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ABSTRACT 
Successful lighting in video games is more than a physically 
accurate illumination model. Aesthetics and function are of equal 
or greater importance. Lighting designers may deviate from 
physical accuracy to help a player identify an important object or 
to more powerfully evoke a desired emotion. Under the 
assumption that fulfilling the pipeline needs of interactive 
lighting design requires more than solving the computer 
rendering equation, we set out to develop a System for 
Automated Interactive Lighting (SAIL). The goal for SAIL was to 
develop an adaptive system that maintains lighting design goals 
(aesthetic and functional) in the context of unpredictable, 
interactive experiences. This paper presents SAIL and the results 
of a qualitative evaluation of SAIL’s contributions. We describe 
the algorithms of SAIL, where it succeeds, and where it fails. We 
conclude with a plan for future work. 

Categories and Subject Descriptors 

I.3.7 [Three-Dimensional Graphics and Realism]: Color, 
shading, shadowing, and texture. 

General Terms 
Algorithms, Human Factors. 

Keywords 
Lighting, Interaction, Content Creation Tools, Expert 
Knowledge. 

1. INTRODUCTION 
Lighting shapes all visual perception. Film, theatre, and many 
other design disciplines devote much energy to controlling light. 
In some cases the motivation is simple visibility. Effort is 
expended to achieve a minimum intensity to capture visual 
details. But lighting design is more than just visibility. Lighting 
can control mood, evoke emotion, and guide visual interest and 
intent.  

Lighting for games is as important as for the disciplines just

mentioned. Game lighting techniques have therefore adopted 
many of the practices of theatre, film, and architecture [1, 2] to 
achieve similar levels of quality. But games face a unique 
problem created by interactivity. Lighting designers often 
carefully preplan and configure lighting given omniscient 
knowledge of a space and its composition [1]. The light cast on a 
lead actor’s face, for example, will be in consideration of the 
actor’s stage position, posture, and costume as well as the 
storytelling goals and environment. Unfortunately, game lighting 
designers do not necessarily have this information. A careful 
lighting setup at the entrance of a foyer may be completely 
undone if a player decides to enter through a dining room 
window. 

To address this problem, we propose a System for Automated 
Interactive Lighting (SAIL). The goal of SAIL is to adapt to 
changes in context given a designer’s aesthetic and functional 
intent, achieving the best possible compromise between what the 
lighting should naturally look like given context and what the 
lighting should ideally look like given a designer’s goal. 

This system is similar in many ways to the Expressive Lighting  
Engine (ELE) [3], a previous work with a similar purpose, with 
two key differences. First, ELE used numerical constraints to 
specify “expressive” terms, such as visual tension and visual 
focus, which it used as constraints of its lighting configurations. 
SAIL uses image analysis to extract lighting cues from an image. 
The image is used to represent a lighting goal in a somewhat 
abstract manner (the image can be of anything, such as an 
illuminated sphere). Second, ELE did not understand how an 
object responds to lighting. To ELE, the trunk of a tree was 
equivalent to a human of the same size and girth. SAIL uses an 
image analysis algorithm in a preprocess step to learn how a 3D 
object responds to light. It then uses this model to adapt lighting 
based on the object’s appearance. 

In this paper, we briefly describe lighting design theory and 
related work to provide context for SAIL. We then discuss the 
algorithms of SAIL and finally present results from a qualitative 
study we conducted to evaluate SAIL’s contributions.  

Our results reveal two key concepts that form the contributions of 
SAIL and this paper. First, images can be used by lighting 
designers to represent desired lighting effect, specifically, 
contrast and direction. Second, SAIL’s concept to adapt lighting 
is sound, but it may reflect the natural illumination environment 
too well. At runtime, SAIL tries to reflect a natural illumination 
environment while applying a desired illumination goal to an 
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object. However, it does this independent of whether the 
environment is lit “well” or not. As a result, SAIL can produce 
lighting on an object that is consistent with the object’s 
environment but is unsatisfactory to a lighting designer. We 
discuss the contributions of SAIL and this potential shortcoming 
further in Section 6.  

