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ABSTRACT

The Brownie tag-recapturc model analyses multi-year tag recovery data to derive
estimates of natural and fishing mortality that can be used to estimate population
abundance. However, it makes several assumptions about the behaviour of tagged fish,
tagging-induced mortality, tag retention, emigration, tag reporting, and timing of the
fishery. I evaluate performance of the Brownie model when individual assumptions are
violated, using Monte Carlo simulations over a suite of scenarios with known “true”
parameter values chosen to mimic British Columbia sablefish (Anoplopoma fimbria).
Bias and precision are quantified by comparing parameter estimates with their known
“true’” values and by the spread in estimates from 500 Monte Carlo trials, respectively.
Assumptions about uniform mixing, timing of the fishery, and emigration had the greatest
effects on bias of estimates of fishing mortality and abundance. Combining fishery-
independent survey CPUE data with tag recovery data did not substantially improve bias

or precision of parameter estimates.

Keywords: Brownie model; tag-recapture; sablefish; maximum likelihood estimation;
bias; Monte Carlo simulation; survey CPUE; tag reporting rate

Subject Terms: Animal populations — Mathematical models; Fish stock assessment —
Mathematical models; Ecology — Mathematical models; Animal marking; Monte Carlo
method; Fishes — British Columbia
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1 INTRODUCTION

Estimates of fish population abundance are critical for effective management of
fisheries, yet reliable estimates are extremely difficult to obtain. A variety of tagging
methods have been developed over the last 200 years to address this problem (Manly et
al. 2005). These methods involve the capture and marking of animals at one time and
the subsequent recapture of tagged and untagged animals at future times. Analysis of tag
release and recovery data can provide estimates of mortality rates and abundance for the
population. However, such analyses require relatively strong assumptions about the
behaviour and availability of tagged animals, mortality impacts due to tagging, tag loss,
and reporting of recaptures. Violating any of these assumptions may increase bias and/or

decrease precision of abundance estimates from tagging experiments.

In this paper, I develop a sunulation-estimation approach for evaluating the
statistical properties of estimates of fishing mortality, natural mortality, and abundance
derived from tagging studies that violate several important assumptions. Although the
approach I describe intends to mimic tagging studies for British Columbia (BC) sablefish
(Anoplopoma fimbria), both the simulation and estimation frameworks can be
generalized to other tag-recapture programs where a time series of tag recovery data is

available.

Sablefish is a long-lived, deep-dwelling groundfish species that i1s harvested
commercially along the west coast of North America (Heifetz and Fujioka 1991;

Hanselman et al. 2005). It is one of the most economically important species fished in



British Columbia, with landings of 3800 metric tonnes valued at CAD$29 million in 2000
(DFO 2005). The fishery is co-managed by Fisheries and Oceans Canada (DFO) and the
Canadian Sablefish Association (CSA), which is an industry association of license
holders in the sablefish longline trap and longline hook fisheries (CSA 2006). Through a
collaborative agreement with the DFO, the CSA makes significant contributions towards
fishery management by sponsoring fishery-independent survey monitoring, an extensive
coast-wide tagging program, scientific stock assessments, and enforcement. DFO and
CSA-contracted scientists collaboratively develop annual scientific assessments of
sablefish stock status using both commercial and fishery-independent data (Haist et al.
2004; Haist et al. 2005). Fishery managers consider these results along with social and

economic factors when setting total allowable catch (TAC) quotas each year (DFO 2006).

The data sources typically available for sablefish stock assessments include: (1)
fishery-independent survey catch-per-unit-effort (CPUE), measured as the average
number of fish or total mass (kg) of fish caught per trap; (2) tag releases and recoveries
since the sablefish tagging program began in 1991; (3) dockside landings from
commercial fisheries; and (4) geo-referenced commercial catch and effort from vessel
logbooks (Wyeth and Kronlund 2003; Haist et al. 2005). Data required to calculate the
CPUE index are collected annually during the fishery-independent trap survey at the
same time that sablefish are tagged and released (Wyeth and Kronlund 2003). This
standardized trap survey (1990 — present) is conducted for research and assessment of
sablefish each fall (October-November) at nine fixed localities along the BC coast (the
ninth locality was added in 1994) (Wyeth and Kronlund 2003; Haist et al. 2004). Each

year, the number of fish caught per trap is averaged over all localities, producing a coast-



wide CPUE index of relative abundance (Wyeth and Kronlund 2003), hereafter referred
to as “survey CPUE”.

Tag releases and recoveries comprise a central part of the BC sablefish stock
assessment program. An average of 5673 fish of fork-length greater than 60 cm were
tagged and released from the offshore survey localities each year from 1991 to 2004
(Haist et al. 2004; Haist et al. 2005). Sablefish are tagged with T-bar anchor tags (Floy
tags) inserted at the base of the first dorsal fin (Wyeth and Kronlund 2003). Tagged fish
are recovered throughout the year by directed sablefish fishing and by the trawl gear
sector, which is allocated 8.75% of the commercial quota (DFO 2006). Other recoveries
of tagged fish may occur from various hook and line fisheries where sablefish are
intercepted as bycatch (DFO 2006). Numerous reward incentives are in place to
encourage tag reporting from all sectors (Haist et al. 2004). Analysis of the tagging data
to estimate abundance has formed the core of many BC sablefish stock assessments in
recent years (e.g., Haist and Hilborn 2000; Haist et al. 2001; Kronlund et al. 2002; Wyeth
and Kronlund 2003; Haist et al. 2004; Haist et al. 2005). In this paper, I evaluate the
performance of a stock assessment model that uses these data to estimate abundance and
fishing mortality.

One possible way to use the tag recovery and commercial catch data to estimate

sablefish abundance ( 4,) in year j is to employ the well-known relationship between

catch (C')) and exploitation rate (v, ):



Ny A=Cli ,

where the carat symbol *“” represents an estimated quantity. The exploitation rate, u, is

defined as the fraction of fish alive at the beginning of year ; that is harvested during the

year. Assuming that all catch is taken instantaneously at the beginning of the year, u,

can be estimated from the instantaneous rate of fishing mortality ( /) as

(2) U, =l—exp(-F,) .

The “Brownie™ tag-recapture model provides a way to estimate the annual fishing

mortality rate ( F,) along with a combined natural mortality-emigration parameter (M*)

and an average tag reporting rate (A ) from observed tag recovery data (Seber 1970;
Youngs and Robson 1975; Brownie et al. 1985; Pine et al. 2003; Hoenig et al. 2005).
This model has been the primary method for analysing tag recovery data to estimate total
mortality rates in wildlife studies (Taylor et al. 2006). Annual estimates of abundance

A, can then be derived by substituting the Brownie estimates of £ into equation 2 and

the estimated value of u; into equation 1.

The Brownie model is applicable to capture-recapture programs in which there is
only one recovery event because the animal is harvested upon its first recapture (Pollock
et al. 1994). The Brownie model estimates annual total mortality rates for each release
cohort from an 7/ xJ matrix of observed tags recoveries, where / 1s the number of release
cohorts and ./ is the number of recovery years (Pollock 1991). Table 1 shows an example
of such a tag recovery matrix for three years of releases and recoveries (/ =.J =3). Total

mortality is estimated from the rate at which tags from successive annual tag release



cohorts disappear from the observed recoveries (Pollock et al. 2001; Hoenig et al. 2005;
Polacheck et al. 2006). For example, suppose that an equal number of tags are released
in two successive years, i = 1 and /i = 2. The number of tags released in year | and
recovered in a subsequent recovery year j, 1, 1s less than ry; because the fish tagged in
year | were subject to an additional year of mortality not experienced by fish tagged in
year 2. If information on the seasonal pattern of fishing cffort is available in addition to
the tag recovery matrix, then the Brownie estimate of total mortality can be subdivided
into its fishing mortality (£) and natural mortality (M) components (Hoenig et al. 1998a).
In addition, tag reporting rates can also be estimated directly from the matrix of tag
recovery data, although Hoenig et al. (19984) found that the Brownie model did not
estimate these reliably. In their analysis, they fit the Brownie model to [0 years of tag
recovery data for lake trout in Cayuga Lake, New York. They repeated their analysis
using all possible subsets of the data consisting of three or more consecutive years of tag
recoveries. Their estimates of 4 varied widely depending on which subset of years of

tag recovery data they used to fit the model (Hocnig et al. 1998a).

A challenge of applying the Brownie model to estimate fishing and natural
mortality rates for BC sablefish is that the capture-recapture design for this fishery likely
violates most assumptions of the model. These assumptions include (e.g., Pollock et al.
1994; Brooks et al. 1998; Latour et al. 2001«; Pollock et al. 2001; Pollock et al. 2002;

Hoenig et al. 2005; Leigh et al. 2006):

. The tagged sample is representative of the population (i.e., tagged and untagged fish
are uniformly mixed);

2. Tags are not lost;

3. Tagging does not affect survival rates (i.e., no tag-induced mortality);



4. Tags are reported in the year that they are recovered,

5. The fate of each tagged fish is independent of other fish (1.¢., fish do not clump or
aggregate),

6. There is no emigration; and

7. All tagged fish within a release cohort have the same annual survival and recovery
probabilities (i.e., there is no age- or size-selectivity).

Assumption 6 is not usually cited as an assumption of the Brownie model, but it is
implicitly assumed because emigration is not distinguished from natural mortality.
Finally, the implementation of the Brownie model investigated in this study also requires

the assumption that:
8. All catch is taken instantaneously at the beginning of the year.

