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Abstract

Rotating shallow water is traditionally the first model encountered in the study of geophys-
ical fluid dynamics. Its simplicity and applicability at large scales make it a favourable
starting point for mnderstanding midlatitude atmospheric behaviour. The linearized model
reveals two principal dvnaunical features - fast time-scale wave distiurbances, and slow time-
scale balanced How. Texthook analysis typically includes linear wave properties, and the
leading order balanced dynamics of quasigeostrophy.  We scek to further understand the
successes and limitations of rotating shallow water in modelling geophysical Hutd dynamies.
In this study, nonlinear wave dynamics arc restricted to uniform potential vorticity. This
reduced set of cquations enables the computational analysis of nonlinear waves, devoid of
balanced dynamics. Additionally, balanced dynamics are investigated beyond quasigeostro-
phy to include small Rossby number corrections.  As anticipated, an asymmetry between
cyclone and anticyclone vortices emerges; the biases are consistent with shinilar models, and

contradict atmospheric hehaviour.,
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Chapter 1

Introduction

Numecrical weather prediction has come a long way {rom its carly days in 1922 when Lewis
Fry Richardson recorded the first six hour weather forecast... after six weeks of computa-
tion [13]. Modern weather prediction models include the ECMWE medium range forecast
model, which boasts 76,757,590 grid points in the upper air (3,737,960 in the surface layer),
tracks six variables, and prodnces four analysis reports daily [3]. What hasn't changed is
the underlying primitive cquations - the Navier-Stokes cquations, the first law of thermo-
dyvnamics and an cquation of state relating temperature and pressure.

An understanding of the full primitive equations beging with a study of a shmplified set
of cquations that supports particular solution classes. At synoptic and mesoscales, with
liorizontal features spanning 100 km to 1000 km and at altitudes where surface effects are
negligible, the atmosphere is considered predominantly hydrostatic, geostrophic, Boussinesq
and horizontal (sce Section 2.2), as well as adiabatic! [2], [10]. Simplifying further to a two
dimensional solution subelass unveils the Rotating Shallow Water (rSW) equations, which
arc, arguably, the simplest form of the large scale primitive equations that retains some

degree of consistency in deseribing the atniosphere.,

1.1 Rotating Shallow Water in a Nutshell

In addition to its simplicity, rfSW provides a first glance of atmospheric behaviour. A
1 8

significant measure in the rSW equations is the Rossby number, R, a ratio of velocity

i an adiabatic atmosphere there is no heat exchange between fluid parcels and the atmosphere itself.



CHAPTER 1. INTRODUCTION 2

advection to Coriolis effects?. R is small for atmospheric flows, and provides the distinction
of leading order R = 0 and first correction, R < 1 analysis.

The leading order equations include three types of solutions - lincar gravity and Rossby
waves, and a zero frequency balance solution. Gravity waves predate the rSW equations [4],
and their presence is widespread, from ripples on a pond to similar effects in the atmosphere
over a larger scale. Rossby waves can be observed as strictly westerly propagating long
waves in the upper atmosphere, and were discovered when Rossby introduced the S-plance to
compensate for the change in Coriolis parameter with latitude [11]. Leading order balanced
flow is reduced to the quasigeostrophic (QG) model, first proposed by Charney in 1948 [1],
with the property of arca-averaged symmietry in the primitive variables (sce Section 3.2.4).
Vorticity symumetry is retained in mnnerical solutions, with the symmetric entergence of
coherent vortex striuctures, in both the cyclonic and anticylonic directions, from turbulent
initial conditions [7]. Numerical evolution of the full rSW equations exhibits a breakdown
of the vorticity symmetry between cyclones and anticylones, in a manner opposite to the
atmosphere [12].

In this study we address two complications that arise in analysing rSW beyvoud lead-
ing order. The Hrst is the increased order of negligible terms, from both the additional
two-dimensional restrictions, and further simplification of the curved Earth with Cartesian
coordinates,  Both are dealt with carcfully in the derivation in Chapter 2. The former,
by carrying all negligible scales beyond the traditional synoptic and mesoscale assumptions
through the derivation, and ultimately determining their required order. The latter exploits
the reference independent nature of the rSW variables, and an oblique coordinate system is
defined to minimize residual terms in the flat carth approximation.

The sccond is the interrelation between How types, where even small gravity wave con-
tributions could invalidate a balanced model [15]. Similarly, an expansion of the linear wave
theory could inclhude unwanted balanced solutions. In this study, we consider two models
where flow behaviour remains distinet. A balanced model devoid of gravity wave behaviour
is obtained i applying the general QG formulation of [9] to rSW. A gravity wave model
devoid of balanced flow arises in the case of uniform potential vorticity [8]. Full definitions

of cach model arc given in Chapter 3.

Dew . e . . . .
“Coriolis effects are the result of measuring velocities on a rotating planet.
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1.2 Thesis Overview

Chapter 2 covers a derivation of the Rotating Shallow Water equations from the primitive
Navier-Stokes cquations. The derivation is unique in that the equations are described using
oblique spherical coordinates, where the plane of origin is a tilted equator, as opposed to
standard coordinates where the plane of origin is the equator. This increases the order of
accuracy in the fat carth approximation, Section 2.3.3, and minimizes the cffect of absolute
position on the remaining spherical variables, Section 2.2. The negligible scales defining the
two-dimensional rSW solution set are carefully carried through the derivation in Section 2.3,
and their maxinum scale size is determined relative to a vartable systemnn order of accuracy.

In Chapter 3 we consider the remaining scales as related to the Rossby number, R. The
full rSW cquations are given, and arca integral conservation propertics are deseribed. This
provides the structure for the textbook leading order and decper first correction analysis. At
leading order, lincar gravity and Rossby waves and nonlinear quasigeostrophy arce recovered.
At first corrections, gravity waves are considered for the proposed uniform potential vorticity
formulation, and travelling wave solutions arc discussed. The first correction QG model is
specified, and the arca integral conservation propertics are revisited.

Chapter 4 outlines the numerical implementation of the balanced and wave models
proposed i the previous chapter. Details in the application of spectral methods, integrating
factor methods and third order Adams-Bashforth and Runge-Kutta methods are given.
Numerical stability and spectral resolution arc ensured in choosing an appropriate time
step and artificial diffusion parameter. Convergence is verified with exact solutions where
possible.

Chapter 5 provides details and results from the rfSW QG numerical experiments. Qual-
itative analysis shows increased potential vorticity anticyclone intensity with R, similar to
the findings for vorticity in [12]. Further quantitative analysis reveals a lincar trend between
the median potential vorticity and R.

Chapter 6 provides a suinmary of the ontcomes of this project, and suggests arcas for

futnure work.



Chapter 2

From Navier-Stokes to Rotating
Shallow Water

This chapter is devoted to a systematic derivation of the rSW equations from the primitive
cquations of atmospheric motion. The general approach taken, similar to that in Cushinan-
Roisin 2] and Pedlosky [10], begins from the scaling assumptions on the primitive variables,
and systematically reduces the cquations to include only the relevant terms. An analysis of
the effects of cach scaling parameter follows the more complete analysis in [6]. The constant
density regime of rSW satisfies both the thermodynamic energy equation and the equation

of state, and leaves the Navier-Stokes equations as the starting point.

2.1 Navier-Stokes Equations

Motion of a particle with velocity @ in a Huid of density p and subject to pressure gradient
force Vp, potential force, VW, and [rictional fHluid force, F, is described by the Navier-Stokes

cquations of motion:

D ~
/)D—l; = —Vp+pVV¥ +F, (2.1)
D
D";) YV o= 0, (2.2)
where
D %)
— = 4.9 2.3
Di o (2.3)

4



CHAPTER 2. FROM NAVIER-STOKES TO ROTATING SHALLOW WATER 5

2.1.1 Rotating Reference Frame

The above formn of the Navier-Stokes equations describes motion in an inertial (non-rotating)
reference frame, while measurements taken on Earth are subject to the effects of the rotating
planct. Velocity mcasured with respect to a reference frame rotating with angular velocity
Q is related to velocity measured within an inertial frame by adding the velocity of the

reference frame itself [10]:

i = i+ Q% (2.4)

inertial rotating
where 77 is the particle position measured within the rotating frame. The advective derivative
(2.3) of velocity reveals three additional pseudo-forces in the rotating frame - Coriolis and
centrifgal effects, and the effect of variations in Q2 [10]:
Dl
Dt

Di .

~ S DO
= E+2£2><‘1T+S2><S2><‘F+ﬁxr (2.5)

inertial rotating

Tlie centrifugal effect, (O x Q x 7, is considered as a potential function, and is incorporated
into the total potential force, VW [10]:

.- 1~ .
AxQx7r = v<2mxm2>. (2.6)

2.1.2 Preliminary Assumptions
The tollowing general assumptions are considered valid for most atiospheric and occanic
flows [10].

I. Earth’s rotation velocity is constant, whicli eliminates ceffects of the pscudo force as-

sociated with the varying reference frame angular velocity,
DS}

— x i = 0. (2.7)
Dt

2. The potential force, VW, is the locally obscrved gravity, which includes both the

gravitational force and centrifugal effects:

V¥ = § = —-g—. (2.8)
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3. The magnitude of the locally observed gravity, g, is constant.!

4. Fluids in the atmosphere and occan behave as Newtonian fluids, with friction force
= 9. 1 .
' = puVoad+ i/l,v (V) (2.9)

wlhere puis the molecular viscosity.

2.1.3 Oblique Spherical Coordinates

While the vector form of the Navier-Stokes equations is independent of orientation and
coordinate systen, measurcenients of the priniitive variables are taken with respect to an
oriented coordinate system.

The motivation beliind the choice of coordinate orientation is sumimarized by the following

observation:

To minimize coordinate system curvature near Vancouver, place Vancouver on

the coordinate cquator.

“equator cquator
erl
e er
polar m(igsijQ 2 polar mij 2
(a) Standard coordinates (b) Oblique coordinates

Figure 2.1: Coordinate systems on the Earth. (a) Standard coordinates, with the e, e,,
plance through the equator.  (b) Oblique coordinates, with the ¢, ¢., plane through an

arbitrary great circle.

PAssumptions 2 and 3 are equivalent to assiming a spherical earth. Tmplications of this assumption are

discussed in Chapter 4 of [1].
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Standard coordinate orientations consist of the ¢, ¢, plane through the equator and
the ¢, ¢, planc though the polar axis, as shown in Figure 2.1a. This orientation is usc-
ful as it preserves cast and north in the coordinate directions tangent to Earth’s surface.
By contrast, the class of oblique coordinate orientations has the ¢, ¢, and ¢, ¢., planes
passing through any pair of perpendicular great circles?. The principal difference between
coordinate orientations in our application is the cficcts of Eartli’s curvature, which increase
with distance from the ¢ ¢, plane. In order to recover the simplicity of the textbook rSW
cquations, we ultimately impose a fat carth approximation by assuming all enrvature terms
are negligible (sec Section 2.3.3). These curvature terms are minimized for a particular
region of interest when the ¢, ¢, plane passes through a characteristic longitude, latitude

point (g, Ay) of the region.

5
S 13
erl
- — —
- .
&5 “equator “equator
e
A
er, €,
(a) First rotation (b) Second rotation

Figure 2.2: Transformation to the oblique coordinate system. (a) First rotation - ®q degrees
counterclockwise about ¢, (b) Second rotation - Ay degrees clockwise about ¢;.,.

Such an oblique coordinate system s obtained by rotating the standard coordinate
systenn, first &g degrees counterclockwise about ¢, and then Ay degrees clockwise about

Cr,, as shown in Figures 2.2a and 2.2b,

2
cos Py cos Ay sin Ppycos Ay sin Ay €, Cry
— sin @y cos Py 0 Cry = Cry (2.10)
—cosPpsin Ay —sindosin Ay cosAg Oy Cry .
: standard oblique

2A great cirele is a curve on Earth’s surface with radius equal to Barth’s radius,
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That is, rotate the coordinate system so the region of interest (Vancouver, for example) is
located at the intersection of the e, ¢, plane (coordinate equator) and the e, axis.

Eartl’s angular velocity, Q, lias absolute direction about the polar axis, and is the only
variable dependent on the oblique coordinate orientation:

Qe = QsinAge,, + Qcos Agey, . (2.11)

standard oblique
Since nicasurements are taken relative to Earth’s curved surface, spherical coordinates is a
natural chotce of coordinate system. The oblique spherical coordinate system is obtained

by defining the zonal ¢, meridional ey, and vertical ¢, unit vectors,
Y 5 O A

COS P COS A singcos A sin A Cry O
—sing Cos 0 Cro = Co (2.12)
—cos¢sin A —singsin A cos A Cry , ey , ,
’ oblique oblique spherical

where ¢ 1s the oblique longitude, A is the oblique latitude and » is the radius measured from

Barth’s centre, as shown in Figure 2.3.

cquator

polar ax%flr%p_ €2

Figure 2.3: Spherical coordinates, measured from the oblique coordinate system, where ¢,
spanning the dark grey region, is the oblique longitude, A, spanning the light grey region,
is the oblique latitnde and » is the radius.

Local gravity acts towards Eartl’s centre, and has the same representation in oblique

and standard spherical coordiantes

g = —ge,. (2.13)
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The orientation-dependent angular velocity is written in oblique spherical coordinates by

multiplying (2.11) by the spherical coordinate transformation matrix (2.12),

—

Q = Qpes +Qaen+ Qe (2.14)
where
Qq') = —Qsin A()Sill (/l), (215)
Qy = QcosApcos A — Qsin Ay cos @sin A, (2.16)
Q, = QcosAgsin A+ Qsin Apcos A cos ¢. (2.17)

Velocity has tangential components in the zonal, ¢4, and meridional, ¢4, directions, and a

normal component in the vertical, e, dircction

U = uey+vey +we,, (2.18)
where
de¢ dA dr
U = rcos\— vo= r—, w o= —. 2.19
u reosA v " w T ( )

While velocity cquations are the same in standard and oblique coordinates, the longitude,
¢, and latitude, A, variables vary with orientation.
Friction, F, defined as a function of @ in (2.9), although for simplicity, F is written in

terms of oblique spherical components, which are defined in Appendix I3,
F o= puFy 4 pFy + pk,. (2.20)

The spherical divergence, V-, gradient, V. and Laplacian V2 operators are considered in
Appendix A. Since the spherical coordinate unit vectors (g, ¢x, ¢,) are dependent on ¢ and
A, the gradient and Laplacian operators are applied to both the magnitude and dircction
components of «@. A discussion of the curvature terms resulting from the change in direction
is left to Appendix A.