2. TRADITIONAL LIGHTING  
Adaptive lighting design is primarily targeted at interactive 
contexts such as video games. However, the fundamentals of 
game lighting come from more traditional domains such as film 
and theatre. In these domains, the role of a lighting designer is to 
balance several goals, such as visibility, depth, modeling, and to 
support the story and evoke mood and emotion [4]. 

In creating a lighting design, a designer considers the 
environment, the characters (or other objects of interest), and the 
narrative. She also considers time of day, the style of the work, 
and the mood or theme [1, 5]. A designer must balance her 
aesthetic and functional goals with an understanding and respect 
of the physical nature of light. Understanding the real world 
behavior of light attenuation, light reflection, occlusion, and 
other phenomena allows a designer to understand when and how 
she can “cheat” these phenomena to accomplish her visual goals. 

An exhaustive review of lighting techniques is beyond the scope 
of this paper. We present here a common technique, used by 
SAIL that appears in both theatre and film. Known as three-point 
lighting, this method divides character lighting into three lights 
or sets of light: a key light, a fill light, and a back light [5, 6]. 
The key light provides dominant direction cues, the fill reduces 
visual contrast, and the back light isolates the object, punctuating 
its silhouette. This lighting method allows a designer to 
deliberately control lighting while still reflecting physical reality. 
The fill light, for example, takes the place of bounce illumination 
through careful control of lighting instruments and exposure, 
allowing a designer to reflect the physical property of indirect 
illumination while maintaining desired control of an object’s 
appearance. 

3. GAME LIGHTING 
The lighting design process of games is chaotic, tied deeply to 
the rapid change of technology. Until recently, most video game 
lighting was pre-calculated (according to an interview in [7]). 
Often, an algorithm such as radiosity [2] was used and the 
radiance1 of a surface was “baked” into the surface using light 
maps, which store the view independent radiance of the surface.  

More recently, game lighting has split into two distinct 
approaches (also according to an interview presented in [7]). One 
approach is fully dynamic lighting. This lighting is based on 
mathematically simple light primitives and is calculated at 
runtime. Real-time rendering typically allows for only a few 
visible dynamic lights per object (8-10) but deferred rendering 
technologies [8] allow for many visible dynamic lights (40-50). 
However, due to tradeoffs with a deferred approach [9], non-
deferred rendering is still often used, so it is not safe to assume 

                                                             
1 Radiance is the light emitted by a surface. 

that more than a few dynamic lights can be used per object in 
real-time rendering. SAIL uses only two lights per object. 

The second divergent lighting approach in modern real-time 
rendering engines is static lighting with spherical harmonics 
[10]. Spherical harmonics allow irradiance2 to be stored at points 
in space and efficiently applied at runtime. Samples are 
commonly stored as either a surface aligned texture similar to 
light maps or in coarsely spaced grids [11]. Although spherical 
harmonics require more storage and processing than light maps, 
they offer the capacity to produce effects that light maps cannot, 
such as bump mapping [12] and low frequency specularity [11]. 
Spherical harmonics are mostly static but can be rotated [10]. 

SAIL uses two dynamic lights per object, which should fit within 
non-deferred rendering engines. Dynamic object lighting is 
necessary for SAIL to adapt lighting at runtime. However, it is 
compatible with a statically lit environment (spherical harmonics 
or light maps) so long as the environment can be sampled for 
approximate irradiance (using the Ambient Cube [2] of Half-Life 
2 for example) to determine natural illumination.  

4. RELATED WORK 
The field of SAIL is inverse lighting. Here we present a brief 
overview of this field. For a more complete survey, see [13]. 

