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Abstract

The Pacific Ocean Shelf Tracking (POST) project is part of the Census of Marine Life
Study. In this project, acoustic transmitters are surgically implanted into salmon and
the salmon are tracked during their migration over a series of listing lines placed along
the ocean floor. At the moment, researchers observe the simple descriptive statistics at
different locations based on the actual number of radio detections. However, these methods
are not sufficient to study their movement patterns and we need to employ advanced mark-
recapture models for better understanding of the movement patterns. Estimating between
locations survival probabilities of animals is a key component in mark-recapture studies.
Detection probabilities at listening lines are nuisance parameters. They are high, but not
100% and also need to be estimated.

In our project, we develop a Bayesian model for estimating detection probabilities and
survival probabilities that is well suited for the POST project. Previous mark-recapture
models do not make any adjustments in survival probabilities between listening lines for
travel times of fish whereas our model treats survival probabilities as a function of travel
times. This plays a key role when distances between listening lines vary greatly. The model
is implemented via Markov chain Monto Carlo using WinBUGS. Simulation results indicate
that the model is well behaved in estimating parameters. We also submit our model to the

POST project for their consideration in future studies.

Keywords: mark-recapture, Bayesian analysis, Markov chain Monto Carlo, salmon, latent

variables, simulation, WinBUGS
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Chapter 1

Introduction

1.1 Background of the Project

The Pacific Ocean Shelf Tracking (POST) project (www.postcoml.org) is one of thirteen
field programs contributing to the Census of Marine Life. The Census of Marine Life is
an international collaboration of scientists that seek to assess and explain the diversity,
distribution and abundance of marine life in the oceans. The POST project plans to build
acoustic tracking arrays along the west coast of North America to study the migration
patterns, life spans, movements and behaviours of Pacific Ocean aquatic animals such as
salmon or other fish species. The array will have 2000 receivers and 30 listening lines, each
up to 50 km long. They are capable of recording up to 250,000 animals at once. The POST
project expects to complete this task by 2010.

Firstly, acoustic transmiters are surgically implanted into animals and then the animals
are released at a release point. Fixed listening lines placed on the ocean floor pick up
the signals when tagged animals pass over it. Receivers store the unique ID number of
the tag, detection date and time in a database that can be queried by researchers. Tag
implantation protocols and listening lines technology have been specially developed for the
POST project. A pilot program in 2004 has demonstrated the feasibility of the technology.
It has also revealed that the listening lines have a detection efficiency of 91%. They further
investigate the methods for extending battery life, identifying suitable areas for listening

lines and tag implantation technology. In 2006, acoustic tags with 10-20 years lifespans
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were developed to study almost the entire ocean life of animals.

The idea for this project came during my Mitacs internship involving the analysis of
mark-recapture data. The POST project is a combination of two types of mark-recapture
experiments. In the first type of mark-recapture experiment (Lebreton et al. 1992), animals
are initially marked, and then recaptured at yearly intervals (for example). Not all marked
and living animals are captured at future time points. This corresponds to salmon in the
POST project that do not pass sufficiently close to the receiver, and hence are not detected.
In this type of experiment, there is interest in the temporal dimension of survival. For
example, one may be interested in the survival rates of species from year to vear.

In the second type of mark-recapture experiment, marked fish are released, and are
detected as they swim past landmarks (Burnham et al. 1987). In this type of experiment,
there is interest in the spatial dimension of survival. For example, one may be interested in
the survival rates of species between particular dams.

This project considers methods to combine both the temporal and the spatial dimensions

of the problem into a single mark-recapture model.

1.2 History of Mark-Recapture Models

Mark-recapture models are popular in estimating animal population sizes, birth rates, sur-
vival rates and migration rates. Basically, mark-recapture models can be broken down into
two categories as open and closed populations models.

The Peterson estimator (Peterson, 1896) is the simplest estimator which is based on
two sample periods, one involving the initial marking of n; individuals and then mg are
recaptured amongst the ny individuals caught on the second occasion. The Peterson esti-
mator is used to estimate the population total N. The marked fraction in the population

is estimated by the marked fraction in the second sample. That is,

m2/n2 = nl/N = N = nlng/mg

Here, the second sample must be a random sample for the method to be valid. That

is, marked and unmarked individuals must have the same chance of being captured in the



CHAPTER 1. INTRODUCTION 3

second sample.

Schnabel (1938) extended the Peterson estimator to a series of samples. Individuals
caught at each sample are examined for markers and are then released. Here, only the same
type of mark is used for all animals since we need to distinguish only marked and unmarked

animals. The basic assumptions for these two models are
e marks/tags are not lost
e the population is closed (i.e. the population size N is constant)
e capture-recapture probabilities are constant at each sampling location

It is often the case that these assumptions are unrealistic, so further developments are
needed.

Cormack (1964), Jolly (1965) and Seber (1965) introduced a multiple sample capture-
recapture models for open populations. Open population models do not assume that the
population is constant over the study period. The CJS (Cormack/Jolly/Seber) model allows
to estimate survival and recapture probabilities for single group of individuals conditioning
on first capture. The JS (Jolly/Seber) model extends the CJS to estimate the population
size and new birth and immigrations at each sampling locations. The JS model is fairly
general by not conditioning on first capture. The following assumptions must be satisfied

for the CJS (Cormack/Jolly /Seber) model to be valid.

e every marked or unmarked individual present in the population in each sample period

has the same probability being captured.

e every marked individual in the population immediately after each sample period has

the same probability of survival until the next sampling period
e marks are not lost

e all samples are instantaneous and each release is made immediately after the sample

period

e all emigrations from the population are permanent
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e the survival and capture of every individual is independent of the survival and capture

of all other individuals

Recently, various models have been developed by researchers by considering violations
of some of the above assumptions. Shirley, Pollock and Norris (2003) proposed a flexible
framework to relax assumption 1. They relaxed the homogeneity in survival and capture
probabilities using the finite mixtures to model the heterogeneity. Cowen and Schwarz
(2005) considered the violation of assumption 3 due to tag loss. Bonner and Schwarz (2006)
extended the CJS model for continuous covariate which is assumed to have a Weiner process.
They treated survival and capture probabilities as a function of covariate using the logistic
link function. Complete details on the use of covariates via link functions was discussed
by Lebreton et al. (1992). They extended the CJS model to allow for multiple groups and

various covariates using appropriate link functions.

1.3 Organization of the Project

In chapter 2, we provide the details of the Bayesian model development and implementation.
By treating the latent variables as though they were known, the complete data likelihood is
derived where survival probabilities depend on travel times. Appropriate prior distributions
are then selected for the model parameters. As the posterior distribution is complex and
high-dimensional, we obtain posterior summary statistics which describe key features in
the study. In particular, posterior expectations are approximated through Markov chain
Monte Carlo (MCMC) methods using WinBUGS software (Spiegelhalter, Thomas and Best,
2003). We then provide details of implementation of the model via WinBUGS. In chapter 3,
we apply our model to real data obtained from the Columbia River system and the POST
project. The reliability of the model is demonstrated using simulated data. We also provide
sensitivity analyses with respect to some of the model assumptions. We conclude with a

discussion in chapter 4.



