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Abstract 

The Pacific Ocean Shelf Tracking (POST) project is part of the Census of Marine Life 

Study. In this project, acoustic transmitters are surgically implanted into salmon and 

the salmon are tracked during their migration over a series of listing lines placed along 

the ocean floor. At the moment, researchers observe the simple descriptive statistics at  

different locations based on the actual number of radio detections. However, these methods 

are not sufficient to study their movement patterns and we need to employ advanced mark- 

recapture models for better understanding of the movement patterns. Estimating between 

locations survival probabilities of animals is a key component in mark-recapture studies. 

Detection probabilities at listening lines are nuisance parameters. They are high, but not 

100% and also need to be estimated. 

In our project, we develop a Bayesian model for estimating detection probabilities and 

survival probabilities that is well suited for the POST project. Previous mark-recapture 

models do not make any adjustments in survival probabilities between listening lines for 

travel times of fish whereas our model treats survival probabilities as a function of travel 

times. This plays a key role when distances between listening lines vary greatly. The model 

is implemented via Markov chain Monto Carlo using WinBUGS. Simulation results indicate 

that the model is well behaved in estimating parameters. We also submit our model to the 

POST project for their consideration in future studies. 

Keywords: mark-recapture, Bayesian analysis, Markov chain Monto Carlo, salmon, latent 

variables, simulation, WinBUGS 
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Chapter 1 

Introduction 

1.1 Background of the Project 

The Pacific Ocean Shelf Tracking (POST) project (www.postcom1.org) is one of thirteen 

field programs contributing to the Census of hlarine Life. The Census of Marine Life is 

an international collaboration of scientists that seek to  assess and explain the diversity, 

distribution and abundance of marine life in the oceans. The POST project plans to build 

acoustic tracking arrays along the west coast of North America to  study the migration 

patterns, life spans, movements and behaviours of Pacific Ocean aquatic animals such as 

salmon or other fish species. The array will have 2000 receivers and 30 listening lines, each 

up to 50 km long. They are capable of recording up to  250,000 animals at once. The POST 

project expects to complete this task by 2010. 

Firstly, acoustic transmiters are surgically implanted into animals and then the animals 

are released at  a release point. Fixed listening lines placed on the ocean floor pick up 

the signals when tagged animals pass over it. Receivers store the unique ID number of 

the tag, detection date and time in a database that can be queried by researchers. Tag 

implantation protocols and listening lines technology have been specially developed for the 

POST project. A pilot program in 2004 has demonstrated the feasibility of the technology. 

It has also revealed that the listening lines have a detection efficiency of 91%. They further 

investigate the methods for extending battery life, identifying suitable areas for listening 

lines and tag implantation technology. In 2006, acoustic tags with 10-20 years lifespans 
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were developed to study almost the entire ocean life of animals. 

The idea for this project came during my hlitacs internship involving the analysis of 

mark-recapture data. The POST project is a combination of two types of mark-recapture 

experiments. In the first type of mark-recapture experiment (Lebreton et al. 1992), animals 

are initially marked, and then recaptured at yearly intervals (for example). Not all marked 

and living animals are captured at future time points. This corresponds to salmon in the 

POST project that do not pass sufficiently close to the receiver, and hence are not detected. 

In this type of experiment, there is interest in the temporal dimension of survival. For 

example, one may be interested in the survival rates of species from year to year. 

In the second type of mark-recapture experiment, marked fish are released, and are 

detected as they swim past landmarks (Burnham et al. 1987). In this type of experiment, 

there is interest in the spatial dimension of survival. For example, one may be interested in 

the survival rates of species between particular dams. 

This project considers methods to combine both the temporal and the spatial dimensions 

of the problem into a single mark-recapture model. 

1.2 History of Mark-Recapture Models 

Mark-recapture models are popular in estimating animal population sizes, birth rates, sur- 

vival rates and migration rates. Basically, mark-recapture models can be broken down into 

two categories as open and closed populations models. 

The Peterson estimator (Peterson, 1896) is the simplest estimator which is based on 

two sample periods, one involving the initial marking of nl individuals and then m:! are 

recaptured amongst the n:! individuals caught on the second occasion. The Peterson esti- 

mator is used to estimate the population total N. The marked fraction in the population 

is estimated by the marked fraction in the second sample. That is, 

Here, the second sample must be a random sample for the method to be valid. That 

is, marked and unmarked individuals must have the same chance of being captured in the 
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second sample. 

Schnabel (1938) extended the Peterson estimator to a series of samples. Individuals 

caught a t  each sample are examined for markers and are then released. Here, only the same 

type of mark is used for all animals since we need to distinguish only marked and unmarked 

animals. The basic assumptions for these two models are 

marksltags are not lost 

0 the population is closed (i.e. the population size N is constant) 

0 capture-recapture probabilities are constant at each sampling location 

It is often the case that these assumptions are unrealistic, so further developments are 

needed. 

Cormack (1964), Jolly (1965) and Seber (1965) introduced a multiple sample capture- 

recapture models for open populations. Open population models do not assume that the 

population is constant over the study period. The CJS (Cormack/Jolly/Seber) model allows 

to estimate survival and recapture probabilities for single group of individuals conditioning 

on first capture. The JS (Jolly/Seber) model extends the CJS to  estimate the population 

size and new birth and immigrations at  each sampling locations. The JS model is fairly 

general by not conditioning on first capture. The following assumptions must be satisfied 

for the CJS (Cormack/Jolly/Seber) model to be valid. 

every marked or unmarked individual present in the population in each sample period 

has the same probability being captured. 

every marked individual in the population immediately after each sample period has 

the same probability of survival until the next sampling period 

0 marks are not lost 

all samples are instantaneous and each release is made immediately after the sample 

period 

all emigrations from the population are permanent 
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0 the survival and capture of every individual is independent of the survival and capture 

of all other individuals 

Recently, various models have been developed by researchers by considering violations 

of some of the above assumptions. Shirley, Pollock and Norris (2003) proposed a flexible 

framework to relax assumption 1. They relaxed the homogeneity in survival and capture 

probabilities using the finite mixtures to  model the heterogeneity. Cowen and Schwarz 

(2005) considered the violation of assumption 3 due to tag loss. Bonner and Schwarz (2006) 

extended the CJS model for continuous covariate which is assumed to  have a Weiner process. 

They treated survival and capture probabilities as a function of covariate using the logistic 

link function. Complete details on the use of covariates via link functions was discussed 

by Lebreton et al. (1992). They extended the CJS model to allow for multiple groups and 

various covariates using appropriate link functions. 

1.3 Organization of the Project 

In chapter 2, we provide the details of the Bayesian model development and implementation. 

