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Abstract 

This thesis gives a characterization of cost matrices associated with the complete directed 

graph that have at most three distinct values for linear spanning Zforests. Alternative 

characterizations of cost matrices where all Hamiltonian paths and Hamiltonian cycles have 

at most two distinct values are also given. The only known characterization for three values 

of Hamiltonian paths and cycles is for skew-symmetric matrices. Similar results are obtained 

with different restrictions on the structure of the cost matrix. 

Furthermore, this thesis identifies generalizations of the constant-TSP for arbitrary 

graphs whose associated cost matrix is well-structured. The SC-Hamiltonicity of various 

classes of undirected and directed graphs is determined. A complete characterization of 

SC-Hamiltonicity in terms of strong Hamiltonicity is given for undirected graphs. In ad- 

dition, interesting classifications are found which contradict previous claims regarding SC- 

Hamiltonian graphs. 
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Chapter 1 

Introduction 

Given a set of cities and a cost to travel between any pair within the set, the Travelling 

Salesman Problem (TSP) arises when attempting to find the shortest valued route visiting 

each city exactly once and returning to the starting city. Although the TSP can be stated 

with such simplicity, applications of the model arise in numerous real world situations. 

Applications include printed circuit board design, flexible manufacturing systems, DNA 

analysis and warehouse material handling. 

There are several different representations that can be used to describe the TSP. Math- 

ematical programming models, graph theoretic models and permutation models are a selec- 

tion of the representations that are available. Throughout this thesis the graph theoretic 

model will be utilized to represent the TSP. 

Let G = (V, E) be a (directed or undirected) graph with node set V(G) = {1,2,. . . , n) 
and edge set E(G). A cost cij is prescribed for each edge ij E E(G). Hence, there is a 

IV(G)I x IV(G)I matrix C = ( ~ j )  called a cost matrix associated with the graph G. Set 

G j  = ca if i j  @ E(G). Given any Hamiltonian cycle (tour) T the cost (value) of the tour 

is denoted by C(T) = CqEE(q ~j The TSP is to find a tour T* in G such that C(T*) is 

minimized over all tours. An instance of the TSP is completely defined by the associated 

cost matrix C.  

Another problem closely related to the TSP is the Wandering Salesman Problem (WSP) 

[8]. The WSP arises when attempting to find the shortest valued route in some set of cities 

visiting each city exactly once. It should be noted that the WSP differs from the TSP 

in that the salesman does not need to return to the starting city. Informally, the WSP 

considers information about Hamiltonian paths rather than considering information about 
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Hamiltonian cycles. 

The TSP is an classical, well-studied topic in combinatorial optimization. Although 

deceptively simple to state, it is well-known that the TSP is NP-hard (and when restated 

in a decisive form is NP-complete). Thus, the TSP is a representative of a much larger 

class of problems. Finding an efficient algorithm for solving an arbitrary instance of the 

TSP would answer the open question of whether P and N P  are the same complexity class. 

Even though the TSP is NP-hard, there are special cases of the problem that are known to 

be solvable in polynomial time. For the state-of-the-art status of work performed on such 

cases of the TSP, the reader is referred to [2], [5] and [9]. 

Perhaps the simplest of all polynomially solvable cases of the TSP is the Constant 

Travelling Salesman Problem (constant-TSP). An instance of the TSP is called constant- 

TSP if and only if all tours in graph G have the same cost with respect to cost matrix C. Note 

that if cost matrix C = (cij) = (ai + bj) V i j  E E(G)  then all tours in G with associated cost 

matrix C have the same value. Gabovich [4] proved that this condition is both necessary and 

sufficient for complete graphs. That is, all tours in K, with respect to cost matrix C = ( G ~ )  

have the same cost if and only if there exists constants a l ,  . . . , a, and bl, . . . , b, such that 

~j = ai + bi V i j  E E(K,). This provides an elegant characterization of cost matrices for 

the TSP where all tours have the same value. Alternative proofs of this characterization 

have been provided by Leont'ev [14], Rublinetskii [16], Berenguer [I], Lenstra and Rinnoy 

Kan [13], Gilmore, Lawler and Shmoys [6], Chandrasekaran [3], Queyranne and Wang [15], 

Kryxiski [12], Kabadi and Punnen [ l l ] ,  and Jones, Kayll, Mohar and Wallis [7]. 

This raises an interesting question. What is the structure of cost matrices associated with 

graph G such that the distinct values of all tours in G is at most k (for k E Z+)? Tarasov [17] 

gave a complete characterization of cost matrices to this question when k = 2. Tarasov also 

gave characterizations of the 1-value bipartite matching problem, 2-value bipartite matching 

problem and 3-value bipartite matching problem. Later, Kabadi and Punnen [lo] gave an 

alternative characterization for k = 2 with a much simpler proof. For k = 3, Kabadi and 

Punnen [lo] gave a characterization with the assumption that the associated cost matrix is 

skew-symmetric. Hence, a polynomially testable characterization of general cost matrices 

with the property that all associated Hamiltonian cycles have three distinct values remained 

an open question. In this thesis, new classes of cost matrices where all Hamiltonian cycles 

have exactly three cost values are discovered. As a by-product, we also obtain a polynomially 

testable characterization of cost matrices (with some additional restrictions) such that all 
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Hamiltonian paths have at most three distinct values. 

The aforementioned results are achieved by extending the proof techniques used by 

Kabadi and Punnen in [lo] and introducing the concept of linear spanning 2-forests. A linear 

forest is a graph where every component is a path (and isolated vertices are permitted). A 

linear spanning forest is a spanning subgraph of a graph G where every component of the 

subgraph is a path. A linear spanning 2-forest (LS2F) of G is a linear spanning forest of 

G with precisely two components. The cost (value) of a linear spanning 2-forest L in G 

with respect to cost matrix C is given by CeEE(,r-) ce. Furthermore, C is a k distinct linear 

spanning 2-forest cost matrix, denoted LS2F(lc), if and only if there exist exactly k distinct 

values for all LS2Fs in G with associated cost matrix C. 

Another direction of research related to the constant-TSP is to attempt to extend the 

characterization of cost matrices for constant-TSP to arbitrary graphs, rather than just 

considering the complete graph. Obliviously, such a characterization is hard since it would 

resolve a Hamiltonian cycle detection problem. This raises a second intriguing question. 

For what classes of graphs with all tours having constant cost does the associated cost 

matrix C = ( ~ j )  have the form cij = ai + bj V i j  E E(G)? Such a class of graphs is 

called separable constant Hamiltonian [ll]. Graph G with IV(G)I = n is separable constant 

Hamiltonian (SC-Hamiltonian) if and only if G is Hamiltonian and for any cost matrix 

C = ( ~ j )  associated with G where all tours have the same value, there exist constants 

a l , .  . . , an  and bl, . .  . , bn such that cij = ai + bj Vij E E(G). Moreover, if G is undirected 

then ai = bi Vi. 

In [12], Krynski observed that for undirected graphs, odd cycles are SC-Hamiltonian 

but even cycles are not. In that same paper, Krynski claimed that strong Hamiltonicity is 

a necessary requirement for SC-Hamiltonicity. This was disproved by Kabadi and Punnen 

in [ll] who gave a counter-example to the claim. Interestingly, we show that for all graphs 

excluding those which have the structure provided in the aforementioned counter-example, 

strong Hamiltonicity is a necessary requirement for SC-Hamiltonicity. 

Other SC-Hamiltonian graphs were identified by Kabadi and Punnen [ll] including 

complete bipartite graphs, 1-extensions of Hamiltonian graphs and various classes of directed 

graphs. This thesis extends these results further and identifies new classes of both undirected 

and directed graphs as having the SC-Hamiltonian property. 

In [ll], Kabadi and Punnen conjectured that a symmetric digraph is SC-Hamiltonian 

only if it's underlying undirected graph is SC-Hamiltonian. A counter-example to this 
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conjecture is presented. Furthermore, in that same paper it is claimed that subdividing an 

edge of any undirected SC-Hamiltonian graph twice creates a new SC-Hamiltonian graph. 

We will show that this claim is not necessarily true. 

The major contributions of this thesis are summarized below. 

1. A polynomially testable characterization of cost matrices such that all tours in an 

instance of the TSP will have three distinct values is given for matrices with some 

restricted properties. Such a characterization was known for skew-symmetric matrices 

but this identifies various other classes. Furthermore, we also provide characterizations 

of cost matrices where linear spanning 2-forests have at most three distinct values. 

2. A complete characterization of undirected graphs where strong Hamiltonicity is a 

necessary condition for SC-Hamiltonicity. It was conjectured that strong Hamiltonicity 

is a necessary condition for SC-Hamiltonicity for all undirected graphs. This conjecture 

was later disproved by counter-example. Our result establishes that for all classes 

of graphs not excluded by the counter-example, strong Hamiltonicity is a necessary 

condition for SC-Hamiltonicity. 

3. New classes of both undirected and directed SC-Harniltonian graphs are identified. We 

also provide a counter-example to the claim that subdividing an edge of an undirected 

SC-Hamiltonian graph twice preserves SC-Hamiltonicity. 

The remainder of this thesis is organized as follows. 

0 Chapter 2 introduces notations, definitions and preliminary results. 

0 Chapter 3 gives a closed form characterization of linear spanning 2-forests with either 

one or two distinct values. This chapter also provides alternative characterizations 

of matrices with either one or two distinct values for both Harniltonian cycles and 

Hamiltonian paths. 

Chapter 4 gives a closed form characterization of cost matrices where all linear span- 

ning 2-forests have three distinct values. In addition, Chapter 4 gives a characteriza- 

tion of cost matrices where all Hamiltonian paths and Hamiltonian cycles have three 

distinct values in certain restricted matrices. 

Chapter 5 investigates the SC-Hamiltonicity of general graphs and digraphs. 
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0 Finally, Chapter 6 provides concluding remarks, points out future research avenues 

and identifies open questions. 



Chapter 2 

Notations and Basic Results 

Let C be a cost matrix associated with the complete graph for an instance of the TSP. 

When we refer to the elements of C it will be assumed that only the finite elements of the 

matrix are considered (this excludes all entries on the main diagonal of C). We sometimes 

use the terminology G described by C when G is a graph and C is the associated cost matrix. 

Furthermore, we sometimes use the terminology an edge (arc) of C when the edge (arc) is 

in graph G with associated cost matrix C.  

Cost matrix C associated with graph G is a k distinct tour-cost matrix, denoted DTC(k), 

if and only if there exist exactly k distinct tour values in G described by C [ l l ] .  Thus, the 

TSP on a DTC(1) matrix associated with the complete graph is an instance of the constant- 

TSP. Cost matrix C associated with graph G is a k distinct path-cost matrix, denoted 

DPC(k), if and only if there exist exactly k distinct Hamiltonian path values in G described 

by C [ l l ] .  Since an instance of the TSP in complete directed graph G is completely defined 

by the associated cost matrix C, we often refer to a LS2F, path or tour of C when the LS2F, 

path or tour is in G with associated cost matrix C. 

For any cost matrix C associated with graph G and any vl E V(G) let a,, = 0, b,, = 0, 

a .  = c. zvl 'di # vl and bj = G,j b'j # vl. Define the n x n vl -reduced matrix of C to be 

Cvl = (Eij) where Cj = c.ij - ai - bj. Notice that tVlj = &,, = 0 b'i b'j. 

The (n - 1) x (n - 1) submatrix formed by deleting row vl and column vl of any vl- 

reduced cost matrix GI is denoted &.'l = - vl = (21:'). In graphical terms, this 

reduction of vl is equivalent to deleting node vl from the associated graph G. When there 

is no ambiguity, we will omit the reduction index of &>"' and represent the matrix by & 
to simplify notation. 
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-+ 
Example 2.0..1. Let G K3, v1 = 1 and C = 

10 0 00 

00 1 - 1 - 4 + 4  0 

00 2 + 4 - 7  )=(k :) 
10-10 0 - 1 - 1 0  00 0 -11 00 

Thus  & = ( 00 ). -11 00 

For any vl-reduced cost submatrix & associated with graph G and any v2 E V(G)\{vl ) 

define a,, = 0, b,, = 0, ai = t',, for i # v2 and bj = tLZj for j # v2. Define the (n- 1) x (n- 1) 

v2-reduced m a t k  of 6" as C = (6, - vl), = (Zij) where Cj  = trj - ai - bj. Notice that 
- cv2j = Gv, = 0. The (n - 2) x (n - 2) submatrix formed by deleting row v2 and column v2 

of any v2-reduced cost matrix is denoted = (F). 
Throughout Chapter 3 and Chapter 4 we use vl as standard notation to denote the first 

reduction index and v2 is used to denote the second reduction index. 

2.1 Preliminary results 

The following preliminary results will be useful in obtaining characterizations of DTC(k) 

matrices for k E Zf. 

Observation 2.1.1. For any k E Zf, if a constant is subtracted from every entry in  any 

row or column of a DTC(k) matrix then the resulting matrix is also DTC(k). 

Proof. Let C be a cost matrix associated with graph G and a be some fixed constant. 

Suppose a is subtracted from every entry in row r of C. This is equivalent to reducing the 

cost of all arcs entering node r by a. Any tour in G must enter node r exactly once, so the 

value of all tours has been reduced by a. Thus, the number of distinct tour costs remains 

unaffected. The argument is analogous when performing the reduction on a column of C 

by considering out-going arcs of node r .  0 

Observation 2.1.2. Let C be a cost matrix associated with graph G. For any k E Z+ and 

any vl E V(G), C is a DTC(k) matrix if and only if the vl-reduced matris c,, is a DTC(k) 

matrix. 
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Proof. This result follows by repeatedly invoking Observation 2.1.1 to reduce the cost of 

every entry in row i by G,, for i E (1,. . . , n} and the cost of every entry in column j by 

Cv, j  for j E (1, . . . , n}. 0 

Theorem 2.1.3. [lo] Let k E Z f .  If C is a DTC(k) matrix then it's vl-reduced submatrix 

& is a DPC(k) matrix for every vl E (1,. . . , n). Conversely, if there exists vl E (1,. . . , n} 

such that the vl-reduced submatria: & is a DPC(k) matrix, then C is a DTC(k) matrix. 

Proof. Let C be the cost matrix associated with graph G and vl E (1, . . . , n}. Notice 

that row vl and column vl of c,, have all zero entries. Any Hamiltonian path P in & 
can be extended to a Hamiltonian cycle T in G such that P ( P )  = c(T). Conversely, for 

any Hamiltonian cycle T in G the Hamiltonian path P in eT obtained by deleting node 

vl from G has cost C(T) = &(P). Hence, cVl is a DTC(k) matrix if and only if & is a 

DPC(k) matrix. By Observation 2.1.2, C is a DTC(k) matrix if and only if cVl is a DTC(k) 

matrix. 0 

Lemma 2.1.4. Let k E Z f .  If cost matrix C associated with graph G is a DPC(k) matrix 

and T is any tour in G, then arcs of T have at most k distinct costs. 

Proof. Let T be any tour that contains arcs of k + 1 distinct costs cl, c2,. . . , ck+1 By 

deleting these arcs one at a time from T we get k + 1 distinct path values of costs C(T) - 

cl,  C(T) - c2,. , C(T)  - ck+l. 0 

2.2 Characterizations of DTC(k) and DPC(k) matrices 

Kabadi and Punnen [lo] succeeded in obtaining explicit characterizations of DPC(1) matri- 

ces, DPC(2) matrices and DPC(3) skew-symmetric matrices. By Theorem 2.1.3, this pro- 

vides corresponding characterizations for DTC(1) matrices, DTC(2) matrices and DTC(3) 

skew-symmetric matrices. 

It appears that attempting to follow the approach used in [lo] to obtain a characteri- 

zation of DPC(3) and DTC(3) matrices without the skew-symmetric restriction is difficult. 

Hence, to  characterize such matrices a new approach is considered. Interestingly, we show 

that a polynomially testable characterization of DPC(k) and DTC(k) matrices with some 

additional properties can be obtained if we have polynomially testable characterizations of 
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LS2F(l) matrices ('dl < k). We now introduce various classes of matrices where a character- 

ization of LS2F(k) matrices can be used to obtain the desired characterization of DTC(k) 

matrices. 

Definition 2.2.1. An n x n cost matrix C is k-index constant, IC(k), if and only if it 

has k distinct indices 21,. . . ,xk E { I , .  . . , n )  such that c,,i = qZj = a for all i # x j  and 

j = 1 , .  . . , k. That is, all entries of C in rows and columns X I , .  . . , xk have constant cost a .  

Theorem 2.2.2. An IC(3) cost matrix C is DPC(k) if and only if the reduced submatrices 

c T ? l ,  c T 1 2  and cT1%ave all LS2Fs of costs .z& for m = 1 , .  . . , k, with ki < k, i E {1,2,3) 

and IS1 = k where S = { z k  + (2n - 4)a I m = 1 , .  . . , ki, i = 1,2,3). 

Proof. Let C be an IC(3) cost matrix with constant rows and columns for indices 1, 2 and 

3. Furthermore, let H denote the set of Hamiltonian paths in C and Hi denote the set of 

all Hamiltonian paths in C with node i as an interior node, for i E {1,2,3). Note that 

H = H1 U H2 U H3. Otherwise, there exists some Hamiltonian path P E H\{H1 U H2 u H3). 

P $! Hi implies that node i is not an interior node of P for i E {1,2,3). But any Hamiltonian 

path has only two nodes that are not interior nodes. Hence, H = HI U H2 U H3. 

Any LS2F, L, in cTli can be extended to a Hamiltonian path, P, such that e T l i ( ~ )  = 

c~(P)  and C ( P )  = c~(P)  + (2n -4)a. This is done by first re-introducing node i and all arcs 

(with zero cost) incident with it. This extends any LS2F into a Harniltonian path with node 

i as an interior node. Then the cost of the Hamiltonian path with respect to the original 

matrix is obtained by adding back the reduction constants from each row and column. But 

all entries in row and column i of C have some fixed cost a ,  so all the reduction constants 

have cost a .  Since every LS2F has (n - 3) arcs in the reduced submatrix, it follows that the 

value of the Hamiltonian path in C is precisely [2(n - 3)la + 20 more than it's cost in c i .  

Thus, C is DPC(k) precisely when IS1 = k and each eTli contains at most k distinct 

LS2F values, for i E {1,2,3). 0 

We now consider a slightly more general class of matrices where it is possible to determine 

if all Hamiltonian cycles have at most three distinct values given a characterization of 

LS2F(l) matrices for 1 E {1,2,3). 

Definition 2.2.3. Cost matrix C is LSBF(3)-reconcilable if C is: 

(a) DPC(k) for k E {1,2), or 

(b) IC(1) with all entries in row and column i of constant cost. 
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Moreover, if (b) holds then deleting row and column i from C yields a LS2F(3)-reconcilable 

submatrix. 

Let f (k, C) denote the function which tests whether all LS2Fs described by cost matrix 

C have at most k distinct values. If cost matrix C contains at  most k distinct values then 

f outputs a list of the distinct LS2F cost values W = {wl,.  . . , wj} for j 5 k. Otherwise, f 

outputs an indicator element (such as a null element). Thus, 

W if there are at  most k distinct LS2F cost values in C, 
f (k, C)  = 

null otherwise. 

Theorem 2.2.4. If C is LSZF(3)-reconcilable then it is possible to determine zf C is DPC(k) 

for k E {1,2,3}. 

Proof. If C is DPC(k) for k E {1,2} then we are done. Set i = 1. Since C is LS2F(3)- 

reconcilable there exists some index xi such that all entries in both row and column xi have 

a constant cost ai .  Moreover, deleting this row and column yields a LS2F(3)-reconcilable 

submatrix. Denote this submatrix Di. If Di is not DPC(k) for k E {1,2} then take i t i f 1  

and re-iterate the deletion process. Otherwise, there are Hamiltonian path values vl and 

v2 (whose uniqueness is dependent on the value of k). Notice that since there are a finite 

number of indices, some submatrix of C must be DPC(k) for k E {1,2}. 