Chapter 2

Bayesian Model Development and

Implementation

2.1 Why Bayesian Modelling?

The Bayesian framework was developed by the Reverand Thomas Bayes (1702-1761) and
the Bayesian approach to obtain population estimates was first used by LaPlace in 1786.
At the moment, Bayesian statistics is widely used by researchers in widespread fields due to
significant computational advancements including MCMC, BUGS and WinBUGS software.
Recently, researchers in the capture-recapture area have also taken a Bayesian approach
instead of classical likelihood approach. Edward and Christian (1992) showed how Gibbs
sampling can be applied in mark-recapture experiments. Dupuis (1995) discussed multiple
recapture analysis with missing data via Gibbs sampling. Schwarz and Seber (1999) dis-
cussed the importance of Bayesian methods in mark-recapture models. Brooks, Catchpole
and Morgan (2000) provided a Bayesian treatment for the CJS model. Bonner and Schwarz
(2006) also used a Bayesian approach based on Metropolis-Hasting algorithm to estimate
model parameters.

The Bayesian approach has many attractive features over the standard likelihood ap-
proach. In the Bayesian approach, models can often be as complex as reality demands
and missing data and latent variables can handle in a flexible way. It also provides a way

to include expert prior knowledge concerning the parameters of interest. Another method
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to handle the missing data is the Expectation-Maximization (EM) algorithm. Van Deusen
(2002) used the EM algorithm to maximize a complete data likelihood but assumed survival
probabilities independent of travel times. Cowen and Schwarz (2005) also assumed survival
probabilities independent of travel times but take a different approach by working with the
observed likelihood. The observed likelihood is somewhat more complex than the complete
data likelihood as it involves integrals with respect to the unobserved (i.e. latent) variables.
All recent models do not make adjustments in survival probabilities between listening lines
for the time of travel.

It is reasonable to assume that a fish that takes a longer time to swim between the
lines may have a lower overall survival rate than a fish that takes only a short time to
swim between listening lines. We treat survival probabilities as a function of travel time.
When the distances between listening lines vary greatly, this dependance structure is clearly
important. We are also interested in acoustic detection probabilities and allow them to
vary over listening lines. Our model is a combination of both the temporal and the spatial
dimensions of the problem into a single mark-recapture model. A complete data likelihood
is constructed by treating latent variables as though they are observable. We then make
inferences about model parameters based on the posterior distribution which is derived from

the prior distributions of parameters and the complete data likelihood.

2.2 Notation

A summary of our mark-recapture experiment is as follows. Acoustic tags are surgically
implanted into animals and then the animals are released at an initial release point. It is
also possible to release them at a listening line following the initial release point. Listening
lines placed on the ocean floor pick up the signals when tagged animals pass over it. Re-
ceivers store the unique ID number of the tag, detection date and time in a database. For

convenience, we summarize the following symbols which are used in our model development.

e m the number of listening lines following the release point
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w = {w;;} the detection history vector of all fish such that

1 if the i-th fish is detected at j-th listening line
wi]- =
0 if the {-th fish is not detected at j-th listening line

Note that w;p = 1 for all fish.

T;; the time required for the i-th fish to travel from the point of release to j-th listening

line

T°% the observed cumulative travel times vector

T™ the missing or latent cumulative travel times vector

T the complete cumulative travel time vector. Note that T = (T"bs , TTE8),
Si; the survival status of the ¢-th fish at j-th listening line such that

s 1 if the i-th fish is alive at j-th listening line
ij =
0 if the i-th fish is not alive at j-th listening line

Note that S;p = 1 for all fish.

595 the observed survival states vector

S™¢ the missing or latent survival states vector

S the complete survival states vector. Note that S = (S"bs, Smis),

t;; the interval travel time for the i-th fish from listening line j — 1 to j

t = {t;;} the complete interval travel time vector

p; the probability of detection at the j-th listening line

g; the daily survival probability when travelling between listening lines j — 1 and j

¢;j the survival probability of the i-th fish when travelling from listening line j — 1 to

listening line j given that the fish was alive at listening line 7 — 1

Note that ¢;; = q;ij .
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For example, consider a situation with 5 listening lines. The ¢-th animal may have
(1,0,0,1,1,1) as the capture history. Note that this animal was not detected at lis-
tening lines 1 and 2. The probability of observing this history is ¢;1(1 — p1)@i2(l —
P2)Pi3P30iaPa@isps. A capture history of (0,0,1,1,1,0) implies that the ¢-th animal is first
released at the second listening line. The probability of observing this capture history is
Gi3p30i4pa [(1 — ¢is) + ¢i5 (1 — ps)]. The last term in brackets is the probability that the
animal died before listening line 5 plus the probability that the animal is alive but not
captured at listening line 5. It is clear that these probabilities become complicated when

the animal is unobserved and when the number of listening lines increases.

2.3 Development of the Complete Data Likelihood

Consider a population of n fish where each fish is implanted with an acoustic transmitter.
Without loss of generality, assume that all fish are released at location 7 = 0, and that
listening lines are set up at fixed locations j = 1,...,m. It is also reasonable to assume
that cumulative travel times from the point of release to the listening lines are available
since receivers store the unique ID number of the tag, the detection date and time. If the
listening line does not detect when a tagged fish passes over it, then the cumulative travel
time from the point of release to that particular listening line is unknown (latent). Note
that when a fish has died (and is therefore not detected), we still imagine that there is a
cumulative travel time associated with the fish. The value is missing but it represents the
cumulative travel time that the fish would have taken had it been alive. When a fish is
not detected, then there is no observed cumulative travel time. We refer to the vector of
missing or latent cumulative travel times as 7™ and the complete cumulative travel times
vector T = (T°%5, T™),

The quantities S = {S;;} and t = {t;;} are associated with w and T as follows.

Suc:l fork=1,...,j if wzj:l
tij =Ty — Tij—1

Note that whereas the entire vector w is observed, some of the entries .S;; are latent. This is

due to the fact that an undetected fish may be either alive or dead. As an example, consider
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the observed data (wio, . .., wis) = (1,0,0,1,0,0). In this case, (S, ...,53) = (1,1,1,1) but
S;4 and S5 are latent. We supplement the observed S°* with the missing or latent S™ to
give the complete survival history S = (59, §™). The variable ¢;; may be missing because
some of the T;; may be missing. In fact, there are at least as many missing £;;’s as there
are missing T;;’s. As an example, consider (Tyo, Ti1, Ti2, T3z, Tis, Tis) = (0,2, NA,NA,y, 2)
where NA denotes “Not Available”. Then (ti, t1, ti2, ti3, tia, ti5) = (0,2, NA,NA NA z—y).
Therefore, the vector ¢ consists of both observed and latent data.

