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Abstract 

Understanding the general relations of Web pages and their environments is important with 

a few interesting applications such as Web spam detection. In this thesis, we study the 

novel problem of page farm mining and its application in link spam detection. A page 

farm is the set of Web pages contributing to (a major portion of) the PageRank score 

of a target page. We show that extracting page farms is computationally expensive, and 

propose heuristic methods. We propose the concept of link spamicity based on page farms 

to evaluate the degree of a Web page being link spam. Using a real sample of more than 

3 million Web pages, we analyze the statistics of page farms. We examine the effectiveness 

of our spamicity-based link spam detection methods using a newly available real data set of 

spam pages. The empirical study results strongly indicate that our methods are effective. 
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Chapter 1 

Introduction 

The World Wide Web (or simply the "Web") overwhelms us with immense amounts of 

widely distributed, interconnected, rich, and dynamic hypertext information. It has pro- 

foundly influenced many aspects of our lives by changing the ways we communicate, conduct 

business, shop, entertain, and so on. A recent study [33] which used Web searches in 75 

different languages to sample the Web determined that there were over 11.5 billion Web 

pages in the publicly indexable Web as of January 2005. If including the pages that are 

not indexed by common Web search engines, for example, the dynamic pages generated by 

search queries, there were more than 550 billion pages on the Web [lo]. In such an extremely 

large information collection, Web search engines, which are designed to help users to look 

for useful information on the Web, are absolutely necessary. 

However, the abundant information on the Web is not stored in any systematically 

structured way. Such a situation poses great challenges to people who are seeking to effec- 

tively search for high quality information and to uncover the knowledge buried in billions 

of Web pages. In recent years, improving the quality of search results has become the main 

objective for Web search engines. However, Web search engines are now facing a number 

of challenging problems in maintaining or enhancing the quality of their performance [43], 

such as Web spam, content quality, quality evaluation, and so on. In general, most of these 

critical problems are related to one fundamental problem, how to  effectively and efficiently 

rank the pages on  the Web. Thus, to further understand the rankings of Web pages in detail 

is an interesting and important research problem in the Web mining area. 
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1.1 Motivation 

Search engines have their roots in information retrieval systems. The first generation of 

search engines has a keyword index for the given corpus and responds to a keyword query 

with a ranked list of Web pages according to the keyword frequencies. A page containing 

one keyword more times is ranked higher than a page containing the same keyword less 

times. However, search results of keyword queries returned in this way may not be precise, 

in the sense that not all the pages matching a set of keywords in the query can be ranked 

nicely to reflect their relativities. A better bet is to rate each Web page by evaluating how 

likely it satisfies the user's information need by considering the whole content of the page, 

sort them in the descending order of this likelihood, and present the results in a ranked list. 

This is how the content-based Web search engines work. 

Since only a part of the user's information need is expressed through keyword queries, 

there can be no algorithmic way of ensuring that the ranking strategies always favor the 

information need. As the Web is growing faster and faster, the content-based ranking 

strategies often cannot meet the high quality expectations from users. Thus, finding good 

methods using not only the content information, but also some other features to rank Web 

pages effectively and efficiently becomes an essential task in Web search. Many studies have 

been dedicated to effective ranking methods. In recent years, due to the great success of 

Google, the link structure-based ranking strategies, such as HITS [48] and PageRank 1591, 

have shown the high effectiveness to  rank Web pages. The link structure-based ranking 

methods try to remedy the imprecise problem inherent in content-based ranking methods 

by supplementing precision with notions related to "prestige" that is independent of any 

information need or query. Roughly speaking, the prestige of a page is proportional to 

the sum of the prestige scores of pages linking to it. The prestige scores can reveal the 

importance of Web pages very well. As a result, most of the popular search engines currently 

adopt some link structure-based ranking methods, among which Google's PageRank is the 

most representative one. 

On the other hand, driven by the huge potential benefit of promoting rankings of Web 

pages, many dirty tricks have been attempted to  boost page rankings by making up some 

artificially designed link structures, which is known as link spam [6, 13, 18, 25, 34, 35, 36, 43, 

511. The term "spam" here refers to  any deliberate human action that is meant to trigger 

an unjustifiably favorable relevance or importance for some Web pages comparing to the 
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true value of the page. 

Generally, the link structure-based ranking score of a Web page comes from some other 

pages linking to  it. In order to fully understand the link structure-based ranking, a question 

essential but largely and generally remaining open is as follows. 

For a Web page p, what other pages are the major contributors to the ranking 

score of p, and how is the contribution made? 

Understanding the general relations of Web pages and their environments is impor- 

tant with a few interesting applications such as link spam detection and Web community 

(typically, collections of Web pages that share some common interests in a specific topic) 

identification and analysis. For example, we may detect link spam pages effectively if we can 

understand the "normal" ways that Web pages collect their ranking scores. A Web page is 

a suspect of link spam if the way it collects its ranking score is substantially different from 

those normal models. 

This thesis tries to make good progress in answering the proposed question. Moreover, 

we investigate the application of our proposed model in link spam detection. 

1.2 Contributions 

In this thesis, we propose the novel concept of page farm and study the problem of page 

farm mining, and illustrate its application in link spam detection. In particular, the general 

ideas and our major contributions are listed as follows. 

First, we study the page farm mining problem. A page farm is a (minimal) set of pages 

contributing to (a major portion of) the PageRank score of a target page. We propose 

the notions of Sfarm and (8, k)-farm, where 8 in [0, 11 is a contribution threshold and 

k is a distance threshold. We study the computational complexity of finding page 

farms, and show that it is NP-hard. Then, we develop a practically feasible greedy 

method to extract approximate page farms. 

Second, we empirically analyze statistics of page farms using over 3 million Web pages 

randomly sampled from the Web. We have a few interesting and exciting findings. Most 

importantly, the landscapes of page farms tend to follow the power law distribution. 

Moreover, the landscapes of page farms strongly reflect the importance of the Web 
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pages, and their locations in their Web sites. To the best of our knowledge, this is the 

first empirical study on extracting and analyzing page farms. 

Third, we investigate the application of page farms i n  link spam detection. We propose 

two methods. First, we measure the utility of a page farm, that is, the "perfectness" 

of a page farm in obtaining the maximum PageRank score, and use the utility as an 

index of the likeliness of link spam. Second, we use the statistics of page farms as the 

indicator of the likeliness of link spam. Using those measures we can detect link spam 

pages. 

Last, we evaluate our link spam detection methods using a newly available real data 

set. The pages are labeled by human experts. The experimental results show that our 

methods are effective in detecting spam pages. 

1.3 Organization of the Thesis 

The remainder of the thesis is organized as follows: 

In Chapter 2, we present an overview of the related work systematically. 

In Chapter 3, a novel Web link structure model, page farm model, is introduced. 

We study the computational complexity of extracting page farms, and its NP-hard 

property is verified by complete and systematic theoretical analysis. 

We develop the methods for extracting page farms in Chapter 4, and then report 

some empirical results for the landscapes of page farms. The experimental evaluations 

reveal some interesting and exciting findings. 

We investigate link spam detection using page farms in Chapter 5, and report an em- 

pirical evaluation on a newly released spam test collection data set. The experimental 

results strongly show the effectiveness of our methods. 

The thesis is concluded in Chapter 6. We summarize the major characteristics of 

the page farm model, and discuss some interesting extensions and applications, then 

present some future directions. 
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Related Work 

In this chapter, we give an overview of the related work systematically. In general, our 

study is highly related to the previous work in the following four aspects: (1) social network 

analysis; (2) Web link structure modeling and analysis; (3) Link Structure-based Ranking 

and Web Communities; and (4) Web spam detection. 

2.1 Social Network Analysis 

Social network analysis has been studied extensively and substantially (for example, see [63, 

601 as two textbooks). Here, we present some essential and important work. 

A social network is a social structure made of nodes which are generally individuals 

or organizations. A social network indicates the ways in which the nodes in the network 

are connected through various social familiarities ranging from casual acquaintance to close 

familial bonds. The term was first coined by J. A. Barnes [8] in 1954. A social network can 

be modeled as a graph, where the nodes in the network are the individuals or organizations, 

while the links show relationships and interactions between the nodes. Social network plays 

a fundamental role as a medium for the spread of information, ideas, and influence among 

its members. 

Social network analysis [53, 15, 30, 64, 40, 47, 651 is the mapping and measuring of 

relationships and interactions between the nodes in the network. Social network analysis has 

emerged as a key technique in modern sociology, anthropology, sociolinguistics, geography, 

social psychology, information science and organizational studies. 

Social network analysis consists of a set of methods for analyzing social structures. The 
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methods are specifically geared towards an investigation of the relational aspects of the 

structures. The use of these methods, therefore, depends on the availability of relationship 

data rather than attribute data. To understand social networks and their participants, 

people evaluate the locations of the participants in the network. Measuring the location 

in the network is to  find the centrality of a node such as degree centrality, betweenness 

centrality and closeness centrality which will be illustrated in the next paragraph. These 

measures give us insight into the various roles and groupings in a network - who are the 

connectors (that is, the nodes connecting two groups), leaders (that is, the most important 

nodes in the group), isolates (that is, the nodes not participating in some other groups)? 

Where are the clusters (that is, a group of nodes that are similar to one another within the 

same cluster and are dissimilar to the nodes in other clusters) and who are in them? Who 

are in the core (that is, a group of nodes that are most important and representative in the 

social network) of the network? And who are on the periphery (that is, a group of nodes that 

are least important in the social network)? For example, a friendship network in the real 

life effectively shows the distinction between the three most popular individual centrality 

measures: Degree Centrality, Betweenness Centrality, and Closeness Centrality [63, 601. 

Figure 2.1: An example of a friendship network in the real life. 

Figure 2.1 gives an concrete example of "Kite's Network" [63], which is developed by 

D. Krackhardt, a leading researcher in the area of social network analysis. Two nodes are 

connected if they regularly interact with each other in some way. Social network researchers 
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measure the network activity for a node by using the concept of degrees which is the number 

of direct connections a node has. This is defined as the Degree Centrality. In the Kite's 

network shown in Figure 2.1, Diane has the most direct connections in the network, making 

her the most active node in the network. The Betweenness Centrality is used to measure 

the importance of a node in the network. For example, in Kite's Network, while Diane has 

many direct ties, Heather only has a few direct connections which is fewer than the average 

in the network. However, Heather has one of the best locations in the network, that is, she is 

between two important subnetworks. The good news is that  she plays a powerful role in the 

network, but the bad news is that she is a single point of failure. Without her, Ike and Jane 

would be disconnected from the network. A node with high betweenness has great influence 

over what flows in the network. In addition, Fernando and Garth have fewer connections 

than Diane, yet the patterns of their direct and indirect ties allow them to access all the 

other nodes in the network more quickly than anyone else. They have the shortest paths 

to all the others. In other words, they are close to everyone else. They are in an excellent 

position to  monitor the information flow in the network. This is so called the Closeness 

Centrality. 

One of the challenging problems in social network analysis is the social community iden- 

tification problem. A social community is a group of social members sharing some common 

interests. The process by which communities come together, attract new members, and 

develop over time is a central research issue in the social sciences. The political movements, 

professional organizations, and religious denominations all provide fundamental examples of 

such communities. The tendency of people to come together and form groups is inherent in 

the structure of society; and the way in which such groups take shape and evolve over time 

is a theme that  runs through large parts of social science research [21]. In general, the social 

community identification problem corresponds to the graph partition problem and the node 

clustering problem. There is a large body of work on identifying tightly connected clusters 

within a given graph (for example, see [29, 27, 32, 44, 561). 

Some previous work is focusing on analyzing the evolution of social networks. Research 

over the past a few years has identified classes of properties that  many real world networks 

obey. One of the main areas of focus has been on degree power laws, showing that the 

set of node degrees has a heavy tailed distribution. Such degree distributions have been 

identified in various social networks [17]. Some Other properties of the evolution include 

the "small-world phenomenon" [63], popularly known as "six degrees of separation", which 
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states that real large social network graphs have surprisingly small average diameters. 

How Is Our Study Different? 

The social network analysis is often concerned with the global properties of a social network 

and the communities. To the best of our knowledge, there is no previous work from social 

network studies on the concept of "ecology" environments of Web pages, which we refer 

to page farms in this thesis. We are also the first one to analyze the distributions of page 

farms. 