Assumption 8 arises because estimates of exploitation rates (7, ) are derived from

estimates of fishing mortality using equation 2, which makes this assumption. However,

Hoenig et al. (1998«) present two alternative formulations of «, that can be used instead

of equation 2 if assumption 8 does not hold and if information is avatlable on the seasonal

timing of the fishery.

Violations of any Brownie model assumptions may degrade the performance of
the estimator in terms of bias and precision of parameter estimates, which can ultimately
have implications for fisheries management advice. Although several researchers have
developed structural modifications to the Brownie model to relax various assumptions
(e.g., Leigh et al. 2006; Latour et al. 20015; Brooks et al. 1998; Hoenig et al. 19985), to
my knowledge, the effect of violations of the individual assumptions on the performance

of the estimator has yet to be quantified using simulations. Results from such simulation-

6



estimation trials would better inform analysts and fishery managers of the potential

pitfalls of the Brownie model.

Although the Brownie model requires only tag recovery data to estimate mortality
rates, Hoenig et al. (19984) speculated that it might be possible to combine an index of
abundance as well as catch-at-age data with the model. Indeed, Polacheck et al. (2006)
did the latter and showed that incorporating catch-at-age data with the Brownie model
decreased bias in estimates of natural mortality and improved precision in estimates of
annual fishing mortality. However, to my knowledge, combining an index of relative
abundance with a Brownie capture-recapture model has not yet been evaluated via
simulations. Therefore, in this study [ fit the Brownie model to simulated tag recovery
data for BC sablefish, and quantify the potential improvements in bias and precision of
parameter estimates by combining the tag recovery data with an index of relative
abundance for the species. This is a useful approach because (1) it provides insights on
the integration of an index of abundancc with the Brownie model, and (2) it evaluates a
novel way of analysing two important data sources in the BC sablefish fishery — tagging
data and survey CPUE data. Although these two data sources have been combined in tag
recovery models for sablefish over the past several years (e.g., Haist et al. 2004; Haist et
al. 2005), the statistical properties of the past models have not been evaluated. In

addition, the Brownie model has not been previously applied to BC sablefish data.

Given empirical evidence for sablefish movement into BC waters (Heifetz and
Fujioka 1991; Kimura ct al. 1997; Haist et al. 2001), the Brownie model may confer an
advantage over the closed-population Petersen-type tag recovery models that have

previously been applied to BC sablefish (e.g., Haist and Hilborn 2000; Haist et al. 2001).



This is because immigration does not bias mortality estimates from the Brownie model,
since total mortality is estimated using only the observed tag recovery data and there 1s

no term for abundance in this model.

A major challenge facing stock assessment scientists in the past has been the
unknown properties of parameter estimators because true abundances and parameter
values are unknown. However, in the last decade, numerous researchers have illustrated
the evaluation of stock assessment models using simulated data with known true
parameters before applying the models to actual data (e.g., de la Mare 1996; Butterworth
and Punt 1999; Peterman et al. 2000; Punt 20035; Chen et al. 2005; Labelle 2005; Wang
et al. 2005). In fact, the evaluation of stock assessment models using simulation methods
comprises one component of a full management strategy evaluation (MSE) for fisheries
(Punt 1992; de la Mare 1998; Punt 2003«). In this study, [ perform a preliminary analysis
of the feasibility of using the Brownie model for stock assessment as part of ongoing
MSE work for BC sablefish. This was achieved by using Monte Carlo simulation-
estimation procedures to quantify:

1. The effects ot violations of assumptions of the Brownie model on its
performance, as measured by bias and precision of estimates of parameters and
abundance; and

2. The potential improvement in performance of the Brownie model when an index
of relative abundance, namely CPUE data from the sablefish survey, is combined

with Brownie tag recovery data.

[n the former case, particular attention is given to estimates of population

abundance since these quantities are most relevant for fisheries management. Although



the use of simulation trials does not guarantee that all possible behaviours of the model
can be accounted for, the methods illustrated in this study represcnt one way to quantify

potential mode! outcomes over a range of plausible scenarios.



2 METHODS

The Monte Carlo simulation-estimation approach used in this study involved
generating simulated data sets with known “true” parameters and then obtaining
parameter estimates by fitting the Brownie model to the simulated data. Performance of
the estimator was quantified by (i) the bias of the estimates relative to their true values,
and (11) the precision of the estimates from 500 Monte Carlo cycles of simulation and
estimation. As much as possible, values of the “true” parameters used to generate the

simulated data were based on empirical data for BC sablefish.

2.1 Simulation Model

A model was developed to simulate population dynamics of BC sablefish from
1991 through 2003 (details provided in Appendix A). The model generates three types of
stmulated data for each set of known “true” mput parameters: (1) an observed index of
relative abundance (survey CPUE), (2) observed tag recovery data, and (3) commercial
catch data. The simulation model has two components, both of which run on monthly
tume steps. The first 1s a deterministic population dynamics model for total abundance,
1.c., there 1s no process error. The second is an observation model that includes two
sources of observation error, namely, random variability in the recovery of tagged fish

and in the generation of survey CPUL.



2.1.1 Population dynamics

The population dynamics model is a discrete-time state space model that
calculates the number of fish present in each state at each monthly time step. It includes
recruitment, natural mortality, fishing mortality, emigration, tagging, tag shedding, and
exchange of fish between vulnerable and invulnerable sub-populations. All fish exist in
one of two vulnerability states, vulnerable (¥ ) and invulnerable (¥"). At each time step,

a proportion (8" ~"") of vulnerable fish transfer to the invulnerable state and another

proportion (8 ~") of invulnerable fish transfer to the vulnerable state. An example of
this exchange process is a case in which a fish spends some of its time inhabiting steep-
sided canyons which are not fished effectively by trap gear (i.¢., invulnerable state), and
some time making forays into flat plateaus where trap gear is typically deployed (i.e.,

vulnerable state). Parameters {6~ " ™" } thus represent transition probabilities for

moving between these two states.

All fish in the population dynamics model are either tagged (G ) or untagged
(G"). There are no age-structure dynamics, so tish of all ages are subject to the same
population dynamics and exploitation rates at cach time step. Additionally, a certain
proportion of fish, x, emigrate from the population at each time step. The simulation
model does not incorporate a relationship between spawning stock and recruitment
mainly because stock productivity is irrelevant to evaluating the Brownie capture-
recapture model. Instead, population production is controlled by estimates of annual
production derived by Haist et al. (2005) which are supplied as inputs to the population
dynamics model. Production inputs are added to the simulated population in the month

corresponding to January of each year (1.e., months 1, 13, 25...). No recruits are added in



the other months. The numbers of sablefish in each vulnerability and tagging state are
simulated monthly from 1991 through 2003 given these deterministic population

dynamics.

2.1.2 Observation model

The observation model generates three types of data: (1) stochastic survey CPUE,
(2) stochastic tag recoveries, and (3) cominercial catch comprised of both deterministic

catches of untagged fish and stochastic tag recoveries.

Let N represent the number of fish in each vulnerability state a, tagging state b,

release month v, and monthly time step r. The vulnerability state @ may be either
vulnerable or invulnerable: a € {V, V’}. The tagging state b may be either tagged or
untagged: b e {G, G'}. The lower case subscripts v and ¢ refer to the absolute month of
tag release and to the current month, respectively. They range from 1 through 156,
representing absolute indices for each month from January 1991 through December 2003.
Note that the value 0 is used as a placeholder for the tag release month v when fish are
untagged (i.e., when »=G"). A dot (") in the place of any index represents summation
over all possible states for that index. Also, let the lower case subscripts / and j refer to
the absolute year of tag release and to the current year, respectively. They range from |
through 13, corresponding to the years 1991 through 2003, and are related to the month

indices v and ¢ as follows: i = (v/lﬂ and j = (1/12]

Although the simulation model runs on monthly time steps from month 7 =1
(January 1991) through month ¢ =156 (December 2003), survey CPUE data are only

generated in October of each year. Thus, the survey CPUE index in year j (Y;) is



calculated by multiplying a catchability coefficient ¢ by the total number of fish alive in

October of yearj ( N7, where ¢ is the absolute index of month 10 of year j). Observation
error in the survey CPUE is introduced by applying lognormal residuals exp(7,) to the

expected linear relationship between CPUE and abundance (Schnute and Richards 1995):

B) Y, =gNoexp(n,); 7, ~ NO,yIn(1+CV /100)*) .

The coefficient of variation (CV) for the survey CPUE is set to 30% in equation 3, which
corresponds to the value typically assumed in sablefish stock assessments (e.g., Haist et.
al. 2004; Haist et.al. 2005), and represents the effects of both within-year trap-to-trap

variation and year-to-year variation in the number of fish caught per trap. The simulated

survey index Y, is calculated in October of each year because this is the month in which

the standardized sablefish survey is usually conducted (Wyeth and Kronlund 2003; Haist
et al. 2005). For example, from 1992 through 2003, the earliest start date for the
sablefish survey was September 24, 1998 and the latest end date was November 11, 2000

(Wyeth and Kronlund 2003).

The second type of simulated data is tag rccoveries. These are generated each
month by applying a fixed monthly exploitation rate, u,, to the number of vulnerable
tagged fish alive in month 7, N'“. Values used for «, were input to the simulation model

as driving variables, and were set equal to Haist et al.’s (2005) monthly estimates of
exploitation rates for BC sablefish. Since Haist et al. (2005) began their estimates of

exploitation rates in 1992, [ set monthly w, values for 1991 equal to the 1992 estimates

derived by Haist et al. (2005).