The Navier-Stokes equations, (2.1) and (2.2), in a rotating reference frame (2.5), with

preliminary assumptions from Section 2.1.2 and measured in oblique spherical coordinates,
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(2.10) and (2.12), are:

Du wu 1w tan A -1 dp
PDr + P + 2pw Q) — 2p08), = I + pFg, (2.21)
D w u? tan A —19,
/)—U + pM + pﬁ” = + 2pud, — 2pwQly, = -— .(1) + 1y, (2.22)
D1 7 r 7 OA
Dw w? + v? (),
P _— /)u + 2000, — 2pufdy = —Q —pg+ pF,. (2.23)
Dt T ’ Jr
Dp n 1 du i 1 dv 1 T o N 2 0 (2.24)
—+p — 4+ p——— —p-vtan A+ p— +p-w = 0, .
Dt o A do Pron 7 o T '
where
D 0 1 1%} 1 d J
— = — 4 Uu———— -+ w—. 2.25
Di ot + “7'(:09/\ 197%; o 7 ON o Or (2.25)

The only difference between the above oblique equations introduced here and standard
equations in [10] and [4] is the definition of €2, Q) and Q, in (2.15) - (2.17). The definition
of the zonal and meridional directions (e, and ey) and the oblique longitude and latitude

variables (¢ and A), however, depend on the orientation of the oblique coordinate system.

2.2 Scales in the Atmosphere

We now consider the assuniptions necessary to apply the [ull Navier-Stokes equations to
synoptic scale low. I order to quantify the relative contribution of cach term, cach variable
is separated into a constant characteristic scale and a dimensionless variable.®  Different
scales are given to the horizontal and vertical dependencies of the primitive variables, in
anticipation that the two dimensional rSW solution class will tmipose further restrictions
on the vertical components. Dimensionless paranicters relating the characteristic scales arce

then defined.
rod — Loy, 1N — LN, v —10+Hz, 1 — Tt, (22())

where L is a characteristic length, H is the average height from Earth's surface, vy, and T
is a characteristic time scale. The subscript [ is used to distinguish between angles ¢ and

A, and surface arc-lengths ¢ and ;.

P po+App (o Nz t), (2.27)

YCharacteristic scales are selected so the dimensionless variable is @ (1), This also implies that cach
variable remains O (1) in Lime,
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wherce pg is the average deusity, and Ap is the characteristic density variation.
p = Povol(z)+ Ppldy, A t) + AP (¢, Mu 2, 1), (2.28)

where Py is the characteristic pressure in the absence of motion, P is the characteristic

pressure varlation in the horizontal and AP is the characteristic total pressure variation.

',t>'/
1), (2.29)

&

u —  Uu(gp, M\, t) + AU (¢, Ny
v = Uv(gp, My t) + AUV (d, Ay, =

w — Ww(d, N, 2, 1),

where U and W oare the characteristic horizontal and vertical velocities, AU is the charac-
teristic horizontal velocity variation in the vertical.
The effects of Earth’s curvature are measured by € and by the Coriolis parameter, f,
. L . . i
§ = —, f = 2Qsin Ay (2.30)
o
The Rossby munber, R, is the ratio of advection to Coriolis effects; the Froude mnnber, F,
is the ratio of the intertial to gravitational force; the Ekman number, £k, is the ratio of
viscous forces to Coriolis cffects, and the planctary number, 3, is the of ratio of variations
of the Coriolis effect with latitude to the Coriolis parameter
U U . "
R = —. F = , Ek = ——, 8 = Lcot Ay. (2.31)
jL \/.(]f[ /)(V)ff[

All time derivatives are in the formn of the advective derivative, so it is convenient to specify

a relative time scale, C, as a ratio of advective to actual time scale

LU
- , 2.32
T (2.32)

-

Syunoptic scale flows are typically found at length scales much larger than height scales, and
their relative scales are quantified by the s parameters,

. H W .
g1, = —, fu = g (2.33)
We anticipate the rSW osolution class will impose strict restrictions on vertical variations,
and introduce dimensonless v paramcters fo denote the relative sizes of these variations
within the primitive variables

AU Ap AP

’\/'“ = — ~ = — 8% = —.

(] ) p 00 ) p 7)
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2.2.1

Scaling Assumptions for Synoptic and Mesoscale Flow

The following scale assumptions distinguish synoptic and upper mesoscale flow from other

classes of fluid flow [2], [10].

1.

Synoptic to upper mesoscale length scale: the characteristic length scale is smaller

than Earth’s radius.

Boussinesq: the density variations are significantly smaller than the mean density.

3. Horizontal: the characteristic vertical scales are significantly smaller than horizontal

scales.

& < |, Yo &1, £, <« 1, g € L. (2.34)

Hydrostatic: the vertical pressure gradient balances the gravitational force.

Geostrophic: the horizontal pressure gradient balances the Coriolis eflect due to hori-

zontal velocities.
Py ~ pogl,  P.AP ~ pofUL, (2.35)

) . .
where F° < R ensures that the hydrostatic balance occurs at the largest scale in
the vertical momenti equation, and R < 1, € < 1, and g <« 1 ensures that the

geostroplic balance oceurs at the largest scale in the horizontal niomentum equations.

. Inviscid: all friction terms can be assumed negligible. A detailed account of the scaling

of the friction variables is given in Appendix B.

AU n U n W

t— + s +
Wz 7l Ty
2% n U+ AU n L AU
— A ,— .
[12 / ‘I'()L a T0 'I'()[f

pEe, iy~

nE o~ n (2.36)

2.3 Rotating Shallow Water

In addition to the synoptic and mesoscale assumptions, the rSW osolution class is two-

dimensional and homogencous. We first consider the reduction to two-dimensional How by

iniposing a vertical boundary condition, and then specify the scaling assuptions for the

vertical components of all paranieters,
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The first reduction from three to two dimensional flow is made by introducing variations
from mean surface height, h = (¢, A, 1), as a function of horizontal parameters, aund
o Py Ay >

imposing the kinematic boundary condition at the vertical boundaries,

Dh(pr, A, t)

“"‘(’:b\)t,lx,)ln) =0, ’U’(Zmp) = UT» (237>

where o = % is the vatio of height variation to mean surface height, aud we assmmne flat
bottony, zperiom = 0. and free surface, zop = 14 ah(gr, A, t), boundarics.

In addition, the two-dimensional homogencous class of solutions arises when all terms
containing £ and 7 parameters, defined in (2.33) and (2.34), are negligible, so the system is
devold of any vertical structure.

The synoptic and mesoscale atmosphieric and occanic characteristic values support the
scaling assuniptions in Scction 2.2.1 [2]. However, the same is not necessarily true of the
additional rSW scale assmmptions, where relatively small vertical vartations are considered
negligible. By carrying through the ultimately negligible ¢ and v parameters. the relative
scaling of cach term and its maximumn size i a systemn acenrate to an O (o) will be deter-
mined. While specific values of o are considered in Chapter 3, o remains arbitrary through
the derivation.

The first beuefit of the oblique coordinate system is now apparent. Where ¢ and ~ terms
multiply trigonometric functions, the order of cos, sin and tan affects the overall order of the
negligible term. The order of the trigononictric functions in oblique coordinates is obtained
by expanding in a Taylor series about Ag = 0 or ¢y = 0. in cquation (C.13). This ditlers
from the equations in standard coordinates, wlere the trigonometric functions are expanded
about Ap = Ay,

We now substitute the scaled, dimensionless variables from Section 2.2, with the synoptic
and mesoscale assumptions from Section 2.2.1, into the Navier-Stokes equations, (2.21) -
(2.24). The following scction provides highlights from the thorough derivation in Appendix

C, which is unique to the oblique spherical coordinate systenn.

2.3.1 Continuity and Momentum Equations
The dimensionless continuity equation, (C.33), is

1 du v Sy Ow i
——— o o —{utan A+ — - = O v |LC —| ez
cosEN OPp DN gy, Oz ey,
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which implies that the vertical to horizontal velocity ratio is bounded by the vertical to
horizontal spatial ratio, ¢, < ..

Since w = u(p;, \i. t) and v = v(@, A, t), defined in (2.29), are independent of z, inte-
erating (2.38) from z = 0 to z = 1 + oh, with the kinematic boundary condition (2.37).
viclds the »SW Vertically Integrated Continuwity Iguation:

D/

~E'umn£/\z>+rfﬁ = Ol (1.0 ) (239)

I du v

cosEN Do ON

(1+(m)<

The dimensionless vertical momentuin equation, (C.43), where ¢, < 24, is

Jpo FroooF? 3 oy
— =1 = O|~p =", —¢ e ER|LF e 1. C 2.4(
e ¢ <” R "R {E’ gk l‘} 7= [en.C]] (2.40)

Integrating in the vertical divection from z to L +ah(g@;. A, t) gives an equation for pressure,

po(l+ah) —po(z) = —(L+ah{onAt))+ =
FroF? A T .
+O <'\;'/;-, _ﬁ’\//)! WEL [KC» E-EI,S'I" -,-,’tz [E‘l{“v(’]]> s (241)
where po(1 + oh) is determined by evaluating (2.28) at the surface z = 1 + oh, where

plon, i 1+ oh, 1) =0, relative to the ammbient pressure,
P P, o
poll +oh) + P—[)(cb[, Aty + ”,'/)P—[) (¢ N, L+ahty = 0. (2.42)
0 0

Substituting into (2.41),

P P
———p{On AN t) —pp(z) = —(1 h(dr, Ayt 2+ O vy—=
’P()P((‘)[’ 1) = po(2) (1 +ah(én, Aiyt) + 2+ ( /7?”>
F* o FE 4 o .
+O <A//)7 R_'A/,/)-, %51/ [E Eagl/g’l‘:j, 7‘F2 [Ei[l'(l”> : (24';)

Vertical pressure, po(z), is then proportional to the height, z,

mlz) = 1—=z, (2.44)

and horizotital pressure variations, %[)(q‘)[, Ar. 1), are proportional to variations from mecan

height,

P |
%)—U-[)(q’)/, A f,) = O’/I((ﬁ)/, YR f)

ol [ PY, B T8
Yoo | 5 o | Yo 5 E £1.é
AR PR
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<

and scale as

~ o=~ 2.46
a P R (2.46)

Dividing the horizontal pressure cquation by o

ry

Y

ENRSS

(b M) = hidn N\, )+@<U A E L {g, ,,5/\} R [57][1,0]]). (2.47)

The dimensionless zonal and meridional momentum equations, (C.54) and (C.60), arc

Du -1 dp , 3
R— — Réuvtan A — ¢l = Yy M + @ <7“, Yps Upe 1L {E, E} L ER [71 :f]) (2.48)
D dp o
Ro7 + REP tan A+l = —oy, T O (Yus ¥po Y0 €16 ER [y 27]) (2.49)
A
where the Coriolis coefficent is rowritten as
. 3.
Iy = cosé@reosEN + — siné, (2.50)

and the horizontal advective derivative is’

D C 1 17 . 0
— = C—+u v
Di ()f cos €N ()()[ O\

Substituting (2.47) lor p yiclds the rnSW Momentum Equations,

Du i . 1 oh
RE — Réuvtan A — o, = —

cos EN Oy

o 3 2
+0 (A/m l;/sA/’puEI/ [87 E} Ek [,uw ] R [57 [1 CH) (2 52)

Do , 2li
RD_II + REZ tan N + ul', = —(‘()—/\];
+0 (s 2168k [rned ) R [ 1)) (2.53)

2.3.2 Divergence, Vorticity and Potential Vorticity

A complete set of tSW equations is contained within the »SW Momentuwm Equations and
the »SW Integrated Continuity Lquation, where pressure is defined by (2.47), and vertical
velocity is defined on the boundaries. Further analysis includes taking combinations of these

equations to obtain additional relations, which can ecither be used to obtain equivalent rSW

"We have dropped the £ subseript from the notation in Appendix C.
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cquation sets, or supplenientary propertics. We cousider the {ormer here, where a potential
vorticity equation will be used with the momentum cquations in the set of rSW equations.
A discussion of supplementary properties is continued in Chapter 3.

Horizontal divergence, ¢, and vertical vorticity, ¢, are defined as

. 1 o v

y = V- (ueg +uvey) = — 4+ — — v tan ), 2.54

l (e +ve) cosEN Dy DN ST AL (2.51)
1 Ov Ju

COs /\[ (')(/)[ (‘)/\[

C — (V X 17) L Oy =

+ Eutan &, (2.55)

Substituting § into the rSW Vertically Integrated Continwity Fquation (2.39) vields the rSW
Height-Divergenee Equation,

. a Dh ] ;

o= T P o (v, 1.0 e e 2 2.56

‘ (1+(711,)Df,+ <' o 1€ I‘[K'E}> 200

Combining the »SW Horizontal Mowmentam Fquations, (2.52) and (2.53), in the following
manner

1 0 )
—(2.53) — —(2.52 tan EN(2.52 2.57
om €N Dy B = g (202) + fan EA(2.52) (2.57)

vields the »SW Vorticity-Divergence Equalion.

D¢ DI,
Rer T o

- . ) o f/)) ‘ 9 5
+0(R¢C+Ty) = O (, %,7,,,5,1 {5, 4 Eh [l R [571[1.,@]]) (2.58)
q

Replacing o with the nSW Height- Divergence Equation. the above cquation is reduced to
the advection of a single variable,
D@ 1 e 97 oy [ e .
6{_‘ - O (AI/'II.', A/"p ':;C:I 7A/])' I |:t- ? 7“31‘f I:Aflll7 E[/] B R [57/[1 (H : (25())
where () s the Ertel potential vorticity, defined as
R+ T,

) = 2.6(
@ I1+aoh (2.60)

Since & < 1, the Coriolis parameter, 17, can be written as a Taylor expansion about ¢ =

0 = Ay, where 3 is defined in (2.31),

3
I = cos&Ncosépp + 7 siné)
&
1.5, .. .
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The scale of Q, denoted by @, ~ Q. is defined as o, = max(R, 0, 3, £%), and we define ¢ as
the dynamically active component of the potential vorticity, where Q = 14+¢,¢. Substituting
into cquations (2.59) and (2.60) results in an additional factor of ¢, multiplying cach term,
and dividing the equations by ¢, is effectively reducing the order of accuracy of the systeni.

The »SW Potential Vorticity Equation becomes:

Dg 1 1 I§ o o
— = Ol — v,y | = C| svpeen, 1&, = ER v, 27|, R g7 [1,C 2.62
D (5 (e 3] e |6 ] n st RS ) 2

1 [P
(I +oh)g = —<-(7/).+72C+,’)’)\[~§£2 (¢,~’+,\f)+...>. (2.63)
Py

Including the vSW Potential Vorticily Equation in the svstem of tSW ocquations means
8 Y ! A {

where

rescaling the order of accuracy of the entire system by an O (,). That is, for a system
accurate to O (), the additional specifications for this rSW solution class are:

1 1 1
A~ < ~ < 3 . . ; Y 3
s Yu S Qg p S g Inin <(7, C) , ER S pgovmin </ﬁ2 \ . (2.64)

g1 Tu
1 ¢ . 1 1
e < oamin |~ S 22 < i - 9 65
€1, < @ min L, 30 E1, S Pqtt min 1, ol (2.65)
The oblique spherical rSW equations are comprised of the rSW Momentum. Fquations (2.52)
and (2.53) and the »SW Potential Vorticity Equalion, where with the above scale restriction

the system is accurate to O («):

Du 1 oh
— - —REuvtan A —ol, = — hdhs 66
R i Ré&uv tan A — ol conEN D, (2.66)
Do , 2 ;
RD—(L + REuF tan A+ ul', = —ﬁ (2.67)
Dy
— = 0 2.68
Dt (2.68)
where
1 1. . .
g = — <-(7/). + RC+ 8N — 552 (dF + A7) + . ) . (2.69)
Pa
3
[, = cos&Acoségp+ < sinéA;, (2.70)
<
1 v ou
C == —_—_— utan & 2,71
5 cosEN Doy ON T lutandA ( )
and the horizontal advective derivative is
D () 1 () ()
= (- . (2.72)

— e —— v,
D¢ ot cos EN; Doy O
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2.3.3 Cartesian Coordinates

The transition from spherical coordinates to the Cartesian approximation has been simplified
by the initial scaling of the angles, ¢ and A\, as arclengths, ¢ and A;. Following Cartesian
) 5 ) i : s Wl { o

notation, we let
& = A= . (2.73)

The Coriolis parameter is defined as in equation (2.61), and since traditionally higher order
Coriolis terms are allowed, the expansion will be truncated later for consistency with the

system order:

o= 148y — & +y%) +.... (2.74)

¢

N o—

The remaining trigonometric functions are expanded in o Taylor series about @y = 0 = yy,
where only the € independent teris are permitted in the Cartesian cquations:

1

cos &y

= 1+0(&%) tanéy = O(&). (2.75)

The sccond advantage of the tilted coordinates is now apparent. In standard coordinates
g # 0 and yo # 0, resulting in extra terms in the above trigonometric expansions. Specif-
ically, cos would be truncated to O (£), and tan would be truncated to O (1), whereas the
tilted coordinates allow for an extra £ order of accuracy.