2.2 Web Link Structure Modeling and Analysis 

The link structure of the Web can be viewed as a directed graph in which each vertex is 

a Web page, and each edge is a hyperlink between two pages. The Web graph has some 

interesting properties, such as the power law degree distribution [50, 49, 141 and a small 

average diameter [2]. A number of stochastic models for the Web graph have been proposed 

to better understand and predict the statistical properties of the Web. 

A popular Web graph model is the preferential attachment model 171. We refer to this 

model and its variants as random Web graph models. In this model, vertices and edges are 

dynamically added to the graph, such that the probability that an existing vertex gets a 

new link depends positively on its current degree. The resulting process generates graphs 

whose degree distributions follow the power law distribution [50, 49, 141. 

Some previous work is focusing on analyzing the link structure of the Web graph. In [2], 

Albert et al. reported an intriguing finding that most pairs of pages on the Web are separated 

by only a few hyperlinks. The lengths of the link paths (that is, the number of hyperlinks) 

are under 20 in most cases. They also predicted that this number would grow logarithmically 

with the size of the Web. This is viewed as a "small world" phenomenon on the Web. At 

the same time, Broder et al. [14] conducted systemical experiments on a large sampled Web 

data set. The experimental results reveal an even more detailed and subtle picture: "most 

ordered pairs of pages cannot be bridged a t  all and there are significant numbers of pairs that 

can be bridged, but only using paths going through hundreds of intermediate pages". As a 

conclusion, the connectivity of the Web is strongly limited by a high-level global structure. 

Meanwhile, Broder et al. in [14] showed that the macroscopic structure of the Web has a 

Bow-Tie shape composed of 5 main regions as shown in Figure 2.2. Most of the pages in the 
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DISC 

Figure 2.2: Connectivity of the Web: the Bow-Tie structure. 

Web graph form a single connected component. This connected component can be further 

divided naturally into four pieces. The first piece is called "SCC" (Strongly Connected 

Component), which contains the pages that can reach one another along directed links. 

The second and the third pieces are called "IN" and "OUT". The component "IN" contains 

the pages with links that lead to "SCC", but not vice versa. For example, new sites that 

people have not yet discovered and linked to are in this component. The component "OUT" 

contains the pages that are reachable from "SCC", but not vice versa, such as corporate Web 

sites that contain only internal links. The fourth piece, "TUBES and TEDNRILS", contains 

all the other pages that are reachable from "IN" or lead to "OUT". The remaining region 

that is not a part of the connected component is referred to as the last component "DISC", 

which contains all the other disconnected components in the Web graph. Moreover, based 

on the large sample Web data set they crawled, Broder et al. found a surprising fact that the 

size of the component "SCC" is relatively small. Actually, the experimental results showed 

that all the four components, "SCC", "IN", "OUT", and "TUBES and TENDRILS", have 

roughly the same size. 

Recently, some models in graph theory, such as the neighborhood graph theory, have 

been introduced to analyzing the Web graph. Neighborhood graphs have been studied for 

a long time [23]. Given a graph G = (V, E) and a node p E V, a simple neighborhood 

graph for p is a subgraph of G which only contains the nodes that have an edge pointing 

to p. In the Web graph, given a page p, Nargis et al. [55]  introduced the concept of the 
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neighborhood graph of p as a subgraph of the original Web graph which contains the pages 

that are a t  the distance less than a given distance threshold k. Analyzing such kind of 

neighborhood graphs has some useful applications, such as to find communities of related 

Web pages within a specific distance of a given Web page, and to understand the structural 

and statistical properties of the local structures of the Web graph. 

How Is Our Study Different? 

The previous work of neighborhood graph-based Web structure modeling simply considers 

the near neighbor pages for a given target page. In order words, the distance to the target 

page is the only factor considered. To the best of our knowledge, our page farm model is 

the first one to introduce the contributions of ranking scores as the weights for the neighbor 

pages. The pages in the page farm have high contributions to the target page. The page 

farm may have good potential to reflect that the pages in the farm have tight relationships 

with the target page. 

2.3 Link Structure-based Ranking and Web Communities 

A few link structure-based ranking methods, such as PageRank [59] and HITS [48], were 

proposed to assign scores to Web pages to reflect their importance. Both HITS and PageR- 

ank try to remedy the imprecise problem inherent in keyword queries by supplementing 

precision with notions related to "prestige" in social network analysis. In PageRank, each 

page on the Web has a measure of prestige that is independent of any information need or 

query. Roughly speaking, the prestige of a page is proportional to the sum of the prestige 

scores of pages linking to it. In HITS, a query is used to select a subgraph from the Web. 

From this subgraph, two kinds of nodes are identified: authoritative pages to which many 

pages link, and hub pages that contain comprehensive collections of links to authoritative 

pages. 

Although there are technical differences between PageRank and HITS, the two measures 

are defined recursively: the prestige of a node in PageRank depends on the prestige of other 

nodes. In HITS, the measure of being a good hub page depends on how good the neighbor 

pages are as authoritative pages, and similar for the measure of authoritative pages. Both 

PageRank and HITS involve computing eigenvectors for the adjacency matrix, or a matrix 

derived from the Web or a suitable relevant subgraph of the Web. 
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Using link structure-based analysis, the previous studies have developed various methods 

to identify Web communities, that is, collections of Web pages that share some common 

interest in a specific topic. Link structure-based Web community identification is different 

from the work in social community identification described in Section 2.1 in that the link 

structure-based ranking algorithms are used to help to  solve the problem. 

For example, Gibson et al. 1311 developed a notion of hyper-linked communities on 

the Web through an analysis of the link topology. As another example, Kleinberg [48] 

showed that the HITS algorithm, which is strongly related to spectral graph partitioning, 

can identify hub and authoritative pages. Hubs and authorities are especially useful for 

identifying key pages related to some communities. However, using HITS to enumerate 

all members of a community sometimes might be problematic because the communities in 

which one is interested may be overshadowed by a more dominant community. 

To tackle the problem, Flake et al. [28] modeled a Web community as a collection of 

Web pages in which each member page has more hyperlinks within the community than 

outside the community. However, finding optimal communities in this definition is NP-hard 

because it essentially belongs to the family of graph partitioning problems. Flake [28, 291 

showed that the Web community problem can be recast into a maximum flow framework to 

analyze the flows between graph vertices. 

In general, link structure analysis seldom considers the text information of Web pages. 

Bharat [ll] indicated that, without auxiliary text information, both PageRank and HITS 

have only limited success in identifying Web communities. 

How Is Our Study Different? 

The Web community identification problem is to  find a set of pages that share the same 

interest. In other words, it is a global view of pages on the Web. The previous link 

structure-based ranking methods and their applications do not analyze the environments 

of Web pages. Our page farm model is the first one trying to  fill up this gap between the 

global views and the individual Web pages. 

2.4 Web Spam Detection 

Most of the popular Web search engines currently adopt some link structure-based ranking 

algorithms, such as PageRank and HITS. Driven by the huge potential benefit of promoting 
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rankings of pages, many attempts have been conducted to boost page rankings by making 

up some linkage structures, which is known as link spam [6, 13, 18, 25, 34, 35, 36, 43, 511. 

The term "spam" here refers to any deliberate human action that is meant to trigger an 

unjustifiably favorable relevance or importance for some Web pages comparing to the page's 

true value. 

Because PageRank scores are determined based on the link structures of the Web, PageR- 

ank is a natural target of link spam. Gyongyi et al. [35, 361 referred link spam to the cases 

where spammers set up structures of interconnected pages, called link spam farms, in order 

to boost the link structure-based ranking. 

A single target link spam farm model consists of three parts: a single target page to be 

boosted by the spammer, a reasonable number of boosting pages that deliberately improve 

the ranking of the target page, and some external links accumulated from pages outside the 

spam farm. Based on this model, given a fixed number of boosting pages, the optimal link 

structure by which the target page can achieve the highest PageRank score is addressed 

in [35]. Moreover, Gyongyi et al. [35] also showed the link spam alliance (that is, the 

collaboration of spammers) and the corresponding optimal link structures. 

Some methods have been proposed to detect link spam. Fetterly et al. [25] adopted 

statistical analysis to detect link spam. Several distribution graphs, such as the distribution 

of in-degrees and out-degrees, were drawn. Most of these distributions were modeled well 

by some form of power law distribution. The outliers in the results were marked as spam 

candidates. By manually checking these candidates, a majority of them were found to be 

spam. Wu and Davison [66] proposed an algorithm for link spam detection. It first generated 

a seed set of possible spam farm pages based on the common link set between incoming and 

outgoing links of Web pages. Then, spam pages were identified by expanding the seed set. 

Recently, Gyongyi et al. [34] introduced the concept of spam mass, a measure of the impact 

of link spam on a page's ranking. [34] discussed how to estimate spam mass and how the 

estimations can help to identify pages that benefit significantly from link spam. 

Some other link spam detection methods resemble PageRank computation. Benczur et 

al. [9] proposed a method called SpamRank, which was based on the concept of personalized 

PageRank that detected pages with an undeserved high PageRank score. They defined 

SpamRank by penalizing pages that originate a suspicious PageRank share and personalizing 

PageRank on the penalties. Gyongyi et al. [37] described an algorithm, called TrustRank, to 

combat Web spam. The basic assumption of TrustRank was that good pages usually point 
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to good pages and seldom have links to spam pages. They first selected a bunch of known 

good seed pages and assigned high trust scores to them. They then followed an approach 

similar to PageRank: the trust score was propagated via out-links to other Web pages. 

Finally, after convergence, the pages with high trust scores were believed to be good pages. 

However, TrustRank was vulnerable in the sense that the seed set used by TrustRank may 

not be sufficiently representative to cover well the different topics on the Web. Also, for 

a given seed set, TrustRank had a bias towards larger communities. To address the above 

issues, Wu et al. [67] proposed the use of topical information to partition the seed set and 

calculate the trust scores for each topic separately. A combination of these trust scores for 

a page was used to determine its ranking. 

In addition to link spam, term spam is another trick which is the practice of "engineer- 

ing" the content of Web pages so that they appear relevant to  popular searches. Most of 

the term spam detection methods proposed so far adopted statistical analysis. For exam- 

ple, in [25], Fetterly et al. studied the prevalence of spam based on certain content-based 

properties of Web sites. They found that some features, such as long host names, host 

names containing many dashes, dots and digits, as well as little variation in the number of 

words in each page within a site, were good indicators of spam Web pages. Later, in [26], 

Fetterly et al. investigated the special case of "cut-and-paste" content spam, where Web 

pages were mosaics of textual chunks copied from legitimate pages on the Web, and pre- 

sented methods for detecting such pages by identifying popular shingles. Recently, Ntoulas 

et al. [58] presented a number of heuristic methods for detecting content-based spam that 

essentially extend the previous work [25, 261. Some of those methods were more effective 

than the others, however, the methods may not identify all of the spam pages when used 

in isolation. Thus, [58] combined the spam detection methods to create a highly accurate 

C4.5 classifier [39] to detect term spam pages. 

How Is Our Study Different? 

In some link spam detection methods 19, 34, 37, 58, 67, 691, the concept of link spam farm 

is used to conceptually capture the set of Web pages that achieve the link spam. However, 

there is neither method proposed to extract link spam farms from the Web nor empirical 

studies on the link spam farms. 

We use the page farms and particularly the utility and the characteristics of the page 

farms to detect link spam pages. By doing so, we not only can detect the link spam, but 
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also can capture how the link spam is attempted using the link spam farms. 



Chapter 3 

Page Farms 

In this chapter, we propose our novel Web link structure model, page farm model. We study 

the computational complexity of extracting page farms, and its NP-hard property is verified 

by complete and systematic theoretical analysis. 

3.1 Page Farm Model 

The Web can be modeled as a directed Web graph G = (V, E), where V is the set of Web 

pages, and E is the set of hyperlinks. A link from page p to page q is denoted by an edge 

p --t q. An edge p + q can also be written as a tuple (p, q). A page p may have multiple 

hyperlinks pointing to page q, however, in the Web graph, only one edge p --t q is formed. 

Such structure modeling not only can make the Web graph simple, but also can let some 

mathematical models, such as the Markov chain model [3], be suitable for analyzing the 

Web graph. Hereafter, by default our discussion is about a directed Web graph G = (V, E ) .  

