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Abstract 

The goal of this project is to use statistical methods to identify players and combinations 

of players which affect a basketball team's performance. The traditional statistics which 

are recorded tell us only about the contribution of individual players (eg. points scored, 

rebounds, etc). However, there are subtle aspects of play such as defensive help, setting 

screens and verbal communication that are known to be important but are not routinely 

recorded. The model we propose is based on the Bayesian social relations model. The 

results help us identify aspects of player performance. Data from the NBA 2004 and NBA 

2005 finals are used throughout the project to illustrate our approach. 

Keywords: Bayesian social relations model, Dyadic data, WinBUGS 
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Chapter 1 

Introduction 

1.1 Basketball history 

As taken from Wardrop (1998), "Basketball was invented in 1891 by James Naismith, a 

physical education instructor at  the YMCA Training School in Springfield, Massachusetts, 

USA. The game achieved almost immediate acceptance and popularit.y, and the first colle- 

giate game, with five on each side, was played in 1896 in Iowa City, Iowa, USA." Although 

basketball is very much an "American game", James Naismith was a Canadian. 

From its humble beginnings, basketball has gained nearly world-wide acceptance and 

is played professionally in many countries iilcluding the United States, Spain, Italy, Yu- 

goslavia, Israel and Australia. However, the premier league for men's basketball is the 

National Basketball Association (NBA) where players have yearly salaries as much as $20 

million US dollars. The interest in NBA basketball is therefore a big business enterprise. 

1.2 Overview of basketball statistics 

Considering the popularity of basketball, the amount of statistical research in basketball has 

been relatively small compared with other major sports such as baseball. Some research 

in refereed journals has focused on statistical models for shooting. Gilovich et a1 (1985) 

considered the modelling of shooting and this was followed up by Tversky and Gilovich 
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(1989). These papers examine shooting data from three sources: a controlled study of 

college basketball players, game data of NBA players, and free throw game data of NBA 

players. The research shows that on most occasions studied, the simple model of Bernoulli 

trials is adequate to describe the outcomes of a player's shots, but on some occasions the 

Bernoulli trials model is inadequate. 

A key element in analyzing the success or failure of basketball teams is the study of its 

individual players. There are two aspects of player analysis: (1) the categorization of players 

by type; and (2) the rating of individual players using computations based on statistical 

methods. 

Ghosh and Steckel (1993) analyzed data with the goal of categorizing players according 

to player type. The names and characteristics of their resultant clusters are provided below. 

0 Scorers: Scorers take the most shots, score the most points, and are the best free 

throw shooters. 

Dishers: Dishers lead in assists and steals, and are almost as good as scorers at  

shooting free throws. They are the worst at  shot blocking and rebounding, and 

commit the fewest number of fouls. 

0 Bangers: Bangers lead in offensive and defensive rebounds, and have the second best 

field goal percentage. They are the worst free throw shooters. 

0 Inner Court: The inner court has the highest field goal percentage and attempts the 

most free throws. They are second in scoring, blocks and offensive rebounds, and 

third in defensive rebounds. 

Walls: The walls lead in blocked shots and fouls committed. They are second in 

defensive rebounds and third in offensive rebounds. They attempt the fewest field 

goals and free throws, and are the lowest in steals, assists, and points. 

0 Fillers: The fillers are a heterogeneous group. They are second highest in steals and 

fouls committed. 

The team with the most points wins the game. But how can one measure ail individual 
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player's contribution to his team's success? That is a difficult question. Bellotti (1992), 

Heeren (1988) and Trupin and Couzens (1989) have contributed to this problem. 

Bellotti (1992) and Heeren (1988) provide simple formula. For example, Bellotti (1992) 

simply adds and subtracts traditional statistics according to whether the statistics are good 

or bad. Bellotti (1992) uses the proposed formula to obtain the top NBA players of all time, 

and ranks them on a per minute basis. Trupin and Couzens (1989) assign different weights 

to the various good and bad statistics. 

Perhaps the greatest non-refereed source for quantitative analyses in NBA basketball is 

available from the website wwu1.82games.com. The articles investigate all sorts of questions 

related to basketball and generally use sound but simple statistical analyses. The site also 

provides resources and analysis tools for NBA front office executives. 

Another interesting source of quantitative analyses in basketball is the book "Basketball 

on Paper" by Oliver (2004). It  is a summary of one man's years of experience in reducing 

the game of basketball to numbers. 

1.3 The goal of this project 

The traditional statistics which are recorded for each game (eg. assists, rebounds, points 

scored, etc) only tell us about the contribution of individual players. However, there are 

subtle aspects of play (eg. defensive help, setting screens, verbal con~munication) that are 

known to affect the game but are not routinely recorded. 

