lie ,full model. 

The general term model will be used to describe a, particular subset of these predictors. 

Operationallj~, an model is formed by selecting a number of columns from the full rna,trix; 

these can be combined with ail intercept colurnn to form the corresponding model m,atrix. 

Model lnatrices will be denot.ed by M. For example, the model formed by including only 

variables 1, 3 ,  and 7 would be M = [11Z11Z31Z7]. 

The size of a model is defined as the number of variables in the model, ilot including the 

intercept. So the model matrix for a niodel of size p has dimensions s~ x (p + 1). There are 

(:) different models of size p; this number ca.11 become very hrge as t,l~e nurn1)er of variables 

increases. 

Model selection is concerned wit11 the task of choosing a subset of the variables in the 

full model, to form a smaller model tha.t is best in some sciise. If one could dcterminc thc 

true coefficients for the full model, then there would be no need to do model selection. The 

full inodel itself would be best, w it would provide the most coinplete description of the 

truth. In real applications, liowever, there are several factors that provide stro~lg nlotivation 

to do model selection: 

1. It will usually not be possible to estima.te all of the coefficients with high precision. 

In such a case, the full model may have worsc predict,ive or explanatory power than a 

well-chosen smaller model. 

2. Even if good estimation of the full model is possible, nmny of the predictor variables 

may have little or no influence on the response. In this case the model may be 

considered ~innecessnrily coinplex. A researcher will usually prefer a s l rd l  model 

tl1a.t is easy to interpret, and contains only the influential variables. 

3. Tlie true data-generating process may not conform exactly to the linear model 1.2. 

In this case tlie full model may perfor111 worse than a smaller model would. 

4. I11 cases where the number of rlins is less than t,lle number of predictors, it is not 

possible to estimate the full vector of coefficients in the first place. Model selection is 

a necessity. 
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For the ~lorma,l-error regression modcl, model selection problems may be divided into 

two types based on the orthogonality or non-orthogonality of the colurnns of 2. If the 

columns of of Z are all mutually orthogonal ( z T z ~  = 0 for all 1: # j ) ,  then the coefficient 

of any mriable may be estimated independently of the others. This effectively separa.t,es 

the parameter estimation and model selection portions of tlie analysis. Model selection 

reduces to a problem of separating the statistically (or practically) significant effects from 

the insignificant ones. 

The situation is considerably different if any of the pairs of Z colulnns are not orthogonal. 

In this case some or all of the coefficient estimates will be correlated with each other, and 

the estimiczte for c1 chosen variable will depend on which other variables are included in 

the candidate model. As a result, model selection and coefficient estimation steps cannot 

be separated. Model quality must be assessed on a model-by-model basis, necessitating a, 

search through the space of possible models. Tlie present work focuses on problems of this 

type, particularly cases for which the model sea.rch is difficult,. 

The Case of Screening Experiments 

An experilrient is called a screening experiment prilna,rily based oil its objective: t,o select 

the few important variables from the many wailable onesi with a niininiuin of runs. This 

definit,ion suggests that a screening experiinent will have a wide full ~natrix-small rt and 

large k .  Small n a.nd large k both make model select-ion particularly challenging: 

A small number of runs means t11a.t the results of the experiment Inay be subject to 

high sampling va.riaBi1it.y. Replications of the experiment might yield y-vectors that 

support different models. 

A large pool of predictor variables means that the nulnber of possible models is hiige. 

A huge model set will worsen thc ~ncertnint~y about the best model, as thcre will be 

more nlodels in competition. 

The huge model set will also make it more difficult to search thc space of candidate 

models. Exhaustive search of all mod& of size p may not tw possible, lnaking it hard 

even to find the best model. 

IYhen tlie best choice of model is very sensitive to sampling variability, or if therc are 

nmny nlodels that are almost equally good, model selection uncerta,i7~ty is mid to exist. 
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The charact,eristics of screening expcrinients (few data points, huge model sets) make tlieni 

prone to model selection uncertainty. 

1.2 Application Area: Nonregular Factorial Designs 

The domain of experimental design covers studies where predictor varia.bles may be set or 

controlled t,o pre-specified values in each run. The variables under direct control of the 

experimenter a.re usually called factors. Traditionally, the ability to set factors to specific 

values (or levels) has been used to ensure that the full matrix for t,hc experiment consists 

of mutually orthogoiial columns. Hence model selection in many designed csperiinents does 

not involve nlodel search. 

I11 designs used for screening, however, it, is often advalitageous to sacrifice ortliogoriality 

in order to consider more variables in the same number of runs. DC5igns of this type fall 

into the category of non,regulu~ .factor..ia,l designs. Nonregnlar designs share the property, 

colriinorl in regression cases, of having predictor colulriris which are neither collinear nor 

orthogonal. As a, result, coefficient estimates a,re correlated. In the experimental design 

literature, this sitmtion is called partial aliasing1; designs with extensive partial aliasing 

are said to lime complex aliasing. 

A number of types of design exhibit complex aliasing. These include nearly-orthogonal 

arrays; 3k-7) factorial designs with linear-quadratic: parametrization; supersatura.ted designs; 

and Plackett-Burman designs with interaction terms considered (see IVu and Hamada 2000, 

chaptcrs 7 and 8 for more detail). In terms of their analysis, such designs bear a strong 

resemblance to the regression case. Because of coinplex aliasing, effect estimation is insep- 

ara,ble from model selection. 

Plackett,-Burman designs are two-level designs based on Hadamard matrices (orthogonal 

matrices with elltries f 1): witsli run sizes that are multiples of four but not powers of two. 

The smallest Plackett-Burman designs therefore have n = 12 and 71. = 20. The 12-run design 

(PB12)  can be used to study up to 11 hctors in 12 runs: and the 20-run design (PB20) to 

study up to 19 factors in 20 runs. These two designs will be used as excmplsry cixes of 
- -~ 

'More precisely, partial aliasing refers to the existence 01' bias in factorial eflect estimates due lo omission of 
other non-confounded effects from the model. Since the concept of omit.ted variables has not been considered 
yet (2 is defined to contain the complet,e universe of predictors), the concept. of partial aliasing has been 
lir~lted t.o it.s root cause-r1o11-ort,hogorlal prcdict,or c:olr~nlns. 
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sc:reening designs with coinplex aliasing, for whicli model selection is difficult. The PBI2 

design is shown in Figure 1.1. 

The niatrix of fa.ctor sett,ings, X in tlie figure, is also known as tlie design matrix. The 

columns of the design ma.t,ris represent tlie variables under direct control of the experimenter. 

Tllesc variables, tlie factors, will also be called de.sign variables or maim effects2. Note that, 

as defined here, the design matrix does not iiiclucle ail i1iterc:ept colurrin. 

In the case of the PBI2 design, the columns of the design matrix X are mutually 

orthogonal. In many situations it is necessary to consider not just inain  effect,^, but also 

two-way ~:r~teraction,s. A two-way interaction is used to capture tlie joint effect of two factors. 

Screening experiments usua.lly will assumc that intera.ctions involving nlore than two factors 

are negligible; so whenever tlie term interaction is used, two-way intcractions will be implied. 

Interactions arc included in tlie model as the product of two design varia.bles. For 

exa.inplc, to include the interaction betweell XI  and Xp, an extra. colulnii could be added 

to t l ~ c  model rnat,rix, consisting of the eleinentwise products of the coluinn vcctors XI and 

X2. Where it will not be ambiguous, such an iiitera.ction column may be written using the 

notation X 1 X 2 .  The two main effects that combine to form a particular interaction will be 

called the parent main effects for tallat interaction. 

I t  is common for the columns of the design matrix to be represented as the letters 

A, B, C, and so on, as shown in Figure 1.1. A11 interaction is indica.ted by pairing tlie lctters 

associated with the parent main effects; e.g., the rnodel consisting of factors A, B, and their 

interaction would be written as (A, B: AB). It  may also be convenient to refer to factors by 

their column number in the design int~t~rix; so the same model could be written (1,2,1*2).  

For a design with U J  fwtors, there me ( y )  intera.ctions. For the PBI2 case, with w = 11, 

there are 55 interttc:tions, yielding 66 colurnns plus an intercept in the full matrix. A key 

feature of this cxpanded full lnatrix is tliat orthogonality is lost once the interactioli colulniis 

are added. Ea.cl1 main effect is partially aliased with all interactions not containing itself, 

and eacli interaction is partially alicued with all variables not cont,a.ining one of its parcnts. 

regression approach is followed in lhis project, so reference will usual1,y bc made to coefIicients ra(;lm 
t l~an  to effects. The t8ernl "main effect" is retained as a convenienk name for khe corresponding vur.iuDle. 
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A B C D E F G H  I . J K  

I I 1 1 1 1 1 1 1 1 1  
-1 1  - I  1 I I - I  - 1  -1 I -1  
- I  - I  1 - 1  1 1 I - 1  -1 -I I 

I  -1  - I  1 -1 1 1  1 -1  -1  I  
-1 1  -1 -1 1 - I  I I  1  - 1  - I  
-1 -1 1 -1 -1 1 -1 1 1 1 - 1  
- I  - 1  - 1  I  -1  - 1  1 -1 1 1 1 

1  - I  -1  -1  1  -1 -1  1 - I  1 1 
1 1 - 1  -1 - 1  1 -1  -1 1 - I  1 
1 1 1 - I  -1 -1 1 - 1  -1  1 -1 

- I  1  1  1  -1  -1  -1  1 -1 - 1  1  
1  -1 1  1  I  -1  -1  - 1  1  - I  1  

12 runs 

cc 
Design matrix X: 11 Main Effects 55 Interactions 

Figure 1.1: Schema.tic representation of the full rna.trix for the PBlz design. 

1.3 Operating Assumptions: Sparsity and Heredity 

The anczlysis of screening experiments can be facilitated considera.bly by malting use of two 

reasollable assumptions: eflect sparsity a.nd effect heredity. 

Effect sparsity is a term for tllc assumption that only a. small fraction of the possible 

predict,or variables are actually important (or active). 

Effect heredity is a term used to describe the relationships among the main effects a i d  

the iliteractions in a given model. The usage of these tern~s follows Wu and Harrmda 

(2000): a, model respects strong heredity if all of its irit~eractions have both of tlieir 

parent ma.in effects also in the model; it respects weuk heredity if all of its int,eract,ions 

have at least one of their parent main effects also in the model. 

The existence of effect sparsity is a cent,ral motivator behind the decision to coilduct a 

screening experiment, where a largc nulrlber of variables are explored in relatively few runs. 

Tlie choice to use so fcw runs (often n << A:) reflects the belief tllat only a fcw vaariables a.re 

active. For cxample, in a 12-run experiment, it is possible to st,ucIy 11 clesign variables and 

their 55 interacthls; but witli only 12 data. points, it is probably not, reasonable to entertain 

models witli more than four or five predictors. 

The importance of effect heredity as a guiding principle is t h t  it makes precise the 

intuitive not,ion of what a sensible model is. I11 lriany situations, a researcher would not be 

satisfied with a rrioclel conta.ining interactions that violate heredity. By restricting the modcl 

s p x c  to orlly hereditary candidates, a large number of unreasonable rnodels are thrown out 
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of contention. For example, the models (A, B: AB) and (A;  I3, BC) respect strong arid weak 

heredity, respectively, whilc the model (A, B,CD) does not respect licredity at  all. For 

present purposes, effect heredity will always be taken to mean weak heredity. A model tlmt 

respects wea.k heredity will be called hZereditn7y. 

1.4 Summary 

The preceding sections have built up the concepts necessary to define the ~~roblem in more 

detail, and to allow a liint, at t,he proposed solution. 

Review of the Problem 

The defining features of the problem can be briefly sum~iiarized. The problcni to be solved 

is model selection (choosing active variables) for screening experiments. Tlie characteristics 

of screening experiments are a srriall nu~rit)er of runs (small 7 1 ) ,  a large pool of calldidate 

predictors (large k), and the assumption of effect sparsity. S~nall n and large k make 

screening experinlents a. challenging model selectioii probloin. There is high model selection 

uncertainty due to huge model sets and not mudl data.. 

Tlie particu1a.r application considered will be analysis of nonregular fact(oria1 desigiis tlmt 

consider main effects and two-way interactions. Weak heredit,y will be constant,ly enforced. 

There will be parrticular ernpliasis on Plackett-Burman designs. 

Sketch of the Solution 

The proposed solution intends t,o use the characteristics of screening experiments--especially 

the huge model set and the sparsity assumption-to its advantage. In brief: the method is 

t~ased on a two step process: 

1. Gencratc a largc set of inodels that arc too big, but all have good fit. 

2. Find the coinbi~iatio~i of variables that is most strongly represented aniong the good 

large models, and throw out the rest t ~ s  noise. 

Thc operating principle behind the method is tlmt the true or best rriodel sliould be 

contained within most of the well-fitting large models and that there will be a large number 

of such oversized good modcls. 
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Turning this simple concept into a workiiig method will involve development of a number 

of tools and algorit~hms. These will be dcscribed in Section 3. Before thesc tools m d  

algoritllms can be made clear, however, a review of model selection concepts is required. 



Chapter 2 

Model Selection Background By 

Example 

A simulated experiment can be studied to illustrate and expalid on tlie ideas pre~eiit~ecl 

in the previous chapter. The example is based on a constructed case, for which the true 

lriodel is known. An exlia.ust,ive smrcli through all candidate models was used, so t,he c s x t  

properties of the model set can be observed. Let the design matrix, X, be the PB12 design. 

Let the full imtrix, Z ,  be the usual full matrix, formed by adding columns for the intercept, 

mid the interactions, as in Figure 1.1. The model is set up as follows: 

Example of Chapter 2 

Active variables: (A, B ,AI ) .  

Model: Y = 1 + 2ZA + 1.5ZB + Z A I  + E .  

The residual standard deviat,ioii was set to a = 1, so that the mt~gnitucles of thc true 

coefficients for A: B, and A I  could be considered large, mecliurn, and small, respectivc?ly, 

relative to the noise in the process. 

A realization y was generated from this model, and then all rnoclels of size 7 or smaller 

were fit to the data.. The design matrix and the observed response are shown in Table 2.1. 

The expected values for t,lie response are also shown. The observed y differs considera.bly 

from it,s expected value for several runs, especially runs 5, 7, and 8. In this situat,ioii 

some model selection uilcertaintv is to be expectecl. The sections that follow discuss model 

selection concepts and nletllods using this constructed example as an illustrative case. 
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Table 2.1: Design matrix for the 12-run Plackett-Burmaall design, wit,l~ observed data y and 
the expected responses. 

2.1 General Concepts 

Setting out t,o find the best, model immediately raises t,he questiol~ of what it nleans for 

a model to be "l)est,." A model can be best in terms of predictive power, interpretabil- 

ity, or distance from the truth (assuming the nature of the truth can be agreed upon). 

The appropriate measure of goodness for a model is to some extent situation-dependwlt 

and philosophical-see, for example, Royal1 (1997), Bnrnllarn and Anderson (2002), Miller 

(2002), and Taper and Lele (2004). 

For present purposes the following 1)ractic:al (but somewlmt evasive) definition will be 

used: the best model is the one tha.t contains all tlic practically significant variables a.nd no 

exttra, ones. This definition is useful in a screening context, where the chosen model is not 

likely to 11e used for prediction or inference. In the screening context, model selection is only 

a means to t8he end of choosiilg active variables. The definition proposed is also the obvious 

one to use ill the current illustrative example, where the t,rue (1ata;generating process is a, 

 know^ linear model. 

Before describing the different approaches to finding tlic best model, several concepts 

need to be explored. The following sectiolls discuss the types of models in the model set, a 

way of measuring goodl~css of fit, and the problems of overfitthg and model aliasing. 
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2.1.1 Structure of the Model Set 

The solution space for a model selectiou problem is the candidate model set-the set of 

all adnlissible models. This set is finite, but possibly very large. The starting point for 

building tlle set is the full ma.trix, 2. Say that Z cont~~ins w > 1 main effect columns and 

( y )  - interaction columns, for a total of kc variables plus the intercept. W-it11 k predictors ant1 

no constraints on admissible varia,ble combinations, the total number of possiblc models is 

2 5  This unc:olistrained set is typically far too large to work with, and it also cont,ains many 

modcls that are not of practical interest. 

Tlie ~iotion of effect sparsity call be used to constrain thc candidate model set. Based on 

tlie assumption of sparsity, only models of size r or smaller may be comitlered admissible. 

Let M *  represent this set of all models-hereditary or not-with sizes from 1 through T .  

Further constra.ining the adniissible variable c:olnbinations, let M represent the subsct of 

models in M" tliat also respect effect heredity. Normally, only hereditary models will be of 

interest, so M will be the default model set: but it is usefill to consider M" for colnyarisoii 

purposes. 

The nunlber of models of size p in M" is simply thc number of combirintioiis of p tal<cn 

froin k ,  siiicc there are no restrictions on which variable cond~iliations are valid. Lct Np" ( w )  

represent this numher, written as a. f~~nct ion of the ~lunlber of main effects: 

The nurnber of models of sizes 1 through T in M* is denoted by Ar~::,(w), a.nd given by thc 

sun1 

For the heredita,ry model set, M ,  model counts will be dcnot,ed by the swine iiotation, 

but without tho asterisk. For an experiment with w main effects, Np(w)  denotes the number 

of models of size p, a i d  NI: .T(w)  denotes the number of nlodels of sizes 1 througlt r .  Thc 

eyui\~alentt foririulas are not as simple, because of the heredity restrictiori. Derivations of 

the formulas arc given in Appendix A; only the results are presented here. The iiu~nber of 

hereditary modcls of size p is 
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Table 2.2: Nuniber of models of size p for the 12-run and 20-run Plackett-Burnian designs. 

so t,liat the total number of models u p  to size r is 

PB12 
All Models I Hereditary 

Nok t l ~ a t  for equa,tion 2.3 to be valid, p i n ~ ~ s t  be less than w: and (c) is defined t,o be zero 

when :c < y. 

Tlie above formulas are applied to the PB12 design, to producc Table 2.2. The table 

shows t h t  as the model size increases: th t  total nunibcr of iriodels quickly becoiries 1~ery 

large. Enforcing heredity helps to keep the size of the niodel set down; only a. sniall percent- 

a,ge of possiblc models respect heredity. Despite this, hom~ever, even the set of hereditary 

niodels can grow vory large. Taking lriodels of size 7 in tlie PB2" desigii as an example, 

only about 0.03% of the possible niodels res1)ect weak heredity; but this si~iall fraction still 

con~tit~utes over 500 million models. 

Tlie huge size of the model set lias two iniportant influences on inodel selection: 

PB20 
All Models I Hereditary 

1. Exhaustive search of the entire model set becoi~les impractical as the iiumber of desigii 

variables (w) or the model size (p) grows. 

2. Nleasnres of model goodness are vulnerable, since there is an enormous pool of com- 

peting models. The more inodels there are in competition, the more likely it is that 

some of them will look good just by chance. 

When tllc true data-generating model is known or assumed, it is useful to pa.rtition the 

candidat,e modcl set based on tlic relationsliip between tlic! candidates and the truth. Let 
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the size of the true model be s, and say that a candida.te model of size p is chosen through a 

model selection process. Every variable in the chosen nlodel will be either correct (it occurs 

i11 t l ~ c  true model) or wrong (it does not, occur in the true model). So the strueturc of the 

candiclate model can be described by n,, the number of correct variable choices, and n,, 

the number of wrong variable choices. Witli these two indices, ally candiclate rnodel can be 

assigned membership in one of the following five sets of models: 

T h e  t r u e  model, 'T. Tliere is only one model in the set for whi<:h 71, = s arid n, = 0; this 

is the true model itself. 

Overfit ted models, 0. -4 model is called overfitted if it llas n, = s ,  hut 7.1, > 0. That 

is, ail overfitted model contains the truth plus oilc or inore spurious varialk. If M 
contains more than one size of moclels, then 0 can be further partitioned. Thc set of 

models overfitted by j variables will bc callcd 03. 

Underfit ted models, U .  A model is underfitted if it has n, < s, and n, = 0. Tho model 

cont,ains orily truly-active variables, but it is too small---at least one correct variablc 

has been left out. I11 the examplc of this section the true model is (A, B, AI)? so 

t,here a,re only four heredity-respectil~g underfitted models: U = { ( A ) ,  (B )?  (A, B): 

(A ,  mI1. 
Part ia l- t ruth models, P. Any model having 0 < n,, < s and nu, > 0 is called a partial- 

truth model. These rnodels contain some, but not all, of the activc vi~riables, in 

addition to one or more inactive variables. 

Wrong models, W. A wrong rrwclel is composed coinpletelv of illactive variables (nC = 0 

and nu, > 0). 

The number of models in ex11 of tliesc sets is sllonrii in T&le 2.3, for the example of 

this section, wit,h M = {all hereditary models of size 1-7). The table illustrates the extent 

of the cornpetition that is present when sca.rcliing for the best niodel. I t  is pa,rticularly 

interesting to note that the set P c:onta,ins over 3.7 million models-more tliarl half of t11c 

entire rnodel set. Finding models with one or two correct variables, therefore, will not be 

'Thc intercept.-only model has n, = n.,, = 0 arid is also n.n underfitled n d e l  a9 delined here. This n~ode l  
is considered a special case, however. 
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Table 2.3: Number of models in the different categories, for t,he example of this section: d l  
liereclitarv models of size seven or less, PB12 design, true model (A, B,  AT). 

Set No. Models 

liartl. It is reasonable to expect that, wliatever the particular y-vector observed, many of 

tllesc models in P will fit the data quite well. 

The ta.ble also shows that, while thc number of overfitted models is small as a fraction 

of the total number of models, the set 0 can be la.rge for pract,ica,l 1)urposes. I11 this case, 

there are about 5000 models overfitted by 3 vminbles, a.nd tdmost 50000 models overfittetl 

by 4 variables. Assuming the error variamc is not too large, all of thesc overfittetl niodels 

will lmve very good fit to the data. The multiplicity of modcls can malc it very difficult to 

choose one of the niodels in C3 whcn the truc niodcl size is unltnown. 

The numbers in Table 2.3 were obtaincd by brute force ta.hulation using a computer. 

In snbsequent discussions, the number of ovcrfitted models will be of primary interest, and 

knowing the cardinality of the set 0 will be important. To that end, a fornlulu, will now be 

preser~t~cd for calcula.ting the nunher of inodels in Qj.  

Consider the case wlierc a, candida.te model, &I, lmving a main effects and 6 intera.ctions, 

is proposed as the true model. Extending the prcvious notation, define iVp(u), a ,  6) as the 

number of hereditary models of size p that contain a specz,fic combination of a main effects 

and 6 interactions, when the experiment consists of w main effects and their interactions. For 

example, in the current PBI2  case, let Ad be the true model (A, B,AI) .  Then 1V7(11, 2 , l )  

is the nunher of models of size 7 tlmt cont,ain the truth: N7(l l ,  2: 1) = 10L1( = 48870 as 

shown in Table 2.3. 
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The forir~ula for calculating A$(w; a, B) is (see Appendix A): 

This equa,t,ion requires p > (1, + b, a 2 1, and p < u1. As before, (;) is defined to be zero 

when x < 3. When the value of w is c1ea.r froin coutext, w may be suppressed frorn the 

nota.tion of equations 2.3 and 2.5. So for the PBI2 example, where it is knou~n that w = 11, 

ATG would refer to all models of size 6, and i\'(j(3,0) would refer to all models of size 6 t h t  

contain a specific combination of 3 main effects. 