We divide inverse lighting into three subfields. Architectural 
inverse lighting targets visualization of real world spaces. 
Perceptual inverse lighting targets the automatic illumination of 
objects to a perceptual ideal. Interactive inverse lighting is the 
direct subfield of SAIL and targets interactive, real-time lighting. 

4.1 Architectural Inverse Lighting 

 

Figure 1. An architectural space automatically lit by [14]. 

The premise of most architectural inverse lighting work is the 
elimination of design by iteration. Traditional lighting design 
involves an iterative process of configuring lights, rendering a 
result, evaluating the result, and then repeating until a desired 
goal is met. Inverse architectural lighting tries to eliminate this 
process by allowing a designer to code a goal such that a 
software system can find the light parameters needed to achieve 
that goal. 

One of the first works in this area was [14] (see Figure 1). This 
system found angles and intensities for lights given: 1) light 
positions manually specified by a user, and 2) numerically 
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defined goals for the lighting design. Some of these goals were 
literal, such as goal irradiance to a surface while others were 
subjective, such as “spaciousness” and were derived from [15]. 

[16] used a similar approach to [14] and is the most recent and 
arguably most complete approach to inverse architectural lighting 
design. The work of [16] made only three assumptions about an 
environment: 1) surface reflectance can be described with 
symmetrical bidirectional reflectance distribution functions 
(BRDFs)3, 2) the environment has no participating media4, and 
3) the rendering model used for visualization obeys the photon 
nature of light.  

Within these assumptions, this system allowed designers to 
specify illuminations goals using scripts. For example, a designer 
might code a rule that constrained irradiance to a surface within 
a specific range. The system would then find light sources that 
fulfilled this and all other rules for a given space. 

Inverse architectural lighting appears to be “solved”. The work of 
[16] in particular produced a general-purpose and flexible 
automated system for designing architectural spaces. This body 
of work would probably be useful to games for the design of 
“baked” lighting on in-game architecture. However, the 
algorithms of inverse architectural lighting are too 
computationally expensive for real-time rendering and are 
effectively disjoint from the work of SAIL. 

4.2 Perceptual Inverse Lighting 
Perceptual inverse lighting [17-20] tries to find the “best” 
solution to light an object, where “best” is defined using 
psychophysical theories and the goal of maximizing shape 
perception and detail. Objects are typically illuminated without 
user interaction. Work in this field is targeted at practical 
applications where lighting is a time-consuming necessity rather 
than an integral and desired process (for example, in scientific 
visualization). 

 

Figure 2. The system of [18] has manipulated lighting to 
allow the indicated cast shadow to act as a depth cue. 

The system of [19] found light source settings to maximize 
perceptual features such as shape, detail, and depth perception. 

                                                             
3 A BRDF is a function of how a surface reflects light. 
4 Participating media are small particles that absorb, emit, or 
scatter light. An example of participating media is fog. 

[17, 20] targeted similar goals with different variations of a 
“light entropy”5 metric based on [21]. 

[18] is the most recent and complete work in this area. This work 
approached the problem differently from prior work. Objects 
were classified in the geometric domain into areas of local 
curvature. Illumination was then applied in a discontinuous 
fashion to each area to maximize goals per area. Cast shadows 
(see Figure 2) were also explicitly considered, the only work in 
the field to do so. 

SAIL is explicitly looking at interactive lighting, while the work 
of this field did not. However, similar to previous work, SAIL 
uses image analysis techniques. Specifically, SAIL uses the light 
entropy metric of [17]. Unlike most of the work in this area, 
correlated geometry is not used. SAIL only needs an image to 
specify a goal or understand an object’s appearance. Further, 
because analysis of images at runtime is too slow for real-time 
rendering; SAIL conducts analysis in a preprocess step. It stores 
an object’s response to lighting as a mathematical model that is 
used at runtime. 