We now describe the two primary parameters in the model. As the acoustic trans-
mitters are identical and the fish comprise a sample from an underlying population, one
typically assumes that the probability p;, the probability of detection at the j-th listening
line does not depend on fish i. In some instances, it may be reasonable to assume a common
probability of detection (i.e. p; = p for all locations) although the general case causes no
additional difficulty. The second parameter of interest, ¢;; concerns survival of the i-th fish.
In Cowen and Schwarz (2005), the modelling assumption ¢;; = ¢; implies that survival
probabilities are independent of travel times. In our model, we consider ¢;; = f(t;;) where
f is a specified decreasing function. Using this parametrization, the longer that it takes a
fish to travel between listening lines j —1 and j, the greater the chance that the fish does not
survive. In our model, travel times are measured in days, and we define ¢;; = q;ij such that
q; denotes the daily survival probability when travelling between listening lines 7 —1 and j.
Our modelling assumption implies that survival is independent across days. Therefore, the
proposed framework reduces the primary parameters of interest to (p,q) where p = {p;}
and ¢ = {g;}.

In Cowen and Schwarz (2005), an observed likelihood is obtained based on the observed
data (w, 7). The observed likelihood is complex as it involves integrals with respect to
the latent cumulative travel times 77, We take an approach based on the complete data
likelihood as in van Deusen (2002). The complete data likelihood treats latent variables as
though they are available, and is especially well suited to a Bayesian analysis. An advantage
of the complete data likelihood over the observed likelihood is that it has a much simpler

form. In our approach, we develop the complete likelihood based on (w, S, t).

In obtaining the complete data likelihood, we follow the development in the companion
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paper by Muthukumarana, Schwarz and Swartz (2007). Let [A | B] generically denote the
density function or probability mass function corresponding to A given B. In addition, let
e (wio, e ,Wim), S; = (Sio, . 7Sim)> and t; = (tio, e ,tim)- Then the complete data

likelihood is given by

oy lwi, S ti]
T

I
[Ty lwi | Siti] [Si,ti] (2.1)
ITioy [wi | Sita] [Si ] ta] [t]
where the independence of fish is assumed and the expressions in (2.1) are based on condi-
tional probability. Then,
[wi | Siyts] = [w; | §]
= [IjZ [wij | Si] (2.2)
= T2, (07 (1 —py)t==i)®
where the key assumption in (2.2) is that detection at location j does not depend on other

locations, and we note that when a fish dies (i.e. S;; = 0), then detection is impossible and

there is no contribution to the complete data likelihood. Now,

[Si|t] = [Sim | Sios---)Sim—1,t] [Siym—1 | Sios-- -, Sim—2,ti] -+ [Si1 | Sio, ti]
= [Sim | Sim—-1,t] [Sim-1 | Si,m—2,t:] -+~ [Si1 | Sio, ti]
I1520 [Sij | Sij-1,ty] (2.3)

Sij —5:\S:
(6 (1= i)'
t; ;S5 tiin1—6 NS
=TT (1= )5S
where there is no survival contribution to the likelihood when a fish has already died (i.e.

S;j—1 = 0). Putting (2.1), (2.2) and (2.3) together, we have the complete data likelihood

n

[w, 5.1 = H[ti]

m
(B (1 = py)1 79053 (g7 (1 — ) =Su)Sii= . (2.4)
i=1 =1
The last step in the determination of the complete data likelihood (2.4) is the specifica-
tion of [t;]. As the fish arise from the same population and travel times are non-negative, it
may be reasonable to consider a multivariate lognormal distribution. The convenient covari-

ance structure in the multivariate normal distribution is appealing as one might imagine
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that a fish that is fast (slow) in travelling between two locations may be fast (slow) in

travelling between other locations. Specifically, we assume
(log(t;1), . .. ,log(tim))’ ~ Normal,,(u, T). (2.5)

A simpler (but perhaps less realistic) alternative to (2.5) is log(t;;) ~ Normal(u,o?) with

independence over i and j.

2.4 Bayesian Model Ingredients

In a classical approach, the sample data are taken as random while parameters are taken
as fixed. In a Bayesian approach, parameters themselves follow a probability distribution.
Furthermore, parameters may be model parameters, missing data or events that are not
observed (latent). The following components are required in order to carry out a Bayesian

analysis.
e the prior distribution
e the likelihood of the data

A prior distribution must be specified for the parameter vector in the model. It quantifies
the uncertainty about the parameters before the data are observed. It is important that
priors should be selected such that they represent the best knowledge that we have about
parameters before looking at the data. If it is not possible, we can still use non-informative
priors which often produce useful results provided that there is sufficient information in the

likelihood. Referring to (2.4) and (2.5), we consider the prior density

p,q,u. B = [pl [q] (1] [Z] (2.6)

where prior independence is assumed. As the p’s and ¢’s are probabilities defined on the

simplex, we assign Beta priors for them. Specifically, we assume independent p; where
-1 -
[pj] o< PP (1 =)™t 0<p; <1
and independent ¢; where

_1 _
lg;] o< g (1 =) ; 0< g < 1.
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The a’s and the b’s are pre-specified based on one’s subjective understanding of the listening

devices and the daily survival rates. As is customary, we impose a diffuse improper prior,
[w] o< 1
for the mean travel time and
S ~ Wishart((1/m)I, m) (i.e. [Z] x exp{—(m/2)trZ})

for the inverse variance covariance matrix.

The second ingredient, the likelihood of the data relates the parameter vector to a
probability model which is the complete data likelihood in our development. The complete
data likelihood ((2.4) and (2.5)) and the prior (2.6) provide the ingredients for the Bayesian
analysis. We next discuss the computation of the posterior distribution of parameters which

is obtained from the prior and the complete data likelihood through Bayes theorem.

2.5 Computations

Recall that Bayes formula gives us the posterior distribution

(0| y) = f(yff’yZW(e) )

In our scenario, @ is the vector of parameters of interest and y is the vector of observed
data. Both 6 and y are considered to be random. The function f(y | ) is the likelihood of
the data given 6, m(f) is the prior density and f(y) is the marginal density of the observed
data. This implies that

m0ly) o fly|8) 7(8).

So, if the prior and likelihood are known, we can obtain the posterior, and the inverse

normalizing constant can be calculated as

fy) = /f(y | 0)7(6)d6.

In order to perform inferences about components of 6, we need to calculate the marginal
posterior density of individual elements of 8. This requires integration of the posterior with

respect to other parameters. As an example, the posterior mean of 6; is given by
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E(91 | y) = f&lw(el | y)dt91 = fel [f 7!‘(9 ' y)d92 d93 d94 d95] d01.

In simple models, the integration problems can be avoided by choosing particular types
of priors. If the prior and likelihood are natural conjugate distributions, then the posterior
is in the same family and the above integrations may have an easy analytical solution. For
more complex models, the integrations are often difficult and even impossible. Sometimes
numerical approaches such as quadrature and Laplace methods can be used to approxi-
mate the expectations. Evans and Swartz (1995) give a complete discussion of the major
techniques available for the approximations of integrals in statistics. They discuss the ap-
plicability, merits and demerits of these methods.