By treating the latent variables as though they were known, the complete data likelihood is 

derived where survival probabilities depend on travel times. Appropriate prior distributions 

are then selected for the model parameters. As the posterior distribution is complex and 

high-dimensional, we obtain posterior summary statistics which describe key features in 

the study. In particular, posterior expectations are approximated through h'larkov chain 

Monte Carlo (MCMC) methods using WinBUGS software (Spiegelhalter, Thomas and Best, 

2003). We then provide details of implementation of the model via WinBUGS. In chapter 3, 

we apply our model to  real data obtained from the Columbia River system and the POST 

project. The reliability of the model is demonstrated using simulated data. We also provide 

sensitivity analyses with respect t o  some of the model assumptions. We conclude with a 

discussion in chapter 4. 



Chapter 2 

Bayesian Model Development and 

Implement at ion 

2.1 Why Bayesian Modelling? 

The Bayesian framework was developed by the Reverand Thomas Bayes (1702-1761) and 

the Bayesian approach to obtain population estimates was first used by LaPlace in 1786. 

At the moment, Bayesian statistics is widely used by researchers in widespread fields due to 

significant computational advancements including MCMC, BUGS and WinBUGS software. 

Recently, researchers in the capture-recapture area have also taken a Bayesian approach 

instead of classical likelihood approach. Edward and Christian (1992) showed how Gibbs 

sampling can be applied in mark-recapture experiments. Dupuis (1995) discussed multiple 

recapture analysis with missing data via Gibbs sampling. Schwarz and Seber (1999) dis- 

cussed the importance of Bayesian methods in mark-recapture models. Brooks, Catchpole 

and Morgan (2000) provided a Bayesian treatment for the CJS model. Bonner and Schwarz 

(2006) also used a Bayesian approach based on Metropolis-Hasting algorithm to estimate 

model parameters. 

The Bayesian approach has many attractive features over the standard likelihood ap- 

proach. In the Bayesian approach, models can often be as complex as reality demands 

and missing data and latent variables can handle in a flexible way. It also provides a way 

to include expert prior knowledge concerning the parameters of interest. Another method 
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to handle the missing data is the Expectation-hlaximization (EM) algorithm. Van Deusen 

(2002) used the Ehi algorithm to maximize a complete data likelihood but assumed survival 

probabilities independent of travel times. Cowen and Schwarz (2005) also assumed survival 

probabilities independent of travel times but take a different approach by working with the 

observed likelihood. The observed likelihood is somewhat more complex than the complete 

data likelihood as it involves integrals with respect to the unobserved (i.e. latent) variables. 

All recent models do not make adjustments in survival probabilities between listening lines 

for the time of travel. 

It  is reasonable to assume that a fish that takes a longer time to swim between the 

lines may have a lower overall survival rate than a fish that takes only a short time to 

swim between listening lines. We treat survival probabilities as a function of travel time. 

When the distances between listening lines vary greatly, this dependance structure is clearly 

important. We are also interested in acoustic detection probabilities and allow them to 

vary over listening lines. Our model is a combination of both the temporal and the spatial 

dimensions of the problem into a single mark-recapture model. A complete data likelihood 

is constructed by treating latent variables as though they are observable. We then make 

inferences about model parameters based on the posterior distribution which is derived from 

the prior distributions of parameters and the complete data likelihood. 

2.2 Notation 

A summary of our mark-recapture experiment is as follows. Acoustic tags are surgically 

implanted into animals and then the animals are released at an initial release point. It is 

also possible to release them a t  a listening line following the initial release point. Listening 

lines placed on the ocean floor pick up the signals when tagged animals pass over it. Re- 

ceivers store the unique ID number of the tag, detection date and time in a database. For 

convenience, we summarize the following symbols which are used in our model development. 

m the number of listening lines following the release point 
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w = {wij) the detection history vector of all fish such that 

I 1 if the i-th fish is detected at j-th listening line 
U . .  = 

0 if the i-th fish is not detected at j-th listening line 

Note that wio = 1 for all fish. 

Tij the time required for the i-th fish to travel from the point of release to j-th listening 

line 

TobS the observed cumulative travel times vector 

~ m i s  the missing or latent cumulative travel times vector 

T the complete cumulative travel time vector. Note that T =  TO^^, T ~ ' ~ ) .  

Sij the survival status of the i-th fish at j-th listening line such that 

1 if the i-th fish is alive at j-th listening line s..  - 
2 1  - 

( 0 if the i-th fish is not alive at j-th listening line 

Note that Sio = 1 for all fish. 

sobs the observed survival states vector 

snzis the missing or latent survival states vector 

S the complete survival states vector. Note that S = (sobs, Smis). 

tij the interval travel time for the i-th fish from listening line j - 1 to j 

t = { t i j )  the complete interval travel time vector 

pj the probability of detection at the j-th listening line 

qj the daily survival probability when travelling between listening lines j - 1 and j 

4ij the survival probability of the i-th fish when travelling from listening line j - 1 to 

listening line j given that the fish was alive at listening line j - 1 

t - 
Note that 4ij = qj7' .  



CHAPTER 2. BAYESIAN MODEL DEVELOPMENT AND IMPLEMENTATION 8 

For example, consider a situation with 5 listening lines. The i-th animal may have 

(1,0,0,1,1,1) as t,he capture history. Note that this animal was not detected at lis- 

tening lines 1 and 2. The probability of observing this history is &(1 - pl)q5,3(1 - 

m)4i3p3@z4p4q5i5p5. A capture history of (O,0, 1,1,1,O) implies that the i-th animal is first 

released at the second listening line. The probability of observing this capture history is 

Q ~ ~ P ~ & P ~  [(l - 4i5) + (1 - p5)]. The last term in brackets is the probability that the 

animal died before listening line 5 plus the probability that the animal is alive but not 

captured at listening line 5. It is clear that these probabilities become complicated when 

the animal is unobserved and when the number of listening lines increases. 

2.3 Development of the Complete Data Likelihood 

Consider a population of n fish where each fish is implanted with an acoustic transmitter. 

Without loss of generality, assume that all fish are released a t  location j = 0, and that 

listening lines are set up at fixed locations j = 1 , .  . . , m. It is also reasonable to  assume 

that cumulative travel times from the point of release to the listening lines are available 

since receivers store the unique ID number of the tag, the detection date and time. If the 

listening line does not detect when a tagged fish passes over it, then the cumulative travel 

time from the point of release to that particular listening line is unknown (latent). Note 

that when a fish has died (and is therefore not detected), we still imagine that there is a 

cumulative travel time associated with the fish. The value is missing but it represents the 

cumulative travel time that the fish would have taken had it been alive. When a fish is 

not detected, then there is no observed cumulative travel time. We refer to the vector of 

missing or latent cumulative travel times as TmZS and the complete cumulative travel times 

vector T =  TO^^, T ~ ' ~ ) .  

The quantities Sobs = iszj) and t = i t i j )  are associated with w and T as follows. 