PageRank [59] measures the importance of a page p by considering how collectively other 

Web pages point to p directly or indirectly. Formally, for a Web page p,  the PageRank 

score [59] is defined as 

where M(p) = {qlq --t p E E )  is the set of pages having a hyperlink pointing to p, 

OutDeg(pi) is the out-degree of pi (that is, the number of hyperlinks from pi pointing 

to some pages other than pi), d is a damping factor which models the random transitions 
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on the Web and a typically used value is 0.85, and N = IVI is the total number of pages in 

the Web graph. The second additive term on the right side of the equation, 9, is tradi- 

tionally referred to as the random jump probability and corresponds to a minimal amount 

of PageRank score that every page gets by default. 

To calculate the PageRank scores for all pages in a graph, one can assign a random 

PageRank score value to each node in the graph, and then apply Equation 3.1 iteratively 

until the PageRank scores in the graph converge. As proved in [13, 511, given a Web graph, 

no matter what kind of orders the pages being considered for PageRank computation, the 

PageRank vector will be converged after several iterations. Even more, the PageRank vector 

is stochastic. Thus, the converged PageRank score for a given page is unique. 

For a W e b  page p, can we analyze what other pages contribute t o  the PageRank score of 

p ?  An intuitive way to answer the above question is to extract all Web pages that contribute 

to the PageRank score of the target page p. This idea leads to the notion of page farms. 

Generally, for a page p, the page farm of p is the set of pages on which the PageRank score 

of p depends. Page p is called the target page. According to Equation 3.1, the PageRank 

score of p directly depends on the PageRank scores of pages having hyperlinks pointing to 

p. The dependency is transitive. Therefore, a page q is in the page farm of p if and only if 

there exists a directed path from q to p in the Web graph. 

As indicated in the previous studies [2, 141, the major part of the Web is strongly 

connected. Albert et al. [2] indicated that the average distance of the Web is 19. In other 

words, it is highly possible to get from any page to another in a small number of clicks. A 

strongly connected component of over 56 million pages is reported in [14]. This result is 

based on a large sample of Web data set the authors crawled. Therefore, the page farm of a 

Web page can be very large. It is difficult to analyze page farms of a large number of pages. 

On the other hand, in many cases one may be interested in only the major contributors to 

the PageRank score of the target page. C a n  we capture the set of major  contributors to  a 

large portion of the PageRank score of a target page? 

According to Equation 3.1, PageRank contributions are only made by the out-edges. 

Thus, a vertex in the Web graph is voided for PageRank score calculation if all edges 

leaving the vertex are removed. Please note that we cannot simply remove the vertex. 

Consider Graph G in Figure 3.1. Suppose we want to void page v in the graph for PageRank 

calculation. Removing v from the graph also reduces the out-degree of u, and thus change 

the PageRank contribution from u to p. Moreover, simply removing v alters the random 
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jump probability into each page which is undesirable. Instead, we should retain v but remove 

the out-link v -+ p. 

Figure 3.1: Voiding pages and induced subgraphs. 

For a set of vertices U, the induced subgraph of U (with respect to PageRank score 

calculation) is given by G(U) = (V, El) ,  where El = {p -+ qlp -+ q E E A p E U). In other 

words, in G(U), we void all vertices that  are not in U. Figure 3.1 shows two examples. 

To evaluate the contribution of a set of pages U to the PageRank score of a page p, we 

can calculate the PageRank score of p in the induced subgraph of U. Then, the PageRank 

contribution is given by 

PageRank contribution has the following property, which follows with Corollary 3 to be 

discussed in Section 4.1. 

Corollary 1 (Monotonic contributions) Let p be a page and U, W be two sets of pages 

such that U c W .  Then, 0 I Cont (U, p) I Cont(W, p) 5 1. 

Proof. This corollary can be proved based on page contribution and path contribution 

which are defined in Chapter 4. 

We can use the smallest subset of Web pages that contributes to a t  least a 13 portion of 

the PageRank score of a target page p as its &(page) farm. 

Definition 1 (8-farm) Let 8 be a parameter such that  0 5 0 5 1. A set of pages U is a 

&farm of page p if Cont(U, p) 2 9 and IU I is minimized. 



CHAPTER 3. PAGE FARMS 

3.2 Complexity of Page Farm Extraction 

Finding the exact 0-farm of a page is computationally costly on large networks, as indicated 

by the following result. 

Theo rem 1 (0-farm complexity) The following decision problem is NP-hard: for a Web 

page p, a parameter 0, and a positive integer n, determine whether there exists a 0-farm of 

p which has no more than n pages. 

Proof.  The theorem can be proved by reducing the knapsack problem, which is NP- 

complete [46], to the 0-farm extraction problem. 

We are given a set U of n items ui (1 5 i 5 n)  with value val(u;) and weight w(ui), where 

the values and the weights are positive integers. We are asking whether there exists a subset 

of items S C U such that the total value of the subset is a t  least K ,  that is, CUES val(u) 2 K ,  

and the total weight of the subset is at most W, that is, CUES W(U) 5 W, where K and W 

are given positive integers. 

To reduce the problem, we construct a directed graph G = (V, E ) .  The vertices and the 

edges are created in three steps. First, vertex vo E V is created as a "knapsack". Second, 

for each item u;, we create a vertex vi. Last, for each vertex v; E V (1 5 i 5 n)  created in 

the second step, we construct a directed path from vi to vo of length w(u;): (w(ui) - 1) new 

vertices, denoted by v i , ~ ,  . . . , v~, , ( ,~ ) -~ ,  are inserted as a path vi -+ v i , ~  + ~ i , , ( ~ ~ ) - l  + VO. 

Figure 3.2: Reducing the knapsack problem for Sfarm extraction problem. 

Figure 3.2 illustrates the construction of the graph G. As the result, in G, the set of 

vertices IVI = 1 + n + zjn,,(w(ui) - 1) and IEI = w ( u ~ ) .  

We compute the PageRank scores of the vertices by assigning the initial score values to 
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the vertices in graph G as follows: for each vertex vi, where 1 < i 5 n,  PR(vi) = val(ui). 

All the other vertices (that is, vo and viTj's) are assigned an initial score 0. We set d = 1 in 

Equation 3.1 and compute the PageRank scores of the nodes in the graph. 

Under such an initial score assignment, the PageRank score of vo has the following 

properties. First, vertices v i , ~ ,  . . . , ~ i , , ( , ~ ) - ~  contribute to vo's PageRank score if and only if 

the complete path vi + vi,l + ~i,,( ,~)-l  + vo is retained in the induced subgraph. In other 

words, vo can obtain some positive contribution from any subset of the nodes in this path 

only if the whole path is included in the farm. If only some nodes in the path are included 

in the farm, the farm is not minimal since removing those nodes reduces the size of the farm 

but the PageRank score of vo remains. 

Second, for a graph GI C G which contains only a path vi + vi,l + ~ i , ~ ( , ~ ) - l  + vo, the 

converged PageRank score of vo in GI is val(ui). 

Last, in graph H C G which contains directed paths from vj,, 0 . .  , vj, to vo (1 < 
jl, . . , jl 5 n),  the converged PageRank score of vo is zfzl val(uji). Moreover, PR(vo, G) = 

val (ui). 

Therefore, we obtain an affirmative answer to the knapsack problem (that is, there is a 

set of items whose sum of values is a t  least K and whose sum of weights is at most W) if 

and only if in the transformed graph G, there is a pn(l:O,c)-farm of vo of size at most W. 

Please note that we do not need to explicitly unfold those paths from vi to vo in the 

graph for PageRank score calculation and page farm computation. Vertices vi's are the 

representatives of the paths. Therefore, the transformation is of polynomial complexity. 

Searching many pages on the Web can be costly. Heuristically, the near neighbors of 

a Web page often have strong contributions to  the importance of the page. Therefore, we 

propose the notion of (0, k)-farm. 

In a directed graph G, let p, q be two nodes. The distance from p to q, denoted by 

dist(p, q),  is the length (that is, the number of edges) of the shortest directed path from p 

to q. If there is no directed path from p to q, then dist(p, q) = GO. 

Definition 2 ((8, k)-farm) Let G = (V, E) be a directed graph. Let 8 and k be two 

parameters such that 0 5 8 5 1 and k > 0. k is called the dis tance threshold. A subset 

of vertices U C V is a (8, k)-farm of a page p if Cont (U, p) > 8, dist (u, p) < k for each 

vertex u E U, and IUI is minimized. 
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We notice that finding the exact (8, k)-farms is also computationally expensive on large 

networks. 

Corollary 2 ((8, k)-farm complexity) The following decision problem is NP-hard: for 

a Web page p, a parameter 8, a distance threshold k, and a positive integer n, determine 

whether there exists a (8, k) - farm of page p having n o  more than n pages. 

Proof.  The proof of the NP-hardness for finding a (8, k)-farm is similar to that for finding 

a 8-farm. We construct a reduction from the knapsack problem. 

We do the transformation in the same way as shown in the proof of Theorem 1. We set 

the distance parameter k = m a x ( w ( u i ) )  where 1 < i < n. Thus, in Figure 3.2, all the nodes 

are a t  the distance at most k to the node vo. The transformation can be done in polynomial 

time. 

By the above transformation, we obtain an affirmative answer to the knapsack problem 

(that is, there is a set of items whose sum of values is at least K and whose sum of weights 

is a t  most W) if and only if in the transformed graph G', there is a (PRco,G), k)-farm of vo 

of size a t  most W. 

Typically, link spam is a local activity. Comparing to 8-farm, (8, k)-farm even reduces 

the noisy information and can capture those most important and nearest contributors better. 

Thus, in the later analysis, our discussions focus on (8, k)-farms by default. 

Based on Definition 2, a page farm U is a set of pages. We can easily obtain an induced 

graph G(U) by adding the links between pages in the farm. In some applications, people are 

interested in not only the pages, but also the link structures among those pages. Hereafter, 

if there is no confusion, we may also refer the page farms to an induced subgraph G(U) of 

the whole Web graph, where the nodes are those pages in U and the edges are induced by 

the pages in U. 



Chapter 4 

Page Farm Analysis 

In this chapter, we develop the methods for extracting page farms, and then report some 

empirical analysis for the landscapes of page farms. The experimental results reveal some 

interesting and exciting findings, and show some great potentials of the proposed page farm 

model. 

4.1 Extracting Page Farms 

In this section, we first give a simple greedy method to extract page farms, and analyze its 

inefficiency. Then, we propose a practically feasible method to extract approximate page 

farms. 

4.1.1 A Simple Greedy Method 

Intuitively, if we can measure the contribution from any single page v towards the PageRank 

score of a target page p, then we can greedily search for pages of big contributions and add 

them into the page farm of p. 

Definition 3 (Page contribution) For a target page p E V, the page contribution of 

page v E V to the PageRank score of p is 

where d is the damping factor, and N is the total number of pages in the Web graph. H 
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Definition 3 is based on intuitive observation, and it is reasonable and easy to under- 

stand. If v = p, according to the original PageRank formula in Equation 3.1, ? corre- 

sponds to a minimal amount of PageRank score that every page gets by default. Thus, 

we define PCont(v,p) = 9. If v # p, intuitively, the PageRank contribution from v to 

p is the decrease of the PageRank score of page p after we void page v. Thus, we define 

PCont(v,p) = PR(p ,  G) - PR(p,  G(V - {v)). 

Example 1 (Page contribution) Consider the simple Web graph G in Figure 3.1. The 

induced subgraphs G(V - {u)) and G(V - {v)) are also shown in the figure. 

Let us consider page p as the target page, and calculate the page contributions of the 

other pages to the PageRank of p. Notice that N = 3. According to Equation 3.1, the 

PageRank score of p in G is given by 

Moreover, the PageRank score of p in G(V - {u)) is 

and the PageRank score of p in G(V - {v)) is 

Thus, the page contributions PCont (u, p) and PCont (v, p) are calculated as 

Using the page contributions, we can greedily search a set of pages that contribute to a 6 

portion of the PageRank score of a target page p. That is, we calculate the page contribution 

of every page with distance t o p  at most k to the PageRank score of p, and sort the pages in 

the contribution descending order. Suppose the list is ul, u2, . . .. Then, we select the top-1 
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pages u1, . . . , ul as an approximation of the Sfarm of p such that PR(p ,G(V-{u l  ; . . ,u l } ) )  
PR(P,G) L e 

and p R ( ~ , G ( V - { u l , ~ ~ . , u ~ - l l ) )  < 0. 
PR(P,G)  

The above greedy method is simple. Since the algorithm greedily selects the pages with 

the highest page contribution to the target page, the results can capture the environment of 

the target page nicely. Unfortunately, it is inefficient for large Web graphs. First, it assumes 

that the whole Web graph is available, which may not be true for many situations. Second, 

in order to extract the page farm for a target page p, we have to compute the PageRank 

of p in induced subgraph G(V - {q)) for every page q other than p. In the worst case, to 

extract the (8, k)-farm of page p, if there are m pages q such that the distance from q to 

p is no more than k, then we need to compute the PageRank of p in m induced graphs. 