2.1.2 Overfitting 

A natnrizl goodness-of-fit measure for the candidate models is the residual snrn of squares 

(RSS). Tlie RSS is calculated from standard regression forinulas: 

e = y - y  

RSS = eTe: 

Where M is the model matrix, p are the the estirmted coefficients, y are the fitted va.lues, 

and e is the vector of residuals. RSS is actually a lack of fit measure, so that sina.ller RSS 

indicates a bett,er fit to the data.. 

The primary problem with RSS frorn a model selection standpoiilt is that adding an 

extra variable to the model ca.n never cause RSS to increase. Introducing oile more mriable 

will cause thc RSS to get betkes (smaller) by some amount, and will iinprove the fit to the 

observed data; but several trade-offs will be made at the same time. As the model gets larger, 

predictive power may decrease, inotlel complexity goes up, a id  the interpretability of the 

inodel may be reduced. For these reasons, tlie best fitting model will not necessarily be the 

rnost useful model. In inodel bnilding, tlm-c is a constant problem identifying whether the 

better fit of a larger rnodel is due to real explanatory power, or just to sa.mpling variability. 

The end result of this irlodel size problem is that inodel selection procedures will oftell 

choose a model that is larger tllsn necessary. This outcome is ca.lled overfitting. In a red  

data aiialysis co~itext, wlien the true inodel is unl<nown, one would say the chosen inode1 
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overfits the data if the number of variables chosen is too high, leading to pool. predictive 

or explanatory power for the resulting model. In a simulation contcxt, where the truth 

is known, overfitting means select,ion of a inodel that contairis thc true model plus cxt,ra 

inactive variables-a model i11 the set 0. 

The results of the exhaustive searcli in the PBI2 example can be used to illustrat.t<: some 

aspects of overfitting. Figure 2.1 shows two different views of tlic distribution of RSS values 

over the model set. 

The left, panel of Figure 2.1 sho\m the frequency histograms of RSS for rnodels of sizes 

5, 6, arid 7 (sinaller models were not shown heca.use thcre are too few such inodels). The 

dashed vertical line is at 12.05, the RSS of tlie true inodel. The true inoclcl has a wry low 

RSS for a. nlodel of size 3, but as larger and lxger models are entertained, more and iriorc 

models outpcrforin the true model in terms of RSS. 

The right panel of the figure illustrates the distribution of RSS values across all model 

sizes, for inodels in the sets 0, P, a.nd W. As one iniglit cxpect, models that contain at 

least sonie of the truly-active variables (those i11 0 or P) doininate the low-RSS end of thc 

distribution. For exa.inple, there arc 481608 models wit,h RSS < RSSL,.,,L1,2. Of thesc, only 

about 16% are totally wrong; 26% contain one correct variable, 46% contain two, and the 

overfitted models-which contain all three correct ~iariables-constitute tlic remaining 11% 

of tliese top models. The idea that most of the good large rnodcls contain some truth will 

be exploited in Sectkni 3, ndiere tlie new inodel selection approach is introduced. 

I11 general, larger inodels have lower RSS, but there is a distribution of valnes for models 

of each size. One approach to resolve the overfitting problem is to penalize the RSS by all 

amount that increases with iiiodel size, thus making the values for different-sized nlodels 

more comparable. The problern with introducing a penalty is that the best of the larger 

models, the ones at the left tail of their distribution, will often be very coiivincing, cven 

in spitc of tlie penalty. Pena1t.y a.pproa.clies inherently wa.lk a fine lirie between over- and 

under-perializing. If there are inany overfitted models, t,lieii there is a, good cha,n<:e that 

a few of thern will fit well enough to overcome the penalt,y. A iiumber of existing model 

selectioii criteria. can be cast as peimlizecl goodness-of-fit a.pproaclies; furtlier discussioii of 

such criteria. will be given in Section 2.2.2. 

2 ~ l ~ e s e  numbers iuclude only estimable n~odels in the model set.; (.here are actl~ally 3960 ~~lodcls  of size 7 
in M that  have linear dependencies in t,lieir n~odel matrices. 



CHAPTER. 2. MODEL SELECTION BACKGROUND BY EXAMPLE 
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Figure 2.1: Histograms of RSS for the iriodel set of the illustrative cxanlple. Left paiitl: 
distributio~i of RSS for rnodels of sizes 5, 6, and 7, showing the increasing numlxr of well- 
fitting ~nodels. Right panel: tlistrit~utio~i of RSS for the sets 0, P. and W. In both plots, 
the histogra~n bins are of unit width. and the dashed line shows the RSS of the truc model. 
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2.1.3 Model Aliasing 

Overfitting refers prirriarily to the problem of deciding among sets of nested models. That, 

is, models in O3 contain tlie models in 0 2 ,  so the problem is deciding wlietlier adding an 

extra variable causes enough improvement in the model to be worth tlie extra conlplexity. 

Another type of problem, wliicll will be called model aliasin.g, arises wlien there are non- 

nested lnodels that are similarly good at explairiing the observed y. Model aliasing arises 

wlien there is strong competition among models, and tlie data. y does not clearly support 

just one set of variables. The problem of rnodel aliasing gets worse when the nwriber of 

candidate models increases, and when the residual standard deviation is higher. The more 

models to choosc from, and tlie more noise in y ,  the more likely it is that two incompatible 

models will fit y &out equally well. 

The extent of motlcl aliasing in this section's exarnple problem can be exanii~ied by 

looking at the expected RSS valms for ~nodels from different groups. Say tlie proposed 

rriodel has size p arid model matrix MI.  If there are truly-active variables that have l~ecn 

left out fronl MI, put these in a seconcl matrix M2 so that the combined rnodel matrix 

M = [Ml]Mz] contains tlie truth. It can bc showli (see, e.g., Rmcher (2000), section 7.9) 

that the expected value of RSS for motlel Ml is 

wliere P2 is t,lie vector of true coefficients correspondirig to the variables in M2, I is an 

71, x n, identity matrix, a d  H1 = M1(MTM1)-'MT is t-he "1ia.t" matrix for M 1 .  

If tlie proposed rnodel M1 coiit,ains tlie true model, tlien the seconcl terrri i11 equation 

2.6 vanishes and E[RSS] = a"n - p - 1). If, on the other hand, the proposed model 

is misspecifietl: then the expected RSS goes up  by an amount tl1a.t depends both on t1ic-t 

proposcd model and on the values of the coeficients of the oiriitted variables. 

Equation 2.6 was used to calculate tlie expected RSS for tlie overfittecl, partial-trnt81i, 

m d  wrong models in the illustrative example. Tlie results are shown in Figure 2.2. The 

figurc is analogous to the R.SS histograms previously shown in Figure 2.1, but shown ill 

expecta.tion. It  is clear that all of the overfitted models, a large iiumber of partial-truth 

models, and even the left tail of the wrolig ~iiodels, can be expectecl to have very low RSS 

values. 

111 this situation, when many models ca,n be expeckd to fit the data almost cqually well, 

model di.sc~-imi~~u.tion becomes a problem. For a. fixed t,rutli, model discrimination becomes 
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lo4 Expected RSS by Model Type 

Figure 2.2: Histogralrls of E[RSS] for the model set of the illustrative exa.n~plc: with truc 
model (A: B, AI).  Expected RSS distributioi~s arc sliowll separately for models in 0, P,  
a d  W. Histogram bins are of unit, width, and the dashed h e  shows the espect,ed RSS of 
tlie true model. 

more difficult (model nliasiiig becomes worse) as the number of runs goes down, the residual 

standard deviation goes up, or the size of thc model set increases. The dependence of model 

diasing on the size of the candidate inodel set is significant; common penalty-based iriodel 

selection criteria do not take the size of the model set into account. 

Model aliasing and overfitting both contribute to thc general state of model selection 

uncertainty ill subset selection problems. When circumstances are such tha.t model selec- 

tion ul~certa.intv is high, one expects m.odel selection variability. That is, on hypothetical 

repetitious of the experinlent, tlle best model by any criterion will be different most of tllc 

time. Eyuivalei~tly, it is very unlikely that the true best model (how?ver defilled) will bc 

the top lriodcl in a, ra.nked list. 
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2.2 Review of Model Selection Methods 

Model selection is fundamental to da.ta analysis in many scenarios, and so a large number 

of methods have been developed to address the problem. The discussion below reviews a 

number of the most common strategies for choosing a model, witli particular emphasis on 

rnet,hods that are used for model selection in linear regression situat,ions. For the analysis 

of screening experiments like the PBL2 design, not all of t,lie comrrion methods are feasible. 

Those met,hods tha.t will actually work for screening experiments can be divided into three 

categories: testing-based methods, criterioli-based methods, and Bayesian methods. The 

infeasible ~riethods are discussed in a final section. 

There is an extensive literature on identifying significant, variables in regular desig~is, 

especially unreplicated factorial designs. See, for exa.mple, Hamada and Balakrishnan (1998) 

and Loughin and Noble (1997). The methods usually recommended for regular designs are 

not of particular interest here, however, became the37 do not incorporate a model search 

component. As a, result,, the methods considered below come la,rgely from rcgressio~i settings, 

wliere nonregular design martrices m d  complex aliasing we considered the norm. 

2.2.1 Testing-Based Methods 

The general approach of testing-based methods is to start witli an initial proposed motlel, 

aiid then to change thc model sequentially by adding or deleting variables, until some 

stopping criterion is mtisfied. At each step, statistical hypotliesis t,esting is used to guidc 

decisions about which variables to add or reniove. Model building bj7 inspection, where 

nn investigator tries out different models scquel~tiallj~~ aided by goodness-of-fit tests: falls 

into this ca.tcg0r-y. When the number of candidate va,riables is large, more formal irnple- 

~rientations of this strat,egy are commonly used. These automated methods include forward 

selection, bacltward elimination, and stepwise regression (as described in, e.g., Miller 2002; 

R401it~gornerjr Peck, a i d  Vining 2001). 

St,epwise regression is a major representative of this family of approaclies. The model is 

built up by successive application of addition and deletion steps, startzing from an intercept- 

only model. In the a.dditio11 steps, tlie variable causing the largest decrease in RSS is added, 

if this decrease is sufficiently large-grea.ter tlian an F-to-enter cutoff. In the delction steps, 

tlie varinblc causing t,lie least increasc of RSS is deleted, if the increase is sufficientJy small---- 

slriallcr than an F-to-delete cutoff. The process is repeated until no cllanges can be rna,dc. 
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Let RSSp be the RSS of tlie currently-selected subset, wliich has p variables. Define 
RSSp-I to be the smallest RSS obtaiiiable by dropping any one of the variables cur- 
r e d y  in the model; similarly, define RSSp+l to be the smallest RSS obtainable by 
adding any of the remaining variables to tlic model. 

Choose "significance levels" PC and Pd for tlic addition and deletion steps. Let 
F(P, a ,  b) be the 100(1 - p)lh percentile of the F distribution with a and b degrees of 
freedom. 

S t x t  with a, model conta.ini112; only the intercept. 

Perform an addition step: 

Fii~d tlie variable that causes tlic gretltest reduction in RSS wlieli added to tlie 
model. 

Add the variable if ~ ~ ? ' ~ ~ ~ ~ 2 j  > F(P, , 1,n  - p - 2). 

Perform a deletion step: 

Find the variable that causes the small~st i~ i c r~ase  in RSS wl~eil rcmoved from 
thc model. 

nss - , - xss,, Delete the variable iT Rss&(7L--p-l) < F(Pd, l , n  - y - 1). 

Contir~ue ~lt~ernating addition and deleti011 steps until t,hc model stops changing. R.c- 
turii this final model as the selected model. 

Tlic algorithm is listed in Pseudocode 1. 

Testing-based met,hods like stepwise regression combiiie the sea,rch througli the riiodel 

space with the definition of what a good model is. The criterion for which model is best is 

defined implicitly in the ~lgorithm-wliicllevcr lriodel is finally C~IOSCII is declared to bc the 

best by virtue of the fact that it was chosen. 

St,epwisc regsessioli has been a very popular method, particularly in problems with huge 

model sets-a model with reasonable properties can bc foulid with only a small amount 

of computation. The simplicity of implementing stepwisc regression is also undoubtedly 

responsible for its acceptance. 

Its popula.rity notmritlista.i~ding; stepwise selectiol~ suffers from many well-document,ed 

deficiencies, and other methods are generally recommended when they are a.vailable. Harrell 
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(2001) goes so far as to say: 

S tcp~vis~  variable selection has been a very popular technique for many years. 

but if this procedurc had just been proposed as a statistical method, it would 

most likely be rejected because it violat,es every principle of statistical estimation 

and hyl)ot,hesis testing. 

Harrell's objections are primarily with the statistical-testilig aspects of the procedure. 

The "F ratios" formed in the addition aud deletion steps are not F-distributed, since t,llc: 

variable being added or deleted was specificc=lly cliosell for its extreme effect 011 the R.SS. 

So the P, and Pd values are essel~tially tuning parameters. Even ignoring these limitations, 

however, stepwise regression has two additional problems that are significant, in the screening 

scenario. First, by adding and removing variables in a greedy fasl~ion, the scarch rimy 

miss many good candidate models. Second, it provides no mechanislri for ensuring effect 

heredity in the chosen model. This linlitation is pa.rticularly serious in the case of screening 

experilnents, where enforcing heredity is mually essential to get useful rcsults. 

Orie st,epwisc-based irietliod that reduces thc problern of non-hereditary models is given 

in W11 and Hanmda (2000). The method, proposed specifically as an analysis strategy for 

designs with complex aliasing, is given in Pseudocode 2. It consists of a. series of applications 

of stepwise regression, with the admissible set, of variables changed at ea.ch stage in a way 

that encourages heredit,a.ry rnodels to be found. Note, however, tha.t it is still possible to 

obtain a non-hereditmy model from this method. 

The method of Pseudocode 2 will be used as a c:omparator method in the simula,tJion 

studies of Chapter 5. Thc stepwise regression colnponcnts will be run with P, = Pd = 0.05. 

Applied t,o the exa.myle problem of this section, the Wu/Harnada method returns model 

(A, B, AI, BD)  as the best model when t,lie model is limited to size four. Tlie truly-active 

va,rial,les arc (A, LZ, A I ) ,  so in this casc an overfitted model is found. Wlicn the model is 

tdlowetl to bc up to size six, a larger overfitted model is found: (A, B; G;AI ,  B D ,  DG). 

Ordinary stepwise regression (Pseudocode l), starting from a null model, returns thc 11011- 

heredita.ry, prtial-truth model (A, AI: CE). 

2.2.2 Criterion-Based Methods 

A11 a.lterna.tiw to testing-based approaclles is to explicitly separate the model search and 

model criterion segments of the problem. A m,odel selection criterion is a. metric that is 
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Pseudocode 2 Comparator  method 1: a hybrid stepwise algorithm 

Choose the largest plausible model size: 7. In subsequent stepwise regressions, restrict 
final niodels t,o hmre size < 7 .  

Set d u e s  for P, and PC! to be used in the stepwise pr-ocedurc (default: P, = Pd = 0.05). 

For each main effect X j :  

Set the candidate variables to X j  a d  all of its interactions. 

Perform stepwise regressioil on the candidate variables , with X:, forced into tho 
inodel. 

Sclect the lriodel from the above set having the lowest RSS. Call this model Ad 

wliile stop = false 

Set the canditlate variables to those in &I as well as all mail1 effects. 

Set, &I = result of stepwise regression on the candidate variables. 

Set the candidate variables to those in 114; plus those two-factor interactions that 
respect effect heredity- 

Set Ad* = result of stepwise regression on the caric1ida.te variables. 

if lW" = Ad then set stop = true; else set A4 = M*.  

Returli 114 as the selected nioclel. 
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used to measure the suitability of a proposed model. The criterion, however defined, is a 

function of tlie model structure (the particular set of variables that make up that model), 

as well w tlie data. Once a, criterion is chosen, model selection becomes an optimization 

problem: the best model is defined as tlie model with tlie optimum value of tlie criterion. 

There are many perspectives on how to define wliat it means for a model to be best, and 

as a result there are a large number of possible model selection criteria. These criteria differ 

in their aims and their tlieoretical bases, but most of them can be thought of as c:onsisting of 

two counteracting terms: a goodness-of-fit term and a c~mplexit~y penalty term. The penalty 

tern1 atkeinpts to overcome the model size problem discussed in Section 2.1.2, yielding what 

is essentially a. model-size-adjustecl gootliiess-of-fit measure. 

Several of the most common selection criteria are listed i11 Table 2.4, along with a short 

descript,ion. Of these; Mallows's Cp is prol~ably the most colrimonly used in experimental 

design circles, while AIC a,nd AIC, receive the most support in illally other fields. All of 

the criteria. can be made to pcrform well or poorly in specific: cases; an analyst's preference 

for one criterion over another will depend on their definition of w1ia.t makes a model good, 

as well as w1lic:li sinlulation studies they put the most credence in. It is wort,ll noting that, 

many of these criteria can be cast as equivalent to each otlicr, either asymptot.ically or upon 

suitable generaliza.tion of their penalty terms. 

I11 the present study, AIC, will bc used as the criterion of choice. This criterion exhibits 

good general gerforniaiice in most simulatioil studies (Hurvich and Tsai 1989; Burnham and 

Anderson 2002). Note that C, is not a viable criterion in this case, because in its usual 

formulation it requires an unbiased estimate of a2 from fitting the full nlodel. In illany of 

the screening-experiment cases under study, this requirement cannot be satisfied because 

there are morc variables than data. points. 

Having chosen an appropriate criterion, there is still the problem of searching for thc 

optiinnl model. The choic:c of model search method can be ma,dc independently froin the 

choice of criterion. Exhaustive search of all possible subsets is the best-performing mothod, 

EL? it guarantees t11a.t tlie global optimum will be found; but often there will bc too many 

va.riables for cxliaustive search tjo be econoinical. 

One scarch method that may be suitable for analysis of screening experinlents is se- 

guenkial rcplacerr~uxt. The basic sequential replaceinelrt algorithm begins with a model of a. 

fixed sizc, and t,hen a.ttempts to improve on the criterioii value of this moclel by entertaining 

substitutions of ea.cli excluded variable for the included variables. All possi1)le substitutions 
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Table 2.4: Summary of common model selection criteria, for a model with p predictors plus 
intercept. Further description, and original references, for nll of these nlethotls can be found 
in Miller (2002). 

I Crit. Formula Comments 

% l - ( * ) ( l - e )  Adjusted R 2 .  Lxger-the-bet ter. O~ily in- 
creases on addition of n new variable if thc 
residual 1nea.n square is reduced. 

AIC n log ( y) + 2 ( p  + 2 )  A11 1nforma.tion Criterion, or Al~tike Infor- 
mation Criterion. Smaller-the-better. An 
estimate of the expected relativc I<ullba.ck- 
Liebler discrepancy between the fitted model 
and the unkr~own trut,lr. 

2n.(p+2) AIC, rl, log ( y) + A small salr~ple, bins-corrected version of 
AIC. Smaller-thebetter. 

C?? -- R>S (17, - 2 p  - 2 )  Mnllows's C p .  Si~la.llt:r-tlle-bettw. Based on 
an estirnatc of the squared prediction crror of 
t,he observed y. 

BIC RSS 
-71 log (-) - (p + 1) log(n) Bayesian Informatioil Criterion. Based on 

asymptotic equi\la.lcnce t,o Bnyes factors. 

are considered for each included vxiable in sequence, with tlie best replacenlent bcing ninde 

a t  each step. Once all variables in the nlodel have been consiclered, the process is repcated 

on the new model until no more i~nprovenients are possible. A few variations can be made 

t,o tlie basic algoritlirn; these are described in hiIiller (2002). 

Sequential replacement is a. fast search heuristic, but  it will oft,en stop a.t local optinla. 

and miss tlie g1oba.l optirnum. It, also 1 1 2 ~  the disadwmtage that effect heredity is not built 

into tlie process. For these reasons it will not be colisidered furtlier here. 

A second method that  is promising for screening experiments will be called two-stage 

scu.7ck. Vcrsions of this approach are discussed in W i  and Hamada (2000) and Miller and 

Sitter (2001). The premise is to  perform all initial analysis to discover active lriain effects 

only, and then d o  tm exhaustive search over models that  contain the cliosen main effects. 

Exhaustive search is feasible because restricting thc main effects reduces the size of the 

model space. The  exhaustive seardl can also be constrained to consider only hereditary 

models. 

In the iniplernentation of two-stage search used here, Lenth's method (Lent11 1989) is 
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Pseudocode 3 Compusator  meth,od 2: seasch plus AIC, 

Part I: two-stage search 

Apply Lenth's inetliod to select t,he active main effects (iiot,e: to increase the 
chalice of capturing active effects, do not correct for sinlultaneous inference). 

Perform exhaustive search over all licreditary models that contain the activc inaiii 
effects from the previous step. Save the AIC,-best model found. 

Part. 11: borrow results from the new metliod 

Evaluatc AIC;; for the five most frequent nlodels of cach size, as folmd l?)i the 
t)rc~nch-and-bouiicl method in the SAMS algoritliin (Section 3.4.2). 

Pool all of these most-frequent models with the model found by two-stage search, 
to form a set of caiiclidates. 

Return tlie model froin either method with lowvcst AIC, as the chosen model. 

uscd to select tlie active effects? A1137 of tlic extant metliods for aimlysis of unreplicated 

factorial experiments could be used for this purposc, however. 

Applied to the example probleni using AICc as the criterion, the two-stage algoritlini 

finds model (A, AI)-an underfitted model, missing the active variable B. The maill effect 

B was omitted because it was iiot cleenied significant by Leiith's method in tlie first stage. 

A search-plus-criterion a~ethod has been chose~i as a comparator method in the simula- 

tion studies of Chapter 5. The chosen criterion is AIC,. Ari iinplemc-,ntatioii of two-stage 

search forms tlie first part of the method; the second part uses results from the IEW model 

selectio~i method (to be discussed in t,he iiext cha,pter) to improve the c;hances of finding the 

AICc-best model. For cornplcteness, this ~rit~erion-based cornpara.tor method is described 

hcrc i11 Pseudocode 3. 

The central problem in any criterion-based model selection is clioosing the appropriate 

iriodel size (or alteriia~t,ively, definiiig the perialty term appropriately so that the correct,-sized 

model is chosen). As mentioned in Section 2.1.2, tlie halance betweell over-penalizing and 

undcr-perlaliziiig can never be managed perfectly. Most penalties tend to under-penalizc as 

the number of variables (and hence the model sct,) gets larger. I t  should be explicitly noted 

"11e use of Lenlh's method males two-stage searcl~ partially testing-based. This approach was used as 
a criterion-based method regardless. as no better hcrcdity-respecting search heuristics could br four~d. 
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t,liat iioiie of the selection crikria, inc~rporat~e information about tlie size of the inodel set, 

so it, is not surprising that larger inodcl sets result in more overfitting. 