We intend to use statistical methods to identify players and coinbinations of players 

which affect the game. Fortunately, the response variables (1) points scored for and (2) 

points scored against are the obvious choices to study. We consider a Bayesian a.nalysis of 

dyadic data using U'inBUGS software where the data are taken from the 2004 and 2005 

NBA finals. In Chapter 2, we introduce the software package WinBUGS. In Chapter 3, we 

review the traditional social relations model, and the Bayesian social relations model. In 

Chapter 4 we modify the BSRM to suit our NBA data sets and discuss the inclusion of 

covariates. We provide some concluding remarks in Chapter 5. 



Chapter 2 

Bayesian Analysis using WinBUGS 

WinBUGS is a program for Bayesian model fitting that runs under Windows and can be 

freely downloaded from www.mrc - bsu.cam.ac.uk/bugs. The program is fully described 

on that website. This program's help facility also includes a large number of examples 

consisting of data sets and associated WinBUGS programs. As a stand alone program 

WinBUGS is usually run interactively through a series of menus and toolbars. However the 

current version, WinBUGS 1.4.1, includes a scripting language so that model fitting can be 

automated and controlled by a script file. 

2.1 Bayesian model fitting using Markov chain methods 

The scale of literature on Bayesian analysis is such that it is impossible to give a compre- 

hensive review, but a brief account and references should be sufficient to enable anyone to 

follow their way through the WinBUGS program. 

The Bayesian approach to  statistics is fundamentally different from the classical ap- 

proach. In the classical approach, the parameter, 0, is thought to be an unknown but fixed 

quantity. Data X are drawn from a population indexed by 8, and based on the observed 

value X = x, knowledge about the value of 8 is obtained. In the Bayesian approach, 6' 

is considered to be a random quantity whose variation can be described by a probability 

distribution (called the prior distribution). This is a subjective distribution, based on the 
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experimenter's belief, and is formulated before the data are seen. Data are then taken from 

a population indexed by 8 and the prior distribution is updated with this data information. 

The updated prior distribution is called the posterior distribution. 

If we denote the prior distribution by n(8) and the density by f (zJ8): then the posterior 

distribution, the conditional distribution of 8 given x, is 

where f(x) is the marginal distribution of X. that is 

The marginal distribution of X often presents a problem in that it may be very difficult 

to calculate; typically this requires either a very large summation or a inultidimensional 

integral. For many years the difficulty of evaluation of the marginal distribution effectively 

restricted Bayesian analyses to simple problems in which the integration was tractable. 

Then, in the later 1980's, Bayesian statisticians start.ed to implement Monte Carlo integra- 

tion, that is integration by simulation. Suppose then that you are able to generate a sample 

81, 82, ..., On from the posterior distribution. Then the integral 

can be approximated by 

where the function m = m(8) provides a posterior quantity of interest. For example, 

m = m(8) = 8 gives I (m)  equal to the posterior mean. 

Now it is rarely a simple matter to generate a sample 81, 82, ..., 8, directly from the 

posterior. Instead, it may be easier to construct a Markov chain 81, 65, ..., 8, whose 

equilibrium distribution is the posterior. This procedure is known as Markov chain Monte 

Carlo (MCMC) and WinBUGS is a software program that constructs Markov chains. 
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2.2 Specifying models in WinBUGS 

WinBUGS has its own language for specifying models and this is described in detail in 

the WinBUGS manual (http://mathstat.helsinki.fi/openbugs/), although many people find 

it easier to learn the language by following the accompanying WinBUGS examples. We 

will consider a simple model that illustrates how WinBUGS is run. Suppose that we have 

a random variable y that is the number of successes in n independent trials with success 

probability 8, the candidate model is, 

y - Binomial (n,  8) 

For a Bayesian analysis we must state our prior belief for the parameter 8. For example, 

we may consider prior distribution 

8 - Uni f orm(0, l )  

We could describe this model in WinBUGS using the more or less self-explanatory code 

model { 

y~ dbin(theta, n) 

theta N dunif(0, 1) 

1 

The WinBUGS language is closely modelled on S-Plus and R in which the combined 

syn~bol < - is used to denote assignment. The symbol N denotes that the variable to the 

left has a probability distribution given by the distribution on the right. Notice that the 

order of the binomial parameters in WinBUGS is reversed. 

WinBUGS requires two other pieces of information before it can fit the model: the data 

and some initial values for the MCMC chain. Once again WinBUGS adopts the R style for 

data structures and so data are usually given as lists. For our example the data might be 

supplied as 

and the initial values could be 

list( theta = 0). 
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2.3 Running WinBUGS 

WinBUGS uses compound files with the .odc extension. A compound file contains various 

types of information (formatted text, tables, formulae, plots, graphs, etc) displayed in a 

single window and stored in a single file. The tools needed to create and manipulate these 

information types are available, so there is no need to continuously move between different 

programs. WinBUGS has been designed so that it produces output directly to a compound 

file and can get its input directly from a compound file. Let us assume that our model, 

data and initial values are stored in text files called Mybugwithout i . txt ,  data2004.txt,  

and inits2004.txt, and that these files are stored in the folder c:/lucyproject. To run 

the model all we need is another text file containing the script. 