Sik =1 for I; = l , . .  . , j  if wij = 1 

t . .  = T . .  - T .  
211 23 ZJ-1 

Note that whereas the entire vector w is observed, some of the entries Sij are latent. This is 

due to the fact that an undetected fish may be either alive or dead. As an example, consider 
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the observed data (wio, . . . , ai5) = (1,0,0,1,0,0).  In this case, (Sic,, . . . , Si3) = (I ,  1,1,1) but 

Si4 and Si5 are latent. We supplement the observed Sobs with the missing or latent snziS to 

give the complete survival history S = (Sobs, SnXiS). The variable tij may be missing because 

some of the Tij may be missing. In fact, there are at  least as many missing tij's as there 

are missing Tij7s. AS an example, consider (T'o, Til7 Ti2, Ti3, Ti4, c5) = (0, X,  NA, NA, y, Z )  

where NA denotes "Not Available". Then (tio, t i l l  tiz, ti3, ti4, ti5) = (0, X, NA, NA, NA, 2-y). 

Therefore, the vector t consists of both observed and latent data. 

We now describe the two primary parameters in the model. As the acoustic trans- 

mitters are identical and the fish comprise a sample from an underlying population, one 

typically assumes that the probability pj, the probability of detection at the j-th listening 

line does not depend on fish i. In some instances, it may be reasonable to assume a common 

probability of detection (i.e. pj = p for all locations) although the general case causes no 

additional difficulty. The second parameter of interest, q5ij concerns survival of the i-th fish. 

In Cowen and Schwarz (2005), the modelling assumption &j = c j j  implies that survival 

probabilities are independent of travel times. In our model, we consider qhij = f (tij) where 

f is a specified decreasing function. Using this parametrization, the longer that it takes a 

fish to  travel between listening lines j - 1 and j, the greater the chance that the fish does not 

survive. In our model, travel times are measured in days, and we define Ozi = q:'-' such that 

qi denotes the daily survival probability when travelling between listening lines j - 1 and j. 

Our modelling assumption implies that survival is independent across days. Therefore, the 

proposed framework reduces the primary parameters of interest to  (p, q) where p = {pj) 

and 9 = kl]). 

In Cowen and Schwarz (2005), an observed likelihood is obtained based on the observed 

data (w,  TO^'). The observed likelihood is complex as it involves integrals with respect to  

the latent cumulative travel times TmzS. We take an approach based on the complete data 

likelihood as in van Deusen (2002). The complete data likelihood treats latent variables as 

though they are available, and is especially well suited to  a Bayesian analysis. An advantage 

of the complete data likelihood over the observed likelihood is that it has a much simpler 

form. In our approach, we develop the complete likelihood based on (w, S, t). 

In obtaining the complete data likelihood, we follow the development in the companion 
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paper by Muthukumarana, Schwarz and Swartz (2007). Let [A ( B] generically denote the 

density function or probability mass function corresponding to A given B. In addition, let 

ui = (wiO,. . . ,win,), Si = ($0,. . . , Sim), and ti = (tio, . . . , t im). Then the complete data 

likelihood is given by 

where the independence of fish is assumed and the expressions in (2.1) are based on condi- 

tional probability. Then, 

where the key assumption in (2.2) is that detection at location j does not depend on other 

locations, and we note that when a fish dies (i.e. Sij = 0), then detection is impossible and 

there is no contribution to the complete data likelihood. Now, 

where there is no survival contribution to the likelihood when a fish has already died (i.e. 

Si,j-1 = 0). Putting (2.1), (2.2) and (2.3) together, we have the complete data likelihood 

The last step in the determination of the complete data likelihood (2.4) is the specifica- 

tion of [ti]. As the fish arise from the same population and travel times are non-negative, it 

may be reasonable to consider a multivariate lognormal distribution. The convenient covari- 

ance structure in the multivariate normal distribution is appealing as one might imagine 
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that a fish that is fast (slow) in travelling between two locations may be fast (slow) in 

travelling between other locations. Specifically, we assume 

(log(til), . . . , log(tim))' Normalm(p, C). (2.5) 

A simpler (but perhaps less realistic) alternative to (2.5) is log(tij) Normal(p, a2) with 

independence over i and j .  

2.4 Bayesian Model Ingredients 

In a classical approach, the sample data are taken as random while parameters are taken 

as fixed. In a Bayesian approach, parameters themselves follow a probability distribution. 

Furthermore, parameters may be model parameters, missing data or events that are not 

observed (latent). The following components are required in order to carry out a Bayesian 

analysis. 

the prior distribution 

the likelihood of the data 

A prior distribution must be specified for the parameter vector in the model. It quantifies 

the uncertainty about the parameters before the data are observed. It is important that 

priors should be selected such that they represent the best knowledge that we have about 

parameters before looking at the data. If it is not possible, we can still use non-informative 

priors which often produce useful results provided that there is sufficient information in the 

likelihood. Referring to (2.4) and (2.5), we consider the prior density 

where prior independence is assumed. As the p's and q's are probabilities defined on the 

simplex, we assign Beta priors for them. Specifically, we assume independent pj  where 

and independent qj where 
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The a's and the b's are pre-specified based on one's subjective understanding of the listening 

devices and the daily survival rates. As is customary, we impose a diffuse improper prior, 

for the mean travel time and 

C-l Wishart((l/rn)I, rn) (i.e. [C] cx exp{-(m/2)trC)) 

for the inverse variance covariance matrix. 

The second ingredient, the likelihood of the data relates the parameter vector to a 

probability model which is the complete data likelihood in our development. The complete 

data likelihood ((2.4) and (2.5)) and the prior (2.6) provide the ingredients for the Bayesian 

analysis. We next discuss the computation of the posterior distribution of parameters which 

is obtained from the prior and the complete data likelihood through Bayes theorem. 

2.5 Computations 

Recall that Bayes formula gives us the posterior distribution 

In our scenario, 6 is the vector of parameters of interest and y is the vector of observed 

data. Both 6 and y are considered to be random. The function f (Y 1 6) is the likelihood of 

the data given 6, ~ ( 6 )  is the prior density and f (y) is the marginal density of the observed 

data. This implies that 

So, if the prior and likelihood are known, we can obtain the posterior, and the inverse 

normalizing constant can be calculated as 

In order to perform inferences about components of 6, we need to calculate the marginal 

posterior density of individual elements of 6. This requires integration of the posterior with 

respect to other parameters. As an example, the posterior mean of O1 is given by 
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In simple models, the integration problems can be avoided by choosing particular types 

of priors. If the prior and likelihood are natural conjugate distributions, then the posterior 

is in the same family and the above integrations may have an easy analytical solution. For 

more complex models, the integrations are often difficult and even impossible. Sometimes 

numerical approaches such as quadrature and Laplace methods can be used to  approxi- 

mate the expectations. Evans and Swartz (1995) give a complete discussion of the major 

techniques available for the approximations of integrals in statistics. They discuss the ap- 

plicability, merits and demerits of these methods. 