The overfitting problem can be seen in the example, where exlia.ustive search was cx t~a l ly  

performed. The AIC, values were calculated for two sets of inodels: i) the coniplete set 

of 6939042 hereditary models up to sizc seven, aiid ii) the complete set of 720720 models 

of size four, disregarding heredity. The distribution of AIC, values for these two sets arc 

showii in Figure 2.3. The vertical dot,ted line in the figure indicates 20.05, the AIC, vdue 

for tlie true model. 

At first glance, the histograrns appear to indicat,e t11a.t the criterion is worl<ing wcll: tlie 

AIC, for tlle truth is very far out into the lower tail of the distribution. Although the 

penalty causes the trutli to beat out the vast, ina,jority of cornpcting models, there are still 

quite a. few models that have lower AIC,. This illustrates the difficulty using criterion- 

based methods with huge inodel sets: even thougl1 the criterion may sepnra.te the trutli 

from alniost all other models, it is very likely that a.t least iz few of tlie rnillions of conlpet,ing 

1a.rger inodels will do as well just by chance. 

Depcndiiig on tlie exteiit of inodel aliasing ta.king place in a pasticulnr casc, there is 

no guarantee that the top AICc models will even contaiii all of thc true varia.bles. In the 

exa,rnple of the hereditary set, 30 models have better crit,erion values than tlie truth; a i d  

only seven of these contain all three truly-active variables. Niilet,een of the reillailling 23 

models contain two correct vmiilbles and froin two to four spurious variables. The last four 

inodels are completely wrong---they contain none of the truly-active variables. 

Considering now only models of size four, note that therc are only 15510 hereditary 

models, but 705210 inodels tlmt do riot respect heredity. As noted in Fignro 2.3, the sinnller 

hereditary set, includes only three models that have criterion values better than the truc 

model; hut this nuinl>er jumps to 80 when tlie heredity restriction is removed. Of these 

80, only one c:ont,ained all three active variables; and 13 contained none of thc truly-a,ctivc 

variables. This esainple shows in a particular case how tlie qudity of a peiialty or criterioii 

can depend on the set of candidate models. 

2.2.3 Bayesian Methods 

A Bayesian approach to inodel selection, suitable for screening experinients, exists (George 

and McCulloch 1993; Chipinan, Hamadn, and \%I 1997; Chipman 1998). This method 

is fundamentally different than testing- or criterion-based methods. Rather than sirriply 
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lo5 Distribution of AICc Values 

" 1 1 - Hereditary, sizes 1-7 / 
3t1-: Non-hereditary, size 4 1 

Models better than the truth: 
3 hereditary models of size 4, 

27 hereditary models of size 5-7, 
80 non-hereditary models of size 4. 

Figi~re 2.3: Histograms of AIC, values for tlie example problem, for exhaustive search 
through two model sets: the set of hereditary models of sizes 1-7, and tlie set of all models 
(hereditary or not) of size 4. Histogram bills are unit width. The dashed line sliows the 
criterion value for tlie t,rw model. 

clioosing a best model, tlie Bajesian iriet,hods proviclo a, posterior distril>ution of motlels- 

each ca.ndidate model is assiglied a. probability that can be used to judge the support for 

tha.t model relative to the other candidates. 

The Bayesian variable selectioii method is briefly described herc (following Cliipinan, 

Hama.dc?., and Wu 1997), for a case irivolvirig k predctors. An unobserved indicator vector 

6 = (Sl, .  . . , d,,) is assumed to exist,, with Si = 1 if t,lle i th va.riable is active, Si = 0 otlierwiscr:. 

The goal of the procedure is to obtain the posterior distribution of this vector. The data y 

are assumed to come from the full linear model, Y = ZP + e ,  wlierc Z is the full inatrix 

and ,6 is the vector of dl true coefficients. The prior density of each Oi is specified as one 

of two norinal distributions, depending on the value of the corresporidirig 6?: 

N(0, rT2) if Si = 0 (effect i imctive) 
f (,13,:Jbi) = 

N (0, (cri)" if Si = 1 (effect i act,ive) 

The constant c is chosen to be greater than unity (e.g. c = 10) to imply that a.ctive 

variables are expected to have larger coefficients thaii inactive ones. A prior is also specified 

for the error variance, usually an invert,ed gamma distribution based on t.wo parameters, 
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u and A. Heredity relat,ionships are encouraged through tlie specificatioli of the prior for 

the vector 6. If SAB represents the indicator for an intera,ction effect, and SA, bB are the 

indica,tors for its parent main effects, t,hen priors can be specified  sing three prolmbilities: 

po ifbA = d B  = O  

P(RAB = 1 JSA, 6 ~ )  = pl if only one of (IA, SB equals 1 

112 if both of d ,~;  6~ equal 1 

Thc value of pj gives the prior probability of an interaction l>eing active if it has j active 

parent effects. Using po = 0, for example: enforces weak heredit~r-it is ilnpossible for an 

interaction t,o be declared activc unless at least one pa.rent ma.in effect is active as well. The 

cornplete specification of the prior for 6 requires a. fourth probabilit-y, p,, to be specified for 

the proba.bility of each main effect lwing ac:t,ive. The prior densit,y for any value of 6 can 

then he formed as a. product of (p,,,, p ~ ,  pl , p2) t,erms. 

The posterior distribution of 6 is iound by forming the full conditional distributions of 

p, 6, n.nd c2, and using the Gibbs sairipler to make draws from the posterior. Each possible 

value of 6 represents one candidate model, so t,lle posterior distribution of 6 directly yields 

a list of highest-probability models. 

Bayesian variable selection has some significant advantages over more traditional meth- 

ods. Bjr presenting a posterior distribution, it allows the investigator to consider several 

;tlterna.tive models that may all be well support,ed by the data, rather t,han giving t,hc fdse 

i~npression of a. single good model. The desire for hereditary models car1 be sinoothly incor- 

porated into the specification of the prior distributions. The qrlestion of a,ppropriate lnoclel 

size is less problenintic, since tlie distribution of 6 includes r~~oclels of all sizes automatic:ally. 

The drawbacks to the Bayesian method primarily relate to complexity in running and 

interpreting the procedure. The machinery of Bayesian inference may be hard for a prac- 

t,itioner to fed c~mfort~able wit,li; good software would probably be required l~cforc non- 

statisticians would feel comfortable with the procedure. Tlle prior para.meters (c, 7 ,  I / ,  A) 

represent four tuning parameters-the results may be sensitive to these ptu-ameters, so they 

must be well-chosen. The choice of prol>abilities (p,,, po, p l ,  pz) call also haw a strong effect 

on tlie solutiolis returned. Even with good pa.rameter choices, the final interpretation can 

be difficult based on a table of highest.-posterior-density models. For example, sliolild the 

investigator take the highest-clcnsity single model as the best gness at the truth? Wliat 

about collsitlering the nlarginal probability of each variable as a basis for clioosing active 
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predictors? 

The Baycsian variable selection inetliocl is considered an important colnparator for the 

new oversized-model sets method. For thr Bayesian method, however, silriulation-based 

comparison is difficult, since it is not clear how to automate the extract,ion of a single best 

moclel. As a compromise, the new method will bc compared to the Bayesian approtxcli using 

examples in Chapter 4. 

2.2.4 Other Methods 

Many other methods have beer1 proposed to do linear niodel selection, reflecting the irnpor- 

tance aud difficulty of the problem. Below, t h e e  cornmor~ types of nietl~ods are introduced: 

cross-validation inet,llods, bootstra.p metliods, ant1 shrinltage inethods. These inethods are 

only very briefly discussed; model selectioi~ or regression texts (e.g. Miller 2002; Hc~rrcll 

2001) are recoininendecl for details. Unf~rtunat~ely, all of these methods a.re innppropria.te 

for the screening experinlent case, where there may be 1na11y more predictors than obscrm- 

tions. 

Cross-valida.tion (CV) refers to separat,ing the da.ta set into the t,raining and t,est data 

sets; the tra.ining set is used to fit the models, and tlie test data set is used to measure 

the model's predictive performance. CV perforina~nce can bc consiclerccl a inoclel selection 

criterion. The variable subset giving the smallest CV prediction error is chosen as bcst. 

Prediction sum of squares (PR.ESS) is a coininon special case of cross-validation, wliere 

eacli single observation is left out in turn, and its value is predicted from the model fit to 

tllc remaining n - 1 observations. 

The probleni with doing cross-validatiori with data from screening experiments relates 

to estimability of the candidate models. The design m&ix for a screening experiment will 

typically ba a. two-level orthogonal or nearly-orthogonal array. For such a. design, removing 

some rows from tlic matrix (or even removing only one row, as in PRESS), will render many 

of the possiblc model matrices rank-deficient. Cross-valida.tory methods are therefore better 

suited to more standard regression cases, where there are more observations than variables 

and the predictors are at more than two levels. 

Bootstrap model selection can be done in two basic ways. In the first approach, the 

full niodel is fit a,nd the residuals from this model are resampled to form the bootstrap 

sample. In the secoiicl approa.ch, (x, :J/) pairs are resarnpletl. Tlie end result in both cases 

is a. bootstrap sample of predictors and responses. For each bootstrap daka set, the "best" 
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model is selected (e.g. by stepwise regression), and its coefficients are estimated. Out,puts 

from the procedure can be inodel selection frequencies, coefficient estimat,e distributions, or 

an estimate of mean prediction error. These outputs can be used t,o aid selection of tlie final 

model. 

Bootstrappilig residuals is not feasible for most screening experiinents t11a.t include in- 

teractions, bemuse the full model will not be estimable, so no residuals can be formula~ted. 

Bootstrapping pairs requires coinbinilig randomly-sampled rows of the inodel matrix; for 

typical screening experimental designs, this will lead to rank-deficient ilia,trices and an es- 

tirnability problem similar to the CV case. 

The class of shrinkage methods for model selection includes ridge regression, lasso, and 

penalized likelihood methods (Hastie, Tibsllirani, and Friedman 2001; Fan a.11c1 Li 2001). All 

of tlicsc! nlethods trade off some bias in the coefficient estimates for a variance reduction, 

and siinulta.neously do variable selection and coefficicnt estimation by "shrinking" siria.ll 

coefficieiits toward zero during the estiination procedure. 

Shriiil<age methods appear to be inost applicable to cases inore da.ta-rich than screeiiing 

experiments. The rnethods are focused on obtaining good coefficient estiniates aiid good 

predictive performance, more than on separating active from inactive varia1)les. All shrink- 

a.ge inethods involve a shrinkage parameter, that in 1- any cases is chosen through cross 

validation. So detcrmining the tuning pa,rarrieter iiitroduces the same estimability probleni 

found in direct CV model selection. 

A final method, that does not fit w d l  into the categories described in this section, is the 

pczrnllel genetic algorithm (PGA) method of Zhu and Chipman (2006). This recent, n~ethotl 

employs a. genetic algorithm to search through the model spa.ce, using any inodel selection 

criterion as the objective function. A number of genetic algorithm searches are conducted 

in parallel, with each sea,rcli being stopped early, so that a variety of good solutions a.re 

found. The out,put of the PGA searchcs are combined to ident,ify variables that ar t  most. 

likely to be active. Though it has not been developed specifically for screeriiig experiments 

(in particula.r, it does not enforce heredity), the PGA method is very similar in spirit to 

the new method t,o be described i11 the next chapter. Both methods aim to identify many 

good solut,ions, aiid then combine the informa.t,ion among thein to give a l k t e r  picture of 

tlie true niodel. 



Chapter 3 

Model Selection Using 

Oversized-Model Sets 

Tllc previous chapter illustrated that overfitting and model aliasing are to bc expect,ed when 

considering a. huge model set with a, snidl amount of data. Whatever the truth may be, 

tllcre will be a great many models that cont,ain t,hc t,rutli plus (say) 1-3 splirious varittl~lcs; 

all of these models will have good fit, and it will be hard t,o choose one of them as tlie best. 

The new model select,ion method, to be introduced below, uses the multiplicit,y of over- 

fitted models to its advantage. I t  searches for common variable combinations among a largc 

nuinlm- of over fitted models. 

3.1 Overview of the Method 

Tlie first st,ep towa,rcl the new method is to define a ma:cim,urn plausible size for tlle tmth,. 

Let this model size be T. The value of T indicates the largest number of active factors one 

would cxpect to exist,, under the assumption of effect spt~rsity. For example: if ailalyzing a 

12-run Plackett-Burman experiment, the idea of effect spasity suggests that tlie maximurn 

nuinber of active variables is about four; otherwise a 12-run design is probat)ly inappropriate 

in the first place. This suggests that one should set, T = 4 as a reasonable choice. 

A key idea in the proposed method is to only c o ~ ~ s i d c ~ '  modcls of n single ,fi:t'ed size, ubovt 

2 or  3 varia,bles larger than T. This large nmdel size will bc called p. Any niodel of size p 

will be called an oversized naodel. R.eferring to t,he PBI2 example, one would set p = G or 
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p = 7, since a rcasonable value for T was chosen to be 4. By considering only inodels of a 

fixed, large size, the trade-off betlureen goodiiess-of-fit and model size is avoided. The quality 

of each model can be evaluated simply by its RSS, and all models will be comparable. 

The set of all oversized, hereditary models will be called M. The size of the set can be 

<:alculated a.cc:ording to equat,ion 2.3; it will typically be very large. The subset of JW of 

most interest is the set of overfitted models-tjlle models containing the truth. As before, 

this set, will be called 0. Its complenient, 0" ,  contains all of the underfitted, partial-truth, 

and wrong models. Because the truth is unknown, tlic analyst does not l<now which inodels 

belong in 0 ,  and which belong in 0". If the membership of 0 could be identified, the true 

model could be found easily--it would be the largest subinode1 that a.ppears in all inodels 

in 0. 

Not, being able to find 0 directly, oilc rnqr instead look at models wit11 good fit to the 

observed data.. Let the good model set, G; be the collection of the m. lowest-RSS models in 

M. If the complete model set is small enough, tlien G can be found exactly by exhaustive 

search; if the full set is prohibitively large, a.n approxiinat,e G can be built througll a scarcll 

heuristic. 

The metliod of oversized models start.s with the idea that G should be a. good surrogate 

for 0 .  It  is based on the followilig logic: 

0 Beca.use p is chosen to be larger than 7, the overfitted set 0 will contain a. large number 

of models. 

a Because models in 0 contain the truth, they should have very low RSS, and thus the? 

will occur very frequently in G. The other models in G will be models from OC that. 

have good fit by chance. 

0 Sincc models in 0 doniinate the good model set, the true   nod el (wliic.11 occurs in d l  

tlie ovditt,ed models) should bc disccrnible as thc most over-rcpresented combiilatioil 

of variables in G. 

At a high level, then, the algorithiri consists of two s tqx:  

1. Sca,rcll the space of all oversized models; keep the top rn, of these to form the good 

model set, G. 



CHAPTER 3. MODEL SELECTION USING OVERSIZED-MODEL SETS 35 

2. Exarnii~e G to find a combination of T or fewer variables t11a.t stands out as the imin 

feature or pattern among the good models. R.eturn this set of variables as the selected 

model. 

The rnetllod just described can be illustrated on the motiva.ting esample of the previous 

chapter, for whicli an exlmist,ive search was performed. R.ecal1 that tlie true model in the 

example ha,d size three--the model was (A, B, A I ) .  Let p = 7 a,nd m. = 5000, so that 6 
consists of the five thousand best-fitting models of size seven. In this top set, 1022 models 

c:ont,ai~~ the t r~ l e  model, and a.nother 2361 models contain two of t , l ~  three active variables. 

So the truly-a.ctive variable colnbinations will occur very frequently in the set G ;  these 

combinations can be extra,c:ted and used to make decisions about the likely true model. 

To become a. geiierally useful a.lgoritlim, a ~runlber of additional (lettails beyolld the brief 

sketch above lieecl to be worked out. Rules for choosing 7, p, and nl. need t,o be established; 

a general search method for buildilig G must be developed; and tlic notion of most 0 1 ~ ~ -  

rep.rcsen.ted mriable corn.binration needs to be clarified. These topics will be discussed in tlic 

sections that follow. 

3.2 Generating The Good Set: Simulated Annealing Model 

Search 

The first major step in the oversized models algorithm is to generate a, good model set. 

Ideally, this set sl~ould consist of the nL lowest,-RSS hereditary models of size p. For sniall 

problems, it may be possible to search exhaustively t,o filld the m, best modcls, but in geueral 

the nuniber of possilde rnodels will be prohibitively large. 

When the set, of all models is too large to search exhaustivel;);; a search heuristic is 

required. Fillding a well-fitting model is a. cornbinat,orial opt,ilnization problem, posed as 

follows: find the subset of p variables talcen from k possililities, such that the RSS is min- 

imized. The familiar technique of stepwise regression is one exaniple of a search algorithm 

t11a.t has been applied to the model selection problem; thcre are numerous other possibilities 

available in the  inodel selection and conlbinatorial optimiza.tion fields (Miller 2002; Reeves 

1993). 

There are t,wo significant complications in the present case, that makes it inappropriate 
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to choose any of the available coinbiilatorial optiinization algorithrns as-is. The first com- 

plication is precisely that available algorithms a,re designed to perform optirnizatiori-t,o 

converge toward one optmimum, hopefully the global one. For thc purpose of generat,ing a, 

model set, it is rather preferred to yenrerate a laye number of near-optimal solut.ions; the 

goal of the searcli is not just to find one quality solution, hut to find good solutions ill 

quantity. The second problelri is the recpirement that solutions must respect cff'ect hered- 

it,y. Putting  constraint,^ on the form of solutions typically makes it necessary to modify the 

standard algorithms. 

One of the novel aspects of the present work is the way in which these two complica,tions 

are resolved. It turns out t,llat the combilia,torial optimiza.tion heuristic known as simula,ted 

annealing (SA) can be readily modified to have the desired pr~pert~ies. Two modifications 

of the basic SA algorithm havc been developed: 

1. A hereditary move, to perinit searcli tlirougli thc iriodel space without stopping on 

non-hereditary iiiodels. 

2. An alternat,ive temperature control scherne, to ensure that the sea.rch keeps visit,ing 

good solutions indefinitely, without converging. 

The basic SA algorithm, the required modifications, and the final implenientation of the 

nletl~od are described below. 

3.2.1 The Generic Simulated Annealing Algorithm 

Simulated aniiealing is a well-established loca.1 sea,r.ch method for conibina.toria1 optimiza.tion. 

A brief outline of the method is presented hcre. See, e.g., Reeves (1993) for a more detailed 

description. 

The algorithm starts at one cariditlate solution, and then entertains the possibility of a 

move to a randolnly-chosen ~reighbour- solution. The neigl~bourl~ood and the possible moves 

at each step are defined in a problem-specific w a j ~ ~  depending oil the relationships among 

the solutions. At each step, a. decision is made whether to a.c:cept or reject the new solution. 

If new solution is better than the old one, then the move is always a,ccept,ed. If tlie new 

solutioii is worse tlmn the old one by an amount 6, then a randomized decision is made: 

the move is accepted with proba,bilit:y (usually) given by ezp(-6/t) .  The tuning paraniet,er 

t, called the temnperature, is used to control the convergence rate. At tlie beginning of the 

search, t is made large, lmt as the sea.rch progresses, the value of 1: is decreased. 
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Pseudocode 4 A typzcal simulated ar~nealir~g nlgorith,m with coo1in.g at every step. 

Let tlic temperature be t .  Let the objective function value at solution s be f (s) 

Set the initial value o f t .  Choose an initial candida,te solution, s. 

While stop = f;~.lse: 

Choose a new solut,ion, s f ,  from the neighbourhood of ,s. 

Calculate S = .f ( s f )  - .f (s ) .  

if n ' <  0 
tlicil Accept the move (set s = s f ) .  
else Accept the move with probability P = exp(-Slt). 

Sct a = sf if acceptcd, leave s = s if not. 

Decrease temperature one increment. 

If the ~t~opping rulc is satistied, sct stop = true. 

The p~irpose of the randomized decision OII bad moves is to permit the search to escape 

local optima.. At the beginning of the search, when the temperakure is large, many bad 

moves are ma.de-convergence is sacrificed for a, Inore tJ~orougli exploration of tlie solution 

spa.ce. As the temperature is reduced during the search: fewer and fetvcr bad moves will be 

accepted, until ultiinately the algorithin converges to wliat is hopefully tlie global optin~uiri. 

The basic SA a.1gorit8hrn for nlinimizatio~~ is given in Pseudocode 4. In the in~ple~nenta.- 

tion shown, the tenipera.ture is reduced at every itera.tion. Anotlier variety of t,his algorithm 

involves reducing the temperature only every j'lL step. 

3.2.2 Modification 1: Hereditary Moves 

Simulated annealing is a ~reighborhood search inetllod; new candida.tc solutions are gener- 

a.ted by mo7)es from tlie current solution to one of its neighbours. The neighbourhood should 

be defined suc:h that any two solutions can be connected by a finite nun~ber of moves. 

The goal at this stage is to develop a heredita.7-g move that takes a hereditary model 

of size p, and returns another hereditary model of size p with a small number of different 

active factors. I11 taliis way, the search algorithm can move tl~rough the spa.ce of candidate 

models efficiently without stopping on non-hereditary models. 
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Pseudocode 5 An cdgori,thrn ior. a hereditary sn.ove. 

Let 114 be the currently selected licreditary nlodel, consisting of p variables. 

Choose one of the vnria.bles in Ad, uniformly at ra.ndom. 

Drop tlie chosen variable from the model. If the chosen variable is a main effect, and 
removing it fro~n the model will cause one or more interactions to viola.te heredity, 
then rcinove thosc interactions as well. Call this reduced model Ad*. 

Add variables to M" to build it back up to size p, as follotvs: 

Form a list of all variables that would satisfy heredity if added to Ad'. This list 
should not includc those variables deleted in previous steps. 

Choose one variablc at randoin from this list and add it to M".  

Repea.t. until M* has size p. 

The newly-developed llereditary move is sliown in Pseudocode 5. The move is sirnplc 

and effectzive: one variable from the current model is selected at random; this variable is 

relnoved from the model; any other variables t1ia.t would viola.te heredity are also removed; 

and thcn the model is built back up t,o size p by adding a,dmissible variables. 

Defining a 1ieredita.ry 111017e in this wav iinplicitly defines the neighbourl~ood of a hered- 

itary model as any model that may be reached in one move. Note that in the variable- 

dropping step, it is possible that more thnii one (or even all) of the variables may be 

removed. Therefore the number of possible moves depends on tlie number of main effects 

in the current model. 

For example, if t,lle current model is Ad = (A, B: C, AB, A H ) ,  then dropping out varia,ble 

A will leave Ad* = (B, C, AB). Interaction AB is retained because it still has a parent main 

effect (B) in the nioclel; conversely, interactioli A H  is dropped out because it would viola.te 

liereditv to retain AH after A has been droppcd. 

Table 3.1 provides a more extensive oxample, giving a sequence of 12 hcreditary lrioves 

fro111 a. starting model of ( A ,  B, C, AK). Line numbers 10 a,nd 11 are pa.rticularly interesting 

in this example-they a.re cases of a model having only one main effect and p- 1 intera.ctions. 