The computation is very costly since the PageRank calculation is an iterative procedure and 

often involves a huge amount of Web pages and hyperlinks. 

4.1.2 Path Contributions 

Computing the contribution page by page is costly. Can we reduce the cost effectively? Our 

idea is to compute the contribution path by path. 

Definition 4 (Path contribution) Consider Web graph G = (V, E )  and target page p E 

V. Let P = vo -+ vl -+ . . . -+ vn -+ p be a directed path from vo to p in the graph. The 

path contribution to the PageRank of p from P is defined as 

where OutDeg(vi) is the out-degree of page vi, and N is the total number of pages in the 

Web graph. w 

The PageRank scores can be calculated using the path contributions. 

Theorem 2 (Path contribution) The PageRank of p is 

1 - d  
PR(P, G) = - N + C ( C LCont(P, p)), 

~ € W ( P )  P € D P ( v , p )  

W(p) = {vlthere is a directed path from v to p), DP(v,p)  = {directed path P from v 

and N is the total number of pages in the Web graph. 
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Proof. Recall the original PageRank formula in Equation 3.1 

where M(p)  is the set of pages having a hyperlink pointing t op ,  OutDeg(pi) is the out-degree 

of pi, d is a damping factor, and N is the total number of pages in the Web graph. 

Suppose IM(p)l = m, that is, there are m pages having a hyperlink pointing to p. 

Without loss of generality, we use pl  , p2, . . . , p, to denote 

As shown in [13, 511, the PageRank formula is based 

those m pages. Thus, we have 

on the Markov chain model [3], 

which implies that no matter which order is used to compute the PageRank score vector 

based on Equation 4.3, after a few steps, finally it will converge to the stationary PageRank 

vector. Thus, given the Web graph, the converged PageRank score of p is unique. So if we 

can show that PR(p ,  G)  = $$ + CvEw(p) CpeDp(v,p) LCont(P,p) is actually a solution to 

Equation 4.3, we show the correctness of Theorem 2. 

We replace PR(p ,  G)  and PR(pi,  G)  in Equation 4.3 by the following two formulae 

We then replace LCont(P,p) and LCont(P,pi) using Definition 4. In order to make the 

formula simple and easy to understand, we introduce some notations first. 

Given two pages p and vl ,  suppose there is a link path P from vl to p, denoted as 

v1 -' v2 -' . . + -' v, --t p, we use IPI to denote the length (the number of edges) of the 

path P, that is, lPl = n .  We use m(P) to denote the contribution propagation, that is, 
1 m ( P )  = rial o,,,,,~v,). We use Pp to denote a link path pointing to page p. We also use 

Pp to represent the set of link paths pointing to page p. 

The meaning of Theorem 2 is to find out all the different link paths pointing to p, and 

then sum up all the path contributions. Thus, Equation 4.4 can be rewritten as following 
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Now we prove Equation 4.5. Since Pp and Ppi represent link paths pointing to page 

p and pi, respectively. We also know that there is a hyperlink directly from pi to p, thus 

one link path in the set of Ppi actually corresponds t o  one link path in the set of Pp. For 

example, given any link path Pp, : vl + v2 + . . . + v, + pi, we can get a corresponding 

link path Pp : vl + v2 -+ . . . + v, + pi + p. In other words, for any link path P,,, there 
4 P p . )  is a link path Pp such that  IPpl = lPp,J + 1 and .rr(Pp) = OutDe;(pi). 

The set of P, can be divided into two subsets: one is the set of paths generated from 

Ppi, which is denoted by P;, and the other set contains the direct links from pi to p, which 

is denoted by p i .  Thus, the left handside of Equation 4.5 can be rewritten as 

From Equation 4.6, we can conclude that  

is actually a solution to  Equation 4.3. Since the solution is unique, we have Theorem 2. 

Moreover, page contributions can also be calculated using path contributions. Applying 

Theorem 2 to Definition 3, we have the following result. 

Corollary 3 (Page and path contributions) For vertices p and q in Web graph G = 

(V, E), if the in-degree of q is 0, that is, InDeg(q) = 0, then 

PCont(q,p) = C LCont (P, p) . 
path P from q to p 
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If InDeg(q) > 0, then 

where Wq(p) = {vlthere is a directed path from v to p through q). 

Proof. According to  Definition 3, for vertices p and q (q # p) in Web graph G = (V, E), 

PCont(9, P) = PR(P, G) - P N P ,  G(V - (91)). (4.7) 

We apply Theorem 2 to Equation 4.7, and have the following 

1 - d  1 - d  
PCont(q,p) = (N + C LCont(P,p)) - (- + LCont(P1, p)) 

P€G(V) P1€G(V-(q}) 

Since the induced graph G(V - {q)) is generated by removing the out-links of q, if 

InDeg(q) = 0, the differences between the two sets of link paths 7' and PI, are those link 

paths from q to p. If InDeg(q) > 0, the differences between P and PI are those link paths 

from q to p, and those link paths to p through q. Thus, based on Equation 4.8, we have 

Corollary 3. 

The monotonic contribution property of PageRank contributions (Corollary 1) can be 

derived from Corollary 3. 

Corollary 1 (Monotonic contributions) Let p be a page and U, W be two sets of pages 

such that U W. Then, 0 5 Cont(U, p) 5 Cont(W, p) 5 1. 

Proof. A path contribution is non-negative. When some vertices are voided for PageRank 

calculation, some paths are destroyed. Thus, the PageRank score in the induced subgraph 

cannot be larger than that in the original graph, and the PageRank contribution is a number 

between 0 and 1. rn 

Example 2 (Path contribution) Consider the Web graph in Figure 3.1 again. There are 

three paths to the target page p: PI : u + p, Pz : u + v + p, and P3 : v + p. The path 
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contributions can be calculated as 

Using Corollary 3, we have 

PCont(u,p) = 

- - 

PCont(v,p) = 

- - 

Moreover, by Theorem 2, we have 

LCont (PI, p) + Lcont(P2, P) 

The results are consistent with those in Example 1. 

Comparing to page contributions, path contributions are cheaper to be computed. We 

can derive them directly from the graph structure using the out-degrees of pages. We even 

do not need the PageRank scores of pages. On the other hand, recall that computing a page 

contribution directly using Definition 3 has to iteratively compute the PageRank score of 

the target page in an induced subgraph until the score converges. 

Interestingly, simultaneously to our study, Gyongyi et al. proposed a measure on PageR- 

ank contribution from Web pages and link paths [34]. In their definition, the contribution 

from page q to page p is given by Cp,Dp(,,p) LCont(P,p). The critical difference is that 

their definition does not consider the transitive contribution from links pointing to q (that 

is, the second item in Corollary 3). 

To illustrate the difference, consider the directed graph in Figure 4.1. In their definition, 

pages pl and p2 have the same contribution to page p. In our definition, page p2 contributes 
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Figure 4.1: An example showing the difference between two measures of PageRank contri- 
bution. 

more. Our argument is that pa has a higher PageRank score due to its receiving a link from 

p3, and in sequel contributes more to the PageRank score of p. 

We also notice that, simultaneously to our study, a similar idea called branching contri- 

bution is presented in [68]. Basically, the general idea of branching contribution is same to 

path contribution. 

4.1.3 Extracting (8, k)-farms 

C a n  we approximate (8, k) - farms  of W e b  pages e f ic ient ly  using path contributions developed 

in Section 4.1.22 

We propose a greedy algorithm in Figure 4.2. The algorithm takes the immediate neigh- 

bors of p (that is, those pages having links pointing to  p )  as the candidates of page farm 

members. I t  greedily picks the page with the highest contribution among those in the can- 

didate set, and adds the page into the page farm. Once a new page q is added into the farm, 

all those immediate neighbors of q (that is, those pages having links pointing to q )  are added 

into the candidate set if their distances to p are no more than k. The selection continues 

iteratively until a farm contributing to a portion of a t  least 9 of the PageRank of p is found, 

or the candidate set is empty. In the latter case, all the k-neighbors of p contribute to less 

than a 8 portion of the PageRank of p. 

In this greedy algorithm, only those pages whose distances to p are no more than k 

may be searched. Moreover, each of such pages can be included into the candidate set a t  

most once. Therefore, it is much more efficient than the simple greedy algorithm given in 

Section 4.1.1. 
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Input: a Web graph G = (V, E), a target page p E V, 
a damping factor d, parameters 8 and k; 

Output: an approximate (8, k)-farm of page p; 
Method: 
1: initialize F a r m  = 0; 
2: let S = {v(v + p E E);  
3: WHILE (PageRankContribution(Farm,p) < 8) DO { 
4: I F  S = 0 THEN RETURN 0; // no farm is found 
5: q = arg maxqEs{PCont(q, p)); 
6: F a r m  = F a r m  U {q); 
7: S = S - {q) U {qflq' + q E E A dist(qf,p) I k) ;  

) 
8: RETURN F a r m ;  

Function PageRankContribution(Farm,p) 
// Compute the PageRank contribution from pages in F a r m  
11: compute PR(p, G(Farm U {p))), the PageRank of p 

in G(Fa rm U {p)) using Theorem 2 and Corollary 3; 
PR p , G  F a r m U { p ) ) ) .  12: return ( , 

Figure 4.2: A greedy algorithm to extract an approximate (8, k)-farm of a target page. 

Moreover, Theorem 2 and Corollary 3 help to compute the PageRank contribution ef- 

ficiently. First, the computation of contributions can be decomposed into computing the 

contributions from paths. Thus, when a new page is added to the page farm, we do not need 

to compute the contribution again completely. Instead, we can compute the incremental 

part using Corollary 3. Second, once a page is added into the page farm, the contributions 

of the pages in the candidate set can be updated accordingly. 

4.2 The Landscapes of Page Farms - An Empirical Analysis 

In this section, we report an empirical analysis of page farms of a large sample from the Web. 

To test the page farm extraction from the Web, we used a data set generated by the Web 

crawler "WebVac" from the Stanford WebBase project1. Some prior studies [41, 42, 45, 671 
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used the same data set in their experiments. The Web crawler randomly crawls up to a 

depth of 10 levels and fetches a maximum of 10 thousand pages per site. The whole directed 

Web graph file as of May, 2006 is about 499 GB and contains about 93 million pages. 

Limited by the computational resource available to us, in our experiments, we only used 

a random sample subgraph of the whole Web graph. The Web page sample  set we used 

contains 3,295,807 pages from more thank 60,000 sites, and is about 16 GB. Each page in 

our data set has a viable URL string. 

All the experiments were conducted on a PC computer running the Microsoft Windows 

XP SP2 Professional Edition operating system, with a 3.0 GHz Pentium 4 CPU, 1.0 GB 

main memory, and a 160 GB hard disk. The program was implemented in C/C++ using 

Microsoft Visual Studio. NET 2003. 

4.2.1 Extracting Page Farms 

theta 

Figure 4.3: The effects of parameters I3 and k on the page farm extraction (Web page 
sample  set) .  

To understand the effects of the two parameters B and k on the page farms extracted, 

we extracted the (8, k)-farms using different values of I3 and k, and measured the average 

size of the extracted farms. Figure 4.3 shows the results on the whole Web page sample  

set of over 3 million pages. 

When k is very small (1 or 2), even selecting all pages of distance up to k may not be 

able to achieve the contribution threshold 8. In this case, the farms the algorithm extracted 

are not exactly (13, k)-farms but only k-neighbor pages. Therefore, when k increases, the 
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average page farm size increases. However, when k is 3 or larger, the page farm size is 

stable. This verifies our observation that the near neighbor pages contribute more than the 

remote ones, and the PageRank score of a page is mainly determined by its near neighbors. 

When 0 increases, more pages are needed to make up the contribution ratio. However, 

the increase of the average page farm size is sublinear. The reason is that when a new page 

is added to the farm, the contributions of some pages already in the farm may increase due 

to the new paths from those pages to the target page through the new page. Therefore, a 

new page often boosts the contributions from multiple pages in the farm. The larger and 

the denser the farm, the more contribution can be made by adding a new page. On average, 

when 0 > 0.8, page farms are quite stable and capture the major contribution to PageRank 

scores of target pages. 

theta 

Figure 4.4: The effects of parameters 0 and k on the page farm extraction (FedEx data 
set) .  