Test f (3, Di). If f (3, Di) = null then there are at  least four LS2F values in Di. Denote 

four of these values wl,  w2, w3 and w4. But notice that every LS2F in Di can be extended 

to a Harniltonian path in Di-l with i as an internal node. Hence, there exist Hamiltonian 

paths in Di of at least four distinct costs wj + 2ai for j E {1,2,3,4}. If Di-1 = C then there 

exist more than three distinct Hamiltonian path values in C, so we are done. Otherwise, 

work backward to create C from Di-1 by adding row and column xi-1 with all elements 

of cost ai-1 then setting i +- i - 1. Any Hamiltonian path in Di-1 can be extended to a 

Hamiltonian path in C by adding back these indices one at a time. This is simply a linear 

shift (of cost ai-l+ ai-r, + . . . + a l )  of the distinct Hamiltonian path values found in Di-1. 

Hence, C contains more than three distinct Hamiltonian path values. 

Otherwise, the function f returns a list Wi = {w,!, w:, w;} of at  most three distinct 

values. Notice that any Hamiltonian path in Di-1 with i as an internal node contains some 

LS2F of Di. Furthermore, any Hamiltonian path in Di-1 with i as an end node contains 

some Hamiltonian path of Di. Conversely, every LS2F and Hanliltonian path in Di can be 
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extended to a Hamiltonian path in Di-1. It now follows that Di-1 is DPC(3) if and only 

if ISi- 1 = 3 where Si-1 = {wf + hi, w? + hi, wQ + hi, vl + ail v2 + a i l .  (Since Di-l 

was tested to see if it contained at most two distinct Hamiltonian path values, at this stage 

there exist at least three distinct Hamiltonian path values.) 

Now re-iterate the process by testing f (3, Di-1) and obtaining a list of values Wi-l. 

Let w::;-.-' denote the set of values obtained by adding 2~1i-l to each element in Wi-1. 

Furthermore, let sta:;' denotes the set of values obtained by adding ai-1 to each element in 

Then Did2 is DPC(3) if and only if = 3 where Si-2 = {w';-.-', s:?;'}. Repeat 

this process (by decrementing i) until the number of distinct Hamiltonian path values in C 

is determined. 0 

By considering C' rather than the original matrix C the true potential of Theorem 

2.2.4 may be exploited. Theorem 2.1.3 provides a characterization of DTC(k) matrices 

based on a characterization of DPC(k) matrices. Theorem 2.2.2 and Theorem 2.2.4 provide 

characterizations of DPC(k) matrices based on a characterization of LS2F(l) matrices (Vl 5 

k). Hence, we now shift our focus to determining the structure of matrices in terms of 

LS2Fs. 



Chapter 3 

LS2F(1) and LS2F(2) Matrices 

Let G be a complete directed graph and C be a cost matrix associated with G. We first 

focus on the problem of characterizing all cost matrices that are LS2F(1) and then focus on 

characterizing all cost matrices that are LS2F(2). 

If n = 2 then cost matrix C is a 2 x 2 matrix. So every LS2F is composed of two paths of 

zero length. Thus, it is vacuously true that if C is a 2 x 2 matrix then all LS2Fs have a 

single cost. 

Two cost matrices C and D associated with graph G are equivalent if and only if C(T) - 

D(T) = cr for some constant cr and every tour T in G. 

Observation 3.1.1. Every DTC(1) matrix is equivalent to a matrix with tour cost zero. 

Proof. Suppose every tour in G described by C has cost a. Subtract cr from every entry in 

row i of C to create cost matrix D. By Observation 2.1.1, the new cost matrix D is DTC(1) 

and the cost of each tour has been reduced by a. Hence, all tours described by D have cost 

0. 0 

Lemma 3.1.2. Let n > 2. If C is an LSZF(1) cost matrix associated with graph G then 

any tour in G contains arcs of a single cost. 

Proof. Let C be an LS2F(1) cost matrix associated with graph G. Furthermore, let T be 

any tour in G with arcs of distinct costs cr and P. Since n > 2, without loss of generality, 
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T contains another arc of cost a .  Then there exist LS2Fs of costs C(T) - (a + P) and 

C(T)  - (2a) in G. This contradicts the fact that C is LS2F(1). 0 

Theorem 3.1.3. Cost matrix C is LS2F(1) i f  and only if: 

(a) n = 2 or 

(b) all entries of C have constant cost. 

Proof. Note that both the sufficiency and necessity of (a) is trivially established. 

Suppose C is an LS2F(1) cost matrix associated with graph G. Let Tl and T2 be any 

two tours in G. Furthermore, suppose TI has an arc of cost a and T2 has an arc of cost 

,B # a .  Then C(T1) = n a  and C(T2) = n p  by Lemma 3.1.2. So there exist LS2Fs of costs 

(n - 2)a and (n - 2)P. Since G is LS2F(l), (n  - 2)a = (n - 2)P + a = P which gives a 

contradiction. 

Suppose that all entries of C have a constant cost, a .  Then every tour in G has cost 

na .  Since every tour contains only arcs of cost a, all LS2Fs have cost n a  - 2a  = (n - 2)a. 

Thus, C is LS2F(1). 0 

Using Theorem 3.1.3, we can give an alternative characterization of DTC(1) and DPC(1) 

matrices as provided in the corollaries below. 

Corollary 3.1.4. Cost matrix C is LSZF(1) if and only if it is DPC(1). 

Proof. This follows directly from the characterization of DPC(1) matrices provided in [lo] 

and Theorem 3.1.3. 0 

Corollary 3.1.5. Let n > 2. Cost matrix C is DTC(1) i f  and only i f  6 is LSZF(1). 

Proof. From Observation 2.1.2 and Theorem 2.1.3, C is DTC(1) if and only if & is DPC(1). 

This result now follows from Corollary 3.1.4. 0 

The following theorem gives another relationship between an LS2F(1) matrix and an 

associated DTC(1) matrix. 

- .  Theorem 3.1.6. If cost matrix C is DTC(1) then C 2s LS2F(l). 

Proof. Suppose C is an n x n DTC(1) matrix. By Theorem 2.1.3, dr is a DPC(1) matrix 

(associated with graph G). By Lemma 2.1.4, all tours in G described by & contain arcs of 

a single cost. Let TI and T2 be two tours of G. Tour TI has cost (n - 1)a using only arcs 
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of cost a .  Suppose tour T2 has an arc of cost P then T2 has cost (n  - 1)P. Thus, a = P 
implies that all cost elements of 6' are a single constant a .  

Choose v2 E V(G)\{vl} and form by reducing all elements of both row and column v2 

to zero. This reduces all elements that are not in row or column v2 by 2a. Eliminating row 

and column v2 from yields C', a constant matrix of with all entries of cost a - 2a = -a.  

By Theorem 3.1.3, C' is LS2F(1). 0 

Interestingly, if C' is an LS2F(1) cost matrix then it is not necessarily true that C is 

DTC(1). The failure occurs when forming & from c. The number of Hamiltonian paths 

is not preserved during this reduction except in very limited cases. The following examples 

will illustrate this remark. 

Example 3.1.7. Let be LS2F(1) with all entries having cost a .  If fi is created from 
- 
C by setting ?Ti = ai + bj + G j  with a,, = b,, = 0 and ai = bj = -a V i # v2 V j # v2 then 

C will be DTC(1). 

Proof. Given Gj = a V i  # j notice that Zi,, = &,j = 0 and Z i j  = a V i # ~2 V j # ~ 2 .  SO 
^T civ2 = ai + bv, + Ziv, = -a + O + O = -a, 

= a,, + bj + &,j = 0 - a + 0 = -a and 

3'. = ai'+ bj + &j = -a - a + a = -a otherwise. 
23 

Hence, C' is a constant matrix with all entries having cost -a.  It is clear that & is 
DPC(1) as any tour has cost -na  and every Harniltonian path has cost -(n - 1)a. By 

Theorem 2.1.3, C is DTC(1). 0 

Example 3.1.8. Given C' as shown below perform the following operations: 

(a) create by inserting row and column v2 = 1, 

(b) create CT by setting ?Tj = ai +bj +cj with ai = bi = 1 V i = 2, . . . , 4  and a1 = bl = 0. 

(c) create C by inserting row and column vl = 1, then 

(d) create C by setting cij = ai + bj + &j with ai = bi = 0 V i = 1 , .  . . ,4. 
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From Theorem 3.1.3, ?? is LS2F(1). However, C contains tours TI = (1,2,3,4,5) and 

T2 = (1,5,3,2,4) with C(Tl) = 7 and C(T2) = 5. Hence, C is not DTC(1). 

Thus, the relationship between a DTC(1) matrix and an associated DPC(1) matrix 

almost extends directly to  the relationship between a DTC(1) matrix and an associated 

LS2F(1) matrix with minor exceptions. We now explore the structure of LS2F(2) matrices. 

From Theorem 3.1.3, it is known that if cost matrix C is LS2F(2) then C contains at least 

two elements with distinct costs a and P. Clearly, a 2 x 2 cost matrix can not be LS2F(2). 

If cost matrix C associated with graph G is 3 x 3 then every tour in G is composed of three 

arcs. Since G contains arcs of costs a and p and each tour is a 3-cycle, there exist LS2Fs 

of costs a and p.  If C is LS2F(2) then all LS2Fs must have either cost a or P. Hence, all 

arcs of G have either cost a or p.  Conversely, suppose C is a 3 x 3 cost matrix containing 

only elements of distinct costs a and P. Any LS2F will contain only a single arc since any 

tour contains precisely three arcs. Hence, all LS2Fs have either cost a or P, which implies 

that C is LS2F(2). Thus, we assume that n 2 4. 

Lemma 3.2.1. Let n 2 4. If cost matrix C is LS2F(2) then no tour in graph G contains 

arcs with more than two distinct costs. 

Proof. Let T be a tour in G containing arcs of distinct costs a, p and y. There exist LS2Fs 

of costs C(T)  - ( a  + P), C(T) - ( a  + y)  and C(T)  - (P + y) in G. All of these LS2F values 

must be distinct since a, p and y are all distinct. 0 

The following constructions are used in various proofs. For compactness they are sum- 

marized below. 

Construct ion 3.2.2. Ordered 3-Exchange: Take a tour Tl = (ul,  ua, . . . , u,) i n  graph 

G = (V, E ) .  Let pq E E(G)\E(Tl) .  Without loss of generality, let ul  = p and u, = q for 
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some 2 < r < n. Also take integer 1 such that r 5 1 5 n .  Construct a new tour with the 

following structure T2 = (u l ,  u,, uT+l, . . . , u~,u2,u3, u,-1, uz+l, u1+2, u,). See Figure 3.1 for 

an  illustration. 

Figure 3.1: Ordered 3-exchange procedure with n = 6, p = u1, q = UT = u3 and 1 = ug 

Construction 3.2.3. Arc Reversal: Take tour Tl = (u l ,  u2,. . . , un) in graph G = (V, E ) .  

Let pq E E(Tl).  Without loss of generality, let u1 = p and u2 = q .  Construct a new tour by 

taking T2 = (u2, u1, u3,. . . , u,). See Figure 3.2 for an illustration. 

Lemma 3.2.4. Let a and ,B be distinct constants and n 2 4. If there exists a tour Tl using 

only arcs of cost a and a tour T2 using only arcs of cost ,B i n  graph G described by cost 

matrix C then there exists a tour using arcs with both costs a and ,B. 

Proof. Take tour Tl in G and perform an ordered 3-exchange or arc reversal (see Construc- 

tions 3.2.2 and 3.2.3) on Tl by introducing any arc of T2. This construction only removes 

three arcs from TI .  But G contains at least four nodes so any tour will contain at  least four 

arcs. Hence, the newly formed tour has arcs of both costs a and ,B. 0 

Lemma 3.2.5. Let a and ,B be distinct constants and n > 4.  If cost matrix C is LS2F(2) 

then no  tour with costs described by C uses both multiple arcs of cost a and multiple arcs of 

cost p. 
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Figure 3.2: Arc reversal procedure with n = 6, p = u1 and q = u2 

Proof. Suppose there exists a tour T with costs described by C using at least two arcs of 

cost a and at least two arcs of cost p # a .  Then there exist LS2Fs of costs C(T) - 2a, 

C(T) - 2P and C(T)  - (a + P) which are all distinct since P # a .  

We now determine the number of distinct cost elements that any LS2F(2) cost matrix 

may contain. 

Lemma 3.2.6. Let n 2 4. If cost matrix C is LS2F(2) then C contains exactly two distinct 

cost elements. 

Proof. Let C be a cost cost matrix associated with graph G. By Theorem 3.1.3, C must 

contain at least two distinct cost elements. Denote these distinct elements by a and P. 

From Lemma 3.2.4, there exists a tour TI in G using arcs of both costs a and P. Without 

loss of generality, Lemma 3.2.5 guarantees that TI has a single arc of cost a and all other 

arcs of cost p. If C contains only elements of costs cu and P then the result follows. So 

assume, if possible, that C also contains an arc of cost y 6 {a, P). 

Perform an ordered 3-exchange or arc reversal (see Constructions 3.2.2 and 3.2.3) on TI 

to include an arc of cost y to create Ty. Suppose that the arc of cost cu does not appear 

in Ty. Then Ty contains an arc of cost y and all remaining arcs have cost P (from Lemma 
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3.2.5). Thus, T, emits an LS2F of cost (n  - 3)P + y. But Tl also emits LS2Fs of costs 

(n - 2)P and (n  - 3)P + a .  Hence, C contains more than three distinct LS2F values. 

Thus, it must be the case that the arc of cost a in Tl is also in T,. If n > 4 then T, 

contains arcs of distinct costs a, ,i3 and y which contradicts Lemma 3.2.1. So n = 4 and 

there exist LS2Fs of costs cr + P, a + y and 2P. Notice that T, must also emits an LS2F 

of either cost 2a or 27. In either case, there exist more than two distinct LS2F values in 

C. 

Lemma 3.2.7. Let a and ,i3 be distinct constants and n 2 4. If C is an  LS2F(2) cost 

matrix with a tour TI containing multiple arcs of cost ,i3 and an  arc of cost a then no  tour 

in C contains multiple arcs of cost a. 

Proof. Suppose Tl is a tour containing multiple arcs of cost /3 and at  least one arc of cost 

a. From Lemma 3.2.5, TI does not contain multiple arcs of cost a .  Suppose that tour T2 

contains multiple arcs of cost a .  From Lemma 3.2.5, T2 can contain at most a single arc not 

having cost a .  By Lemma 3.2.6, C contains exactly two distinct costs a and P. Thus, either 

(i) C(T2) = n a  implies that there exist LS2Fs of cost (n  - 2)a,  or (ii) C(T2) = (n - 1)a + P  
implies that there exist LS2Fs of costs (n - 2)a  and (n - 1)a + P. Notice that in both cases 

there exist LS2Fs of cost (n  - 2)a. 

Tour Tl yields LS2Fs of unique costs (n - 2)P and a + (n - 3)P. Since C is LS2F(2) 

either (n - 2)a = (n  - 2)P or (n  - 2)a = a + (n - 3)P. If (n - 2)a = (n  - 2)P + a = ,B 

which gives a contradiction. If (n  - 2)a = a + (n - 3)P + (n  - 3)a = (n - 3)P + a = P 
which gives a contradiction. 

Therefore, if there exists a tour containing multiple arcs of cost ,i3 and an arc of cost a 

in LS2F(2) cost matrix C then no tour contains multiple arcs of cost a .  

We now give a complete characterization of cost matrices where all linear spanning 

2-forests have exactly two distinct values. 

Theorem 3.2.8. Cost matrix C is LS2F(2) zf and only if: 

(a)  n = 3 and C contains only elements of distinct costs a and p, or 

all entries of C have cost ,i3 # a except for 

(b) a single row containing at least one element of cost a ,  or 

(c)  a single column containing at least one element of cost a, or 

(d)  cpq = cqp = a for exactly two fixed nodes p and q .  
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Proof. First note that both the sufficiency and necessity of (a) is trivially established. As- 

sume n 2 4. 

Suppose C is LS2F(2). By Lemma 3.2.6, since n 2 4, it follows that C contains exactly 

two distinct cost elements a # p. Without loss of generality, assume that there are at least 

as many elements of cost p in C as there are elements of cost a .  By Theorem 3.1.3, Lemma 

3.2.4 and Lemma 3.2.5, there exists a tour Tl using multiple arcs of cost P and a single 

arc of cost a .  Denote the arc of Tl with cost a as pq for fixed nodes p # q (i.e. ~ p ,  = a ) .  

Notice that cij = p if (i) i ,  j, p and q are all distinct, or (ii) i # q and j = p, or (iii) i = q 

and j # p. Otherwise, a tour using (at least) two arcs of cost cr can be easily found which 

contradicts Lemma 3.2.7. 

Suppose cpj = a for j # q .  Notice that if either c ,  = a or G ,  = cr for i # p then it 

is trivial to find a tour using multiple arcs of cost cr, which once again contradicts Lemma 

3.2.7. Hence, all arcs of cost a are contained in row p. 

Suppose q, = cr for i # p. Notice that if either c,, = cr or cpj = a for j # q then it is 

trivial to find a tour using multiple arcs of cost a, which gives a contradiction. Hence, all 

arcs of cost cr are contained in column q .  

Suppose cqp = a .  Notice that if either cpj = a for j # q or G ,  = cr for i # p then it is 

trivial to find a tour using multiple arcs of cost a, which gives a contradiction. Hence, only 

pq and q p  have cost a .  

Conversely, if (b) is satisfied then any tour in G described by C uses at most a single 

arc of cost a ,  a s  all such arcs are entering a single node. If (c) is satisfied then any tour in 

C uses at most a single arc of cost a ,  as all such arcs are leaving a single node. If (d) is 

satisfied then any tour can use at most one arc of cost a as no tour can utilize both pq and 

qp.  It should be noted that a tour could use both these arcs if G contains only two nodes, 

but recall that G contains at least four nodes (as all smaller cases have been exhausted). 

Since all cases (b)-(d) allow tours to contain at most a single arc of cost a ,  all tours have 

cost n p  or (n - l )p + a .  Moreover, since C contains an element of cost cr there must be 

a tour of cost (n  - 1)P + a. Hence, all LS2Fs in G have cost (n  - 2)P or (n - 3)P + a .  

Therefore, C is LS2F(2). 

An immediate consequence of Theorem 3.2.8 is that we are able to give a characterization 

of symmetric cost matrices that are LS2F(2). This result will prove to be helpful when 

considering the TSP with an associated symmetric cost matrix. 
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Corollary 3.2.9. Symmetric cost matrix C is LS2F(2) if and only if all entries of C have 

cost ,B # cr except for exactly two elements with r+q = cqp = cr for fixed nodes p and q. 

3.3 Structure of DTC(2) matrices 

Let us now investigate the relationship between an LS2F(2) matrix and an associated 

DTC(2) matrix. 

Theorem 3.3.1. Let n > 4 denote the number of rows i n  the cost matrix &. If cT is 

LS2F(2) then C is  DTC(2).  

Proof. Suppose & is LS2F(2). The structure of kT is given explicitly in Theorem 3.2.8. 

Let cr and ,b' be distinct constants contained in &. The tours in & have values cr + (n - l )P 
ans np. It should be noted that there may not be a tour of cost n p  described by & but 

this does not affect the analysis. Notice that every Hamiltonian path will have either cost 

cr + (n-  2)P or (n-  1)P. Thus, kT is a DPC(2) matrix. By Theorem 2.1.3, C is DTC(2). 