For our problem, we re-express the complete data likelihood [w, S, t] appearing in (2.4) 

as P O b s  7 Xmis 1 p, q, p ,  C] to emphasize the dependency on the unknown parameters and to 

emphasize that (a, S, t )  consists of both observed and missing values. We then obtain the 

following expression for the posterior 

In theory, the functional form of the posterior density (2.7) provides a complete de- 

scription of the uncertainty in the parameters defined in the mark-recapture experiment. 

However, the dimensionality and the complexity of (2.7) is such that it is impossible to  gain 

any meaningful insight. Alternatively, we consider the following expression 

[p, q, p ,  C, xmis 1 xobsl O: [p, q, p ,  C, xobs ,  xmiq 
(2.8) 

PObS, xnzis I P, q, P, Cl b, 9,  P, Cl 

where the last expression in (2.8) is the product of the complete data likelihood and the 

prior density which are defined in familiar forms in (2.4) and (2.6). 

In this model, there are (3m + ?j [m + 11) primary parameters in addition to the miss- 

ing data. Recall that m is the number of listening lines. As an example, if there are 10 

listening lines, then there are 85 primary parameters which gives rise to a high-dimensional 

posterior. It is now clear that our posterior is complex and can not be integrated analyti- 

cally. We instead consider a simulation approach, whereby if we are able to sample variates 
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(p, q, p ,  C, Xnzis)  from (2.8), then we can use the sampled components (p, q, p ,  C) as realiza- 

tions from the posterior distribution. However, sampling directly from (2.8) is also difficult 

and there are some alternative sampling strategies which may be useful in sampling from 

complex models. The most widely used sampling methods are 

importance sampling 

Markov chain Monte Carlo (MChlC) 

In Evans and Swartz (1995), these two methods are discussed where hlarkov chain 

methods are recommended for high-dimensional problenls such as our situation. In impor- 

tance sampling, samples are drawn from a tractable density that is similar to  the posterior 

distribution. In RICMC, variates are drawn from a distribution which has the posterior 

distribution as its equilibrium distribution. In both strategies, the output may be averaged 

to  obtain approxin~ations to  posterior expectations. A hlarkov chain is a random process 

where the variate a t  iteration i depends only on the variate at iteration i - 1. Various 

algorithms have been developed to implement hlChlC. The most popular algorithms are 

Gibbs sampling 

The Metropolis-Hasting algorithm proceeds by using a proposal density, p(0, Ok) to 

generate the nest value 0' where Ok is the value generated at k-th iteration. This generated 

value 0' is accepted with probability 

If 0' is not accepted as the next value, then it is set to  Ok. The rate a t  which the new values 

are accepted is called the acceptance rate. The process is repeated t o  obtain the sequence 

01, 0". . . where Ok is approximately a realization from the posterior for sufficiently large 

I; .  The Metropolis-Hastings algorithm requires an initial value O0 in order to  start the 

sinlulation. The choice of initial value may effect the rate of convergence of the algorithm. 

Initial values which are far away from the range covered by the posterior distribution often 

lead to chains that take more iterations to  attain convergence. 
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The Gibbs sampling algorithm is a special case of the Metropolis-Hastings algorithm 

in which samples are drawn by turning the multivariate problem into a sequence of lower- 

dimensional problems. In Gibbs sampling, the value 0' is obtained by generating from 

distributions with a 100% acceptance rate. 

Fortunately, the software package WinBUGS implements MCMC without programming 

any of the Metropolis-Hasting or Gibbs algorithm. The default option in WinBUGS for 

well behaved models with log concave densities is the Gibbs sampling algorithm. However, 

Metropolis-Hasting is invoked for nonstandard models. In WinBUGS, we need only to 

specify the complete data likelihood, the priors, the observed data and the initial values. 

WinBUGS then produces an appropriate Markov chain. 

However, we need to  make sure that the sequence has converged before inferences are 

obtained on the simulated sequence. The number of iterations taken for the practical 

convergence to  the stationary distribution depends on various factors including 

the complexity of the model (models with few parameters generally converge faster) 

whether the prior and likelihood are conjugate 

the closeness of the initial value to  the posterior mean 

the parameterization of the problem 

the sampling scheme adopted 

The number of iterations prior to  convergence is called the burn-in, and we discard these 

variates for the purpose of inference. WinBUGS provides several statistics and graphical 

tools to check the convergence of Markov chains. Brooks and Gelman (1997) discussed these 

alternative methods monitoring convergence. 

We are now in a position to  fit the model. In the next section, we discuss the model 

implementation and Bayesian inference via WinBUGS. 
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2.6 Markov Chain Monte Carlo (MCMC) Simulation via 

WinBUGS 

2.6.1 Introduction to WinBUGS 

WinBUGS is a product of the BUGS (Bayesian inference Using Gibbs Sampling) project 

which is a joint program of the Medical Research Council of Biostatistics Unit at  Cambridge 

University and the Department of Epidemiology and Public Health of Imperial College at 

St.Mary's Hospital in London. The software is freely distributed from their web page at 

(www.mrc-bsu.cam.ac.uk/bugs). Models can be implemented in two ways. 

0 using the BUGS language 

0 using the graphical feature, DoodleBUGS which allows the specification of models in 

terms of a directed graph 

We believe that WinBUGS is a very handy tool in fitting complex models although it is 

a difficult and frustrating package to master. Bayesian analysis using WinBUGS requires 

three major tasks as follows. 

0 model specificat ion 

0 running the model 

Bayesian inference 

2.6.2 Model Specification in the WinBUGS Language 

In model specification, we need to create a WinBUGS file for implementation. We have 

provided the POST project with the file model.odc. This file has three major sections. 

When you open model.odc, three choices appear as given in figure 2.1. 

By clicking an arrow, the expanded version of the relevant section of model.odc appears. 

A complete listing of model.odc is given in Appendix A. We now provide some preliminaries 

that are necessary to understand the code. 
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Figure 2.1: AIaior sections of the file inoc1el.otlc. 

o@ W Click; on the arrow to view the data 

em.3 $ C1i1.k: on  the arrow to view the initial values 

111 II'inBUGS, there are tln-ee types of nodes referred to as constant, stochastic and 

t leteriuinistic.. C'oiist ant nodes are usecl to  declare c'onstant terms. Stochastic iiocles repre- 

sent data or parameters that are assigned a tlistril)i~tion. Currentlj. I17inBUGS pro\.icles 23 

familiar cli~tributions. Deterministic nodes are logical espressions of other nodes. Logical 

espressions c m  be built using the operators +, -, *. / and various IITinBUGS functions. 

Kote that I IkBUGS bas soine special syntas n-hicl~ differs from other languages such a5 

Splus a i d  C++. As an example, IVinBUGS requires that each node appear esx t ly  once 

011 the left 11and side of an equation. 