We checked the page farm size distribution with respect to 0 and k on individual Web 

sites. The distribution within individual Web sites is very similar to the one on the whole 

sample. For example, Figure 4.4 shows the results on a sample of 4,274 Web pages from 

site "http : //www . f edex . corn" (called the FedEx data set hereafter). 

We compared the page farms extracted using different settings of the two parameters. 

The farms are quite robust. That is, for the same target page, the page farms extracted 

using different parameters overlap largely. In the rest of this section, by default we report 

results on (0.8,3)-farms of Web pages. 

We also compared the similarity of page farms extracted using the simple greedy algo- 

rithm (Section 4.1.1) and the more efficient algorithm (Section 4.1.3). The results are shown 
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Average similarity 

0.784 

Table 4.1: The average similarity of page farms extracted using the two different extraction 
algorithms. 

in Table 4.1. For 5000 pages that we randomly selected from the data set, we extracted 

the (0.8,3)-farms using the two algorithms. Thus for each page, we had two different page 

farms. Suppose the target page is p and the two page farms are Fl (p) and F2(p) respectively. 

We calculated the similarity of the two farms based on the following formula: 

Table 4.1 shows the average similarity value of 5000 pages. Generally, the results returned 

by two methods are very similar. 

Number of pages 

Figure 4.5: The scalability of page farm extraction. 

We tested the page farm extraction efficiency using the simple greedy algorithm (Sec- 

tion 4.1.1) and the more efficient algorithm (Section 4.1.3). The results are shown in Fig- 

ure 4.5, where the number of pages in the Web graph varies from 1,000 to 5,000, and a 

(0.8,3)-farm for each page is extracted. 

The method in Section 4.1.3 is clearly more efficient than the simple greedy method. 

As analyzed before, path contributions are much easier to compute. On the other hand, 

extracting page farms is still a time consuming task. To extract all page farms in our data 
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set of more than 3 million pages, it took more than 20 hours using our current PC. One of 

our future work is to find even more efficient algorithms to extract (8, k)-farms. 

4.2.2 Page Farm Analysis on Individual Sites 

To understand the general "landscapes" of page farms (that is, how page farms look like 

generally), we conducted the clustering analysis on the page farms extracted. A cluster is 

a collection of data objects that are similar to one another within the same cluster and are 

dissimilar to the objects in other clusters [39]. Clustering is the process of grouping the 

data into clusters so that objects within a cluster have high similarity in comparison to one 

another, but are very dissimilar to objects in other clusters. Dissimilarities are assessed 

based on the attribute values describing the objects. Often, distance measures are used. 

Since each page has a corresponding (8, k)-farm, we treat page farms as the objects to 

be clustered. Our analysis was in two steps. First, we analyzed the statistics of page farms 

in individual sites. Then, we analyzed the statistics of page farms in the whole data set 

(Section 4.2.3). 

Table 4.2: List of sites with different domains. 

In the whole data set, there are about 50 thousand different sites and about 30 different 

Site-id 

Site-1 

Site 

http://www.fedex.com 

# pages crawled 

4274 
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domains2. In order to analyze the page farms of individual sites, we randomly selected 

13 sites with different domains, as listed in Table 4.2. Those sites include some popular 

domains, such as .corn, .net, .edu, .org and .gov, as well as some unpopular ones, such as 

.tv, .int and .mil. Moreover, some domains from different countries and different languages 

are also involved, such as .us(USA), .cn(China), .fr(France), .jp(Japan) and .es(Spain). We 

did clustering analysis on each individual site and examined the results in the 13 different 

sites. 

We first generated the complete Web graph from the whole data set containing nearly 

3.3 million Web pages. A normal power method [13] is used to calculate the PageRank 

scores. For the pages in each site, we then extracted the (0.8,3)-farm using the algorithm 

shown in Figure 4.2. 

To analyze the page farms, we extracted the following features of each farm: (1) the 

number of pages in the farm; (2) the total number of intra-links in the farm; and (3) the 

total number of inter-links in the farm. Here, intra-links are edges connecting pages in the 

same farm, and inter-links are edges coming from or leaving a farm. We also considered 

some other features, such as the average in-degrees and out-degrees, the average PageRank 

score, and the diameter of the farm. The clustering results on extracted page farms shown 

as follows are consistent. Thus, we only use the above three features as representatives to 

report the results here. 

The above three attributes are independent with each other and each one is an important 

factor to reveal the characteristics of the page farms. We treated each attribute with the 

same importance. Thus, we normalized all attribute values into the range [O, 11 in the 

clustering analysis. These 3 normalized attribute values form the vector space for each page 

farm. We applied the conventional k-means clustering [39] on extracted page farms, where 

Euclidian distance was adopted to measure the distance between two page farm vectors. 

The k-means algorithm takes the input parameter k, and partitions a set of n objects into 

k clusters so that the resulting intra-cluster similarity is high but the inter-cluster similarity 

is low. The algorithm proceeds as follows. First, it randomly selects k of the objects, each 

of which initially represents a cluster mean or center. For each of the remaining objects, 

an object is assigned to the cluster to which it is the most similar, based on the distance 

between the object and the cluster mean. It then computes the new mean for each cluster. 

'~etails can be found at http://dbpubs.stanford.edu:8091/~testbed/doc2/WebB~e/crawl~lists/ 
crawled-hosts.05-2006.f 
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This process iterates until the criterion function converges. Typically, the squared-error 

criterion is used, defines as 
k 

where E is the sum of square-error for all objects in the database, p is the point in space 

representing a given object, and mi is the mean of cluster Ci (both p and mi are multidi- 

mensional). This criterion tries to  make the resulting k clusters as compact and as separate 

as possible. 

We varied the number of clusters (that is, the value of k in k-means clustering algorithm), 

and compared the clusters obtained. Interestingly, if we sort all clusters according to the 

size (that is, the number of pages in the clusters), those small clusters are robust when the 

number of clusters increases. Setting the number of clusters larger tends to split the largest 

cluster to  generate new clusters. 

Table 4.3: The number of pages in each cluster when the number of clusters varies from 2 
to  5. 

For example, Table 4.3 shows the number of pages in each cluster when the number of 

clusters varies from 2 to  5. The FedEx data set was used. By comparing the pages in the 

clusters, we found that  the pages in C1 are largely the same no matter how the number of 

clusters is set. When the number of clusters varies from 3 to  5, the clusters C2 of different 

runs also largely overlap with each other. 

The above observation strongly indicates that the distance from Web pages to the center 

of the whole data set may follow a power law distribution. To verify this, we analyzed the 

distances between the page farms in the site to  the mean of the sample set of the site. 

The results are shown in Figure 4.6. The distance follows the power law distribution as 

expected. This clearly explains why the smaller clusters are robust and the new clusters are 

often splitting from the largest cluster. Moreover, the results shown here are scale-free. 
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Number of page farms 

I 
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Figure 4.6: The distribution of the distance to the mean of the largest cluster. 

# inter-links 13 

Cluster-id 

Figure 4.7: Features of page farms in clusters. 

A s  the clusters are robust, how are the pages in different clusters different from each 

other? In Table 4.4, we list the top-5 URL's in each cluster that have the highest PageR- 

ank scores. Interestingly, most pages in the first cluster are the portal pages. The later 

clusters often have more and more specific pages of lower PageRanks. Correspondingly, In 

Figures 4.7, we show for each cluster the average size, the average number of intra-links, 

and the average number of inter-links. As can be seen, they follow the similar trend. The 

smaller the clusters, the larger the page farms and thus more intra- and inter-links in the 

farms. 

Moreover, in Figure 4.8, we plot the distribution of depths of URL's in various clusters. 

The depth of a URL string is the number of subdirectory levels in it. For example, URL 

string "h t t p  : //www . f edex . corn/" is of depth 1, and URL string "h t tp :  //www . f edex . corn/ 

us/custorner/" is of depth 3. Generally, the deeper a URL, likely the more specific the 
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Table 4.4: The top-5 URLs with the highest PageRank scores in each cluster. 

Cluster 

C1 

Cz 

C7 

content. To make the comparison easy to read, we show the percentage of pages in the 

URLs 
http://www.fedex.com/ 
http://www.fedex.com/us/customer/ 
http://www.fedex.com/us/ 
http://www.fedex.com/us/careers/ 
http://www.fedex.com/us/services/ 
http://www.fedex.com/legal/?link=5 
http://www.fedex.com/us/search/ 
http://www.fedex.com/us/privacypolicy.html?link=5 
http://www.fedex.com/us/investorrelations/?link=5 
http://www.fedex.com/us/about/?link=5 
http://www.fedex.com/legal/copyright/?link=2 
http://www.fedex.com/us?link=4 
htt~://~~~.fedex.~om/~s/about/todav/?link=4 

clusters of various depth in the figure. We can see that the pages in the first cluster (the 

smallest one) are not deep. The second cluster is deeper and so on. This is consistent with 

the observations from Table 4.4. 

4.2.3 Page Farm Analysis on Multiple Sites and the Whole Data Set 

The findings in Section 4.2.2 are not specific for a particular Web site. Instead, we obtained 

consistent observations in other Web sites, too. For example, we clustered the page farms 

for the 13 Web sites listed in Table 4.2 by setting the number of clusters to 5. For each 

site, the clusters were sorted in ascending order of the number of pages, and the ratio of the 
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Depth of URL 

1 2 3 4 5 6 7 8 9  

Figure 4.8: The distribution of depth of URL's in clusters. 

Figure 4.9: The distribution of cluster size. 

number of pages in a cluster versus the total number of pages sampled from the site was 

used as the relative size of the cluster. Figure 4.9 shows the result. We can observe that 

the distributions of the relative cluster size follow the same trend in those sites. 

In Section 4.2.2, we examined the page farms in individual Web sites. To test whether 

the properties observed were scale-free, we conducted the similar experiments on the Web 

page data set containing more than 3.3 million Web pages from more than 60,000 sites. For 

the pages in each site, we extract the (0.8,3)-farm using the algorithm shown in Figure 4.2. 

The experimental results confirm that the properties are scale-free: we observed the similar 

phenomena on the large sample. 

Figure 4.10 shows the distribution of distances of page farms to  the mean of the whole 

data set. Clearly, it follows the power law distribution. 



CHAPTER 4. PAGE FARM ANALYSIS 

0 le+006 2e+006 3e+006 
Number of page farms 

Figure 4.10: The distribution of the distance to the center of the data set. 

Figure 4.11: The size of clusters. 

Moreover, we clustered the page farms by varying the number of clusters from 2 to 5, 

and sorted the clusters in size ascending order. The results are shown in Figure 4.11, where 

parameter n is the number of clusters. The figure clearly shows that the smaller clusters 

are robust and the new clusters are splitting from the largest clusters when the number of 

clusters is increased. 

4.2.4 Summary 

From the above empirical analysis of the page farms of a large sample of the Web, we can 

obtain the following two observations. 
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T h e  landscapes of page farms follow a power law distribution and the distribution i s  

scale-free. The phenomena observed from individual large Web sites is nicely repeated 

on the large sample containing many Web sites across many domains. 

0 W e b  pages can be categorized in to  groups according to  their page farms. Some in- 

teresting features are associated with the categorization based o n  clustering, such as 

the relative importance of the pages and the relative positions in the Web sites. The 

distinguishing groups are robust with respect to the clustering parameter settings. 



Chapter 5 

Link Spam Detection 

In this chapter, we develop link spam detection methods using page farms proposed in 

Chapter 3, and report an empirical evaluation on a newly released spam test collection data 

set. The experimental results strongly show the effectiveness of our methods. 

5.1 Link Spam Detection 

Driven by the huge potential benefit of promoting the rankings of Web pages, many dirty 

tricks have been attempted to  boost page rankings by making up some artificially designed 

link structures, which is known as l ink spam [13, 36, 43, 511. The term "spam" here refers 

to any deliberate human action that is meant to trigger an unjustifiably favorable relevance 

or importance for some Web pages comparing to the true value of the page. 

So far, the tricks of Web spam can be classified into two categories, term spam and l ink 

spam [36]. Term spam is to inject into a Web page many (irrelevant) keywords, which are 

often visually hidden, so that the page can be retrieved by many search queries that may 

be semantically irrelevant to the page. Link spam is to deliberately build auxiliary pages 

and links to boost the PageRank or other link structure-based ranking scores of the target 

page. Due to the extensive adoptions of the link structure-based ranking metrics such as 

PageRank [59] and HITS [48], link spam has been used deliberately by many spam pages 

on the Web. 