For our problem, we re-express the complete data likelihood [w, S,#] appearing in (2.4)
as [X°%%, X™ | p g, u, L] to emphasize the dependency on the unknown parameters and to
emphasize that (w,S,t) consists of both observed and missing values. We then obtain the

following expression for the posterior

Pg, 1, & X% o [X%|p,qu L] [pa u, T

| | (2.7)
= f [Xobs,szs lp’q,'u, E] [p,q”u,z] dXmis

In theory, the functional form of the posterior density (2.7) provides a complete de-
scription of the uncertainty in the parameters defined in the mark-recapture experiment.
However, the dimensionality and the complexity of (2.7) is such that it is impossible to gain

any meaningful insight. Alternatively, we consider the following expression

g, 1, 2, X0 | X] o< [p gy, Z, X0, X
X [Xobs’Xmis ‘p7q,’u, E] [p, q, 14, E]

(2.8)

where the last expression in (2.8) is the product of the complete data likelihood and the
prior density which are defined in familiar forms in (2.4) and (2.6).

In this model, there are (3m + %[m + 1]) primary parameters in addition to the miss-
ing data. Recall that m is the number of listening lines. As an example, if there are 10
listening lines, then there are 85 primary parameters which gives rise to a high-dimensional
posterior. It is now clear that our posterior is complex and can not be integrated analyti-

cally. We instead consider a simulation approach, whereby if we are able to sample variates
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(p,q, 11, £, X™*) from (2.8), then we can use the sampled components (p, ¢, 1, Z) as realiza-
tions from the posterior distribution. However, sampling directly from (2.8) is also difficult
and there are some alternative sampling strategies which may be useful in sampling from

complex models. The most widely used sampling methods are

e importance sampling
e Markov chain Monte Carlo (MCMC)

In Evans and Swartz (1995), these two methods are discussed where Markov chain
methods are recommended for high-dimensional problems such as our situation. In impor-
tance sampling, samples are drawn from a tractable density that is similar to the posterior
distribution. In MCMC, variates are drawn from a distribution which has the posterior
distribution as its equilibrium distribution. In both strategies, the output may be averaged
to obtain approximations to posterior expectations. A Markov chain is a random process
where the variate at iteration ¢ depends only on the variate at iteration ¢ — 1. Various

algorithms have been developed to implement MCMC. The most popular algorithms are
e Metropolis-Hastings
¢ Gibbs sampling

The Metropolis-Hasting algorithm proceeds by using a proposal density, p(@,6%) to
generate the next value 8* where 6* is the value generated at k-th iteration. This generated

value 6* is accepted with probability

(bt 0)(6" | )
min (1 50T ) (29

If 6* is not accepted as the next value, then it is set to 8%. The rate at which the new values
are accepted is called the acceptance rate. The process is repeated to obtain the sequence
6,02, ... where 6% is approximately a realization from the posterior for sufficiently large
k. The Metropolis-Hastings algorithm requires an initial value 6° in order to start the
simulation. The choice of initial value may effect the rate of convergence of the algorithm.
Initial values which are far away from the range covered by the posterior distribution often

lead to chains that take more iterations to attain convergence.



CHAPTER 2. BAYESIAN MODEL DEVELOPMENT AND IMPLEMENTATION 15

The Gibbs sampling algorithm is a special case of the Metropolis-Hastings algorithm
in which samples are drawn by turning the multivariate problem into a sequence of lower-
dimensional problems. In Gibbs sampling, the value 6* is obtained by generating from
distributions with a 100% acceptance rate.

Fortunately, the software package WinBUGS implements MCMC without programming
any of the Metropolis-Hasting or Gibbs algorithm. The default option in WinBUGS for
well behaved models with log concave densities is the Gibbs sampling algorithm. However,
Metropolis-Hasting is invoked for nonstandard models. In WinBUGS, we need only to
specify the complete data likelihood, the priors, the observed data and the initial values.
WinBUGS then produces an appropriate Markov chain.

However, we need to make sure that the sequence has converged before inferences are
obtained on the simulated sequence. The number of iterations taken for the practical

convergence to the stationary distribution depends on various factors including

the complexity of the model (models with few parameters generally converge faster)

whether the prior and likelihood are conjugate

e the closeness of the initial value to the posterior mean

the parameterization of the problem

the sampling scheme adopted

The number of iterations prior to convergence is called the burn-in, and we discard these
variates for the purpose of inference. WinBUGS provides several statistics and graphical
tools to check the convergence of Markov chains. Brooks and Gelman (1997) discussed these
alternative methods monitoring convergence.

We are now in a position to fit the model. In the next section, we discuss the model

implementation and Bayesian inference via WinBUGS.
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2.6 Markov Chain Monte Carlo (MCMC) Simulation via
WinBUGS

2.6.1 Introduction to WinBUGS

WinBUGS is a product of the BUGS (Bayesian inference Using Gibbs Sampling) project
which is a joint program of the Medical Research Council of Biostatistics Unit at Cambridge
University and the Department of Epidemiology and Public Health of Imperial College at
St.Mary’s Hospital in London. The software is freely distributed from their web page at

(www.mre-bsu.cam.ac.uk/bugs). Models can be implemented in two ways.
o using the BUGS language

e using the graphical feature, DoodleBUGS which allows the specification of models in

terms of a directed graph

We believe that WinBUGS is a very handy tool in fitting complex models although it is
a difficult and frustrating package to master. Bayesian analysis using WinBUGS requires

three major tasks as follows.

¢ model specification
e running the model

e Bayesian inference

2.6.2 Model Specification in the WinBUGS Language

In model specification, we need to create a WinBUGS file for implementation. We have
provided the POST project with the file model.odc. This file has three major sections.
When you open model.ode, three choices appear as given in figure 2.1,

By clicking an arrow, the expanded version of the relevant section of model.odc appears.
A complete listing of model.odc is given in Appendix A. We now provide some preliminaries

that are necessary to understand the code.
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Figure 2.1: Major sections of the file model.odec
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In WinBUGS, there are three types of nodes referred to as constant, stochastic and
deterministic. Constant nodes are used to declare constant terms. Stochastic nodes repre-
sent data or parameters that are assigned a distribution. Currently WinBUGS provides 23
familiar distributions. Deterministic nodes are logical expressions of other nodes. Logical
expressions can be built using the operators +, -, *, / and various WinBUGS functions.
Note that WinBUGS has some special syntax which difters from other languages such as
Splus and C++4. As an example, WinBUGS requires that each node appear exactly once
on the left lhand side of an equation.