II'c IIO\Y describe the flow of the cocle given in A l q ~ e ~ ~ l i s  A.  Our complete data likelihood 

111 (2.4) has three separate probal~ilities in evaluating the likelil~oocl. Log travel times me 
t 

multivariate normal as given in (2.5).  SZJ is Bernoulli(q " )  a11cl is Bernoul l i (~~~)  gi\.eil 
-1 

.StJ. Since this i\ not one of the 23  1ITinBUGS distributions. n-e utilize the 'Zeros trick' to 

specif!. the likelihootl. II'e cwate a variable 'zeros' \vhich ib  assignecl the value of zero as 

given I~elon-. 

terml[i, jl <- sCi, jl*log(pow(pCjl ,c[i, jl)*pow(l-p[jl ,1-c[i,jl)) 

zeros [i, j] <- 0 
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lambda [ i ,  j] <- -term1 [ i  , j] +k 

zeros [i , j] " dpois (lambda[i , j] ) 

The iclea hehincl the Zeros trick is siiiiple. Suppose that we have a Poisson observation 

of zero with parameter A. Then the likelihoocl of this obsenration is F- " .  If we set X as 

the negative log-likelihoocl of a non-stanclarcl distribution, this gi1.e~ the correct lil;elihoocl 

contribution. I\ acld a large constant 1; to nlake sure that the mean of the Poisson 1.u-iable 

is positive. 

\Ir then specify the prior clensit~, (3.6). \lye assign indepenclent Beta(1,l) distribu- 

tions for p3 ~ 1 1 ~ 1  qJ such that illl!' valne between 0 and 1 is equally likell-. 11% assign a 

Normal(0. 10') clistribution for p which suggests that an!. value in the proximity of zero 

is eclnall~. likelv for p .  \\-it11 the ilornlal clistiibution, \\'inBUGS parainetrizes piecision 

rather than \.ariance. This explains the term lo-' appearing in the code. \lye then assign 

a \\-ishart prior for the iimrerse ~rariance-co~.ariailce inatrix G=C-l as described in section 

2.4. Finall!.. we calculate the in\-ersr of G to  ohtaiii the variai1c.e-covariailce matrix. 

The next section in the \\'inBUGS code corresponds to the data. The data  appear as 

three matrices. c for capture histor!.. .s for complete sur\-i\.al historv and t foi intrrval travel 

t h e .  Note that inissing data  itre denotecl b!. NA in \I7inBUGS. Data can be viewed 111- 

clicking on the second arrow in figure 2.1. It is required to extract the capture historv 

matrix. the sun-ival history matrix anel the interm11 trawl time matrix from the olxerved 

cumulative travel time matrix. Xi1 R progranl for extracting [d, S. t ]  from TO'' is given in 

Appendix B. Note that it is also possible to upgrade the POST database to produce these 

matrices. 

Thc third sectiou contaii~s the initial values of the ~~aran le te r s  in order to carrj. out 

AIC'IIC. \Ire can also allow 11-inBUGS to assign initial ~ralues for the piuwineters and this is 

clescribecl in the \ITinBUC:S manual. The \\7inBUC:S nlanual acll-ises users to provide sen- 

sible initial values. \\> provide three sets of initial values for p. q and Lr and ask \I7inBUGS 

to create initial ~.aluc.s for Z: as described in section 2.6.3. I\ are now read!- to run the 

inoctel anel we run 3 AIitrkov chains. Up to now. n-e have drscribecl the (*ode in Appenclix 

A.  The POST user does not 1-et need to do an\-thing. 
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2.6.3 Running the Model in WinBUGS 

The POST user can run the niodel and ohtnin posterior estimates uf clail~r surl~ival prob- 

abilities l~etween listening lines. tlet~ctioii probabilities at listening lines. lug tra1.d tiines 

between listening lines and the wrrelation structuie h ~ .  follon4ng the steps given l)elo\v. 

1. Open the file nzodel.odc from 11-inBUGS. 

The file will appear as Figure 2.1. The user must make sure t,llat they have unrestricted 

access to the full version of \\'inBUGS. This can he freely obtained by filling in the 

restriction form and stating pour purpose. 

2. Choose the first arrow in figure 2.1 and place the cursor sonien-here irlsicle of the 

expanded code. 

3. Clicli oil 'Specification' 1y. pulling down the 'hlodel' menu. The screen will then 

appear as given in Figure 2.2. 

Figure 2.2: hlodel Specification Tool 

iFi le Tools Edit Attributes Into Madel Interenca Dpt~ons Doodle Flap Tert Window Help 

+IT-lode1 

1 ; 
I 

I # LJ 12 the no of fish 
! +E;:aluat~ng the I lke l~hood 

f i  
I.--1 rJOO0 / I n r ,~  In 1 Ni 

/ *log of trsvel times vector 
t [ ~ ,  1 51 - dmnorrn(t-nu[ , G [  

i forQ 117 1 m) 

[madel la: syntactically correct 

4. Clmose tlw option 'check inoclel' and watch the status 1)ar in the lower left side of 

\\-iiiBUGS for the nlessage 'niodel is sl-ntactic~~llv correct'. This is the x e a  where 

\\'inBUGS p1-ints nlessages. This step verifies that the syntax of the code is correct. 
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5. Thc user shoultl now click on the bolcl arrow located at the top of the \I7inBUGS code. 

This returns tlie user to the display in Figure 2.1. Kest, choose the second arrow of 

figure 2.1 a d  liighlight the keyword 'list'. Then select the option 'loatl data'. If t,he 

data are successfdly loadecl, the message -data loaded' will appear in the message 

area. 

6. Enter the numlxr 3 in t,he field 'nun1 of cliains'. 

7. Choose t,he option 'compile'. This step checks that the nloclel structure for M7inBUGS 

is correct. The message 'nioclel conlpiletl' thr11 appears in the message area. 

8 .  C'licl; agaiil on the bolcl arrow in the I17inBUGS code. Choov the thircl arrow in 

Figure 2.1 and highlight the first occurrence of the keyword -list'. Click on 'loatl 

inits'. The seconcl chain is 1 1 0 ~  invol~eecl. 

9. Highlight the secoilcl occurrence of the l.;ey\vortl 'list'. Click on 'load inits'. The third 

cllain is now iin.ol;ecl. 

10. Highlight the third occurrence of the Geyn-ord 'list'. Click on 'load inits'. In the later 

stages; POST users have the option to provide their previous estimates as the initial 

values in su1)sequent stages of estimation. This may recluce the computation time. 

11. Click oil 'gen inits' to aslc \?'inBUGS to create initial values for Y. 

12. Clioose 'sainples' from the 'Inference' menu. It gives the options shown in Figure 2.3. 

Note that only some of the options (in bold) are accessible. 

13. T\rpe -mu' in the field 'node' and clicli on .set'. Do the sanie thing fb18 1): q and \wco\.. 

B\- doing this, we request that RIarl<o\. chaii~ output is stored for these parameters. 

LIarlio~ chain output is not stored for parameters which are not specified. 