4.3 Interactive Inverse Lighting 
The specific subfield of SAIL consists of only two known works, 
LightKit [22] and the Expressive Lighting Engine [3]. LightKit 
was a tool designed to interactively light medical models. It used 
a three-point lighting model similar to SAIL. However, unlike 
SAIL, it did not adapt to interactivity but simplified the iterative 
lighting process of traditional lighting design for non-experts.  

The Expressive Lighting Engine (ELE) [3] is our prior work. 
ELE was a dynamic lighting system similar to SAIL but with a 
focus on “expressive” lighting. ELE lit both characters and 
environments by applying theatre and film principles. In 
particular, environments were divided into lighting “zones” 
(overlapping circles) and characters were lit using a three-point 
lighting model. The goals of ELE were specified using numeric 
constraints of subjective illumination, such as tension. 

The design of SAIL was motivated by the shortcomings of ELE. 
In particular, ELE was difficult to use due to the fact that the 
numerical constraints supplied were often interdependent in hard 
to understand ways. ELE also did not consider the appearance of 
an object.  

5. SYSTEM FOR AUTOMATED 
INTERACTIVE LIGHTING (SAIL) 
The System for Automated Interactive Lighting (SAIL) is an 
intelligent automated lighting system (see Figure 3). Its design 
was based on an assumption that the appearance of an object is 
important when deciding how to light that object. 

                                                             
5 Light entropy is based on information entropy and is the 
quantification of the potential information of an image. 



 

Figure 3. This figure illustrates SAIL. The shaded circle is 
the goal image. The left image is the man naturally lit. The 
center image is the man lit to achieve the goal image. The 

right image is the man lit as a compromise between the two. 

SAIL consists of two main components. The first component is 
image analysis. SAIL uses image processing to understand a goal 
image. The goal image shown in Figure 3 is of a shaded circle, 
but the goal image can be of anything with shading and color 
contrast information. The second component of SAIL is object 
understanding used to achieve adaptive runtime lighting. This 
component is very similar to the object lighting component of 
ELE with the addition of image analysis to understand how an 
object responds to changes in illumination. This component uses 
metrics extracted from a goal image and the position of light 
sources in the environment. It then lights an object, using a three-
point lighting model, to achieve an appearance between how the 
object “should” look based on the image and how it would look 
naturally based on the light sources. The current implementation 
of SAIL is shown in Figure 4. 

 

Figure 4. The current implementation of SAIL. 

5.1 Image Analysis 
SAIL extracts two types of information from an image: 1) light 
direction, and 2) light contrast. Light direction roughly correlates 
to the direction of key light and light contrast roughly correlates 
to the intensity of fill light, but both are a combination of light 
direction and intensity and their effect on the object of an image. 

5.1.1 Direction 
Before further processing, each color channel of an image is 
filtered with a Gaussian kernel to remove high frequency 
information. This filtered image is then transformed into a 
grayscale image using the Y value from the sRGB derived XYZ 
color space as in [17]: 

'722.0'7152.0'2126.0 BGRY ++=  1) 

where Y is the Y term of the XYZ color space conversion from the 
sRGB color space and R’, G’, B’ are defined by the function: 









>







 =

=

else
C

C
C

C

92.12

04045.0
055.1

055.0

'

4.2

 2) 

with C substituted for either R, G, or B. 

Once the grayscale light image has been generated, two metrics 
for light direction are calculated. These roughly correspond to 
angles defined as shown in Figure 5 but are actually derived from 
ratios of shading and pixel intensity in an image. 

To find Ө as indicated in Figure 5, local 3x3 windows of pixels 
are analyzed across the image, similarly to the application of a 
convolution kernel. For each window, the center of mass of pixel 
intensity is found relative to the window center. This relative 
position is then converted to a normalized 2D vector. The 
average 2D vector for the entire image is converted to an angle to 
find Ө. 

 

Figure 5. This figure illustrates the approximate meaning of 
the two light shading direction extracted from an image. 