We now describe the flow of the code given in Appendix A. Our complete data likelihood
in (2.4) has three separate probabilities in evaluating the likelihood. Log travel times are
multivariate normal as given in (2.5), 5j; is Bernoulli(qﬁ-”) and w;; is Bernoulli(p;) given
S;j. Since this is not one of the 23 WinBUGS distributions, we utilize the ‘Zeros trick’ to
specify the likelihood. We create a variable ‘zeros’ which is assigned the value of zero as

given below.

termi[i,j] <~ sli,jl*log(pow(pl[jl,cli,jl)*pow(1-p[jl,1-c[i,j1))

zeros[i,j] <= 0O
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lambdali,j] <- -terml[i,jl+k

zeros{i,j] ~ dpois(lambdafli,jl)

The idea behind the Zeros trick is simple. Suppose that we have a Poisson observation

“AIf we set \ as

of zero with parameter A\. Then the likelihood of this observation is e
the negative log-likelihood of a non-standard distribution, this gives the correct likelihood
contribution. We add a large constant k to malke sure that the mean of the Poisson variable
is positive.

We then specifv the prior density (2.6). We assign independent Beta(1,1) distribu-
tions for p; and ¢; such that any value between 0 and 1 is equally likely. We assign a
Normal(0. 10%) distribution for j« which suggests that any value in the proximity of zero
is equally likelv for p. With the normal distribution, WinBUGS parametrizes precision

rather than variance. This explains the term 107 appearing in the code. We then assign

—1 as described in section

a Wishart prior for the inverse variance-covariance matrix G=X
2.4. Finally, we calculate the inverse of GG to obtain the variance-covariance matrix.

The next section in the WinBUGS code corresponds to the data. The data appear as
three matrices, ¢ for capture history, s for complete survival history and ¢ for interval travel
time. Note that missing data are denoted by NA in WinBUGS. Data can be viewed by
clicking on the second arrow in figure 2.1. It is required to extract the capture history
matrix, the survival history matrix and the interval travel time matrix from the observed
cumulative travel time matrix. An R program for extracting [w, S, #] from T°% is given in
Appendix B. Note that it is also possible to upgrade the POST database to produce these
matrices.

The third section contains the initial values of the parameters in order to carry out
MCMC. We can also allow WinBUGS to assign initial values for the parameters and this is
described in the WinBUGS manual. The WinBUGS manual advises users to provide sen-
sible initial values. We provide three sets of initial values for p, ¢ and p and ask WinBUGS
to create initial values for ¥ as described in section 2.6.3. We are now readv to run the
model and we run 3 Markov chains. Up to now. we have described the code in Appendix

A. The POST user does not vet need to do anvthing.
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2.6.3 Running the Model in WinBUGS

The POST user can run the model and obtain posterior estimates of daily survival prob-
abilities between listening lines, detection probabilities at listening lines, log travel times

between listening lines and the correlation structure by following the steps given below.

1. Open the file model.odc from WinBUGS.

The file will appear as Figure 2.1. The user must make sure that theyv have unrestricted
access to the full version of WinBUGS. This can be freely obtained by filling in the

restriction form and stating vour purpose.

2. Choose the first arrow in figure 2.1 and place the cursor somewhere inside of the

expanded code.

3. Click on ‘Specification’ by pulling down the ‘Model’ menu. The screen will then

appear as given in Figure 2.2.

Help

v
1

: check model g load data j
; # 1 is the no.of fizsh s ANss430d s ———————

. #Evaluating the likelihood )
| R compile | rum of chains |1
i L=-10000 POV T—. | 1
§ fardi in 1:N -
v i ) ) 2o it E far chain i
Flog of travel imes vactor 12 e
ti,1:8] ~ dmnarm{muf , =[]

% ford in 1:m)

%
maodel i syntactically comrect

4. Choose the option ‘check model’ and watch the status bar in the lower left side of
WinBUGS for the message ‘model is svntactically correct’. This is the area where

WinBUGS prints messages. This step verifies that the syntax of the code is correct.
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(W]

8.

10.

11.

13.

14.

15.

16.

The user should now click on the bold arrow located at the top of the WinBUGS code.
This returns the user to the display in Figure 2.1. Next, choose the second arrow of
figure 2.1 and highlight the keyvword ‘list’. Then select the option ‘load data’. If the
data are successfully loaded, the message ‘data loaded” will appear in the message

area.
Enter the number 3 in the field ‘num of chains’.

Choose the option ‘compile’. This step checks that the model structure for WinBUGS

is correct. The message ‘model compiled’ then appears in the message area.

Click again on the bold arrow in the WinBUGS code. Choose the third arrow in
Figure 2.1 and highlight the first occurrence of the kevword ‘list’. Click on ‘load

inits’. The second chain is now invoked.

Highlight the second occurrence of the kevword ‘list’. Click on ‘load inits’. The third

chain is now invoked.

Highlight the third occurrence of the kevword “list”. Click on ‘load inits’. In the later
stages, POST users have the option to provide their previous estimates as the initial

values in subsequent stages of estimation. This may reduce the computation time.
Click on ‘gen inits’ to ask WinBUGS to create initial values for ¥,

Choose ‘samples’ from the ‘Inference’ menu. It gives the options shown in Figure 2.3,

Note that only some of the options (in bold) are accessible.

Tvpe ‘mu’ in the field ‘node’ and elick on ‘set’. Do the same thing for p, ¢ and varcov.
By doing this, we request that Markov chain output is stored for these parameters.

Markov chain output is not stored for parameters which are not specified.

Choose ‘Update’ from the ‘Model’ menu. The screen will appear as given in Figure

2.4.
Enter 10000 in the field ‘updates’. This requests 10000 iterations of MCNMC.

Click on ‘update” to start the MCNC simulation.
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Figure 2.3: Sample Monitor Tool
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17. At the end of the simulation, Figure 2.3 again appears. POST users obtain the
posterior estimates of daily survival probabilities between listening lines, detection
probabilities at listening lines, log travel times between listening lines and the cor-

O

relation structure by entering in the field node of the ‘Sample Monitor Tool’ and
clicking on ‘stats’. On a typical 3.00GHz computer, the simulation phase requires 3-7
minutes of computation for 100 fish depending on the number of missing data points

in the data set.

2.6.4 Bayesian Inference using WinBUGS

During and after MCMC simulation, WinBUGS provides several numerical and graphical
summniaries for the parameters. We brieflv discuss sowme of these which we use in the next
chapter.

The Option ‘trace’ in the Sample Monitor Tool provides a dynamic trace for each pa-
rameter which gets updated each time a variate is generated. This is a handy tool for
investigating convergence. The ‘history’ button provides a trace plot of the entire Markov

chain at the end of the simulation. The ‘density’ button provides empirical posterior density
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plots of parameters using a kernel smoother, The ‘stats’ and ‘quantiles’ buttons provide
basic posterior summaries of parameters. The full sequence of simulated values of each
parameter is available from the ‘coda’ button. Coda output is easily accessible from other
software platforms for further analysis. The ‘bgr diag’ button provides Brooks-Gelman-
Rubin convergence statistics (Brooks and Gelman 1997) which converge to one when the
Markov chain converges to the equilibrium distribution. Brooks and Roberts (1997) further
discussed assessing convergence of MCMC with an emphasis on implementational issues
and possible extensions. The ‘auto cor’ button provides the autocorrelation plots of the
sequences. The autocorrelation plots illustrate the dependance between successive observa-
tions of the Markov chain.