A basic script for our problem might be stored as script. txt  and consist of 

display('1og') 

check('c:/lucyproject/Mybugwithouti.txt ') 

data('c:/lucyproject/data2004. txt ') 

compile(1) 

inits(1, 'c:/lucyproject/inits2004.txt') 

update(10000) 

set ('alpha') 

set ('beta') 

update(100000) 

coda(*.':/lucyproject/out ') 

quit 0 

Line 1 opens a WinBUGS log window in which we will be able to follow the progress 

of our script and possibly see any error messages. Line 2 asks WinBUGS to check that 

our model description is syntactically correct; it is at  this stage that we pick up the typing 

errors, missed brackets, etc. Line 3 reads the data and then line 4 conlpiles our model into a 

program for analyzing our problem. The '1' in the compile statement tells WinBUGS that 

we only intend running one chain. However running several parallel chains is a good way 

of discovering whether the chains have converged. Line 5 reads the initial values for chain 

1 and then on line 6 a MCMC chain of length 10000 is created. This initial chain is called 
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the burn-in and will be discarded by WinBUGS because we have not told it to store any 

results. The burn-in is intended to allow the chain to stabilize and so remove the effects 

of the initial values. Deciding on the appropriate length of the burn-in is an art in itself. 

The two set commands in line 7 and line 8 tell WinBUGS to store cr and ,O in subsequent 

simulations. Then in line 9 a further chain of length 100000 is run. The stored values of cr 

and ,O are written to an output file in coda format. C o d a  is a program written in S-plus 

that was designed for examining MCMC output. In particular, C o d a  can be used to help 

assess whether the chain has converged. Finally the qu i t  command closes WinBUGS. If 

the qu i t  command is omitted then WinBUGS stays active after the script is executed. This 

can be helpful when you need to debug a program. 

To run scr ipt . txt ,  we could open scr ipt . txt  in a running WinBUGS, click Model - > 

Script on the main menu. 



Chapter 3 

Modelling 

3.1 The social relations model 

The social relations model (SRM) was developed by Larry La Voie and David A Kenny 

and named after the interdisciplinary social science department at Harvard University that 

no longer exists. The model describes dyadic relationships when variables are measured 

on a continuous scale. Data from two-person interactions and rating or sociometric studies 

can be used. The level of measurement should be interval (eg. seven-point scales) and not 

categorical (e.g. Yes/No). Generally the data are collected froin people but the dyadic units 

can be animals, groups, organizations, cities, countries, etc. 

The SRM is a special case of generalization theory (Cronbach et al., 1972) with the 

basic model being a two-way random-effects analysis of variance with three major types 

of effects: actor, partner, and relationship effects. The actor effect represents a person's 

average level of a given behaviour in the presence of a variety of partners. The partner 

effect represents the average level of a response which a person elicits from a variety of 

partners. The relationship effect represents a person's behaviour toward another individual 

in particular, above and beyond their actor and partner effects. For example, in the study 

of interpersonal attraction, the actor effect is how much a person likes others. The partner 

effect is how much the person is liked in return. Relationship effects are directional or 

asymmetric. To differentiate relationship effects from error variance, multiple indicators of 
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the construct, either across time or with different measures, are necessary. 

The focus in the SRM is not on estimating the effects for specific persons and relation- 

ships but in estimating the variance due to effects. So, in a study of how intelligent people 

see each other, interest is in whether there are actor, partner, and relationship variances. 

Actor variance would assess if people saw others as similar in terms of intelligence, partner 

variance would assess whether people agree with each other in their ratings of intelligence, 

and relationship variance would assess the degree to which perceptions of intelligence are 

unique. The mathematics of the SRM can be found in the book "Interpersonal Perception: 

A Social Relations Analysis" (http://davidaXxnny.net/ip/znterbok.htm) by David A. Kenny 

(1994). 

There has been extensive research using the SRM. Consult the "Interpersonal Percep 

tion: A Social Relations Analysis" page to see the type of questions that can be answered 

using the model. Any response that is dyadic can be studied using the model. 

The most common social relations design is the round-robin research design. In this 

design, each person interacts with or rates every other person in the group, and data are 

collected from both members of each dyad. The scores of the two people are usually different. 

Usually there are multiple round robins. 

We restrict our attention to the situation where the response is measured on a contiiluous 

scale, a t  least approxin~ately. For continuous data, the model expresses the paired responses 

in an additive fashion 

where ,LL is the overall mean, ai is the effect of subject i as an actor, pj is the effect of 

subject j as a partner, yij is an interaction effect representing the special adjustment which 

subject i makes for subject j as a relationship effect and Ei jk  represents the error term 

which picks up measurement error and/or variability in behaviour on different occasions. 