In such a case, the neighbourhood of the modcl is actually the entire model set. If tlic main 

effect happens to be selected for removal, then all the intera.ctions will be removed as wdl; 

wheli the model is built back 1111 to size p, any liiodcl could result. This lmppens in row 11 
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Table 3.1: A11 example sliowing 12 hereditary moves for a PB12 design, with nlain effects 
A-I<. The initial niodel is (A, B, C, AK). Boxes indicate wliicll variables were selected to 
be dropped at each move. U~iderlined variables were removed t,o mainta.in effect heredity. 

I Move I Model 

of the table. 

The naturc of the move defined here is quite useful for tlie purpose at 11and. For tlie 

nla.jority of moves, the new model will differ from the previous one by only oiic or two 

variablcs-this is necessary for tlie algoritll~n to seek out good solutioiis. Occasionally, 

liowever, the new and previous models will be very different, possilAy totally different-this 

will lielp ensure good coverage of the model spac.e, and c~onsequently makc it easier to find 

a variety of good solutions. 

3.2.3 Modification 2: Preventing Convergence 

Having defined a useful move to permit searching of thc liereditary model spacc, tlie basic. 

SA algoritlini ~nllst still bc ~noclified to prevent convergence, so that the search will produce 

a largc set of good niodels as required. Two methods are proposed to acllievc the desired 

l>elmviour: 

1. Climge the te~nperat~ure control sclleine to introduce occasional te~nperaturc incrmses.  

If the temperature is never allowed to get too small, then there will always be ail 
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appreciable probability of accepting a poor move, and the search can be made to 

carry on indefinitely. 

2. Set a lower bouiid on the probability of acceptance, so t h t  any move, no matter how 

ba.d, will always have a small chance of being accepted. 

The second strategy will ha.ve a similar effect to introducing several random rest,a.rts 

throughout the search. Its purpose is to provide furtlier assurance t h t  the model spa.ce 

is well-explored. Implementation of this strategy is tliscussed in the next section; herc the 

focus will be on the first point-temperat,ure control. 

Tlle literature on simulated annealing contains a variety of suggestions for acla.ptive 

control of temperature, some of which include temperature increases (Reeves 1993). The 

desired behaviour in the present case is t,o have the sea.rdl remain in the neighbourhood 

of good soliltions long enough to visit many good options, without ever getting trapped 

in a particular neighbourhood. Using a variation on an idea in Do\vsland (1993), this is 

achieved by cooling the system on every accepted move, and heating the system on every 

rejected move. The amount of cooling is controlled by a constant p, 0 < p < 1; every tinlo a 

niovc is accepted, the temperature is set to t = pt. The amount of heating is controlled by 

a, consttant (1, tr > 1; every time a move is rejected, the temperature is set to t = at. 

Iihen the SA search is at a good solution, there a.re not many improving moves, a,nd 

tliere will be man37 re.jections. Making tlie system hotter with each rejeckion, as proposed 

here, ensures t1ia.t the search must evelitually make an uphill move as the re,jections keep 

a~cuinulat~ing. In this way convergence is guarant,eed not to happen. The non-convergence 

tendelicy is counterbala,ncetl by cooling the system on cacll accepted move; doing so tends to 

keep the search moving in a good direction while moves arc still beilig acxeptecl reasonably 

oftell. 

The rela.tive magnitudes of p a.nd tr determine thc ba.lance between searcliing good 

neiglibourhoods and jumping away to new parts of the model space. Making p smaller 

relative to cr puts more pressure on the algorithni to search good neighbourhoods-many 

rejections (Iicating stcps) will be required to balance one acceptance (cooling stcp). 

Based on this interpretation, it is convenient to define the temperature control not by 

specifying p and a. directly> but rather by specifying p and a third pa.rametc?r, tc ,  as follows: 

1. Choose a value for K .  6 is defined as the number of heat,iiig iterat,ions required to 

lxdance one cooling itera,tion. The larger r; is, the more time the algorit,hm will spc?nd 
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near local optima. Equivalently, K may be thought of as the desired ratio of rejected 

moves to accepted mows. 

2. Choose the cooling fraction, p, to be some appropriate value, such as 0.95 or 0.99. 

3. Calculate a from p and K. The definition of tc implies that paK = 1, and l~elice 

a = ( I / ~ ) ' / " .  

Thc tenlpcrature control scheme is illustrated for a hypothetical sequencc of moves in 

Figure 3.1. 11-1 this figure, the search starts in some initial state with t = I ;  the search then 

undergoes two a.c.c:cepted moves, followed by eight rejected ones. The curves in the figure 

show thc acceptanc:e probability Pa,, = exp(-h/t) used to rriake the randomized decision 

on a mom that increases the RSS by ail arnouiit 6. The curve gets shifted to the left on 

accepted moves, making it llarder to accept t~ad  moves in the future; it gets shifted to the 

right on re.jected moves: having the converse effect. The sliifts to the right are smaller tlian 

those to the left, so it takes n right-shifts (rejections) to balance one accepted move. 

3.2.4 The Modified Simulated Annealing Algorithm 

Thc hereditary move and the adaptive t-emperatwe control can be incorporated into the 

generic: simula.ted mnealing algoritlm~ to yield a search l~euristic with the desired properties- 

a nori-coiivergent search througli good hereditary models. The conlplete algorithm is given 

in Pseudocode 6. The main points n7ill iiow be described in more detail. 

Before beginning the search, a. number of control parainet,ers must be set.. Tlie most, 

important of these is p, the size of the oversized models. As previously discussed, the goal 

is to choose p so that it is two or t h e e  variables larger tlmn 7; t l ~ c  maxi~nurn plausible 

size of the truth. Ideally, the value of T could be established based on subject-matter 

considerations. For cases where no guidance is available to hclp clioose r, the following rule 

of thumb is proposed: the assumption. of eflect sparsity inplies th,at the truth is no lmger 

tha.n about n,/3. Adding two variables to this number gives the rule of thumb for choosing 

1): p x n / 3  + 2 (p must, of course, be nil ilitcger). 

Temperature control is mana.ged by setting values for the two parameters p a.nd 1;. 

Tliere are various combinations of these inputs that will give good search beliwior. Tlie 

recornnleiided default is to set the cooling fraction, p, to some value close to 1 (say, 0.95) so 

t.1ia.t c:ooling does not happen t>oo fast; and to set tc tto 4 so that only four heating iterations 
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Acceptance Probability Curves for a Sequence of Moves 

Move t 
0 1.000 
1 0.500 
2 0.250 
3 0.297 
4 0.354 
5 0.420 
6 0.500 
7 0.595 
8 0.707 
9 0.841 
10 1 .ooo 

Outcome 
A 
A 
R 
R 
R 
R 
R 
R 
R 
R 

"0 0.5 1 1.5 
Size of Uphill Move 

Figure 3.1: Illustration of the temperature control scheme. This example has an initial 
temperature t = 1, and parameters p = 0.5 and K = 4; it shows two accepted moves (thick 
blue curves) followed by eight rejections (thin red curves). The curves show the randomized 
decision rule from the initial state (curve 0) to the last move (curve 10). The table shows 
the temperature at each step, and the outcome of the move: accept (A) or reject (R). Note 
that K rejections are needed to balance one acceptance. 
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are required to balance one cooling iteration. This combination allows the algorithiri t,o 

accept many good solutions, without rejecting such a high fraction of nloves that the search 

is too slow. 

At tlie beginning of the scarcli, the good model set G is initialized to an empty set. 

The objective of the search is to populate G with a large number of well-fitting models. 

This is done by running the modified simulated annealing algorithm until a. large nuinber 

of accepted moves have been generated. As a default this number, ngerL, will be set to 

10000. The modified SA algorithm may acccpt thc same model multiple times throughout 

the search, so after ngen accepted moves, only tlie rn. unique models are retained in G. 
The algorithm is insensitive to the initial teniperature setting, and to the starting so- 

lution fed to the sea,rch. In the implementation used, the initial temperature is set to one 

tenth of the ma,xirnu~n RSS, that is, to t = ( T L  - l)var(Y)/lO. The initial model is cho- 

sen randomly from the set of hereditary niodels. Subsequent cmdidate models are always 

generated using the hereditary move described i11 Section 3.2.2. 

The annealing algorithm itself proceeds in the same way as thc generic SA dgorithm, 

but with two key differences. Thc first difference is the ternpernturc control: each time a 

move is accepted, the teinperlzturc is reduced by setting t = pt;  ewli time a iriove is rejected, 

it is increased by setting t = at. 

The second difference is a slnall cliange to the randonlized decision ma.de when tlie 

proposed move is to a model with higher RSS. 111 the standard SA metliod, a move that 

increases the RSS by 6 units is a.ccepted with probability exp(-bit), wliicch inems tlmt the 

probability of acceptance vanishes as 6 gets large. In thc modified algorithm, the xcept,ancc 

probability is given a. lower bound, so that Pa,, = max(exp(-(ilt), Pmi,). PTniT, is set to 

a default of 0.01. Putting a lower bound on tlle accepta.nce probability provides further 

assurance that cconvergence canilot occur, and helps keep the search spread more widely 

017er the solu tion space. 

The result of the lrlodel search is a set G, containing m ilnique models. At the end of the 

search, G is sorted ill ascmlding order of RSS, so that tlie best models are listed first. The 

majority of the moclels in G will have very good fit (low RSS). There will be a fairly wide 

range of RSS values in G, however, because tlie search w.ccepts some poorly-fitting models in 

order to cover the model space. This is not a concern, since the poor models slioulcl colitain 

a lieterogeneous mixture of variables; the patt,ern of true variables in tlie overfitted iiioclels 

in G s l~o~~lc l  still be evident despite this noise. h/Iet,liocls for detecting and extract,iiig tlio 
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truly-active variables are discussed next. 

3.3 Visualization of the Oversized-Model Set 

TWO key graphics are proposed to make interpretation of the good model set easier. The 

first, a raster plot, graphically shows tlie coefficients of all models in G at once, so that 

comnion patterns in the inodel set can be seen easily. Tliese patterns may also be made 

more evident by performing an optional clustering step before plotting. The second plot, a 

link diagram, shows information on the occurrence frequencies of different variable pairs in 

8. Tliesc: t,wo plots can be used together to infer much about the data-genera.ting process. 

The graphical methods will be shown for two cases, to illustrate the typical spect,rurn 

of outcornes that inay arise. The two cases arc based on the samc data-generating process, 

but with tu7o different observed y vectors. The PBI2 design is used, with design ma.trix X. 

The true model is set t-o (2,5,2*7,5*!3). 

Case one 

Model: E[Y] = 0.5 - 1.1X2 - l.5X5 + 0.9X2X7 + X5XS. 

Residual standard deviation: a2 = 0.25. 

R.csponse: y-vector randomly generated from tlie inodel. 

Case tu7o 

Model: E[Y] = 0.5 - 1.1X2 - 1.5X5 + 0.9X2X7 + X5X9. 

Residual standard deviation: a2 = 0.75. 

R.esponsc:: generated y's and chose onc with high model selection uncertainty. 

The two cases use the s a n e  model with the same coefficients, but differ in their error 

varianc~. For case one, ~nodels containing the truth shonld be considerd)ly better tha,n 

other models. For case two, the inode1 selec:t,io~i process should be inuch inore subject to 

sampling variability-- replications of the experiment would yield a range of best models. 

3.3.1 Raster Plot 

The starting point for the raster plot is a inatrix representation of the good model set. In 

the computer irnple~nentatioii, G is represented by a,il m x k rnat,rix, with rows representing 

rnotlels, aud columns representing variables. Tlie jlh. row of the inatrix contains the coeffi- 

cient,~ of the j lh best-fitting: model; c~efficients of variables not in the jth ~rlodel arc set to 
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Pseudocode 6 The modified SA algorithm: Simulated Annealing Model Search, 

Choose p, the size of the models to generate. Rule of thumb: p x n / 3  + 2. 

Set input parameter values: ng,, = number of accepted models to generate; p = cooling 
fraction; ti = acceptancelrejection ratio; P,,, = minimum acceptance probability 
(defaults: 71gen = 10000. p = 0.95, ti = 4, P,,, = 0.01). Calculate heatiiig factor, 
a = (l/,")l/? 

Initialize counter for number of accepted moves: T ) . , ~  = 0. Initialize the temperature: 
t = (71 - l)var(Y)/lO. 

Initialize tlie good model set, G ,  to the empty set. 

Choose an iiiitial hereditary rnodel, Mold, at, random. Set n,,, = 0. 

While 71,,:, < n,,,: 

Use a 1ieredit)ary inove (see Pseuclocode 5) from Mold to choose a new ca.rididate 
model, A& ,.,,. Adn,, must be estimable. 

Calculate difference in RSS: 6 = RSS(A4n,,,) - RSS(A&,,). 

If S < 0 (new model is better) then 

Add to G. 
Set Adold = Adnev:- 
Set n,,, = n,,, + 1. 

Set t = pt. 

Else (new model is worse) 

Calculate xcepta,nce probabilitv: P,,, = max(exp(-dlt), Pmi,). 
If rand() < Po,, (accept randomized decision) then 

Add MnW to G. 
Set lWold = Mneu;. 

Set nacc = n.occ + 1. 

Set t = pt. 

Else (reject randoinized decision) 

Set t = at. 
Erid if 

End if 

Return. 

Discard all duplicate models in G, and sort G in ascending order of RSS. 
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zero. The result is a sparse niatrix with nonzeros at the positions of activc variables. 

The raster plot is one way to visualize the information in the G matrix. The matrix is 

plotted as an image, with oue rectangular pixel per element. Zero-valued coefficients are 

drawn as white, negative coefficients are dra.wn as red, and positive coefficients are drawn 

in blue. The intensity of the red and blue is scaled for each model, so that the coefficient 

with the largest magnitude in each model appears as fully saturated red or blue (see Figure 

3.8 for the color scaling). 

Figures 3.2 and 3.3 provide exalnples of the raster plots drawn for the example cases 1 

and 2, respectively. About 5200 uuique models were found in case 1, and over 7000 in case 

2. The raster plots permit all of these top models to be summarized simultaneously, and 

make it easy to see commonalities across models. 111 the raster plot, the predictor variables 

are sliown by their column number in the full matrix. The intercept colulrin is not sliown. 

A11 a,dditional plot at  riglit gives the RSS values for all of the displavd models, to help 

gauge the relative goodliess of fit amolig t l ~ e  lriodel set. 

A significant amount of information can be gathered from reviewing the raster plot. Tlie 

variable occurrence frequemies are the most, obvious thing to notice in the plot,. Variables 

with a strong effect on the response will appear in most of the models, creating a vertical line 

on the plot. The relative magnitudes of coefficients can also be observed; small coefficients 

have a lighter shade. Coefficient signs may also be observed across ~riodels, which n1aj7 

aid interpretation in some cases. If a variable 11s  an even mixture of positive and negative 

coefficients across many different models, fbr example, one would likely quest,ion the validity 

of that variable's effect. 

Another very useful aspect of the raster plot is that it also helps the aiialyst to understmid 

the extent of model confounding or model selection uncertainty in a particular case. If one 

model don~inates the ent,irc raster plot,, then this lnodel can be selected with confidence; 

but if therc is no clear winner in the model sct, then this will also he very clear from the 

gra,pl~. The investigator will not be mistakenly led to believe that the best choice of model is 

unanlbiguous. This is particularly iniportant in screening experinient,s, where it is important 

to nia.kc good decisions about which follo\v-up trials are appr~priat~e. 



CHAPTER 3. MODEL SELECTION USING OVERSIZED-MODEL SETS 

1 10 20 30 40 50 60 66 0 2 
Predictor RSS 

Figure 3.2: Example of a raster plot of the good model set for case 1. The true model 
(2,5,26,49) dominates the top half of the set and is clearly distinguishable. The remaining 
models comprise a noisy mixture of many different variables. 



CHAPTER 3. IMODEL SELECTIOhr USING OVERSIZED-MODEL SETS 

1 10 20 30 40 50 60 66 0 2 
Predictor RSS 

Figure 3.3: Example of a raster plot of the good model set for case 2. This case has much 
higher model selection uncertainty. There are about a dozen variables that occur frequently 
in the top models, and it is not clear which variable combinations are most common. 
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3.3.2 Clustered Raster Plot 

T l ~ e  raster plots shown in figures 3.2 and 3.3 show the models sort,ed in ascending order of 

RSS. This arrangement helps to distinguish the best-fitting models from tlie more poorly- 

fitting modcls. An alternative to this view is to group similar models together, and the11 

plot the raster diagram in grouped order. Viewing the grouped raster plot can help to male 

the common submodels in G more clear. 

Grouping sirnilar models can be clone using o w  of many available clustering methods. 

For prcsent plirposes, K-1nea.n~ clustering was chosen. I<-mei-~ns clustering is a method for 

dividing a set of multivariate observations into K self-similar groups. Group membership 

is assigned to each observation (using an itcrative algorithm) such t,hat the total distance 

between the observations and their group mean is minimized. See Johnson E L ~ C ~  Wiclleri1 

(2002), or Hastie, Tibshirani, and F'riedinaii (2001) for a review of clustering methods, 

including I<-means. 

Clustering is done on rows (models) in the matrix representation of the good-model set. 

Ex11 row is a, vector of inostly zeros, with p nonzero elements. To perform clusterillg, an 

a.ppropria.te distance ineasure must be defined for compa,ring two rows. The rows mere first 

converted to indicator vectors-the nonzero components were set, to one. Then the Hamming 

distance (the number of elements that are different) was used to measure distanc:e. 

The MATLAB statistics toolbox implementation of K-means c:lustering was used to 

clwter the models in G. The best clustering wrangement (minimum total point-to-centroid 

distance) out of five replications was taken as the final grouping. The resultant rastcr plots 

are sliowli in figures 3.4 and 3.5. 

As illustrated in the figures, t,he clustered raster plot can help to suggest a list of cmn- 

peting models, especially wheli this is not c1ca.r from tlie origiiia.1 raster plot. The clustered 

and un-clustered plok togethcr can help to bettcr understand a,riy model aliasing problems 

th& may exist. 

3.3.3 Link Plot 

Thc: raster plot provides a convenient way to visualize the overall conipositioli of thc good- 

niodel set. One thing that is not clear from raster plots, however, is the liereditary re- 

la~tionships among variables. Also, the plrpical layout of the graph prevents the mriable 

names from being clearly identifiable on the plot. The link plot is a second visua.lization 
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1 10 20 30 40 50 60 66 0 2 
Predictor RSS 

Figure 3.4: Clustered version of the raster plot for case 1. The true model remains clearly 
visible, but the noisy lower portion of the plot has been reorganized into clearer groupings 
of models. 
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Figure 3.5: Clustered version of the raster plot for case 2. In this case clustering has cleared 
up the plot considerably, revealing several models that are very common in the good set 
(compare Figure 3.3). Note that the true model (2,5,26,49) is now visible, but it is only 
one of several well represented models. 
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tool proposed to view the inf~rmat~ion in the set G, with more focus on heredit,y and model 

identification. 

The motivation for the link diagram comes from the reali~at~ion that it is not just 

frequent41y-occurring varhbles, but freclneilt.ly-occurrillg combinat~ions of va.ria.bles, that help 

identify n good candidate model. The start,ing point for the link plot, then, is t,o count the 

frequency of occurrence of all variable pairs ill G. The occurrence frequencies are the11 scaled 

relative to the most frequentl~r-occurring pair, so that every pair of variables is given a link 

weight betweell zero and one. 

Link plots are shown for the two example cases in figures 3.6 and 3.7. The diagram plots 

each candidate variable as a. point in space; the design variables are displayed on an arc at  

left, wliile tlic interactions are arranged in a. vertical line at right. Lines are drawn between 

pairs of variables, with the width and color of the line reflecting: thc link wcight. Variable 

pairs with higher occurrcnce frequencies (link weights) are drawn with tliiclter, darkcr blue 

lines, wliile pairs with lower weights are drawn with thinner, lighter red lines. The color 

map used to color the lines is shown in Figure 3.8 (along with the color map used ill drawing 

the raster plot). 

The end result of drawing the pairwise frequencies in this way is a web of lines, with 

thicker aad da,rker liues delineating models tliat are more strongly supported by the good- 

ri~odel set. Heredit,ary relationships can be clearly seen on the link plot. Note tliat links 

betweell two illteractions are not draxn; they are not necessary, since ~inder the 1ieredit.v 

assumption, every int,eraction must have a link t,o a main effect. 

A inodel with only two variables will imturally be represeiited by a line on the link plot. 

Models of m y  larger size will appear as a, set of connected triangles, formed by the various 

combinations of variablc pairs. In this way: larger models can be nicely represented even 

tliougli only pairwiso frequencies a,re used to colistruct the plot,. Note also that by using 

pairwisc frequencies, the partaid-truth models in G can still contribute to the emergence of 

the true model in the figure. If, for example, the true inodel is (A, B, AG), then any niotlels 

contaiuii~g (A, B) ,  (A, AC), or ( B ,  AC) will still help to make the true model more visible. 

As with thc raster plot, inconsist,encies in thc model set, due to model aliasing or model 

selection ui~certaint~y, [can also be easily detected. If the darkest lines on t,he plot are not, 

comected, or do not form triangles, the11 that means that some links are "missing," and 

the patter11 is actually creat,ed by a set of incompatible models. Figure 3.6 shows a, typical 

case where the best model is unambiguous; while Figure 3.7 illustrates the a.mbiguous case. 



CHAPTER 3. MODEL SELECTION USING OVERSIZED-MODEL SETS 

Figure 3.6: Example of a liuk plot of the good model set for case 1. The frequently-occ~~r~.ing 
variable pairs, whei~ viewed together, clearly clcliileate the true model. 

l'he link plots sho\vn herc a,re developed specifically for the case of a,n experiment con- 

sidering mair~ effects and two-way interactions. A more flexible version of the lid< plot could 

be developed for general regression cases or arbitra,rily-defined l~eredity relationships arnollg 

variables. The main co1np1ic:stion is choosi~~g a sensiblc spatial layout for the diagram's 

vertices, so that, all important links (and variihle na~nes) are easy to see. 
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Figure 3.7: Exainple of' a link plot of tJlie good modcl set for case 2. There are a nurnhei of  
discorliiccted sets of t,riaiigles with significant weight. This is iridicative of model aliasing. 
For exarnplc, one could pick out (1,3,1*9,3*7), (2; 5,2*7,5*9), and (4,7,9; 4* 10) as leading 
candidates. 
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Scaled coefficient value 
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Figure 3.8: Color maps used for the rast,er tliagrani (top), a,nd for the link diagram (bott,om). 
In the raster plot,, all coefficients me scaled relative to the largest coefficient in the model; 
in the link plot, link frequencies a.re scaled relative to the most frequently-occ:urrii~g variable 
pair i11 t,he niodel set. 

Automatic Extraction of the Best Model(s) 

The visualization approach to  interpreting the good inoclel set is simple a i d  intuitive. It al- 

lows t,hc investigat,or to hring in sul~ject-mnt,ter knowledge in deciding how many variables, 

a.nd which ones, are strongly supported by the data. It a,lso has the advantage of clearly 

showing when t.he experiment has a high degree of inodel aliasing or inodel selection uncer- 

tainty. For these reasons it is believed tha,t the graphical procedures of the previous sec:tioii 

should be enough on their own to enable good decision inalciiig in a real-world applica.tion. 