14. C%oose 'Update' from the 'hloclel' menu. The screen will appear as given in Figure 

2.4. 

15. Enter 10000 in the fielcl +upclates'. This requc3sts 10000 iterations of 1IChIC. 

16. Click on 'update" t20 start the hlChIC simulation. 
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Sample AIonitor Tool 

17. At the end of the simulation. Figure 2.3 again appears. POST users obtain the 

posterior estimates of claily survival probabilities between listening lines, cletectioii 

probabilities at listening lines, log travel t,iines between listening lines and the cor- 

relation ~t~ructure by entering '"' in the field node of the 'Sanlple hlonitor Tool' and 

clicking on 'stnts'. On a typical 3.00GHz computer, the siinulation phase requires 3-7 

ininutes of coniputatioil for 100 fish dependino, on the nunher of missing clata points 

i11 the clatn set. 

2.6.4 Bayesian Inference using WinBUGS 

During ant1 after AIChIC simulat,ion, 11-inBUGS provides several ill ~~nlerical and gra 

suinniaries for the parameters. 11> ljriefly discuss some of these which we use in the nest 

chapter. 

The Option 'trace' i11 the Sainple Alonitor Tool provides a dynaniic trace for each pa- 

rameter n-hich gets updated each time a variate is generated. This is a handy tool for 

investigating convergence. The .histor?-' hutton provides a trace plot of the entire i\larkov 

chain a t  the end of the simulatioi~. The 'density' button pro\-ides enlpil*ical posterior density 
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Figure 2.4: hlodel Update Tool 

-A*-. 

update f thin I1 iterat~on b--- 
!- over relax @ adapting 

plots of parameters using a kernel sinootl~er. The 'stats' ant1 'quantiles' buttons provide 

hasic. posterior sumniaries of parameters. The full sequence of simulated values of each 

parameter is available from the 'coda' 1)uttoii. Coda output is easil!. accessible from other 

software platfornls for furt,ller analysis. The 'bgr diag' 1)utton provides Brooks-Gelinan- 

Rubin c.onvergence statistics (Brooks ancl Gelinan 1997) which converge to one n-lien the 

31arkov chain converges to the equilibrium tlistributiou. Brooks and Roberts (1997) f ~ ~ r t h e r  

tliscussetl assessing convergence uf AICSIC with an emphasis on ixilplementational issues 

ancl possi1,le extensions. The 'auto cor' lmtton piovitles the autocorrelation plots of the 

sequences. The autocorrelation plots illu~trat~e the dependance between successive observa- 

tions of the hlarl<o\. cl~ain. 

In the next cliapter. \\-P test our model via simulated data and also consider the analysis 

of real data. 
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Data Analysis 

3.1 Model Adequacy via Simulated Data 

In order to test the model, several simulation case studies were carried out. We wrote an 

R program to simulate the datasets. 

3.1.1 Case Study I 

A dataset corresponding to n = 500 fish with m = 5 listening lines was simulated. Detection 

probabilities at each listening line were set to  pj = p = 0.8 while daily survival probabilities 

between listening lines were set to qj = q = 0.98, j = 1, .. ., 5 .  The log travel times of fish 

between listening lines were generated from a multivariate normal distribution with mean 

p = [I ,  2,3,4,5] and variance-covariance matrix C where 

The model was fit using 3 parallel chains as described in section 2.6.3. Figure 3.1 shows 

the minimum, maximum and average acceptance ratios from (2.9) using the hletropolis- 

Hastings algorithm averaged over all variates and 100 iterations. The average ratio lies 
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Figure 3.1: Minimum, maximum and average acceptance ratios for the hietropolis-Hastings 
algorithm 

Rate 

0 .o 

0.0 5.00Et3 1.00Et4 
fteration No. 

between 0.2 and 0.4 as desired by the WinBUGS program. The autocorrelation plot of the 

Markov chain for p is given in Figure 3.2. The autocorrelations appear to dampen quickly 

which indicates that successive variates are not strongly correlated. We observe that the 

autocorrelation plots of the remaining 21 parameters also die out in the same style. This 

suggests that it may be appropriate to  average Markov chain output as though the variates 

were independent. Additionally, the trace plots also appear to converge quickly. The trace 

plots for p are given in Figure 3.3. As can be seen, they appear to stabilize immediately 

and hence provide no indication of lack of convergence in the hlarkov chains. Figure 3.3 

also indicates that 4000 iterations for the burn-in period is adequate as there is very little 

change between 4000 and 10000 iterations. 

We also monitor the Brooks-Gelman-Rubin convergence statistic to assess convergence. 

The Brooks-Gelman-Rubin convergence statistic for q is given in Figure 3.4. It appears 

with the between chain variation plot and the within chain variation plot. As we simulated 

the variates from three independent chains, convergence of the within chain variability, the 

pooled chain variability and their ratio (the Brooks-Gelman-Rubin statistic) to one pro- 

vides additional evidence of convergence. The Brooks-Gelman-Rubin convergence statistics 



for the remaining paraineters also 1m.e sinlilar appearances providing strong evidence oi 

com7ergence. 

Table 3.1 provides estinlates of the posterior means and posterior standard cleviations 

of the parameters. These are based on 18000 iterations after the 4000 1)urn-in period. As 

can be seen, the. posterior means of the primary parameters p and q are close to the pre-set. 

~a lues .  The posterior n~eails of the srcont1ar~- parailicters p and C also appear in agreement 

\\.it11 the pre-set ~xlues.  

Finally. Figure 3.5 provides estimates of the post,erior density of p usiilg a kernel 

siuootller. The plots snggest nearlj. s~~nimetric uninlodal distributions as might be espectetl. 

3.1.2 Case Study I1 

\\ no~v iin.estigate the sensitivit!, of the analj-sis with respect to the assuinptioil of the 

norma1it~- of the log travel tinies. I\ silnulatecl n clataset esactly as in Case Study I except 

that we generated ( tZl .  . . . . t ,  j)' - N3(p4.  C )  where 1,' = [4,(i. 8. 10. 121. \ \ e  continuecl to 

use (3.5) as a niodelling assninption. The posterio~ estiinates of 11 and q were 0.78 ancl 0.99 

respectively which suggest that the precise shape of the distributions of travel times is not 
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Figure 3.3: The trace plots for 
rnu[?l c.h~tr . : :  . I 3  

Figure 3.4: The Brooks-Gelnlan-Rubin convergence statistic for q along with the within 
chain .r~ariation nncl the between c h a i ~ ~  variation 

Bgt- m lue  

EiIt1ICl m u 0  
iteration 
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1 mu131 chains 1.3 sample 18000 I 

Figure 3.5: Estimates of posterior densities of p in Case Study I 

1 muI51 chains 1.3 sample: 18000 

mu[ l ]  chains l : 3  sample: 18000 

rnu[4] chains 1 :3  sample: 18000  

I rnu[2] chains 1 :3 sample 18000  

Table 3.1: Posterior estimat'es in Case Study I 

I Parameter Mean SD Parameter Mean SD 
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a critical assumption. 