The expected responses E(yijk) and E(yjik) differ as the actor and partner have different 

parameters. We refer to 11, the a 's ,  the p's and the y's as first-order parameters With i = 
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1 ,..., m , j = l ,  ..., n~ and k = 1, ..., nij, there are mj2 + m + 1 such parameters and C. nij 2 f . I  

observations. Thus, even in the simple structure (3.1.1) where relatively few observations 

are available to identify parameters, a Bayesian approach suggests itself. 

The SRM goes on to assume that the overall mean p is fixed but that the other terms 

in (3.1.1) are randonl. Specifically, it is assumed that 

2 and all other covariances are zero. The parameters {u:, 06, u;, a, , pap, p,, , pCC ) are called 

the variance-covariance parameters (or components). As the subjects are a sample from a 

population, the variance-covariance population parameters are of primary interest. These 

parameters model the variability and co-variability of social/psychological phenomena in a 

population of human subjects. 

The interpretation of the variance-covariance parameters is naturally problem specific. 

However, for the sake of illustration, suppose that the response yijk is the measurement of 

how much subject i likes subject j based on their kth meeting. In this case, pap represents 

the correlation between ai and pi, i = 1 ,..., m, and we would typically expect a positive 

value. That is, an individual's positive (negative ) attitude towards others is usually recip 

rocated. The interpretation of p,, is typically more subtle. In this example, a positive 

value of p,, may be interpreted as the existence of a special kind of "sympatico" when two 

individuals hit it off and vice-versa. In the social psychology literature, this is referred to 

as dyadic reciprocity (Kenny 1994). 

3.2 The Bayesian social relations model 

When developing the Baysian analogue BSRM of the SRM, Gill and Swartz (2001) main- 

tain the first and second moment assumptions as in (3.1.2), but go further by assigning 



CHAPTER 3. MODELLING 12 

distributional forms to the parameters. Specifically, let pij = p + ai + /3:, + yij and assume 

conditionally 

( )  - Norm,a12 [(a) , CY] 
'Yj i 

where k = 1, ..., nij, 1 5  i # j 5 mand  

Up to this point, the Bayesian model has not introduced any new parameters. However, 

it is sensible to express our uncertainty in the variance-covariance parameters and to also 

regard p as random. Therefore, following conventional Bayesian protocol for linear models 

(Gelfand, Hills, Rxine-Poon and Smith 1990). 

where X - Gam,m,a [a, implies E(X) = a/b. 
bl 
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The parameters subscripted with a 0 in (3.2.1) are referred to as hyper-parameters 

and are often set to give diffuse prior distributions for the parameters B,,,, 0: and CaD. 
Diffuse distributions are useful when a user does not have strong prior opinions regarding 

parameters. The choices are robust in the sense that inferences do not change dramatically 

when the hyperparameters are perturbed. For more information on the setting of the 

hyperparameters, see Gill and Swartz (2004) 

3.3 The Bayesian social relations model in basketball 

Although there is great interest in basketball performance, there are no analyses based on 

statistical models which investigate the performance of players and combinations of players. 

In the previous sections of this chapter, we discussed the SRM and the BSRM. Based on 

the BSRM developed by Gill and Swartz (2004), we propose tlie following model for NBA 

finals data which will help us look closer at  the performance of players and combinations 

of players. By extensive viewing of videotape, we collected scoring data and lineup data 

during different time intervals. During each time interval, there is one stable lineup and 

scoring results are recorded. Note that scoring records were not recorded during tlie last 

minute of matches where excessive fouling often occurs. 

For a given line in our data set corresponding to t seconds of play, let yl be the number 

of points scored by team 1 and let y2 be the number of points scored by team 2. We assume 

where 

and 

where 
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Our model assumes that the number of points scored by team 1 and team 2 are Poisson 

with the expected number of points proportional to the length of the time interval during 

which the lineups for both teams are constant. Although in basketball, points can be scored 

in increments of 1, 2 or 3 points, the Poisson assunlption may be reasonable as the time 

intervals are never too short. We might think of a time interval as consisting of a large 

number of possessions where each possession has the potential of having points scored. 

The total number of points over all of the possessions in a time interval may therefore be 

approximately normal due to the Central Limit Theorem. We prefer the Poisson distribution 

due to its discreteness and skewness. In a more comprehensive analysis, we would like to 

use statistical methods to check the propriety of the Poisson assumption. 