The procetl~ire froin a pract,itioner's standpoint would be simple: 

1. Run the simulated annealing inodel search to generate the set of well-fitting models. 

2. Create the raster plot and link plot. Use them t,o judge which variables are likely t o  

be active, and what follow-up experiments might be justified. 

The above conlments notwithstanding, tliere is a natural niotivation to automate the 

process of estracting a best niodel (or set of best niodels) from the good model set g. A key 

driver for developing such ;ul aut,omatic process is t,o enal~le simulntiori studies sudi as those 

performed in Chapter 5. A11 autoniatic process would also be useful as a. decision support 

tool to augment the ii~t~erpretatiorr of the raster plot and liiik plot. 

The guiding principle behind the method of oversized-model sets is that the nloclels in 

G contain d l  of the useful inforlnation about the true inodel. This notion is genera.lly borne 

out in the raster plot and the link plot, where a human reader's eye call usually see tlhe 
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inlportant combinations of vnriables quite easily. The problem of programming a computer 

to do t,liis process a~tomat~ically could be approached in many ~ a > ~ s .  In the present work, 

the task 11as been viewed as a feature extraction problem. A solution has been developed, 

nlalcing use of an entropy measure to quantify the degree of support, for a particular variable 

combination. 

3.4.1 An Entropy Measure of Support for a Candidate Model 

The set of good oversized models, G, contains only models of size p. The assuinption tl- rough- 

out has been that the best model is no larger than 7. Tlie featlire extra.ction task at hand, 

then, is to choose a subset of q 5 .r variables (a model) t,lla.t is, in some sense, best supported 

by G. The chosen variable combination will be proposed as the best a,pprosimation to the 

truc! model. 

Let &I be a pa.rticular candidate model, consisting of q variables. The models in G are 

larger than M ;  so every member of G either cont,a.ins or does not conta,iri 114 as a submodel. 

The premise of the method is that most of the models in G should contain the truth; so the 

occurrence frequency of fl!l seems like an obvious measure of degree of support for 114 as the 

truth. 

Uiifortunately, it is not possible to simply take the candida,te with the highest occurrence 

frequency as the best model, because for any model, all of its nested models must occur 

at least as many times. If, for exainple, model (A, B, AB, BD) occurs 1000 times in the 

model set, then any chosen submodel-say, (A, B,  BD)-will occur a,t least 1000 times as 

well. Just looking a.t model occurrence frequency effectively re-introduces tlie problem of 

the appropriate model size. 

To get around this problem, a notion of degree of over-representation. of a candidate in 

G is needed. The best. model is not just the most frequent one, but the o11c which is most 

frequcnt relative to an expected occurrence frecluency. To find the expected o<x:urrence 

frequency for some candidate 114, a reference distribution needs to be defined. 

The reference distribution used to define over-representatio is the null distribution 

of model occurrence frequencies assuming rmdorn  sampli..rq from the entire population of 

h,e~editary models. In other words, the reference occurrence frequency for a candidate 144 in 

G is the expected number of times 114 would occur if G were a simple random sample of 777. 

models from JW. 

The reference frequency can be calculated using the formula for tlie number of motlels 
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that overfit a particular variable combination (equation 2.5). The value Np is the total nun-  

bcr of nlodels in JW. and the value Np(a, b) is the number of overfitted models if A4 contains 

a maill effects and 6 interactions. So. under rantloin sainpliiig, the expected proportion of 

S containing il! is 

The value 7r gives a reference point for how frequently the candidat,e should be seen in 

S .  Note that this expected frequency depends on the structure of A-specifically, on how 

irlally niain effects and interactions Ad contains. 

The refcreiice frequency can bc used to measure the degree of over-represciitat,ioii of a 

model in S .  Let f be the observed relative frequency of oc:currencc of candidatc inotlcl 

114. One way of measl~ring the surprise or information content of f relative t,o the cxpected 

frequei~cy 7r, is t,o cal(:ulat,e the .r.ela.tive en,t.r.opy of this observed frequenc:y. The rclativc 

ei~tropy of Ad, given S is defined as 

Equation 3.2 is the ~ t ~ a n d a r d  equatioi~ for calculating the entropy of a bina.ry randoin 

variable with probability f ,  relative to a reference distribution with probability T (Hamming 

1986; Jessop 1994). In this case, each model in S can eithcr contain or not c:oiitaiii 111; so 

the olxerved frequency sumniarizes the result of m, binary outcoines. 

The entropy measure defined above essentially constitutes a. model selectioii criterion, 

but one based oil the infor~nation in S, rather tlian directly on goodness-of-fit. This criterion 

indirectly addresses the problem of rnoclel size, inasmuch as tlic model size affects is reference 

probability of occurrence (7r) . 
The entropy H(A4) is int,endecl to measure the degree of over-representatioi~ of A4 in S .  

I t  is a larger-tlic-bet,ter criterion; the c:anclitiate inoclcl with iriaxiinuin entropy is t,lic oiie 

best supported by thc data  to be the truth. Having defined this criterion; it remains t,o 

actually find the Ad that  inasiinizes H ( M ) .  

3.4.2 Finding the Best Candidates 

Haviiig defined the measure. tlie problem of choosing the best variable subset is 

equivalent to finding the model M,  of size q < 7 ,  that nlaxinlizcs H(A4). Let this best 

model be J IB .  
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Finding is itself a, cornbinatorial opt,irnization problem, much as finding thc sct of 

well-fitting models was. Models of size 1 to T are admissible, so there are N1:,(w) candidate 

inodels, possibly a large number. Thus it is not practical to find AdB through bruteforce 

evalua.tion of all candidates. 

One alternative is to find the r most frequentljr-occurrirlg models of sizc 1 through T in G, 
and then to evaluate the entropy of these rnost coninloll nlodels. This approach works well, 

because tlie frequently-occurrirlg subsets can he found quicltly using a branch-and-bound 

algorithm. 

The brancli-and-bound method is tlescribed in more detail in Appendix B. The key idea 

of the algorithnl is t,hat if a particular subset of va.ria.bles occurs f times in the good set,, the11 

no la.rger model containing that subset can occur more than f tinies. So identifying smaller 

models with low occurrence frequencies allows largc branches of tlie search t,o be eliminat,ed 

without explicitly visiting all tlie nio(le1s in the brancl~. Given good initial guesses and ail 

appropriate algoritlm for rnoving through the tree of possible models, tlie r inost frequent 

models of each size can bc found quite quickly. 

The entropy H ( M )  depends r~o t  only on tlie the n~odel's occurrelice frequency i11 G, 
but also on the its structure and size. So the j th rnost frequent model of size q will not 

~iecessarily be t,he j th liighest entropy model. The occurrence frequency doniil~ates t l ~ e  

entropy calculation, however; and usually t h r e  will only be a small nuinber of frequcnt,ly- 

occurring inodels of each size. So the set of the 5 most frequent models of ea.ch size is alniost 

certain to contain tlie xmximum entropy model. 

Suinlnarizing these ideas, t,lie following stcps are rcconmlentlcd for finding the models 

best,-represented in G: 

1. Perform branch-and-bound search as in Appendix B, to find tlic 5 most frequent 

rriodels of cach size froiii 1 to T .  Pool these 5-r models into a single list. 

2. Calculate the entropy of each of thcse models as in equation 3.2. Sort the list ill 

descending order of entropy. 

3. (Optional) Delete from the list any inodels that are nest,ed wit,liin another model of 

higher entropy. This step may help clean up the list for presentation purposes. 

Thc: end result of these steps is to produce a list of several models tl-1a.t are well reyre- 

sented in t,lic good model set,, along wit,ll t,heir entropy measures. The entropy measures 
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Table 3.2: Highest-entropy models, for case one and case two of the example. 

Case 1 Case 2 

~ n a v  be used to interpret tlie relative amount of support for each modcl. If it is wxessa.ry to 

report a single model as the best guess a.t tlie truth, the top model in the list can be chosen. 

Steps 1-3 a.bove were applied to the example of this section, for hot11 case one and case 

t,wo. Recall tlmt tlie true model was (2,5,2*7,5*9). The results are listed in Table 3.2. 

For case one, where there is little model selection uncertainty, the top model was indeed 

the true model, and its entropy was far higher than the rest of the candidates. Notc also that 

the next, five highest+mtsopy nlodels are all inacle up of the true model plus one additional 

variable. 

For case two, wllere model ~elect~ioil uncertainty is higl~er, the results we  not as clear. 

The true model still gets flagged as the maximum-entropy model: but there are a few other 

models, distinct from thc best one, t,llat have reasonably high entropy va.lues. 

Tlie entropy method presented here provides a useful way of automating the extraction 

of sl~brnodels fro111 the good-model set. Experience hay sllown t1ia.t it typically does well 

ill making selections that agree with the visual appearance of tlie raster and link plots. 

Comparison of the plots in figures 3.2 through 3.7 with Table 3.2 will illustrate this point. 

The entropy criterion will be used to choose a best model in thc siinulc?.tion studies t,o 

follow. In a real data analysis, however, it is not recommended to rely solely on the entropy 

method. The results of tlie model extraction should be used as a decisioii support tool, to 

help ensure that the plots are interpreted correctly, without, overlooking sonio evidence. 



Chapter 4 

Performance on Literature 

Examples 

Published moclel selection exainples provide an opportunity to illustrate thc characteristics 

of the ncw method. Four such exarnples arc presented in this cliapter. Thc examples 

illustrate different characteristics of the new sirnulated annealing method, aiid show 11ow it 

can be applied to different types of experimental designs. Two of thc examples also providc 

an opportunitj- to compare results with Bay(+ui variable selec%ioli, for which it is difficult 

to formulate more structured, simulation-based cornparisons. 

4.1 Two PBI2 Cases 

The Bayesian variable selection approach has bccn used to studv the 12-run Placlwtt- 

Burinan design. The design nlatrix and responses for two examples are give11 in Table 

4.1. I11 botli examples, the responses were constrlicted fro111 known truc inoclels. 

Response one 

The first respolise column, labelled Yl in the figure, is talcen from Chipman, Hamada, and 

Wu (1997). The true data-generating process in this case is Yl = A+2AB+2AC+r; wherc r 

has sta,-?.lidard deviation a = 0.25. This example is relatively easy, bemuse the error variance 

is significantly smaller t,han the magnitude of the true cocficients. Any model containing 

the trutli can be expected to fit the data bctter than other models. 
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Tablc 4.1: Design matrix and responses for tlic tu7o exaniples of Section 4.1. 

Run A B C D E F G H  I J K  

R.esults for the Bayesian variable selection (BVS) and tthe siniulated annealing rriocicl 

search (SAivIS) are listed in Ta.ble 4.2. Only tlic top three rnotlels are shown, because the 

true model is identified by both methods as a dear wiliner. The second- and third-place 

models ill eac:h case are overfitted models; though the two metliods do not select tlie smne 

overfi tted models. 

Response two 

The second response colulrln in Table 4.1, labelled Y2, is taken froin Chipman (1998). The 

data comc from tlie process Y2 = 2A + 4C + 2 B C  + 2CD + c ,  witli a = 0.5. This example is 

called "a more difficult problem" because tliere arc more a.ctive variables, the lioise variance 

is larger, and the large effect of C tends to dominate thc Bayesian model search. 

The Bayesian search results are more difficult to report in this case. Using the weak 

heredity prior, Ba>lesian varia.ble selection found that the single-factor lriodel (C) liad by 

far the highest posterior probability, 0.221. The true model (A ,  C, BC, CD) did liavc the 

highest posterior probability among irioclels of size four, but this probability was only 0.02, 

which would lend little support to this model if the truth were unki~own. The variables witli 

highest marginal probability were C, CD, H, J ,  BH, and BC. So the marginal prolmbilities 

also do not help to clarify the true model ill this case. R.esults were siniilarly ambiguous for 

other clioices of the prior. 



CHAPTER 4. PER,FOR,MANCE ON LITERATURE EXAMPLES 

Table 4.2: Comparison of Bayesian variahlc selection results to thc ncw method for the first 
PB12 example. Truc inodel is (A, AB, AC), response is Yl .  

Model Probability Model Entropy 
(A, AB,  AC) 0.325 (A, AB, AC) 

(A, C, AB,  AC) 0.039 (A, AB, AC, A J )  
(A. B ,  AB,  AC) 0.022 (A, F, AB, AC) 

The results of the siniulated annealing metliocl are compared to the BVS results in 

Table 4.3. For tlie Bayesian method, the top models of different sizes, wider t.lie weak 

hercdity prior, a.rc reported. The new oversized-models nletllod clexly outperformed the 

BVS inetliod i11 this case. The true inodel is not only ranked first, but its entropy ineasurc 

is clearly mucli liiglier tllaii thc next-highest models. The raster plot and link plot (not 

sl iou~~i) also clearly iiidica.te tl1a.t (A, C, BC, C D )  is iiiost supported by the good-model set. 

4.2 A Folded-Over PBI2 Design 

A11 examplc frorn Miller and Sitter (2001) can be used to illustrate the performance of tlic 

new model selection iiiethod on a somewhat larger experiment. Tlic design considered is 

a folded-over 12-run Placketk-Burman design, denoted PB12+12. This design has 24 ruiis 

and allows up  to 12 main effects to bc coilsidered. The 66 two-way iiitcra.ctioii coluinns can 

be added, yielding a full matrix tliat has 78 columiis and exhibits complex aliasing. Miller 

and Sitter ackiiowledge the difficulty in sea.rching the inodel spacc, and proposc to 11se a 

two-stage search procedure like the one outlined in Sectioii 2.2.2. 

The design matrix (not reproduced here) is given wit11 tmo rc:sponse vectors: "reactor 
dat a. :; and "coiitaininant data.'' Tlic ovcrsized-model sets procedure was coiiducted on botli 

of tlie responses. Tlie rriodel size, p, was set to 10 in this case, because the larger inunber of 

rum makes it possible to entertain ladger models. The rnaxiinuin plausible t,rut,li size, 7, was 

set to eight. The siiriulated a.iincaling parameters were set to typical values nq,,, = 10000, 

p = 0.95, K, = 4, arid P,nin = 0.001. 
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Tablc 4.3: Coml>arison of Bayesian variable selection rcsults to th? new rrietliod for the 
secoiid PB12 example. True model is (A, C, BC,  C D ) ,  response is Y2. 

BVS 
Model Probability 

(C)  0.221 
(c, C D )  0.065 
(c, J )  0.04 

(C, B C )  0.031 
(C, H, BH) 0.028 
(GI E, El) 0.021 
(C, I. EI) 0.021 

(A, C, BC. C D )  0.02 
(C, D ,  CD,  D 6 )  0.012 
(B ,  C, BC;  BH) 0.01 

(A, C. D ,  B C , C D )  0.002 
(C, 6, H, BH.  G H )  0.002 

(B ,  C, BC, B H ,  C F )  0.002 

SAMS 
Model Entropy 

(A, C, BC,  C D )  3.2 
(A: C, AC, BC,  C D )  0.9 
(A, C; I, BC,  C D )  0.7 
(A, B ,  C, BC: C D )  0.6 
(A, C, H, AD, B H )  0.5 
(A, C, D ,  BC,  C D )  0.5 

Reactor data 

The reactor data is a reduced form of a data set previously used ill Box, Hunter, and Hurlt,er 

(1978). The model (B;  D ,  E; B D ,  D E )  is given as the set of factors identified as active in 

the original st,utly. 

The aiialysis based on oversized models agrees with the results of Miller and Sitter. The 

five 1;~rgest)-entropy models are listed in the left half of Table 4.4. Tho pre\~iously-suggested 

best model (B, D ,  E, B D ,  D E )  has much higher entropy than any other nlodel found in the 

good-model set. 

Contaminant data 

The conta.minant data comes frorn an illdustrial experiment, and the two-stage analysis 

chooses t,he (A, B ,  AB) as the best inodel. I11 the output from the new algoritliin (right half 

of Table 4.4), thc suggested best model (A, B ,  AB) does have the highest cntropy, but two 

overfitted rriodels have alrnost equal entropy values. 

The link plot for the contaminant data, shown in Figure 4.1, also seerns to cast doubt 

on whether there should be t,hree, four, or five variables iri the chosen inodel. The rmtcr 
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Table 4.4: Results of the new mctl~od applied to the PB12+12 example. 

plot; (Figure 4.2); ho~vcver, suggests that variables J and AE a.re probably not necessary. 

These two variables correspond t,o columns 10 and 16 in the raster plot, and clearly their 

coefficients arc very sniall relative to the coefficients of A, B,  and AB. 

This example illustrates t,lie importance of using all of tlie information in tlie raster plot, 

link plot, and entropy calculation together to make decisions about the model. Althougli the 

three-variable model only slightly beats out the larger models on t,he entropy scale, it is still 

significant to note that a method that searches through models of size 10 can succ:essfully 

suggest a good model with only three variables. 

Reactor Data 
Model Entropy 

(6 D ,  E, BD,  D E )  10.5 

(B ,  D ,  E, J, BD,  D E )  4.G 
( B ,  D ,  E, BD,  D E ,  E L )  3.5 
(B, D ,  E ,  BD,  BH,  D E )  2.7 
(B ,  D. E, H ,  BD. D E )  2.5 

4.3 A Mixed-Level Experiment 

Contaminant Data 
Model Entropy 

(A, B, AB) 5.95 
(A, B ,  J, AB) 5.90 

(A, B, J, AB: AE) 5.G8 
(A, B, J, AB, AE,  AG) 4.29 

(A, B ,  ,J, AB, D J )  3.85 

Wu and Halnada (2000) analyzed an experiment studying the effects of one two-level factor 

(A) and seven three-level fact,ors (B-H) on a blood glucose reading. The clesigli matrix is 

given in Table 4.5. The linear-qua.dratic system has been used to decompose the three-level 

factors into linear and quadratic terms, so that there are effectively 15 design variables 

involved in the analysis: the two-level factor A, a.nd the linear and quadratic coniponents 

of B-~H,  denoted B1, Bq, Cb, Cq, . . . , HI, Hq. 

All valid two-way il~teractions were added to the design matrix to form the full matrix. 

These include the 14 interactiolls between A and the linear-quadratic columns, as well as the 

( y )  - 7 = 84 linear-by-lineq lincar-by-quadratic: alld q~iadrat~ic-by-clliadratic interac:t,ions 

involving different three-level factors. The full lnatrix thus includes 113 predictors in 18 

runs, alid exhibits complex aliasing, making this a challenging model selection problem. 

Bayesian variable selection was applied bj? Wu and Hamada. to perform model selection. 

The priors were defined so as to encourage hereditary models. Quadratic terms were given 
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A*B 
A'E 

Figywe 4.1: Link plot for tlie contaminallt data example. 

Table 4.5: Design nlat,rix and responses for the blood glucose experinlent. The seven three- 
lcvel factors B-H have been separated into linear and quadratic cornpone~lt,~. 

Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
1 3 
14 
15 
16 
17 
18 
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10 20 30 40 50 
Predictor 

70 78 0 50 100 
RSS 

Figure 4.2: Raster plot for the contaminant data example. Variables J and A E  (columns 
10 and 16 in the plot) appear important on the link plot, but do not show up here because 
their coefficients are too small. 
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more prior weight if the corresponding linear terrn was included also. Interactions were 

given more wiglit if one parent effect was included in the model, and yet inore weight if 

both parents were included. 

Tlie inodels foulid to have highest posterior probal~ility are sllowii in Table 4.6. Re- 

sults are shown for two cases, corresponding to different specifications of the priors. The 

relaxcd weak heredity prior permits violatioils of heredity, but puts low prior probability 

on such niodels. The strict weak heredity prior puts probability of zero on non-hereditary 

relationships, so that only hereditary models will lime nonzero probability in the posterior. 

The table indicates that inodel (BlHq, BqHq) is most strongly supported using thc relaxed 

prior, while (BL, BbHL, BZHq, BqHq) is favoured using tlie strict prior. Considering the top 

models as a whole, the list is dominated by the linear and qua.dra,tic: coniponents of B and 

H, as well as their various interactions. 

The presence of quadratic terms in this example <:omplicates the application of the 

simula.ted mnetzling se:~rch method. For simplicity, the 15 coluiniis shown in Table 4.5 were 

trea.ted as design variables, and the analysis was run in the usual fashion, considering all 

of the appropriate interactions. This means that the quadratic terins (such as Bq) are 

give11 equal footing with the linear terms: and may appear in any model witliout heredity 

restrictions. Only the intera.ction terins are required to satis& heredit,y. 

The other problern in applying the new niethod to this case is in the autorna.ted inodcl- 

extraction procedure. The entropy calculation as given in Section 3 is valid only for the 

standard case where ui main effects and all ( y )  intera,ctions are entertained. This is not the 

case here, since linear-quadratic int8era,ctions involving the same fact,or (e.g. BlBq) are not, 

included. Mindful of this limitation, the analysis will be done solely tluougli interpretatioii 

of the link plot. 

Sirnula.ted annealing model search was performed with the model size p set to eight. The 

link plot, shown in Figure 4.3, clearly supports the model (Bl, Bq, BlHq, BqHq) as the best 

model. This particular four-l~ariable combination occurred in approximately one third of 

t,he more than nine thousand unique models generated by the search. The R2 value for this 

inodel is 0.89; the highest-posterior-density inodcls reported by Wu and Harna.da ad1 had R~ 

values in t h  rmge 0.79-0.89. 

Tlie model (Bb, Bq, BlHq; BqHq) agrees with the Bayesian results in the sense that it 

involves the same two factors B and H, but this particular inodel has relati~~ely low posterior 

density: 0.008 for the relaxed prior, and 0.013 (for a, model with one ext,ra factor) in the strict 
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Tablc 4.6: Top posterior model probabilities from Bayesian variable selection, blood glucose 
experiment. 

7 

- 

L 

Relaxed Weak Heredity 
Model Prob. 

( B W ,  B q m )  0.183 
(Bl,  BbHq, BqHq) 0.080 

(Bl, BlHl; BlHq, BqHq) 0.015 
(Fl ,  BlHq, BqHq) 0.014 

(GlEl, BLHq, BqHq) 0.013 
-3 others- - 

(Bl, Bq, BdfIq, BqHq) 0.008 

Strict Weak Heredity 
Model Prob. 

(Bd, BlHL, BlHq, BqHq) 0.146 
(Bl;  BLH1, BqHL, BLHq, BqHq) 0.034 

(HI, H9, BlHq, BqHq) 0.033 
(Hl; BLHI, BlHq, BqHq) 0.031 

(F1, Fq,  DbFb, DqFl, ElFI) 0.024 
(HL, Hq, AlHq, BIHq, BqHq) 0.017 
(BL, Bq, BIHL; BlHq, BqHq) 0.013 

prior. One possible reason for t,his is that the specificadion for the prior puts more weight on 

interactions that lmve both parents in the model, so tlmt good inodels wit11 "single-pa.rent" 

i~~ter~zctior~s (like BlHq and BqHq) appea.r further down the list than they otherwise might. 

This underscores the importance of appropriately specifying tlie acceptable relat,iorisliips 

among variables, regardless of the method being used. 