In the »SW Momentun Equations, (2.66) and (2.67), direct substitution reveals the
largest & terms appear at O (52).

Scaling the rSW Potential Vorticity Equation, (2.66), requires a few steps. First, vortic-

ity. ¢ from (2.71). becomes

1 v o v Ou 5
= ————— — —— 4+ futanéN, - — — — + 0 (&7 2.76
¢ cosEN Odp DN > S de Oy + (g ) ( )
and the advective derivative, from (2.72), is rewritten as
D 0 2 13 9 .
Co+u—+uv—+0(). (2.77)

e T A Ay

Substituting into the »SW Potential Vorticity Fquation, (2.68) reveals curvature (€) terms
2

of O ('; [R[C.1].0, ;3,52])

L
i

)



CHAPTER 2. FROM NAVIER-STOKES TO ROTATING SHALLOW WATER 19

Since the € terms are negligible, we let ¢, = max(R, 0, 3), and for a system accurate to

O («v), & is limited to
. _ . 1
& < wmin ( % [1, EJ) . (2.78)

With the above scaling assumption, the oblique Cartesian rSW equations to order o are

obtained from (2.66) - (2.68),

Du Jh
R— — v (1 + 5 = —— 2.79
* Dt v(1+ dy) D’ ( )
Du oh.
R— 4w (1l + 3 = ——. 2.80
DAy = -5 (2:50)
Dy :
— = 0, 2.81
> , (2.81)

where potential vorticity ¢ is defined as

] v Ou I .
(I+oh)y = — <~oh +R <(TU — ﬂ) + <,{3y - Sf“) (:1:2 + yz) +. >> , (2.82)
A 2

Yq Dy

and the horizontal advective derivative is
7, ( o o
C—+u——=+uv—. (2.83)

The dimensionless parameters arc

U L AH

R ~ i &~ - g~ LcotAy o ~ o P max(R, o, 3. £2). (2.84)
S 0
From (2.78). the Cartesian representation holds for
. 1 ,
& < (v111i11< ,% [17(3})’ (2.85)

and from (2.64) and (2.65) the rSW solution regime is defined when

P ) 1 . i 1 1 o
Ve S g, Y S pgormin <0,E>, Ek < ©qr in <—2,—> (2.806)

m
ny

, 1 ¢ A 1 |
L < pgvmin {E %}} , =1 < P min {1, EJ : (2.87)
where the @ and v terms are defined in (2.33) and (2.34).

The additional »SW Height- Divergence cquation, from (2.56), is

o Dh
0 = - —, 2.88
L+ol Dt ( )
with horizonal divergence, 6,
. du v )
5 o= L4t (2.89)

e oy’



Chapter 3

Rotating Shallow Water -
Textbook and Beyond

Now that the origins of the full rSW equations from the Navier-Stokes equations have been
explained, we seck to further analyse particular solution classes. We begin by specifying
parameter range where the Rossby number, R, is the sole free parameter. The full rSW
cquations are considered, and following a standard textbook analysis, arca integral prop-
crties of the rSW equations are discussed.  Lincar wave cquations and quasigeostrophic
theory are recovered as leading order R cquations, and give a simplified interpretation of
atmosplieric behaviour discussed in most introductory geophysical fluid textbooks [2], [10].
The textbook discussion is provided as a starting point for parallel analyvsis with the first
correction 1SW equations, which includes the largest R terms, and are the first point of

interest beyond the textbook level [12] .

3.1 Parameter Regimes

We now leave the generality maintained in the previous chapter and concentrate on particu-
lar solution regimes where the remaining parameters - o, C, o, 3 and £ - are defined in terms
of the geostrophically significant Rossby number, R. The values are chosen so distinet soli-
tion types appear, although the solution types are not restricted to these particutar choices
of scales. A summary of the scale regimes, and solutions that arise from cach, is provided

in Table 3.1.

20
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Height variation, ¢. We scale the height variation as the Rossby number, ¢ ~ R, as
in [9]. Studies where this assumption is relaxed specify the Burger nnmber, B = &, and so

comparison to these studies are made only for the case with B = 1.

Advective time scale, C. In the geostrophic assumption, the relative time scale was
bounded above by € ~ R~='. This is the time scale used in recovering gravity waves.
Quasigeostrophic theory is recovered at the minimum time scale of 1 ~ €, and in addition

to both endpoints, we consider Rossby waves at an intermediate time scale, C ~ R7™%.

System order of accuracy, «. In the textbook discussion, Scetion 3.2, lincar gravity
waves and gqnasigeostrophy are recovered when the order of accuracy of the system, a ~ R,
while lincar Rossby waves have larger corrections of o ~ R2. Both the first correction
gravity wave and quasigeostrophic equations, Section 3.3, include the O (R) terms, and are

- 2
aceurate to o ~ R-.

Planctary number, 7. In most cases, we restrict the planctary number to 3 < R. The

. g . . , L Lo .
exception are Rossby waves, Scetion 3.2.2, where 3 ~ Rz2. Further restrictions result from

horizontal periodicity in (3.9).

Potential vorticity scale, ¢,. The dynamically active component of the potential vor-
ticity, ¢, defined in (2.62), scales as 4, where @, ~ max(R, o, 3,€%). From the disenssion
in Scction 2.3.3 and the above o ~ R specification, ¢, reduces to ¢, ~ max(R,3). Only in

iy . 1
specifying Rossby waves is o, ~ R2. In all other cases, ¢, ~ R.

Relative length scales, £, The ratio of characteristic length to Earth’s radius is limited

by the Cartesian coordinate assumption, from (2.85),

. ) 1
2 < amin (1,201, =1, 3.1
& < ami mbe (3.1)

For synoptic and mesoscales flows, we will further restrict £ 2 R, except wliere a more
4 . - . 3 .
Hexible scaling is required, where &€ 2 R2. Further restrictions on & arise from horizontal

periodicity in (3.9).

Characteristic latitude, Ay,  In defining 3 = £ cot Ay, and specitying & and 3. we deter-
y 4X( Iz S ) JHSQ

mine the characteristic latitude,
/.

/3
cot A('] ~ =, (52)
£
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Table 3.1: A summary of the periodic rSW scale regimes and exact solutions, where C is

the advective time sceale, v is the order of accuracy of the system, € is the ratio of length

scale to Earth’s radins, 4 is the planetary number and ¢, = max(R, 3).

Dimensionless Parameters

Exact Solution

, 2 )
C « 1 & ‘ &} | Pq ‘
Sccetion 3.2.1 Fouri luti
. - , P ) Fourier solution
Linear R™U IR R < R? R 73
. w=2vVI1+k*+]?
gravity waves
Section 3.2.2 ] : ] 1 1 Fourier solution
Lincar Rz |R2 |[SR2 R Rz L —k
- 9 2
Rossby waves 1+ k2+1°
Section 3.2.3 . . . . .
. with 3 ~ R Travelling dipole
Leading order 1 R R S e R o
. w/o <R Solution
(uasigeostrophy
Scetion 3.3.1 T i
. o 4 3 . . ravelling wave
Nonlincar R~ | R? | R: <R? R fj
, solution
gravity waves
Scction 3.3.3 . , .
Fipst y 1 Rr2 | Rl 1% corr. 3~ R? 7
‘irst correction & oy , —
_ w/o B <R3
quasigeostrophy |

3.1.1

Horizontally Periodic Boundary Conditions

Since the experimental component of this study focuses on solutions which are horizontally

periodic over the domain D = [=D,, D,] x [-D,, D,], this case will be considered in the

following analysis. A particular limitation of the periodic case is the restriction of position-

dependent Coriolis termus. The following chiange of vartables allows for small 3 corrections,

while retaining a periodic formulation in the nSW Potential Vorticity Equation:

and

where p, = max(R, ).

q = q +—y
aperiodic periodic ¥q
Dq Dqg 3
— = — —.
Di aperiodic Dt periodic ¥q

(3.3)

(3.4)
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Substituting the above parameter restrictions and change of variable in ¢ into the 7SW

Momentum Equations, (2.79) and (2.80), and the »SW Potential Vorticity Equation, (2.81),

Du oh
_ 3, - _ = 3.5
R D v (1 -+ By) dr’ (3.5)
Duv oh.
— 4+ u(l+ 3 = ——, 3.0
RD[ + U ( +/ [/) (-);[/. ( ))
Dg [
i —_) el 3.7
D! + ’p,ll 0, (3.7)

where

R Jv Ou 1 L, .
(1+Rh)yq = i <_},_ + <{ S l)) S— ('R,’ﬁ;l//l, 4 & (:1:2 -+ ;1/2)) . (3.8)

©q dr Dy o 2
The class of periodic solutions is obtained when all € and 7 terms are negligible, except the

3 term in (3.7). This arises with the additional restrictions:

. g . 1 2 o .
a < (vo min (1,E> &S vy (3.9)

A summary of the scale regimes is provided in Table 3.1.

3.1.2 Integral Constraints - Full rfSW

An interesting consequence of the above equations is the arca integral conservation of four
parameters - divergence, vorticity, height and energy [10]. The arca integral is the mean
value, and ifts conservation implies a zcro nican. In this section we give an outline of the
proofs for cach conserved parameter, which will be followed in Sections 3.2.4 and 3.3.4 when
we consider the whether conservation holds for the asymptotic models.

Restricting solutions to the periodic w, ¢, i and ¢ simplifies the discussion since spatial
derivatives of periodic functions have identically zero arca integrals, (D.1) and (D.2). Since

divergence, §, and vorticity, ¢, arc defined as spatial derivatives of periodic « and v,
/ o = 0 and / ¢ = 0. (3.10)
S0 D

. ou v dv du
y = — and ( = — — — 311
‘ dx i Ay ma 6 dy  Ow ( )

where
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Conscrvation of the remaining two parameters, height, A, and energy, E, is dependent upon
o s o ? 5./ 3
the rSW Height-Divergence Equation, (2.88), which follows from the above +SW Momentum

Equalions (sce Scction 2.3.2)

. R Dh )
= - (3.12)
L+ Rh Dt
By rewriting the above rSW Height-Divergence Equation as
. oh 9, A
§ = —RI|IC—+ — (uh)+-—(vh)], 3.13
( ot + dx (uh) + iy (v 2)) ' ( )
it becomes apparent that
o f .
RCL [ h = — / 5 = 0. (3.14)
ot Jp JD

The conservation of cnergy E| as defined below, is derived from adding the »SW Momentum.
Fquations, multiplied by «(1 4+ Rh) and ¢(1 + Rh) respectively, and substituting the 7SW
Height-Divergence Equation, as explained in [10]:

2 | = 0 (3.15)
at Jp

where

E = (14+Rh) (v’ +0*) + * (3.16)

3.2 Leading Order Equations - Strictly Textbook

This textbook analysis follows an introductory discussion of 1SW, as in [2] and [10]. Focusing
. . bl o

on solutions at specific time scales reveals two types of linear wave solutions! - gravity and

Rossby waves - and a zero frequency balanced solution. The scale assumptions for each case

arc sulimarized in Table 3.1,
3.2.1 Linear Gravity Waves
Linear gravity waves are recovered at the following scales, from Section 3.1:

C~RY a~R, B<R, wq~R. and &~ R.

"Additional wave solutions arc supported at leading order, such as the Kelvin wave in the presence of a
lateral boundary and topographic waves caused by a varying lower boundary [2].
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The additional periodic restrictions, (3.9), limit 4 < R?. The characteristic latitude restric-
tion, (3.2), is cot Ay < R, spanning upper latitudes to polar regions.

The leading order equations are lincar in wu, v and L, which implics solutions of wave
forin. That is, «, v and h are constant multiples of the wave function etlhatly—wt) wlere k
and [ are spatial wavenumbers, and w is a temporal wave frequency. Substituting the wave

solution into (3.5) - (3.8) [2],

—iwu—v = —ikh (3.17)

—lwv+u = —ilh, (3.18)

wR™Yq = 0, (3.19)
where

g = hkv-—lu+ih. (13.20)

Nou-trivial solutions exist when the dispersion relation is satisfied,
Rw (= + 14+ +17) = 0. (3.21)

The first case. where w = £V 4+ A% + 12 is the known form of rotating gravity waves [2].
The sccond case, where w = 0, vields the balanced solution, which remains constant at this
tinie scale. Further analysis of these balanced dynamics is revealed in the quasigeostroplic

solution class.

3.2.2 Linear Rossby Waves

Lincar Rossby waves are recovered when (3.7) balances lincar advection and the 3 effect; or

I¢) . . . . . . . .
CR ~ ==. One choice of scales is given below, from Section 3.1:
¥q
_ L e . 1 . L
C~R 2, ow~R2 pB~R2, p,~R and RISEI R

The additional periodic restrictions, (3.9), limit &€ < Rz, Since 3 is fixed | while & can vary,

1
5]

the characteristic latitude restriction, (3.2), is 1 < cot Ag < R 72, spanning subequatorial
to midlatitudes. This is the case of equatorial Rosshy waves.

The leading order terms yield a lincar set of equations, and wave solutions are sought [2]:

—v = —ikh, (3.22)

w = —ill, (3.23)

R 2wg+v = 0, (3.24)
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where
g = R2(kv—lu+ih). (3.25)

Replacing ¢ with the above definition and w and ¢ with the geostroplic velocities, the

dispersion relation is
F 9 ‘ P2 TYad
1+ +P)w+hk = 0. (3.26)
In this case only negative zonal phase velocity is permitted (westward in standard coordi-
nates), and is the known Rossby wave [2].
3.2.3 Quasigeostrophy

The zero wave frequency solution arising in the short tinme scale solution (Section 3.2.1) is

included in a general class of solutions where, from Scetion 3.1:

Nl—

1 o -
C~R7. a~R, FZR, ¢,~R. and &S RE.