In (3.3.1) and (3.3.2), we express the scoring rates O1 and O2 in a log-linear fashion. The 

log term is introduced to ensure that scoring rates are non-negative. With respect to 81, 

(1) (3.3.1) stipulates that scoring for team 1 depends on the five players on team 1 (al , ..., 
(2) (2) a:')) and the five players on team 2 (PI , ..., ,Os ) who are on the court during the particular 

time interval. The a 's therefore represent offensive a,bility with large values corresponding 

to good offensive players. Similarly the p's represent defensive ability with large values 

corresponding to bad defensive players. Although only five a 's and five p's show up in the 

model for each line of our data set, we actually have twelve a 's  and twelve ,f?'s corresponding 

to a team's roster. For WinBUGS programming, we use subscripts one to twelve for team 

1 players and thirteen to twenty-four for team 2 players. 

There is another widely acknowledged element that affects scoring. It  is the home court 

advantage. We add the parameters r(l) and r(2) to our model structure. The parameter 

r(') is the home court advantage for team 1 where r(') = r = log(4.0/48) when the game 

is played in team 1's city, otherwise it is set to 0. The parameter r(2) is the home court 

advantage for team 2 where r(2) = r = 1og(4.0/48) when the game is played in team 2's 

city, otherwise it is set equal to 0. The parameter r is set as a constant since it is well 

known that the NBA home court advantage is worth roughly 4.0 points per game. 

We consider the parameters to have the same prior distributions as the parameters in 

the BSRM of Gill and Swartz (2007) 
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where i = 1, ..., 24, and k = 1,2 with 

We also looked at  some more complex models that involved interaction terms between 

players. First, we considered adding all the interaction terms in the model, but this lead 

to convergence problems. This was because we had too many interaction terms and not 

enough data. As a result, our model became unidentifiable. Let us explain it another 

way. In regression analysis, there is a full rank assumption for the design matrix. In order 

for (X'X) to be invertible ((x'x)-I exists), the X matrix needs to have full (column) 

rank. This means that all of the columns of X must be linearly independent. We have a 

similar problem with our model. Our log-linear relationship (either (3.3.1) or (3.3.2)) can 

be expressed using a design matrix X. Each column in the matrix represents a parameter 

in our model, each row in the matrix represents a stable lineup in our data set. When we 

include all of the interaction terms in our model we add (:4) = 276 more parameters, but 

we have just 129 rows for the NBA 2004 finals and 204 rows for the NBA 2005 finals. In 

these cases, the column rank exceeds the number of rows leading to an unidentifiable node1 

with convergence problems. 

We therefore tried to fit the model with some interaction terms that we found interesting 

but still maintaining an identifiable model. For the NBA 2004 finals, we chose Shaquille 

ONeal and Kobe Bryant as our interesting players. Because Shaquille ONeal and Kobe 

Bryant have extreme styles and each demand the ball, they are controversial. Kobe Bryant 

tends to shoot too much and not pass, Shaquille ONeal is dominant because of his size. We 

chose 19 interaction terms which were combinations of Shaquille ONeal and Kobe Bryant 

with other players. For the NBA 2005 finals, we chose Bruce Bowen and Tayshaun Prince as 

our interesting players since they are known as defensive specialists. We chose 17 interaction 

terms which were combinations of Bruce Bowen and Tayshaun Prince with other players. In 

both cases, we did not have convergence problems, but all the interaction term effects were 

small compared to the main effects. We therefore decided to stick to our original model. 



Chapter 4 

Analysis of Basket ball Data 

We collected basketball data from the NBA 2004 finals and the NBA 2005 finals. We 

used WinBUGS as the software package for implementing MCMC. With WinBUGS' built- 

in graphical and analytical capabilities to check convergence, it is easy for us to find a 

satisfactory burn-in period. We simulated 100,000 samples for parameter estimation after 

the burn-in period. We focus on the estimation of the ai, the Pi, the cyi - Pi and r in this 

section. Figure 4.1 is the convergence trace plots of crl to a s  for the NBA 2004 data set. 

All of the other parameters had similar convergence trace plots as Figure 4.1. Figure 4.1 

suggests that a burn-in period of 10,000 iterations is more than adequate. 

4.1 NBA 2004 finals 

In the NBA 2004 finals, the two teams were the Los Angeles Lakers and the Detroit Pistons. 

The season ended with the Detroit Pistons upsetting the heavily favoured Los Angeles 

Lakers four games to one. 

We first inspect the data using a traditional method. In Table 4.1 we list the 24 players 

in the NBA 2004 finals together with their minutes and their plus/minus statistics. The 

number "PlusMinus" in Table 4.1 is the total points that the team gained when the corre- 

sponding player was on the court. The number "PM/Gamen is the "PlusMinus" statistic 

extended to a full game (ie. 48 minutes). Higher values of PM/Garne suggests that a player 
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Figure 4.1: The convergence trace plots of cq to as for the NBA 2004 finals data. 