4.4 A Regression Example 

Designed experiments with c:onlplex aliasing have inuch in coininon with multiple regression 

problems in observa.tiona1 studies, in that the predictor variables are not ortliogonal and 

cannot bc considered independe~ltly. This suggests that any method silitable for analysis of 

nonregular factorial designs might also be useful for model selection in the general multiple 

regressioi~ setting. 

This idea. is tested by applying the oversized-models approach to the ozonc data. w t  

studied in, among others, Breiinan (1995) and bliller (2002). The data consist of 330 cascs, 

with eight design variables and one response. Tlie design varia.bles are eight met,eorologi- 

cal variables, and the response is tlic measured ozone concentra.tion. Varia.ble naaines and 

descriptions are listed in Ta.ble 4.7. Tlie i\/liller and Brei~nan studies both included the 28 

two-way interactions among t,lie umin effects, as well as t,lic eight qlia.dra.tic terms, giving >L 

tota.1 of 44 predictor varia,bles in the full matrix. The design varia.bles were first centered 

to haw mean zero, then the interactions and squared columns were formed, and then all 

variables werc standardized. 
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Figure 4.3: Link plot for the blood gl~lcose example 

The ozone data provides an interesting test case for the new model selection nlct,hocI. 

Altl~ough the number of predictors (44) is relatively sma.11 compared t,o the previous exarn- 

ples, t.he large n in this problem means t.hat larger models can be consicleretl, so that tlie 

model space is still very large. Also, since 7~ > k in this case: any model up to a,ncl including 

the full inodel can be estimated. The assumption of effect sparsity may also be questionable 

in this analysis, since the system being studied (the weather) is complex and interactive. 

As in tlie blood glucose esample, the presence of quadratic terms nlakes it inappropriate 

to use the entropy rneasure for automatically selecting best models. The ana.lvsis will i1istea.d 

be done by visua.1 inspection of the raster and link plots. The quadra.tic terms were not 

treated as design variables for this example. Effect heredity requires that any quadratic: 

term must also have its corresponding main effect in t,lle model. 

The simulated annealing search was performed for two model sizes, p = 9 and p = 13. 

The searches were run for 10000 accepted moves, with other paranleters left a.t their default 

values. The results are shown graphically in Figure 4.4. 

The figure shows that two different models a,re suggested at the two different values of p. 

For p = 9, the four-variable model (RH, T, iT, RH*iT) appears to dominate. When p = 13; 

variable RH*iT is no longer frequently chosen, and five other varia.bles come in, yielding 
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the eight-variable model (RH, T, iHt, iT: RH*T, T*P, P*iT, R.H~) .  This niodel appears 

to hct strongly supported; as tlie mt~jorit~y of the top 13-variable iilodels foulid contain this 

su hmodcl. 

Table 4.8 compares three sets of models: the full model (Full), the best-fitting subsets 

of sizes one tlirough eight given by Miller (2002) (M-A/18), and the two inoclels suggested 

by the link plots (L4 and L8). The table lists the RSS and Ii2 values for each model, and 

indicates which inodels respect heredity. The column PE in the table gives the average 

squared prediction error associa,ted with ea.cli inodel, measured by 10-fbld cross-valid. '3 t '  1011 

as in Breinian (1995). Breiman's models and results are not given licre because they could 

rlot be reproduced from the illforiliation ill the paper. 

The full inodel has an R.SS of 4392: R~ of 0.79, alid prediction error of 17.4. Models 

Ml  through M8 show that although a. nuniber of variables appear repeatedly in nlost of 

the models, tlie best-fitting models are not nested within one another. This is ct colrilnon 

problem whel~ consiclering mo<lels purely based on goodness-of-fit. Variable P, for example, 

occurs in the best-fitting models of sizes 4-7, but not in the best-fitting models of sizes 3 or 

8. These low-RSS lnodels do fit the data well, liowever~ and have good PE values. hfIodels 

M4-M8 all have R~ values close to the full model and prediction errors as good or better 

thali tlie full model. 

Tlict models taken from t,hc link plots (L4 and L8) can be proposed as competitors t,o 

the best-fitting models of the same size (A44 and M8). L4 and M4 lmve two predictors in 

common, and both respect heredity. Thc eight-\7ariabIe inodels have four common predic- 

tors, and only L8 respects l~eretfit,~~. The R.SS, R2, and PE values for t l ~ c  L4 and L8 are 

good, but all slightly worse than those for A114 and M8. 

It is c1ea.r from Figure 4.4 and Table 4.8 that there is model selection uncertainty in this 

<:;~se. If one wanted to choose a pltl-simonious ~notlel of, saj: four or eight va,riables? there is 

little cl~iclence in the data to suggest which clement of (L4, NI4) or (L8, M8) \vould hc best 

to clioose. An investigator might break such near-tks by choosing a lrioclel that is l~eredit,a,ry 

over one that is not, or choosing a model with simpler physical int-erpretations over a nlodel 

that is more difficult to understand. Conlparing models L4 and M4, for example, L4 satisfies 

strong heredity alid has only one interaction; while M4 only sat,isfies weak lieredity and 

has two interactions. Similarly, L8 satisfies weak heredity a i d  involves only pl~ysically 

reasonable tem~>era,ture-hulnidity and te~riperat~ure-pressure int,cractions; ~noctel M8 doosn't 

satisfy heredity, and has (presumably) more difficult-to-expla,ili preclict,ors like P2 and r\.H*P. 
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Tablc 4.7: Response variable and design variables for the ozone data. 

Variable Quantity Label 
ozone concentration (ppm) 

500 millibar Iieight (111) 
wind speed (rnpli) 

relative humidity (96) 
surface temperature (OF) 

inversioii 11eigl:t (ft,) 
pressure gradient (mmHg) 
inversion temperature ( O F )  

visibility (mi) 

This regression cxamplc illustrat,es the potential useful~iess of simult~ted niinealing model 

s c ~ c l i  a.nd the associa.tec1 plots to aid decision ma,king in inotlel building for niultiple re- 

gression. It  could be particularly useful in cases t h t  match the descriptioi~ of screening 

experimelits: large number of candidate models, hereditary models desired, a d  tlie as- 

sumption that t,he best model is relatively small. 
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Predictor 
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! RH'T 

I T'P 

I P'iT 

Figure 4.4: Raster plots and link plots for the ozone data, for model search done wit,h y = b 
(top) and p = 13 (bottom). 
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Table 4.8: Coniparison of proposed rriodels for the ozoric data. h41-Ad8 arc the best sul>sets 
froin Miller (2002); L4 and L8 arc tlie ~nodels suggested by the link plots. PE is the cross- 
validation prediction error. 

I Model Variables Hered? RSS R-E 
(All 44 variables) 

(TI 
(T, Ht*RH) 
(RH, iT, RH*iT) 
(P, iT, P2,  RH*iT) 
(P, iT, T*iHt, P2,  RH*iT) 
(RH: P, iT, T*iHt: P" RH*iT) 
(RH? P, iT, RH" T*iHt, P2,  RH*iT) 
(RH, T ,  iT, R . H ~ ,  RH*P; P2, RH*iT, T*iT) 
(RH; T ,  iT, R.H*iT) 
(RH, T, iHt, iT, R,H*T, T*P, P*iT, R H ~ )  



Chapter 5 

Simulation Studies 

The oversized-models concept has exhibit,etl good perforinance on a variety of test cases. 

Simulation studies were condwted to substantiate thc claim of good performalice in a more 

systematic: way. Tlie first study looks a.t the ~elisitivit~y of the mct,liod to its djustable 

partmeters. Tlie second study assesses the performance of the new method relative to 

alteriiative methods. Both p r t s  rely on a model-generating process that generates true 

rnodels for the simulations. The true models liave randomly-cliosen activc variables and 

randomly-assigned coefficients. 

5.1 A Model-Generating Process 

111 tlie  resent simulations, c~iipliasis is placed on assessing t,lie avera.ge perforlnance of 

model selection methods across a wide runge of plausible tmths. Mindful of this goal, 

the siinulatiolis are set up in a nianiier somew1ia.t different from typical published studies. 

Many simlllatioil studies start with a fixed "target" model, alicl perform model selection 

repeat,eclly on different y-vectors realized from the model. The target model may be changed 

increrricnttxlly-for example by scaling tlie true coefficients, or by adding or rcmoving certain 

variables--but usually olily a few different scenarios are c:onsideretl. 

Ra.ther than choosing only one or a handful of true model configurations: the simulations 

perforined liere salnple from a distribution of' true rnodels. Each lriodel selection iter R t '  1011 

ir~volves a tr-uc model with randomly-selected active variablts a.nd randomly-~~sigiied co- 

efficients. T l ~ e  mecllanis~n of choosing predictors a i ~ d  tlieir coefficiellts is designed so that, 

the resulting ~nodcls have cliaract,eristics that might be expec:ted in real-world screeliii~g 



CHAPTER 5. SIAdULATION STUDIES 75 

experiments. R.esults of simulations perfbnned in this way should be less dependent, on the 

particular choice of true model, yielding morc ineaningful perfor~nance ixcasures. 

The si~nulatioils will focus on Plackett-Burman designs, with all main effects and two- 

factor interactions considered. The PB12 design (66 variables) and the PB20 design (190 

variables) will be used as smaller- and larger-scale representative designs. 

Set,ting up a true model for a, simu1atio1-I involves a sequence of decisions: first, what will 

the size of tlie model be; next, which prticular combincztioi~ of variables will be active; and 

finally, what will their coefficient values be. A model-generating process autoinntes these 

c1ec:isioils and effectively defines a distribution of possible truths. Simula,tions can then be 

based on truc rnodels sanlpled from this di~tribut~ion. 

The primary ~not~ivation for using a model-generating process is to better capture thc 

real-world pcrforma.nce of the n~e t l~od ,  &her thau it,s relative performance on specific caws. 

To specify what is meant by "real-world," one must address the question of what, types of 

true models wolrld seem plausible in thc context of a screening experiment. Alter~~ativelg, 

one could ask what type of true   nod el would be assumed to exist in order to justify doing 

a screening experinlent in the first plxe. The following premises are proposed as an answer 

to these questions: 

1. T h e  tm,e  model sliould sa,tisf?/ eflect heredity. 

2. T h e  true  model should h a m  bet*ween 1 u7~d T active predictors. The rnaximnm truth 

size, r, is a user input, guided by the idea of effect sparsity. Coefficients for a11 other 

predictors should be zero. 

3. Thc chovcn coefJicien,ts ~;hould  n o t  be restricted t o  h,aw equal 7nug7~itudes o r  sigrzs. 

This is to avoid artificially influellcing the amount a,nd type of model aliasing that can 

OccIIr. 

4.  Variables t o  be considered active s l~ould  h,ave cocf ic ients  uboue somc  lower bound. It 

is unreasona.ble to deem a variable "active," m c l  then assign it a coefficient t,hat is 

undetectable using tlic given design. A lower bound on coefficient niagnitude can bc 

based on the power to reject H, : ,# = 0 in a. standard t-test. 

5. T h e  magni tude qf actzue coe,&cients should h,aue an  upper. bound as well. R.cal-world 

experiments are not usuallv expected to llave R~ cxtrernelv close to one: even if the 
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truc inode1 is knowii. The true rnodel, thereforc, should not produce data with all 

unrealistically large R b a l u e .  A model litlving E [ R ~ ]  > 0.95, for example, might be 

considered unrealistic. To achieve this 1irnita.tioli on R2, coeficicnts must be bounded 

above. 

6. T h e  'u,pper bound on coe.ficient mugri,it,ud~: should decwuse wi th  model  size. Larger 

modcls must have sn-ialler upper bounds on their coefficients, otherwise they will tend 

to Iiaw higher n2 values. 

Tliese premises are intended to create a defiiiit~ioii of what types of true models would 

bc considered realistic. The goal is to achieve a balance point wliere chosen inodels have 

coefficients that are large enough to hc detccted most of the time, but not so large as to 

o\~erwlielm the error variance. 

Tllc iniplcirientation of these premises into a   nod el-gemrating proccss is sulrnriarized in 

Pseudocode 7. Tlie value of T is first established: PBlz and PBZo &signs use T = 4 and 

T = 6, respectively. Thc error variance is set to a2 = 1 for all simulatio~is. Model size is 

selec:t,ed uniformly from (1,2, . . . ; 7 ) .  All coefficients, including tlie intercept, are assigned 

values sampled uriiforrnly from (LB,UB), where LB and UB are trhe a.ppropriat,e lower and 

upper bounds selected from Tablc 5.1. Tlie coefficients are then assiglied to be positive or 

llegative with equal prohbility. 

Thc bo~rnds in Table 5.1 were cliose~r as follows. The lower bound is fixed for all inodel 

sizes. LB is the value for which the power to declare each coefficient activc, wlie~i tlie 

true inodel is lcnown, is 80% ((using one-at-a-time t-tests, with Q' = 0.05). The upper 

bound depends on iriodel size. It is the value of UB for which, when coefficients are sampled 

uniforlnly on (LB,UB), the average R: equals 0.8 (approprkte upper bounds for E[R:] = 0.9 

ar? also give11 for reference)' . 
The ~ieed to <djust the uppcr bound for diffcrcrit model sizes is ~vorthy of particular 

note. Tlie re~t~riction on very large n2 values actually puts serious limitatiolis 011 coefficient, 

niagnitudes wlieir the model contains several vxiables. Consider, for example, two potcntial 

t>rue rriotlcls from a, PBlz design, wit11 c? = 1 and all coefficients set to 2a: E [ Y ]  = 1 + 22 ,  

and E [ Y ]  = 1 + 2Z1  + 2Z2  + 2Z3 + 2Z4. The first model has E[R" = 0.83, while the 

second model has E[n2] = 0.97. To ensure tlmt true models of different sizes have about 

'All of the 1JB values were cxtrnclad Srom Z - V S . - ~ J B  curves gcneraled b.y sirnulalion. Adjusled 1 2 ~  values 
werr used 1.0 pul. models of different. sizes on more equal footing. 
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Pseudocode 7 Ra.ndom gerreration of n morlel. 

Fix o2 = 1. 

Let s bc the model size. Choose s uniformly on (1: 2 , .  . . , T ) .  T = 4 for PB12 r = 6 
for PB20. 

Choose the pa,rticular variables to be in the model: 

Let q be the number of rnain effects in the model. Select q from 1, . . . , s, with 
weights based on the population proportion of models with q ina.i~in effects and 
size s. 

Choose thc q maill cffect,s at  random fron~ the available design columns. 

Rmdomly choose s - q interaction terms from the interactions that rcspect effect 
lieredi ty. 

Set LB; the lower bound for coefficieiit values. LB = 0.9 fix PBI2,  LB = 0.66 for 
PBzo (values tire based on 80% power for one-at-a-tinir: t-tests with 0 = 0.05). 

Choose UB, the upper boulid for coefficient values, from Table 5.1 (values are Ix~sed 
on requirement for average R: = 0.8). 

Sample JpJ values from U(LB,UB). 

Set the sign of each coc-,fficient, to +/- with equal probability. 

the same gooclncss-of-fit on average, the coefficients of larger models must be coustrained 

to sm~ller  values. For the case of the PB20 design, for example, models of size six may only 

lxwe coefficients in (0.66, 1.0)-a narrow range. 

Ta,ble 5.2 contains ten rnodels randomly generated from tllc process described here. Tlie 

power to detect all coefficients active is given, along with the loth percentile, mean, a.nd 

got" percentile of the distrib~~tion of R2 for each model. Thc nlodels sl~own exemplify some 

characteristics of tile cliosen model-generating process. First, models of all sizes will liaw R2 

values ranging from moderate t,o quite high, but wit,l~ d u e s  greater than 0.95 t~cing fairly 

rarc. Thc trade-off l~~ i idc  to achieve this is that larger nlodels haw slrialler coefficients; 

consequentlj: the power to successfully detect all active variables in larger models can be 

low. The overall clmracteristics of t,he distribution of models suggest a, challenging scenario 

for testing model selection methods. 
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Table 5.1: Bounds for coefficient values for randomly-genemted models. Coefficient rnagni- 
tudes a,re sarr~pled uniformly on (LB, UB), 

Ta,ble 5.2: E>ca.mplc of ten random models frolli the model-geuera.ting: process. PBzo design, 

Model Size 
1 

main effects named A - S. 

Model Pwr 10t" E [ R ~ ]  
- 3  - 1.34F 1 0.681 0.773 

Upper Bound, UB 
PBI2 (LB=0.9) 

E [ R ~ ]  = 0.8 E [ R ~ ]  = 0.9 
3.6 7.8 

PB2, (LB=O.66) 
E [ R ~ ]  = 0.8 E[R:] = 0.9 

4.5 9.4 
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Tablc 5.3:  Factors and levels for tlie parameter sei~sitivity study. 

Parameter Levels 

6: 7: 8 (for PBI2)  
7 ,  8, 9 (for PB20) 

5.2 Study 1: Parameter Sensitivity 

The first sirnulation iiivestigates how sensitive the new ~ilethod is to tlie clioices of its a,d- 

justable parameters. The para.inet,ers in ql~est~ioil are p! tlie nulriber of varia,bles in tlie 

oversized niodels; ng,,,, tlie number of accepted models to generate; and p, K ;  and 

tlic simulated annealing ternperaturc control parameters. Recdl from Section 3 that p is 

t,he factor by which tlic temperature is cooled oil every accepted 111ove, r; is the numl>er of 

rc.jections required to balance one a.cceptaiice, and is a lower liniit on tlle actcc~ptancc 

probability. 

The cooling fract io~~ was left at  its default value of p = 0.95 and not investiga,ted further 

here. This default value liad been used suc:cessfully tlirougho~~t development of the met,liocI, 

so it was left, fixed to reduce tlic number of possible parameter co~nhi~iations. Tlie remailiilig 

four paralneters were assigned tlie levels given in Table 5.3. The parameters p,  ngen; a i d  

K, were given three levels, and the boulicl was given two levels. All levcl c:o~nbin~.tions 

were tcsted in A 3321 = 54 run factorial design. 

For coinpa.ring the 54 lcvel combinations, one hundred models were generated at randoin 

using the ~notlel-generating rules of tlic previous sect,ion. A single y-vector was then gener- 

ated from each model. Tliesc hundred response vectors ma.cle up the test set for ex11 run 

ill tllc factorial design. For each run, model selection was perforliied (using tlie autolriated 

irictliod of Section 3.4) on all of t,he respoiise ~~ectors ,  said the results were saved. 

Tlie result of each nlodcl selection was classified based on the t ~ ~ p e  of rnoclel chosen. 

A cliosen model may be assigned ~nernbership in one of the five sets discussed in Section 

2.1.1: t,he true model, overfitted models, underfitted nmdels, pa.rtial-trrltl~ models, or wrong 

models. As before, t,hese sets arc abbrex~ia.t,ed 7, 0, IA, P: a.nd W. 
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The idea beliind this experiinei~t is that if tlic model selection process is insensitive to 

t,hc parameter clioices, tho saine models should be chosen for almost all of tlie 100 cases, 

regardless of tlic experimental run. So all 54 runs should have approxiniately the same 

distribution of chosen models a,cross the sets 7, 0, U, P,  and Mi. Any runs with very 

different proport-ioning of the models among these sets is a sign of parameter sensitivity. 

The experiment was conducted for both tlie PBI2 and PB20 cases. Results are displayed 

in Figure 5.1. In the figure, each bar corresponds to one experinieiital run, and the bars 

are divided to sliow the proportion of choseii models falling into each of the five ontcomes. 

The bars have been sorted in order of increasing proportion of correct guesses (increasing 

numbers of clioices in T ) .  The results for the two cases agree with one another. In t-lle 

following discussion, let T ,  0, U: P, 14' represent, the proportions of selected niodels tliat 

arc members of the sets 'T, O:U, P ,  W .  

Tlie proportion of sclec:ted rnoclels that are either true or overfitted (T+O) renlains fairly 

constant a.cross all of tho runs. R.esults in 7 or O represent good outcomes, as tlie truth is 

within tlie selected n~otlel. Tllc sum T+O is approximately 60% for the PB12 design, and 

about 45% for tlle PBzo design. The proportion of wrong choices, W, also reinains fairly 

stable i11 tlie 5--15% range. Tlie remainder of the rnodels are divided aniong the underfitted 

m c l  partial-t,ruth models. 

Although the sum T+O is roughly constant a.cross runs, the relativc size of T a ~ c l  O does 

vary considerably. This variation is the rnah feature of Figure 5.1 requiring explanation. 

A partial explanation can be found by illspection of the level c:olribina.tions in the Figure. 

For both types of design, the rliiis wit11 tlie low level of PTni, (0.001 instcad of 0.01) k n d  to  

dominate tlie left half of tlic Figure. For tho PB12 design, 19 of the 27 runs with lowest values 

of T had Pmi, = 0.001; for the PBZo case, 24 of the 27 worst result,s involved Pmi, = 0.001. 

In addition, the runs Iiaving the very lowest values of T are those conibining tlic lowest, 

nunibcr of gei~erated models ( m  = 1000) with tlic low level of P,,,i,. The t,einperature 

coi~trol paraineter ti: also seeiris to Iiave an iiiteractiori with Pmi,. Tlie only runs for which 

Pmi,, = 0.001 that have high T va.lues are ones in which 6 is also at its lowest level. 

The above observations all point to the idea that increasing the di?)ersit?j of th,e sim.u.lated 

a,nn,ea.ling search irt.crenses the chances of selecting the true model. Search diversity refcrs 

to tlie extent to wliicl~ the search covers tlie model space. Note that, a higher value of 

will result in more bad moves being accepted, and tliat a lower value of K will cause the 

scarch to spend loss time in locally-good areas. Both of these will increase search diversity. 
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Increasing the value of n,,,, increases search diversity directlh by extending the duration of 

the sea.rcl1. The results in Figure 5.1 suggest tlmt most combinations of pammeter choices 

will perform well, but one should avoid making Pmm small, n.g,,, small, and K large at  the 

same time. 

Two final olxervt~tions arc in order from the sensitivity results. The first is that the 

model size, p, does not appear to strongly influence the outcome over the range of values 

test,ed. This is a reassuring result, as it is difficult to come up with a formal basis for the 

c:lioice of p. The present results suggest tlmt it should be sufficient, to allow users to choose 

p on a case-by-case basis, guided by effect sparsity. 

The second observation to make is that the effect of parameter clioices on T and 0 

sliould be even less wlicn model selection is done by a hulrian with the aid of t,lw raster 

plot and link plot. The results of the simulation study necessarily depend on the automatic 

model extraction algorithm, and it is lilcly that t,llis algoritliin can be fooled nlorc easily 

than a liulnan operator. The fact tlmt the sum T+O is nearly constant suggests that tlie 

link plots, for example, will look similar aa.c:ross the different runs. 