Once Ө has been found, the term β as indicated in Figure 5 is 
calculated by finding the average center of mass of pixel 
intensities along the axis x’ as indicated in Figure 5, specifically: 
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where i is a line out of n adjacent lines spread across all pixels in 
an image parallel with x’ and perpendicular with y’, mi is the 
pixel count of line i, and Yij is the Y value of the jth pixel of line 
i. 



5.1.2 Contrast 
Contrast is directly quantified by the light entropy metric of [17], 
but it is also a factor of the term ß derived in the previous 
section. As ß increases, contrast tends to increase (and entropy 
decreases) because of sharper shading gradients present in the 
image. This is why gradient descent is used at runtime to 
evaluate these terms as will be described in Section 5.3. They do 
not correlate one-to-one with the parameters controlling light 
sources. 

We did not use the more recent light entropy formulation of [20] 
because our light direction terms provide information about the 
spatial configuration of pixels. The update to light entropy in 
[20] was primarily motivated by a desire to encode spatial 
information about an image and this is unnecessary in our case.  

5.2 Modeling an Object’s Response to Light 
To adapt lighting at runtime, SAIL needs to understand how an 
object appears under different lighting conditions. Calculating 
this information directly from images of an object would be too 
slow to perform at runtime, so SAIL generates a model of how an 
object responds to light in a preprocess step. 

The model is generated by jitter sampling the space of control 
parameters of SAIL’s runtime three-point lighting model. This 
model consists of 5 control parameters: camera direction 
(specified as pitch and yaw), key direction (specified as yaw and 
roll), and key-to-fill ratio. For each randomly sampled control 
parameter set, the object is rendered. This rendered image is 
analyzed by the image analysis component and a set of image 
metrics (consisting of shading direction and contrast indicators as 
described in Sections 5.1.1 and 5.1.2) is produced. The surface of 
all randomly generated image metric sets is stored and used at 
runtime as a mathematical model of how an object’s appearance 
changes in response to a change in illumination. 

5.3 Runtime Lighting 
Lighting is applied at runtime using a constrained set of lights 
based on the three-point lighting model. Three-point lighting 
consists of a key, a fill, and a back light. The key light provides 
dominant direction cues, the fill light reduces tonal contrast, and 
the back light rims the object, isolating it from the background. 
SAIL only uses a key and a fill light, as the effects of a backlight 
are high frequency and effectively removed in the Gaussian 
filtering step of image analysis. Capturing and applying the effect 
of a back light is left for future work. 

The key light is a point light that is limited to only affecting the 
target object. The fill light is a directional light that is similarly 
limited. The control parameters for this configuration are a yaw 
and roll for the key direction and a key-to-fill ratio for the fill 
intensity. The fill direction is fixed at 90º relative to the key 
light. The desired key intensity is always 1. The actual key 
intensity at runtime is an average between the intensity as 
sampled from an object’s environment and a value of 1. 

SAIL understands the appearance of a model based on the jitter 
sampled surface derived as described in Section 5.2. It 
understands a goal image through image analysis. It derives the 
appearance of an object under natural lighting by evaluating the 
jittered sampled surface at the coordinates of the effective key 
and fill settings as derived from natural light source positions. 

Lighting adaptation at runtime is achieved by applying gradient 
descent to move towards the point on the jitter sampled surface 
that is closest to the goal image and to the point that is closest to 
the natural lighting state. Closeness is measured using a least 
squares error metric between appearance metrics. 

6. EVALUATION 
This sections details a qualitative study we conducted to evaluate 
SAIL’s contributions. Specifically, we discuss SAIL’s usage of 
image as interface and SAIL’s consideration of an object’s 
environment to adapt lighting at runtime. 

6.1 Sampling 
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Figure 6. Participants’ experience in years. 

19 participants took part in our evaluation. Participants were 
lighting “experts”. Our definition of an expert was someone who 
had a personal or professional interest in lighting. Participants 
were recruited through personal contacts. Their years of 
experience are shown in Figure 6 and their specific backgrounds 
are shown in Figure 7.  
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Figure 7. Participants’ expertise. 