CHAPTER. 4. ANALYSIS OF BASKETBALL DATA 18 

makes a greater contribution to  winning than does his teammates. From Table 4.1, we see 

that Luke Walton, Derek Fisher, Shaquille ONeal and Karl Malone's performances were 

the best for LA and Ben Wallace, Tayshaun Prince, Chauncey Billups and Elden C a m p  

bell's performances were the best for Detroit. When fitting our model or looking a t  the 

plus/minus statistics, it might be reasonable to  not put too much faith on values for players 

who had very little court time. We see that overall the numbers for Detroit were higher 

than LA, this is because Detroit won the series, and Detroit scored more than LA. 

Table 4.1: NBA 2004 finals plus/minus player summaries 
P l a y e r  Minutes PlusMinus PM/Game 
Shaquille ONeal 213.2 -31 .O -7.0 
Karl Malone 124.7 -20.0 -7.7 
Devean George 106.4 -22.0 -9.9 
Kobe Brayant 231.1 -52.0 -10.8 
Gary Payton 166.8 -48.0 -13.8 
Slava Medvendenko 70.9 -21.0 -14.2 
Derek Fisher 100.4 -4.0 -1.9 
Luke Walton 78.8 6.0 3.7 
Kareen R.ush 75.9 -11.0 -7.0 
Rick Fox 28.8 -11.0 -18.3 
Brian Cook 21.2 -1.0 -2.3 
Bryon Russell 6.8 -15.0 -105.9 
Ben Wallace 205.1 64.0 15.0 
Rasheed Wallace 152.5 30.0 9.4 
Tayshaun Prince 198.3 49.0 11.9 
Richard Hamilton 223.8 41 .O 8.8 
Chauncey Billups 193.7 45.0 11.2 
Elden Cambell 68.4 14.0 9.8 
Lindsey Hunter 64.3 3.0 2.2 
Corliss Williamson 52.8 -4.0 -3.6 
Mike James 17.4 2.0 5.5 
Darvin Ham 7.2 -2.0 -13.3 
Mehmut Okur 37.5 -6.0 -7.7 
Darko Milicec 3.9 -6.0 -73.2 

Let us now look at  the estimates from our model.The estimation of the parameter a, P 
and a - 0 and their standard deviations (SD) is given in Table 4.2. In Table 4.2, a is the 

offensive rating and p is the defensive rating for players, The quantity a - P is the overall 

rating for a player. For a - P, the higher the value is, the better the player performance. 

From Table 4.2, we can see that Shaquille ONeal and Gary Payton were the best offensively 
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Table 4.2: Posterior means 

Player 
Shaquille ONeal 
Karl Malone 
Devean George 
Kobe Bryant 
Gary Payton 
Slava Medvendenko 
Derek Fisher 
Luke Walton 
Kareem Rush 
Rick Fox 
Brian Cook 
Bryon Russell 
Ben Wallace 
Rasheed Wallace 
Tayshaun Prince 
Richard Hamiltson 
Chauncey Billups 
Elden Campbell 
Lindsey Hunter 
Corliss Williamson 
Mike James 
Darvin Ham 
Mehmut Okur 
Darko Milicec 

~d standard dc 
CY 

Mean 
0.067 
0.047 
0.038 
0.029 
0.070 
0.048 
0.056 
0.063 
0.040 
0.042 
0.047 
0.044 
0.086 
0.051 
0.072 
0.078 
0.051 
0.053 
0.038 
0.070 
0.072 
0.060 
0.047 
0.050 

iation 

Mean 
0.038 
0.046 
0.038 
0.059 
0.115 
0.060 
0.062 
0.047 
0.048 
0.066 
0.071 
0.088 
0.024 
0.045 
0.061 
0.078 
0.042 
0.020 
0.027 
0.058 
0.057 
0.051 
0.078 
D.051 

For thc 

SD 

0.055 
0.049 
0.052 
0.053 
0.066 
0.048 
0.052 
0.050 
0.049 
0.052 
0.054 
0.063 
0.055 
0.049 
0.050 
0.058 
0.052 
0.055 
0.055 
0.053 
0.055 
0.057 
0.056 
0.059 

VBA 2004 finals 
CY 

Mean 
0.029 
0.001 
0.001 
-0.030 
-0.045 
-0.013 
-0.006 
0.015 
-0.008 
-0.023 
-0.024 
-0.044 
0.063 
0.007 
0.011 
-0.001 
0.009 
0.033 
0.011 
0.012 
0.015 
0.009 
-0.031 
-0.001 

data. 

for LA, and Ben Wallace, Tayshaun Prince and Richard Hamilton were the best offensively 

for Detriot. Thes results are noteworthy because both Gary Payton and Ben Wallace are 

not high scorers, yet their contribution to team offence is considerable. This highlights a 

benefit of the methodology since traditional statistics do not readily show the contribution 

that Payton and Wallace make offensively. Shaquille ONeal and Devean George were the 

best defensively for LA, and Ben Wallace was the best defensively for Detroit. From the cr - 