The additional periodic restrictions, (3.9). limit & < R. Solutions include 3 effects in (3.7)
when 4 ~ R. and do not include 3 effects when 3 < R?. The characteristic latitude
restriction, (3.2), is then cot Ag < 1 (with J effects, spanning midlatitudes to polar regions
), or cot Ag < R (without 7 effects, spanning upper latitudes to polar regions).

At leading order, the »SW Momentum Fquations (3.5), (3.6) become

o

- = —— 3.27

( or’ ( )
A

w o= —;. (3.28)
Dy

Substituting for w and v in the nSW Polential Vorticily Equation, (3.7), reduces the system

to one equation [2]:

g 3 adh .
— +J(h, —— = 0, 3.29
ot () + R O ' ( )
where (3.8) becomes
g = (VP=1)h, (3.30)

and the Jacobian of two functions is defined as

, of dqg IS dy .
. = — = — = 3.31
1t,9) dedy Oy de (3-31)
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Strictly balanced How is recovered when 3 < R?, while 3 ~ R allows for the formation of
Rossby waves. Only the first case, without /3 cffects, will be considered in the following
chapters, and for the travelling dipole solution in the next section, while 5 ~ R case will be

investigated the integral constraints of Section 3.2.4.

Travelling Dipole Solution

In the abscuce of 3 clfects, a travelling dipole solution. advecting at a constant velocity

¢ > 0 (Figure 3.1) is obtained by letting % = —(f% [5]. Substituting into the above

potential vorticity advection (3.29),
J((h+ey),q) = 0, (3.32)

which has the exact solution for ¢ > 0

For a dipole of radius a, o is defined as

g r<a
o = (3.34)
0 r>a

and potential vorticity, g, is defined as a piccewise solution

—o(h+cy) r<a

0 r>a

The complete solution form is given in Appendix E, where li, ¢ and ‘7)# arc continuous aeross

B .
the boundary at » = a, while E)—? is discontinuons.

3.2.4 Intcgral Constraints - Leading Order

The arca integrals considered in Section 3.1.2 for the full rtSW cquations are now revisited
for the leading order equations. In addition to divergence, vorticity, height and cuergy, po-
teutial vorticity is conserved in the leading order equations. Conservation of divergence and
vorticitiy follow in the same manner as the full tSW case (3.10), and couscrvation of poten-
tial vorticity, height and energy in tlie lincar wave cquations follows directly. We can now
focus on potential vorticity, height and energy conservation in the above quasigeostrophic

cquations.
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1SW QG° Travelling Dipole Solution 1=0.5 rSW QG" Travelling Dipole
Potential Vorticity Potential Vorticity

1 1 ‘
05 . o0 . ’

y-axis
o

y-axis
(o]

1 1 ’
-15 R 15 J
N 0 1 Kl 0 1
x-axis x-axis
(a) "Travelling dipole initial condition. (b) “Travelling dipole with speed ¢—1 at time
t—=0.5.

Figure 3.1: Travelling dipole solution to the leading order quasigeostrophic equations. with
speed e=1.(a) Initial condition. (b) Thme t = 0.5,
C'onservation of potential voriteity is obtained by integrating (33.29). and noting that the
arca integral of a Jacobian is zero (where both functions are periodic, (D.2)).
— [ g = — [ Jh.g)+ =v = O 3.36)
ot J, / (h-a) R (
Stimilarly. couservation of height is obtained by solving (33.30) for /.
o Q) Y a
— h = — | Nh—q = —— [ ¢ = 0. (3.37)
Ot JD ()ll 19} 2l JD
This implies that an initially arca-symimetric ¢ ensures both /i and ¢ remain synunetric in
e,

Clonservation of the leading order quasigeostrophic energy.

oh\ 2 O\,
= () 4 () 42 (3.38)
Ny A

") Cy oh
h = h— — 3.39
,/,) (ha) ,/,) Yor T (13.39)

ey
|

ix shown by considering

which reduces by substituting (3.30) and (3.29). and using identities (D.3) and (D.6),

.
Sl E =0 (3.40)
M JD
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3.3 First Correction Equations - Beyond the Textbook

In the previous textbook analysis, we discussed the presence of both gravity and Rossby
wave and balances solutions. These solution types are no longer distinet where the largest R
correction terms are added. In venturing past the textbook analysis, we focus on methods

for studying cach type of flow independently.

3.3.1 Nonlinear Gravity Waves
Noulinear gravity waves are recovered when, from Section 3.1:
_ P N !
C~R™' a~R, BZIR, ¢,~R, and &~TR2.

The additional periodic restrictions (3.9) limit 3 < R3. The characteristic latitude restric-
tion, (3.2), is cot Ag < R?, which spans polar regions only.

The leading order gravity wave equations, from Section 3.2.1, support three wave modes -
two opposite travelling gravity wave solutions, and a balanced solution. In the first correction
study, where R terms are included in the equations, we consider a solution regime where
only gravity wave solutions are supported by following the method outlined in [8].

The main reduction is to the special case of uniform potential vorticity, or

o Du
A+Rh) g = 242y~ (3.41)
dr Oy

Substituting for A in the »SW Momentum Equations vields the rSW Wave equations,

Ju o du a (v Ou
—+Rluv—+0— ) v = ——r | — — — 3.42
Ot TR (11('):17 M U(‘)y) : o <0:1: ();1/> ’ ( )

v v v Jd (dv  Du
RI{uw——+v— u = ——\———=1. 3.43
Ot N (lb(');l; T (');l/) i Ay (f):l: [);l/) ( )

Travelling Wave Solution

One dimensional travelling wave solutions, considered here? in x, are formed by letting

(()_)1 = —('% and % = 0. Details of the following are left to Appendix F.

Substituting the wave form into the momentum equations yields [8],

()i C— Ru)?
du . < (¢ —Ru) > (3.44)
(

O c— (¢ — Ru)?

v u

= " 3.45
dr ¢c— Ru ( )

Drpsy . n . . . N . .
“The equations for the travelling wave in i are obtained by interchanging « and v and setting y to —y.
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The equations are lincarized about the fixed point « = 0 = v by letting ¢ — Ru =~ ¢, revealing

an exact periodic solution,

(3.46)

(3.47)

for initial values A and B. Solutions are periodic for [¢] > 1, with wavelength A = 27V ¢? — 1.

Returning to the nonlinear equations (3.44) and (3.45), since 3:‘ and % arc undefined for

L . . 1 1
Ru = c— 3 and Ru = ¢ respectively, for ¢ > 0, Ru € (—oo, ¢ — (:-’i) U ((r -, (') U (¢, 00).

Solutions sufficiently close to the Axed point = 0 = ¢ such that Ru < ¢ — ¢3 will remain
1

in that interval. Similarly, for ¢ < 0 the limited range near the fixed point is Ru > ¢ — ¢3.

Suflicient manipulation of (3.44) and (3.45) reveals the first integral relation [8],

1 . .
- )2+ = (3.48)
(¢ — Ru)“

for a constant C', and periodic solutions exist for [¢ — Ru| > 1. The phase portrait for ¢ = 2
and R — 0.1 is shown in Figure 3.2,

Combining the two restrictions on w, periodic solutions can occur for ¢ > 0 when Ru <
C—CF < I, or ¢ > 1. A similar argument for ¢ < 0 shows periodic solutions when ¢ < —1,

and Ru > ¢ — ¢, This range of ¢ is consistent with the lincarized case, |of = 1.

3.3.2 Rossby Waves

At the intermediate time scale, C ~ 7'\’._%, the first correction equations include R% terms.
The emergence of Rossby waves relies on the planctary scaling & ~ R%; thus position
dependent terms are inevitable, and periodic solutions cannot exist at Hrst corrections.
This imiplies that Rossby waves in other solution classes, notably the quasigeostrophic case,

must remain leading order to support periodic solutions.

3.3.3 Quasigeostrophy

The quasigeostrophy scales, from Section 3.2.3, arc expanded to first correction, {rom Section
{ 5 ) : :
3.1, by
1 9 .
C~R, a~R, 3R, g;~R. and E~R.
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Phase Portrait of Travelling Wave Solution
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Figure 3.2: Phase portrait for the travelling wave solution to rSW Wave for ¢ = 2 and

. ) L . 1
R = 0.1. Periodic solutions remain to the left of the dashed line at % (() - ('3) ~ 7.4.

The additional periodic restrictions, (3.9), Hmit £ ~ R2 and 3 ~ R2, (with first correction
3 effects), or 3 < R (without 4 effects). The characteristic latitude restriction, (3.2), is
then cot Ag < R (with first corretion & effects, spanning just above midlatitudes to polar
regions), or cot Ag < R? (without 3 effects, spanning polar regions only).

While only balanced flow, and Rossby waves when 3 effects are included, are supported
at leading order, Scection 3.2.3, the first correction quasigeostrophy equations contain three
time derivatives, and enable the formation of gravity wave solutions. Thus, we reformulate
following the method in [9] to obtain solutions devoid of gravity wave behaviour to O (7?2)
This method involves tirst rewriting the primitive variables in terms of potentials £, G and

H:

OH
u = —(A;~F, (3.49)
dy
OH
v = — — G, 3.00
[ o G, (3.50)
IE 0G
o= H+ S o (3.51)

Dy Ox’
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and further expanding cach potential in an asymptotic series for R < 1

F = I+ RE+0O(RY), (3.52)
G = Go+RG +O(R?), (3.53)
H = Hy+RH +O(R?). (3.54)
Setting R = 0, the equations must be consistent with the leading order equations (3.29)

and (3.30), and the 7SW QG equations are

i,))—;f+.l(Ho,q) = 0 (3.55)
where
(VP11 = g (3.56)
Fy, =0 (3.57)
Gy = 0 (3.58)

By dehining ¢ as a leading order variable, we retain the above definition of ¢ to all orders of
R. Substituting the expanded potentials into the definition of ¢, (2.82), all R corrections
o l 1 3

add to zero:

[

(VP=1)H) = Ho (V= 1) Hy = 0. (3.59)

The momentum equations are reformulated by adding spatial derivatives of the first O (R)

correction of the »SW Height-Divergence Fquation, (2.88):

OF, L oGy OHy (3.60)
du dy ot oy
which cancel out the time derivatives and leave the decoupled equations

Y VH

(V‘ - 1) n = <u, [1()) (-;()])
A
‘ ] ) H

(VP-1)G, = J <‘—” 110> : (3.62)
oy

All variables are thus defined in terms of Hy and therefor ¢, which evolves in time according
to the rSW Potential Vorticity Equation (2.81),

dq

g Jq 3 OHy _
—  —J(Ho )+ R —J(H, q) + F G ety - 290 3.63
ot (o q) =+ < (i) + I+ l(’);z/> R O« (3.63)

The rSW QG equations are comprised of (3.63), (3.59), (3.61) and (3.62), where ¢ is
defined in (3.56).
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3.3.4 Integral Constraints - First Correction

We now revisit the arca integral conservation properties from Sections 3.1.2 and 3.2.4 for full
rSW and leading order equations. Recalling the discussion for the full rSW equations, the
rSW Height-Divergence Equation (3.12) was necessary in deriving conservation of energy and
Lieight in the full rfSW equations. While the »SW Hewght-Divergence Equation tollows from
the nSW Waue equations, it is not immediately apparent that the »SW Height-Divergence
Equation (3.12) is retained in the rSW QG model. So while energy, as defined in (3.15),
height, &, and potential vorticity, ¢, remain conserved in the »nSW Wave model (where by
definition ¢ = 0), similar relations for the wSW QGT! model are not immediately apparent.
An outline of the results for the 7SW QGT' models are given here, with details left to
Appendix D.

Arca integrals of the potential functions Fi and Gy, and thus velocities w and v (from

(3.49) and (3.50)) , arc obtained by integrating (3.61) and (3.62)

- D,
/FI: /vﬁﬂ+JC,WHO — 0, (3.64)
JD JD oy
G

: ‘ OH,
'1 /VZGHFJ (!,H(O = 0. (3.65)
JD JD dr

However, conscrvation of height, defined in (3.51), does not follow in the same manner, since

by integrating (3.59),
/ ]’11 = / VQH() —({( = — H()(V2 - 1)]‘[() = - / E() (3.(56)
J D JD S J D

where Fy is the leading order quasigeostrophic cnergy,

DHo\ ? OHo\* . ,
£, — [(Z) (%7 + HE, (3.67)
dr Oy

and is not necessarily zero in the first correction equations. Conservation of £y is determined

by considering

19 Jq ()H() ‘
e . 3.68
/ — (Hoq) / H()()t 154 (3.68)

which reduces to (see Appendix D)

' ) )
LAY . R/HU uquJ#” G4 (3.69)
D ()f 13 ()l/

This is sufficient to show total height, (3.51), is conserved to O (R?).
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Conscrvation of potential vorticity follows from integrating (3.63) (see Appendix D).
. O O ]

/ da _ / —.](H(),(1)+72<~J(Hl,q)—F1 — 0. (3.70)
. JD

g . Oq 3 OH

ox ! oy R Oz



Chapter 4

Numerical Methods

This chapter goes through the mumerical implementation of the balanced rSW QGY and rSW
QG equations and the rSW Wave cquations formulated in the previous section. Numerical
nicthods are outlined, {rom the general application of spectral methods to spatially periodic
nonlinear cquations, to scalar and vector integrating factor methods for each set of equations,
and the sclected numerical time integration methods.  Freely decaying turbulent initial
conditions arc imposed to analyze the spectrunt. Stability in the under-resolved short scales
is cnsured by introducing the hyperdiflusion variable, and sclecting its value accordingly.
Exact solutions to subsets of the equations are used to measure absolute convergence where

such solutions exist, and relative convergence is measured in all other cases.

4.1 Spectral Methods

For a primitive variable f(z,y,t), we apply the Fourier transform [14]:
o _
feenty = [ [ fndt i, (4.1)
. o —0OC

where

Jk )y = / / fle,y, e R ey, (4.2)

47?
and where &, and I are wavenumbers, and o and gy arc spatial coordinates.  Since the
primitive variables are periodic in o and g, with period D, aud D, respectively, we are able

to discretise the Fourier transform [14]. The number of grid points, N, and NV, are chosen
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so that discrete wavenumbers A& and [ lie within:
2 N, N, 2 N, N,
e T L Y D L A/ (4.3)
D, 2 2 D, 22

e . . . . ). 1)
Limiting the wavenumbers corresponds to the spatial discretization, Az = [TL and Ay = o
N y

[14]. For simplicity, we let N, = Ny = N and D, = Dy = D, and the discrete Fourier

transform pair is:

N _ N
2 3
f'(:lf,,[,}l/:'lﬂ ﬁ) — Z Z f(/\f, I, [v)(jl(ks.’l.‘m+10.‘}n) (4.[1>
g=—Ny—__ N
2 2

. 1 X \ —i(kx X
f(/v[ IL) = j\]‘) Z Z f('/l/.lllnyu,s Il;)()’ (ham +lyn) (/15)

where nand e are the discrete spatial indices.
While lincar terms, including derivatives, arc casily calculated in Fourier space, non-
lincar terms are not. For example, quadratic products in physical space correspond to a

convolution in Fourier space,

e~

fg = [xyg
_ ! fky, I, t) —ilkve b)) g ! (o, 1o, 1) —ilkertloy) gL, (4.6)
= . . 1,01, 0 )¢ (,,|(,,11\’r2 giho o, 1)e (LR (L1 . -0
kil kol
Two potential problems arise when such nonlinear terms are calenlated on a discerete do-
main - cascading of high under-resolved wavenumbers into the fully resolved spectrum, and
allasing of wavenumbers beyond the discretized spectrim to wavenumbers within the spec-
trim. We define the fully resolved spectral domain as all wavemunbers where VA2 12 <
,Zj—fr (N — 1), and any under-resolved modes are dampened by adding an artificial diffusion
- ,
term to cach time derivative:

() O PR

Ot otV (4.7)
where g 18 the artificial hyperditfusion parameter, and will be selected gualitatively in Section
4.4. The fourth-order Laplacian is assumed to sufliciently diffuse the highest wavenumbers,

while leaving the larger scales relatively unaffected [7].
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Aliasing of higher wavenumbers is resolved by anticipating the extra 2 N wavemumbers
created by the quadratic convolution operator, (4.6) (zero-padding), and removing those
extrancous wavermnnbers after the multiplication (de-aliasing). This retains the consistency

of the calculated solution to N modes [14].