[ considered two alternative forms of observation error for the tag recoveries:
binomial and overdispersed binomial. [ used the binomial distribution because it is the
simplest distribution describing the two potential fates of a tagged fish in response to a
monthly fishing event: either it is caught, or it escapes capture. Thus, [ assumed that each

tagged fish has a capture probability equal to the monthly exploitation rate, namely

4  C ~Bin(u,,N"),
where C¢ is the number of tagged fish caught in month / that were released in month v,

and N'“ is the total number of vulnerable tagged fish present in month ¢ that were

released in month v.

Overdispersed binomial tag recoveries represent a case where the probability of
catching a vulnerable tagged fish in month ¢ (u/,) is a stochastic random variable.
Overdispersion arises when random variables (e.g., tag recovery data) exhibit more
variability than expected from the underlying distribution (Kitada et al. 1994; Polacheck
et al. 2006). An example of a situation in which tag recoveries might be overdispersed
rather than strictly binomial could arise as follows. Suppose a vessel fishes the same
fishing grounds in two consecutive months. The probability of capturing a vulnerable
tagged fish in the second month may be less than in the first month 1if a substantial
fraction of the tagged cohort migrates away from the fishing grounds. Overdispersion

could reflect a violation of assumptions 5 and/or 7 of the Brownie model (Table 2).

To implement overdispersion, u, was modelled as a random variable drawn from

a beta distribution, which is the natural distribution of the binomial parameter v, :



5 u, ~ Beta(a,, f3) ,
where u, denotes a random draw from the beta distribution with shape parameters « and

J . The mean (4 ) of the beta distribution (Hogg et al. 2005 pg. 155) is

a

:a+ﬂ.

© u

Monthly «, values were calculated using equation 7 that define a beta distribution with

mean equal to u, by solving equation 6 for « and substituting w, for s :

L

1 -, ‘

The average of the monthly exploitation rates (u,) input to the simulation model
over all 156 years was 0.008. I searched for a “reasonable” value of / using trial and
error and found that =800 resulted in approximately 90% of the random draws of u;
from equation 5 to lie between 0.006 and 0.010, which I deemed reasonable. 1
substituted «, for u, in equation 4 to generate the “simulated” number of overdispersed

binomial tag recoveries. These steps generated the number of tagged fish that were

released in month v and caught in month ¢ (CY) for both the binomial (equation 4) and
overdispersed binomial (equations 4 through 7) error distributions.

The number of reported tag recoveries was calculated by multiplying the number

of “true” tagged recoveries, C7, n average reporting rate 4 :
f“true” tagged C..bya ting rate



(8) XC =ACY

o ‘v
where X9 is the reported number of tagged fish that were released in month v and

recovered in month ¢. The reported tag recoveries X7 form the tag recovery matrix that

is input as observed data to the Brownie model (e.g., Table 1, “Observed Recoveries™).
The “true” simulated tag reporting rate, A, is fixed at 0.8 in all simulated scenarios. Note

that I treated A as deterministic rather than as stochastic, as it really is.
The last type of simulated data 1s commercial catch. Deterministic fishery catches
of untagged fish in month 7, C“", were generated by multiplying the monthly exploitation

rate, u,, by the number of vulnerable untagged fish present in month ¢, N,W:

9 CY=u N

14

The total commercial catch each month, C;, 1s the sum of the tagged and untagged

catches calculated in equations 4 and 9:

(10) C =CcY+C".

2.1.3 Scenarios

I simulated data sets consisting of survey CPUE, tag recovery, and catch data for
the eight scenarios listed in Table 2. These include a base case where the data satistied
all assumptions of the Brownie model (scenario 1), six scenarios that each violate a
particular assumption of the Brownie model (scenarios 2 — 7), and a “‘realistic” scenario
(scenario 8) that violates all assumptions except 4 and 7, which I did not test. As much as

possible, I chose simulation parameter values to correspond with their estimates for BC
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sablefish data. I inferred reasonable values for simulation parameters for which no
sablefish data were available. In all scenarios, the number of tags released was set to the

actual number of BC sablefish tag releases in each historical year.

Scenario 2 violates assumption 8, that all catch occurs instantaneously at the
beginning of the year, 1.e., the fishery is an annual pulse fishery. The BC sablefish
fishery violates this assumption because it is open year-round and catches are taken
throughout the year, though a large component of the catch is taken during the winter
(November — March) (Haist ¢t al. 2004). [ approximated such a fishery in scenario 2 by
applying Haist et al.”’s (2005) estimates of monthly exploitation rates in month  to the
vulnerable population in month 7 using equation 9. In the remainder of the scenarios
meeting assumption 8, [ summed Haist et al.’s (2005) estimates of monthly exploitation

rates to obtain annual exploitation rates for each year j (u,; ), and applied these annual

exploitation rates to the vulnerable population in the month after tagging to generate
simulated data for the year. Thus, in both the monthly and annual cases, [ applied the
same total exploitation rate over the course of the year. However, the catches obtained
from the monthly fishery were less than from the annual fishery because in the monthly
case, the exploitation rate was applied to a population that had already been reduced by

natural mortality over the course of the year.

Scenario 3 violates assumption | of the Brownie model, that the tagged sample is
representative of the population (Table 2). This assumption is violated if tags are not
distributed evenly across the region and do not mix uniformly with untagged fish
(Pollock et al. 1994). I implemented this by simulating subpopulations of sablefish that

are either vulnerable (V) or invulnerable (J") to the trap fishery. In this case, only



vulnerable fish can be harvested or tagged, so the tagged sample is not representative of
the population because there arc no invulnerable fish in the sample. In scenario 3, the
proportional rates of exchange between vulnerable and invulnerable states were set to
""" =0.1 and " =0.9. With these exchange probabilities, approximately 4.4% of
the population is invulnerable when the two vulnerability states are in unfished
equilibrium with each other (Appendix B), representing a case of incomplete mixing and
thus a violation of assumption 1. In all other scenarios the assumption of a fully mixed
population is met by setting 8"~ =0.00001 and 8" " =0.99999 , so only a negligible

8.7 x10 7% of the total population is invulnerable at equilibrium (Appendix B).

Scenarios 4 and 5 violate Brownie assumptions 2 and 3, that there is no tag loss
and no tag-induced mortality, respectively (Table 2). Haist and Hilborn (2000) estimated
an instantaneous annual rate of tag loss 0f 0.0366. The corresponding proportion of fish
losing tags each month is 0.003, which I applied each month to simulate tag loss in
scenario 4 (Table 2). In scenario 5, I simulated initial tag-induced mortality by applying
an mitial tag survival-retention rate of 0.856 to newly tagged fish. This value was
inferred by Haist et al. (2005) based on estimates of the rates of initial and subsequent tag
loss estimated by Haist and Hilborn (2000). In all other scenarios where the assumptions
of no tag loss and no tag-induced mortality were met, I used O for both the monthly tag

loss rate and for the initial tag survival-retention rate.

Scenario 6 violates assumption 6 of the Brownie model, that there is no
emigration. British Columbia sablefish may not meet this assumption because analyses
of tagging data provide evidence of migration of tagged sablefish from northern BC to

Alaska (Beamish and McFarlane 1988; Haist et al. 2001). Thus, the simulation model



implements emigration in scenario 6 by removing a constant proportion (0.03) of fish
from the population each month. I chose this value arbitrarily because there is no
guidance in the literature for total emigration rates from BC. The corresponding

instantaneous annual rate of emigration 1s: —12log_(1-0.03)=0.37. In all other

scenarios where the assumption of no emigration is met, the monthly proportion of fish

emigrating is set to 0.

Tag recoveries in scenario 7 follow an overdispersed binomial error structure; in

all other scenarios they follow a binomial error structure as described in Section 2.1.2.

Finally, scenario 8 describes a “realistic case” in which all assumptions of the
Brownie model are violated except 4 and 7 (Table 2). The patterns of simulated catch
and survey CPUE in scenario 8 are compared with the actual observed BC sablefish catch
and survey CPUE patterns in Figure 1 (Haist et al. 2005). This figure shows that the
observation model is a reasonable vehicle for examining the expected performance of the
Brownie model because it 1s capable of generating data that are consistent with the actual

temporal pattern of observed data for BC sablefish.

2.2  Stock Assessment Model

Section 2.1 described the model used to simulate the dynamics of the sablefish
population and tag release cohorts. In this section, [ describe the stock assessment model,

which attempts to recover the true parameters from the simulated data. The model takes

as inputs the survey CPUE (Y,), reported number of tag recoveries (X ), and the total

catch ( C)) generated by the simulator, and provides as outputs maximum likelihood

estimates of fishing, natural mortality, and reporting rate parameters.
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[ used maximum likelihood estimation (e.g., Hilborn and Mangel 1997) to
estimate the following 15 parameters of the simulated data: an average tag reporting rate
A, a combined natural mortality—emigration parameter M*, and 13 annual fishing

mortality parameters F, for j=1991, ...,2003. This involved maximizing an objective

function composed of independent likelihood functions for both the observed tag
recoveries and observed survey CPUE data. The objective function measures the
agreement between simulated observations and predictions of the stock assessment model
so that the maximum likelihood estimates (MLEs) of the parameters are those parameter
values that generate predictions that best fit the observed data (Hilborn and Mangel
1997). Maximum likelihood estimation is one method for estimating parameters that
allows the inclusion of different hypotheses about statistical error for the observed data.
In this study, a multinomial error distribution was assumed for tag recovery data and a
lognormal error distribution was assumed for survey CPUE data. [ assumed these error
distributions because they have previously been applied to these types of data in the

litcrature (e.g., Hoenig et. al. 1998¢«; Schnute and Richards 1995).