,D values, we can see that Shaquille ONeal was distinguished in LA and Ben Wallace was by 

far the best overall contributor for Detroit. There are a few players that we like to address a 

little more. Gary Payton was very good a t  offence - he was the best offensive player in LA, 

but he was the worst defensive player in the NBA 2004 finals. That is why his overall rating 

in the NBA 2004 finals was not good. This is interesting as Payton had earned the nickname 

"the Glove" for his supposed defensive prowess in his early years in the NBA. Tayshaun 
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Prince is famous for his defensive skill, but in the NBA 2004 finals, his defensive skills 

were not so obvious. For Shaquille ONeal, when we inspected his "PlusMinus" number, he 

was not the best player in LA, but in our model his a - /3 indicated that he was the best 

player in LA. This is probably because he frequently played with some bad players or bad 

combination of players. This was confirmed by looking at the data more closely. It shows 

that LA had great trust in ONeal. It again demonstrates that our methodology can pick 

out patterns that are not immediate from using traditional statistics. We mention that 

we ignored the estimates for Kareem Rush, Rick Fox, Brian Cook, Bryon R.ussel1: Corliss 

Williamson, Mike James, Darvin Ham, Mehmut Okur and Darko Milicec since they played 

so much less compared to the other players. Parameter estimation for these players may 

not be reliable. 

4.2 NBA 2005 finals 

In the NBA 2005 finals, the two teams were the San Antonio Spurs and the Detroit Pistons. 

The season ended with the San Antonio Spurs defeating the defending champion Detroit 

Pistons four games to three. Table 4.3 lists the 24 players in the NBA 2005 finals together 

with their minutes and their plus/minus statistics. We see that Manu Ginobili had the high- 

est plus/minus statistics for San Antonio and Rasheed Wallace had the highest plus/minus 

statistics for Detroit. 

Table 4.4 shows the estimates of the parameters a, /3 and a - /3 and their standard 

deviations (SD) for the NBA 2005 finals. There were not too many surprises when we 

compared our model's results and the "PlusMinus" results. The highest overall ratings for 

San Antonio belonged decisively to Manu Ginobili. The highest overall ratings for Detroit 

belonged decisively to Rasheed Wallace. Manu Ginobili and Rasheed Wallace have similar 

profiles. They were the best defensive players on each team (ie lowest value of /3). Robert 

Horry was the best offensive player on San Antonio and Richard Hamiltion was the best 

offensive player on Detroit. Compared to the NBA 2004 finals, Ben Wallace's defense was 

much worse. 
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Table 4.3: NBA 2005 finals plus/minus player summaries 
P l a v e r  Minutes PlusMinus PM/Game 
Tim Duncan 285.2 -8.0 -1.3 
Tony Parker 
Bruce Bowen 
Manu Ginobill 
Nazr Mohammed 
R.obert Horry 
Brent Barry 
Devin Brown 
Tony Massenburg 
Rasho Nesterovic 
Beno Udrih 
Glenn Robinson 
Ben Wallace 
Rasheed Wallace 
Tayshaun Prince 
Richard Hamilton 
Chauncey Billups 
Elden Campbell 
Lindsey Hunter 
Antonio McDyess 
Ronald Dupree 
Darvin Ham 
Carlos Arroyo 
Darko Milices 
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Table 4.4: Posterior mean: and standard 
CY 

Player 
Tim Duncan 
Tony Parker 
Bruce Bowen 
Manu Ginobili 
Nazr Mohammed 
R.obert Horry 
Brent Barry 
Devin Brown 
Tony Massenburg 
Rasho Nesterovic 
Beno Udrih 
Glenn R.obinson 
Ben Wallace 
Rasheed Wallace 
Tayshaun Prince 
Richard Hamilton 
Chauncey Billups 
Elden Campbell 
Lindsey Hunter 
Antonio McDyess 
Ronald Dupree 
Darvin Ham 
Carlos Arroyo 
Darko Milicec 

Mean 
0.052 
0.057 
0.069 
0.069 
0.036 
0.089 
0.041 
0.046 
0.045 
0.052 
0.037 
0.050 
0.068 
0.059 
0.044 
0.077 
0.047 
0.061 
0.055 
0.046 
0.057 
0.058 
0.069 
0.056 

Mean 
0.060 
0.068 
0.083 
0.015 
0.040 
0.076 
0.069 
0.062 
0.054 
0.054 
0.066 
0.033 
0.068 
0.010 
0.037 
0.063 
0.064 
0.072 
0.055 
0.066 
0.044 
0.046 
0.043 
0.047 

for th NBA 2005 finals data 
0 - P  
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Concluding Remarks 

This project provides a preliminary study of the use of a variation of the Bayesian social 

relations model to investigate player performance in basketball. 

One of the practical difficulties in the approach is that data are not readily available. 

The author spent close to 240 hours transcribing 12 games of videotape into the required 

data format. In practice, we would want even more data to make reliable player evaluations. 