Note that the restriction n > 4 in Theorem 3.3.1 is necessary as illustrated by the 

following example. 

Example 3.3.2. Let cr # P and 

Form cost matrix C by inserting row and column 1 then adding back zero cost to every 

row and column of C. Thus, 

Since kT is 3 x 3 and contains exactly two distinct cost elements, it follows from Theorem 

3.2.8 that it is LS2F(2). However, C contains tours TI = (1,2,3,4),  T2 = (1,3,4,2) and 

T3 = (1,2,4,3) of costs 2a,  cr + ,B and 2P respectively. Hence, C is not DTC(2). 
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Also note that the converse of Theorem 3.3.1 does not necessarily hold. This is estab- 

lished in Example 3.3.3. 

Example 3.3.3. Suppose C is DTC(2).' By Theorem 2.1.3, dr is DPC(2). If the converse 

of Theorem 3.3.1 were true then we need only show that if dr is DPC(2) then dr is LS2F(2). 

Let 

Suppose dr is associated with graph G. Notice that dr is DTC(1) as every arc entering 

nodes 1 and 2 has cost p and every arc entering nodes 3 and 4 has cost a .  Thus, the cost 

of every tour in G is 2a + 2P. Any Hamiltonian path will have cost a + 2P or 2a + P. So 

dr is DPC(2). But there exist LS2Fs of costs 2a, 2P and a + P. Hence, dr is LS2F(3) not 

LS2F (2). 

The previous examples illustrate some potential difficulties in obtaining an explicit char- 

acterization of DTC(2) matrices from our characterization of LS2F(2) matrices. However, 

the discussions in Section 2.2 illustrate that determining if a arbitrary cost matrix is DTC(2) 

can be done in polynomial time using the characterizations of LS2F(1) and LS2F(2) ma- 

trices in Theorem 3.1.3 and Theorem 3.2.8. This process will also determine if the given 

matrix is DPC(2). 
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LS2F(3) Matrices 

In this chapter, we provide a closed form characterization of LS2F(3) matrices. As may be 

anticipated, obtaining such a characterization is more complex than the arguments needed 

for the LS2F(2) counter-part. Thus, we first formulate several simple results which will be 

used to establish our main result. 

Observation 4.0.1. Let C be an n x n cost matrix and ~4 be a cost matrix obtained by 

subtracting a constant 4 from every entry i n  C. The matrix C is LS2F(k)  if and only i f  ~4 

is LS2F(k). 

Proof. Take any tour T in graph G described by cost matrix C. LS2Fs have costs of 

the form C ( T )  - (c, + c f )  for some arcs e and f in E(T).  Subtract a constant 4 from 

every entry of C to obtain ~ 4 .  The corresponding LS2F in the new matrix C$ has cost 

[C(T) - n4] - [(c, - 4) + ( c j  - 4)] = [C(T) - (c,  + c f ) ]  - [(n + 2)4]. Notice that ( n  + 2)4 
is a constant independent of tour T and arcs e and f .  Hence, the result follows. 0 

Using Observation 4.0.1, it may be assumed that, without loss of generality, any cost 

matrix we consider contains at least one element of cost zero. 

Observation 4.0.2. Let n > 4 and T be the tour containing the highest number of distinct 

arc costs i n  graph G described by cost matrix C .  If G contains at least two arcs of distinct 

costs then all arcs of T can not have the same cost. 

Proof. If all arcs of T have cost a, then all other tours only use arcs of a single cost as well 

(by the definition of T ) .  Since C contains at least two distinct arc costs, a and P ,  perform 
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an ordered 3-exchange or arc reversal (see Constructions 3.2.2 and 3.2.3) on T to include 

an arc of cost p.  Notice that n 2 4 implies that the newly formed tour retains an arc of 

cost a since only three arcs of T are effected by either construction technique. Hence, the 

newly formed tour contains arcs of both costs a and P, contradicting the choice of T.  0 

Lemma 4.0.3. If C is an LS2F(3) cost matrix associated with graph G then any tour in G 

contains arcs of at most  three distinct costs. 

Proof. Suppose T is a tour in G using arcs of distinct costs a, P, y and S. Then there exist 

LS2Fs of costs C(T)  - (a + S), C(T)  - (P + S) and C(T) - (y + S) which are all distinct. 

But there are also LS2Fs of costs C(T) - (a + P), C(T) - ( a  + y) and C(T) - (P + y). Since 

C is LS2F(3) and a ,  P, y and S are all distinct constants, it follows that C(T) - ( a  + P) = 

C(T) - (y +S),  C(T) - ( a +  y) = C(T) - ( P + S )  and C(T) - ( P +  y) = C(T) - ( a + S ) .  

But this system has no solution with distinct constants a, ,B, y and S. 0 

Lemma 4.0.4. If C is a n  LS2F(3) matrix associated with graph G that has a tour T 

containing arcs of three distinct costs then T does not  contain multiple arcs of two distinct 

costs. 

Proof. Without loss of generality, assume T contains multiple arcs of cost a, multiple arcs 

of cost ,B and (at least) one arc of cost y,  where a, ,B and y are all distinct. Then there exist 

LS2Fs of costs C(T) - 2a, C(T) - 2P, C(T) - ( a  + P), C(T) - ( a  + y)  and C(T) - (P + y). 

Since a, p and y are all distinct, C(T) - ( a  + P), C(T) - ( a  + y)  and C(T) - (P + y) 

are all distinct. Furthermore, C(T) - 2P @ {C(T) - ( a  + P), C(T) - (P + y)) + (1) 

C(T) - 2P = C(T) - ( a  + y). Similarly, (2) C(T) - 2a = C(T)  - (P + y). The difference of 

(1) and (2) yields -2P + a = - (a  + y) + (P + y)  + a = ,B which gives a contradiction. 0 

Lemma 4.0.5. If C is an  LS2F(3) matrix associated with graph G that has a tour containing 

arcs of distinct costs a ,  ,b' and multiple arcs of cost y then 2y = a + ,B. I n  particular, if 

y = 0 then a = -p. 

Proof. Given the conditions of the lemma, there exist LS2Fs of costs C(T)  - 27, C(T) - ( a +  

P),  C(T) - ( a +  y) and C(T) - (P+y) for some tour T in G described by C. Since a, P and y 

are all distinct and C is LS2F(3) it follows that C(T) -27 = C(T) - (a+P)  + 2y = a+P. 
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Let n = 2. Then all LS2Fs have zero cost and any associated cost matrix C can not be 

LS2F(3). Let n = 3. Then every LS2F is only comprised of a single arc as every tour is a 

3-cycle. Hence, C is LS2F(3) if and only if there exist arcs of precisely three distinct costs 

in C.  For the remainder of the chapter, it will be assumed that n > 4. 

Observation 4.0.6. Let T be a tour in G with costs described by LS2F(3) cost matrix C 

and n > 4. It is possible t o  subtract a constant from all elements of C in such a way that 

the tour T will use multiple arcs of cost 0. 

Proof. Suppose that tour T uses multiple arcs of cost a # 0. Then by Observation 4.0.1, 

reduce every element of C by a to obtain the desired result. Otherwise, T does not contain 

multiple arcs of the same cost. By Lemma 4.0.3, T can not contain more than three distinct 

arc costs. It must be the case that n 5 3 which gives a contradiction. 0 

By Theorem 3.1.3, it is known that if cost matrix C contains only arcs of a single cost 

then C is an LS2F(1) matrix. Hence, all LS2F(3) cost matrices can be grouped into three 

distinct classifications. These classifications will now be considered: 

0 C contains at least four distinct costs (see Section 4.1), 

0 C contains exactly three distinct costs (see Section 4.2) and 

0 C contains exactly two distinct costs (see Section 4.3). 

The sections to come examine the permissible structures of LS2F(3) cost matrices for 

each of the three classifications. 

4.1 Cost matrices containing at least four cost values 

The main result of this section is to establish that if cost matrix C is LS2F(3) then C 

contains at most three distinct arc-costs. By Observation 4.0.1, one of the costs of C may 

be forced to 0 by subtracting 4 from every element in C to create C4. Furthermore, by 

Observation 4.0.1 C is LS2F(k) if and only if C4 is LS2F(k). Hence, to simplify arguments 

we consider the matrix C@ in the analysis to follow. Recall that Lemma 4.0.3 ensures that no 

tour can contain more than three distinct arc costs. Also, recall that we are only considering 

matrices on n > 4. We now proceed by first establishing some necessary results. 
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Lemma 4.1.1. Let C4 be a cost matrix associated with graph G that contains at least four 

distinct costs and n > 4. If C4 is LSZF(3) then there does not exist a tour using three 

distinct arc costs in  G described by C4. 

Proof. Without loss of generality, assume cost matrix C4 contains elements of at least four 

distinct costs. Denote four of these costs by 0, a ,  ,B and y. Let Tl be a tour in G that 

contains arcs of costs 0, a and p. From Observation 4.0.6, Tl has multiple arcs of cost 0. 

From Lemma 4.0.4, Tl contains a single arc of cost a and a single arc of cost ,B. Thus, 

C(Tl)  = a + ,B and there exist LS2Fs of costs 0, a and ,B. Also, by Lemma 4.0.5, a = -,B. 

So C4 describes LS2Fs of costs 0, a and -a. Perform an ordered 3-exchange or arc reversal 

(see Constructions 3.2.2 and 3.2.3) on Tl to include an arc of cost y creating tour T,. We 

now consider the LS2F in T, created by deleting the two arcs of unknown costs. 

If both the arc of cost a and the arc of cost ,B from Tl do not appear in T, then T, emits 

an LS2F of cost y (since all arcs of known cost in T, have cost 0). But y @ (0, a, P) implies 

that there are more than three distinct LS2F costs in C4. 

If both the arc of cost a and the arc of cost ,B from Tl appear in T, then T, has arcs of 

costs 0, a, ,B and y unless n = 5 and all arcs of cost 0 are removed during the construction 

of T,. Assume that n = 5. The LS2F in T, formed by deleting the two arcs of unknown 

cost has cost a + ,B + y = a + (-a) + y = y. But y @ (0, a, ,B) implies that there are more 

than three distinct LS2F costs in C@. 

If the arc of cost a does not appear in T, but the arc of P does appear then we consider 

the value of n. 

Suppose n > 5 then T, contains arcs of costs ,B, y and multiple arcs of cost 0. From 

Lemma 4.0.4 and Lemma 4.0.5, it follows that ,B = -y. But P = -a yields a contra- 

diction since 0, a ,  ,B and y are all distinct. 

0 Suppose n = 5 then T, contains an arc of costs 0, P, y and two arcs of unknown costs. 

From Lemma 4.0.3, T, can only contain these three arc costs. If one of the arcs of 

unknown cost has cost ,b' then there exists an LS2F of cost 2,B which gives more than 

three distinct LS2F values. Hence, there are only three cases to consider, the arcs of 

unknown costs are: (a) both 0, (b) both y or (c) 0 and y. In (a) and (c), T, emits 

an LS2F of cost y which gives more than three distinct LS2F values. In (b), T, emits 

LS2Fs of costs 3y, 27, 2y + ,B and y + P. Simple analysis shows that C4 has more 

than three distinct LS2F cost values. 
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0 Suppose n = 4 then T, contains an arc of cost P, an arc of cost y and two arcs of 

unknown costs. If one of these arcs of unknown cost has cost 0 then there exists an 

LS2F of cost y. If one of these arcs of unknown cost has cost a then there exists an 

LS2F of cost a + y. If one of these arcs of unknown cost has cost /3 then there exists an 

LS2F of cost 2P. If one of these arcs of unknown cost has cost y then there exists an 

LS2F of cost 27. All four of these cases yield contradictions as there would exist more 

than three distinct LS2F values in c@. From Lemma 4.0.3, T, can contain arcs of at 

most three distinct costs. Hence, both arcs of unknown cost have cost 6 @ (0, a, P, y). 

Thus, T, emits LS2Fs of costs 26, 6 + P, 6 + y and /3 + y. Once again, simple analysis 

shows that C@ has more than three distinct LS2F values. 

If the arc of cost /3 does not appear in T, but the arc of a does appear then apply the 

same logic used in the previous analysis to achieve a contradiction. 0 

The following three lemmas consider cost matrices on n = 4. These results will prove to 

be useful in obtaining a more general result (Lemma 4.1.5). 

Lemma 4.1.2. Let cost matrix C@ associated with graph G on n = 4 contain arcs of at 

least four distinct costs, two of which are 0 and a. If G contains a tour TI = (1,2,3,4) with 

cl2 = c34 = a and c23 = c4l = 0 then C@ is not LS2F(3). 

Proof. Let 0, a, /3 and y be distinct constants contained in C@. Tour Tl yields LS2Fs 

of costs 2a, a and 0. Denote the remaining five tours of G as follows: T2 = (1,2,4,3),  

T3 = (1,3,4,2),  T4 = (1,3,2,  s ) ,  T5 = ( I ,  4,2,3) and T6 = (1,4,3,2). 

Notice that tours T2 and T3 yield LS2Fs of costs a + 6 E {2a, a, 0) + 6 E {a, 0, -a). 

Notice that tours T4 and T5 yield LS2Fs of costs 0 + E E {2a, a, 0) + E E {2a, a, 0). This 

implies that cl3, csl, c24, C42 E (0, a)  = {a, 0, -a) n {2a, a, 0). 

Also, it is known that C@ contains entries of distinct costs 0, a ,  /3 and y. So without 

loss of generality, c32 = /3 = 2a and y = -a with y E {czl, ~ 4 ~ ) .  Consider the arcs of tour 

Ts Notice that clq @ {2a, a) or there would exist an LS2F of either cost 4a  or 3a  using 

arcs 14 and 32. Hence, cl4 = 0. But recall that 21 and 43 are the only arcs that possibly 

have cost y. In either case, it is possible to obtain an LS2F of cost y = -a from T6 using 

arc 14 and the arc of cost y. This obtains a contradiction as C@ is LS2F(3). 0 
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Figure 4.1: Tour TI = (1,2,3,4) given cl2 = c34 = a and ~ 2 3  = cql = 0 

Figure 4.2: Further structure of TI given cl2 = c34 = a and c23 = c41 = 0 

Lemma 4.1.3. Let cost matrix C 4  associated with graph G on n = 4 contain arcs of at 

least four distinct costs, two of which are 0 and a .  If G contains a tour Tl = (1,2,3,4) with 

c12 = C23 = a and c34 = ~ 4 1  = 0 then C 4  is not LS2F(3). 

Proof. Let 0, a, p and y be distinct constants contained in ~ 4 .  Take Tl = (1,2,3,4) 

with cl2 = c4l = a and cz3 = c34 = 0. There exist LS2Fs of costs 2a,  a and 0 from 

T I .  Tours (1,4,2,3) and (1,3,4,2) yield LS2Fs of cost 0 + 6 so 6 E {2a, a, 0). Tours 

(1,3,2,4) and (1,2,4,3) yield LS2Fs of cost a + E so E E {a, 0, -a).  Since all arcs of G 

whose cost is not determined are covered by these four tours and C 4  contains elements of 

at least four distinct costs it follows (without loss of generality) that P = -a and y = 2a. 

Thus, can not contain more than four distinct costs. Furthermore, arcs 13 and 31 have 
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C 1 3 ,  C31 E ( 0 , ~ )  = (2% a ,  0) n {a ,  0, -a). 

If two of the arcs 14, 42 or 21 have cost y then there would exist an LS2F of cost 

y + y = (2a) + (2a) = 4 a  which gives a contradiction. Assume c42 # y. Since C@ contains 

four distinct cost values {c14, c Z 1 )  = ( 0 , ~ ) .  Thus, arcs 14, 43, 32 and 21 do not have cost 

a or there would be an LS2F of cost a + y = 3a. Furthermore, C43,C32 # /3 or there would 

exist an LS2F of cost ,f3 = -a using tour (1,4,3,2).  Hence, ~ 2 4  = ,f3. But now no cost can 

be attributed to  c43 without arriving a t  a contradiction. So it must be the case that ~ 4 2  = y 

where arc 42 is the only arc of cost y in G. Similar arguments show that cz4 = ,B with only 

arc 24 having cost ,B in G. But tour (1,2,4,3) implies ~ 3 1  # 0 or there would be an LS2F of 

cost ,f3 = -a. Similarly, tour (1,4,2,3) implies csl # a or there would be an LS2F of cost 

-a. Hence, no cost can be attributed to csl without arriving at a contradiction. 0 

Lemma 4.1.4. Let cost matrix C@ associated with graph G on n = 4 contain arcs of at 

least four distinct costs, two of which are 0 and a. If G contains a tour Tl = (1,2,3,4) with 

c12 = a and C23 = C S ~  = c41 = 0 then C@ is not LS2F(3). 

Proof. Let 0, a, ,f3 and y be distinct constants. Take tour Tl = (1 ,2 ,3 ,4)  with cl2 = a and 

C23 = c34 = c41 = 0. There exist LS2Fs of costs 0 and a from T I .  Of the remaining arcs 

there must be at least one arc of cost ,B and at  least one arc of cost y. Tour (1,4,2,3) uses 

arcs 14, 42, 31 and 23 with ~ 2 3  = 0. Tour (1,3,4,2) uses arcs 13, 42, 21 and 34 with c34 = 0. 

Tour (1,3,2,4) uses arcs 14, 32, 24 and 41 with c41 = 0. 

Figure 4.3: Tour structure of TI given cl2 = a and c23 = c34 = c4l = 0 

Suppose arcs of costs ,f3 and y were associated with two of the arcs 14, 42, 31, 13, 21, 32 

or 24 then it would be possible to find LS2Fs of costs ,f3 and y as all arcs in this list have 
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been shown to he contained in a tour using an arc of cost ,6' or y,  and an arc of cost 0. Thus, 

there can not both be an arc of cost ,6' and an arc of cost y in this list. Notice that the only 

arc of unknown cost not contained in the list is the arc 43. Without loss of generality, let 

c43 = y and C4 can not contain more than four distinct costs. Since an arc of cost ,6' must 

be placed in G, arc 43 is the only arc with cost c43 = y in G. Furthermore, there exists 

an LS2F of cost a + y formed by using the tour (1,2,4,3) and deleting the arcs 31 and 24. 

There is also an LS2F of cost ,6' as previously observed. Hence, there are LS2Fs of costs 0, 

a ,  ,6' and a + y. Notice tour (1,2,4,3) uses costs c12 = a and c43 = y and tours can use at 

most two distinct arc costs. So the other two arcs of this tour have costs c24, c31 E {a, y). 

But C4 only contains a single arc of cost y so ~ 2 4 ,  c3l = a .  Using tour (1,2,4,3) there is 

an LS2F of cost 2a with ~ 2 4 ,  c3l = a .  Tour (1 ,4 ,2 ,3)  uses costs ~ 2 3  = 0 and c3l = a + 
~ 1 4 ,  c42 E (0, a). Tour (1,3,2,4) uses costs c4l = 0 and c24 = a * ~ 1 3 ,  ~ 3 2  E (0, a ) .  This 

leaves arc 21 as the only candidate to have cost P. But tour (1,4,3,2) uses a t  least three 

arc costs with c21 = P,  c43 = y and ~ 1 4  E (0, a). 0 

The previous three lemmas are now used to extinguish the case where there exists a tour 

using two distinct arc costs in a cost matrix containing at least four distinct values. 

Lemma 4.1.5. Let C4 be a cost matrix associated with graph G that contains at least four 

distinct costs and n > 4. IfC4 i s  LS2F(3) then there does no t  exist a tour using two distinct 

arc costs in G described by C4. 