5.3 Study 2: Performance 

Tlie second sinlulation compares the performas1c:e of diffcrent model selectioli inctliods. In 

ead1 itera,t,ioli of this simulation, a true modcl was generated from the process described 

in Sectioli 5.1, and a realization of Y was generated from the true model. Model selectioii 

was then performed using different methods. For ea.ch method's cliosen model, two values 

were recorded: the number of correct variables (n.,) and the number of wrong variables 

(nu,) selected. From n, and nu!, each selected model was assigned rnenibersllip in one of the 

possible outcomes: uilderfittcd (U); true (T ) ,  overfitted (0); partial-truth (P), and wrong 

(W). Tliis process IWS repeated 5000 tiriles each for the PBlz  a i d  PB20 designs. The 

maximum acceptable truth size, T ,  was set to four for the PBlz caso and six for the PB20 

casc. Four model selection methods were conipared: 

Oracle. This "lnetliod" requires that the true model be known in advancc (thc name is 

taken after Fan and Li 2001). Coefficients of the truly-actjive va,ria.bles were t,ested for 

significance, using Bonferroni-corrected t2-tests with a groupwise significa.nce level of 

0.05. Tlie variables deenled significant ly this test were returncd as the clioscn model. 
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Note that this method can only choose the true model or an underfitted niodel, sinw 

only the tmly-active variables are considered. 

SAMS. The new oversized-model sets method is abbreviated SAhdS, for Simulated An- 

nealing Model Search. The method was carried out as described in Section 3. The 

automatic model-extraction method using branch-alid-bound and the entropy mea- 

sure was used to choose a, single best model. The parameters were set to ne = 10000, 

p = 0.95, K, = 4, and Pmi, = 0.01. The model size p was set to seven for tlie PBI2  

design and eight for tho PBzo dcsign. 

Stepwise. Tlie hybrid stcpwisc approach of Wu slid Hainada (Pseudocode 2) was used 

as a r~present~ative testing-based method. Tlie default stepwise control parameters 

(PC = PcL = 0.05) were usod. 

AICc. A set~rcli-plus-critcrioll method based on AIC, was incliided in tlie study. Model 

sctxrch was done differelltly for the two designs. For the PBI2 simulation; 0~11austive 

sea,rch was used. For the PB20 sin1ulat,i011, exlmustivc search was not prxtical; so two 

searcli lieuristics were employed. First, t,hc two-stage search of Pseudocode 3 was run. 

To improve the chances of finding the true minimum-AIC, model, output. from the 

SAMS algoritlini was also used. Recall tliat tlie brancli-and-bouilcl search in tlie good 

model set returns the five most frequent models of size one through T in tlie model set. 

These models all tend to have good fit for their size, and they are already available 

from t,he SAMS output. So the AIC, criterion was also evaluated for tl~ese models, 

and cornpa,red to the output of the two-stage search. Tlie model with minimum AIC, 

was returned as t,lle chosen model. 

Tlie most c.oniprel~ensivc way to study thc simulation results is to rcvicw tables of the 

distribution of (n,, 7 ~ , )  for each selection lnetliod and each true model size. Sucli tablcs arc 

includcd ill Appendix C; only selected sumniary tables arc shown below to illustrate the 

main results of the study. 

Oracle performance 

The oracle inetllod provides a reasonable limit on how well a niodel selection metliod can 

be expected t,o perform. The met,llod starts with the act,i\~e variables alrcady known; tlie 

true model is selected as long as all of its coefficients are deemed st;ttistically significant 
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Table 5.4: Distribution of liulriber of correct variables cliosen by the oracle met,liod, for each 
size of true model. Values are in percent. 

PBI2 Design 

for the givcn y. The method employs a Boiiferroai correction, to limit the probability of 

erroneously declaring an inactive coeficient active. In t,lle 1)reselit case all variables are 

known to be active, so the correction actmally ~nakes oracle performance worse on larger 

niodels. This probleni is exa.c:erbatecl by the f x t  that larger moclels are constrained to have 

slxialler coefficients to satisty the n2 requirement. 

The performance of the oracle rriethocl is displayed in Ta.ble 5.4. The table shows, for 

each truc ~liodel size s, the percent of cases where 1 , .  . . , s of the variables were c1ec:larecl 

active. The results confirm that performance is very good for small true models, but steadily 

decreases with nioclel size; becoming very poor for the largest lnodels considered. For botli 

experilnenta.1 clesigus studied, esseutially all of the single-variable models were correctly 

identified. The success ratc! dropped to only 17% for models of size four in the PB12 case, 

a i d  13% for models of size six in the PB20 case. 

The perfor~nance of the oracle method confirms that the chosen model-gen<:rating Lxhenle 

provides a clit~llcnging test for the 0 t h  metliocls. If evcn the oraclc untlerfits, o m  can expect 

col~siderable model selection uncertainty to exist when the otlier preclict,ors a.re acltled to 

the problem. 

True 
Size 

1 
2 
3 
4 

1 PB20 Design 

Average performance, all model sizes 

72., 

0 1 2 3 4 
1 99 
1 12 87 
5 14 29 52 
18 20 22 23 17 

True 
S i z e 0  

1 

3 
4 
5 
G 

Tlic? other inoclel selectioli metliods can he cornparcd to each otlier aiid to the oracle by 

pooling results for all different true model sizes and tabulating the average perfornialicc. 

Ta,ble 5.5 suliiinarizes performance by giving the percentage of cases wllerc? ea.cll mctllod 

n,c 
1 2 3 4  5 6  

0 100 
2 0 5 9 5  

0 2 17 81 
0 2 10 33 55 
1 5 11 22 30 31 
3 7 13 20 23 21 13 
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chose a niodel in each of the five outcorno categories 7, C?,ZA, P, W. These percentages are 

given for three divisions of the data: first, for all 5000 cases; second, for only those cases in 

which the oracle successfully chose the true niodel; and third, for only t,hose cases in which 

the oracle did not choose the true model. 

Considering first the all-models case, one observation is iinniediately clear from Table 

5.5: the stepwise and AICc methods predominantly overfit, wliile the SAMS method is 

much iriore likely to c:lioose the true model or an underfitted one. SAMS chooses the true 

model 43.4% of the time for the PB12 design, and 34.7% of the time for the PB2" design. 

These numbers are quite high, considering the oracle method chooses correctly under 65% 

of the time for each design. Both stepwise ancl A I G  inetllods 11ave inuch lower rates of 

picking the trutli, particularly for the larger PB20 design, for wliicli both ~rlethocls choose 

correctly under 2% of the time. TIE low ratcs of picking the truth for stepwise and AIC, 

are expla.ined IYJJ the fact that both metliods are very prone to the inclusion of spurious 

va.ria.bles. Both niethods hm~e C? arld P frequelicies ~nuch higher than SANIS. It  should be 

noted tha t  altliougli tlie AIC, ancl stepwisc niethods show similar patterns in their results, 

AIC, has generally bet,ter performance t h l i  stepwisc. In pa.rtic;ular it is mucli less likely to 

choose a conipletely wrong model. 

Selection of an overfitted model may be considered an acceptable result in some sit>ua- 

tions, siiicc d l  of tlie tdy-active variables will be identified among tlie chosen subset. It 

is reasonat>lc, then, to compare the totals in the 7 a.11t1 0 colulnns of Table 5.5. Over thc: 

PB12 runs, this total is 59.7% for SAMS; 52.7% for stepwise; and 62.3% for AIC,. Ot~er the 

PB20 rum, the correspoliding totals are 45.870, 45.0%, arid 53.3% for thc t,hree methods. 

So if overfitted models are considered equally desirable as identifica.tion of the true model, 

then the t,hree methods are quite similar, with AIC, having a slight, edge (though this edge 

may bc prin~arily due to the automatic model sclection process used ill thc simulation; this 

will be discussed further ill Section 5.5). 

The second slid third sets of sul>-tables in Ta,ble 5.5 compare the performance of the 

three competing nietliods conditional on tlie success or failure of thc oracle iriethod. The 

iriotiva,tion for tlivitliiig tlie data in this way is that oraclefailed cases n1ay be too challenging 

to expect any model selection method to work well; conversely, oraclesuccessfu1 cases should 

1la.t~ less inoclel selection uncertainty and thus thc ~netllods should pcrform better. The table 

shows that there is iiideed a major difference betwwii these two scenmios. Wlien the oracle 

is not s~iccessful, the rates of piclcing tlie true model, or even aa overfitted om,  are very 
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Table 5.5: Percenta,ges of select,ed inodels falling into the sets IA, I, 0, P,  W, for both desigiis. 
Rcsults are given for all rnetliods: omcle (Or), stepwise (St), SAMS (SA), and AIC, (A). 

PBlz  Design PBZ0 Design 

All 5000 Models All 5000 Models 
Z A T O P W  U T O P W  

Or 36.4 63.6 0.0 0.0 0.0 Or 37.9 62.1 0.0 0.0 0.0 
St 4.0 10.6 42.1 16.5 26.8 St 0.5 1.9 43.1 36.9 17.7 
SA 15.9 43.4 16.3 15.1 9.3 SA 30.1 34.7 11.1 17.2 6.9 
A 0.7 7.4 54.9 25.0 12.0 A 0.0 0.6 52.7 40.3 6.5 

3180 Oracle-Successful Models 3107 Oracle-Successh11 h4otlels 
Z A I O P W  U T O P W  

St 1.0 15.7 62.7 4.8 15.8 St 0.1 3.0 67.1 19.5 10.3 
SA 4.3 66.7 24.0 2.5 2.5 SA 18.4 55.1 17.5 6.9 2.2 
A 0.0 10.1 81.4 4.5 4.0 A 0.0 0.8 79.8 17.0 2.4 

1820 Oraclc-Failed h/lodels 1893 Oracle-Failed Models 
Z A I O P W  Z A I O P W  

St 9.2 1.8 6.2 37.0 45.9 St 1.2 0.1 3.6 65.4 20.7 
SA 36.2 2.8 2.7 37.1 21.2 SA 49.3 1.3 0.5 34.2 14.7 
A 1.9 2.7 8.7 60.7 26.0 A 0.0 0 8.2 78.4 13.2 

lm-the large 1na:jorit:y of choices by all n~etlrods are underfitked, partial-t,rut,h, or wrong 

inodcls. When the oracle method is able to identify the truth, all of the inot,llods perform 

well. The new SAMS method is able to identify t,he true model in two thirds of the oracle- 

successful cases for the PBI2 design, arid 55% of the cases for the PB20 design. The other 

two inetliods see little improvement in their ability t,o identify the truth, but the proportion 

of times an overfittcd nioclel was found did increase significantly. 

Performance for different model sizes 

Table 5.5 is a useful sumnary tlmt ill~strat~es the inair1 differences among tlie inetliods, 

but it omits certain inlportaiit iiiforinatio~i. It is a,n average across all lriotlcl sizes in tlic 

exl~eriment, so tlmt no model size effects are ol~served. It  also combines all over- and uiider- 

fitt,ed ~riodels together, trea,ting, for example, a inoclel overfitted by three varia.bles the same 

as a   nod el overfitted by only one varia,ble. 

The infoririatioil in Table 5.6 helps to rlnderstaiitl tlie simulatio~l output in Inore detail. 

The table contains the sa.me distribution of I ,  U,U,  P, W outcoi~ies as before, but iiow with 
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sclmrate sub-tables for each true rnodel size. Each design case has tables for size one u p  

to its maxinium true-model size, T. Each sub-table also contains two extra. colurnns, one 

for the average iiuniber of correct variables selected (T) and one for the average ~iuinbcr of 

wrong varia.bles selected (G) . 

Inspection of Table 5.6 reveals some details that are not evident in the marginal tables 

of the previous section. The first observatioli is that the nuniber of wrong varia,bles selected 

by AICc is high. This agrees with the discussiori of Section 2.2.2: which sugge5t,etl that 

criterio~i-based methods will beconw. more prone to overfitting when the model set gets 

larger. For tlie PBI2 design, witli T = 4, the AIC,-best model found is size four 80% of 

the tinie, ant1 size three 19% of the time. The chosen model has size one or two in only 

60 of 5000 trials. For the PBzo case, with 7 = G ,  thc situa.tion is even worse; a model of 

tlic nmxi~iium size, six, is selected in over 97% of the cases. Them would be 110 pract,ical 

difference bet~wen using the criterion and simply searching for the lowest-RSS model of size 

7 .  

Tlic stepwise inetliod also lins high values for Ib,, indica.tivc of a, strong tendoncy to 

include spurious variables. By contrast, the SAMS method has inucll lower average rates 

of selecting incorrect variables. Taking true models of size three as an example, SAMS 

ilicludes an average of 0.7 false va,riables for the PB12 iteratioils, while AIC;: i~icludcd 1.7 

false vtxria.bles on average. For the PB2" casc these numbers were 0.2 wtriahles for SAM3 

and 3.4 for AIC,. 

The tendency of SAMS to avoid spurious vasia.bles results in very high rates of selecting 

tlie true inodel when the truc model is sliiall, say up to size threc (the 75% rate of finding 

a, true ~nodcl of size two for t,he PBzo design is partic:ularly notable). As the true models 

get- larger, however, tlie Iiew method becomes worse at  detectillg the trutli a.rid tends to 

irndorfit or clioose pa.rtin1-truth niodels quite often. For example, wlmi tlie tlcsign is PBI2 

a.nd the triith is sizc four, SAMS cliooses the true inodel only 5% of t,ho tiine, a~itl chooses 

models in U and P 33% and 39% of tlie tinie, respectively. For I'D2" models, tlic nietliod 

cliooses an underfitted model about 50% of the tiine when tlie trutli lias size four, five, or 

sis. 

Cases witli larger true models provide the only situa.tioiis where AICc or stepwisc appear 

to lime a.n advantage over tlic new ~riethod. Because these ~riethods will always pick well- 

fitting largc models, they are well suited to catch niore of the active variables when tlic truth 

is iiideed largc. Co~lsiderirlg rnodels of size five in the PBzO sirnl~la.tion, for example: SAMS 
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chooses an average of 1.9 correct variables, while AICc has ail average of 2.4-which is 

bet,ter, but still quite poor. The usefulness of SAMS in such difficult cases will be discussed 

further at thc end of this chapter. 

5.4 Additional Results 

Tlie performance and sensitivity si~nulations have addressed a number of the biggest qucs- 

tions about the uew model selection method. A few remaining point,s, not covered previously, 

are addressed below. 

Performance on the null model 

The performance simulation only considered true models of sizes 1-7. The null model (wit 11 

only an intercept, size zero) was intentionally left out of the simula.tions. It is generally 

considercxl desirahlc for a, statistical method t,o have txmtrolled type I error for the null 

case-so that, for example, the ~iull model is correctly identified 100(1 - a)% of the time. 

This requirement will be very difficult to a.cliieve when the model set is huge, however. 

Regardless of tlie y-vect,or that happens to be observed, it is virtually certain that at least, 

one variable combina.tion will fit the da,ta well eliougli to re,ject the null-model hypothesis. 

Though this issue has not been thorouglily explored, it is felt that tuning a. variable selectiou 

procedure to control type I error under the null (for example, by using a select,ion criterio~i 

with a large complexit,y perialty) would result. in extremely low power t,o detect non-null 

models wlien they do exist. 

A more pragmatic: reason not t,o be concerned about tthe null case is t11a.t in applim- 

tions, the null model is ahnost never the best approxirna,tioli of the trut>li. In industrial 

experiments, candida.te variables are usually carefully selected using considernblc process 

l<~iowleclge. It is very rare: tliereforc, for none of the variables in a scree~~ing experiment to 

liaw any effect. 

A very small simulat,ion was run to illustrate tlie difficulty in identifying the null model. 

T l ~ c  PB20 perforlriance simula.tion code was run for 250 a.dditiona1 itera,tions, but with all 

realizations of Y generated from the null model. Tlie distribution of chosen-model sizes is 

shown in Table 5.7 for stepwise, AICC, a.nd SAhlIS. Stepwise was the only method that ever 

chose the null model, doing so for only four out of 250 cases. Stepwise alld AIC, both chose 

a. model of the largest admissible size most of the time-96.8% of the time, in the case of 
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Table 5.6: Pel.centages of selected models falling into the sets LI, 7,0, P: W, for both designs. 
R.esult,s are stratified by true model size. The average numher of correct vasia.ble clloices 
(G) and thc average number of wrong choices (G) arc also given. 

PBlz Design 

1240 inodels of size 1 
U T U P W  

Or 1.4 98.6 0.0 0.0 0.0 
St 0.0 22.7 74.8 0.0 2.6 
SA 0.0 56.6 42.3 0.0 1.1 
A 0.0 0.1 99.0 0.0 1.0 

1283 inodels of size 2 
U l - U P W  

Or 13.5 86.5 0.0 0.0 0.0 
St 1.8 11.6 67.4 5.8 13.3 
SA 6.5 69.3 18.7 4.0 1.5 
A 0.0 2.4 85.3 8.9 3.4 

1219 inodels of size 3 
U l - U P W  

Or 47.7 52.3 0.0 0.0 0.0 
St  4.4 5.0 25.8 24.9 39.9 
SA 24.0 42.5 4.1 18.1 11.2 
A 0.2 16.7 34.8 32.4 15.8 

- -  
it, nu; 
1.0 0.0 
1.0 1.9 
1.0 0.7 
1.0 2.8 

PBzo Design 

833 inodels of size 1 
U T U P W  

Or 0.4 99.G 0.0 0.0 0.0 
St 0.0 6.5 91.6 0.0 1.9 
SA 0.0 52.9 46.3 0.0 0.7 
A 0.0 0.0 98.7 0.0 1.3 

852 models of size 3 
U T U P W  

Or 19.5 80.5 0.0 0.0 0.0 
St  0.2 0.9 55.8 27.8 15.3 
SA 25.4 58.0 4.1 10.4 2.1 
A 0.0 0.0 69.8 27.5 2.7 

831 models of size 4 
1 A T U P W  

o r  45.5 54.5 0.0 0.0 0.0 
St 0.5 0.8 21.4 55.2 22.0 
SA 52.3 21.2 0.4 19.9 6.3 
A 0.0 0.0 44.4 49.3 6.3 

815 models of size 5 
I A T U P W  

Or 68.8 31.2 0.0 0.0 0.0 
St 1.0 0.0 4.0 64.4 30.6 
SA 52.9 1.2 0.0 31.7 14.2 
A 0.0 0.6 13.4 73.7 12.3 

850 models of sizr 6 
U T U P W  

Or 87.3 12.7 0.0 0.0 0.0 
St 1.2 0.5 0.0 66.1 32.2 
SA 45.1 0.0 0.0 37.4 17.5 
A 0.0 2.8 0.0 82.5 14.7 

--  
it, n, 
1.0 0.0 
1.0 4.1 
1.0 0.7 
1.0 5.0 
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Tablc 5.7: Distribution of chosen model sizes under the null rnodcl, PB20 case. Values are 
in percent. 

I Size I Steuwise AIC, SAM3 

AIC,. As in the non-null cases, SAI\/IS overfitted less tliaii the other methods, comnionly 

choosing inodels of sizes two through four. 

Tlie results liere suggest, t h t  if correct identifica.tion of the null model is important,, none 

of the lrietllods considered is particularly useful. For the ncw SAMS metllocl tis imple~nented 

hcrc, it is act,ually irnpossi1)le to choose a model of size zero. For t,he stcpwise algoritllrn and 

AIC(, it is techliically possible to chooso the nu11 model, though in pract,ice tliese metliods 

almost always overfit the null n~oclel even more than SAMS does. Controllet1 error rate 

undcr the null model is a desirable propert?: but one tlzat is hard to achicve ill the screening 

case, where 71. is small ant1 the nuinbcr of candidate lnodels is very la.rge. 

Repeatability 

The SAMS algorithm involves a. stochast,ic search heuristic, so repetitions of tho lnodcl 

selection process will not result i l l  identical good-nloclel sets. Ideally, the rcpea,tal)ility of 

the method would be sufficiently good that raster plot,s a.nd link plots look the same run- 

to-run, and t.hat tho n~,?ximum-entro~>jr model selected does not changc. 

To assess the repea.tabi1it-y of the method, the SAMS method was carried out twice for 

the first 1000 runs in the PBlz  and PBzo performance simulations. Two outputs wcre 

recorded for etxch design, with t,lle results slionm in Table 5.8. The first output, O/o sainc, is 

the percent of cases where the same model was selected in both trials. The seconcl output, 
0 /o top 5, is the percent of cases where tlie best model from the first trial was in the top five 

inodels in the second trial. As before, results arc shown for all cases, and then conditional 

on the outcome of the ora.cle niethod. 
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Tablc 5.8: Results of repetitions of the SAMS method. 

The table shows that repeatability is good, with the same model being chosen about 

90% of the time. The number predictably drops when the nlodel spac:e is bigger (the PB20 

design) a.nd when model selection nncertainty is higher (the oracle-failed cases). Experience 

has shown that for typical cases, the raster plot and link plot do not change their qualitativc 

appearance very 111ucl1 on repetition. 

1 All models 

Run time 

Computer run tiines for tho SAhiIS algoritliin, with the default parameter settings, are 

very reasonable. For the PBI2 design, typical run tiines are 10--15 seconds for the siniulated 

annealing search, and less t h n  two seconds for the brancli-and-bound algorithm. Run tiincs 

are somew11a.t longer for the PB20 design, with the model search taking approxinmtely 20 

seconds, and another 20 seconds for the branch-and-bonr~tl search. The branch-and-bou~~tl 

method is very sensitive to the problem size and to the quality of the initial guess solutions. 

For considerably larger probleins wliere good models are not clearly evident, thc branch- 

and-bound tiin<: could become prohibit,ive. 

The relatively fast run time for SAMS mea.ns that the user has options ill a.pplying the 

method. For exaniplc, the size of the good-nlodel set could be increased considerably, or 

the sei-trcll could bc repcat,ed with alternative para~neter settings. Wheil there is strong 

ev ide i~e  for the best model, such changes should have little effect on tllc  result,^; but if 

model selection uncertainty is high, some differences may be observed. The method lends 

itself well to an intera.ctive approach. 

PB12 Design 
% same 'X top 5 

85 94 

Design 
% same % t,op 5 

77 89 
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5.5 Comments on Underfitting and Overfitting in the New 

Method 

Thc result,~ of the parameter ~ensit~ivity study and the performance study seem to point to 

some areas of concern regarding underfitting ancl overfitting. The sensitivity study suggests 

that, clianging the simulated annea.ling parmnters can strongly influence tlie ba,la,nce between 

under- and over-fitting; and the performance st-udy suggests that SAMS tends to underfit 

when tho true model is large. Tliese concerns originate primarily in the entropy criterion 

and the simulation study, however. It is iniportmt to relnember that tlie new niethod is 

not a rnodel selectioli criterion. Tho mcessity of picking a single model forced c:rit,erion-like 

properties onto the method in the silriulation studies. 

Many trdit.ions1 model se1ec:tion methods are based in tlie notion of optimality thc idea 

tJkiat if only an approprktc metric or algorithni could be found, a sin& optimal model <:oulcl 

be identified in every situa.tion. The new method abaridons this idea a.t the outsct, in tlie fa.cc 

of the huge model set. It is much more si~nilar in spirit to Bayesian variable selection, u7hicl1 

tries primarily t,o report wlint the data says: inc:luding the possibilit,y of lnoclel selection 

ulicertainty. Both Bayesian varia.l)le selection and the oversized-niodels approa.ch can be 

thouglit of as decision support tools. When the best model is obvious, the rnethod finds it; 

the SAMS method was much more proficient a.t clioosing the true ~riodcl tha.11 its competitors 

in tlie pcrformancc simulation. When therc is uncerta.inty about the best modcl, t,he method 

returns information that is useful in deciding what to do next. I t  sliould be noted tlint 

criterion-based methods generally do n,ot provide this cstra information. 