Some previous studies (for example, [25, 66, 34, 9, 37, 671) treated link spam detection 

as a traditional classification problem. Each page is assigned a label, either spam or not. 

However, the judgement on whether a page is spam or not, to some extent, is subjective. As 
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improving the significance and the impact of a Web page is quite often a natural intension 

of the Web page builder, the difference on the "spamicity" (the degree of deliberation to 

improve the unjustifiable ranking score of a Web page) is critical to spam detection. 

In this section, we propose detecting link spam using page farms. The general idea is 

that we can calculate a spamicity score for the page farm of a Web page to measure the 

likelihood of the page being link spam. In order to judge whether a page is link spam, 

we only need to extract the page farm of the target page. As shown in our experiments 

(Figure 4.3 in Chapter 4), on average the page farm of a Web page contains less than 100 

pages, which can be extracted efficiently by search engines. 

We explore two alternatives of defining spamicity. 

5.1.1 Ut ility-based Spamicity 

For a Web page p, let Farm(p) be the page farm of p. Intuitively, if p is link spam, then 

Farm(p)  should try to achieve the PageRank score of p as high as possible. We can calculate 

the maximum PageRank score using the same number of pages and the same number of 

intra-hyperlinks as Farm(p) has. The utility of the page farm of p is the ratio of the 

PageRank score of p against the maximum PageRank score that can be achieved. The 

utility can be used as a measure on the likelihood that p is link spam. The utility is in the 

range of [0, 11. Intuitively, if the utility is closer to 1, the page is more likely to be link spam. 

Then, what is the largest PageRank score that a farm of n pages and 1 intra-links can 

achieve? 

Theorem 3 (Maximum PageRank scores) Let p be the target page, and Farm(p) con- 

tains pages pl , . . . , p, (p # pi, i = 1, . . . , n)  and hyperlinks e ~ ,  . . . , el. The following structure 

maximizes the PageRank score of p. 

where h(i) = 1 + (i  - 2n - [ 3 l ( n  - 2) + 1) mod n.  

Proof. Apparently, 1 2 n since each page in the farm must have at least one path to the 

target page. Generally, the optimal structures are in one of the following three cases. 

First, when 1 = n,  then ei = pi -+ p, as shown in Figures 5.l(a). 
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(a) 1= (b) n + 1 1 1 5 2n. 

(d) 2n 5 1  5 n ( n +  1). In 
the figure, s = Is]. 

Figure 5.1: Achieving the maximum PageRank scores. 

Second, when n + 1 < 1 5 2n, then, as shown in Figures 5.l(b), 

Third, when 2n + 1 5 1 I n(n + I ) ,  in order to illustrate the way to construct the 

optimal structures clearly, we show a specific case in Figures 5.l(c) and the general case in 

Figures 5.1 (d). As shown in Figure 5.l(c), when 2n + 1 I 1 5 3n - 1, 

I Pi + P (1 < i 2 n) 

ei = p + pi-, (n  + 1 5 i 5 2n) 

PI -+ Pi-an+l (2n + 1 I i < 1) 

Generally, when 2n 5 1 < n(n + I ) ,  the structure is as shown in Figure 5.l(d). 

Recall the path contribution in Definition 4, given a link path P from vl to p: vl + 

v 2 + . . . + v n + p ,  

1 n 1 
LCont(P, p) = -dPI(l - d) n 

N i=l Out Deg(vi) ' 

Thus, LCont(P, p) is based on two factors: the length of the link path (PI and the 

contribution propagation n:=I o u t ~ w c u , ) .  When d = 1, LCont(P,p) = 0, and it is a trivial 
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case. In the following analysis, let us assume d < 1. Intuitively, the smaller the length 

of the link path, the larger the path contribution. Moreover, the larger the contribution 

propagation on the link path, the larger the path contribution. 

We observe three properties of the optimal structures. First, each page pi (1 5 i 5 n )  

should point to  p directly. That  is, for any page pi, there is a link pi + p. In this case, 

the link path P from pi to p has the smallest length /PI = 1 and the largest contribution 

propagation r ( P )  = 1, thus the largest path contribution. 

Second, each page pi (1 5 i 5 n )  can contribute most to  p if there is a circle between pi 

and p. That  is, for any page pi, there are two links pi + p and p + pi. In this way, there 

are infinite link paths from pi to  p,  thus p obtains the maximum contribution from pi. 

Third, any link from pi to  p j  (1 5 i, j < n )  will distract a part of contribution of pi to  

p. In other words, the contribution from pi to p will be reduced since the out-degree of pi 

is increased. Thus, in order to  maximize the PageRank score of p, we should avoid adding 

links from pi to p j  as much as possible. 

Based on the above three observations, we next prove the optimum of each case one by 

one. 

We first show the optimum of case (a). Since each page pi should have a link path 

pointing to  p ,  when I = n ,  each page pi has the out-degree exactly 1 and p has the out- 

degree 0. In such a case, we cannot construct any circle between pi and p. According to 

the first and the third observations, for each pi, we should let pi point to  p directly, thus 

p can achieve the highest PageRank score. So the structure in Figure 5.l(a) is the optimal 

structure when I = n. 

We next show the optimum of case (b). According to the three observations described 

above, we have to  construct as many circles as possible between pi and p,  and construct as 

few links from pi to p j  as possible. Thus, when n +  1 < I 5 2n, each page has a link pointing 

to p, and we can construct at most I - n circles between pi and p, and there is no link from 

pi to pj .  We can conclude that the structure in Figure 5.l(b) is the optimal structure when 

n + l < I 5 2 n .  

We next show the optimum of case (c). Similar to case (b), we have to construct as many 

circles as possible between pi and p, and construct as few links from pi to  p j  as  possible. 

Since I > 2n + 1, for each page pi, we can construct a circle between pi and p. Moreover, 

there are I - 2n links from pi to  pj. 

We are given a target page p and its farm with n pages and I (2n < I 5 3n - 1) links. 
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Figure 5.2: An example to illustrate the "greedy choice property" and "optimal substruc- 
ture" when constructing the optimal structures. 

We'prove the optimum of case (c) by an induction on 1, that is, the number of links in the 

farm. 

Basis step. When 1 = 2n + 1, there is one link from pi to pj .  Obviously, any link 

from pi to pj has the same effect, thus we simply select pl -+ pa. So the structure in 

Figure 5.l(c) is the optimal structure when 1 = 2n + 1. 

0 Inductive step. Suppose when 1 = i (2n + 1 5 i 5 3n - 2), the optimal structure is 

shown in Figure 4(c). We want to construct the optimal structure when 1 = i + 1. As 

proved in [59, 511, given a Web graph with n nodes, if each node has the out-degree 

at least 1, the sum of the PageRank scores of these n nodes in the Web graph is equal 

to n. So in case (c), the sum of the PageRank scores of p and pi (1 5 i 5 n) is equal 

to n + 1. In order to maximize the PageRank score of p, we have to minimize the 

sum of the PageRank scores of pi (1 5 i 5 n).  This construction problem has the 

"greedy choice property" and "optimal substructure" [22], that is, the optimal farm 

when 1 = i + 1 can be obtained by adding one more link to the optimal farm when 

1 = i ,  such that the increase of the sum of the PageRank scores of pi (1 5 i < n) is 

smallest. Otherwise, we can simply use the "cut and paste" method [22] to obtain a 

better structure. 

Figure 5.2 gives a simple example to show the "greedy choice property" and "optimal 

substructure". Structures Az and B2 are generated from A1 and B1 by adding one 

more link. Assume that Al and B2 are the optimal structures when 1 = 2n + 2 and 
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1 = 2n + 3, respectively. Suppose we use SA, to represent the sum of the PageRank 

scores of pi in A1, we have SA, < SB, and SA2 > SB2 Clearly, if we remove the link 

from pl to pq in B2, the decrease of the PageRank score of p4 is larger than that if 

we remove the link from pl to  p4 in A2, since the out-degree of pl in B2 is larger than 

that  in A2. Thus, if SA2 > SB2, we have SAl > SBl. Contradiction. 

Since the new link only can be added from pi to  p j  where 1 <_ i, j <_ n, we want 

to increase the PageRank scores of p j  as little as possible, thus the decrease of the 

PageRank score of p is minimal. This objective can be achieved by adding the link 

from pl to pi-zn+l, since the new link to  pi-an+l has the length [PI = 1 and the 

smallest contribution propagation x ( P )  = &. SO the optimal structure when 

1 = i + 1 is as shown in Figure 5.l(c). 

From the basis step and the inductive step, we can conclude that the structure in 

Figure 5.l(c) is the optimal structure when 2n + 1 <_ 1 5 3n - 1. 

We observe that case (c) in Figure 5.1 is a special case for case (d). Thus, the optimum 

of case (d) can be proved in the same way. 

From the above descriptions, we have Theorem 3. 

Based on Theorem 3, we denote by PRma,(n, 1) the maximum PageRank score that a 

page farm of n pages and 1 intra-links can achieve. 

Moreover, we have the following corollary. 

Corollary 4 (Maximum PageRank scores (n  5 1 5 2n)) In Figure 5.1, the maximum 

PageRank score PR,,,(n,l) in cases (a) and (b) is given by 

Proof. We first show the case when I = n. The optimal structure is shown in Figure 5.l(a). 

The way to calculate the 

totally n link paths to the 

maximum PageRank score in case (a) is as follows: there are 

target page p. Based on Theorem 2, we have 
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For each Path contribution LCont(ek,p), according to Definition 4, we have 

d ( l  - d) 1 
LCont (ek , p) = - 

N 1  

We next show the case when n < 2 5 2n. The optimal structure is shown in Figure 5.1 (b). 

The way to calculate the maximum PageRank score in case (b) is as follows. 

In Figure 5.l(b), the value k is equal to  1 - n. So there are totally k pages having a 

link pointed by p, and n - k pages having no links pointed by p. According to Theorem 2, 

we have to find all the different link paths pointing to the target page p, calculate the path 

contributions, and then sum them up. We can classify all the link paths into the following 

categories: paths with length i ,  where i = 1,2,  . . . . 
We define some notations first. A link path can be denoted as pl -+ p2 -+ . . .  -+ p,, 

where pl ,  p2, . . . , pn are the pages on this path. We use {pl, p2, . . . , p,) to denote a set of 

pages. For simplicity, we use pl -+ . . . --t {pj, . + ,pk)  -+ . . . -+ p, to denote any path 

p1 . . . -+ p, -+ . . . -+ p, where p, E {pj, .  . . ,pk)  We use PA7'Hi to denote the set of link 

paths pointing to p with length i, where i = 1 ,2 , .  . .. We use LCont(PA7'Hi) to  denote the 

total path contributions where the paths are in the set of P A T E i .  For a path P E PA7'Hi,  

we use LCont(P) to denote the path contribution of P .  Now we prove 

LCont (PA7'Hi+2) = d2 x LCont (PA7'Hi) . 

Considering the optimal structure shown in Figure 5.l(b), for any path P E PAT'Hi, 

we can easily obtain a path P E PA7'HFli+2, which can be constructed by adding two new 

links p -+ p, -+ p to the end of P E PA7'Hi,  where p, E {pl , pz, . , pk) . Thus, given a 

path P E PA7'Hi,  we can get k paths P E PdT'Hi+2. According to Definition 4, we have 
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Thus, we have 

1 - d  00 

PRma:, (n ,  1 )  = - + C L C o n t ( P A 7 ' H i )  
N 

i= l  

L C o n t ( P A T I F t 1 )  and L C o n t ( P A 7 1 F t 2 )  can be calculated as follows. 

Paths with length 1: 

d ( 1 - d )  
- { p l , . . . , p k )  -f p: C L C o n t  = x k .  

d 1-d) 
- {pk+1, . . . ,p,) -f p: L C o n t  = x (n  - k ) .  

Paths with length 2: 

Thus, we have 

k d ( 1  - d )  d ( l  - d )  ( n  - k )  
L C o n t  (PA71Ft1) = 

N 
+ 

N 

- - n d ( 1  - d )  
N (5.2)  

L C o n t  (PAT?&) 

We apply Equation 5.2 and Equation 5.3 to  Equation 5.1, then we have 
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Corollary 4 gives the maximum PageRank scores for case (a) and case (b) in Figure 5.1 

directly. However, for the other cases, there are no simple and directed ways to calculate 

the exact maximum PageRank scores. In our implementation, we decide to construct the 

optimal structure graphs first, and then compute the maximum PageRank scores. 