2.2.1 Brownie model
The Brownie model predicts tag recoveries by calculating the probability 7, of
recovering a tagged fish in year j that was released in some previous year 7, and then

multiplying £, by the number of tags relcased in year /. The probabulity £, is calculated

as:
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pAu, i=7
j 1
pru 1S, Jj>i”’

1y P =

where ¢ is the probability of surviving initial tag shedding and tagging-induced

mortality, S,

"

is the annual survival rate in year /1, and 4 and v, are the average tag

reporting rate and annual exploitation rate as already defined (Hoenig et al. 1998a). The
product of the S, terms in equation 11 accounts for the total survival probability to year
Jj—1. The annual survival rate in year j 1s modelled as a function of a combined natural

mortality-emigration rate M* and fishing mortality £

(12) S, =exp(-M -F)) .

Natural mortality and emigration are combined because these are not individually

estimable based on observed recoveries alone. The expected number of tags recovered in

year j that were released in year i (R,) is then

(13)  E[R,]=W,P,

i ?

where R, Is the number of tags released in year/ .

Predicted recoveries R, tor each cohort of fish tagged in year / (row i of the tag

recovery matrix) are assumed to follow a multinomial error structure that is independent
of recoveries from all other tag release cohorts (Brooks et al. 1998; Hoenig et al. 1998a).
The multinomial distribution is a generalization of the binomial, describing an

experiment in which there is more than one possible outcome (Hilborn and Mangel 1997;

Brooks et al. 1998). In the context of the Brownie model, the data falling into the



multinomial categories for any given tag release cohort i are the number of tags
recovered inyear j=i, j=i+l, j=i+2,..., j=J. Thus, there are J—i+1 possible
outcomes for each tag cohort released in year /, corresponding to the possible years in
which fish from this release cohort could be recaptured. The multinomial negative log-

likelthood of the tag recovery data ¢ is

/ J
(14) ¢, Z N, =y " logc I +Z"f/ log, 7 |,

i= i

J
where P (=1- ZP”) is the probability that a fished tagged in year 7 is not recovered by

j

J
the last recovery year J and r (= Z/;,.) 1s the total number of fish recovered from the

p
initial cohort tagged in year i (Hoenig et al. 19984). The summation in each term
represents the overall probability of recovery for fish released in year i for all recovery
years j and therefore does not sum to 1. The subscript “7”” denotes that the likelihood
component defined in equation 14 pertains to the tag recovery data only, to distinguish it
from subsequent contributions to the likelithood tor the overall objective function

described below.
Hoenig et al. (1998a) present a general definition of u, the exploitation rate in
year j, as a function of F;, M, and the seasonal distribution of fishing effort over the

year, €,
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K
(15)  w,=f(F, M, ¢,)= Z[I/kbjkc/'A .
P

Here, &, is the fraction of the total fishing effort that is applied in each period & of year j,
for k=1,2,...,K , where year j is divided into K periods. Thus ¢, denotes the

distribution of fishing effort over the year (Hoenig et. al. 1998a). The fraction of the

population surviving to the beginning of period & in year j, a , is

Akl
(16)  a, =exp(-M (k—=DAI—F Y &, k>1.

h=0
When there is only one fishing period (k =1), a,, =1 since all fish survive to the

beginning of period k. The fraction of fish dying in period k of year j, b, , is

(17) by =l—exp(-M At = Fg,),

and the proportion of total catch taken in period k of year j, ¢, , is

(18) ¢, :_L
POF e+ M A

1k
If fishing effort is constant over the year, equation 15 reduces to the standard
Baranov catch equation, and when all fishing takes place instantaneously at the beginning
of the year, equation 15 reduces to equation 2 (Hoenig et. al 1998«). This study assumes
a pulse fishery so it uses equation 2, but if data on the seasonal timing of the fishery were
available, then the Baranov catch equation or equation 15 could be used as an alternative

formulation.
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The annual parameter M* differs from standard definitions of M because it
represents the additive effects of instantaneous emigration and natural mortality. These
parameters are confounded in the estimation procedure because the Brownie model
cannot resolve the two sources of loss given only the data in the tag recovery matrix.
Furthermore, | assumed that the rates of natural mortality and emigration were constant

over time, so [ estimated a single parameter M* rather than a time-dependent parameter

M;. The “true” simulated value of M* in all eight scenarios is

(19)  M*=—12[log,(S)+log,(1-x)] ,

where S 1s the proportion of fish surviving natural mortality each month, « 1s the
proportion of tish emigrating each month, and the multiplier 12 converts the monthly S
and x values to an annual M*. The value of S was set to 0.993 in all eight scenarios

while £ =0.03 m scenartos 6 and 8 and x =0 in all other scenarios.

Assuming that there was no initial tag shedding or tagging-induced mortality, |

considered ¢ = 1.0 to be a fixed parameter in the Brownie model. [ tested the effect of

this assumption in scenario 5, where | simulated a scenario that included initial tag

shedding and tagging-induced mortality.

I extended the Brownie model to derive estimates of abundance at the time of
tagging by applying the familiar relationship between catch and exploitation rate given by

equation 1. The estimated exploitation rate in year / () was derived from equation 2
using estimates of /7, obtained from the Brownie model. By comparing abundance

estimates with their known “true” values from the simulations, I was able to quantify the
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bias and precision involved in using Brownie estimates of fishing mortality parameters

(F,) to estimate abundance.

2.2.2 Index of relative abundance model

One aim of my research was to determine whether combining an index of
abundance, such as the survey CPUE, with the tag recovery data would reduce bias and
improve precision of parameter estimates. This was achieved by developing a model
with likelihood components for both tag recovery and survey CPUE data using a method
analogous to that of Polacheck et al. (2006), who integrated catch-at-age data with the

Brownie model.

[ assumed that a lognormal distribution characterized the random variability

around each simulated survey CPUE observation because:

(1) this distribution takes on only positive values (Limpert et al. 2001),

constraining the observed survey CPUE values Y, to be positive; and

(2) this distribution is asymmetrical and skewed (Limpert et al. 2001) so there is a
high frequency of low numbers of fish caught per trap, which diminishes quickly in the
long tail of the distribution, corresponding to low frequencies of bigger numbers of fish

caught per trap. Thus, the “observed” survey CPUE values Y, (1992 < j <2003) were:

20 Y, = );/ exp(r7,), 1, ~N(,0) .
The predicted survey CPUE values );/. are equal to a catchability coefficient ¢

multiplied by the predicted number of fish in October of year /, 1\7’, ;



Q1) ¥ =gV, .

Solving equation 20 for 77, and substituting equation 21 for );/. , the lognormal residuals

can be cxpressed as:

(22) »p,= log(,(Y/./z\H/'/)—logl, q .
The corresponding negative log-likelihood function (¢ ) for the lognormally-distributed

residuals defined in equation 22 for.J years of data is (Schnute and Richards 1995;

Hilborn and Mangel 1997):

J ) I :
23) 7, :Elog(_(Z/ra‘)+ = Z?}; .

One complexity in minimizing ¢ _ is the choice of values for ¢ and o*. These are
considered nuisance parameters because they are not of direct interest, but are necessary
for the analysis. Conditional maximum likelihood estimates of log, ¢ and o can be

obtained analytically by minimizing the negative log-likelithood (equation 23) with
respect to these parameters (Walters and Ludwig 1994), Substituting the conditional
MLE for logg into equation 22 and for & into cquation 23 and ignoring additive

constants (which do not aftect the parameter values that give the minimum), the overall

survey negative log-likelihood is
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J
24) 1, = %log(,[Zl}f] :

/

2.2.3 Overall objective function

In section 2.2.1, [ estimated the suite of 15 parameters using the Brownie model
alone, which used only the tag recovery data. In that case, the overall objective function

for parameter estimation is given by equation 14,

In section 2.2.2, [ estimated the same suite of |5 parameters using both the tag
recovery and the survey CPUE data. The standard method of combining likelihoods for
two or more independent sources of data is to multiply them or to add their negative log-
likclihoods (e.g., Hilborn and Mangel 1997, Schnute and Richards 1995, Polacheck et al.
2006). Thus, the overall objective function ( ¢) that I minimized when combining the tag

recovery and survey CPUE data was:

Q5 (=040 .

[ implemented the parameter estimation model using the AD-Model Builder
(ADMB) software package (Otter Research 1999). This package calculates exact
analytical derivatives of the objective function using automatic differentiation and
provides very ctficient function minimization (Otter Research 1999). The ADMB
package uses a pre-compiled C++ library called AUTODIF, which provides very
efficient and stable function minimization because (1) it has pre-compiled derivatives for
the commonly used array and matrix operations, and (2) it uses automatic differentiation,
rather than the finite difference approximation, to calculate derivatives of other functions

(Maunder 2004).