Proof. Suppose cost matrix C4 contains elements of at least four distinct costs. Denote 

four of these costs by 0, a, ,6' and y. Let TI be a tour in G that contains arcs of both costs 

0 and a. From Observation 4.0.6, Tl has multiple arcs of cost 0. Force TI to contain at 

least as many arcs of cost 0 as arcs of cost a (which is done by reducing all elements of C4 

appropriately). So C(Tl) = k a  for 1 5 k 5 Perform an ordered 3-exchange or arc 

reversal (see Constructions 3.2.2 and 3.2.3) on Tl to  include an arc of cost ,6' creating tour 

Tp. Repeat this process on Tl to include an arc of cost y creating tour T,. 

If both an arc of cost 0 and an arc of cost a from Tl appear in Tp then this tour contains 

(at least) three distinct arc costs. This contradicts Lemma 4.1.1. Thus, either all the arcs 

of cost 0 or all the arcs of cost a do not appear in the constructed tours (Tp and T,). Recall 

that only three arcs are affected during an ordered 3-exchange or an arc reversal. Since TI 

contains more arcs of cost 0 than a, there can be at most three arcs of cost a in TI. We 

now consider the number of arcs of cost a in TI. 
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Suppose k = 3 and consider the cases n > 6 and n = 6 separately. 

Assume n > 6. Then no arc of cost a appears in Tp or there would exist arcs of (at 

least) three distinct costs. Consider the subgraph formed by removing all arcs of cost 

a f r o m ~ l .  Notice that this subgraph consists of three disjoint paths. Connect these 

three paths to create a tour which is different than TI. But these three paths may 

only be connected in a single unique way without recreating TI. Since both Tp and T, 

are formed by deleting the three arcs of cost a from Tl to create a new tour, it follows 

that Tp = T,. Hence, this tour contains arcs of costs 0, p and y which contradicts 

Lemma 4.1.1. 

Assume n = 6. Then it is possible that no arc of cost 0 appears in Tp or T,. In fact, 

by the same logic presented when n > 6 it follows that at least one of these tours has 

no arcs of cost 0 from TI appearing in it. Without loss of generality, assume Tp is such 

a tour. Hence, Tp is composed of three arcs of cost a, one arc of cost P and two arcs 

of unknown cost. If one of the arcs of unknown cost has cost a then there exist LS2Fs 

of cost 4a from Tp and LS2Fs of costs 3a ,  2a and a from TI. Hence, there exist more 

than three LS2F values in ~ 4 .  Since Tp can contain at most two distinct values, the 

two arcs of unknown costs both have cost P. So C4 contains LS2Fs of costs 3a,  2a,  

a ,  a + 3P, 2a + 2P and 3a  + p. But this also implies that there are more than three 

distinct LS2F values in C4. 

Suppose k = 2 and consider the cases n > 5, n = 5 and n = 4 separately. There are 

LS2Fs of costs 0, a and 2a in TI. 

Assume n > 5. Then no arc of cost a appears in Tp or there would exist arcs of (at 

least) three distinct costs. Thus, Tp is comprised of one arc of cost P, two arcs of 

unknown costs and all remaining arcs of cost 0. Hence, Tp yields LS2Fs of cost P (by 

deleting the two arcs of unknown costs). Similarly, T, yields LS2Fs of cost y. Since 

0, a ,  p and y are all distinct there exist more than three LS2F values in C4. 

Assume n = 5. Then it is possible that no arc of cost 0 appears in Tp or T,. In fact, 

by the same logic presented when n > 5 it follows that at least one of these tours 

has no arcs of cost 0 appearing in it. Without loss of generality, assume Tp is such a 

tour. Hence, Tp is composed of two arcs of cost a, one arc of cost P and two arcs of 

unknown cost. Since any tour can contain arcs of at most two distinct values, the arcs 

of unknown costs must (a) both have cost P, (b) both have cost a or (c) have one arc 
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of cost a and the other with cost p.  In both (b) and (c), Tp yields an LS2F of cost 

3a. In (a), Tp yields LS2Fs of costs 3P, a + 2P and 2a + P. But in all cases: these 

LS2F values combined with those from TI give more than three distinct values. 

Assume n = 4. This case is exhausted by Lemma 4.1.2 and Lemma 4.1.3. 

Suppose k = 1 and consider the cases n > 4 and n = 4 separately. 

Assume n > 4. Then the arc of cost a does not appear in Tp or there would exist 

arcs of (at least) three distinct values. Thus, Tp is comprised of one arc of cost P, two 

arcs of unknown costs and all remaining arcs of cost 0. Hence, Tp yields LS2Fs of cost 

,O (by deleting the two arcs of unknown costs). Similarly, T, yields LS2Fs of cost y. 

Since 0, a, ,O and y are all distinct there exist more than three LS2F cost values in 

c4 .  

Assume n = 4. This case is exhausted by Lemma 4.1.4. 

We now provide the proof to the claim made at the beginning of the chapter. 

Theorem 4.1.6. If cost matrix C is LS2F(3) then C contains at most  three distinct arc 

costs. 

Proof. Suppose Cd contains at least three distinct values. By Lemma 4.0.3, any tour can 

contain at most three distinct arc costs. By Lemma 4.1.1, any tour can contain at most two 

distinct arc costs. By Lemma 4.1.5, any tour can contain at most one distinct arc cost. By 

Observation 4.0.2, there exists a tour using arcs of at least two distinct costs. Hence, if C@ 

is LS2F(3) then C4 contains at most three distinct arc-costs. By Observation 4.0.1, C is 

LS2F(k) if and only if C4 is LS2F(k). 0 

4.2 Cost matrices containing three cost values 

Let C be an LS2F(3) cost matrix containing exactly three distinct values. By Observation 

4.0.2, there exists a tour in C using arcs of at least two distinct costs. To determine the 

structure of C we consider three cases. 

C contains a tour using three distinct arc costs (Lemma 4.2.1). 

All tours in C use at most two distinct costs and there exists a tour using multiple 

arcs of two costs (Lemma 4.2.3). 
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All tours in C use at most two distinct costs and there does not exist a tour using 

multiple arcs of two costs (Lemma 4.2.4). 

The following definitions are introduced to condense the arguments regarding the place- 

ment of elements within a cost matrix. A line of a matrix is either a row or column of 

the matrix. A line cover of cost a in cost matrix C is the minimum set of lines needed to 

contain all elements of cost a .  

Lemma 4.2.1. Let a, P and y be distinct constants contained i n  cost matrix C with n 2 4. 

The matrix C is an LS2F(3) matrix with a tour containing all three costs if and only if the 

following conditions are satisfied. 

(a)  27 = a + P. 
(b) If there are more than two elements of cost a then a has a line cover of size one. 

(c)  If there are exactly two elements of cost a then either a has a line cover of size one or 

there exists nodes p and q such that ~p~ = cqp = a .  

(d) Properties (b) and (c) hold for the elements of cost P.  
(e)  If there is only one element of cost a and only one element of cost P then it is not the 

case that ~p~ = a and cqp = P.  
( f )  There does not exist a line containing all elements of both costs a and P.  

Proof. Suppose that C is an LS2F(3) cost matrix associated with graph G. Furthermore, 

suppose that G contains a tour T that uses distinct costs a, P and y. By Lemma 4.0.5, 

27 = a + P where T uses multiple arcs of cost y. The choice of y is uniquely defined since 

2P = a + y or 2a = ,b' + y can not have solutions with a, and y all distinct. Thus, every 

tour that contains arcs of all three distinct costs must contain multiple arcs of cost y. By 

Lemma 4.0.4, every tour containing all three distinct costs must contain exactly one arc of 

cost a and exactly one arc of cost 0 .  This can only be achieved if the required conditions 

are satisfied. 

Conversely, given the conditions stated in the preamble, it is possible to find a tour 

using at most a single arc of cost a and at most a single arc of cost P. Furthermore, it is 

possible to  find a tour using exactly one arc of each cost as guaranteed by the conditions. 

Hence, all tours in C have cost ny, (n - 1)y + a, ( n  - 1)y + P or (n  - 2)y + a + P. 
Thus, C is LS2F(3) as there exist LS2Fs of costs (n  - 2)y, (n  - 3)y + a, (n - 3)y + P and 

(n - 4)y + a  + P  = (n - 4 ) ~ ;  + (27) = (n - 2)y since 2y = a + P .  



CHAPTER 4. LS2F(3) MATRICES 33 

Lemma 4.2.1 establishes the structure of LS2F(3) cost matrices containing exactly three 

distinct cost elements and a tour that uses all three distinct costs. From Lemma 4.0.3, no 

tour uses arcs of more than three distinct costs. Observation 4.0.2 guarantees that not all 

tours use arcs of a single cost. Hence, we need only consider cost matrices where all tours 

use arcs of at most two distinct costs. We first establish a helpful result. 

Lemma 4.2.2. Let a ,  P and y be distinct constants contained in a n  LS2F(3) m a t ~ x  C .  

If there exists a tour using multiple arcs of cost a and multiple arcs of cost y, but n o  tour 

using arcs of all three distinct costs then: 

( a )  there does not  exist a tour using multiple arcs of cost P, and 

(b)  there does not  exist a tour using arcs of both costs a and P, given that there also exists 

a tour using arcs of both costs y and P. 

Proof. We first show (a). Denote the tour using multiple arcs of both costs a and y as T .  

Notice C(T) = ka  + (n - k) y for 2 < k < n - 2 and T yields LS2Fs of costs ka + (n - k - 2) y, 

(k - 1)a  + (n - k - 1)y and (k - 2)a + (n - k)y. Suppose there exists a tour TI containing 

multiple arcs of cost P and multiple arcs of (without loss of generality) cost a .  This tour 

generates LS2Fs of costs la + (n - 1 - 2)P, ( I  - 1)a  + (n - 1 - l )P and ( I  - 2)a + (n - 1)P 
for some 2 < 1 _< n - 2. It can be verified that these six LS2Fs have at least four distinct 

values. This gives a contradiction. 

Now suppose that there exists a tour T2 using multiple arcs of cost P and (without loss of 

generality) a single arc of cost a. Then C(T2) yields LS2Fs of costs (n - 2)P and (n - 3)P+ a .  

If n > 4 then perform an ordered 3-exchange or arc reversal (see Constructions 3.2.2 and 

3.2.3) using T2 and an arc of cost y to create T,. Since there does not exist a tour using arcs 

of all three distinct costs, the arc of cost a does not appear in T2. By deleting the two arcs 

of unknown cost in T, an LS2F of cost (n - 3)P + y is obtained. But the number of distinct 

LS2F values from T ,  T2 and T, exceeds three. This obtains a contradiction. If n = 4 then 

there exist LS2Fs of costs 2P and a + P from T2. There also exist LS2Fs of costs 2a, a + y 

and 27 from T .  This again yields more than three distinct LS2F values. 

Lastly, suppose that there exists a tour T2 using only arcs of costs P. Since there exists 

an arc of cost y in C it is trivial to find a tour using multiple arcs of cost P and an arc of 

cost y unless n = 4. But then it is possible to find an LS2F of cost a + P. This combined 

with the LS2Fs of costs 2P from T2 and 2a, a + y and 2y from T gives a contradiction. 

The remainder of the lemma, (b), is established by noting that if there exists a tour 



CHAPTER 4. LS2F(3) MATRICES 34 

using arcs of both costs y and ,b' then there exists LS2Fs of cost (n  - 3)y + P and (n - 2)y. 

Similarly, if there exists a tour using arcs of both costs a and ,b' then there exists an LS2F 

of cost (n  - 3)a  + p  and (n  - 2)y. But these four LS2F values combined with those obtained 

from T give more than three distinct LS2F values. This obtains a contradiction. 0 

We will now use this lemma to determine the structure of LS2F(3) cost matrices where 

all tours use at most two distinct costs and there exists a tour using multiple arcs of two 

distinct costs. 

Lemma 4.2.3. Let a, P and y be distinct constants contained i n  cost matrix C = (c+) 

associated with graph G and n 2 4. Furthermore, let p, q ,  r E V(G)  be distinct nodes and 

identify the following sets of arcs S1 = { p j  I j # q ) ,  S2 = { iq  I i # p )  and Sg = i q p ) .  The 

matrix C is LS2F(3)  with a tour containing multiple arcs of cost a and multiple arcs of cost 

y, but no  tour containing all three distinct costs if and only if: 

(a )  2a = p + r 7  
(b) at least two of the sets S1, S2 and Sg contain an  arc of cost a ,  

(c )  pr E S1, r q  E S2 and qp E S3 are the only arcs of cost a in G if S1, S 2  and Sg all 

contain arcs of cost a ,  and 

(d)  C has the following strncture: 

( {y} otherwise. 

Proof. Suppose C is an LS2F(3) matrix containing a tour T with multiple arcs of both costs 

a and y. By Lemma 4.2.2, there does not exist a tour using multiple arcs of cost P. Since 

C contains an element of cost p, denote one such element as pq (so cpq = p). Without loss 

of generality, suppose that pq is contained in a tour T, that also uses an arc of cost y. Since 

there does not exist a tour using all three distinct costs and there does not exist a tour using 

multiple arcs of cost ,D (from Lemma 4.2.2) it follows that all arcs of T, other than pq have 

cost y.  Furthermore, from Lemma 4.2.2 no tour contains arcs of both costs a and P. 

Suppose that there exists more than a single element of cost P in C. From Lemma 4.2.2, 

no tour contains multiple arcs of cost P. Thus, either all entries of cost ,f3 are contained 

within a single line or the only entries of cost P are pq and qp. Since T contains multiple 
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arcs of cost a it is trivial to find a tour using arcs of both costs a and ,B. This contradicts 

Lemma 4.2.2. This implies that there is a single element (pq) of cost ,B and no tour may 

contain arcs of both costs a and 0. Hence, the only arcs which are candidates to have cost 

a are arcs of the form S1 = (pj I j # q), S2 = {iq I i # p) and S3 = {qp). 

Since C contains a tour using multiple arcs of cost a ,  at least two of the three sets (Sly 

S2 and S3) must contain an arc of cost a .  Suppose that all three sets of arcs contain an 

element of cost a .  Let arc pul E S1, u2q E S2 and qp E Sj all have cost a .  If u1 # u2 then 

it is trivial to find a tour with three arcs of cost a (using the subpath u2 - q - p - ul). 

This gives a contradiction as  there would exist more than three distinct LS2F values in C. 

Otherwise, u1 = u2. If either S1 or Sz contains multiple arcs of cost a then again it is trivial 

to find a tour using three arcs of cost a .  Hence, for the case where all three sets (S1, S2 and 

S3) contain an arc of cost a ,  there exist only four arcs with cost not equal to y in C (three 

of cost a and one of cost p). 
Lastly, it has been shown that there exist tours of costs 2a + (n - 2) y and ,B + (n  - 1) y. 

Hence, there exist LS2Fs of costs 2a + (n - 4)y, a + (n - 3)y, (n  - 2)y and ,B + (n - 3)y. 

Since C is LS2F(3) this implies that 2a + (n - 4)y = ,B + (n - 3)y + 2a  = ,B + y. 

Conversely, it is given that 2a  = ,B + y. First, suppose that S1, S2 and S3 all contain an 

arc of cost a .  Then ~p~ = crq = cqp = a and ~p~ = P. Since n > 4, any tour in G contains at 

most two arcs from this 3-cycle of a cost arcs. However, there does exist a tour using two 

arcs of cost a (using pq and an arc from either S1 or S2). Second, suppose that C contains 

arcs of cost a from exactly two of the three possible sets S1, S 2  and S3. For all three pairs 

of arc sets containing arcs of cost a (namely, S1S2, S2S3 and S1S3) it is trivial to find a 

tour using two arcs of cost a (and all other arcs of cost y). 

Notice that no tour uses both an arc of cost a and the arc of cost P.  Otherwise, suppose 

that there exists a tour using both pq and pul E S1. But both arcs are leaving node p so no 

tour can use both arcs, which gives a contradiction. Suppose there exists a tour using both 

pq and u2q E S2. But both arcs are entering node q which gives a contradiction. Lastly, 

suppose there exists a tour using both pq and qp. Since n 2 4 this gives a contradiction. 

Hence, any tour containing an arc of cost a has cost a + (n - 1)y or 2a  + (n - 2)y. Also, 

there exists a tour using the arc of cost ,B and all other arcs of cost y. Thus, there exist 

LS2Fs of costs 2 a + ( n - 4 ) y ,  a + ( n - 3 ) y ,  (n-2)y and ,B+ (n-3)y  = 2 a + ( n - 4 ) y  since 

2 a = , B + y .  0 
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Lemma 4.2.3 establishes the structure of LS2F (3) cost matrices containing exactly three 

distinct cost elements where all tours contain at  most two distinct costs and there exists a 

tour that uses multiple arcs of two distinct costs. To finish off this section, we need only 

consider matrices containing exactly three distinct cost elements where all tours contain at 

most two distinct costs and there does not exist a tour that uses multiple arcs of two distinct 

costs. 

Lemma 4.2.4. Let a ,  ,b and y be distinct constants contained i n  cost matrix C = (G~) 

associated with graph G and n 2 4. The matrix C is LSZF(3) with no tour containing 

multiple arcs of cost a or ,b if and only if C has: 

(a)  a single line containing all the elements of costs a and 0, or 

(b) only two elements that do not have cost y, cp, = a and cqp = ,b for fixed nodes p and q. 

Proof. Cost matrix C is structured such that every tour will use either precisely one arc of 

cost 6 E {a, p), or will use all arcs of cost y. The same logic presented in Theorem 3.2.8 can 

be used to  describes the structure of a matrix such that every tour uses at most a single arc 

of cost 6. Thus, the same structure is used here applying the additional requirement that 

there must be at least one arc of cost a and at least one arc of cost P in C. 

Conversely, it is given that C contains the distinct costs a ,  P and y. In (a), suppose 

that C has a single line containing at  least one arc of cost a and at least one arc of cost 

p. All arcs of these costs are either entering or leaving a single node in G (depending on 

whether the line is a column or row, respectively). Any tour can use at most one of these 

arcs. Thus, there exist tours of costs a + ( n  - 1)y and ,b + (n  - 1)y. (It may be noted that if 

the line in question contains an element of cost y then there will also be a tour of cost ny, 

but such a tour does not affect this analysis.) Hence, there exist LS2Fs with distinct costs 

(n  - 2)y, a + (n  - 3)y and ,b + (n - 3)y since n 2 4. In (b), suppose pq and qp are the only 

elements in C that do not have cost y. It is clear that any tour can use either pq or qp, but 

not both. Once again, it is found that these tours provide LS2Fs of distinct costs (n - 2)y, 

a + (n - 3)y and ,b + (n  - 3)y. Thus, in both (a) and (b), C is LS2F(3). 0 

Lemma 4.2.1, Lemma 4.2.3 and Lemma 4.2.4 determine the structure of LS2F(3) cost 

matrices containing exactly three distinct values. We now focus on establishing a charac- 

terization of cost matrices containing elements of precisely two distinct costs. 
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4.3 Cost matrices containing two cost values 

From Section 4.1, there does not exist an LS2F(3) matrix containing more than three distinct 

values. Section 4.2 established the structure of LS2F(3) matrices containing exactly three 

distinct costs. Hence, we now consider cost matrices containing only two distinct elements. 

Let C be such a matrix. By Observation 4.0.1, one of these two costs may be forced to be 

0 by subtracting q5 from every element in C to create C4. Denote the other cost in C4 as 

a # 0. Throughout this section, let TI be the tour in C4 containing the most arcs of cost 

a over all tours using arcs of both costs 0 and a .  By Lemma 4.0.2, such a tour exists. 

Lemma 4.3.1. Let 0 and a be distinct constants contained in cost matrix ~4 associated 

with graph G and n 1 4. The  matrix C4 is LSZF(3) and all tours containing arcs of both 

cost 0 and a contain at most  one arc of cost a if and only i f  n = 4 and there are exactly 

four arcs of cost a which form a 4-cycle. 