3.1.3 Case Study I11 

We now consider sensitivity issues related to the travel time assumption (2.5). We use the 

same data set that we used in Case Study I but consider the simpler travel time assumption 

log(tij) Normal(p, a2) where a diffuse inverse gamma prior is assigned to a2.  Under this 

simpler assumption, we ignore the correlation structure in the travel time data. Posterior 

estimates of parameters under this simpler model are given in Table 3.2. It  seems that the 

prior dependence structure in the log travel times is not needed in this example. When 

datasets are smaller and there are more missing data, it may be important to use subjective 

knowledge in specifying a more informative Wishart prior. 

3.1.4 Case Study IV 

We now investigate the behaviour of the model with respect to missing data. We consider an 

extreme situation where 75% of the survival histories and interval travel times are missing. 

We generated a data set exactly as in Case Study I except with p=[0.9, 0.85, 0.8, 0.75, 

0.71 and q=[0.95, 0.93, 0.91, 0.89, 0.871. Note that 3711 simulated survival histories and 

interval travel times are missing in the dataset. We assume that pj and qj lie between 0.5 

and 0.99. This is a realistic assumption in the POST project. We incorporate this little 

bit of information with priors by providing truncated beta(1,l) priors for pj and qj such 

that any value between 0.5 and 0.99 is equally likely. Note that the priors are still diffuse. 

Table 3.2: Posterior estimates in Case Study 111 

Parameter Mean SD I 
P 0.76 0.08 
4 0.99 0.00 

P 1 1.00 0.04 
P2 1.94 0.06 
P3 2.93 0.05 
P4 3.90 0.05 
P5 5.01 0.06 
a2 1.01 0.03 
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We first apply the simpler model (as in Case Study 111) with the travel time assumption 

log(tij) Normal(p, a*). Posterior estimates of the parameters are given in Table 3.3. It  

appears that some of the estimates are less accurate and have higher standard errors with 

respect to the true values. This may be due to two reasons. Here, the likelihood may not 

provide sufficient information as in previous situations and also the model does not consider 

the prior dependence structure in the log travel times. We now apply the full model which 

takes into account the prior dependence structure in the log travel times. The posterior 

estimates of the parameters are given in Table 3.4. We observe that estimates are improved 

relative to the estimates which we obtain under the simpler model. This clearly suggests 

that the prior dependence structure in the log travel times is important when there are 

more missing data. Note that our priors are still diffuse and estimators may be improved 

by providing more informative priors if it is possible. In the POST project, there may be 

more informative prior knowledge about parameters. 

We now investigate the posterior correlation matrices of p and q in order to check the 

independence assumption of pj  and qj . 

The correlation structures in 9, and 9, indicate that it is reasonable to assume the inde- 

pendence of the pj  and the independence of the qj as is done in our prior specification. 
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Table 3.3: Posterior estimates in Case Study IV using simpler model 

, Parameter Mean SD Parameter Mean SD 
PI 0.76 0.01 4 4  0.80 0.04 
P 2  0.55 0.04 4 5  0.90 0.02 
P 3  0.53 0.03 P 1 0.80 0.04 
Pd 0.64 0.11 P 2  1.36 0.08 
P5 0.73 0.14 P 3  2.41 0.11 
4 1  0.99 0.00 P q  3.46 0.23 

9 2  0.92 0.01 P 5  5.02 0.34 
~3 0.86 0.01 o2 0.83 0.03 

Table 3.4: Posterior estimates in Case Study IV using full model 

Parameter Mean SD Parameter Mean SD 

Pl 0.85 0.03 E l 1  1.03 0.07 
P 2  0.88 0.03 c 1 2  0.96 0.09 
P 3  0.74 0.06 e l 3  1.43 0.23 
P 4  0.74 0.12 &4 1.31 0.27 
P 5  0.76 0.14 E l 5  0.37 0.18 
4 1  0.97 0.01 c 2 2  1.29 0.16 
4 2  0.90 0.01 C 2  3  1.69 0.28 

9 3  0.91 0.01 c 2 4  1.39 0.32 
9 4  0.83 0.03 c 2 5  0.48 0.19 
9 5  0.90 0.03 c 3 3  2.95 0.71 
P l  0.90 0.05 ~ 3 4  2.29 0.54 P 

P 2  2.07 0.08 C 3 5  0.74 0.29 
P 3  3.45 0.29 &4 2.02 0.76 
P 4  4.43 0.47 c 4 5  0.63 0.35 
P 5  4.49 0.48 x 5 5  0.49 0.21 
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3.2 Columbia River Data 

I11 this section, I\-e apply the inodel to data ol)tainecl fi-om the Columbia river syst,em. 

Froin ,4pril 25/2001 to l \ l ~  30/2001, I ,  = 324 radio tagged chinook sallnon mere released 

fro111 the Rock Islailtl Dam. Data mere recortletl at listc~ning lines established at the in  

= 3 clains tlo~vnstream at \\hnapunl, Priest Rapids a i d  Hanford Reach. A map of the 

clanls is given in Figure 3.6. The int,erclam distances are approximately 37.6 miles, 18.7 

miles and 15.0 miles respectively. Comer1 autl Schwarz (2005) also studied this data set in 

the contest of rrttlio failure. As before. the trace plots, the autocorrelation plots and the 

Figure :3.6: Map of the tlanls Rock Islitnd. \\yanapunl, Priest Rapids and Hanforcl Reach 
fro111 'Sa\.e Our \\-ild Salmon - \ \~~~~v.~~~i ldsa lmon.org '  

Broolts-Gelman-Ruhin ~~~~~~ergence statistics of each paraineter mere exaininecl to assess 

convergence. The trace plots of hlarkov chain output for capture probabilities. Broolts- 

Gelmall-Rulin con\.eigence statistics of clail\. survival probabilities ant1 the autocorrelation 

plots of l\larko\- chain output for p are g i \ ~ n  in Figures 3.7. 3.5 and 3.9 respectivelj-. They 

all provide eviclence of convergence ~ ~ h i ~ h  is necessary in LICAIC sinlulat,ion. Estimates of 

the posterior mwns of the paraineters are given in Table 3.5. \\*e observe that cletection 

prohabilities tlecrease nlarkedly as the fish travel to subsequent tlams. A11 esplanation for 
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this is that the radio tags ma!. suffes tlegratlation o l w  time and are less likely to be detected 

as the fish trawl clounstrertin. The daily sur~.i~.nl probabilities at the three tlains are allnost 

the same. The dens it^. plots of the log t r a ~ ~ e l  times (actual data) hetween clnnls are given in 

Figure 3.10. These plots provicle some corrobora.tion of the estiinates of p in Tahle 3.5. Note 

that tlie mcan log travel times are not roughly proport,ional to  the interclanl clistances. This 

ii~rty be an artefact of radio failure. Interestingly. the log travel time variances are increasiiig 

;~ncl this inuy be partlj. due to thc fact that the region 1,etween Priest Rapids and Hnnforcl 

Reach is a free-flowing river system. \Ye also note that there is little correlation in the C 

matrix. This inclicates that therr is no evidence t11a.t fish which are faster hetween a set of 

clains also move faster bet~veen other sets of clams. 