Participants’ activity level is shown in Figure 8. This represents 
the environment(s) that participants worked in. In this figure, 
“Academic” represents work as an educator or in production of 
works (such as stage plays) in academic settings. “Production” 
represents work in paid professional environments, such as at a 



video game company. “Amateur” represents work in a variety of 
environments but without pay or formal training. 
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Figure 8. Participants’ activity level. 

6.2 Study Design 
Participants took part in 30-45 minute sessions conducted one-
on-one with an investigator or a pair of investigators. Each 
session consisted of three parts. 

In part 1, participants interacted with the implementation of 
SAIL shown in Figure 4. They could move the character, select 
between three goal images (one is displayed in the upper right of 
Figure 4), select between three preset light states for the 
environment, and switch between “auto”, “natural”, and 
“attached” mode. “Auto” mode enabled SAIL, “natural” mode 
disabled SAIL and used only environment lighting, and 
“attached” mode enabled a “hacked” version of SAIL that 
completely disabled context considerations (SAIL applied 
lighting only in consideration of the goal image). 

Participants were given enough context to allow them to 
understand the interface and the basics of SAIL. They were told 
that the character was being lit automatically and that the 
environment was not. They were not given specific information 
about SAIL’s algorithms or intended purpose. Participants were 
asked to interact with the environment until they felt that they 
could discuss the aesthetics and function of lighting in the demo 
and particularly, the behavior of lighting on the character. 

In part 2, participants were interviewed using a semi-structured 
approach. A set of questions was used to guide discussion but 
individual questions could be skipped or additional questions 
asked based on conversation flow. Participants were not given 
specific information about SAIL and the investigator deferred 
answering these questions. For example, if asked, “I’d like to 
know what you’re trying to accomplish here” the investigator 
might respond, “Let’s get back to that later.”  

In part 3, participants were given complete information regarding 
SAIL’s algorithms and anticipated applications. Any questions 
such as, “What lighting model are you using?” or “I’d like to 
know what you’re trying to accomplish here” were answered at 
this time.  

We approached the design of the evaluation from a deductive, 
qualitative theory mindset. We wanted data to argue evidentially 
about SAIL’s usage of images as input and SAIL’s consideration 

of appearance to adapt lighting at runtime. We felt that the views 
and interpretations of lighting experts were important, because 
lighting experts are the target of our work and it is their expert 
perspective that determines whether SAIL is a contribution or 
not. 

Giving participants incomplete knowledge during parts 1 and 2 
was intended to encourage them to make comments at a “mid-
level”, i.e. comments that would be specific but not so specific as 
to have little meaning outside the very particular constraints of 
the demo. Further, it was our hope that it would encourage them 
to discuss their process. We feel this was successful. For 
example, when asked what their interpretation of the image was, 
many participants explained their interpretation and also 
explained why they interpreted it as such. 

Part 3 was included for participant satisfaction, as it was 
expected many would have specific questions after parts 1 and 2 
about SAIL (many did). Further, it offered an opportunity to 
collect directed suggestions from participants about SAIL’s 
future work. 

6.3 Analysis 
Passages from transcripts created of part 2 were categorized as 
evidence for either SAIL’s usage of images or as evidence for 
SAIL’s consideration of an object’s environment at runtime. This 
data was then further coded into common themes as they were 
identified. Specifically, we found many participants discussing 
complete darkness, the lack of directional motivation, and the 
ability to “detach” lighting from the environment. Data from part 
3 was included to support the arguments made from part 2.  

6.4 Results 
Evaluation is organized to argue two assumptions of SAIL. First, 
we discuss SAIL’s usage of images as interface. Second, we 
discuss SAIL’s consideration of an object’s environment and its 
effectiveness at accommodating changing context at runtime. 
Note that the numerical codes used to identify participants can be 
used to locate quotes in the complete transcripts available in [7]. 