Proof. If Tl contains only a single arc of cost a then all other tours in G are either constant 

or contain exactly one arc of cost a .  Suppose no tour in C4 contains multiple arcs of cost 

a .  From Theorem 3.2.8, C4 is LS2F(2). Thus, there exists some tour using multiple arcs 

of cost a .  Since all tours using arcs of both costs 0 and a contain at  most a single arc of 

cost a there exists a tour T2 using only arcs of cost a .  Perform an ordered 3-exchange or 

arc reversal (see Constructions 3.2.2 and 3.2.3) using T2 and any arc of cost 0. This newly 

created tour has arcs of both costs but uses more arcs of cost a than T I ,  unless n = 4 and 

all arcs swapped in have cost 0. Repeat this argument for every arc of T2 to see that all 

arcs not in T2 must have cost 0. 

Conversely, suppose n = 4 and the only arcs of cost a form a &cycle. The cost matrix 

C4 describes tours in G of costs 0, a and 4a. Hence, there exist LS2Fs of costs 0, a and 

2a. Thus, C@ is LS2F(3). 0 

It may now be assumed that C4 contains a tour using arcs of cost 0 and multiple arcs 

of cost a .  In particular, C(Tl) = ka  for 2 < k < n - 1. Also, notice that TI yields LS2Fs 

of costs ka,  (k - 1)a  and (k - 2)a. We now proceed to establish a characterization for all 

matrices not verified by Lemma 4.3.1. To do this, we differentiate two cases n > 4 and 

n = 4, in Lemma 4.3.2 and Lemma 4.3.3 respectively. 

Lemma 4.3.2. Let 0 and a be distinct constants contained in cost matrix C4 associated 

with graph G and n > 4. The  matrix C4 i s  LSZF(3) and contains a tour using arcs of cost 
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0 and multiple arcs of cost a if and only if: 

(a )  C@ i s  DTC(1) with all tours of cost ka  for 2 5 k 5 n - 2, or 

(b) all tours have cost 2a, a or 0 with at least one tour of cost 2a, or 

(c )  all tours have cost na ,  (n - 1)a or (n - 2)a with at least one tour of cost (n - 2)a. 

Proof. Suppose cost matrix C@ is LS2F(3) and tour TI uses arcs of cost 0 and multiple arcs 

of cost a with C(Tl) = k a  for 2 5 k 5 n - 1. Take any other tour T2 in G with C(T2) = la 

for 0 < 15 n.  

If 3 5 k 5 n - 3 then there exist LS2Fs of costs ka,  (k - 1)a and (k - 2 ) ~ .  Notice 

that if 1 # k then there are more than three distinct LS2F values. It follows that 1 = k. 

Hence, any tour in G has cost ka  implying that C@ is DTC(1). This illustrates (a) for all 

k @ (2 ,n  - 2). 

If k = 2 then TI yields LS2Fs of costs 0, a and 2a. It is possible to have tours in G of 

costs 2a, a and 0 and yield only three distinct LS2F values. This gives (b) and a subcase 

of (a). 

If k = n - 2 then TI yields LS2Fs of costs (n - 2)a, (n  - 3)a  and (n - 4)a. It is possible 

to have tours in G of costs na ,  (n - 1)a  and (n - 2)a. This gives (c) and a subcase of (a). 

If k = n - 1 then it could be the case that all tours have costs na ,  (n  - 1)a and (n  - 2)a 

as in (c). Suppose this is not the case. If 1 5 1 5 n - 3 then there are more than four 

distinct LS2F values in G described by C@. Since not all tours have costs na ,  (n  - 1)a and 

(n - 2)a it follows that T2 yields only a single LS2F value. Hence, 1 = 0. So C(T2) = 0 

and Tz is composed of all arcs having cost 0. Now perform an ordered 3-exchange or arc 

reversal (see Constructions 3.2.2 and 3.2.3) using T2 and any arc of cost a in G. The 

LS2F formed by deleting the two arcs of unknown cost in the newly formed tour has cost 

C(T2) - 3(0) + a = a .  But Tl yields LS2Fs of costs (n - 2)a and (n - 3)a and T2 yields 

LS2Fs of cost 0. Since C@ is LS2F(3), this yields a contradiction. 

Conversely, suppose (a) that C@ is a DTC(1) matrix with all tours having cost ka  for 

2 5 k 5 n - 2. Since all tours have cost ka  and there exist LS2Fs of costs ka,  (k - 1)a  and 

(k - 2)a. Hence, C@ is LS2F(3). Suppose (b) that all tours in G have cost 2a,  a or 0 and 

there exists a tour of cost 2a. Thus, there must exist a tour using multiple arcs of cost a. 

This implies that there are LS2Fs of costs 2a, a and 0 in C@. Suppose (c). Then the result 

follows immediately from (b) by reversing the roles of a and 0. 0 
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Lemma 4.3.3. Let 0 and a be distinct constants contained i n  cost matrix C4 associated 

with graph G and n = 4. The matrix C4 is LS2F(3) and contains a tour using arcs of cost 

0 and multiple arcs of cost a i f  and only if: 

(a )  there is a tour of cost 2a, or 

(b)  there is a tour of cost 3a and a tour of cost a or 0, or 

(c)  there is a tour of cost 4a and a tour of cost a .  

Proof. Suppose that n = 4, then it is possible to have tours of costs 0, a, Za, 3a  and 4a. 

A tour of cost 4a yields LS2Fs of only cost 2a. A tour of cost 30 yields LS2Fs of costs 2a 

and a. A tour of cost 2a yields LS2Fs of costs 2a, a and 0. A tour of cost a yields LS2Fs 

of costs a and 0. A tour of cost 0 only yields LS2Fs of cost 0. If all tours in G have a 

single value then it must be 20. Suppose G contains at least two distinct tour values. If 

G contains a tour of cost 2a then it may contain any other tour value and remain LS2F(3) 

which gives (a). Otherwise, G does not contain a tour of cost 2a. Suppose G contains a 

tour of cost 3 a  then there are LS2Fs of costs 2a and a .  Either a tour of cost a or 0 will 

produce only three LS2F costs, which gives (b). Suppose G contains a tour of cost 4a then 

there are LS2Fs of cost 2a. Since there do not exist LS2Fs of costs 2a or 30 for C4 to be 

LS2F(3) there must exist a tour of cost a, which gives (c). 

Conversely, suppose (a) that n = 4 and there is a tour of cost 2a. Then there are LS2Fs 

of costs 0, a and 2a. Any other tour cost in G yields LS2Fs with one of these three costs. 

Hence, Cd is LS2F(3). Suppose (b) that n = 4 and there is a tour of cost 3a and a tour of 

cost a or 0. The tour of cost 3a  yields LS2Fs of costs 2a and a .  The tour of cost a yields 

LS2Fs of costs a and 0 which would yield three LS2F values. The tour of cost 0 yields 

LS2Fs of cost 0 which would again yield three LS2F values. In either case, C@ is LS2F(3). 

Suppose (c) that n = 4 and there is a tour of cost 4a  and a tour of cost a .  The tour of cost 

4a yields LS2Fs of cost 2a and the tour of cost a yields LS2Fs of costs a and 0. Hence, C4 

is LS2F(3). 0 

Lemma 4.3.2 and Lemma 4.3.3 give a complete characterization of all LS2F(3) matrices 

containing exactly two distinct costs that are not excluded by Lemma 4.3.1. Currently, the 

characterization requires enumerating all tours to determine if a given cost matrix has a 

specified list of tour values. This process is not feasible for large cases. (If n = 4 then 

there are only six tours, so determining every tour cost is trivial.) Since the structure of the 

elements in a DTC(1) cost matrix has already been established, we must only consider the 
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structure of cost matrices that satisfy (b) and (c) in Lemma 4.3.2. Thus, we now explore 

the structure of a matrix where TI contains precisely two arcs of cost a. This exhausts (b) 

in Lemma 4.3.2. (The logic is analogous for (c) in the same lemma.) 

The following observations have been previously established and are re-iterated to pro- 

vide compactness to Lemma 4.3.7. 

Observation 4.3.4. A n y  tour can use at most one arc entering or leaving a single node. 

Observation 4.3.5. Let n 2 4. Also, let p and q be distinct nodes. A n y  tour can use at 

most  one of pq and qp. 

Observation 4.3.6. Let n > 4. Also, let p, q and r be distinct nodes. A n y  tour can use at 

most  two of pq, qp, pr,  rp ,  qr  and rq.  

L e m m a  4.3.7. Let 0 and a be distinct constants contained i n  cost matrix C4 = (et.) 

associated with graph G and n 2 4. Furthermore, let C4 contain a tour that uses two arcs 

of cost a .  All  tours i n  C4 have costs 20 ,  a or  0 if and only if: 

(a)  C4 has a line cover of size two, or 

(b) the indices of  C4 can be reordered such that the elements of cost a are contained i n  a 

2 x 2 submatrix and a single line, or 

(c) the indices of C4 can be reordered such that the elements of cost a are contained i n  a 

3 x 3 submatrix, or 

(d) all entries of C4 are zero except for some permutation of the indices of the submatrix 

S E {S1, S2, S 3 )  where 

Proof. Suppose that all tours have cost 20,  a or 0, and that there exists a tour T using 

two arcs of cost a. Denote these two arcs pq and r s .  Note that all four nodes need not 

be distinct. If these are the only two elements of cost a in C4 then there is a line cover of 

size two. By performing arc contractions on pq and r s  it follows that all entries of C4 not 

contained in row p, row r ,  column q ,  column s ,  qp or s r  must have cost 0. Suppose c$ = a 
4 for some t $ {p, q ,  r ,  s ) .  Clearly, cqp # a or subpath r - s - q - p - t uses three arcs of cost 
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a, which yields a contradiction (as no tour can have more than cost 2a). Since any tour 

can use a single arc of cost a not leaving p, the only candidate arcs are those entering s,  

leaving r or S T .  But the first two cases can be covered with two lines and the latter case 

can be covered with a 2 x 2 submatrix and line. By symmetry, we can assume that the only 

elements of cost a reside within the submatrix on nodes p, q, r and s. 

If not all four nodes are distinct then all elements of cost a can be covered by a 3 x 3 

submatrix. Otherwise, we consider the subgraph on the fourenodes corresponding to the 

4 x 4 submatrix with indices p, q, r and s. First, note that c$ = cfp = 0 or subpaths 

p - q - r - s and r - s - p - q would use three arcs of cost a .  If ctP = cfT = a then all 

other elements of C4 must have cost 0. This yields submatrix S1. Hence, it can be assumed 

(without loss of generality) that cfT = 0. To determine the structure of the rest of the 

submatrix, enumeration is used. To simplify notation, define 

endpoints p, q, r and s numerically as shown in Figure 4.4. 

the arcs of unknown cost with 

Figure 4.4: Definition of arcs given that pq and rs  have cost a 

We consider combinations of these seven arcs having cost a in conjunction with the two 

known arcs of cost a, namely pq and rs. We call a combination invalid if it is possible to 

find a tour of cost a t  least 3a  using the arcs in the combination. If a combination of arcs 

emits a path using three (or more) arcs of cost a then it may be discarded from future 

analysis, as all tours in G use at most two arcs of cost a .  A combination is called valid if it 

is not invalid. 

First, consider each of the seven arcs on it's own with pq and rs. Clearly, each combi- 

nation is valid (or it would have already been given cost 0). Second, consider combinations 

involving two arcs of cost a with pq and rs. Notice that the combinations {1,2), {1,5), 
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Table 4.1: Invalid and valid conlbinations of arcs of cost cr 

Invalid combinations Valid combinations 
1 1,3 1,3,6 2,3,6,7 
2 1,4 1,3,7 4,5,6,7 
3 1,6 1,4,6 
4 1,7 1,4,7 
5 2,3 2,3,6 
6 2,4 2,3,7 
7 2,6 2,4,6 

2,7 2,6,7 
3,5 3,5,7 
3,6 3,6,7 
3,7 4,5,6 
4,5 4,5,7 
4,6 4,6,7 
4,7 5,6,7 
516 
577 
6 7  

{2,5) and {3,4) may be discarded by considering paths q - p  - r - s,  r - s - q - p ,  p  - r - s - q 

and r - p - q - s, respectively. Third, consider combinations involving three arcs of cost 

a with pq and rs .  Notice that the combinations {1,6,7), {2,4,7) and {3,5,6) may be 

discarded by considering paths r - q - p - s, p - r - q - s and r - p - s - q ,  respectively. 

Fourth, notice that remaining combinations are valid. 

Table 4.1 shows that {1,3,6}, {1,3,7), {1,4,6), {1,4,7), {2,4,6), {3,5,7), {2,3,6,7) 

and {4,5,6,7) are all valid combinations of arcs with cost a that are not contained in any 

larger combination (as shown in bold). All other valid combinations are contained within a 

larger valid combination. 

Combination {1,3,6) yields the structure of submatrix Sz. Combination {1,3,7) can be 

covered by row r, pq and qp.  Combination {1,4,6) can be covered by column s, pq and qp. 

Combination {1,4,7) yields the structure of submatrix S3. Combination {2,4,6) can be 

covered by row p and column s. Combination {3,5,7) can be covered by row r and column 

q .  Combination {2,3,6,7) can be covered by row p and row r .  Combination {4,5,6,7) can 

be covered by column q and column s. 

Conversely, Observations 4.3.4, 4.3.5 and 4.3.6 guarantee that any tour in a matrix 
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satisfying (a), (b), (c) or (d) with the submatrix S1, uses at most two arcs of cost a .  Let T 

be some tour in G. Suppose C4 has the structure in (d) with the submatrix S2. If T uses 

the arc pq then T can not use the arcs qp or ps. All remaining arcs of cost a are leaving 

node r .  If T uses the arc qp then T can not use the arcs pq or rp. All remaining arcs of cost 

a are entering node s. If T does not uses the arcs pq or qp then all remaining arcs of cost a: 

are either entering node s or leaving node r .  Suppose C4 has the structure in (d) with the 

submatrix S3. If T uses the arc pq then T can not use the arcs qp or rq. All remaining arcs 

of cost a are entering node s .  If T uses the arc qp then T can not use the arcs pq or qs. All 

remaining arcs of cost a are leaving node r .  If T does not uses the arcs pq or qp then all 

remaining arcs of cost a are either entering node s or leaving node r .  Hence, for matrices 

with the structure described by (d) with either submatrix S2 or S3, the fact that any tour 

uses a t  most two arcs of cost a follows from Observations 4.3.4, 4.3.5 and 4.3.6. 

Since there exists a tour using consecutive arcs of cost a in C4, all LS2Fs have costs 2a,  

a: or 0. Hence, C@ is LS2F(3). 0 

Currently, all the results of this section are in terms of the matrix C4. But Observation 

4.0.1 guarantees that C@ is LS2F(3) if and only if C is LS2F(3). Since we created C@ by 

choosing q5 to be any element of the original matrix C, it is a simple matter to translate our 

results to obtain a characterization of the original matrix. 

Before stating the main result of this section, we eliminate any redundancies that occur 

between the conclusions reached thus far. First, notice that Lemma 4.3.1 describes cost 

matrices containing two distinct elements (0 and a) with n = 4 containing a single tour 

using all arcs of cost a and all other arcs in G having cost 0. But Lemma 4.3.3 describes 

cost matrices with n = 4 containing a tour of cost 4a and a tour of cost a .  Hence, Lemma 

4.3.3 contains Lemma 4.3.1 as a subcase since it does not place restrictions on the cost of 

the elements of the niatrix except for these two tours. 

Second, Lemma 4.3.3 describes matrices with n = 4 containing tours of cost 3a  and a 

tour of cost a or 0, in addition to those matrices where there is a tour of cost 4a  and a 

tour of cost a .  By adding a constant to every entry of C4, it may be seen that the first 

conclusion contains the second. 

Theorem 4.3.8. Let a and ,B be the only distinct constants contained i n  C and n > 4.  

Cost matrix C is LSZF(3) if and only if: 

(a) C is DTC(1) with all tours of cost k a  + ( n  - k ) P  for 2 5 k 5 n - 2 with n > 4, or 
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(b) n = 4 and G contains a tour of cost 2a + 2P, or 

( c )  n = 4 and G contains a tour of cost 3 a  + P and a tour of cost a + 3P or 4P, or 

(d)  all arcs of cost a are covered by two lines and there exists a tour in G using two arcs of 

cost a ,  or 

(e )  the indices of C can be re-arranged such that the arcs of cost a are contained in a 3 x 3 

submatrix and G contains a tour using two arcs of cost a ,  or 

( f )  the indices of C can be re-arranged such that the arcs of cost a are contained i n  a 2 x 2 

submatrix and a single line, and G contains a tour using two arcs of cost a, or 

(g) all entries of C have cost ,B except for some permutation of the indices of the submatrix 

S where 

Proof. Since both the necessity and sufficiency of all the results has already been established 

in previous lemmas, we only discuss the translation from C4 to  C. 

Recall that C contains only two cost elements a and P. (a) Lemma 4.3.2 states that all 

tours have k arcs of non-zero cost. After the translation, there are k arcs of one cost and the 

remaining arcs all have a distinct cost. (b) Lemma 4.3.3 states that n = 4 and there exists 

a tour using two arcs of non-zero costs. After the translation, there are two arcs of each 

distinct cost. (c) Lemma 4.3.3 states that n = 4 and there exists a tour using three arcs of 

non-zero costs and either a tour using one arc of non-zero cost or a tour using all arcs of zero 

cost. This translates into the existence of a tour using three arcs of cost a and either a tour 

using one arc of cost a or a tour using no arcs of cost a. (d)-(e)-(f) These appear as stated 

in Lemma 4.3.7. (g) This translation is evident from the statement of Lemma 4.3.7. 

We now have a characterization of all LS2F(3) matrices containing exactly two distinct 

costs in terms of it's elements (for all large cases). The next section will combine the results 

shown throughout this chapter to establish a concise conclusion regarding the structure of 

LS2F(3) matrices. 
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4.4 Structure of LS2F(3) matrices 

As done in Section 4.3, redundancies between the various conclusions reached in each section 

will be eliminated for compactness. Notice that Lemma 4.2.1 and Lemma 4.2.4 may be 

combined to relax the restriction that there exists a tour using all three distinct arc costs. 

This provides a generalization to Lemma 4.2.1. 

Also, notice that Lemma 4.2.3 places a requirement on the number of arcs of cost a 

within each of the specified sets of arcs (S1 ,  S2 and S3). However, if this restriction is 

dropped then either two or three of these sets may not contain an element of cost a. In 

either case, there exists a line cover of size at most one. Such a case is permissible by Lemma 

4.2.1 and Lemma 4.2.4. 

We now formulate the final conclusion regarding LS2Fs of three distinct values from the 

all work executed throughout this chapter. 

Theorem 4.4.1. Let a ,  P and y be distinct constants and n 1 4 unless specified otherwise. 