Figure 3.7: The trace plots for y 
p[1 I ~hcnn3 1 3 
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Figi~re 3.0: Autocorrelation plot of hlarkov chain output for p 
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Table 3.5: Posterior estimates of parameters in the Columbia river data 

Parameter Mean SD Parameter hIean SD 
Pl 0.881 0.01 P3 3.274 0.10 
P2 0.685 0.02 & I  0.191 0.01 
PY 0.562 0.02 C12 -0.026 0.02 
91 0.999 0.00 E l 3  -0.029 0.04 
92 0.999 0.00 ~ 2 2  0.483 0.04 '7 

93 0.998 0.00 C23 0.079 0.06 
P 1 5.380 0.02 C33 1.341 0.16 
P2 4.225 0.04 

Figure 3.10: Density plots for log travel times of actual data 

I Log Travel Time 
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Conclusions 

The goal of this project was to  develop a model which estimates parameters of interest in 

the POST project. First, we investigated the theory behind mark-recapture models and 

then developed a model via the Bayesian framework due to the complexity of the problem. 

The Bayesian approach not only provided a flexible way to handle the complexity, it also 

allowed us to  include prior knowledge of the parameters. 

Recognizing the existence of missing data in interval travel times and survival status 

encouraged us to utilize the complete data likelihood as it was less complex than the observed 

likelihood. This required the introduction of latent variables. We specified diffuse priors 

but maintain that subjective priors are preferable when good prior information is available. 

Bayesian inference was carried out via Markov chain hlonte Carlo simulation. hlChlC was 

implemented via the Metropolis-Hastings algorithm using WinBUGS software which is a 

very useful and powerful tool for Bayesian computation. 

Standard problems in MChlC simulation are the assessment of convergence and the 

determination of the length of the burn-in period. We used several graphical tools and 

the Brooks-Gelman-Rubin convergence statistic from WinBUGS to assess convergence and 

determine the length of the burn-in period. Several simulation case studies were conducted 

in order to  test model adequacy. Results in section 3.1.2 indicate that the precise shape of 

the travel time distribution is not critical in parameter estimation. Section 3.1.4 indicates 

that the prior dependence structure in the log travel time should be used in parameter 

estimation, especially when there is considerable missing data. This also allows us to check 
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whether fish which are faster between a set of markers also move faster between other sets 

of markers. The simulation results indicate that our model is well behaved in estimating 

primary parameters (i.e. the detection probabilities a t  listening lines and the daily survival 

probabilities between listening lines), as well as the secondary parameters (i.e. log travel 

times between listening lines and the correlation structure). 

Our model can also be applied in some health scierice problems. As an example, suppose 

that we are interested in the detection of a certain disease and surviving from it. In this 

example, survival probabilities correspond to  the probability of surviving from the disease 

and it is reasonable to assume that they vary from patient t o  patient. Capture probabilities 

correspond to  the probability of detecting the disease. Interval travel times can be replaced 

by time between checkups. It is also a known fact that survival probability may be a 

function of some other covariates. We can easily extend our model for such situations using 

a suitable link function to  connect survival probability with covariates and assume a suitable 

distribution for covariates. 

The model can further improve by using cumulative travel times instead of interval 

travel times or by setting some constraints based on cumulative travel times. This work is 

underway and we refer readers to  paper by Muthukumarana, Schwarz and Swartz (2007) 

for details of improvement. 
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WinBUGS Code for the Model 

model 

# N is the no.of fish 
# Evaluating the likelihood 

k<-10000 
for(i in 1:N) 
C 
#log of travel times vector is MVN, i.e., (2.5) in model development 
t[i,l:5] " dmnorm(mu[l , GI,]) 

#Use of 0's trick 
# k is to make sure that the mean of the Poisson variable is positive 
terml[i,jl <- s[i,jl*log(pow(p[jl ,c[i,jl)*pow(l-p[jl,l-c[i,jl)) 
zeros[i,jl <- 0 
lambda[i,jl <- -terml[i,jl+k 
zeros [i, jl " dpois(lambda[i, jl ) 

1 
1 

#Prior distributions 
q[ll"dbeta(l,l) #daily survival probability 
q[2]-dbeta(l,l) 
q[31 "dbeta(1,l) 
q[41 "dbeta(1,l) 
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q[5l -dbeta(l, 1) 
p [ll -dbeta(l, 1) #capture probability 
p [2l "dbeta(1,l) 
p[3l-dbeta(1,l) 
[4l -dbeta(l, 1) 

p [5l -dbeta( 1,l) 

#log travel time mean vector 
muC1:51 - dmnorm(gO[l , gvCyl) 

#Variance covariance matrix 

varcov [l : 5,l: 51 <- inverse (G [,I) 

# Click on the arrow to view WinBUGS code for the model 

list (N=lO ,m=5, 
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#log of t r a v e l  t imes  
t = s t r u c t u r e  ( . Data=c ( 

NA ,NA ,NA ,4.570213847 ,5.147049414 , 
NA ,NA ,NA ,NA ,NA , 
1.569668475 ,NA ,NA ,NA ,NA , 
0.332605771 ,0.811377733 ,2.155025381 ,3.338856666 ,4.454989111 , 
2.676427836 ,3.886440009 ,4.405275821 ,5.294069073 ,NA 9 

NA ,NA ,NA ,2.993772157 ,3.737354068 , 
0.774916249 ,2.315602835 ,2.153099099 ,3.864518223 ,5.614917829 , 
1.81593285 ,2.637515863 ,3.672125569 ,3.72029615 ,NA , 
2.06601186 ,3.874599418 ,4.407558935 ,4.241067378 ,5.762918364 , 
2.834203738 ,2.698174478 ,4.163108617 ,5.899092117 ,6.396100374),.Dim=c(10,5))) 

# Click on t h e  arrow t o  view t h e  d a t a  

# Click on t h e  arrow t o  view t h e  i n i t i a l  va lues  
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An R Program for - Extracting 
[u, S, t] from the ~ 0 ~ 9 n a t r i x  

# T i s  the  cumulative t r a v e l  time matrix 
# n  is the  number of f i s h  
# m i s  the number of l i s t e n i n g  l i n e s  
# c  i s  the  capture h i s to ry  matrix 
# S is the  surv iva l  h is tory  matrix 
# t i s  the  i n t e r v a l  t r a v e l  time matrix 

c  [i , I ]  = i f  e l s e  (T [i , I] ==-999,0,1) 
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c [i , j] =if e l s e  (T [i , j] ==-999,0,1) 
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