4.1.1 Initial Conditions - Freely Decaying Turbulence

We now turn to understand the behaviour within the numerically resolved modes. With
artificial diffusion acting on the highest wave modes, and zero padding ensuring a spectrally
consistent sohution, the numerically resolved spectrum remains. In order to understand the
behaviour of an initially turbulent system within this spectrum, we the impose random
turbulent initial conditions, as in [12], where the initial kinetic energy spectrum has random

phasce and amplitude given by

l ’l:‘ B I < ‘ J
Lk Dl = 70— Ikl = VAP (4.8)
(W n |/.v,0|)
where the range of wavenumnbers, & and £, is defined in (4.3), IE[)' = | is the peak wavenumber

and m = 25,

In the »SW QG models, £y (k1) is the leading order kinetic energy.

Ex(k 0l = IR ol (4.9)
2
where Hy 1s defined in 3.59.

This differs from [12], where the total geostrophic kinetic energy is initialized!, but is
consistent with the asymptotic model in [9], where leading order and first correction are
given identical initial values.

As opposed to the 7SW QG models, where initial velocities are caleulated with a single
variable, the 7SW Wave model requires both @ and # to calculate the initial kinetic energy

spectrum. A sccond condition comes from specifying initial velocities as a fiction of .

(‘)'1,7,/‘ (")'g:‘?/' .
— and 0 = ——, 4.10
ox e Ay ( )

o=
and the initial kinetic energy is given by

. |
Ex(k.l) = 51A:|Z|w|~’. (4.11)

"Iy the rSW QG models, total geostrophic kinetic energy is %’ 7|'3\17j2.
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Spatial domain of 287 x 287 and spatial resolution of 256 x 256 are also chosen for consistency

with [12].

4.2 Integrating Factor Method

Since time advection of both ¢ i the balance »SW QG models and «w and » in the rSW
Wave model consists of both lincar and nonlinear operators, we use the known solution
to the lincar equations to simplify the total cquation. The ecighth order artificial diflusion
ferms in both models are linear, and by using the integrating factor method we can avoid
any related high-order stability coustraints.  This is achieved by multiplying cach set of
equations by an integrating factor, which is chosen so as to group all lincar terms under a
single tine derivative [14].

Consider first cquation (3.63) of rSW QGY and rSW QG| where for particular wave

modes & and [,

Jq g . .
o +ulklq = N(9). (4.12)
with
. 0y g
\/ - P D 4.13
Nild) ”(').’I‘ l(');{/ (4.13)

Althongh u and ©» appear in the above equation, /\//7 = /\/E((])., since uw and v are defined
given § (sce (3.27). (3.28) for rSW QG and (3.61), (3.62) for rSW QGT).

The »SW QG TF equation is obtained in multiplying the above (4.12) equation by the

. . ~ L2 231 . . . .

integrating factor e M and has the desired integrating factor form suggested above:
Dl ikr WIS Af /A
5 \¢ gl = ¢ N (@), (4.14)

Since rSW Wawve is a system of two equations, we consider the matrix form for particular

wave modes A and /[:

- Az = N, 4.15
Ot o + k o ke ( ))
where
- Rl (B2 ) — (k241 - l@ + U ,
A = i ) ) ( )8 Nep = — % ;jl/ (4.16)
L—10" =kl + plk| ugr + tfﬁ/
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We first simplify (4.15) by substituting the cigenvalue decomposition for Ay, with eigen-

vectors and eigenvahies are

1+ A7 1+ k2

Fi(k, D) = s kD) = . (4.17)
M+ iw Kl — w

Moo= okl —iw, A o= plEP 4iw, (4.18)

where w = VI 4+ A2 + 12,
Since { 7 { 2 } is non-singular for all &, 1 € R, given a(k, [, ¢) and o(k, 1, 1), there exist
t

unique oft) and () such that

(k1. 1) B . a(t) .
[ Ok, 1, t) } B { " ‘ " } { (1) } (4.19)

Substituting (4.19) into (4.15) where Ap is represented in terms of its cigenvalues and

—1
cigenvectors, and multiplying by { T ‘ 7 } vields,

9 [ okt AL okt S1 | P g 0u
O et A A P m | R TE a)
()f /1’))(:1\', l, /) 0 /\2 ,i/))(le.‘ l, f) 115% + 1;%

The rSW Wave IF cquations arce obtained in multiplying by the vector integrating factor
Al

0 et
cquation (4.14):

() (?,\11. 0 (1,(1‘7,//’?;/) (",\11, 0 B 3 T ‘
o ({ 0 e } { Bk, 1,1) B Y Al ] N e

which has the same desired form as equation (4.14).

} by the above (4.20), which has the same desired integrating factor form as

4.3 Numerical Time Integration Methods

The integrating factor cquations, rSW QG IF (4.14), and »SW Wave IF, (4.21), arc evolved
in time by the third-order Adams-Bashforth method (AB3), where the first two steps are
calenlated nsing the third order Runge-Kutta method (RIC3). Since the current equations
have a time-dependent integrating factor, which would need to be recalculated at cach time

step, we now reformulate to remove this dependency in the overall numerical method. Given
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liere is the reformulation for wSW QG [F, while application to rnSW Wave IF equations is
sufliciently similar. Details for both the AB3 and RK3 formulations are given in Appendix

G.
Third-order Adams-Bashforth, where n is the ninnber of iterations and At is the uniform

tinie step, is applicd as:

N IPATNE . Af ey BB .
(Ill+l = C ﬂlAJ At'('[/[, + E (2(3(”, / ““ A’./\/;? (([”)
_16(:—2/1“'\‘ A/J\/‘E ((iufl) + 5(}73/1|/~'\“A/J\/;: ((}”¥2)> . (422)

Third-order Runge-IKntta is applied as:

Gni1l = (,—/tll?l”m(}” + (l) (,i—/zlﬂ”mﬁl n L,L(f%/f\EI“‘AzSQ i S:‘) (4.23)
where
s1o= AtNg (gn) (4.24)
sy = ANy <(f-i/'|5““¢‘.92 + % (G + ."‘1)> , (4.25)
sy = ANy <("“msm <(fn - %.s’l> + 2(15'“|E|HA’.92> .

. . . . R L . . .
The mnmerical integrating tactor, ¢ #FEAL g independent of acenmmulated time, and is
expressed as a negative exponent, ensuring large wavenmmbers do not cause mnnerical over-

flow.

4.4 Stability and Spectral Resolution

Instability in specetral methods can result when cither the time step At or the artificial hyper-
diflusion parameter p are insufliciently stall. The former is strongly apparent, and canses
solution growth beyoud measnrable size. The latter, unlike in similar models, does not atfect
the stability of the rSW models cousidered here. Setting o = 0 yields nmumerically stable
solutions, as shown in Figure 4.1 for the nSW QG model. In order to ensure the appro-
priate spectral resolution, g is selected qualitatively to ensure under-resolved wavenumbers
do not cascade into the resolved spectrum.
An appropriate time step is estimated by the relation

Ax

At < (4.26)

Umax
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Figure 4.1: =0 rSW QG potential vorticity spectrum at £ = 100, for N = 256, D = 287,
and wavenumbers A and [ defined in (4.3). The dashed line indicates the edge of the resolved

spectrim at || ~ % (N —1) ~ 0.8. While the solution remaius stable, the under-resolved

spectrum can cascade into the resolved spectrum.

where .« 18 the maxinnmn velocity. In choosing scaling parameters in Scetion 2.2, velocities
arc assumed to be O (1) in time, and so the bound [w| < 10 should be a sufficient maximum.
For N = 256 and D = 287, the step is restricted to At < 0.03, and the step size of At = 0.02
is uscd.

As a result of the integrating factor, artifictal diffusion is induced at cach time step in

—plk[F AL

the parameter ¢ The e-folding paramcter, ¢f(]k]), then represents the munber of

time steps required to diffuse the cocflicient at the 1, A™ mode by a factor of e,
N o I =1 .
ef(E) = (,l,wm) . (4.27)

The first approximation of p comes from restricting 10 < (/(|/:|) < 20 at the highest resolved
modes. Thus a first approximation is yo~ 1077,

For rSW QG and rSW QG a larger value of 1 = 1079 produces a more qualitatively
characteristic potential vorticity spectruni, shown in Figure 4.2a, while figures 4.2b and 4.2¢
show the features of an overdamped (1 = 107%) and an underdamped (g2 = 1077) spectrum.
For rSW Wave, the smaller ;1= 2 x 1077 yields the desired velocity spectrinm, as shown in
4.3, o all cases, the spectrum was considered once a limiting spectrum had been reached

at £ = 100.
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(a) Sclectively damped spectrum, with jo = 1071
at £ = 100.
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(b) Overdamped spectrum, with o= 1077 at ¢ = (¢) Underdamped spectrum, with g = 1077 at
100, = 100.

Figure 4.2: Potential vorticity, ¢, spectra for varions artificial diffusion parameters, j., for
N =256, D = 287, and wavenumbers & and [ defined in (4.3). The dashed line indicates the
cdge of the resolved spectrum at [/:[ ~ % (N — 1) = 0.8. (a) Sclectively damped spectrumn,
1= 107% (b) Overdamped spectram, = 107", (¢) Underdamped spectrum, po= 1077,
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rSW wave 1=100 R-0.10 MU=2.0e-07
Velocity Spectrum

0
.“_4
- -5
2
- l
3 }
] I
g -0 X
|
|
|
|
i
-15 n . L L 1,
-1 -0.5 0 0.5 ]
Iogml ki

Figure 4.3: rSW Wave velocity (Vu? + ©2) spectrum with o= 2 x 1077, £ = 100, N =
256 and D = 287. The dashed line indicates the edge of the resolved speetrum at (/?] ~
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4.5 Convergcnce

[Exact solution forms of both the balanced and wave equations provide benchmark tests for
temporal convergence studies. For the wave code, the travelling wave solutions analyzed in
Section 3.3.1 are caleulated nnmerically, and used to determine absolute convergence. For
the balanced code, the travelling dipole solution, considered in Section 3.2.3 and Appendix
E. is used to determine relative convergence, since the solution is discontinuous in the first
spatial derivative of ¢. Since there is no known solution to »SW QGH!, relative convergence

is tested with a sample turbulent initial condition, described in Section 4.1.1.

4.5.1 rSW Wave Convergence

The travelling wave solution in @ to the rSW Wave equations, restated from (3.44) and

(3.45), is

Ju (¢ — Ru)?

du | 4.28
dx "\eo (c — Ru)? ( )
v "

A . 4.29
v ¢ — Ru ( )

Although an analytic solution cannot be determined, the discussion from Section 3.3.1 and
. . . . 1
Appendix ' shows the existence of periodic solutions for ¢ > 1 and uy < ¢ — ¢ or ¢ < 1

! . . » . . - . v .
and ug > ¢ — 3, which is sufficient for munerical compitation. The method for solving the
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travelling wave in @ is given here, while a similar formulation is used to calculate solutions
in .

The lincarized travelling wave solution, restated from (4.30) and (4.31), provides an
initial approximation in determining the nonlinear solution, provided uy << ¢

-l .

P S [ Chl) Bt ) ; S —

¢ -1 Ve —1
1

L =)
o= Al e pemilet=) Ee (4.31)

2 )b
G I (4.30)

where A and B determine the initial valnes, Letting A = L and B = % provides a small

amplitnde initial coudition consistent with wg < ¢. Given a wavelength A, linear solutions

arce periodic when the wavespeed ¢ = + 1. This provides an initial wavespeed, ¢, for

an iterative calculation of the nonlinear wavespeed required for solutions periodic in @ = A.
Given A and ¢, u(N, ¢,) and 0(A, ¢,) are obtained using fourth order Runge-Kutta with
128N steps (where N = 256). The Secant method is then used to determine the next

iteration, ¢, :

Cp — Cp—
Cp+1 = Cp — [“‘(/\-, (/'IL) - H(U, ('n)] “(\ - ,; — ”72/\1(, 1) . (432)
ANATIS ) y bre—

For A =77, ug =0 and vy = 1, ¢ = 3.640237113048.
Convergence is tested for At = %" ~" 1 =1 to b, which spans a range of At = 4.7x 1072
to 2.9 x 1073, Both the RK3 method, used to calculate initial steps, and the full RK3 +

AB3 method were tested, and the RMS error of velocity was caleulated,
RMS (|@actnat] = |Tapprox]) = \/i (actont] — lGapprox])? Jii] = /a2 + 02 (4.33)

Travelling wave solutions in both @ and y were found to have a similar convergence rates,

and arc shown in Figure 4.4 for waves travelling in . For the RK3 method, the RMS error
~ A" and for the RK3 4+ AB3 method, the RMS crror &= A2, where 8 RK3 steps are

used in calculating cach of the initial two iterations.

4.5.2 rSW QG" and rSW QG*! Convergence

For the rSW QG" code, the travelling dipole sohition, considered in Section 3.2.3 and
Appendix L5, with radins a and advecting with constant speed ¢ has the following piccewise
form [5].

—o(Hy+cy) r<a

q = (4.34)
0 7>
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R=0.10 ¢=3.64 Travelling Wave Solution R=0.10 ¢=3.64 Travelling Wave Solution
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(a) RK3 convergence for travelling wave solution (b) RK3 + AB3 convergence for travelling wave
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Figure 4.4: Convergence plots for the travelling wave solution to the rSW Wave cquations.

(a) RK3 with At (h) RK3 + AB3 with A2

where

ac <./1(7'v(71) I‘U)i

_— — = s << a
0o — o1\ J(ao1) @ ) B = (4.35)

*(l(,'m*rj r >

The above solution is continnous in ¢ and Hy across the boundary at r = . Continuity in

%# is retained when a and o satisty

[(()((I,) 20 . .]()(('L\/O' — l) Ao
(0’ — 1) m =+ 7 = vVOI — 1&(}1 ((1,\/(?)' (13())

Given a = 1, the smallest 0 & 16.3868925833852.