6.4.1 Images as Interface 
SAIL interprets an image as shading direction and contrast 
information. This interpretation was more or less mirrored by 
participants. For example, participant 10_27_01 noted: 

Investigator: So, is there any sense what it’s doing specifically right 
now? 

10_27_01: Well, when I look at the image and I look at the character I 
can see it does seem to be the direction of the lighting and the overall 
shading. I’d be curious to see how much I could mess with that image. 

While there was some confusion about the role of the image at 
runtime, participants still interpreted the image as specifying 
lighting direction. For example, participant 10_26_02 noted: 

10_26_02: I assume it’s where the lighting is coming from so, this […] 
would be where the light is coming from the top or directionality as 
opposed to […]. Ya, I’m not quite sure. If I had to venture a guess I 
would probably say the intensity and the directionality of the character 
lighting. But I didn’t see it on her so I wasn’t sure if I was right or not. 

This intuitive understanding of the image was probably due to its 
simple metaphor as a shaded sphere as described by 10_30_05: 



10_30_05: I’m familiar with lighting things in applications that have 
just a sphere to tell you where the light source is [pause] I’m kind of 
used to seeing these kinds of things 

A more extensive presentation of our data can be found in [7]. 
Overall, our interviews indicate that an image can be an 
understandable interface for lighting experts to specify light 
direction and contrast. Whether or not this understandability 
extends beyond the simple metaphor of a lit sphere is an open 
question, but our results present encouraging direction for future 
research. 

6.4.2 Adaptation and appearance 
SAIL was successful at adapting to context by mimicking the 
natural lighting state. However, many participants found the 
natural lighting state to be unacceptable, either aesthetically or 
functionally. Therefore, in this section we describe what 
participants felt was bad about the environment lighting while 
illustrating SAIL’s success at mimicking this environment. This 
discussion is important as it is indicative of a lighting expert’s 
perspective on a tool such as SAIL, and thus it should help to 
ground future work on SAIL or automated interactive lighting 
work in general. This section discusses three themes that arose 
from generated data: 1) lighting was not sufficiently logically 
motivated, 2) intensity contrast was allowed to become too great, 
and 3) SAIL does not support exceptions. 

6.4.2.1 Motivated light sources 
Lighting direction was not sufficiently motivated by logical light 
sources. For example, there were large windows present in the 
environment that were not actually light sources: 

Investigator: What are your general impressions regarding this system? 

10_29_01: It’s a simple system. There’s a few things I have questions 
about. For example, there are windows over here. I’m just wondering 
why there are no lights that represent the windows, unless [pause] 
‘Cause I don’t see a change going from natural to… [pause] 

This problem was comparable in both SAIL’s “auto” mode and 
in “natural” mode, where object lighting was the same as the 
environment lighting, implying that SAIL successfully mimicked 
the natural lighting state: 

10_30_01: I don’t know what kind of technique you use but sometimes 
when you walk through the rooms of the environment you don’t really 
see the lighting change that much. Just the interaction between the 
lighting on the character to the environment, it’s not that noticeable. For 
instance, you can see here… 

[…] 

Investigator: Is that all specifically the natural mode or is…? 

10_30_01: No, it’s not just natural mode, it’s when you have the auto 
mode which is kind of a blend between natural and your attached 
lighting. 

SAIL produced comparable results to natural mode, successfully 
adapting to context. This is also illustrated by the following 
comment about “attached” mode (where context was completely 
ignored) and SAIL’s “auto” mode. Participant 10_28_02 felt that 
“kick” present in the environment was not reflected in “attached” 
mode but was reflected in “auto” mode: 

Investigator: Would you say based on your interpretation that what the 
system is doing makes sense? 

10_28_02: Yes. I’d want to spend a bit more time with it to see how 
wandering around in this environment, what the implications were? 