In the next chapter, we test our model via simulated data and also consider the analysis

of real data.
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Data Analysis

3.1 Model Adequacy via Simulated Data

In order to test the model, several simulation case studies were carried out. We wrote an

R program to simulate the datasets.

3.1.1 Case Study I

A dataset corresponding to n = 500 fish with m = 5 listening lines was simulated. Detection

probabilities at each listening line were set to p; = p = 0.8 while daily survival probabilities

between listening lines were set to g; = ¢ = 0.98, j = 1,...,5. The log travel times of fish

between listening lines were generated from a multivariate normal distribution with mean

pw=[1,2,3,4,5] and variance-covariance matrix £ where

[ 1 8
8 1
=28 8
8 .8
8 8

.8

o o ™

.8

8
8
.8
8

1

The model was fit using 3 parallel chains as described in section 2.6.3. Figure 3.1 shows

the minimum, maximum and average acceptance ratios from (2.9) using the Metropolis-

Hastings algorithm averaged over all variates and 100 iterations. The average ratio lies

23
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Figure 3.1: Minimum, maximum and average acceptance ratios for the Metropolis-Hastings

algorithm
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between 0.2 and 0.4 as desired by the WinBUGS program. The autocorrelation plot of the
Markov chain for p is given in Figure 3.2. The autocorrelations appear to dampen quickly
which indicates that successive variates are not strongly correlated. We observe that the
autocorrelation plots of the remaining 21 parameters also die out in the same style. This
suggests that it may be appropriate to average Markov chain output as though the variates
were independent. Additionally, the trace plots also appear to converge quickly. The trace
plots for u are given in Figure 3.3. As can be seen, they appear to stabilize immediately
and hence provide no indication of lack of convergence in the Markov chains. Figure 3.3
also indicates that 4000 iterations for the burn-in period is adequate as there is very little
change between 4000 and 10000 iterations.

We also monitor the Brooks-Gelman-Rubin convergence statistic to assess convergence.
The Brooks-Gelman-Rubin convergence statistic for ¢ is given in Figure 3.4. It appears
with the between chain variation plot and the within chain variation plot. As we simulated
the variates from three independent chains, convergence of the within chain variability, the
pooled chain variability and their ratio (the Brooks-Gelman-Rubin statistic) to one pro-

vides additional evidence of convergence. The Brooks-Gelman-Rubin convergence statistics
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Figure 3.2: Autocorrelation plot of Markov chain output for p
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for the remaining parameters also have similar appearances providing strong evidence of
convergence.

Table 3.1 provides estimates of the posterior means and posterior standard deviations
of the parameters. These are based on 18000 iterations after the 4000 burn-in period. As
can be seen, the posterior means of the primary parameters p and ¢ are close to the pre-set
values. The posterior means of the secondary parameters p and X also appear in agreement
with the pre-set values.

Finally, Figure 3.5 provides estimates of the posterior density of u using a kernel

smoother. The plots suggest nearly svmmetric unimodal distributions as might be expected.

3.1.2 Case Study II

We now investigate the sensitivity of the analvsis with respect to the assumption of the
normality of the log travel times. We simulated a dataset exactly as in Case Study I except
that we generated (t;1,....%5) ~ N5(u*.X) where p* = [4,6.8.10.12]. We continued to
use (2.5) as a modelling assumption. The posterior estimates of p and ¢ were 0.78 and 0.99

respectively which suggest that the precise shape of the distributions of travel times is not
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Figure 3.3: The trace plots for u
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Figure 3.5: Estimates of posterior densities of i in Case Study I
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Table 3.1: Posterior estimates in Case Study 1

Parameter Mean SD Parameter Mean SD
P 0.77  0.08 Y15 0.88 0.06
q 0.99 0.00 Y99 099 0.07
1 1.03 0.05 23 0.80 0.06
12 1.99 0.05 Yo4 0.84 0.06
13 299 0.05 Y5 0.83 0.06
I 3.99 0.05 Y33 0.92 0.07
15 5.03 0.09 334 0.81 0.06
i1 1.09 0.07 X5 0.81 0.06
Y10 0.86 0.06 Y44 1.04 0.07
213 0.82 0.06 Y5 0.87 0.06
Y14 0.88 0.06 Y55 1.39 0.15
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a critical assumption.

3.1.3 Case Study III

We now consider sensitivity issues related to the travel time assumption (2.5). We use the
same data set that we used in Case Study I but consider the simpler travel time assumption
log(t;;) ~ Normal(y,0?) where a diffuse inverse gamma prior is assigned to 2. Under this
simpler assumption, we ignore the correlation structure in the travel time data. Posterior
estimates of parameters under this simpler model are given in Table 3.2. It seems that the
prior dependence structure in the log travel times is not needed in this example. When
datasets are smaller and there are more missing data, it may be important to use subjective

knowledge in specifying a more informative Wishart prior.

3.1.4 Case Study IV

We now investigate the behaviour of the model with respect to missing data. We consider an
extreme situation where 75% of the survival histories and interval travel times are missing.
We generated a data set exactly as in Case Study I except with p=[0.9, 0.85, 0.8, 0.75,
0.7] and ¢=[0.95, 0.93, 0.91, 0.89, 0.87]. Note that 3711 simulated survival histories and
interval travel times are missing in the dataset. We assume that p; and g; lie between 0.5
and 0.99. This is a realistic assumption in the POST project. We incorporate this little
bit of information with priors by providing truncated beta(1,1) priors for p; and ¢; such

that any value between 0.5 and 0.99 is equally likely. Note that the priors are still diffuse.

Table 3.2: Posterior estimates in Case Study III

Parameter Mean SD
P 0.76  0.08
q 0.99 0.00
I 1.00 0.04
o 1.94 0.06
"3 293 0.05
I 3.90 0.05
s 5.01 0.06
o? 1.01  0.03
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We first apply the simpler model (as in Case Study III) with the travel time assumption
log(t;;) ~ Normal(u,c?). Posterior estimates of the parameters are given in Table 3.3. It
appears that some of the estimates are less accurate and have higher standard errors with
respect to the true values. This may be due to two reasons. Here, the likelihood may not
provide sufficient information as in previous situations and also the model does not consider
the prior dependence structure in the log travel times. We now apply the full model which
takes into account the prior dependence structure in the log travel times. The posterior
estimates of the parameters are given in Table 3.4. We observe that estimates are improved
relative to the estimates which we obtain under the simpler model. This clearly suggests
that the prior dependence structure in the log travel times is important when there are
more missing data. Note that our priors are still diffuse and estimators may be improved
by providing more informative priors if it is possible. In the POST project, there may be
more informative prior knowledge about parameters.

We now investigate the posterior correlation matrices of p and ¢ in order to check the

independence assumption of p; and g;.