2.3  Simulation Framework

For cach scenario listed in Table 2, | conducted a Monte Carlo experiment with

500 simulation-estimation trials. Each experiment involved the tollowing four steps:

[. Simulate 500 sets of tag recovery, survey CPUE, and catch data with known
parameters appropriate to the scenario;

2. Fit the parameter estimation model to each of the 500 simulated data sets to obtain
estimates of Fyog; - Fapgz, M*, and 4 (15 parameters in total) using (a) the tag-
recapture data and the Brownie model (equation 14), and (b) the tag-recapture plus

survey CPUE data and the integrated model (equation 25);

3. Apply equations [ and 2 to calculate 13 abundance estimates from 1991 through 2003

using the values of F;gy; through F; estimated in step 2;

4. Compute the relative percentage bias for each of the 15 parameter estimates and 13

abundance estimates:

estimate — true

(26)  %bias :( jx 100% .

true

2.4 Performance Measures

[ used median percentage bias and inter-quartile range of percentage bias to
summarize the bias and precision, respectively, of parameter estimates obtained from the
500 Monte Carlo trials. The inter-quartile range is bounded by the 25™ and 75"
percentiles of the distribution of parameter estimates. [ used rank statistics such as
median and inter-quartile range as measures of bias and precision to reduce sensitivity of

the results to outliers.
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For each estimated quantity O, the improvement in the median value of

percentage bias from including the survey CPUE data (5") was computed using

(27) b= |b"|—\b”

?

where 57 is the median percentage bias of Q estimated using the tag recovery data only,
and A" is the median percentage bias of Q estimated using both the tag recovery data

and the survey CPUE data. A positive value for »” indicates that including the survey
CPUE data decreased the median value of the parameter estimate, resulting in a reduction

in bias. Similarly, [ computed the improvement in precision of estimates of each quantity

O (p’) obtained by including the survey CPUE data as:

28 p=p -p".
In equation 28, p’ is the inter-quartile range of parameter Q estimated using the tag

recovery data only, and p™ is the inter-quartile range of parameter Q estimated using

both the tag recovery and survey CPUE data.
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3 RESULTS

3.1 Base Case and Realistic Case

When all assumptions of the Brownie model were met (scenario 1; Table 2), all
parameters were cstimated extremely well (Figure 2a) with median percentage biases
from 500 Monte Carlo trials within 1% of true values. The median estimated abundance
also matched very closely with the simulated numbers of fish (Figure 2b); biases of the
median abundance ranged from -1.3% in 2003 to -0.01% n 1995. The precision of
abundance estimates as measured by the inter-quartile range improved as the number of

years of data increased (Figure 2b).

In the “realistic” scenario in which all assumptions were violated (scenario §;
Table 2), medians of the estimates of annual F parameters were biased low by 1.5% to

7.1% in all years except 2002, when the median estimate of [, was biased high by

6.2% (Figure 3a). The average tag reporting rate parameter 4 was underestimated by
37%, and the combined natural mortality-emigration rate parameter M* was
overestimated by 4.6%. However, the inter-quartile range for all parameters overlapped
the 0% bias reference line (Figure 3a). Abundances were estimated surprisingly well for
the realistic case given that no assumptions (except 4 and 7) were met: the median of
abundance estimates ranged from an undercstimate of 25% in 1994 to an overestimate of
48% in 1997 (Figure 3b). Additionally, the “true’” abundance was within the inter-quartile

range of abundance estimates every year cxcept 1997 (Figure 3b). The median of the



abundance estimates was biased high in 4 years out of 13, and was biased low in the

remaining 9 years (Figure 3b).

3.2 Parameter Estimates

The largest bias in parameter estimates occurred when the following two
assumptions were violated: (1) all catch is taken instantaneously at the beginning of the
year (assumption &, violated in scenario 2) and (2) the fish are completely mixed and the
tagged sample is representative of the population (assumption I, violated in scenario 3).
In scenarios 2 and 3, estimates of Fy99 through 49, were mostly biased low by about 2-

6% and 10%, respectively (Figure 4a).

Most parameters were estimated to within 2.2% of their true values for scenarios
4 through 7 (Figure 4a). Tag loss (scenario 4) resulted in approximately the same bias as
the base case for most parameters except M*, which was overestimated by 42% and is
off-scale of Figure 4a. Tagging-induced mortality (scenario 5) resulted in consistent
overestimates of annual F parameters by about 1%, while 4 and M* were underestimated
by 15% (again, off-scale of the figure) and 1%, respectively. Emigration (scenario 6)
also resulted in patterns similar to the base case, except the estimate of 4, which was
biased low by about 4%. Overdispersed binomial tag recoveries (scenario 7) yielded a
pattern opposite to that observed for tag-induced mortality. In this case, annual F

parameters were all underestimated by about 1%, while 4 and AM* were overestimated.

Precision of parameter estimates for scenarios 2-7 was similar to that of the base
case tor all scenarios except scenario 6 (emigration) and scenario 7 (overdispersed

binomial tag recoveries) (Figure 4b). In these latter two scenarios, the inter-quartile
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range statistics were on average 1.5 and 2 times greater than the base case, respectively
(Figure 4b). The precision of annual fishing mortality parameters was greatest for years
in the middle of the time series; i.e., for Fo9s — F 995, and grew worse towards the earliest
and latest years in the time series (Figure 4b). Note that M* was estimated with
unusually high precision (inter-quartile range = 8%) for the emigration scenario (Figure
4b); this parameter was also estimated with very little bias (-0.1%) under that scenario

(Figure 4a).

3.3 Abundance Estimates

Annual abundance from 1991 to 2003 was estimated to within about 6% of the
“truc’ simulated abundance for all scenarios (Figure 5a). The bias of abundance
estimates was most affected in scenarios 2 (monthly exploitation) and 6 (emigration)
(Figure 5a). In most years in scenario 2, abundances alternated between being
overestimated and being underestimated from year to year after 1994 (Figure 5a). In
general, abundance was more often underestimated than overestimated (9 out of 13 years)

(Figure 5a).

The precision of abundance estimates from 1991 to 2003 (Figure 5b) followed
closely the pattern of precision of F99; — [F2993 estimates (Figure 4b) because abundance

estimates are derived directly from estimates of fishing mortality using equations 1 and 2.

3.4 Effect of Adding Survey CPUE Data

Combining the survey CPUE with the tagging data did not generally affect the
bias or precision of parameters in either direction by more than 1% and 2% respectively,

across scenarios 2 through 7 (Figure 6). Similar results were obtained for abundance
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estimates; adding the survey CPUE data showed little or no consistent improvement in
bias or precision when single Brownie assumptions were violated at a time(Figure 7a,
Figure 7b). However, in the “realistic” case (scenario 8), including the survey CPUE
data increased the bias (Figure 6a) but reduced the precision (Figure 6b) of estimated

parameters.



4 DISCUSSION

4.1 Major Conclusions

4.1.1 Objective 1: Violations of individual Brownie assumptions

The objective of this study was to assess the feasibility of using the Brownie
model as a stock assessment tool for BC sablefish. Specifically, my first aim was to
quantify the effects of violations of the individual Brownie model assumptions on
parameter estimates by sequentially violating each of the assumptions in scenarios 2
through 7 (Table 1). I found that the biases observed in parameter estimates for the
“realistic” scenario (scenario §) were dominated by violations of Brownie assumptions |
and 8: that the tagged sample is representative of the population (i.e., tagged and
untagged fish are completely mixed), and that the catch is taken instantaneously at the
beginning of the year. This is because violations of assumptions 1 and 8 (in scenarios 3
and 2) resulted in the greatest underestimates of fishing mortality (Figure 4a). These
underestimates could have ariscn because fewer tagged fish are available to the fishery
when these two assumptions are violated as compared to when they are met. For
example, when tagged and untagged fish are incompletely mixed (violation of
assumption 1), some tagged fish are invulnerable to the fishery. Similarly, when not all
the catch is taken at the beginning of the year (violation of assumption 8), fewer tagged
fish are available to the fishery each month because of natural losses of tagged fish over

the course of the year. In either case, fewer tagged fish available to the fishery means
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that fewer tag recoveries are observed in the tag recovery matrix, resulting in

underestimates of the actual fishing mortality.

However, additional scenarios are needed to confirm that assumptions 1 and 8
also have the greatest effect on bias of parameter estimates when all assumptions are
violated simultaneously. [t appears that interactions can result in violations of certain
assumptions amplifying or compensating for others when producing the net overall bias
in parameter estimates. This is because the biases in estimates for scenarios that violate
individual assumptions do not sum to the biases observed in the realistic scenario 8, as
would be expected if the biases were independent and additive (compare Figures 3a and
4a). Additional scenarios could be used to determine which combinations of assumptions
have the most effect on biases in the realistic scenario. For example, if biases from a
scenario violating all assumptions except assumption | were compared with the biases in
scenario 8, the effects of incomplete mixing could be quantitied under the presence of
potential interactions. If this procedure were repeated for each Brownie assumption, the

rank order of the relative importance of the assumptions could be more fully diagnosed.

4.1.2  Objective 2: Incorporation of survey CPUE data

A second aim of my research was to quantify the potential reduction in bias and
increase in precision of parameter estimates when survey CPUE data are combined with
tag recovery data in the Brownie model. I found that inclusion of the survey CPUE did
not substantially change the bias or precision of parameter or abundance estimates in
scenarios 2 — 7 (Figure 6; Figure 7). This is counter-intuitive because even in trials when
the survey CPUE data showed a strong trend and might indeed have been a better index

of the true population dynamics than the tagging data (as was the case in several of the
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simulated Monte Carlo trials), it had little effect on the overall bias or precision of

parameter estimates.

To diagnose this problem, I drew profiles of the negative log likelihood functions
for both the tagging and survey CPUE data (Figure 8). Figure 8 was generated using the
data set from the first Monte Carlo trial of the base case (scenario 1). Note that the
values of the tagging and survey CPUE likelihood functions in this figure are on quite
different scales (between 81 000 and 87 000 for the tagging likelthood; between -2.5 and
-1.5 for the survey CPUE likelihood). The magnitude of the objective function value for
each data source 1s determincd by the number of individual data points contributing to it,
as well as the constraints of the particular likelihood distributions assumed (e.g.,
multinomial distribution for the tag recovery data). The overall likelihood is the product
of the individual likelihoods over all the data points. Since there are much more tagging
data than survey data, the value of the tagging likelihood is far greater than the value of
the survey likelihood. This implies that the survey CPUE data implicitly are weighted
less than the tagging data in the overall likelihood function (equation 25); thus, inclusion

of the survey data had little effect on the overall bias or precision of parameter estimates.