Also, let p, q,  r and s be distinct nodes in G. Cost matrix  C = (cij)  associated with G is  

LS2F(3)  if and only if: 

G contains arcs of cost a, ,b and y with: 

( a )  n = 3, or  

(b) cpq = a ,  cqp = ,b and all other entries have cost y ,  or 

( c )  a single line containing all elements of both costs a and P, or  

(d)  27 = a + ,B, all entries of cost a are either contained in a single line or cpq = cqp = a, 

and all entries of cost ,b are either contained in a single line or c,, = c,, = p,  or 

(e )  P = 2a - y ,  SI = { p j  I j # q},  S2 = { iq  I i # p ) ,  S3 = {qp ) ,  C has the following 

structure: 
( 1  i f i = j ,  

{ y }  otherwise. 

and if S1, Sz and S3 all contain arcs of cost CY then pr E S1, r q  E S2 and qp E S3 are the 

only arcs of cost a in G ,  or 

G contains only arcs of costs a and ,B with: 

( f )  all tours of cost k a  + (n  - k)P for 2 _< k < n - 2 and n > 4, or 

(g) n = 4 and G contains a tour of cost 2a + 2P, or 
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(h)  n = 4 and G contains a tour of cost 3 a  + /3 and a tour of cost a + 3P or 4P7 or 

( i )  all arcs of cost a are covered by two lines and there exists a tour i n  G using two arcs of 

cost a ,  or ' 

( j)  the indices of C can be reordered such that the arcs of cost a are contained i n  a 3 x 3 

submatrix and G contains a tour using two arcs of cost a,  or 

( k )  the indices of C can be reordered such that the arcs of  cost a are contained in a 2 x 2 

submatrix and a single line, and G contains a tour using two arcs of cost a ,  or 

(1) all entries of C have cost ,O except for some permutation of the indices of the submatrix 

S where 

Proof. The result follows directly from: (a) discussions at the beginning of Chapter 4 ,  (b) 

Lemma 4.2.4,  (c) Lemma 4.2.4, (d) Lemma 4.2.1 and Lemma 4.2.4,  (e) Lemma 4.2.3,  ( f )  

Lemma 4.3.2 and Theorem 4.3.8,  (g) Lemma 4.3.3 and Theorem 4.3.8 ,  (h) Lemma 4.3.3 and 

Theorem 4.3.8 ,  (and as a subcase Lemma 4 .3 .1 ) ,  (i) Lemma 4.3.7 and Theorem 4.3.8,  (j) 

Lemma 4.3.7 and Theorem 4.3.8,  (k) Lemma 4.3.7 ,  (1) Lemma 4.3.7 and Theorem 4.3.8.  0 

An immediate consequence of Theorem 4.4.1 is that we are able to give a characterization 

of symmetric cost matrices that are LS2F(3). This result will prove to be helpful when 

considering the TSP with an associated symmetric cost matrix. 

Corollary 4.4.2. Let a, /3 and y be distinct constants and n 2 4 unless specified otherwise. 

Also, let p, q,  r and s be distinct nodes i n  G. Symmetric cost matrix C is LS2F(3) if and 

only if: 

G contains arcs of cost a,  /3 and y with: 

(a) n = 3 ,  or 

(b) 27 = a + /3 where cpq = cqp = a and c,, = c,, = /3 are the only entries not  of cost y ,  or 

G contains only arcs of costs a and /3 with: 

(c )  all tours of cost k a  + (n  - k ) P  for 2 5 k 5 n - 2 and n > 4 ,  or 

(d)  n = 4 and G contains a tour of cost 2 a  + 2P,  or 

(e )  all arcs of cost a are contained i n  row p and column p ,  or 
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( f )  the indices of C can be reordered such that the arcs of cost a are contained in a 3 x 3 

submatrix and G contains a tour using two arcs of cost a ,  

(9) the only arcs of cost a are pq, qp, r s  and S T .  

Unlike the results shown in Chapter 3, we can not use the characterization of LS2F(k) 

matrices (for k = 1,2,3) to obtain a complete characterization of both DTC(3) and DPC(3) 

matrices. However, by applying Theorem 2.2.2 a new class of both DPC(3) and DTC(3) 

matrices with the additional restriction that they are IC(3) is discovered. Hence, we now 

have a polynomially testable characterization of DTC(3) and DPC(3) IC(3) matrices given 

our closed-form characterization of LS2F(3) matrices. 



Chapter 5 

SC-Hamilt onicity 

Let G = (V, E) be an undirected graph with V(G) = (1,. . . , n) and edge set E(G). Fur- 

thermore, let C = ( ~ j )  be a cost matrix associated with G where ~j = m if i j  $! E(G).  

Graph G is Hamiltonian if and only if it contains a Hamiltonian cycle. A Hamiltonian cycle 

is commonly referred to as a tour. Throughout this chapter, all graphs are assumed to be 

Hamiltonian. Graph G is strongly Hamiltonian if and only if for every edge uv E E(G) 

there exists a Hamiltonian path from v to u. A direct consequence of a graph being strongly 

Hamiltonian is that every edge is contained in some Hamiltonian cycle. 

For convenience, the following notations are reiterated. Cost matrix C is a k distinct 

tour cost matrix, denoted DTC(k), if and only if there exist exactly k distinct tour values 

in G described by C. In particular, the cost matrix C is DTC(1) if and only if all tours in G 

have a single cost. It may be noted that given a graph G and an associated DTC(1) matrix 

C ,  the TSP is trivially solved by finding any tour in G. This follows from the fact that all 

tours in G have the same cost, so any tour is optimal. Undirected graph G with IV(G)I = n 

is separable constant Hamiltonian (SC-Hamiltonian) if and only if G is Hamiltonian and for 

any DTC(1) matrix C = (cij) associated with it there exist constants a l l . .  . ,a, such that 

cij = ai + a j  Vij E E(G). 

Originally, the problem of classifying graphs as SC-Hamiltonian was only considered 

for the complete graph. As discussed in Chapter 1, this problem has been well studied by 

numerous authors. 

Theorem 5.0.1. Both the complete graph and complete digraph are SC-Hamiltonian. 

This chapter characterizes classes of graphs (that are not compIete) based on the property 
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5.1 Undirected graphs 

Krynski was the first author to consider graphs that are not complete. In an attempt to 

extend the classification of graphs that are SC-Hamiltonian we begin by considering the 

results obtained by previous authors to gain insight into the problem. 

5.1.1 Previous results 

This section illustrates the difficulty of classifying graphs as SC-Hamiltonian by providing 

a brief survey of past results. 

Lemma 5.1.1. (121 Let graph G be a cycle on n vertices. G is SC-Hamiltonian if and only 

if n is odd. 

Proof. Let n be even. Take G Z C4 with cycle (1,2,3,4).  Construct the cost matrix 

C = (cij) with c12 = 1 and cij = 0 otherwise. Since there is only a single tour in G, C 

is DTC(1). Suppose G SC-Hamiltonian, so there exist constants such that ~j = ai + a j  

Vij E E(G). Then 1 = cl2 - c23 + c34 - C41 = (al + a2) - (a2 + a3) + (a3 + a4) - (a4 + a l )  

= 0. 

Figure 5.1: Even cycles are not SC-Harniltonian 

Let n be odd and T = (1, .  . . , n) be a tour in G. Take a, = C > , ( - l ) j + ' ~ ( ~ + ~ _ ~ ) ( ~ )  
1 mod n. Hence, a, + a,+l = 3 C>l(-l)j+'~(u+j-l)(u+j) + 1 ~y=l(-l)j+l~(u+j)(U+j+l) 
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1 
mod n = 5 (2~u(u+l)) = Cu(u+l). 

Figure 5.2: Odd cycles are SC-Hamiltonim 

The original proof of Lemma 5.1.1 may be found in [12] as presented by Krynski. Fur- 

thermore, it is claimed in [12] that strong Hamiltonicity is a necessary condition for a graph 

to be SC-Hamiltonian. However, Kabadi and Punnen [ll] provide a counter-example to this 

claim. 

Let G be an SC-Hamiltonian bipartite graph. Denote the bipartitions of V(G) as Vl(G) 

and V2(G). For some u and v in Vl(G), let G* be the graph with V(G*) = V(G) and 

E(G*) = E(G)  U {uv). Any graph of this form belongs to the bipartite graph with fraudulent 

edge (BGFE) class of graphs. It should be noted that if G is a BGFE then edge uv is not 

contained in any tour of G. 

Lemma 5.1.2. [ I l l  I f G  is a BGFE then G is SC-Hamiltonian. 

Proof. Let C = (q j )  be a DTC(1) matrix associated with BGFE G. Furthermore, denote 

the endpoints of the fraudulent edge as u, v E Vl(G). Since G - {uv) is SC-Hamiltonian 

there exist constants such that cij = ai + a j  Vij E E(G) - {uv). Let x = c,, - a, - a, and 

d e f i n e b i = a i + 5 V i E V l ( G ) a n d b i = a , - $ V i E V z .  T h e n q j = b i + b j V i j E E ( G ) .  0 

This counter-example raises the question: For what classes of graphs is strong Hamil- 

tonicity a requirement for SC-Hamiltonicity? We will show that this counter-example forms 

a more general class of graphs in the section to follow. 
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Figure 5.3: Graphs in the BGFE class are SC-Hamiltonian 

5.1.2 Graphs that are not strongly Harniltonian 

Theorem 5.1.3. Let G be an undirected graph that is not strongly Hamiltonian. G is 

SC-Hamiltonian i f  and only if G is a BGFE. 

We proceed by first establishing some necessary lemmas. 

Lemma 5.1.4. Let n be odd. If graph G is not strongly Hamiltonian then G is not SC- 

Hamiltonian. 

Proof. Let every edge contained in a Hamiltonian cycle of G have cost 0 and all other 

edges have cost 1. Notice that since G is not strongly Hamiltonian, there exists at least 

a single edge uv with cost 1. Denote this resulting cost matrix C = (h j ) .  Clearly, the 

cost of every tour in G is 0. Hence, C is a DTC(1) matrix associated with G. Suppose 

G is SC-Hamiltonian. Then there exist constants such that G j  = ai + a j  V i j  E E(G). If 

necessary, relabel V ( G )  to take tour T = (1,2,. . . , n). Consider the sum Cy=l(-l)i~i(i+l) 

with subscripts taken modulo n. (Henceforth, this sum will be referred to as an alternating 

sum traversing tour T starting at vertex 1). Notice that c ~ ( ~ + ~ )  = 0 for every edge of T. So, 

C12 - C23 + .  . . +%1 = 0 

+ (a1 + az) - (a2 + a3) + . . . + (a, + a l )  = 0 

+ 2al = 0 
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+ a l = 0  

+ ai = 0 Vi  E (1, . . .  ,n) .  

But c,, = 1 and c,, = a, + a, = 0 ,  which gives a contradiction. 

Figure 5.4: A graph that is not strongly Hamiltonian with n odd 

Unfortunately, classifying SC-Harniltonian graphs that are not strongly Hamiltonian on 

an even number of vertices is more elusive. 

Lemma 5.1.5. Let n be even. If graph G contains an edge not utilized by any tour but that 

partitions some tour into two even length cycles then G is not SC-Hamiltonian. 

Proof. Let all edges contained in some tour of G have cost 0 and all other edges have cost 

1. Denote the resulting cost matrix C = (c i j ) .  Suppose there exists constants such that 

cij = ai + aj V i j  E E(G). Since all edges contained in some tour have cost 0 it follows that 

every tour has cost 0. Hence, C is a DTC(1) matrix associated with G. Suppose uv is an edge 

of G not contained in any tour but which partitions some tour T into two even length cycles. 

If necessary relabel V(G) so that T = (1 ,2 , .  . . , n). Notice c12 = a1 + a2 = 0 + a1 = -a2. 

Since every edge of T has cost 0 ,  repeating this argument yields a1 = -a2 = as = . . . = -an. 

Since uv partitions T into two even length cycles, (without loss of generality) a, is associated 

with vertex u where u is even and a, is associated with vertex v where v is odd. Thus, 
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G, = a, + a, = a, + (-a,) = 0 but G, = 1 since uv is not contained in any tour. This 

gives a contradiction. 0 

Figure 5.5: A graph that is not strongly Hamiltonian with n even 

Lemma 5.1.5 implies that for a graph on an even number of vertices to be SC-Hamiltonian, 

an edge not contained in any tour must partition every tour into two odd length cycles. 

Lemma 5.1.6. Let n be even. If graph G is composed of a single tour and a chord parti- 

tioning that tour into two odd length cycles then G is not SC-Hamiltonian. 

Proof. Denote the tour of G as T and the edge partitioning T into two odd length cycles 

as uv. Let C = ( ~ j )  be a cost matrix associated with G where all edges of G have cost 0 

except for a single edge of T. Thus, all tours have cost 1 which implies that C is a DTC(1) 

matrix associated with G. Suppose G is SC-Hamiltonian. Then there exist constants such 

that cij = ai + a j  ' J i j  E E(G). An alternating sum traversing T (staring at any vertex) has 

0 cost when considering the constants ai. However, since only a single edge of T has cost 

1 and all others edges have cost 0, this alternating sum will not equal 0. Hence, G is not 

SC-Hamiltonian. 0 
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Only Hamiltonian graphs that are not strongly Hamiltonian on an even number of 

vertices containing at least (n + 2 )  edges must be considered. 

Lemma 5.1.7. Let n be even. If graph G has (at least) two edges not contained i n  any tour 

then G is not SC-Hamiltonian. 

Proof. Let T = (1 ,2 , .  . . , n) be some tour in G. Denote the edges not contained in any tour 

of G as uv and wx (with U,V,W,X E { I , .  . . , n ) ) .  By Lemma 5.1.5, both uv and wx partition 

T into two odd length cycles. Hence, u and v have the same parity. Similarly, w and x have 

the same parity. Let C = (cij) denote the cost matrix with c,, = 2, c,, = 0 and all other 

edges of G having cost 0. Since all edges contained in a tour have cost 0, it follows that 

C is a DTC(1) matrix associated with G. Suppose G is SC-Hamiltonian, then there exist 

constants such that cij = ai + aj V i j  E E(G). Considering the edges of T, 

cnl = a, + a1 = 0 + a,  = -a1 

If 2~ and v are both odd then h, = al  + a1 = 2al = 2 + a1 = 1. If u and v are both 

If w and x are both odd then c,, = a1 + a1 = 2al = 0 + a1 = 0. If w and x are both 

even then c,, = -a1 - a1 = -2al = 0 + a1 = 0. 

The value of a1 found by considering uv and the value of a1 found by considering wx 

are inconsistent. Thus, if G contains (at least) two edges not utilized by any tour then G is 

not SC-Hamiltonian. 0 

Observation 5.1.8. The statement of Lemma 5.1.2 i s  equivalent to  the statement: Let n 

be even. If G - {uv) is an  SC-Hamiltonian, bipartite subgraph of G and uv partitions every 

tour into two odd length cycles then G is SC-Hamiltonian. 

Proof. First, notice that a Hamiltonian bipartite graph has an even number of vertices. 

Second, notice that any edge added within a partition splits every tour into two odd length 

cycles. 0 

In order to classify all undirected graphs on an even number of vertices that are not 

strongly Hamiltonian only graphs G with subgraphs H = G - {uv) that are not SC- 

Hamiltonian or not bipartite must be considered. 
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Lemma 5.1.9. Let n be even and uv be an edge not contained in any tour of graph G. If 

subgraph H = G - {uv) is not SC-Hamiltonian then graph G is not SC-Hamiltonian. 

Proof. Suppose G is SC-Harniltonian. Then for any DTC(1) matrix C = ( ~ j )  there exist 

constants such that qj = ai + a j  Qi j  E E(G). In particular, these constants hold for every 

edge of H .  Since uv is not contained in any tour, all tours still have the same value. Thus, 

H is SC-Hamiltonian. 0 

Lemma 5.1.10. Let n be even. If graph G is not bipartite but is SC-Hamiltonian then the 

constants used to describe a DTC(1) matrix associated with G are unique. 

Proof. Let G be a graph that is SC-Hamiltonian but not bipartite. Let C = (cij) be a 

DTC(1) matrix associated with G. Since G is SC-Hamiltonian there exist constants such 

that qj = ai + a j  Qi j  E E(G). Suppose there also exist constants such that qj = bi + bj 

Q i j  E E(G) where not all ai = bi for i E (1,. . . , n). If necessary, relabel V ( G )  to take tour 

T = (1 ,2 , .  . . , n) .  Without loss of generality, let a1 # bl + a1 = bl + k for k # 0. Thus, 

c12 = a1 + a;! = (b l  + k) + a2 and cl;! = bl + b2 so a2 = b2 - k. 

C23 = a2 + a3 = (b2 - k) + a3 and C2.3 = b2 + b3 SO a3 = b3 + k. 

C(,-l), = an-1 + a, = (b,-1 + k) + a, and c(,_l), = b,-1 + b, so a, = b, - k. 

Since G is SC-Hamiltonian, Lemma 5.1.1 implies that it can not simply be an even cycle 

(so G T).  Hence, there exists some edge pq E E(G)\E(T) .  Moreover, since G is not 

bipartite (and T is a bipartite subgraph), p and q may be chosen to have the same parity. 

Suppose p and q are both odd. Then G, = up + aq = (bp + k) + (bq + k) and ~ p ,  = bp + bq. 

But 2k = 0 + k = 0 gives a contradiction. 

Suppose p and q are both even. Then ~ p ,  = up + aq = (bp - k) + (bq - k) and ~p~ = bp + bq. 

But -2k = 0 + k = 0 gives a contradiction. 

Thus, if G is not bipartite but is SC-Hamiltonian then the constants used to describe a 

DTC(1) matrix associated with G are unique. 0 

Corollary 5.1.11. Let n be even and H be a Hamiltonian subgraph of graph G on n vertices. 

Furthermore, let C = ( ~ j )  be a DTC(1) matrix associated with G and D = (dij) be a DTC(1) 

matrix associated with H where dij = ~j Qij  E E ( H )  and dij = co otherwise. If H is an 

SC-Hamiltonian graph with constants a l ,  . . . ,a, such that dij = ai + a j  V i j  E E(H) then 

cij = ai + a j  Qi j E E (G) . 
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Proof. Take SC-Hamiltonian subgraph H of G and constants a l , .  . . , an .  Suppose SC- 

Hamiltonian graph G has constants bl , . . . , b,. Then the constants bi are also applied to the 

subgraph H. The result now follows from Lemma 5.1.10. 

We now proceed to establish the theorem stated at the onset of this section. 

Theorem 5.1.3. Let G be an undirected graph that is not strongly Hamiltonian. G is 

SC-Hamiltonian if and only if G is a BGFE. 

Proof. Let G be a graph that is not strongly Hamiltonian with uv E E(G)  not in any tour of 

G. Furthermore, let H = G - {uv). Lemma 5.1.2, Lemma 5.1.4, Lemma 5.1.5, Lemma 5.1.7 

and Lemma 5.1.9 show that a graph that is not strongly Hamiltonian is not SC-Hamiltonian 

for all graphs except those where H is not bipartite but is SC-Hamiltonian. Notice that 

since H is not bipartite, G can not be bipartite. 

Suppose that G is also SC-Hamiltonian. Then take DTC(1) matrix C = (cij) associated 

with G and DTC(1) matrix D = (dij) associated with H where d,, = oo and dij = cij 

otherwise. Since H is SC-Hamiltonian there exists constants ai, . . . , a, such that dij = ai+aj 

V i j  E E ( H ) .  By Lemma 5.1.10, these constants uniquely describe D .  By Corollary 5.1.11, 

cij = ai + a j  V i j  E E(G) (where the ai are the constants obtained from D) .  Create C' = (c$) 

where cij = cij V z j  # uv. Notice that C' is a DTC(1) matrix associated with G (since uv is 

not in any tour). Once again, by Corollary 5.1.11, c/ij = ai +aj. This achieves a contradiction 

since c/,, = a, + a, = c,, but c;, # h,. Hence, if G is not strongly Hamiltonian and not a 

BGFE then G is not SC-Hamiltonian. 

The converse follows from Lemma 5.1.2. 

5.1.3 Undirected graphs with n odd 

Section 5.1.2 gives a complete characterization of SC-Hamiltonicity in terms of strong Hamil- 

tonicity for all undirected graphs. Lemma 5.1.1 suggests that graphs be differentiated based 

on the size of the vertex set. This section will consider the SC-Hamiltonicity of undirected 

graphs that are strongly Hamiltonian on an odd number of vertices. 

Lemma 5.1.12. Let n be odd. If G is an SC-Hamiltonian graph then the constants used to 

describe any DTC(1) matrix associated with G are unique. 
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Proof. Take DTC(1) matrix C = ( c i j )  associated with SC-Hamiltonian graph G .  There 

exist constants such that cij = ai + aj Qi j  E E ( G ) .  Notice that once a single constant ai is 

set the constants on all other vertices are established (this follows since G is Hamiltonian). 