1 035 030 011 0.13
1 —0.13 0.15 0.07

3, = 1 021 0.4
1 012
- 1 -
i -

1 —-0.05 -0.16 =021 -0.04
1 043 021 0.03

X, = 1 026 0.07
1 0.16
1

L d
The correlation structures in ip and ﬁlq indicate that it is reasonable to assume the inde-

pendence of the p; and the independence of the g; as is done in our prior specification.
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Table 3.3: Posterior estimates in Case Study IV using simpler model

Parameter Mean SD Parameter Mean SD
D1 0.76  0.01 q4 0.80 0.04
Do 0.55 0.04 qs 0.90 0.02
3 0.53 0.03 7 0.80 0.04
D4 0.64 0.11 o 1.36  0.08
1433 0.73 0.14 M3 2.41 0.11
qQ 0.99 0.00 a 3.46 0.23
Q2 092 0.01 U 5.02 034
s 0.86 0.01 o? 0.83 0.03

Table 3.4: Posterior estimates in Case Study IV using full model

Parameter Mean SD Parameter Mean SD
D1 0.85 0.03 211 1.03 0.07
D2 0.88 0.03 212 0.96 0.09
P3 0.74 0.06 T3 143 0.23
Dy 0.74 0.12 Y4 1.31 0.27
Ps 0.76 0.14 215 0.37 0.18
Q1 097 0.01 Y9 1.29 0.16
g0 0.90 0.01 To3 1.69 0.28
q3 091 0.01 Toy 1.39 0.32
q4 0.83 0.03 s 0.48 0.19
qs 0.90 0.03 Y33 2.95 0.71
1 0.90 0.05 Yy 229 0.54
o 2.07 0.08 Yas 0.74 0.29
143 345 0.29 Y4y 2.02 0.76
I 4.43 047 Y45 063 0.35
us 4.49 048 55 049 0.21

_—
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3.2 Columbia River Data

In this section, we apply the model to data obtained from the Columbia river svstem.
From April 25/2001 to May 30/2001, n = 324 radio tagged chinook salmon were released
from the Rock Island Dam. Data were recorded at listening lines established at the m
= 3 dams downstream at Wanapum, Priest Rapids and Hanford Reach. A map of the
dams is given in Figure 3.6. The interdam distances are approximately 37.6 miles, 18.7
miles and 15.0 miles respectively. Cowen and Schwarz (2005) also studied this data set in

the context of radio failure. As before, the trace plots, the autocorrelation plots and the

Figure 3.6: Map of the dams Rock Island, Wanapum, Priest Rapids and Hanford Reach
from ‘Save Our Wild Salmon - www.wildsalmon.org’

L2/ LR F L R YA NOFE Was

Brooks-Gelman-Rubin convergence statistics of each parameter were examined to assess
convergence. The trace plots of Markov chain output for capture probabilities. Brooks-
Gelman-Rubin convergence statistics of dailv survival probabilities and the autocorrelation
plots of Markov chain output for p are given in Figures 3.7, 3.8 and 3.9 respectively. Thev
all provide evidence of convergence which is necessary in NICMC simulation. Estimates of
the posterior means of the parameters are given in Table 3.5. We observe that detection

probabilities decrease markedly as the fish travel to subsequent dams. An explanation for
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this is that the radio tags may suffer degradation over time and are less likely to be detected
as the fish travel downstream. The daily survival probabilities at the three dams are almost
the same. The density plots of the log travel times (actual data) between dams are given in
Figure 3.10. These plots provide some corroboration of the estimates of 1 in Table 3.5. Note
that the mean log travel times are not roughly proportional to the interdam distances. This
may be an artefact of radio failure. Interestingly, the log travel time variances are increasing
and this may be partly due to the fact that the region between Priest Rapids and Hanford
Reach is a free-flowing river svstem. We also note that there is little correlation in the 3
matrix. This indicates that there is no evidence that fish which are faster between a set of

dams also move faster between other sets of dams.

Figure 3.7: The trace plots for p
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Figure 3.8: The Brooks-Gelman-Rubin convergence statistic for ¢ along with the within
chain variation_and the between chain variation
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Figure 3.9: Autocorrelation plot of Markov chain output for p

a1 ] Shrearmas 105
1 . o
LI =
[ I | - 1 - o - — I
o = F
-1 ar
i e e
[F=T =1
rmua[2] cheEires 105
1 . —
3 = -
1 - 55 M 5 D T e et 9y P e o e e e s Oy e - —— ~ — — e
o s
-1 ) —
(] = s |
1=y
[ m I el B el o WY § an i I
| T 0 7 T O Y 52 . v . o B £ o
L] i =307
Iy



CHAPTER 3. DATA ANALYSIS

Table 3.5: Posterior estimates of parameters in the Columbia river data

Parameter Mean SD Parameter Mean SD
1 0.881 0.01 3 3.274 0.10
P2 0.685 0.02 Y11 0.191 0.01
3 0.562 0.02 Y10 —0.026 0.02
q1 0.999 0.00 Y13 —0.029 0.04
q2 0.999 0.00 Yoo 0.483 0.04
q3 0.998 0.00 o3 0.079  0.06
1 5.380 0.02 a3 1.341 0.16
o 4.225 0.04

Figure 3.10: Density plots for log travel times of actual data
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Chapter 4

Conclusions

The goal of this project was to develop a model which estimates parameters of interest in
the POST project. First, we investigated the theory behind mark-recapture models and
then developed a model via the Bayesian framework due to the complexity of the problem.
The Bayesian approach not only provided a flexible way to handle the complexity, it also
allowed us to include prior knowledge of the parameters.

Recognizing the existence of missing data in interval travel times and survival status
encouraged us to utilize the complete data likelihood as it was less complex than the observed
likelihood. This required the introduction of latent variables. We specified diffuse priors
but maintain that subjective priors are preferable when good prior information is available.
Bayesian inference was carried out via Markov chain Monte Carlo simulation. MCMC was
implemented via the Metropolis-Hastings algorithm using WinBUGS software which is a
very useful and powerful tool for Bayesian computation.

Standard problems in MCMC simulation are the assessment of convergence and the
determination of the length of the burn-in period. We used several graphical tools and
the Brooks-Gelman-Rubin convergence statistic from WinBUGS to assess convergence and
determine the length of the burn-in period. Several simulation case studies were conducted
in order to test model adequacy. Results in section 3.1.2 indicate that the precise shape of
the travel time distribution is not critical in parameter estimation. Section 3.1.4 indicates
that the prior dependence structure in the log travel time should be used in parameter

estimation, especially when there is considerable missing data. This also allows us to check

35
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whether fish which are faster between a set of markers also move faster between other sets
of markers. The simulation results indicate that our model is well behaved in estimating
primary parameters (i.e. the detection probabilities at listening lines and the daily survival
probabilities between listening lines), as well as the secondary parameters (i.e. log travel
times between listening lines and the correlation structure).