Additionally, Figure 8 shows that thc minimum value of the survey CPUE
likelihood occurs when M* =0.26. However, the “true” value of M* in scenario | was
0.084. Thus, the survey model attributes all the residual variation in the data to M* rather

than to the F; parameters, driving the MLE of M* away from the “true” simulation value

of 0.084 to 0.26. Thus, it appears that the survey CPUE data is not influencing the

estimates of /7, parameters at all, and that estimates of fishing mortality parameters are

informed by the tagging data alone. This is because estimates of fishing mortality
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derived from tagging are used to estimate abundance using equation 1, and these

estimates are substituted into the survey model for /\7, in equation 21. Recall that in

section 2.2.2 when the survey likelihood function was developed, there was no explicit
population model for the survey CPUE data; the component of the likelithood function
due to survey CPUE data simply fit log-normally distributed errors to the “observed” data
points (equations 20 — 24). Without an explicit population dynamics model, the survey
CPUE likelihood is attempting to estimate 13 F parameters from only 12 years of survey

data, resulting in an over-parameterized model.

One possible remedy for this situation might be to specify a population dynamics
model to explain the variation in the survey CPUE data independently of the F values

derived from tagging. Such a model would generate the predicted number of fish in

October of year j, /\7, . An example of a population dynamics model that could be used to

derive /\7/. independently of the tagging data i1s given in equation 29:

(29) N,

a=¢ (N, -C)+R,

where R is the average annual recruitment over the time series. In this example, the
additional parameters to be estimated in this case are N, and R . The values of /\A/,
derived from this population dynamics model would be substituted into equation 21. The
remaining calculations for the survey CPUE likelihood would remain the same. In this

formulation, M* would be the only parameter shared by both the tagging and survey

CPUE likelihoods. Note that equation 29 is simply an example of a possible population

dynamics model that could be used to derive estimates of /\71. to be used in equation 21,
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but that equation 29 in particular might not adequately describe the residuals in the

survey CPUE data because it has only two free parameters (N, and R ). Alternative

structural models for deriving Aﬂ// independently of the tagging data should also be

developed and tested.

4.2 Implications of Selected Brownic Assumptions

4.2.1 Assumption 1 - Incomplete mixing

Results obtained for scenario 3 quantitatively verity the assertions of other
researchers that complete mixing is a critical assumption for unbiased application of the
Brownie model (Hoenig et al. 1998h; Latour et al. 20015; Pollock et al. 2001). In

scenario 3, where about 4.4% of the total population is invulnerable at equilibrium

Vol oy : ~ . . |
(6 =0.1 and & = 0.9, Appendix B), annual fishing mortality parameters ( Fs)

were underestimated by about 10% (Figure 4a). Presumably, thesc biases will grow even

larger as 8" increases and 8 " decreases because fewer fish will be available to the
trap fishery, resulting in the Brownie model being confronted with fewer observed tag
recoveries. Since the Brownie parameter estimates are only applicable to the portion of
the population that the observed tag recoveries were caught from, analysts should be
aware that when there is incomplete mixing, the Brownie parameter estimates only

pertain to the vulnerable substock.

4.2.2 Assumption 8 - Assuming that the timing of the fishery is known correctly
and all catch is taken instantaneously at the beginning of the year

[ found that annual fishing mortality (/) parameters were generally

underestimated when Brownie assumption 8 was violated (Figure 4a). Scenario 2
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violates this assumption by taking catches monthly rather than instantaneously at the
beginning of the year. The total exploitation rate over the course of the year was held
constant whether catches were taken monthly or annually. Fishing mortality was
underestimated because in scenario 2 I applied a monthly exploitation rate to the number
of fish alive at the start of each month. However, this number is depleted over the course
of the year due to fishing and natural mortality in the previous months. Thus, the total
number of observed tag recoveries in the tag recovery matrix is less in scenario 2 when
compared to the situation where all fishing happens at the beginning of the year, given
equal exploitation rates over the course of the entire year. The Brownie model interprets
fewer observed tag recoveries in the tag recovery matrix as less fishing pressure on the
stock than was actually applied. Hence, the Brownie model undercstimates annual

fishing mortality when fishing is applied monthly rather than annually.

My result on this point contrasts with Hoenig et al.’s (1998«), who found that
estimates of fishing mortality and natural mortality were relatively insensitive to the
assumed timing of the fishery for a data set of tag recoveries of lake trout in Lake
Cayuga, New York. Subsequent literature on the Brownie model cites their study when
claiming that the assumption about timing of the fishery is relatively unimportant to the
estimates obtained from the Brownie model (e.g., Hoenig et al. 2005). However, in the
BC sablefish case, incorrectly assuming that all fishing takes place at the beginning of the
year introduced bias in parameter and abundance estimates. Iterating over 500 potential
sets of simulated tag recoveries, I estimated that the bias in parameter estimates
introduced by failing to meet the pulse fishery assumption is 2 — 6%, whereas Hoenig et

al. (1998a) could only conclude that parameter estimates for their one data set were
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insensitive to the assumptions about timing of the fishery. They were not able to quantify
bias because their study used field data for which the true parameter values were
unknown. Biases of 2 — 6% may or may not be important for fishery management, and
closed-loop simulation studies including the full decision making, biological, and
scientific assessment components of the fishery system (e.g., de la Mare 1998) can be
used to investigate the effects of these estimation biases on the attainment of management
objectives for the fishery. In any case, my results show that assumptions about the timing
of the fishery might introduce biases in parameter estimates that analysts should be aware
of. Thus, the eftects of this assumption should not be dismissed, but rather, evaluated on

a case-by-case basis.

[ could not estimate abundance using equations | and 2 when the data did not
meet assumption 8 because equation 2 assumes that all catch is taken instantaneously at
the beginning of the year. Because scenario 2 violated this assumption, it was not valid
to apply equation 2 in this case. As a result, abundance estimates for scenario 2 appear to
alternate somewhat erratically from one year to the next (Figure 5a). Perhaps the easiest
way of dealing with the implications of violating assumption 8 might be to provide the
Brownie model with additional data on the timing of the fishery, and apply Hoenig et

al.’s (1998a) general definition of u, as a function of F;, M, and the seasonal

distribution of fishing effort over the year.

4.2.3 Assumptions 2 and 3 - Tag loss and tagging-induced mortality

Overall, violations of the tag loss and tagging-induced mortality assumptions

were relatively unimportant in terms of bias of parameter and abundance estimates, since
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the Brownie model always estimated parameters to within about 1% of their true values
when these assumptions were violated (scenarios 4 and 5). However, M* was
substantially overestimated (by 42%) in scenario 4, which violated the assumption of no
tag loss. This bias occurred because the Brownie model has no way to distinguish among
causes of fewer observed tag recoveries (tag loss, natural mortality, or emigration). All
three of these factors are manifested as fewer tags than would otherwise be expected in
the tag recovery matrix. Accounting for tag loss and tag-induced mortality in the
Brownie model is relatively simple, since Hoenig et al.’s (1998«) formulation of the

Brownie model allows the tag retention-survival rate ¢ to be set lower than 1.0.

Independent estimates of tag loss and tagging-induced mortality are available for BC

sablefish (Haist et al. 2005), and can be substituted for ¢ in the Brownie model as

appropriate. Doing so would most likely account for most of the bias observed in

scenarios 4 and 5. Alternatively, ¢ could be estimated as long as it is not confounded

with the other estimated parameters.

4.3 Estimation of Tag Reporting Rates

Estimates of tag reporting rates are necessary when tagging data are used to
cstimate abundance (Pine et al. 2003). This is because if reporting rates are less than
100%, then fewer tags will appear in the tag recovery matrix than expected, resulting in
underestimates of fishing mortality. Since fishing mortality and abundance are inversely
proportional (equation 1), abundance will be overestimated when fishing mortality is
underestimated. This bias can be accounted for if estimates of tag reporting rates are
available. However, reporting ratcs for externally applied tags arc difficult to estimate

precisely (Pollock et al. 2001). Methods involving high-reward tags (Pollock et al. 2001;
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Taylor et. al 2006), fishery observers (Pollock et al. 2002), planted tags (Hearn et al.
2003), and catch from multi-component fisheries (Taylor et. al 2006) have all been used
for obtaining independent estimates of tag reporting rates (Pine et al. 2003; Hoenig et al.

2005).

The bias caused by imperfect tag reporting can also be accounted for if fish are
tagged using recent technological innovations that allow tag detection rates to be close to
100%. For example, passive integrated transponder (PIT) tags (e.g., Pengilly and Watson
1994; Gibbons and Andrews 2004), coded-wire tags (e.g., Jefferts et al. 1963), and
genctic tagging methods (Palsboll 1999) greatly reduce the problems associated with
estimation of tag reporting rates because tags are detected clectronically or via genetic
analysis. Thus, tag detection does not depend on accurate reports of tag recaptures by

fish harvesters.

In this study, [ was able to directly estimate an averagc tag reporting rate
parameter (A ) from the observed tag recovery data. This involved estimating A
simultaneously with the other estimated parameters using the Brownie model. Hoenig et
al. (19984a) concluded that information on reporting rates in the tag recovery data is weak,
because they could not find stable estimates of tag reporting rates from the recovery data
when they fit the model to fewer years of recoveries than in their full data set. However,
my simulation studies yielded relatively precise estimates of 4. In fact, I found that the
precision of estimates of A (as measured by the inter-quartile range of 4 estimates) was

better than the precision of estimates of /7, and M* in some scenarios (Figure 4b). It

should be noted that the “true” tag reporting rate in my simulations was 0.8, while

Hoenig et al. (1998¢) assumed a true reporting rate of 0.18. Many more tags were
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observed with a true reporting rate of 0.8, thereby reducing the variance of the observed
tag recovery data. This could explain why Hoenig et al. (1998¢) and [ found different
results regarding the precision of reporting rate estimates: my routine was able to
converge because the simulated tag recovery data showed less variance than did Hoenig
et al.”s (1998a) lake trout data. Indeed, their estimates of reporting rate stabilized when
they added simulated returns of high-reward tags, thus increasing their average tag

reporting rate and number of observed recoveries (Hoenig et al. 19984).