Suppose there is another set of constants such that cij = bi + bj Qi j  E E ( G )  where not all 

ai and bi are equal. Without loss of generality, suppose a1 # bl then a1 = bl + k for some 

non-zero constant k .  If necessary, relabel V ( G )  and consider tour T = (1,2, .  . . , n). Then 

cl2 = a1 + a2 = (bl + k )  + a2 but cl2 = bl + b2 SO a2 = b2 - k .  

C23 = a2 + a3 = (b2 - k )  + a3 and ~ 2 3  = b2 + b3 so a3 = b3 + k .  

c(,-l), = an-1 + a, = (b,-l - k )  + a, and cl2 = bn-1 + b, so a,  = bn + k .  

Thus, cnl = a, + a1 = (bn + k )  + (bl + k )  = bn + bl + 2k but cnl = bn + bl SO 2k = 0. 

Hence, k = 0 obtains a contradiction. 0 

Corollary 5.1.13. Let n be odd and H be a Hamiltonian subgraph of graph G on n vertices. 

Furthermore, let C = ( c i j )  be a DTC(1) matrix associated with G and D = (d i j )  be a DTC(1) 

matrix associated with H where dij = qj Qij  E E ( H )  and dij = CQ otherwise. If H is an 

SC-Hamiltonian graph with constants a l ,  . . . ,a ,  such that dij = ai + aj Qi j  E E ( H )  then 

c, = a i + a j  Qi j  E E ( G ) .  

Proof. Take SC-Hamiltonian graph H and constants a l ,  . . ., a,. Suppose SC-Hamiltonian 

graph G has constants bll . . ., b,. Then the constants bi are applied to  the subgraph H .  

The result now follows from Lemma 5.1.12. 0 

Lemma 5.1.14. Let n be odd and G be a strongly Hamiltonian graph that is not a cycle. 

If there exist two edges in  some tour that only appear in  a single tour then G is not SC- 

Hamiltonian. 

Proof. Suppose el = uv and e2 are two edges of tour Tl which only appear in this single 

tour. Let el have cost 1, e2 have cost -1 and all other edges of G have cost 0. Let C = ( c i j )  

denote the matrix describing these costs. Notice that all tours of G have cost 0 since only el 

and e2 have non-zero cost. Hence, C is a DTC(1) matrix associated with G .  Since G is not a 

cycle there exists an edge of G not in TI .  Graph G being strongly connected implies that this 

edge lies in some tour T2 with every edge having cost 0. Suppose that there exists constants 

such that cij = ai + aj Qi j E E ( G ) .  Relabel V ( G )  such that T2 = (1,2,  . . . , n ) .  Notice 

c12 - ~ 2 3  + . . . + cnl = O but cl2 - ~ 2 3  + . . . + cnl = (a l  + a 2 )  - (a2  + a s )  + . . . + (a ,  + a l )  = 2al. 
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Thus, a1 = 0 implies ai = 0 for all i E (1,. . . , n )  since every edge of T2 has cost 0. But 

c,, = G, = 1 # a,  + a,  = 0 obtains a contradiction. 0 

Lemma 5.1.15. Let n be odd and G be a strongly Hamiltonian graph that is  not  a cycle. If 

G contains two edges such that they either both appear in a tour or neither does, and there 

exists (at least) one tour not using either edge then G i s  not  SC-Hamiltonian. 

Proof. The proof is analogous to that given in Lemma 5.1.14. 

Lemma 5.1.16. Let n be odd. If there exists two edges i n  every tour of G then either G 

i s  no t  SC-Hamiltonian or G i s  composed of two bipartite graphs G1 = (Vl U Wl, El) and 

G 2  = (V2 U W2, E2) that are connected by a n  edge from Wl to  V2 and a n  edge from Wl to  

w2. 

Proof. Denote the two edges in every tour of G as el and e2. If necessary, relabel V(G) to  

take tour T = (1,2, .  . . , n)  with el = In and e2 = u(u + I ) ,  u E (1,. . . , n - 1). Let c,, = a, 

c,, = ,B and cij = 0 otherwise. Since el  and e2 are in every tour of G the cost of every tour 

is a + p. Hence, C is DTC(1). Take the alternating sums around T starting at vertices 1 

and n. If u is odd then these sums have cost a + ,B and a - ,B respectively. If u is even then 

these sums have costs a - p and a + ,B respectively. 

Suppose G is SC-Hamiltonian then when considering the constants associated with each 

vertex, these alternating sums have costs 2al and 2an respectively. The value of all other 

constants may be obtained in the same manner to find, 

I -a* if i E {l, .  . . , u )  and i is even, 
ai = 

a, i f i ~ { u + l ,  . . . ,  n l a n d i i s e v e n ,  

a if i E {u + I , .  . . , a )  and i is odd. 

The edges of G other than el and e2 must be of the form i j  with i, j E (1, .  . . , u) or 

i, j E {u + 1, . . . , n )  where the parity of i and j is different. This forms the desired bipartite 

subgraphs connected by edges e l  and e2. 0 

A complete characterization in terms of SC-Hamiltonicity of all graphs not excluded by 

previous results is currently unknown. It may be noted that graphs formed from 1-extensions 
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Figure 5.6: A graph with two edges in every tour and n odd 

of Hamiltonian graphs on an even number of vertices are included within this set. However, 

it was shown in [ll] by Kabadi and Punnen that such graphs are SC-Hamiltonian. 

5.1.4 Undirected graphs with n even 

This section will now consider the SC-Hamiltonicity of undirected graphs that are strongly 

Hamiltonian on an even number of vertices. 

Lemma 5.1.17. Let n be even. If graph G contains two edges whose deletion turns some 

tour into two paths of even length and for every tour either both edges appear or neither 

does then G is not SC-Hamiltonian. 

Proof. Suppose G is SC-Hamiltonian. Let el and e2 denote edges of G that either both ap- 

pear in any tour or neither does. Furthermore, let C = (qj) be a DTC(1) matrix associated 

with G. Then there exist constants such that qj = ai + a j  V i j  E E(G).  Candidate classes 

of SC-Hamiltonian graphs can have at most one edge not appearing in any tour (by Lemma 

5.1.7), so both el and e2 appear in some tour T = (1,2, . . . , n). Consider the alternating 

sum traversing T starting at vertex 1, keeping in mind that el and e2 must have different 

parity. 

c12 - C23 - . . .  - c,l = (a1 +a2) - (a2 +a3)  + . . .  - (a6 + a l )  = 0 
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Figure 5.7: A graph with n even that has two edges whose deletion turns some tour into 
two paths of even length and either both or neither edge appears in every tour 

Suppose ce1 # ce2. Then let D be the matrix formed by setting d,, = ce2, de2 = eel and 

dij = q j  otherwise. Notice that D is a DTC(1) matrix since el and ez either both appear in 

a tour or neither does. Furthermore, repeating the alternating sum traversing T argument 

with the constants associated with D, once again yields a zero sum. Consider the difference 

of the two resulting alternating sum equations from C and D. 

C12 - . . . + eel - . . . - Ce2 + . . . - = 0 

d l a -  . . . + d e l - . . . - d e 2 + . . . - d n l  = O  

+ ce1 - del - ce2 + de2 = 0 

* ce1 -ce2 -cez +eel = 0 

+ eel = ce2 which gives a contradiction. 

Suppose cel = ce2. Then let D be the matrix formed by setting del = eel +a, de2 = ce2 -cx 

(where cr # 0) and dZj = q j  otherwise. Notice that D is a DTC(1) matrix since el and e2 

either both appear in a tour or neither does. Furthermore, repeating the alternating sum 

traversing T argument with the constants associated with D once again yields a zero sum. 

Now consider the difference of the two resulting alternating sum equations from C and D. 

~ l a - . . . + ~ ~ ~ - . . . - ~ ~ ~ + . . . - % l  = O  
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dl2 - . . . + d,, - . . . - de2 + . . . - dnl = 0 

* c,, - del - ce2 + de2 = 0 

* Gel - (eel + Q) - Ce2 + (ce2 - a ) = O  
a = 0 which gives a contradiction. 

Thus, it follows that if graph G has an even number of vertices containing two edges 

whose deletion turns some tour into two paths of even length and for every tour either both 

edges appear or neither does then G is not SC-Hamiltonian. 0 

Corollary 5.1.18. Let n be even. If graph G contains a vertex of degree two then G is  not 

SC-Hamiltonian. 

Proof. Take tour T = (1, .  . . , n )  in G. Suppose that vertex 2 has degree two. Notice that 

any tour must use both edges 12 and 23. Also notice that the deletion of 12 and 23 creates a 

path of length 0 and a path of length (n - 2) which are both even. Hence, the result follows 

from Lemma 5.1.17. 0 

Observation 5.1.19. Let n be even. If G is  a bipartite, SC-Hamiltonian graph then the 

constants used to represent any DTC(1)  matrix associated with G are not necessarily unique. 

Example 5.1.20. Kabadi and Punnen [ll] showed that any complete bipartite graph is 

SC-Hamiltonian. Consider graph K3,3 and cost 'matrix C = ( c i j )  with Gj = ai + aj = 0 

'dij  E E(G). Take tour T = (1,. . . , n )  in G. It is clear that ai = 0 'di E {1,2,. . . , n )  is a 

valid set of constants. However, the set ai = k if 212 and ai = -k otherwise, is also a valid 

set of constants. Choosing k # 0 yields multiple valid sets of constants. See Figure 5.8 for 

an illustration. 

Lemma 5.1.21. Let n be even. If there exists an edge that appears in every tour of graph 

G then G is not SC-Hamiltonian. 

Proof. Let uv E E(G) be an edge that is used by every tour in G. Suppose G is SC- 

Hamiltonian and take any tour T in G. An alternating sum around T staring at any vertex 

will be 0 when considering the constants attributed to  each vertex. Let C be a cost matrix 

associated with G such that hv # 0 and cij = 0 'dzj E E(G)  - {uv). Since uv is an edge of 

every tour, it follows that C is DTC(1) with all tours of cost hv. Furthermore, since uu is 

the only non-zero edge in G, an alternating sum around any tour can not have cost 0. This 

forms a contradiction. 0 
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Figure 5.8: Bipartite SC-Hamiltonian graph with C = (0) 

Lemma 5.1.22. Let n be even. If every tour in G contains precisely one edge from the 

nonempty set S c E(G) then G is not SC-Hamiltonian. 

Proof. This is simply a generalization of Lemma 5.1.21 which follows by setting c, = cu # 0 

Vs E S c E(G) and cij = 0 otherwise. Thus, every tour in G will have cost a. 0 

5.1.5 Structured classes 

Sections 5.1.3 and 5.1.4 considered the size of the vertex set as a determining factor for 

investigating the SC-Hamiltonicity of various classes of graphs. In this section, the SC- 

Hamiltonicity of undirected graphs is considered independent of the size of the vertex set. 

The classes examined in this section have some nice underlying structure that will be ex- 

ploited. 

Edge subdivision 

When attempting to find large classes of SC-Hamiltonian graphs the idea of performing edge 

subdivisions was proposed as a likely source by Kabadi and Punnen in [Ill. Let G~ denote 
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the graph formed by subdividing some edge of G exactly k times. The following question is 

considered: If G is SC-Hamiltonian, is Gk SC-~amiltonian? 

The result is immediate if k = 1 by letting G E Czn-1, the cycle of length 2n- 1. Since G 

is simply an odd cycle, Lemma 5.1.1 guarantees that G is SC-Hamiltonian. However, G1 % 

Czn is an even cycle which has been shown not to be SC-Hamiltonian. Thus, subdividing 

an edge once does not preserve SC-Hamiltonicity. Similarly, G2'+l is not SC-Hamiltonian 

for any positive integer 1. 

This easy counter example will not hold if an edge is subdivided twice as cycles of 

odd length remain odd and cycles of even length remain even. However, contrary to the 

proposition put forth in [ll] it can be shown that the result does not hold for k = 2. 

Let G 2 K4 with V(G) = {1,2,3,4). The complete graph Kn has been shown to be 

SC-Hamiltonian in Theorem 5.0.1. 

Consider G2 formed by replacing edge 41 with the path 4 - 5 - 6 - 1. Associate the 

following cost matrix with G2 

Notice that C is DTC(1) with C(Tl) = C(T2) = 2 for tour Tl = (1 ,2 ,3 ,4 ,5 ,6)  and 

T2 = (1,3,2,4,5,6).  Suppose that G2 is SC-Hamiltonian. Then there exist constants such 

that cij = ai + a j  V i j  E E(G2). Now take an alternating sum traversing Tl starting at 

vertex 1. 

cl2 - C23 f C34 - C45 f C56 - C61 

= (a1 + az) - (a2 + a3) + (a3 + a4) - (a4 + as) + (a5 + ag) - (a6 + a l )  

= 0 

But 

cl2 - C23 f C34 - C45 f C56 - C61 

= 1 - 0 + l - 0 + 0 - 0  

= 2 

This clearly yields a contradiction. Hence, subdividing an edge twice does not preserve 
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Figure 5.9: Counter-example to double edge subdivision claim 

SC-Hamiltonicity. In fact, Lemma 5.1.18 shows that subdividing an edge any number of 

times does not necessarily preserve SC-Hamiltonicity. 

Observation 5.1.23. Let G be an SC-Hamiltonian graph. Subdividing edges of G does not 

necessarily preserve SC-Hamiltonicity. 

Incomplete 1-extensions 

Definition 5.1.24. Given graphs G and H their join denoted G+ H is formed by adding an 

edge ij for every i E V(G) and j E V(H). If IV(H)( = 1 then G + H is called a 1-extension 

of G. 

Given a 1-extension G + H of graph G, an incomplete 1-extension is formed by deleting 

any edge from the 1-extension. That is, deleting any edge with one end incident to a vertex 

of G and the other end incident to a vertex in H .  In [Ill ,  Kabadi and Punnen showed that 

1-extensions of Hamiltonian graphs were SC-Hamiltonian. 

We now investigate whether adding less than (V(G) I edges in the 1-extension of Hamil- 

tonian graph G creates an SC-Hamiltonian graph. If this incomplete 1-extension fails to be 

SC-Hamiltonian then, in some sense, this construction technique is best possible. 
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Figure 5.10: Incomplete 1-extension with H % K1 and G r C3 

Observation 5.1.25. Let G and H be disjoint graphs. An incomplete 1-extension of G is 

not necessarily SC-Hamiltonian. 

Proof. Let G Z C5 and H K1. It is clear that G is Hamiltonian. Furthermore, by Lemma 

5.1.1, G is SC-Hamiltonian. Construct an incomplete 1-extension I between H and G by 

adding all edges from G to H except for a single edge. Denote the vertices of G cyclically as 

(1,2,3,4,5) and the vertex of H as 6. Without loss of generality, let vertex 1 be the vertex 

of degree two in I. By Corollary 5.1.18, I is not SC-Hamiltonian. 0 

A new proof technique first utilized by Kabadi and Punnen [ll] will be used to  discover a 

new class of SC-Harniltonian graphs. 

Let C and D be n  x n  cost matrices. Define ~ ( x )  = x if a: is finite and ~ ( m )  = 0. Cost 

matrix D = (dij) is a reduced matria: of C = ( ~ j )  if there exist finite constants ai and bi 

for i = 1, .  . . , n  such that dij = cij - ai - bj ViVj. Furthermore, if C is a symmetric matrix 

then ai = bi Vi. For any vertex u E (1, . . . , n )  D is called a u-reduced matrix of C if it is 

a reduced matrix of C and x(di,) = x(dui) = 0 Vi. For any distinct vertices r,  s and u in 

(1 , .  . . , n )  D is an (r,s,u)-reduced matrix of C if it is a u-reduced matrix of C and d,, = 0. 

Proofs for the following Lemmas may be found in [ l l ] .  
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Lemma 5.1.26. Let C = (cij) be an n x n cost matrix and c+, # oo with r, s, u E (1, . . . , n) . 
There exists an (r,s,u)-reduced matrix of C. 

Lemma 5.1.27. Let D be a reduced matrix of a matrix C. D is a DTC(1) matrix if and 

only if C is a DTC(1) matrix. 

Lemma 5.1.28. A graph is SC-Hamiltonian if and only iffor any DTC(1) matrix C as- 

sociated with it there exists a reduced matrix D of C such that every entry of D is either 0 

or 00. 

For k-partite graph G let Vl, V2,. . . , Vk denote the partition sets of vertices. Let PI, 

denote a path of length k with Pk = 1 - 2 - . .. - k. Given k-partite graphs G = (V, E) 

with V = &, V2,. . . , Vk and H E Pk the graph G + k  H is called a lk-extension formed by 

adding edge i j  for every i E V(H) and j @ V,(G). 

Theorem 5.1.29. A lk-extension of a Hamiltonian k-partite graph is SC-Hamiitonian. 

Proof. The result has been established for k = 1 and k = 2 in [ l l ] .  Assume k 2 3. Let 

G be a Hamiltonian k-partite graph with vertex partition Vl(G), . . ., Vk(G). Let G* be a 

lk-extension of G and Pk = 1 - 2 - . . - k such that V,(G*) = V,(G) U {i) for i = 1, . . . , k. 

Notice that G* is Hamiltonian. 

Let C be a DTC(1) matrix associated with G* and D be a (1,2,. . . , k)-reduced matrix 

of C. (Since G is Ic-partite, such a matrix can be constructed in Ic steps by setting C = DO 

and finding Dx = (d;) for x = 1, . . . , k by subtracting d:z-l from every row i and column 

i of Dx. Then setting D = D ~ . ) .  Since G is Hamiltonian, let T denote some tour in 

G. Without loss of generality, consider edge u1u2 E E(T)  with ui E V,(G*) for i = 1,2. 

Let ul - u2 - US denote a subpath of length two using edge U ~ U Z  in T .  (Notice that it 

might be the case that 213 E Vl(G*).) Construct TI = T\{u1u2) U {u21, Pk,  kul) and 

T2 = T\{ul%!iu2u3,23) U (~137 P k ,  ku2, 'k'l,2213). 
These are valid tours since ul E Vl (G*), u2 E VZ(Gf ) and u3 @ Vz(Gf ) as uzu3 E E(G). 

Notice that since D is a (1,2,.  . . , k)-reduced matrix D(Tl) = D(Tz) + d,,,, as every edge 

incident with a vertex of Pk has cost 0. Since D is DTC(1) it follows that d,,,, = 0. But 

recall that 1.~12~2 (and hence uzu3) is an mbitrary edge of T.  Thus, every edge of T has 0 

cost implies D(T) = 0. 

Now consider an arbitrary edge upuq of G not in T.  Without loss of generality, let 

up E Vp(Gf), uq E Vq(G*) and p < q. Let w - up - x and y - u, - z be subpaths of T. So 
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Figure 5.11: Tour Tl in lk-extension G* 

w, x 6 Vp(G*) and y, z 6 Vq(G*). Notice that since upuq 6 E(T) there is at least one vertex 

separating p from q along either path around T.  Also, notice that since k 2 3 we can chose 

Vl 6 {Vp, Vq). (A consequence is that this may force q = p+l.) Suppose w $ Vl and y $ Vp+1 

then construct T3 = T\{wup, upx, yuq ,p (p+ l ) )~{wl ,  Pk,px,  y(p+l), kup) Suppose w $ Vl 

and y E Vp+l then construct T4 = T\{wup, yuq) U {wl, Pk, ky}. Suppose w E Vl and 

y 6 Vp+l then construct T5 = T\{wup, upx, yuq, p(p + 1)) U {upl,  P k ,  px, y(p + l ) ,  kw). 