Ja—

The f;i,’ discontimuity at r = a affects the stability and spatial convergence of the
nuuterical solution.  To ensure mnmerical stability, time steps are taken on the interval
At € [7.(57 x 1071, 1.20 x ]()”-’] with Ax = 7/256. Siuce the spectral spatial convergence
accuracy is compromised, the spatial convergence is assumed algebraic. We therefore test
convergence by assuming that the mumerical solution ¢ can be written as a sum of the actual

solution ¢, and algebraic error terms,
(A, At) = qae + CAZ" + DA™, (4.37)

To approximate the order of the temporal convergence,

RMS (l¢(Ax, At) — q(Ax, At/2)])
RMS (|q(Ax, At/2) — g(Ax, At/4)])

2m, (4.38)
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where the RMS crror is defined in (4.33). The approximate convergence order is given in

Table 4.5.2, and whicn tends towards 3 with decrcasing At.

Table 4.1: Convergence rates for 7SW QGY with travelling dipole initial condition.

At RMS (Jg(A1) = q(A1/2)]) | misaiairaciy | m
7.67 x 1071 1.25 x 10~2 7.33 2.87
3.83 % 101 1.71 x 1077 7.69 2.94
1.92 < 1071 2.22 x 1074 7.86 2.97
9.59 x 1077 2.82 % 1077 7.93 2.99
4.79 x 1077 3.56 x 1078 7.97 2.99
2.39 % 1077 447 x 1077 - -
1.20 x 1077 - - -

Since there is no known solution to the rSW QGT! equations, we use the above method
(4.38) to approximate the rate of convergence for a solution with random initial conditions,
as specified in 4.1.1. Results are given in Table 4.5.2, and tend towards third order with

decreasing Al

Table 4.2: Convergence rates for 7SW QGH! with turbulence initial condition.

Al | RMS (Jg(At) — q(At/2)]) | masiaba Ay | m
2.00 % 1072 4.31 x 1072 5.43 2.44
1.00 x 1077 7.94 x 107 5.97 2.58
5.00 < 1073 1.33 x 1073 6.44 2.69
2.50 x 107 2.07 x 107" .90 2.79
1.25 x 1073 3.00 x 1077 7.31 2.87
3.13 % 107" 4.10 x 1076 7.60 2.93
6.25 x 107! 5.39 x 1077 7.60 2.96
1.56 x 1071 6.92 x 1078 7.79 —
7.81 x 1077 - — -




Chapter 5
Numerical Experiment and Results

In this chapter, we investigate the nature of the asynunctry between potential vorticity
cyclones and anticyclones in the rSW QG+ model. In full rSW. Polvani ot al [12] fonnd
that the bias towards niore intense and more nunicrous vorticity anticyclones incereases with
[roude mmuber, F. With the assminption that F ~ R, an increase of anticyclonic intensity
with R would be cousistent with [12]. Due to the asymptotic nature of the rSW QG™!
model. only O (R) dependencies can be measured as significant representations of the full
rSW cquations. To determine such a relation we proceed in the following manner. First,
we consider a qualitative analysis of the potential vorticity evolution from turbulent, initial
conditions. We then turn to quantitative analysis by considering the potential vorticity dis-
tribution, and use the median and peak descriptive statistics in quantifyving the asyuumnetry.
A relation between the statistical estimators and R is then verified with ANOVA, and the

desired linear relationship is determined.

5.1 Experiment Outline and Qualitative Analysis

The survey was comprised of 20 rmns for cachh 'R = 0.05, 0.1, 0.15 and 0.20 from the
rSW QG model, and 20 runs from the 7SW QGY model with R = 0. Numerical code was
implemented in MATLAB, and run on a 2.5 GHz PowerMac G5. The rSW QGY simulations
ran for 10 hours to reach ¢t = 1500, while the rSW QG*! simulations ran for 18 hours to
reach £ = 1500. Turbulent initial conditions were specified, as in Section 4.1.1, where cach
run had distinet random phase values, with a spatial domain of 287 x 287 and spatial

resolution of 256 x 256. Potential vorticity, ¢, was collected at £ = 1500 dimensionless tie

47
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units.

As a first qualitative look, the potential vorticity ficld at + = 1500 for R = 0, R = 0.1
and R = 0.2 is shown in Figure 5.1. In all three cases, coherent vorticies develop from the
turbulent initial conditions, shown in Figurce 5.1a, with the expected statistical synanetry
between anticyclonic (negative, blue) and cyclonic (positive, red) vortices in the R = 0 case,
Figure 5.1b. However, as found in [12], the symmetry appears to break down with increasing
R, where for R = 0.1, Figure 5.1c, the size and intensity of anticyclones appears greater
than that of the cyclones, These trends are more prevailent for R = 0.2, Figure 5.1d, which

shows a dominance of anticyclonic vortices in a cyclonic How.

5.2 Descriptive Statistics

While the mean potential vorticity remains zero, as shown analytically in Section 3.3.4,
the bias in the potential vorticity ficld indicates a skewed distribution. As a quantitative
approach, we consider the probability mass function (PMIY), where potential vorticity is
sorted into bins of width N?/32=2562/32, as shown in Figure 5.2, Most notable is the
location of highest concentration, or peak, potential vorticity, which appears near zero when
R =0, and is shifted towards cyclonic values with increasing R, indicating a background
cyclonic flow. The range of cyclonic values also appears to decrease with R, characterizing
the greater intensity of anticyclonic vortices.

This asymmetry is quantificd by two estimators - peak and median potential vorticity.
The peak, akin to the mode, is chosen as a clear qualitative distinction between the PME
for various R valucs. The peak is calculated as the maximum of the cubic best fit to the
upper 36% of the potential vorticity PMF, as shown in Figure 5.3, The median is calculated
as well, since it's a known nubiased estimator.

A trend between peak or median potential vorticity with R is indicated from Figure
5.4, showing notched box plots of peak and median potential vorticity for the five different
values of R. That the 95% confidence intervals, indicated by the notches. do not overlap
indicates a relation between peak or median and R. We assuime that this relation has the
same perturbation expansion as the variables in the 7SW QGH! model, and is approximated
by fitting the least-squares quadratic to the data,

P(R) = —0.0040 + 3.4850R — 4.6484R?, Peak, (5.1)
M(R) = 0.0014 4 3.0357R — 3.9032R". Median, (5.2)
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as shown in Figure 5.5. The accuracy of the approximations is verified, since the constant
termis are approximately zero, and consistent with the leading order (R = 0) symietry.
The approximations are asymptotically consistent so long as the last two terms remain
asymptotically ordered, which occurs for R < 0.75 in the peak ¢ and R < 0.78 in the
median ¢ approximation. This timplies an approximately lincar relationship between peak
or median potential vorticity and R in the small R limit, which is within the range of
applicability of the »SW QGT! perturbation modecl.

The results found here are consistent with those in [12], in that the eyclone/anticyclone
asymmetry, developing from the turbulent initial conditions specificd in Section 4.1.1, has a
strong dependence on F(~ R in this study). One of the possible causes for this asymmetry,
considered in [12]. is the interaction between gravity waves and balanced vortices in the full
rSW equations. That the asymmetry is retained in the balanced »SW QG model indicates

that gravity waves interaction is not the sole cause.
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Figure 5.1: Poteutial vorticity for three (statistically distinet) initially turbulent runs. (a)
Sample turbulence initial condition. (b) At t=1500 for R = 0. symmetric growth of cyclones
(red) and anticyclones (blue). (¢) At t=1500 for R = 0.1. somewhat greater anticyvelonic
intensity and number, and weaker vet more prevalent cyclonie fow.  (d) At t=1500 for
R = 0.2, the asviumetries are more pronotnced - intense anticvelones immersed in a cyelonic

flow.
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Figure 5.2: Potential vorticity probability mass functions (PMF) for three initially turbulent
runs. (a) At t=1500 for R = 0, the PMF peaks near at ¢ = 0, and spans an cqual range of
negative and positive values. (b) At t=1500 for R = 0.1, the PMF peak is shifted to the
positive (cyclonic) side, indicating a weak background cyclonic flow. The range of positive
¢ has decereased, indicating more intense anticyclonic formation. (¢) At t=1500 for R = 0.2,
there is a larger PME peak shift, indicating a stronger background cyclonic flow, and the

range of positive ¢ is smaller still,
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Figure 5.3: Calculating the peak potential vorticity from the PMFE - bestfit cubic to the
upper 36% of the PMFE shown in Figure 5.2b at ¢t = 1500 for R = 0.1.
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Chapter 6

Summary and Future Work

The initial aim of this project was to investigate two subclasses of solutions of the two-
dimensional, homogencous Rotating Shallow Water (rSW) equations. The first is the special
case of uniform potential vorticity at fast time scales, which supports only gravity wave
behaviour. The sccond is the first correction R perturbation expansion to quasigeostrophic
theory, a solution class describing slower tinie scale balanced fow. The intent for the second
case was to show that the breakdown of symmetry between cyclones and anticyclones in
the full tSW model, as found in [12], did not occur, or oceurred only weakly in the strictly
balanced model. This was not the outcome, as discussed in Chapter 5. The breakdown
ol cyclone/anticyclone asymmetry depends strongly on R, where from turbnlent initial
conditions, anticyclones develop to be more numerous and more intense, while anticyclones
develop weaker and more dispersed. A linear dependency between median potential vorticity
and R is obtained, which is within the range of the asymptotic model.

This led to what became a principal focus of this work - do the rSW ecquations accurately
represent the atmosphiere, and can quasigeostrophy be justified as a first correction theory?

In similar considerations of rSW, for example [10] and [2], only the leading order terms
arc retained, and any smaller terms are considered negligible, A thorough discussion of the
required scalings in various classes of shallow water solutions is considered in [6], although
the quasigeostrophic formulation is dismissed as an adequate leading order model, deseribing
both J effects, considered in Section 3.2.3, and the effects of hottom topography, considered
in [2].

The largest term dismissed in the leading order equations come as a result of using

standard coordinates, where latitudes are measured from the equator, and curvature within
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the coordinate system increases with distance from the equator. This is less of a problem
if the equations arc considered in spherical coordinates, but Cartesian models assume these

curvature terms are negligible. The solution can be summarized as:

To miniinize coordinate system curvature near Vancouver, place Vancouver on

the coordinate equator.,

That. is, change coordinate systems, from the standard equatorial coordinate system to an
oblique coordinate system, with the equator passing through the latitude, longitude point
of interest. Details and images of this transform are given in Scction 2.1.3. Applied to the
Navicr-Stokes equations, the only artifact of the oblique coordinate system is the definition
of Coriolis parameters, which are a result of the rotating reference frame (carth), in equation
(2.11).

The remainder of Chapter 2 is devoted to a systematic scaling derivation of the rSW
cquations from the oblique Navier-Stokes equations. This derivation is unigue in that terms
scale independently of an initial longitude, latitude point!. The order of ultimately negligible
terms is carried through the derivation, and the necessary scaling assumptions to obtain
rSW to a variable order of acenracy is given in (2.64) and (2.65). A similar reduction from
spherical to Cartesian coordinate representation is considered in Section 2.3.3. Cartesian
coordinates are recovered when the coordinate curvature terms ave negligible, which reduces
to the scale assumption in (2.78).

In Chapter 3. particular solution reghmes of tSW are considered. where gravity waves,
Rossby waves and quasigeostroplic theory are recovered. The chosen scales for periodic
solutions, and any exact solutions to the resulting equations, are summarized in Table 3.1.
Future projects may include a similar study where the aperiodic Coriolis terms, unique to
the oblique coordinate frame, are included in the cquations.

One of the properties of the full rSW equations is the arca conserved quantities of density,
vorticity, height and energy (sce Section 3.1.2), and is revisited in the leading order, Section
3.2, and first correction, Section 3.3.4, quasigeostroplite equations. In addition to the four
listed quantities, potential vorticity is also conserved at leading order. Tu the first correction

equations, density, vorticity and potential vorticity are conserved, while height is conserved

"The only exception is the [ = 2sinAg and 3 = €cot Ag terms, which scale the Coriolis effect. That
these terms remain small is characteristic of geostrophic low, considered in Scection 2.2, and not a vesult of

coordinate system.,
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to O (Rz), which is consistent with the asymptotic model. It remains as future work to
determine whether cnergy is conserved, or whether an cquivalent cnergy variable can be
found.

Chapter 4 outlines the numerical methods used in evolving the rSW QG models (from
Section 3.2.3). and the 7SW Wave model (from Scction 3.2.1), which consist of spectral
ncthods in space and third-order Adans-Bashforth in time, with initial third-order Runge-
Kutta steps. Spectral resolution is ensured by introducing a hyperdiffusion variable, i, which
dampens the highest, nnderresolved wave numbers. As opposcd to similar models, sctting
i =0 yields stable solutions. Further work could include an analysis of the characteristic
spectrum for arca integral conserved variables.

The statistical experiment in Chapter 5 shows a breakdown in vortex symmietry, consis-
tent with that found in [12]. Where the Polvani [12] analysis differs, and what could lead
to futher work, is in the caleulation of the asymuetry. Since mean potential vorticity is not.
conscrved in the full rSW equations, vorticity was used in quantifying the asymmetry in [12],
and instead of a mode or median statistic, which appears centered at zero, the kurtosis?
provided a measure of skewness [12]. Also, wide range of F and R values were consicdered,
and the dependency was found to be dependent on F alone.

While statistical experiment was run with the first correction balanced model, numnerical
solutions to the noulincar wave model have yet to be analyzed, and are also a poiut of future

work.

- ~3
2 . ¢ . . . . .
‘Kurtosis = T + where ¢ is the vorticity, and D is the horizontal domain.

(Ihe2)z2




Appendix A

Spherical Operators and Curvature

Terms

This appendix fills in the remaining details in the transformation from the orientation and
coordinate independent vector Navier-Stokes equations, (2.1) and (2.2), to the oblique spher-
ical Navier-Stokes equations in (2.21) - (2.24). First, the spherical operators are defined,
and then the curvature terms are determined, which result from the spherical operators
acting on the ¢ and A dependent spherical coordinate directions.