‘Cause this room for example […], there’s more kick coming off the 
walls. So this [referring to the auto mode] gives me sort of my ambient 
idea and then the attached [referring to attached mode] looks like it’s 
just being lit from the global source.  

The participant later explained that “global source” referred to 
the lighting as indicated by the image in the demo. 

6.4.2.2 Extreme light contrast 
SAIL allows for too extreme light contrast: 

10_30_04: That’s one thing that I found that the darks are really dark. 
Like you’d never get blacks that black on the character, that kind of 
thing. […] 

SAIL allows portions of the character to become completely dark, 
which is usually undesirable. As described in an offline 
conversation with participant 10_27_01, it is implausible. Any 
light source in a room, due to indirect reflection, will invariably 
cause some illumination to illuminate everywhere and allow our 
eyes to make out some detail. A completely dark area is 
implausible and limited to a rare, special case effect. 

6.4.2.3 Exceptions 
SAIL does not support “exceptions” to the rule and lighting 
experts will invariably want to make exceptions. Every 
automated interactive lighting system will need to base its 
behavior on rules. For example, a rule of SAIL is to motivate 
lighting direction on an object by the direction of lighting present 
in that object’s environment. However, participant 10_29_03 
notably liked the demo’s ability to completely detach an object’s 
light direction from the environment: 

10_29_03: What I really am most fond of is this ability to detach 
[pause] I like that ability to detach the figure from the environment. Just 
because it’s a kind of shadow like effect where I can make things that I 
regard as less important [pause]  

SAIL was never designed to operate in this way. This ability to 
detach lighting was a “hacked” feature of the demo for 
comparison purposes. In practice, SAIL would have no ability to 
consider or incorporate a complete exception to its rule of 
motivated lighting direction such as this. 

Similarly, we argued in Section 6.4.2.2 that extreme light 
contrast is usually undesirable. An obvious future rule for SAIL 
would therefore be to disallow light contrast above a certain 
threshold. However, SAIL would still need to allow for 
exceptions to this rule, as described by participant 10_29_06: 

10_29_06: It depends on what exactly you want to do. If she was trying 
to move [pause] I’m a pensitive person and I come here and now I 
actually realize that I’m guilty [10_29_06 has moved the character to a 
spot where much of her face is complete blackness] where she slowly 
transitions to dark, then I get it.  

Our conclusion is that lighting experts will inevitably want to 
make an exception to any rule that guides an automated lighting 
system. Therefore, it is important for a system to have an 
integrated, purposeful mechanism to allow for exceptions. 

7. FUTURE WORK 
Our plans for future work are twofold. First, we plan to further 
explore images as interface for lighting design tools. Particularly, 
we wonder what the limits of a single image are. Can it 
effectively indicate multiple key lights, complex patterns, or 



shadow? Also, can a single image specify lighting for an entire 
scene? 

Further, we will explore modifications to SAIL’s adaptation.  
SAIL’s adaptation was successful in that it accommodated 
context, even when that context is bad. SAIL’s adaptive behavior 
should be modified to limit extreme light contrast and allow for 
exceptions. For example, it should be possible for a designer to 
completely ignore contrast limits and create a silhouette or ignore 
direction constraints and create a theatric spot light effect.  

8. CONCLUSIONS 
This paper presented the System for Automated Interactive 
Lighting (SAIL), our adaptive lighting system. Our evaluation of 
SAIL indicates that images can be an effective interface for 
lighting experts to specify lighting goals. It also shows that while 
SAIL successfully considers context, it does so whether that 
context is good or bad from an expert’s perspective.  

Our conclusions are that we should further pursue images as 
lighting interface. We should also consider additional 
mechanisms for SAIL’s adaptation of lighting at runtime. 
Specifically, SAIL should integrate exceptions to allow designers 
to violate SAIL’s fundamental assumptions (such as maintaining 
motivated illumination direction). SAIL should also allow for 
constraints to be imposed on parameters such as light contrast to 
avoid results such as complete darkness. 
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