Suppose w E Vl and y E Vp+l then construct T6 = T\{wup, yuq) U {yl, Pk,  kw). 

Given the vertex restrictions stated, it follows that T3, T4, T5 and T6 are tours in G*. 

Then D(T3) = D(T4) = D(T5) = D(T6) = dupuq since every edge incident to a vertex in Pk 

has cost 0 and any edge in T has cost 0. But D is DTC(1) with all tours of cost 0 (since 

D(Tl) = D(T2) = 0). Hence, dupuq = 0 and since upuq was chosen arbitrarily it follows that 

dij = 0 for any edge ij 6 E(T).  Thus, all finite entries of D are 0. The result now follows 

from Lemma 5.1.28. 0 
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Figure 5.12: Tour T2 in lk-extension G* 

Figure 5.13: Tour T3 in lk-extension G* 
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Figure 5.14: Tour T4 in lk-extension G* 

Figure 5.15: Tour T5 in lk-extension G* 
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Figure 5.16: Tour T6 in lk-extension G* 

5.2 Directed graphs 

Many of the concepts introduced for undirected graphs in Section 5.1 have analogs for the 

directed case. These ideas will be applied to discover the SC-Hamiltonicity of various classes 

of directed graphs. 

Let e be a digraph. The underlying undirected graph of 6 denoted by G with V ( G )  = 

v(G) and edge set E ( G )  is formed by ignoring the directions on the arcs of C? and elimi- 

nating any multiple edges. Digraph G is Hamiltonian if and only if it contains a directed 

Hamiltonian cycle. Digraph G is strongly Hamiltonian if and only if for every edge uv there 

exists a directed Hamiltonian path from v to u. A digraph e with I V ( ~ ) I  = n is separable 

constant Hamiltonian (SC-Hamiltonian) if and only if (? is Hamiltonian and for any DTC(1) 

matrix C = ( c i j )  associated with it there exists constants a l ,  . . . , a, and b l ,  . . . , b, such that 

Gj = ai + bj V i j  E E ( G ) .  

5.2.1 Symmetric digraphs 

By Theorem 5.0.1, the complete directed graph 2, is SC-Hamiltonian. 
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Lemma 5.2.1. Let n > 2 and G be a symmetric digraph with underlying undirected graph 

G. If G is SC-Hamiltonian then G is SC-Hamiltonian. 

Proof. Let C = ( ~ j )  be a symmetric DTC(1) matrix associated with G. Notice that C 

may also be associated with G (because it is symmetric). Since (? is SC-Hamiltonian there 

exist constants such that ~j = a, + bj  V i j  zj E(@. Let xi = 9 'di E (1,. . . ,n}. Then 
C . ,  = = cij+Cji - (ai+bl)+(aj+bi) - a.+b. a.+b. 

23 2 2 - 2 - 121 + = Xi + x j  follows as cij = cji. Thus, G 

is SC-Hamiltonian. 0 

In [ll], Kabadi and Punnen conjectured that the converse of Lemma 5.2.1 was also true. 

However, the following example shows that this is not the case. 

Example 5.2.2. Let ~ ( I ? 3 , 3 )  = (1,. . . ,6} have vertex bipartition {1,3,5} and {2,4,6} 

and 6 E U (13,311. By Lemma 5.1.2, the underlying undirected graph of G is SC- 

Hamiltonian. Let C = ( ~ j )  denote the cost matrix with ~ 1 3  = 1, c3l = 2 and cij = 0 for 

every other arc of (as shown in Figure 5.17). Since neither arc 13 nor arc 31 is contained 

in any tour of (? it follows that all tours have cost 0. Hence, C is a DTC(1) matrix associated 

with G. Suppose G is SC-Hamiltonian. Then there exist constants such that cij = ai + bj 

V i j  E ~ ( 6 ) .  Take directed tours Tl  = (1,2,3,4,5,6) and T2 = (6,5,4,3,2,1) in G. The 

following are obtained from T l  and T 2  respectively, 

0 = cl2 = al + b2 + a1 = -b2 0 = c16 = a1 + b6 + a1 = -b6 

O =  C23 =a2 +b3 + a2 = -b3 O =  c2l = a 2 + b l  + a2 = -bl 

0 = c34 = a3 + b4 + a3 = -b4 0 = C32 = a3 + b2 + a3 = -b2 

0 = c45 = a4 + b5 + a4 = -b5 0 = c43 = a4 + b3 + a4 = -b3 

0 = c 5 6 = a 5 + b 6 + a 5 = - b 6  0 = c 5 4 = a 5 + b 4 + a 5 = - b 4  

0 = c6l = a6 + bl + a6 = -bl 0 = c65 = a6 + b5 + a6 = -bs 

Thus, a1 = a3 = a5 = -b2 = -b 4 = -b6 and a2 = a 4  = a6 = -bl = -b3 = -b5. So 

1 = C13 = a1 + b3 = (a3)  + ( b l )  = ~ 3 1  = 2, yields a contradiction. 

It is clear that the argument in the Example 5.2.2 can be repeated for any graph that 

is bipartite with a single symmetric pair of arcs within a bipartition whose underlying 

undirected graph is in the BGFE class of graphs. However, is it true that if G is SC- 

Hamiltonian then G is SC-Hamiltonian for other classes of graphs? 

Definition 5.2.3. A bi-cycle is the graph formed by taking an undirected Hamiltonian 

cycle and replacing each edge i j  by arcs i j  and ji. 
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Figure 5.17: e is not SC-Hamiltonian but G is SC-Hamiltonian 

Lemma 5.2.4. Bi-cycles are SC-Hamiltonian if and only if n is odd. 

Proof. Let (? be a bi-cycle and C = ( ~ j )  be a DTC(1) matrix associated with e. 
Suppose n is odd. Let ai = ~ ~ ( i - 1 )  - bi-1 and bi = ~ ( i - l p  - ai-1. Then ai + bi+l = 

4 

ai + ( c ~ ( ~ + ~ )  - ai) = ~i ( i+ l )  and ai+l + bi = (c(i+1li - bi) + bi = ~( i+l ) i .  Since all edges of G 

are of the form i(i  + 1) or (i  + 1)i it follows that c,ij = ai + bi for every arc in G. Hence, e 
is SC-Hamiltonian. 

Suppose n is even. Assume bi-cycle 6 is SC-Hamiltonian. Then for any DTC(1) matrix 

C = (cij) there exist constants such that cij = ai + b j  Vij E E(G). In particular, take 
4 

cl2 = c21 = 1 and all other entries of cost 0. Since G is composed of only two disjoint 
4 

cycles, all tours have cost one. Take tour Tl = (1,2, . . . , n) in G and it's reversal T2 = 

(n, . . . ,2,1).  Considering alternating sums starting at vertex 1 around both tours. TI yields 

cl2 - c23 + . . . - cnl and T2 yields cln - c,(,-~) + . . . - czl. The difference of these two 

equations is 2. But when considering the constants ai and bi notice that the difference of 

these two equations is 0. This gives a contradiction. 0 

Observation 5.2.5. If (? is an SC-Hamiltonian digraph then the constants associated with 
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any DTC(1)  matrix are not unique. 

Proof. Let C = ( q j )  = (ai + b j )  be a D T C ( 1 )  matrix associated with graph G. Let k be 

some non-zero constant. Then do the following: add k to  all ai and subtract k from all bj. 

Thus, V i j  E E(G) we have, 

Example 5.2.6. Let digraph 6 be a bi-cycle on an odd number of nodes. By Lemma 5.2.4, 

odd bi-cycles are SC-Hamiltonian. Let every arc of G have cost 0 and C = (q j )  = (ai + b j )  

V i j  E E(G) be the matrix which describes these costs. Clearly, C is D T C ( 1 )  as every tour 

has 0 cost. Let ai = and bi = -a V i  E v ( G ) .  Thus, q j  = ai + bj = (a )  + (-a) = 0 for 

any choice of a .  

A direct consequence of Observation 5.2.5 is that a single constant associated with the 

vertex set may be forced to be any value. In particular, it will often be useful to force this 

constant to  have cost 0. 

Definition 5.2.7. Let (?' be a digraph containing tour T = ( 1 , 2 , .  . . , n). Furthermore, let 

C be a cost matrix associated with (?'. A reversing alternating sum from 1 to  u E v ( G ) \ { l )  

around T is defined to  be the sum cia - ~ 3 2  + c34 - cg4 + . . . - c,(,-~) if u is odd and 

c12 - c32 + c34 - c.54 + . . . + c(,-~),  if u is even. 

Observation 5.2.8. A reversing alternating sum from i to j of odd length has cost ai + bj 

in an  SC-Hamiltonian digraph. I n  particular, a reversing alternating sum around any odd 

length cycle starting at node i has cost ai + bi in a n  SC-Hamiltonian digraph. 

Observation 5.2.9. A reversing alternating sum from i to j # i of even length has cost 

ai - aj  in an  SC-Hamiltonian digraph. I n  particular, a reversing alternating sum around 

any even length cycle starting at any node has cost 0 i n  a n  SC-Hamiltonian graph. 

Lemma 5.2.10. Let n be odd. If symmetric digraph 6 is not strongly Hamiltonian then (? 
is  not SC-Hamiltonian. 

Proof. Suppose there is a pair of arcs l v  and v l  that are not contained in any tour of 

G .  Let cl, = q,l = 1 and every other arc of G have cost 0. Since l v  and v l  are not 

contained in any tour, all tours in (? have 0 cost. Hence, C = ( q j )  is D T C ( 1 ) .  Suppose 

C is SC-Hamiltonian. Then there exist constants such that q j  = ai + bj V i j  E E ( G ) .  
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Since n is odd lv and vl partition any tour of into an odd length cycle and an even 

length cycle. Let T = (1,2,. . . , n) be a tour of e where the cyclic ordering of the node 

set around T is taken in the direction corresponding to the odd length path from 1 to 

v. This forces v to have even parity with respect to the labelling of tour T. Take a 

reversing alternating sum from 1 to v around T along the odd length path. This sum yields 

c12 - ~ 3 2  + . . . + c(,-l), = a1 + b2 - ag - b2 + . . . + a,-1 + b, = a1 + b, = cl, = 1. But 

clz - ~ 3 2  + . . . + c(,-l), = 0 as all arcs of T have cost 0. This yields a contradiction. 0 

Lemma 5.2.11. Let n be even. If symmetric digraph 6 has a pair of arcs not contained 

i n  any tour but that partitions some tour into two even length cycles then is  not SC- 

Hamiltonian. 

Proof. The proof is analogous to that of Lemma 5.2.10. 0 

Lemma 5.2.12. Let n be even. If symmetric digraph 6 has a pair of arcs not contained 

in any tour but that partitions some tour into two odd length cycles then 6 is not SC- 

Harniltonian. 

Proof. Suppose there is a pair of arcs lv and vl that are not contained in any tour of 6. 
Let cl, = 1, = 2 and every other arc of 6 have cost 0. Since lv and v 1 are not contained 

in any tour, all tours have 0 cost. Hence, C is DTC(1). Suppose (? is SC-Hamiltonian. 
4 

Then there exists constants such that ~j = ai + bj V i j  E E(G).  Let T = (1,2,. . . , n)  be 

a tour of 6. Lemma 5.2.11 suggests that lv and vl must partition T into two odd length 

cycles. Denote either one of these cycles of odd length as K. Observation 5.2.8 shows 

that a reversing alternating sum taken around K starting at 1 will have cost a1 + bl when 

considering the constants associated with each vertex. Notice that reversing alternating 

sum around K taken in the direction taken along lv has cost 1 (as cl, = 1). But the 

reversing alternating sum around K in the opposite direction has cost 2 (as c,l = 2). Thus, 

a1 + bl = 2 = 1 yields a contradiction. 0 

Theorem 5.2.13. Let 6 be a symmetric digraph. ~f 6 is  not strongly Hamiltonian then (? 

is not SC-Hamiltonian. 

Proof. This result follows directly from Lemma 5.2.10, Lemma 5.2.11 and Lemma 5.2.12. 
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5.2.2 General digraphs 

The following lemma was provided by Kabadi and Punnen in [ll] without proof. 

Lemma 5.2.14. Directed cycles are SC-Hamiltonian. 

Proof. Let T = (1,2,.  . . , n) be a directed tour in 6. For any DTC(1) matrix C take 

ai = c i ( i+~)  and bi = 0. Since every arc lies in T it follows that Gj = ai + bj V i j  E E(@. 

Definition 5.2.15. Let 6 be a digraph and let K = (1,2, . . . , k) be a cycle in the underlying 

undirected graph of with k even. A reversing cycle of K is present in 6 if the arcs 

12,32,34,54,. . . , (k - l )k and lk  are in 6. 

Lemma 5.2.16. Let 6 be a digraph that conthins a reversing cycle of cycle K .  If K contains 

an  edge that is not utilized by any tour in e then e is not SC-Hamiltonian. 

Proof. Let 6 contain a reversing cycle of cycle K = (1,2, . . . , k) where arc lk  is not contained 

in any tour of 6. Furthermore, let cl/; = 1 and cij = 0 V i j  E ~ ( d ) \ { l k ) .  Every tour has 

cost 0 implies that C = (cij) is DTC(1). Suppose d is SC-Harniltonian. Then there 

exist constants such that cij = ai + bj V i j  E ~ ( d ) .  By Observation 5.2.5, it is possible 

to set a1 = 0. This forces b2 = 0, which forces as = 0, . . ., which forces bk = 0. So 

1 = elk = a1 + bk = 0 + 0 = 0 which yields a contradiction. 0 

Lemma 5.2.16 identifies several different classes of digraphs that are not SC-Hamiltonian. 

Bi-cycles on an odd number of vertices with a single other arc and bi-cycles on an even 

number of vertices less a single edge are two such classes. Furthermore, the proof in Lemma 

5.2.16 can easily be extended to obtain the following results. 

Lemma 5.2.17. Let d be a digraph that contains a reversing cycle K ' .  Furthermore, let 

E* be a set of arcs such that every tour i n  d contains exactly E E Z+ arcs from E*. If K' 

contains exactly one arc from E* then 6 is not SC-Hamiltonian. 

Lemma 5.2.18. Let 6 be a digraph that contains a reversing cycle K' of cycle K i n  the 

underlying undirected graph G. Furthermore, let E* be a set of arcs such that every tour i n  

6 contains exactly E E Z+ arcs from E*. If K' contains multiple arcs from E* where the 

deletion of two such arcs creates a path of odd length in the traversal of K ( in  G) then d is 

not SC-Hamiltonian. 
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Lemma 5.2.19. A n y  Hamiltonian subgraph of a bi-cycle on  a n  odd number of vertices i s  

SC- Hamiltonian. 

Proof. The proof follows directly from Lemma 5.2.4 as the constants described in the proof 

also hold for any subgraph. It can be observed that Lemma 5.2.14 is a subcase of this 

lemma. 0 

A complete characterization of SC-Hamiltonicity of all undirected graphs that are not 

strongly Hamiltonian has been established. However, the same results do not extend for the 

directed case. In particular, consider the digraphs in Figure 5.18. 

Figure 5.18: Examples illustrating the difficulty of classifying the SC-Hamiltonicity of di- 
graphs in terms of strong Hamiltonicity 

Denote the graphs in Figure 5.18 as GB, Gc and GD for Examples A, B, C and D 

respectively. 

In Example A, notice 6~ contains a reversing cycle so by Lemma 5.2.16 this digraph is 

not SC-Harniltonian. Moreover, since arcs 14 and 32 do not reside in any tour of GA it is 
not strongly Hamiltonian. Example B illustrates a digraph that is SC-Harniltonian but not 
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strongly Hamiltonian as guaranteed by Lemma 5.2.16. Example C is strongly Hamiltonian 

since gc is simply an odd directed cycle. Lemma 5.2.14 suggests gc is also SC-Hamiltonian. 

The digraph in Example D has three tours TI = (1,2,3,4),  T2 = (1,4,3,2) and T3 = 

(1,3,4,2).  Hence, is strongly Hamiltonian and every arc of ZD is contained in some 
d 

tour. Associate cost matrix C with GD with cl2 = cl3 = 2, cl4 = c43 = 1 and G j  = 0 for 

all other arcs of g o .  Then C(Tl) = C(T2) = C(T3) = 2. Hence, C is a DTC(1) matrix 

associated with Go. Now suppose that GD is SC-Hamiltonian with constants such that - 
cij = ai + bj for every arc of Go. By Observation 5.2.5, take a1 = 0. This forces b2 = 2, 

b3 = 2 and b4 = 1. Arc 42 suggests a4 = -2 but arc 43 suggests a4 = -1. Thus, GD is 

strongly Hamiltonian but not SC-Hamiltonian. 

These examples illustrate that it is possible to find strongly Harniltonian digraphs that 

are either SC-Hamiltonian or not SC-Harniltonian, and that it is also possible to find 

digraphs that are not strongly Hamiltonian but are either SC-Hamiltonian or not SC- 

Hamiltonian. Thus, it appears that there is not a strong correlation between the SC- 

Hamiltonicity of a digraph and the SC-Hamiltonicity of it's underlying undirected graph 

G. 



Chapter 6 

Concluding Remarks 

Chapter 2 relates the problem of testing the number of distinct Hamiltonian cycle values into 

the problem of testing the number of distinct Hamiltonian path values (for the complete 

directed graph). This chapter also gave a reduction theorem that converts the problem 

of testing the number of distinct Hamiltonian cycle values into the problem of testing the 

number of distinct linear spanning 2-forest values for classes of matrices with some additional 

restrictions. 

Chapter 3 gave a characterization of both LS2F(l) and LS2F(2) cost matrices. This 

provides a characterization of DTC(1) and DTC(2) matrices. As a by-product, a testable 

characterization of DPC(1) and DPC(2) matrices was also established. 

In Chapter 4, a characterization of cost matrices with some additional restrictions where 

all linear spanning 2-forests have three distinct values is given. As a consequence, this gives 

a characterization of cost matrices where all Hamiltonian paths and Hamiltonian cycles have 

three distinct values in these restricted cases. 

Hence, characterizing all cost matrices such that there exist at most three distinct Hamil- 

tonian cycle and Hamiltonian path values remains an open question. Resolving this question 

would give a new solvable class of the TSP. 

Based on these conclusions, an immediate question may be posed. What is the structure 

of DTC(k) matrices for k 2 4? Since the direct approach to this question seems difficult, 

two alternative approaches have been established. These approaches are to either give a 

characterization of DPC(k) matrices or to give a characterization of LS2F(l) matrices Vl 5 k. 

However, as the value of k increases, both of these tasks becomes exceedingly difficult. We 

suggest extending the concepts presented in this thesis to consider the number of distinct 
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linear spanning pforest values in an effort to reduce the complexity of the procedure. 

A linear spanning p-forest (LSpF) of G is a linear spanning forest of G with precisely p 

components. Furthermore, C is a k distinct linear spanning p-forest cost matrix, denoted 

LSpF(k), if and only if there exist exactly k distinct LSpF values in G described by C. 

Although considering these structures will provide fruitful results for small values of k, 

there are limitations. In particular, the procedure for determining the number of distinct 

LSpFs will fail to run in polynomial time if either k or the number of conditions that must 

be checked (to determine if a matrix is LSpF) is too large. Hence, this topic remains open. 

Chapter 5 was successful in characterizing the SC-Hamiltonicity of all Hamiltonian undi- 

rected graphs that are not strongly Hamiltonian. However, it still remains an open question 

to determine the SC-Hamiltonicity of all strongly Hamiltonian undirected graphs. It is 

hoped that the many classes considered in this thesis will provide some insight into com- 

pleting this characterization. 

Furthermore, the same question remains open for directed graphs. In this case, a char- 

acterization of graphs that are not strongly Hamiltonian was not achieved. Thus, there is 

still much work to be performed in this field. 
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