A page farm of n pages and 1 hyperlinks is called an optimal spam f a m  if the target 

page achieves the maximum PageRank score. 

Definition 5 (Utility-based spamicity) For a target page p, let Farm(p) = (V, E) be 

the page farm of p. We define the utility-based spamicity of p as 

The utility-based spamicity of a Web page is between 0 and 1. The higher the utility- 

based spamicity, the more the page farm is utilized to boost the PageRank score of the 

target page. The spammers (that is, the builders of spam Web pages) build up the "spam 

farms7> with the only purpose to boost the rankings of the target pages as much as possible. 

The optimal spam farms do not commonly happen on the Web, because they are quite 

different from those normal page farms. 

In a typical link spam farm model, one spammer can collect some leakages from popular 

web sites, such as public forums and blogs. However, the spammer has little access to 

those source pages thus the link structures of these pages may not be consistent with the 

optimal structures. Moreover, since optimal spam farms are highly regular as indicated 

by Theorem 3, a search engine may easily detect the optimal spam farms. To disguise, 

a spammer may modify the optimal spam farm but still keep the target pages of high 

PageRank scores. Using the utility-based spamicity to detect link spam, we can still capture 

those disguised link spam. 

5.1.2 Characteristics-based Spamicity 

Since a page farm captures the most significant contributors to  the PageRank score of the 

target page and the link structures, we can examine the characteristics of the page farm to 

evaluate the likelihood of link spam for the target page. 

Page farms are directed graphs consisting of Web pages and links. We identify three 

heuristics described as follows to measure the likelihood of link spam for a Web page. 
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Contributor Page Rank Heuristic 

As indicated by the studies on authoritative pages and hub pages 1481, a Web page is 

semantically important if it is pointed by some authoritative pages or hub pages, which 

often have high PageRank scores. Heuristically, if a page has a high PageRank score but its 

page farm does not have any page of high PageRank score, then it is likely the page is link 

spam. 

Based on this idea, we can measure the difference of the PageRank score of the target 

page and the average score of its page farm. Technically, we define the PageRank boosting 

ratio to measure the difference. 

Definition 6 (PageRank boosting ratio) For a target page p, let Farm(p) = (V, E) be 

the page farm of p. The PageRank boosting ratio is the ratio of the PageRank of p 

against the average PageRank of pages in Farm(p).  That is, 

Heuristic 1 (Contributor page rank) The larger the PageRank boosting ratio, the more 

likely a page is link spam. 

Link Efficiency Heuristic 

From Theorem 3, we can have the following result. A similar result is also observed in [35]. 

Corollary 5 For a target page p whose page farm has n pages, PR(p)  5 -. The 

maximum PageRank score is achieved when there are 1 (n + 1 5 1 5 2n) hyperlinks in the 

farm as configured in Theorem 3. 
dn+l  1-d Proof. As shown in Corollary 4, for 1 = n,  PRmaX (n,  1) = ( ( ) ; for n < 1 5 2n, 

nd+l When 1 increases, the more links need to be added into the graph. PRmax(n11) = 

However, those links will distract some contributions to the other pages in the farm, thus 

the maximum PageRank scores in cases (c) and (d) shown in Figure 5.1 are less than that 

in case (b). As a result, given n pages in the farm, case (b) is the optimal structure. 

A page farm of n Web pages must have at  least n hyperlinks to  connect each page in 

the farm to the target page. Based on Corollary 5, the more hyperlinks in the page farm, 
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the less efficiently those links are used to boost the PageRank of the target page. We define 

the link efficiency of a page farm to capture this feature. 

Definition 7 (Link efficiency) For a target page p, let F a r m ( p )  = (V, E )  be its page 

farm. The link efficiency of the farm is the ratio of the number of pages in F a r m ( p )  

against the total number of links between the pages in V. That is, 

In an average page farm that is not for spam, some random hyperlinks may exist between 

pages in the farm. On the other hand, in order to fully boost the target page, pages in a 

spam farm often do not point to each other. Based on this observation, we have the following 

link efficiency heuristic. 

Heuristic 2 (Link efficiency) T h e  larger the  link e f i c iency ,  the more likely a page i s  link 

spam. 

Centralization Heuristic 

In an ideal spam farm, the target page has a large indegree, since hyperlinks point to the 

target page from the pages in the farm. The pages in such a farm often have low indegree 

since otherwise the efficiency of the pages and the links in the page farm is reduced. In 

other words, the links and pages in a spam farm are highly centralized such that the target 

page is at  the center of the farm. We measure the centralization degree using this hint. 

Definition 8 (Centralization degree) For a target page p, let F a r m ( p )  = (V, E )  be its 

page farm. The centralization degree of the farm is the ratio of the indegree of p against 

the average indegree of the pages in F a r m ( p ) .  That is, 

Heuristic 3 (Centralization degree) T h e  larger the  centralization degree, the more likely 

a page i s  link spam. 
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Characteristics-based Spamicity 

Consider a virtually non-spam page p and its page farm Farm(p) .  We have the following 

observations. 

0 The page rank boosting ratio P(p) should approach 1 since the PageRank of p is not 

boosted. 

0 The page farm Farm(p)  = (V, E) should contain many pages since p is not boosted 

by any authoritative or hub pages. On the other hand, random hyperlink pi -+ p j  
n happens with probability 0.5 for pi ,pj  E V. Therefore, ~ ( p )  = limn,, = 0. 
2 

The centralization degree n(p) of the page farm should approach 1, since the proba- 

bility that a page p' # p links to p directly is the same as the probability that p' links 

to any other pages in the farm. 

Based on the above observations, we define the characteristics-based spamicity as follows. 

Definition 9 (Characteristics-based spamicity) For page p,  the characteristics-based 

spamicity is 

where y > 0 is the Minkowski distance parameter [62]. 

5.2 Experimental Results 

To test the effectiveness of our spam detection methods using page farms, we used the 

recently released Webspam-UK2006 data set by the Search Engine spam project a t  Yahoo! 

Research ~arcelona' .  The data set [16] is the result of the effort of a team of volunteers. 

The base data set contains 77,862,535 pages in the domain of .UK downloaded in May 

2006 by the Laboratory of Web Algorithmics, Universith degli Studi di Milano. 

The spam test collection data set consists of 8,415 different hosts chosen from the 

base data set. A team of volunteers were asked to classify this set of hosts as "normal", 

"spam" or "borderline7'. Moreover, the project organizers added two kinds of special votes: 
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all the UK hosts that were mentioned in the Open Directory project2 in May 2006 are 

voted "normal", and all the UK hosts ending in .ac.uk, .sch.uk, .g0v.uk, .mod.uk, .nhs.uk 

or .police.uk are voted "normal". Intuitively, the pages in these domains are rarely spam. 

Whether a page is spam is labeled by assigning 1 point to each vote of "spam", 0.5 point 

to each vote of "borderline", and 0 point to each vote of "normal". The final label for a 

host is determined by the average of points from all votes on this host: an average of over 

0.5 point is "spam", an average of less than 0.5 point is "normal", and an average of 0.5 

point is "undecided". 

All the experiments were conducted on a P C  computer running the Microsoft Windows 

XP SP2 Professional Edition operating system, with a 3.0 GHz Pentium 4 CPU, 1.0 GB 

main memory, and a 160 G B  hard disk. The program was implemented in C/C++ using 

Microsoft Visual Studio. NET 2003. 

5.2.1 Spamicity Distribution 

We constructed the Web graph using the pages in the base data set and computed the 

PageRank scores of the pages. For the pages in the spam test collection, we extracted the 

(0.8,3)-farms (that is, the parameters 8 and Ic are set to 0.8 and 3 respectively). 

Spam m 

Characteristics-based spamicity 

Figure 5.4: The effectiveness of spamicity in 
Figure 5.3: The effectiveness of spamicity in 

spam detection (characteristics-based spam- 
spam detection (utility-based spamicity). 

icity) . 
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Figure 5.3 and Figure 5.4 show the distribution of normal, borderline and spam pages in 

the subsets of pages with various ranges of utility-based spamicity scores and characteristics- 

based spamicity scores, respectively. In the characteristics-based spamicity computation, we 

set the Minkowski distance parameter y = 2 by default. When the spamicity is low, most 

pages are normal pages. When the spamicity is high, most pages are spam pages. Particu- 

larly, in this data set, when the utility-based spamicity is over 0.7 and the characteristics- 

based spamicity is over 45, most pages are spam. This set of experiments show that the two 

spamicity measures can discriminate spam pages from normal ones. 

5.2.2 Detecting Spam Pages 

Precision 
Recall . . . .  D ........ 

0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 
Utility-based spamicity threshold 

(a) Utility-based spamicity. 

30 35 40 45 50 55 60 65 70 75 
Characteristics-based spamicity threshold 

(b) Characteristics-based spamicity. 

Figure 5.5: The precision and the recall of utility-based and characteristics-based spamicity 
measures (spamicity threshold). 

We can simply set a spamicity threshold. The pages over the threshold are classified as 
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spam. The pages lower than the threshold are classified as normal. Figure 5.5 shows the 

precision and the recall of the two spamicity measures with respect to various spamicity 

threshold values. 

In information retrieval, precision and recall are the two basic measures used in evalu- 

ating search strategies [5]. Recall is the ratio of the number of relevant records retrieved to 

the total number of relevant records in the database. Precision is the ratio of the number of 

relevant records retrieved to the total number of irrelevant and relevant records retrieved. 

These two measures are usually expressed as a percentage. 

Percentage threshold of utility-based spamicity 

(a) Utility-based spamicity. 

Percentage threshold of characteristics-based spamicity 

(b) Characterist ics-based spamicity. 

0.65 
0.6 

Figure 5.6: The precision and the recall of utility-based and characteristics-based spamicity 
measures (percentage threshold). 

- 
Precision ----X---- - 

- Recall If - 

Generally, when the spamicity threshold goes up, fewer pages are detected as spam. The 

0.55 
8 9 10 11 12 

precision increases and the recall decreases. When the threshold is in the range of 0.7 to 

0.74, the utility-based spamicity achieves the precision of more than 90% in detecting spam 

pages, and can catch more than 85% of the spam pages. When the threshold is in the range 
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of 40 to  50, the characteristics-based spamicity has the precision and recall of more than 

75%. The utility-based spamicity is more effective than the characteristics-based spamicity. 

Alternatively, we can set a percentage threshold s and classify the top-s% pages having 

the highest spamicity scores as the suspect of spam pages, and the other pages as normal. 

Figure 5.6 shows the precision and the recall with respect to various percentage threshold 

values. Generally, as s increases, more pages are selected as spam pages. The precision 

decreases but the recall increases. When s is in the range of 8% to 9%, the precision and the 

recall of spam detection using utility-based spamicity is more than 90%. The detection using 

characteristics-based spamicity also achieves the best result in this range. This matches the 

ground truth (9.1% of the pages in this data set are spam) well. The utility-based spamicity 

is clearly more effective than the characteristics-based spamicity in detection quality. 

0,5 1- Utility-based spamicity (precision) - -X- - - .  
SoamRank (orecision) 

0.4 utility-based spamidity (recall) - - 0 -  
SpamRank (recall) -----A---- - 

0.3 
8 9 10 11 12 

Percentage threshold 

Figure 5.7: The utility-based spamicity method and SpamRank. 

We also compared the utility-based spamicity method with SpamRank [9], which is the 

only existing method that  detects link spam by assigning a spamicity-like score and does not 

need supervised training. SpamRank uses personalized PageRank that detects pages with 

an undeserved high PageRank value without the need of supervised training. It assumes 

that  spam pages have a biased distribution of pages that contribute to  the undeserved high 

PageRank value. SpamRank penalizes pages that originate a suspicious PageRank share 

and personalizes PageRank on the penalties. We tried our best to implement the method as 

described in 191. The results are shown in Figure 5.7. The utility-based spamicity method 

outperforms SpamRank in both precision and recall. 
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5.2.3 Effects of Page Farms in Spam Detection 

, 1 

theta 

(a) Precision. 

theta 

(b) Recall. 

Figure 5.8: The effect of page farms on spam detection accuracy. 

We further examined the effects of page farms on the accuracy of the spam detection. 