The divergence operator in spherical coordinates, acting on a vector A = Ay, + Ayey +

Aoy, s
— 2 DA, 1 JA 10AN Axtan A
V-A = ZA. 4+ L+ A . Al
o or rcos A O¢ o OA r (A1)
The gradient and Laplacian operators in spherical coordinates, acting on a scalar a, arc
()f T af 1 ()f
Va = y o —— + A2
! o 7 Cos A (')(/)( ’ ))\ (4.2)
‘ 2 da D% 1 ()Z(L tan A da 1 P%a
V“)(I‘ = + . + ———— — + - T Av‘;
ror - 0r2 T r2cos \ 02 roON 2 ON? (A.3)
The gradient operator appears in the advective derivative, as
D J
— = —+14-V A4
DI o (A-4)
I3} 0 w0 v 0
= —+w-— — + - Ab
ot " ()I reos Ado o r OA (A5)
The advective dertvative acts on i = uey + vey + wey as
Di Dw De, Du. Deyg Duv D(f,\
—— = ——Ctw—+cp— +u + e A6
Dt Dt Dt Dt Dt Dt Dt (4.6)
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where advective derivative curvature terms are

De, ww Je, . vw de,
w = — ,
Dt 7 Cos N Do o ON

5 )
Deg ut Doy v deg
1 = —
Dt 7 cos A O 7 ON
,”D(f,\ B uy  Oey . 0% Doy
Dt 7 COsS A Do roON

The product rule for the Laplacian operator is
Vi(fg) = [Vig+2(V[)-(Vy)+4V?/, (A7)

where

Ofda _L__0fdg  1of oy "

(V1) - (Vo) Or dr 12082 Xdp g 2 ONON

The Laplacian acts on @ as

Vi = (Vzw) e +2(Vw) - (Ve,) +w (Vz(/,.) ) (V“)u) +2(Vu) - (Vey)
e (V2(<¢,) + oy (VQ'U) +2(Vu) - (Vey) + v (Vz(é,\) , (A9)

where the Laplacian curvature terms are

2 dw de, 2w de,

2(Vuw) - (Ve,) = —— "1~ A.10
(V) (Ve,) r2cos N\ g Do ™ r2ON OA (/ )
Y w o 0%, wtandde, w e,
w20 — _ r,o=zr Al
wVe, 72 cos2 N D2 r2 OA * r% ON2 (A-11)

2 Dy 2 ()J deg

(V) - (Veo) TR NOp 0 LN O (A.12)
0 1 ey utanNOey  w D%ey
1 .vk 2 = ; " 5 " - — ‘t \.13
Yo r2cos? A dpp? 2 ON  r? ON? (A-13)
2 v ey 2 Do dey

2(Vo) - (Ve = e 2 T2 A l4
(Vo) - (Ven) r2cos? \ O¢p ¢ - r2ON O\ ( )
oV - v D?%ey v t,nil/\(')ﬁ . v D%y (A.15)

12 cos? \ D2 2 ON P ON?

Derivatives of the spherical coordinate directions are obtained by differentiating the spherical
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coordinate transformation matrix, (2.12),

. [ i ] [ 0 CO8 A 0 e
E
— | = —Ccos A 0 sin A o | s (A.16)
¢ i ;
ey 0 —sin A 0 ey
o, | 0 0 1 e,
12
x| e = 0O 0 0 o |- (A.17)
CA -1 0 0 C\

The advective derivative and Laplacian of « in oblique spherical coordinates are

Dii Dw  u?+v? N Du  wvutan A N W,
- = S —_—— — + — ey,
Dt Dt 2 ' Dt r 7 '
- Duv - w? tan A . wu (A18)
— + ——— + — ]y, .
Dt 7 r A (
5 5 2 1 Ow . 0o
20 = 2, v 108 N — — sin A »
v <V " 72 cos? A [ 2 Teos ed s Op K
. 2 [Ow tan A du v
V“)' - R i ,
- < vt [()/\ - cos A ¢ 2(:()52/\}> o
" 2 1 Ju  Ov
‘w—— |w— ————— — — +vtan \ 2 A 19
N (v R [“ cosh DG on A ) (A.19)

These cquations are equivalent to the standard spherical coordinate equations foiund in [10]
and [4]. The difference in the oblique coordinate representation is the zonal and meridional
dircetions, ¢ and ey, and longitude and latitude variables, ¢ and A, are dependent upon

the obligue coordinate system.



Appendix B

Friction Force Defined and Scaled

B.1 Decfinition of Friction Force

[rom the preliminary assumptions in Section 2.1.2, the friction foree, I, is the viscosity of
a Newtonian fluid,

F o= ,lv‘sz—;wv.ﬁ), (B.1)

In terms of the oblique spherical coordinate directions,

Fo= uF,+ nky + kb, (B.2)
where
5 ~ 1 ) . .
F, = V<u+4+ Vi, + — (V -4d) (B.3)
' S eos A dd
. = 1
Fy = V2u+ V2 + - (V-0) (B.4)
7 ON
. ~ ()
F, = Vie+ V% + ;— (V- ) (B.5)
or

with the Laplacian defined in A3,

20 0?2 1 2 tan A ¢ 1 o?

0t oot S5 s oy T e B.6
rdr o Ort r?eos? A Ot 72 O + 72 ON2 (B.6)

Vo=

60
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the Laplacian curvature terms, from AL10,

- 2 U ow v
2 — I 08 N —— — i _
Vo 2 cos? A [ 2 eosA 130) s /\(")(f)} (B.7)
= 2 [Ow tan A du v
v2 = - T— e 2 B8
A 72 {(”),\ - Ccos A D¢ 2cos? /\} o (B.8)
— 2 1 Ou v
V2, = —=|lw— ——— — —+vtan\|, B.Y
2 {w cos X ON Tovtan } (B.9)

and velocity divergence from (A1),

1 Ou 1dv wvtanA 2 ow

V-iad = - — —u _— B.10
: 7" COS A Do - 7 ON 2 * - * or ( )
with derivatives
._(‘)~ (V@) = 1 ﬂ 1 ‘(‘)2‘1; B (.")v tan A . g()_ul ‘(')2"(1,1 (B.11)
Ao reos NI T ONDD Do r oo drodd
1, . tan A u 1 D*u L O%v
oy (Ved) = ot o T oo
OA PeosAAd T eos NONIG 1 ON?
v dvv 20w D%w
————— B.12
reos? N OAr - rON N droX ( )
0 1 fou v
—V" = =y -— + — Ve A 2w
oy (Vi) 2 (z)(/) gy vtanAt “>
. 1 O . 1 0% tan A dv N 2 Ow N J%w (B.13)
rcos A Opdr T GNIr ro Or 1T oOr or? o

B.2 Scaled Friction Force in Oblique Spherical Coordinates

The characteristic scales Fg, Fy and F, are found by first replacing each variable with a
characteristic scale and a dimensionless O (1) variable, as described in Section 2.2, The
scaling of functions and operators are then found, and substituted into the equations for
I'y, Fy and F,. The largest terms are kept as the characteristic scales, where the synoptic
and mesoscale scaling assumptions from Scction 2.2.1 are used in determining the relative
size of cach term.

For the velocity and position variables the substitutions are, from Scction 2.2.1,

ro¢p — Loy rgN — LN 1 — ro+ Hz (B.14)
nwoo— U?L((_/)[,/\[,f) + A(]?Ll((/ﬁ[,)\[,l,f) (BL"))
v — Uvlon, M, )+ AU (¢ M. 2, 1) (B.16)

w — Ww(d, N,z t) (B.17)
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From the synoptic and upper mesoscale scaling assiuiptions of Section 2.2.1, the horizontal
length scale is less than Barth's radins, H < L, and the vertical height scale 1s significantly
sinaller than the horizontal length scale, L < 7. This allows for the following variables to

scale as the first term in their Taylor expansion,

1 1 1

- = ——— ~ — B.18

r g+ Hz 70 ( )

oSN — cos — N\ ~ 1 (B.19)

70

L L

sin —A — sin—XN\ ~ — (B3.20)
0 0 o
L

tan A —  tan —X\; ~ —. (B.21)
o 0

This oblique scaling of the trigonometric (unctions, which are expanded about Ay, differs
from the standard scaling, where the Taylor expansions are taken about Ag. Thus, the
scaling of the friction parameters in oblique coordinates is independent of the characteristic
latitude Ay.

Since zonal and meridional velocities, w and v, have tangential and vertical variation
components, the tangential and vertical position derivatives scaling accordingly.  The «
posttion derivatives are given below, while the o derivatives scale similarly,

Ju Ou U+ AU du AU
~ p— -

EYERETY "0 ~
()(;) T ON

— 13.22
L Or H ( )

Pu P D% ZU + AU a9 AU 0% AU
LT, T ~ I Y = . s 7 " ~ T'n—— - . ~ ——.
DG N2 Dgon VT e ONOT DO LI ot e

(3.23)

Vertical velocity has one scale for both tangential and vertical variations, and its derivatives

scale as

O du W du 4

Z 2 e — o~ — B.24

g ox L or 1l (B.24)
Pw OPw O*w W Pw O%w W 0*w W (13.25)

S aaay ~ ToTs BomT ™ '0vs ma Y T
A2 DN2 T OO L2 ONOr’ Oor LH O H?
We now substitute the characteristic function and operator scales into the definitions of
Fe, 'y and I, where the relative size of each term is found by recalling the synoptic and
mesoscale and horizontal assumptions from Section 2.2.1.
L H W

— < — <« | — < 1. 13.26
- - 17 I, < 3 L/ < ( ))
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The Laplacian terms, (B.6), scale as

» 9 AU AU U+AU U+AU
Vou, Vv ~ o + J7E + Iz + 7'3
AU U
YT
5 W wow W
v’l” - I()f[+HZ+L—£+¥
W
e

The Laplacian curvatire terms, (B.7)-(B.9), scale as

vzc")-, V'Z/\

vz,

~

~o

U+ AU W
I(“; 'I’()L ’
W U+ AU
H * rolL
U+ AU
rol.

The velocity divergence derivative terms, (B.11)-(B.13), scale as

1 iVIT) ii(v.ﬁ) N U+AU+U—+—AU+£+£
7 COS A Do T 0N L? 1(; rol.  LH
U+ AU W
Y T T Im
L)(V-ﬁ) N U+AU+£U+AU+£AU+ LV_FE
or ‘I'()L 70 I(“; T ’I'()H I’()[f [[2
U+ AU L AU W
~ roL R'}'()H + H?
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(B.27)

(13.28)

(13.29)

(B.30)

(B.31)

(B.32)

Summing the tangential components, (B.27), (B.29) and (B.31), and reducing to the largest

relative terms, yields the characteristic scales for the horizontal friction terms,

. AU U

I‘gﬁ»F/\ ~ F+ﬁ
AU . U .
H*? L2

U+ AU 4% U+ AU W

— + +—t
'I'(‘i ’I'()L L‘Z * LH

2%

LH'

(B.33)

Summing the vertical components, (13.28), (B.30) and (1B.32), viclds the characteristic scales

for the vertical friction terms,

W
F, o~ —

7ER

U+ AU N L AU
rol. roroH

(B.34)



Appendix C

Scaled, Dimensionless rSW

Equations

C.1 Scales, Dimensionless Parameters and Operators

We begin by recalling the discussion from Scction 2.2, where variables are represented as

a constant characteristic scale and a dimensionless O (1) vartable. Here, we represent the

characteristic scales in terms of the dimensionless constants also specified in Section 2.2,

L L T 4% Ap

—_— Pl [ — ~ —

7 uo l]-, p — /)07

. C = .
70 Ul

oy
o~

«

(C.1)

where at synoptic and mesoscales, € < 1, g, < 1, &, < 1, at geostrophic time scales

C < R~ and in the Boussinesq approximation, vp € 1 (sce Section 2.2.1).
AU AP
A//'ll = 3 A’/) = P b
U K P
where we assume v, < 1 and 7, < L.

The position and time variables, from (2.26), become

cuU
o — &y A — &N =g (1 + E[(E) = —t
where trigononmetric fitnctions of ¢ and A become
cosd — coségy sing — sin &gy,
Cos A — coséN sinA — sinéN; tan A — tané\;.

64

(C.2)

(C.3)
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Velocities, from (2.29), become
uw = Uu(dr Mo t) + ypuldp, A,y 2, )]
vo— Ule(dr. Not) + vl Ay z,1)]
w — Usy Jw(p, N, 2, 1)) (C.6)
density, from (2.27), hecomes
p— o [L+pp (dn ALz, 1) (C.7)
and pressure, from (2.28), becomes
p— poglpo(2)] + pofUL [p(d, My t) + 50 (0. Aty 2, 1) (C.8)

where the hydrostatic, Py ~ pogH, and geostrophic, P ~ pyfUL, approximations from
(2.35) have been substituted.
By defining f = 20 cos Ay and 3 = & cot A, as in (2.30) and (2.31), the Coriolis param-

cters, (2.15) - (2.17), arc rewritten as

Qp = —ésin &y, (C.9)
/ - f
Oy = 5 |—cosd@sindN + —cosEN | (C.10)
Q
f f
Q, = 5 [(:osf(j)[ cos&EN + '?HinE/\IJ . (C.11)
Q

C.1.1 Taylor Expansion

The quotient ,l arises frequently, and can be expressed as an O (£7,€) deviation from Earth’s

radius, rg, by considering the Taylor expansion in small 27,8z,

1 1
ro(1+2162)
1
- — [l —epz+...]
o
1 .
o [14+ O (£.8)] (C.12)
)

When multiplied by ~ and ¢ terms, the order of the trig functions affects the overall scale
size. In this case, we expand about A\g = 0 and ¢y =0,
cos&dp,cosEN = O(1)
sinégy, sinEX tanéd, = O (€) (C.13)
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As a result of the oblique spherical coordinate system, the order of the trigonometric func-
tions does not depend on Ag.

If we substitute the order of the above trigonometric functions into the Corlolis terms,
we find that

f

/ 50(1,,3). (C.14)

Qo — §C)(£) Q/\ = §O -

Sy
o)
N
L=
[
I

%] : . .
where £ = cot Ag becomes very large near the equator (Ag = 0), and is the only term in the
¢ ,

oblique spherical equations to have such a latitnde dependence.
C.1.2 Scaled Operators

The scaled operators are obtained in two steps:

1. Nondimensionalize and scale the position and time variables by substituting (C.3),
and replace /l with its Taylor expansion, (C.12). Where necessary, substitute for the
velocity variables (C.6).

2. Determine the order of any z, v terms, where trig functions multiplying &, v terms are

replaced with (C.13).

IMirst derivatives in ¢ and A; are obtained by applying steps 1 and 2,

1 2, 1+ 0@E) 1 1
7 Cos ) O 70 cos&EN & Dy
1 1 d ]
- — — 1+ O DRES
L {(‘,()Sf/\[ APy +0( Iﬁ)} ( )
10 1+O0(8)1 0
7 O\ Ty f f’)(/)/
L)o + 0.9 (C.16)
L{on TN o
while first derivatives in z and ¢ arce obtained by differentiating (C.3),
) 1 0 1 0 ]
A A 2 (C.17)
or roe & Oz Lz Oz
19, CU 0 .
2 4L =2 C.18
ot L ot ( )
The advective derivative,
D _ o w0 v 0 Jw (C.19)

Dt m+l'(2()sA%+;07+ o’
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is scaled and nondimensionalized by applying steps 1 and 2, where the derivatives arc

replaced with the above scaled dimensionless forms,

D Uc o 14+ 081 0
N *(_ + U(“ A/“u')[____([—JS)J__‘(_
D1 L ot rpeoséN £ Oy

(1+O0ELE)]1 0 Uii)’u)

+U (v + ")

o E(‘)/\[ L gy, 0z
Ul U J %)
T T ot T eosen 00 oy
Tl wi + O (v, e1.E) <i + ,U )J (C.20)
gr, Oz TN O ON

Since the advective derivative acts on velocities, (C.6), and density, (C.7), which are depen-
dent on ¢ and Ay, the horizontal derivatives are assumed @ (1), and the scaled advective

derivative is

D U /(D =y 0
—_ — — — O Yus L, y 221
Dt L (Di, L. o0 ’Q) (€21

where the dimensionless horizontal advective derivative is defined as

D[ J ll,((,b[,/\[) 0 J
i A e\ <L R0 N S ¥ gy .22
D1 o1 cosen Dby vl A e (C-22)

C.2 Scaling and Nondimensionalizing the

Navier-Stokes Equations

We now scale and nondimensionalize the oblique, spherical Navier-Stokes equations, (2.21) -
2.24). to obtain the rSW class of solutions, where all 2, v terms can be assumed negligible.
: 3 y 7 OO

In this derivation, we are interested in determining the maximum size of the £, v terms,

where the systen is accurate to O (o), for an arbitrary . This is done in four steps:

L. For cach term, nondimensionalize and scale the position and time variables by sub-
stituting (C.3), and replace ,l with its Taylor expansion, (C.12). Scale velocities by
substituting (C.6), density by substituting (C.7), pressure by substituting (C.8), and
Coriolis parameters by substituting (C.9) - (C.11).