In future work, we would also like to investigate model selection to determine which are 

the best covariates, whether a Poisson distribution is best, etc. 

However, we believe that this project is the first attempt at  complex statistical mod- 

elling in basketball. The response variables are clearly sensible and the model attempts 

to recognize player contributions in a team setting. Contributions beyond the traditional 

statistics may be realized and a player's worth can be assessed from both an offensive and 

defensive perspective. 



Appendix A 

WinBUGS code for the NBA 2004 

finals 

This appendix provides WinBUGS code for the NBA 2004 finals. WinBUGS code for the 

NBA 2005 finals is the same except for a different data file. 

# Some priors used here are different than in Gill and Swartz (2001) but can be easily 
changed 

# m=number of subjects 

# Data are read as subject1 subject2 subject3 ... subject10 scorel score2 from a rectagular 
data file 

model { 

for (i in 1:nobs) { y[i, 11 < - scorel [i] 

y[i, 21 < - score2[i] 

~ [ i , l ]  -- dpois(Ey[i,l]) 

~ [ i , 2 ]  -- dpois(Ey[i,2]) 

log(Ey[i,l]) < - alpha[sl [i]] + alpha[s2[i]]+ alpha[s3[i]]+ alpha[s4[i]]+ alpha[s5 [i]] + 
beta[s6[i]] + beta[s7[i]]+ beta[s8[i]]+ beta[s9[i]]+ beta[slO[i]]+ log(tiine[i]) + tl[i]log(4.0/48) 
+ t2[i]log(4.0/48) 

log(Ey[i,2]) < - alpha[s6 [i]] + alpha[s7[i]] + alpha[s8[i]] + alpha[s9 [ill+ alpha[slO[i]] + 
beta[sl [i]] + beta[s2[i]]+ beta[s3[i]]+ beta[s4[i]]+ beta[s5[i]]+ log(time[i]) + t l  [i]log(4.0/48) 
+ t2[i]log(4.0/48) 

# Prior for alphas and betas 
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for (i in 1:m) { alpha[i] < - aa[i,l]; beta[i] < - aa[i,2] 

aa[i,l:2] - dmnorm(zl[l:2],S2[,])) 

for (i in m+1:2*m){ alpha[i] < - bb[i,l]; beta[i] < - bb[i,2] 

bb[i,l:2] - dmnorm(z2[1:2], S2[,])) 

for (i in 1:2*m) { q[i] < - alpha[i] -beta[i]) 

z1[1] < - 0.05; z1[2] < - 0.05 

~ 2 [ 1 ]  < - 0.06; z2[2] < - 0.06 

# S2 is precision matrix of (alpha,beta) Sigma[l:2 , 1:2] < - inverse(S2[1:2 , 1:2 I) 

siga < - Sigma[l,l] ; sigb < - Sigma[2,2] corrab < - Sigma[l,2]/(sqrt(Sigma[171]*Sigma[2,2])) 
S2[1:2,1:2] - dwish(Omega[l:2,1:2], 2) 

1 
#Initial values 

list( S2=structure(.Data=c(10,010,10), .Dim=c(2,2))) list(S2=structure(.Data=c(l,0,071), 
.Dim=c(2,2))) 

#Data file 

list( nobs=129, n1=12, Omega = structure(.Data = c(0.003, 0, 0, 0.003), .Dim = c(2, 

2)) ,  

s10 s20 s30 s4n s50 s60 s70 s80 s90 slOO score11 score20 time0 t10 t20 

1 2 3 4 5 1 3 1 4 1 5 1 6 1 7 8 1 2 3 4 9 1 0  
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10 6 11 5 4 13 15 23 21 16 2 0 49 0 1 

9 6 11 5 4 13 15 23 21 16 7 9 146 0 1 

1 6 3 5 4 13 15 14 17 16 8 7 294 0 1 

1 6 3 5 4 1 3 1 5 1 8 1 7 1 6 0 2 9 1 0 1  

1 12 3 5 4 13 15 18 17 16 6 10 179 0 1 

1 12 10 5 4 13 15 18 17 16 0 2 41 0 1 

1 12 10 5 4 13 15 18 17 19 0 2 42 0 1 

1 12 10 7 4 13 15 18 17 19 0 2 25 0 1 

8 4 11 7 9 16 13 17 20 19 2 6 88 0 1 

8 4 1 7 9 1 6 1 3 1 7 2 0 1 9 4 0 5 1 0 1  

8 4 1 7 9 16 13 17 15 14 5 6 243 0 1 

8 4 11 7 9 16 13 17 15 14 4 4 162 0 1 

8 4 11 7 9 16 23 21 15 19 5 2 57 0 1 

8 10 11 7 9 16 24 21 20 19 3 0 52 0 1 

8 10 11 7 9 16 24 21 20 19 3 0 52 0 1 

N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A  

END 
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