Inspection of the co~nplet~e output of tlie oversized-models mcthod is necessary to fully 

apprecia.te its usefulness in cases of model selection uncertaint,y. Tlie nlethod provides 

(tlirougli the braricli-txnd-bound search) a list of good c:andidatc models of each size, but it 

also provides graphical sunirriaries in the form of tho rastcr and link plots. 

An examplo can help to illustrate how the new method provides more informa,tion tliari 

just the best-guess model. A true lnodel of size six was randomly generated from tlie PB2" 

design: 

E[Y]  = 0.93 - 0.67B - 0.76F + 0.70H - 0.965' - 0.86BI - 0.69FJ. 

This model has E [ R ~ ]  of 0.934, but because of several small coefficients, tlie power for tlic: 

oraclc method to successfully detect all six active variablcs is 0 1 1 1 ~ 7  0.31. This is a challenging 

example for lnodel selection. 
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A respoiise vect,or was generated from the chosen inodel, and the SAMS inctliod with 

a.utoniatic best-model choice selected the t,hree-variable model (B, S, BI). All three variables 

are in the true model: the selected model is underfitt,ed by three variables. For the sanie 

data., the AIC,,-best model found was (B, F,  G, H, S, BI ) .  Tliis model contains five of the 

six truly-actiw variables plus one spuriolis main effect, G. So by strictly coinparing tlic two 

best-guess models, the AIC, iriet,hod appears to do better. 

The link plot of the good-model set is shown in 5.2. It  is clear from the plot how 

(B, S, BI) was clioscn as the best-guess niodel; but tho otller two variables found by A I G ,  

F and H, are t h o  visible as possibly important. The only variable not detected by the plot, 

is thc FJ interaction, wllicl~ was not found by either inetliod. 

The AIC,,-best model (B, F, G, H. S, BI) was also the most frequent combiliation of six 

vi~riables i l l  tlie S A M  good-model set,. 111 t,his aiid Inany other cases: the best AIC,   nod el 

was fouiid by scarcliing the SAMS niost-frequcnt model list, not by using the t,wo-stagc 

scardl lnetliod of 2.2.2. This suggests that, if one wantzed to replicate the perforriiaiicc of 

AIC7, wing the new inetllocl, one c:oulcl just take the most frequent lnodcl of the largest size 

found by branch-arid-bound. 

Tliis example illustrates t,lmt. as long as tllcre is liiicertainty in the data.: the data analyst 

can never totally escape the problcnl of niodel size. The oversized-models method suggests 

a. best inodel, but also provides the user with information thcy can use to select a larger or 

srnaller model, tlepeliding on the particular situatioii. 

An aclditiol~d example can be extraded from the sensitivity sirnillation. 111 the PB12  

experiment, run 12 (p = 7,m. = 1 0 0 0 , ~  = 8, Pmi, = 0.01) selected ovcrfitted ~nodels 

part,icularly frequently. One data set for which this run selected an overfitted model was 

rmdonily chosen. The true iriodcl for this case was (G, J); run 12 erroneously selected model 

(G, J ,  F J ) .  A different set of paramet.cr values wm then choscu at randoni fronl thosc runs 

that correctly identified the true model. Thc chosen run was run 47, which happened to 

tliffcr froin ruli 12 oiily by having a, larger iriotlel set (p = 7, nz = 5000, tc = 8, P,,,,, = 0.01). 

Tlic raster plots, link plots, and entropy calculations wcrc then generatxd for theso two sets 

of para.meter values, using the same y-vector used in the sensit,ivity studjr. The rcsults of 

this test a,re shown in Figure 5.3. 

Thc figure shows tliat there is little difference 1,etween the results produced by tlie two 

sets of parameter choices. Run 12 cliooscs the overfitted inodel including F J  lwcause it has 

sliglltly higher entropy: H(G, J, FJ) = 2.38, whilc H(G, J) = 2.25. Run 47, on the other 
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Figure 5.2: Link plot for an example where the new method chooses an underfitted model. 

hand, has the situation reversed: H(G,  I )  = 1.83, and H(G,  J, F J )  = 1.79. ?'lie sirr~iilatiorl 

is forced to choose the sirrgle highest-entropy nlodel as output, but in fact the two cascs 

are practically ecluivalent. The equivalerrce is easily seen in the link plots, but cannot be 

translat,ed into t,he entropy criterion. 
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1 10 20 30 40 50 60 66 
Predictor 

1 10 20 30 40 50 60 66 
Predictor 

Figure 5.3: Raster plots and link plots for two runs in the sensit,ivity study. Run 12 (top) 
selected the overfitted model (G, J, F J ) ,  while run 47 (bottom) selected the true   nod el 
(G, J ) .  A human user would likely consider the two cases ecpivalcnt from a decision rrlakillg 



Chapter 6 

Conclusions 

A new model selection mcthod has been presented. The proposed ~netllotl takes an approach 

to the modcl selection problem that is niotivated by the particular clialleriges of scrccnirig 

clcsigris, ant1 is soiiiewhat different from traditional techniques. 

6.1 Summary of the Method 

Thc now method, called the met,hocl of oversized-niodel sets, is pa,rtic:ularly suited to prob- 

lems where the set of candidate models is too large to search exhaustively, and where a 

slnnll liereditjr-respecting model is desired. 

The metliod proceeds by first building a large set of well-fitting riiodels of a fixed size 

p, larger than the anticipa.ted best-model size. This good-model set is constmcted using 

a stochastic: search heuristic called simula.ted annealing model search (SATVIS). The SAMS 

algoritlmi has becn designed to provide a. non-convergent sea,rcll througli only heredity- 

respecting models. 

Tlic premise of the method is that good smaller i~iodels call be fourid by inspcctiiig the 

oversized-model set for common va.risble combiiia,t,ions. The raster plot, clustered raster 

plot, and link plot are suggested as graphical tools to a.id this inspection. A bra.11~11-and- 

l~ound algorithm lias also been eniployed to find the 7. rnost common variable combina.tions 

of each size in the good-model set. 

Grap11ic:al outputs and a. list of most conunori models should be sufficient for most real 

applica,tions. As a, final component, an entropy criterion was developetl for cases where 

a11 objective, "ha,nds-off" model selection is required. Thc criterion aims to find the: iriost, 
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over-represeiitd model ill the good set,, based on a random-sampling reference distribution. 

Simulatioi~ studies and examples showed that tlie new approach compares faxourably to 

alternative methods. The key differences and adva,ntages of the oversized-models approach 

are listed below. 

E f e c t  Ire~edity is  built into the procedure. Tlie procedure is built on the premise that only 

models respecting (weak) heredity will be corisidered reasonable in screening experiments. 

By enforcing heredity throughout, model search is made more efficient, and tlie end results 

becolrie easier to interpret. 

Si,utzstical testing and selection c r i t c ~ i a  ure avoided. Methods based on sigr1ific:ance 

tc+st,ing or or1 model selection criteria will always suffer when the set of candidate mod& 

gets very large. The new method handles the huge model sets morc gracefully by using 

iiifornintion across a large number of well-fit,ting i-uodels. 

Goodness-of-,fit and the choice of model size are treuted separately. In most traditional 

(frequentist) nlodel selectioli methods, the search for a well-fitting nlodel is coupled to t,lie 

clioicc of ~notlel size. Indeed, the trade-off between fit and complexity is the central probleiri 

of model selection. The new metliod sepal-at,es the t,wo issues by searc:hing for good models 

of only one fixed size. Having constructed the good-model set based on RSS, the fit of t,l~e 

models is never considered again. In subsequent steps, only the structure of the models is 

used to extract a hest combination of variables. 

G'sr~phica,l tools are provided. The ~netliod of oversized-model sets is based on a simple 

coi~:ept, and its results can be gathered from graphical displays. This feature should greatly 

enhance ease-of-use and the quality of decision making. A very important feature of the 

 graphic:^ is that they also communicate the ext,ent of model selection uncertainty much 

lxtter than, say, a. list of the five best,-fitting niodels of each size. 

6.2 Future Work 

The oversized-models colicept and the SAMS algorithnl have been shown to work well in 

Inany situations. The work to date has pointed out several areas of room for improvement 

of the algorithms, and has also suggested son1e moro general research questions. 
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Improvements to the existing algorithms 

Considering first, the SAW3 algorithm itself, future work will focus on inakiiig it as robust 

and easy to use as possible, and making it applicable to a wider range of scenarios. There 

are several areas for further developnient: 

1. Gain ail improved understanding of the workings of the SAhilS algorithm. specifically 

tlle roles of thc control parameters ngen, p, K ,  P,,,,, and p. Siinplify t,he pararncter 

clioices for the algorithm and make the search as robust and repeatable as possible. 

2. Generalize the mcthod to allow arbitrary specification of lleredit,y relatioilships, in- 

cluding multiple-level relationships. Generalize the entropy ~rit~crioii to nmtcli. 

3. Investigate t,lle applic:al>ilit,y of the inetlwd across a wider ra.nge of cases. Exanlples 

coulcl include: cases where the sparsity or heredity assumptions do not hold; cases with 

active three-way int,eractions; regression cases exhibiting strong multicollinearity or 

cases involving hundreds of variables. 

The first point above is worthy of further discussion. The parameter sensitivity study 

(Section 5.2) indicated tliat the method is fairly robust to different choices of the user- 

a,djust,ablc qua,ntities. The rcsults suggested, however, tliat there may be some redundancy 

among trhe paralr~eters. Specificallji, the PTni,, para~net~er can probably be eliminat,ed t,hrough 

appropriate cl~oice of the other parameters and some algoritlirriic changcs. A deeper analysis 

of the temperature traces from different SANIS rum should help to understand thc process 

better, and suggest simpler ways t,o control the algorithm. 

One promising idea is to track tlie frequency with whicli tlie seardl is revisiting recent 

models, and t,o use this inforina.tion t,o help control the sea.rch. For example, random restarts 

could be triggered if the frequency of visiting duplicatm is too lligli. R.andom restarts sllould 

have thc same effect as including Pmi,, but in a way that is tra.nsparent to thc user. 

Additional research questions 

Tlie present work has also suggested some higher-level qliestioiis that eoulcl be adclressecl in 

future resewdi. Three such questions are listed, and then discussed briefly: below. 

1. How serious is the effect of iriodel sct sizo on the utility of model selection criteria? 
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Can inodcl selectioii criteria be modified to account for the sizc of tlie candida.t,e model 

set,'! 

2. What is tlie best way to structure a   nod el selection sin-iula.tion study? 14711a.t is the 

best, way if one is not willing to accept coefficients exactly equal to zero'? HOW can 

disparat.e ~net,liods sndl as  SAI\/IS, stepwise regression, and Bayesian variable selectioii 

be fairly compared'! 

3. Can licuristic searcli strategies be proposed as gcneral optimization inetliods for searcli- 

ing rnodel spaces subject to heredity c.onstraints6? 

The fact tl1a.t tlie size of the model set does indeed affect the performanr:e of criteria 

appears to he little represented in the literature. The extent of this problem, ways of 

measuring it, and ways of correcting for it, could be subjects of ongoing researcli. 

Attempts to create a meaningful siniulntion study suggested that the question of study 

design and analysis could itself be a problem for future research. Section 5.1 discussed tlle 

difficulty in creating a distribution of true models that yields realistic scenarios across a range 

of true model sizes. The common device of setting a few coefficients to large values while the 

rest are exactly zero is also somcwhat questionable, from the standpoint of remaining t,rue to 

the real world. There may be opportunities to create a better simulation framework, where 

small coefficients are allowed to exist. Alternative measures of model selection performance 

c:ould be investigated, and model selection performance could be mct~ured relative t,o sornc 

fair standard. 

Cornbinatorial optimization inetllods such as simulated culnea.ling: genetic algoritllins, 

or tabu search have not frequently been a.pplied to iriodcl selection problems, despite their 

good perforniance ill other doi~iai~ls. Prefcreiice in the statistical literature has been for 

niorc siniplistic algorithins such as stepwisc regression or sequential replace~nciit. 

Iinpleincntatioii of the more advanc:ed coinbinatorid optimization heuristics for model 

selection is generally straightforward-until constraints s11c:11 as effect heredity a.re enforced. 

Dealing wit,ll 11eredit)y constraints requires modificatioris to the standard algoritlims, as in 

the case of SAAG. Tlie fact that SAMS works well suggests that tlie modified sirnulatc?d 

annealing algorithm could be proposed as a generic tool for search through huge model sets. 

A first att,einpt at. a heredity-respectil~g genet,ic algoritjhm lias also beeit tried, with some 

success. Further work in this area could provide model searcli tools that would be useful 

regardless of the a.nalyst,'s preferred tnodcl selection approidi. 
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Counting Hereditary Models 

Equatioil 2.3 (the number of hereditary rnodels of a, given size) and equat io~  2.5 (the numlm 

of liereditary models containing a particular subset) axe derivcd below. Thcse forinulas a,re 

used ill determini~~g the reference probability for the elitropy criterion of Section 3.4. 

Note t1ia.t both of the equations derived here apply only when the full matrix consists of 

vi main effects and all of' their 2-way interactions. Cases wit,li additional predictor columns, 

or alternative 11eredit)y specifications, will need inodifications t,o tllesc formulas. 

Number of Hereditary Models of a Given Size 

Goal: for a. problem involving u: main offects, cleterlnine Np(.ru), the number of 

heredit.y-respecting models of size p. 

A herc+dity-respectiilg inodel must contain at  least one ina.in effect, and lni1.y contain up 

to p ma.in effec:t,s. Let the number of hereditary models of size p that conta,iu y main effects 

be A T  (w)  . 

Coi~sitler a model of size p with y main effects. There are ( y )  ways to choose the 

rriniu effects. The relnainilig p - y varia,bles in tho model are clioseli froin the adinissiblc 

interactions. Each i~ i a i i~  effect i11 the model is involved in a)- 1 interas.tion variables. But for 

y nmin effects, they will share (:) ii~t~eractions with each other. So the nuiliber of admissible 

interactions is ~ { ( w  - 1) - (?J. The number of ways to form a model of size p with 7 main 

effects is then 
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Suinming this over y = 1, . . . , p gives the desired result: 

The above equation is only valid when p < w ,  t,lla.t is, when the nloclel size is less than the 

number of mairi effects. The formula also assumes that when x < y, (") = 0. 
!J 

Number of Overfitted Models with a Given Structure 

Goal: Given a design matrix with ui ma.in effects, arid a submodel consisting of 

n main effects mid 0 interactions, determine Nll(*w, a,, b), the number of lieredity- 

respecting models of size p that contain the given submodel. 

The giveii subinode1 contains (I, + b va,riables; so p - a. - b variables nmst be a.ddcd to 

this iriodel to yield a llereditttry model of size p. The goal is to det,erniine thc number of 

ways this can bc done. 

To build the suhmodel up to size p, one may add 0: 1, . . . , 1) - o. - 0 inail1 effects, and tlie 

coinplelnentary number of interac:tions. Corisider the case where y main effects arc added. 

There are already a main effects in the submodel, leaving (w-a) w8ys to select the added 
T 

maill effects. The re~naining p - a - b - y added variables must be int,era.ctions, selected 

from the set of admissible iiiteractions. Define tlie niaiii effects ill the original subinodcl as 

old, and the main effects a,dded as new. Then the admissible interactions ca.n be divided 

into two groups: 

1. Interactions involving at least one of tlic a old main effects. All such intera.ctions, 

other than tlie b that are in the given s~~b~noclel,  are t~dmissiblc: 

Nunlber of such interactions = a(w - 1) - (;) - b. 

2. Iiitcractions involving only the 7 new main effects, and not the old ones. There a.re 

w - a, - 1 such interactions involving cach new main effect: 

Number of such interactions = ~ ( U J  - (1. - 1) - (;). 

So the total nurnber of admissible interactions is CL(W - 1) - (g) - 0 + ?(%I) - a. - 1) - (;). 
The p - a - b - 7 interactioiis are selected fro111 these, aloiig with the 7 main effects, so: 
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This equation can be sum~ned over A/ = 0: 1 , .  . . : p  - a - b to give the desired result: 

The above equation is only valid when p > a + b, u > 1, and I., < w. The formula assumes 

that, w11en :(;. < y, (,') = 0. 
Y 
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Branch-and-Bound Algorithm 

Branch and bound (hereafter: 138513) is a well-established coinbiimtorial optimization algo- 

rit.hni. A good introduction ca.11 be found in Clausen (1999). It  has tlic: advantage of heing 

a global optimization method that, does riot require the evaluation of every alternative. Thc 

problem iri questioli rnust have two chara.ct,eristics for B&B to be applicable: 

1. It must, be possible to exliaustively divide the solutioli space into a scries of sirialler 

and snlaller subsets (branches). 

2. At any point in the sul)division of the model space, it riiust bc possible to calculate an 

upper bound (for inaximization) or a lowcr l~ound (for iriiniinizatioii) for all solutions 

i11 tlie current branch. 

\Vlicn tliesc two coiiditioiis are satisfied. tlie B&B inetl~oci can sear(+ wry large. solution 

spaces efficiently. The speed of the sewcli can also be greatly improved wlieii good initial 

guesses can be folind . 
The discussion that follows relates the particular implcnientation of B&B for the purpose 

of extracting the most frequcnt subinodels in the SAMS good-modcl set. 

Goal: given the m nlodcls in the good set G, find thc r. nlost frequent submodels 

of size q. 

Definitions: 

Branch. At any point in the search. the current branch is defined by a particular subniodel 

of size 1 . . . q - 1. For example, the current branch niay be (A, B). Then further s u b  

branches woulcl be (A, B. G), (A,  B. D), and so on. 
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Leaf. A leaf is reached when hr.anc;hirig has produced a model of the n~axirnni-n size, q. 

Every leaf is a, candidate solution to the problem. 

Currently proposed branch, P. Let P 1)c the b r a i ~ l l  that is currcntly under considera- 

tion at a given point in the search. 

Occurrence frequency, f (P). For a submodel (branch) P ,  let f (P) be its frequeucy of 

occurrence in S. The occurrence frequency is easy to evaluat,e for any given model. 

Frequency to beat, J'. Let M' be the rt" most frequent leaf model found at the current 

point in the search. Then f * = f (W). Ariy future leaf found with higher occurrence 

frequency constitutes an iinproveinent in tlic solution. 

The set of live branches, L. This is the set of branches that have not yet been explored 

or eliminated from the search. The algorithm moves through L until all branches are 

eliminated. Let Li be the iLh element of L. 

Ordering of variables and 1xanc:hes: 

A partic:ular ordering of variables within a brancli, and brnnches ill L is required to avoid 

visiting any l>r~tnches more than oiicc. At any given time, L may be contaiii a rriixturc of 

models of different sizes. The following order is imposed: 

0 Consider all variables in the full niatrix t-o be assigned a letter. 

Within a branch, all variables are in a1phabetica.l order. 

Order tllc models in L ill alphabetical order, with "spa.ceX being ordered before A.  

Choosiiia initial solutions 

The nature of G makes it part,icxlarly suited to B&B siiice it is easy to get good initial 

solutio~is. Thcre are typically only a si~lall iiu~nbcr of va.riables that litwe higli freque~icy, 

so good inotlcls can bc found by sequentially taking the most-frequcnt variables in thc set. 

Iiitial solutions arc obta.ined as follows: 

1. Select the most frequently-occurring main effect. 
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2. Select the variable that respects heredity and occurs most frequently a,mong all models 

that contain the preuiousl?~ chosen vari.able(s). 

3. Repeat stcp 2, each tirne adding the conditionally-most-fr(~q11e11t variable, until the 

selected model has size q. 

4. Disregard all of the models containi~lg the previously chosen ~nodel(s). 

6. R,epeat st,eps 1-4 until I. lnodels have b c ~ n  thus chosen. 

The B&B algorithm 

The essence of the method, in the present case, is as follows. At any point in the scnrch, 

the frequency of the T ~ ' '  most frequent rrlodcl is tlie current score t,o beat. For example, say 

that hnlfivay through the search, the 7."' uiost frequent niotlcl found occurs 1000 times in 

G. A bra.ncl1 is defined by a particular subset of variables; for cxanlple, the currel~t braalch 

may be "all models containiug (A, AB) ." The occurrence frequency of the lrlodel defining 

the bra~ic l~  sets an upper bonnd for the frequency of ally largcr model. So if (A, AB) occurs, 

say, 500 times, then it is not necessary to search any otllcr models containil~g (A, AB), as 

thcy cannot, be more frequent, thaii the current cutoff of 1000. This idea. can be irnplcment,ed 

systemat,i(:dly through the algorithm in Pseudocode 8. 
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Pseudocode 8 The brartch urtd bound u1,qo7.%th,m. 

1. Choose T good iiiitial gucsses by the niethod described a,bovo. Let the lowest 
occurrelice frequency among tliese iiiitinl models be f ". 

2. Set tiny vn,riables with marginal frequencies < f *  to iriaclmissible. 

3. Set L = {All a,dmissiblc main ~Rects). Enslire that, L is sortml. 

4. Wliile L is not empty: 

(a) Set P = Ll 
(b) Set L = L \ P 
(c) If f (P) < f * then go to (a) 

(d) Else 

If P is a leaf 

Add P to the top r solutions and recalculate f * 
Else 

{ 
Variables that are admissible, respect 

Find V = 
P, and are ordered lower tlmn the last 

Set L = C U V. Ensure that. C is sorted. 

End If 

(e) End If 

5. Erid While 

heredity with 
variable in P 



Appendix C 

Detailed Output from Performance 

Simulations 

A cleta.ilec1 picture of variable selection perforlriance can be obtailied by considering the 

pcrfor~riancc? as a bivt~ia~te outcornc. For a true model of size s: when models u p  to sim T 

are c:onsiderecl, tho structure of the selected model can be clescribetl by two va.riables: n,: the 

nulriber of correct, variable choic:es, a i d  ,n . , ,  tlic number of wrong variable choices. Different 

coinbillations of n, and n ,  ~orr~lspoiicl to the diffe~.ent outcome categories 7 ,  O,U,  F', W 

described in Sectiol~ 2.1 .l. 

Tlie ta,bles t1la.t follow c:ontain sub-tables giving the empirical clist~ributioli of (n,, nu,) 

for each method and for each true rnodcl size. 1nterpreta.tiori of the sub-ta.bles is described 

bclow in Figure (2.1. The figure sliows thc structure of the sub-table for tx case whcre t,he 

t,rue nioclcl has size four. 
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Table C.1: Distribution of thc number of correct and incorrect variables selected in the PB12 
perforniance simulation, for each method and each truth size. Values are in percer~t,. Tlie 
upper-right corner of each sub-table gives the percent of times the true modcl was chosen. 

Oracle I S t e ~ w i s e  I SAMS I AICc 
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Table C.2: Distribution of the number of correct and incorrect variables selected, PB20 
performance simulation. Values are ill percent. 

Oracle Stepwise SAMS AICc 

I I 
A * 

3 
4 2 
5 96 
ti 1 
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Underfilled 

n c  / modcls 

1 0 1 2 3 4  True 

61Ldl modcls 
\ w r o n g  

models 

Figurc C.l: Scheinatic of thc distribution of n, and 7 1 ,  for chosen models. 
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