In a subsequent analysis, I attempted to break A up into a set of annual reporting

rate parameters A, and estimate these simultaneously with annual /;and M* parameters.

This resulted in over-parameterization of the Brownte model (more parameters than
necessary to fit the model to the data), resulting in the model chasing noise rather than
describing the general trends in the data. Consequently, the estimation routine did not

converge.

4.4 Recommendations to Scientists and Managers

For the Brownie model to be successfully applied as a stock assessment tool for
BC sablefish, the assumptions that have the greatest effects on estimates of abundance
should be addressed. Based on my results, research efforts should be directed towards
taking both the true timing of the fishery and emigration into account, since these two
assumptions resulted in the greatest underestimates of abundance (Figure 5a). Itis
relatively straightforward to relax the pulse fishery assumption and use data on the true
timing of the fishery because intensive spatio-temporal catch and effort sampling has

been conducted since the beginning of the sablefish tagging program. These catch and
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effort data can be used to implement the general definition for , (equation 15) provided

by Hoenig ct al. (1998a) that makes no additional assumptions about the timing of the
fishery. However, potential gains and tradeoffs in bias and precision of abundance

estimates from using this definition of ; should still be quantified using simulation

studies. Accounting for sablefish emigration from BC may be more challenging since
there are uncertainties concerning sablefish movement patterns (e.g., Beamish and
McFarlane 1988; Heifetz and Fujioka 1991). However, emigration rates from BC could
be estimated by examining recoveries of BC-tagged fish in Gulf of Alaska and

continental U.S. waters.

Additionally, the incomplete mixing problem (assumption 1) must be addressed,
because incomplete mixing has the greatest effect on parameter estimates (Figure 4a).
Aggregation and incomplete mixing phenomena appear to affect the population dynamics
of marine fishes such as tuna, anchoveta, herring, and mackerel (Clark and Mangel
1979). If, like these species, sablefish exhibit vulnerability exchange dynamics as [ have
generally defined above, this could make the Brownie model inappropriate for stock
assessment of BC sablefish unless this assumption i1s accounted for. Therefore, as a start,
[ recommend using Hoenig et al.’s (1998b) modifications to the Brownie model that
explicitly incorporate non-mixing of newly tagged tish. However, since their model
refers specifically to newly tagged fish, further modifications will be necessary to take
into account exchanges of tagged and untagged fish between vulnerable and invulnerable

states in each time step.
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4.5 Contributions of this Research

This research contributes to two major topics: theoretical research in combining

data sources, and science and management of BC sablefish.

4.5.1 Theoretical research in combining data sources

This paper provides insights into some complexities of combining two
independent data sources, namely the tag recovery and survey CPUE data, in a fisheries
estimation problem. Although past studies have successfully combined independent
indices (e.g., Polacheck et al. 2006), my research shows that combining data sources in
an objective function is not trivial, especially when the values of the objective function
for the various sources of data are on entirely different scales. This is because ditferent
scales for the values of the objective function from the two data sources imply that the
data sources are implicitly being given different weights in the overall objective function.
[ recommend further investigations of statistical methods and alternative model structures

for combining the two data sources, as described below in section 4.6.

4.5.2 Science and management of BC sablefish

The Monte Carlo methods illustrated in this study are valuable given current
research in the development of management procedures for BC sablefish. In particular,
by evaluating the Brownie model in a Monte Carlo framework, this study is a building
block for an in-depth analysis of the BC sablefish fishery in the context of a holistic
analysis of management strategies (de la Mare 1998). The simulation model | have
developed can be used as an operating model for evaluating assessment models and

harvest rules over a range of scenarios against objectives for the BC sablefish fishery, and



thus represents a useful tool for analysing this system. In addition, this study represents
the first formal simulation-based analysis of the estimation properties of a potential stock

assessment method for BC sablefish.

4.6 Futurc Directions

The results of this paper, as well as the contributions identified in section 4.5,
suggest two major issues for future research stemming from this project. These issues
relate to (1) resolving how to best include survey or fishery CPUE data with tagging data
in the objective function, and (i1) evaluating the consequences of violating the Brownie

assumptions in a management procedure simulation.

4.6.1 Resolve issues of combining survey CPUE with tagging data

[ recommend focusing future work on determining how to best combine survey
CPUE and tag recovery data in the objective function. In particular, it should be
determined what conditions are necessary for inclusion of the survey data to improve the
bias and precision of parameter estimates obtained from the Brownie model. It appears
that an investigation of alternative structural models for fitting the survey CPUE data is
appropriate. As a start, I suggest implementing a population dynamics model for the
survey CPUE data, such as the one specified in equation 29. This will allow the model

for lognormal survey errors (equations 20 — 24) to be fit to the survey CPUE data,

without using estimates of annual /" parameters from the tagging model to derive N,
values used in equation 21.

It 1s reasonable to expect that including the survey CPUE data will reduce bias

and increase precision of parameter estimates, at least in those Monte Carlo trials

40



showing a strong trend with low residual variation in survey CPUE data. If this does not
occur, then the model is not specified correctly, and/or survey CPUE data are not
weighted appropriately with tagging data in the overall likelihood. One way to ensure
that the tag recovery data are not umplicitly given undue weight due to the number of tag
recovery data points is to modify the Brownie multinomial likelthood for the tagging data
(equation [4). The multinomial likelihood is quite restrictive since: (1) it only accounts
for observation error in the tag recoveries and thus ignores possible overdispersion in the
tag recovery data; (2) there might be correlations among tag release cohorts; and (3) the
multinomial requires that the sum of the probabilities for recovering tags released in year
i sums to 1.0 over all recovery years j. The multinomial likelihood for tagging data could

be relaxed in the following ways:

. modify the tagging likelihood to account tor overdispersion in the observed data;
. use a negative binomial likelihood for the tag recoveries rather than the

multinomial likelthood. The negative binomial distribution includes a variance parameter

related to process error, which would also be estimated.

In addition, it would be useful to evaluate the effects on parameter estimates of
situations in which the survey CPUE and tagging data indicate contradictory trends in the

underlying population dynamics. Such data may arise in situations such as the following:

. A situation in which the population is declining while tags are deliberately being
under-reported by fishermen at a ratc proportional to abundance. In this case, the survey
CPUE would show a declining pattern (assuming it correctly reflected the population),
and there may be grounds for lowering the TAC. However, it fishermen detect the

declining abundance (perhaps because they observe declining commercial fishery
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CPUE), and deliberately choose to under-report tag recoveries in proportion to this
decline, then the tagging data may incorrectly show no trend or increasing abundance
over time because fishing mortality would be underestimated. Note that this is different
from a situation in which reporting rates decrease at higher abundance due to large
catches creating difficulties with processing all the tags on-deck before the fish are
headed because of the sheer volume of catch to be processed. To stmulate under-
reporting, the tag reporting rate parameter in the simulator should be set to a value less
than 1.0. If reliable estimates of the tag reporting rate are available, then under-reporting

can be accounted for in the estimation phase.

o Another example would be a situation in which the population is declining, fish
are incompletely mixed, and effort is shifting away from tag release sites. The fixed tag
release localitics for BC sablefish are at regions of historically high catches. However,
under a scenario of decreasing abundance, local populations may decline, forcing effort
to shift away from these tag release sites. If effort shifted to areas with low densities of
tagged fish, then the number of tag recoveries would decrease, fishing mortality would be
underestimated, and abundance would be overestimated. Thus, under this scenario the
tagging data would show an increasing abundance trend, while the survey CPUE data
would show a declining trend provided that the survey correctly indexed abundance. A
spatially-explicit model for fishing effort could be used to generate simulated data for this

scenario.

4.6.2 Evaluate costs of violating Brownie assumptions in a management context

[ also recommend that the costs of violating assumptions of the Brownie model be

evaluated in the context of the full fishery management system for BC sablefish. This
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involves running closed-loop simulations of all components of the fishery, including a
decision making process, actions taken by the fishery, population dynamics, data
collection (including observation error), stock assessment, and inputs to the decision
making process (de la Mare 1998). Fishery objectives are an essential component of such
a framework, because costs of violating assumptions of the Brownie model should be
measured relative to the objectives specified for the fishery. For example, if assumptions
of the Brownie model are not met, then there may be less chance of meeting fishery
objectives, resulting in costs of over-fishing, lost fishing opportunities, or other monetary
costs. Fishery objectives should be developed through a collaborative process involving
members of the Canadian Sablefish Association, management, and other stakeholders
(Cox and Martell 2005). Performance measures need to be calculated over the course of
the simulation and judged against fishery objectives to evaluate the extent to which

objectives are met under the various scenarios.

Once such a modeling framework is developed, it can be used as a tool to

investigate questions raised in this paper such as:

. What is an acceptable level of bias in parameter estimates for meeting
management objectives for the fishery? Are biases of 2-6%, as observed in scenarios 2
and 6 (Figure 4a; Figure 5a), important in terms of our ability to meet management
objectives for the fishery? If these biases do thwart the achievement of management

objectives, then research eftorts directed towards reducing them can be justified.