Our model can also be applied in some health science problems. As an example, suppose
that we are interested in the detection of a certain disease and surviving from it. In this
example, survival probabilities correspond to the probability of surviving from the disease
and it is reasonable to assume that they vary from patient to patient. Capture probabilities
correspond to the probability of detecting the disease. Interval travel times can be replaced
by time between checkups. It is also a known fact that survival probability may be a
function of some other covariates. We can easily extend our model for such situations using
a suitable link function to connect survival probability with covariates and assume a suitable
distribution for covariates.

The model can further improve by using cumulative travel times instead of interval
travel times or by setting some constraints based on cumulative travel times. This work is
underway and we refer readers to paper by Muthukumarana, Schwarz and Swartz (2007)

for details of improvement.



Appendix A

WinBUGS Code for the Model

model

# N is the no.of fish
# Evaluating the likelihood

k<-10000
for(i in 1:N)
{
#log of travel times vector is MVN, i.e., (2.5) in model development
t[i,1:5] ~ dmnorm(mull , G[,1)

for(j in 1:m)

{

phili, jl<-pow(q[jl,exp(t[i,j1))
s[i,j] dbern(phili,j]l)

#Use of O0’s trick
# k is to make sure that the mean of the Poisson variable is positive
termi[i,j] <- sl[i,jl*log(pow(p[jl,cli,jl)*pow(1-p[jl,1-cli,j1))
zeros[i,j] <- 0

lambdali,j] <- -termi{i,jl+k

zeros[i, j] ~ dpois(lambdafli,jl)

#Prior distributions
ql[1]~dbeta(1,1) #daily survival probability
q[2]~dbeta(1,1)
q[3]~dbeta(1,1)
ql4]~dbeta(1,1)

37
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q[5]~dbeta(1,1)
pl[1]1~dbeta(1,1) #capture probability
pl[2]1~dbeta(1,1)
p[31~dbeta(1,1)
pl[4]~dbeta(1,1)
p[5] ~dbeta(1,1)

#log travel time mean vector
mul1:5] ~ dmnorm(gO[]l , gv[,])

go[1] <- 0; g0[2] <-0; gO[3] <- 0; g0[4] <- 0; gO[5] <- 0

gvl1,1] <- .00001; gv[1,2] <- 0; gv[1,3] <- O; gv[1,4] <- 0; gv[1,5] <- O
gvl2,1] <- 0; gv[2,2] <- .00001; gv[2,3] <- O; gv[2,4] <- 0; gv[2,5] <- O
gv[3,1] <- 0; gvl[3,2] <- 0; gv[3,3] <- .00001; gv[3,4] <- 0; gv[3,5] <~ O
gvl4,1] <- 0; gvl[4,2] <- 0; gv[4,3] <= 0; gv[4,4] <~ .00001; gv[4,5] <- O
gvl5,11 <~ 0; gv[5,2] <- 0; gv[5,3] <- 0; gv[5,4] <~ 0; gv[5,5] <- .00001

#Variance covariance matrix

G[1:5,1:5] ~ dwish@®I[,],m)
R[1,1]1<-1/m; R[1,2]<- 0:; R[1,3]<- O;R[1,4]<- 0; R[1,5]<~- 0O
R[2,1]<- 0; R[2,2]<~-1/m; R[2,3]<- O;R[2,4]<- 0; R[2,5]<- 0O
R[3,1]1<~ 0; R[3,2]1<- 0; RI[3,3]<-1/m;R[3,4]<- 0; R[3,5]<- 0
R[4,1]<- 0; R[4,2]<- 0; R[4,3]1<- O;R[4,4]<-1/m; R[4,5]<- O
R[5,1]<- 0; R[5,2]<- 0; R[5,3]<- O;R[5,4]<- 0; R[5,5]<-1/m

varcov[1:5,1:5] <- inverse(G[,])

# Click on the arrow to view WinBUGS code for the model

list(N=10,m=5,

#capture data
c=structure(.Data=c(
1,1 ,1,

-
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H

H

-
-
-

H

), .Dim=c(10,5)),

-

e
-

i i i
-
e e
-

e e i
-

[ o & I

’

-
-

#Survival data
s=structure(.Data=c(
,1,1,1 ,
1,
1,

-

-
-
-

-
-
-

-
-
-

-

..

R b R R S
-

[ o T o o G SOy SOy S Oy Y
-

[ O T ey
-
[y
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-

-
-
-

-
-
-

’1 ’
,1),.Dim=c(10,5)),

[ S S S O = T YUY
. - -

-

-

-
-

#log of travel times

t=structure(.Data=c(
NA ,NA ,NA ,4.570213847 ,5.147049414 ,
NA ,NA ,NA ,NA ,NA ,
1.569668475 ,NA ,NA ,NA ,NA ,
0.332605771 ,0.811377733 ,2.155025381 ,3.338856666 ,4.454989111 ,
2.676427836 ,3.886440009 ,4.405275821 ,5.294069073 ,NA R
NA ,NA ,NA ,2.993772157 ,3.737354068 ,
0.774916249 ,2.315602835 ,2.153099099 ,3.864518223 ,5.614917829 ,
1.81593285 ,2.637515863 ,3.672125569 ,3.72029615 ,NA ,
2.06601186 ,3.874599418 ,4.407558935 ,4.241067378 ,5.762918364 ,
2.834203738 ,2.698174478 ,4.163108617 ,5.899092117 ,6.396100374), .Dim=c(10,5)))

# Click on the arrow to view the data

list(mu=c(3,3,3,3,3),p=c(.5,.5,.5,.5,.5),9=c(.5,.5,.5,.5,.5))

list (mu=c(1,2,3,4,5),p=c(.2,.2,.2,.2,.2),q=c(.2,.2,.2,.2,.2))

list (mu=c(5,4,3,2,1),p=c(.4, .4, .4, .4,.4) ,9=c(.7,.7,.7,.7,.7))

# Click on the arrow to view the initial values
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An R Program for Extracting
w, S, t] from the T°° matrix

his=function(T)

{

# T is the
# n is the
# m is the
# ¢ is the
# S is the
# t is the
nm=dim(T)
n=nm[1]
m=nm[2]

cumulative travel time matrix
number of fish

number of listening lines
capture history matrix
survival history matrix
interval travel time matrix

c=matrix(ncol=m,nrow=n)
s=matrix(ncol=m,nrow=n)

t=matrix{(ncol=m,nrow=n)

for(i in 1:n)

{

cli,1]=ifelse(T[i,1]1==-999,0,1)

t[i,1]=ifelse(T[i,1]'=-999,T[i,1],NA)

40
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for(j in 2:m)
{
cli,jl=ifelse(T[i,jl==-999,0,1)

t[1,jl=ifelse(T[i,j]1!=-999 & T[i,j-1]1!=-999,T[i,j]1-T[i,j-1],NA)

for(i in 1:n)

{
s[i,m]=ifelse(c[i,m]==1,1,NA)

for(j in 2:m)
{

s[i,m+1-jl=ifelse( c[i,m*+1-j]==0 & s[i,m+2-j]=="NA’,NA,1)
}
}

list(c,s,t,T)

}
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