Since the utility-based spamicity is better than the characteristics-based spamicity, we only 

show the results on utility-based spamicity in Figure 5.8. We varied parameters 8 and k and 

extracted (8, k)-farms, then classified the top 9% of the pages of the highest utility-based 

spamicity as the spam pages. We measured the precision and the recall of spam detections 

using different (8, k)-farms. 

As discussed before, when 8 and k increase, the page farms are more accurate. Figure 5.9 

shows the average size of farms for those hosts in the spam test collection and it strongly 

supports our claim. Thus, the spam detection quality improves when larger and more 

accurate page farms are used. Using (8,3)- and (8,4)-farms is much better than using 

(8,2)-farms. The advantage of using (8,4)-farms against using (8,3)-farms is very small. 
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0.8 

theta 

Figure 5.9: The size of farms by setting different 8 and k. 

Also, the quality is not very sensitive to 8 when 8 2 0.7. This shows that whether a page is 

spam can be confidently determined using some near neighbors of the page. 

5.2.4 Summary 

Spam detection using page farms is highly feasible and effective. The utility-based spamicity 

is effective. Spam detection using utility-based spamicity can achieve high precision and high 

recall a t  the same time. Interestingly, when the data set is formed, the human volunteers 

made judgements mostly based on the content of the pages. However, using the link analysis 

we can detect more than 90% of the spam. This strongly indicates that most spam pages 

on the real Web use both link spam and term spam. 
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Discussions and Conclusions 

As our world is now in its information era, a huge amount of data is accumulated everyday. 

The Web is a such kind of information collection. Though the pace has slackened since the 

early years (1994 - 1999), the Web continues to grow [18, 331. Search engines are designed 

to help users to find useful information from the Web. They started from their IR ancestors 

but made a substantial technological leap. In the recent years, the information foraging on 

the Web is vastly easier than in the early years, but it is running up against the "syntactic 

search" barrier. Ranking metric is the spirit of a search engine. Since its birth with the first 

search engine, it has evolved from the original content-based ranking to the nowadays link 

structure-based ranking. However, recently search engines are facing a lot of challenging 

problems, such as Web spam, content evolution, and so on. Obviously, how to rank the Web 

pages effectively and efficiently is becoming more and more important in the Web mining 

and Web search areas. 

In this thesis, we focus on the problem of page farm mining. We are trying to understand 

the essence of the rankings of Web pages. In general, we are interested in how a target page 

collects its ranking scores from the contributors. Understanding this question has some 

interesting and important applications, such as Web spam detection and Web community 

identification and analysis. 

In this chapter, we first summarize the thesis, and then highlight the major character- 

istics of our page farm model. At last, we discuss some interesting and important future 

directions. 
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6.1 Summary of the Thesis 

Ranking pages is an essential task in Web search. One interesting problem is, for a Web 

page p, what other pages are the major contributors to the ranking score of p, and how 

is the contribution made. In this thesis, we study the page farm mining problem and its 

application in link spam detection. We conclude our major contributions as follows. 

0 First, we study the page farm mining problem. A page farm is a (minimal) set of pages 

contributing to  (a major portion of) the PageRank score of a target page. We propose 

the notions of Sfarm and (8, k)-farm, where 8 in [ O , 1 ]  is a contribution threshold and 

k is a distance threshold. We study the computational complexity of finding page 

farms, and show that it is NP-hard. Then, we develop a practically feasible greedy 

method to extract approximate page farms. 

0 Second, we empirically analyze statistics of page farms using over 3 million Web  pages 

randomly sampled from the Web. We have a few interesting and exciting findings. Most 

importantly, the landscapes of page farms tend to  follow the power law distribution. 

Moreover, the landscapes of page farms strongly reflect the importance of the Web 

pages, and their locations in their Web sites. To the best of our knowledge, this is the 

first empirical study on extracting and analyzing page farms. 

0 Third, we investigate the application of page farms i n  link spam detection. We propose 

two methods. First, we measure the utility of a page farm, that is, the "perfectness" 

of a page farm in obtaining the maximum PageRank score, and use the utility as an 

index of the likeliness of link spam. Second, we use the statistics of page farms as the 

indicator of the likeliness of link spam. Using those measures we can detect link spam 

pages. 

0 Last, we evaluate our link spam detection methods using a newly available real data 

set. The pages are labeled by human experts. The experimental results show that our 

methods are effective in detecting spam pages. 

6.2 Characteristics of the Page Farm Model 

We have proposed a novel Web link structure model, page farm model, to understand the 

essence of the rankings of Web pages. We summarize the major characteristics of the page 
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farm model here. 

T h e  page farm model introduces the  landscapes of ecology environments  for pages o n  

the  Web .  Previous work either treated each page isolated or took into account a 

set of pages as a whole. However, no work has been done to analyze the ecology 

environments of the Web, that is, the general relations of pages to their environments 

on the Web. The understanding of such relations has a few important applications, 

including Web community identification and analysis, and Web spam detection. 

T h e  page farm model takes in to  account the  ranking contributions from a W e b  page t o  

a target page. Different from the simple neighborhood graphs for a given target page, 

in the page farm model, we rank the contributions from different Web pages and use 

the most important contributors to characterize the target page. The pages in the 

page farm have high contributions to the target page. Analyzing the page farms of 

Web pages can help to further understand the essence of the rankings of Web pages. 

T h e  page farm model adopts simple yet efficient greedy algorithm to  extract approxi- 

m a t e  page farms. The simple extraction algorithm introduced in Section 4.1.1 needs 

many iterations of PageRank score computation. We propose a greedy algorithm 

which can reduce the running time greatly, a t  the same time maintain good accuracy 

of the results. 

T h e  page farm model has  some great potentials in W e b  spam detection, W e b  communi ty  

identification, and some  other important applications. We evaluate the page farm- 

based link spam detection methods, and the experimental results strongly show that 

our methods are effective. Moreover, the experimental results also reveal that the 

landscapes of page farms strongly reflect the importance of the Web pages, and their 

locations in their Web sites. 

T h e  page farm model can be extended to  some  other ranking algorithms. Currently, our 

page farm model is based on PageRank. However, we can use the same idea of page 

farms described in the thesis and apply it to  some other ranking algorithms easily. 

Basically, given a target page p, the page farm of p is the contributors of the ranking 

score of p. 
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6.3 Future Work: Extensions and Applications of Page Farms 

We have shown that the page farm model can be used to understand the essence of the 

rankings of Web pages, and to detect link spam pages on the Web effectively. Interestingly 

and surprisingly, the page farm model is also applicable to mining other kinds of knowledge 

and solving some other interesting Web mining and Web search problems. In this section, 

we discuss some examples. 

6.3.1 Mining Core Pages and Farms from the Web 

According to Theorem 2 and Corollary 3 introduced in Chapter 4, the page which has at 

least one out-link contributes to the PageRank scores of some other pages on the Web. One 

interesting question would be, given one page p, how many pages that p contributes to. 

Moreover, what are these pages contributing to most of the pages on the Web? Given a 

Web graph G = (V, E) and a minimum support threshold S, a single page which has an 

occurrence (that is, the number of page farms it appears in) larger than S can be defined as 

a core Web page. A set of pages which are appearing in a t  least S page farms at  the same 

time can be defined as a core page set. 

The core page identification problem takes into consideration only the isolated Web 

pages. There is not necessary to have directed links among those core pages. Another 

interesting question is, whether we can find those core structures among core pages on the 

Web. Given a Web graph G = (V, E), a farm can be defined as a directed connected 

subgraph of G. A core farm F = (V', El) is a farm such that V' is a core page set, and E' 

contains the directed edges induced by the pages in V'. 

Mining core pages and farms has some interesting and useful applications. For exam- 

ple, we may understand the Web link structures further. The core farms consist of those 

"strongly" connected communities on the Web. Moreover, analyzing those core farms over 

time may help to understand the Web evolution. 

6.3.2 Web Page Classification Using Page Farms 

Automatic classification and categorization of Web pages is an important issue in the design 

of search engines. It is critical in Web information extraction. Simple text-based approaches 

are typically used nowadays, but most of the information provided by the page layout and 

link structure is discarded. Only some visual features, such as the font face and size, 
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are effectively used to weigh the importance of the words in the page. Thus, text-based 

approaches sometimes cannot obtain good results. 

Recently, some researchers are tying to classify Web pages based on their link struc- 

tures [19, 61, 381. As a new research topic, the effectiveness and the efficiency of link 

structure-based Web page classification methods still need substantial development. 

Our page farm model has some potentials to classify Web pages as well. If two page 

farms Fp and F, are very similar to each other, are page p and q similar to each other, 

too? Our empirical analysis in Chapter 4 shows some probability of positive answer to this 

question. Thus, we may use page farms to classify Web pages. 

6.3.3 Detecting Term Spam Pages 

We already show the effectiveness of our page farm-based link spam detection methods in 

detecting link spam. As Gyongyi et al. concluded in [36], generally, the current Web spam 

technologies can be classified into two categories, link spam and term spam. Term spam 

is the trick which is the practice of "engineering" the content of Web pages so that they 

appear relevant to popular searches. 

In evaluating textual relevance, search engines consider the fields, which are the locations 

on a Web page where the query terms occur. Each type of location is called a field. The 

common text fields for a page p on the Web are the document body, the title, the meta tags 

in the HTML header, and page p's URL. In addition, the anchor texts associated with URLs 

that point to p are also considered belonging to page p (anchor text field), since they often 

describe very well the content of p. The terms in the text fields of p are used to determine 

the relevance of p with respect to a specific query which is a group of query terms, often 

with different weights given to different fields. 

Clearly, our page farm-based spam detection methods can be extended to detect term 

spam as well. For example, we can define the utility-based term spamicity for each page so 

as to find those pages which have extremely high term spamicity scores. Such pages can be 

classified into term spam pages. Moreover, we can combine the link-based spamicity with 

the term-based spamicity so as to obtain a global spamicity score for a Web page. This 

would be an interesting and effective way to detect spam pages on the Web thoroughly. 
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6.3.4 Other Future Directions 

More Efficient Extraction Algorithms 

In order to extract the page farms, we propose a simple yet efficient greedy algorithm. Com- 

paring to the simple extraction algorithm introduced in Section 4.1.1, the greedy algorithm 

in Section 4.1.3 outperforms in its running time but maintains good accuracy of the results. 

However, as we can see the comparison in Figure 4.5, the page farm extraction using current 

greedy algorithm is still a time-consuming task. The running time is generally linear to the 

number of pages for which we want to extract the page farms. One of our future work is to  

design even more efficient algorithms for the page farm extraction. 

Web Evolution Analysis based on Page Farms 

The Web is a constantly evolving dynamic information collection. One important and 

interesting research topic is to examine the change and evolution of the Web. The questions 

we are interested in include "how much new content is introduced to the Web every day?", 

"how often do Web pages change?", "how can we model the changes of Web pages?", etc. 

Some previous work has been done to evaluate the evolutions of the Web. For example, 

Ntoulas et al. [57] found that existing pages are being removed from the Web and replaced 

by new ones at  a very rapid rate. However, new pages tend to ''borrow" their content 

heavily from existing pages. The minority of pages that do persist over extended periods 

of time typically exhibit very little substantive change, although many undergo superficial 

changes. 

It would be interesting to investigate the evolutions of the Web based on page farm 

analysis. Since page farms reveal the ecology environments of Web pages, the changing of 

environments would reveals some information about the changing of pages. 

New Web Page Ranking Metrics 

In recent years, search engines are facing many challenging problems, such as Web spam, 

content evaluation, and so on. How to rank the pages efficiently and effectively is becoming 

more and more important. Even more, some previous work reveals that the current ranking 

metrics adopted by search engines have their bias. For example, in [20], Cho et al. inves- 

tigated the problem of page quality. In [20], they discussed how to quantify the subjective 

notion of page quality, how well the existing search engines measure the quality, and how 
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they might measure the quality of a page more directly. As a conclusion, they introduced 

the "rich gets richer" phenomena on the Web due to the search engine bias. It is on demand 

to design new ranking metrics for the new generation of Web search engines. 

Page farms provide more comprehensive information than the target pages themselves. 

We may design the ranking metrics by considering not only the pages themselves, but also 

those pages in their page farms. Such kind of ranking metrics would be robust. 

The Web has become a vast storehouse of information and knowledge, which is built 

in a decentralized yet collaborative manner. Web mining - "the automatic discovery of 

interesting and valuable information from the Web" [18] - has therefore become an important 

theme in data mining area. I t  is the data miner's responsibility to  distinguish the gold from 

the dust. 
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