L Violations of which of the Brownie assumptions have the greatest effects on the
achievement of management objectives when more than one assumption is violated

simultaneously? Research and management efforts should be directed towards taking
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these assumptions into account. These assumptions can be identified by quantifying the
rank order of importance of assumptions using additional scenarios that simultaneously

violate various combinations of assumptions as described in section 4.1.

o What is the effect of uncertainty in the values of simulation parameters driving
the scenarios on the ability to meet management objectives? For example, fishing
mortality parameters were estimated to within 2% in the emigration scenario (scenario 6
— Figure 4a). [ assumed a constant emigration rate (3% per month) in this scenario. Ifa
range of emigration rates were tested, at what threshold rate would management
objectives be seriously compromised? Is that threshold rate plausible for sablefish?
Investigation of these questions will indicate whether the observed biases were due to
violations of particular assumptions or to the specific parameter values used in Table 2,
and whether these simulation parameter values arc important from a management

standpoint.

o What is the value of information gained by incorporating different indices, and
how docs this offset the costs of data collection for each of these indices? The value of
information gained by including the survey CPUL index can be quantified by measuring
the increased extent to which management objectives are met when the survey CPUE
data are included, as compared to when only the Brownie tag recovery data are used. If
management objectives have been specified in such a way that the value of information
can be quantified in monetary terms, then it can be compared with the costs of collecting

the survey CPUE data.
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APPENDIX A - DETAILS OF THE SIMULATION MODEL

The purpose of this appendix is to specify in detail the dynamics of the simulation
model. The notation used is as follows. Vulnerability states are “vulnerable” (V) and
“invulnerable” (V). Tagging states are “tagged” (G ) and “untagged” (G"). Indices
relating to vulnerability and tag state are superscripted, while time-related indices (month
of tag release v and current month #) are subscripted. The release month v is set to 0 for

untagged fish.
A.1 Initialization

The number of fish in each vulnerability and tagging state at the start of the
simulation are defined in equations A.1 through A.6. Let N represent the number of
fish in each vulnerability state @, tagging state b, release month v, and monthly time step
t. At the first time step (month 7 = 1), the total number of fish, N7, is initialized to a
deterministic unfished equilibrium among stock production, natural mortality, and

emigration:

p

Al) Nj=—"——,
. T l=S+«k

where p is average number of new fish added each month (“production™), S is the

proportion of fish surviving natural mortality each month, and x is the proportion of fish

emigrating each month.
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N7 is divided between the vulnerable and invulnerable states according to an

unfished equilibrium between the two vulnerability states, where P’ is the proportion of

total fish that is vulnerable:
(A2) N[ =P'N;.

The value of P” is determined by the proportional rates of exchange between the two
vulnerability states (8" " and 8" ") (see Appendix B). The remaining fish are

allocated to the invulnerable state ( V] ) in equation A.3. Note that all invulnerable fish
are initially untagged:

(A3) N =N =N,

Equation A.4 makes it explicit that there are no invulnerable tagged fish at time 7 = |
(N

(Ad) N =0,

The initial number of vulnerable tagged fish for a tagging cohort released in
month v =1 ( N/) is the number of tagged fish released in month v =1 (%},) that remain

after some proportion y is lost to initial tag shedding and tagging-induced mortality:
(A5) N/ =NRy.

Finally, the vulnerable fish left after tagging are allocated to the vulnerable

untagged state (N, ):

(A.6) N, =N -N/.

(1

th
~J



A.2  State Dynamics (2</<T,1<v<1-1)

[ simulated population dynamics to generate the number of fish in each
vulnerability and tagging state for each month  from =2 to 1 = T, where T was set to
156 to represent the simulated population for 13 years from 1991 through 2003. The

number of new fish ( p, ) in each month ¢ of the simulation were pre-specified as input

parameters to the simulation model, and were set equal to monthly production estimates
from Haist et al. (2005). The following processes comprise the population dynamics in
each month /: the release of newly tagged fish, natural mortality, fishing mortality,
emigration, tag shedding, exchange between vulnerable and invulnerable states, and stock

production (addition of new fish to the population) (Figure A.1).

Figure A.1: Assumed timeline and order of processes taking place in each time step .

IV\'/ 1V\'J+I
< { | | | = » lime
t l t+1
Application of Emigration Transfer between
new tags to vulnerable and
vulnerable invulnerable
untagged fish states
Natural mortality Tag shedding Production
and fishing
removals

Equations A.7 through A.10 describe the number fish present at the beginning of

month 7 in each of the following states, respectively: invulnerable untagged ( N,),

G

vulnerable untagged ( NV,

), invulnerable tagged (N}, 7), and vulnerable tagged (V).
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These numbers are calculated sequentially by applying the processes shown in Figure
A.l. Equations A.7 and A.8 describe the monthly state dynamics of untagged fish

(g =G"), while equations A.9 and A.10 describe the dynamics of tagged fish (g =G).
AT NL =(1=0" > INGSA =)+ 07" (L=, NN =R, S ~x)+P'L,  + py

(AB) NI =0 ' NG S(1— i)+ (1= 6" Y1 =, DN =R, IS =)+ (1= PV,

!

(A9) N O=(1-0"""INSU-Kx)s+0"" (1—u, YN S -K)S

(A10) N9 =0" 2" NS~ k)0 + (1= 0" Y1 —u, DN S(1-K)S.

wo
The additional symbols in these equations are: u,, the exploitation rate in month #; 9,

the number of tags released in month 7; and &, the fraction of fish retaining tags each

month.

Not all of the processes shown in Figure A.l are applicable to all states of fish in
every month. For example, new fish ( p) are only added to the invulnerable untagged
state (cquation A.7). [ specified all stock production to be added in January of each year

by setting p, =0 for all months where ¢ was not January. New fish join the population as

invulnerable, untagged individuals (equation A.7); thus, I assume that all new fish are
invulnerable. For example, thcy might by small enough to squeeze through the escape
rings in sablefish traps, thus being invulnerable to trap gear. New fish ultimately become

vulnerable through exchange between the vulnerable and invulnerable states.

Tag shedding reduces the number of fish in the tagged state according to o, the
proportion of fish retaining tags each month (equations A.9 and A.10). I assumed that the

number of fish that lose tags and rejoin the untagged state is negligible with respect to the
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size of the untagged population. Thus, equation 10 does not include any terms for the
contribution of untagged fish that were previously tagged but became untagged through

the tag shedding process.

Fish that are newly tagged in the current month v =¢ ('R, ) are added to the

tagged population according to equation A.11:

NG 0
(A.11) L i } = L{,J .

The model assumes that all newly tagged fish are vulnerable, so N;’;l(" is assigned 0. The

number of newly tagged fish that remain after initial tag shedding and tagging-induced

mortality (7 ) is assigned to }Vj’f,"". The processes depicted in Figure A.1 are applied to

newly tagged fish in the next time period, in equations A.9 and A.10. Thus, [ assume that
newly tagged fish do not experience natural mortality, emigration, transtfer between

vulnerability states, or fishing mortality in the time period that they are tagged.
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APPENDIX B — ASSUMPTION OF EQUILIBRIUM
BETWEEN VULNERABLE AND INVULNERABLE STATES

The purpose of this appendix is to derive an equilibrium between the vulnerable
and invulnerable states. Assume a dynamic system composed of fish that are either
vulnerable to fishing gear or invulnerable to it. Let invulnerable fish become vulnerable
at an instantaneous rate k;, and let vulnerable fish become invulnerable at an

instantaneous rate k.

Ki

Invulnerable e Vulnerable
2

At equilibrium, the rates of change between the two states are equal. That is,
(B.1) N"k =N"k,,

where N and N' are the total number of invulnerable and vulnerable fish, respectively.

Since N, the total number of fish in the population, is
(B2) N=N"+N",

we can rewrite B.1 as

(B.3) (N=N"Yk, =N"k,.

Solving for NV,

(B4 N = d N.

- k, +k,

6l



Thus, the proportion of total fish, , that are vulnerable to the fishery (P") is:

k,

B.5) P’ = .
(B-5) k, +k,

The monthly proportions of invulnerable fish becoming vulnerable (8" ") and of
vulnerable fish becoming invulnerable (6" ) can be expressed in terms of the
instantaneous rates &; and k> using cquations B.6 and B.7:

(B.6) 07" =1-e";

(B.7) 07" =1-e*.
Solving for k; and &,

(B8) k =-In(1-6""") and

(B.9) k, =—-In{l-6"""").

Substituting B.8 and B.9 into B.5 and dividing by -1, the proportion of vulnerable fish is

fi-0" )

o
(B.10) P (=07 ) e mli-0" )

The proportion of invulnerable fish P is

(B.1) P " =1-P".

In scenario 3, when " =0.9 and 8" =0.1 (Table 2), P"=0.956 and P" = 0.044.
In all other scenarios, " =0.99999 and """ =0.00001 (Table 2). Accordingly,

P"=0.999999] and P"' = 8.69x107.
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Figure 1: Simulated data from 500 Monte Carlo simulations of a “realistic” scenario (scenario 8)
in which no assumptions of the Brownie model are met (except 4 and 7) (box plots), plotted along
with (a) true BC sablefish landings (open circles), and (b) survey CPUE data (open circles) reported
by Haist et al. (2005).

Box plots of simulated catch are extremely narrow because stochastic catches of tagged fish come
from a binomial distribution with very large NV and thus have a low variance (equation 4), and
catches of untagged fish are deterministic in the simulator. The bottom and top of the boxes indicate
the first and third quartiles of the estimates over 500 trials, while the heavy central lines indicate the
median estimate. The whiskers extend 1.5 times the inter-quartile range.
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