2. Determine the order of any =, v terms within cacli term, where any trigonometric

fmctions multiplying €, v terms are replaced with (C.13).

i
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3. Sum all terms, and nondimensionalize by dividing by the appropriate equation scaling,
specified for each equation, and simplify to multiples of the dimensionless parameters,

from (2.31),

U U I
‘T Joll ol 1 2

4. Determine the order of the €, v terms, where the synoptic and mesoscale assumptions

arc used, from (2.34).
& < 1, Yp L1 & < 1. gy € 1. (C.24)

in addition to ~, < | and v, < 1 as additional assumptions within the rSW solution
7t i}

reginie,

C.2.1 Dimensionless Continuity Equation

The oblique spherical Navier-Stokes continuity equation, (2.24), is

2

D 10 10 1 w
14 i . pvtan A + /)(')u +pmw =0 (C.25)
r ar T

R _+_ _
Dt N P cos A i Do

Steps 1-2 from Scction C.2 are applied to cach term from the above continuity equation,

Dp UlD e, 0 ) .
Dt - 7 {—D—f + g;'ll’()_z + O (v, 21.8) | porvp

- poO (7/; [1503 ::}) (CQ())

1 ou 1+0E8] 1D

Prionog P T E g U )
- /)”LU L):E y ;)—ql)ll +0 (mwp,f/,g‘)} (C.27)

/)11_ :ji\ — po(l+ 7/}/)/)%”(5115)]2%[](” + v, 0")
- % [:))—All + 0(7,“7,)-,61,5)} (C.28)

1+0 (e,,,f)JU(

()

b ! Ay fan £
—r tan A —  —po(l +v,0) U+ ") tan &N

U :
— —ﬂ% [E’U tan A + O (52[7’111 s ELE])] (CQ())
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Ow polU , Eq Qw
P2 (] ey p) 2
e R (R
polU |2, Ow Eu ..
2 1+ 0.6
p—w  — 2po(l + ”,'p/)')—i(‘l‘g)(]au w
, 0
polU :

Step 3 is applied by summing the above terms, and dividing by the characteristic scale

poU/ L.
£ 1 O
Ol~,|1,C, = N O (g 216

v ,
+ { +0 (A/llv Yo EI,KC.)} - [E” tan A + O (fz['\/u» Tps 5/5])]

S () Sy
N { ow Lo <A//) [1’ T})} + O, = 0 (C.32)
cl

Z7, 0z

D]

C

The dimensionless continuity equation is obtained by applying Step 4 and determining the

order of negligible terms,

my

£
<L

1 du v gy Ow
— + — —fvtan A+ — = O v, |1.C,
cos EN Doy * AN fvbana+ gy, Oz A

} _/HEH,E,D (©33)

C.2.2 Dimensionless Vertical Momentum Equation

The oblique spherical Navier-Stokes vertical momentium equation, (2.23), is

Dw u? + o? : dp
P P + 2p0Q - 2pufdy = ~% — pg + pul. (C.34)
where from (2.36), the vertical friction force scales as F ~ %; + (—%ﬁ an 7%(1}

Steps 1 and 2 from Section C.2 are applied to each term of the vertical momentum
cquation. In anticipation of the large equation scaling, some non-g, + terms are written as

an order only.

Duw U D €y 0O
/)W — P (1 + A//)/)l) Z I:_i + :_'(U‘(,)—_/ + O ('\/u-, 5115) Usyw

U? Sy
» /)uL o (5“ {1’(37* ) (CL35)
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2 2 .
w4 v . . o L+ O (e
- —  —po (L+ 9,0 ) U [(w+ yau!)* + (0 + v,0")?] —&
o
olU? )

— J"L O (&) (C.36)
2pu€ly  — o (1 “/,,/)') Ulv + v, 0" ) (= fsin &)

—  —polU fO (&) (C.37)

3
=2pufdy  —  —po (1 + 7,,/)') Ulu+ ~n') (— cos ¢y sinEA + — cos 5/\,>
IS

. o4
— pfUO <€. ?> (C.38)
&
Op 10 o ,
“a Ie, 0- [/A){/H[)o(z) + pofUL (p(or. A t) + 50" (1, Mo 2, f))]
) Uy )
P N (C.39)
‘)z <y )z
—pg — —po(L+7v0) g — —pog(1+O(v,)) (C.40)

W U+AU L AU
[‘[“) L2 70 ‘I'()h’
— pofUO (Ek [eu, 27,70z 1E]) (C.41)

["Fl' ~

Step 3 is applied by simming the above terms, and dividing by the characteristic scale pog.

Note that 2l L — F?z; and /)(),,/"UL = },—{E/,,

L. pog poyg
F?e,;,0 < {1,(}, ~D — F2:,0(8)
£,
F? F? i3 dpo  FL oy
——z1 O (& e O0¢&, = = - — —,—— =1+ 0O(~v,
ol (&) + el <x,£> 0.~ s + O ()
F*? , )
+’7€—EI'O (E/,t [5(,, €7, 7”5,15]) (C.42)

The dimensionless vertical momentinm equation is obtained by applving Step 4 and deter-

mining the order of the negligible terms,

()’[)() .7:2 Fz - ‘ﬁ B
— (‘); — L — (./) <’\//)~, %AI’IM %‘;L Qs E’EA [EU',EI;EI/E’\//IL] s

F? [5%:51,51L[1‘CH ) (CA:;)

C.2.3 Dimensionless Zonal Momentum Equation

The obligque spherical Navier-Stokes zonal momentum equation, (2.21), is

Du w, wo tan A -1 Ip
/)J + /)LUZ — /)& + 20wy — 2p08), = —[ 1Ey (C.44)
Di T 8 1 Cos A Jod *
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" Y . .. . . s
where from (2.36), the vertical friction force scales as Fiy ~ %IZ] + ,z ; + ,‘;,

Steps 1 and 2 from Section C.2 arc applied to the zonal momentum cquation,

Du U|D ¢ 13 i
/)ﬁ - o (1 + ”;’p/)/) Z [m + E—Zm(k + O( /zL»EI/E)} U('u, + A/““/)
U | Diu £ .
— 7 |i—Dt + QO [A/u: ”/,)] 1-,C, i RS (C4x))
wi . 1+ O(e, €
N (1 + “,',)/)') Uz, + ) ] (£2.8)
" 0
oU? ;
. /o[ O (€2,) (C.46)
1w tan A . 1+ 0(zs
_/)_7.; - Ao (J‘ + A/'//)/)l) U 2(“ + A/'u/“'l)('u + A/u'Ul) # tan g/\[
7o
polU* o2 o3 .
-~ I [57“" tan A + O (& [A/zu'\/pJ: S EL)] ((47)
5}
208y — oy (1 + “/,)/)') Us,wf <~ cos P sinéN + — cos E/\[)
Q

- :()()f(/ O <5 |:S',

o l S

) A/'/;} ) (C48)

, I}
—2p08)  —  —py (1 + “,/,,/)') Uv+ ') f <(:()s Eppcos &N + = Hlllg/\/)

3
— = JU {u <(7(>s Edroos EN + — sinéﬂ\;) -+ O (7Y, “/p)} (C.49)
-1 dp —1 1 J . s
— — + O (e UL (p (b, Ny t) -+~ (dr, Nzt
7 Cos A o L {(tos&\[ doy +Ol 115)} Pl <1)(('[ 0 f) ) (b A= ))

-1 Op

— U —=+ O (v, 1. C.50

rof [('osf/\l oy OO, I/g)} (€-50)
P AU n U n W
kg, ~ =t
Jite a2 T T HL

— pfUO (E"l‘ ["/“,5;/,5,/511}) (C-'r)l)

Step 3 is applied by summing the above terms, and dividing by the characteristic scale,

. Tt tloap POU2 1
pofU. Note that B ol = .

D[ll u
l) A'/Zl.af\ 1 7v 7‘-:/
R[Df ‘ <[' /ﬂ][ ¢ fIJ /5)}

D) = R[€uvtan A + O (v, 7). €'21) ]
3 -1 Jp
+0 <E“ |:£ ? A//’:|> - [/UFI' + O (Vo A/'/;)} - . —1 + O (7'/)7 Elff)

cos ENp Oy
+O (Ek [y gl eneu]) (C.52)

n

+RO (&,

Fl)
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where the scaled Coriolis parameter, ', is
¢ i ¢ ’H : 1
[yo= coségreos &N + —sinéA. (C.53)
<

The dimensionless zonal momentum cquation is obtained by applying Step 4 and determin-

ing the order of negligible terms,

Du -1 dp Su 3
R— — Réuvtan A —ol', = —— + OV [vu. v |1, sV =& [Eus €
Di Suv tan vl cos €N Do + [/u, //)J el | Tps Cu ¢ 5[ : 1/}
+O (Ek [yuselneren]) (C.54)
C.2.4 Dimensionless Meridional Momentum Equation
The oblique spherical Navier-Stokes meridional momentum equation, (2.22), is
Du wy u? tan \ ] -1 op
P : + /)—Ul + /)“—— + 2puf), — 2pwi), = —i[ + ply (C.55)
D¢ 18 7 7ON

from (2.36), the vertical friction force scales as F) ~ %_} + 7(% + 7‘1‘—1 Since the horizontal
momentuin equations in both x and y scale in a similar manner, ounly the Coriolis terms arce
considered here, while the order of the remaining terms is implied from the above analysis
of the zonal momentum cquations,

i 8 .
20u8),  —  py (1 + A,«,,p') Ui+~ i) f <(i()s {preosEN + —sin E/\[)
I

i3 ,
—  ppfU [u, ((:os §preosEN + - sin E/\[> + O (74, A,f,,)} (C.56)

&
—2pwls  —  po (1 + 5,0 ) Ugyw f(—sinE¢y)

= pofUO (&) (C.57)

Step 3 is applied by sununing the above terms, and dividing by the characteristic scale,

‘U. Note that U2 1 _
pofU. Note that H- T =R.

D['(/' , o Su
R [_Dt + 0 <[%“7p] {LC, 7} .EI,EH
+RO (24,) +R [fu‘z tan A + O (62[7“., pls {351/)]

dp
+ ['11,1—',, +0 (”/uaﬁ,"/))] + O (6511) - |:—‘[ +0 ('7]» El/kc)
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where the scaled Coriolis parameter, [, is
Y
[ = cos&reos§N + —singA. (C.59)
IS

The dimensionless meridional momentum equation is obtained by applying Step 4 and de-

termining the order of negligible terms,

Dyu . op . Su
Ry + Rew A4 al, = ~2L 40 ([m,, 7o) {1, 7} € [e,,,s,,l>

+O (Ek [vu,e7 2 18u]) (C.60)




Appendix D

Integral Constraints

D.1 Useful Identities

For the following identitics, we consider a domain D = [-D,. D,] x [-D,.D,], where
continnons functions A(x,y. ) and Bz, y, t) are periodic at the horizontal boundaries.

Zero arca integrals arise when:

L. The integrand is a pure spatial derivative of periodic functions

) Dy
/.(;(A(iff=;'/=t)) = / A(Dyy, t) = A(= Doy t) = 0 (D.1)
Jp O J =D,

2. The integrand is a Jacobian of periodic functions

() 03 () on
/.J(A,B) = /,‘— AZ) - L A2 = o (D.2)
I Jp Ox My Dy o

AJ(A,B) = %J(Az, ) (D.3)

Identity 1

Identity 2

f DAN®  [OANT o 0A o [ 0A
1 (V2P-1)A = — |5 — A? — | A— — | A— D.4
‘ (V ) [( i):n) + <(');1/> + } + o </ ('):17> + Dy ( 2);1/) (D-4)

Identity 3

. ‘ D/ oA OB O [ 0A OB
BVZ-1 A4 = A(V2-1)p+-L(BY 4 LAY A7) (Do
<T ) ‘ ( ) I+ o < dx (‘);1') + oy ( oy (')g/) (D-5)
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Identity 4

DA _, 10 [ [0AN?  [0AN®

it 1 - (= il 2

s (v )A 2 s <f,):n> + <(’)y ) 4 } +
O [OADA d [OADA
— | —— — | —— D.6G
O <t)s 0:1:> + dy ((‘).s' (')y> (D.6)

D.2 Area Integrals

We now fill in the details of the integral constraint discussion in Sections 3.1.2 and 3.2.4.

Conscrvation of Iy, where

OHo\®  (OH)\" .
Ey o= (S20) + (522) v (D.7)
e dy
is determined by considering
%) ' (")(] l f,)]{()
— (i = Hy— D.8
,/,) or o) /,) “m*_/,) ol (D8)

Substituting (3.56) and (3.63) for the definition and conservation of ¢,

9]
/(){ (H(J(V — 1)Hy) /H() J(Hy,q) + R(=J(H1.q)))
D
) ) 3 OH,
RH()<F1(J cl”’>fH’ vo
JD R Or
JH,
/( U(v? — 1)H,. (D.9)
D ot

and applying (D.3), (D.4) and (D.6),

1[0 ) )
—/ YRy = R/ Ho (—a(th.q)+ 2L+ e 2 (D.10)
2 )p ol JD o Dy

Conscrvation of cnergy is similar in the leading order equations, (3.40), where the leading

. Do s , .
order equation FF (3.29) is used instead.

Conservation of ¢ is determined by integrating (3.63),

" g

' dq 3 0Hy ]
= —J(Hy, RA{—-J(H,q) —I''— =G} - —— D.11
Sy O /1) (Ho,q) + R < (Hi.q) Your ()1/> R O ( )
() ()
= / Al H (D.12)
O dy
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Substituting the definition of ¢, and applying (D.5H),

" g

- / Ho(V? — 1)Fy + Hy(V? = 1)Gy
Jp Ot Jn

Substituting the definitions of F1,(3.61), and G, (3.62),
"0 " OH H O H, H
/ Ja _ / Oy, OHo _(‘ 0, H(),(‘ 0
Jp Ot Jp  Ox o dy vy

| IHo\ ° ; DHo\ ?
S (e (2H0N ) g (g, (2o S
2 dw Jy

Il

by applying (D.3).
If instead., from

" g dq Ay
Jp Ol Jb Yo l(')"//

/' <(’)F1 i)G1>
ot q
Jp \ Oz Ay

it
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(D.13)

(D.16)

(D.17)

we substitute the first correction #SW Height-Divergence Equation, (3.60) where (3.56) has

been substituted for g,

e, Hy . 1
(‘l _ _(‘ [)(vzil)H() - /
JD ot ot Jr

Z)E()
y Ot

by applying (D.6).

(D.18)



Appendix E

Exact Solution to rSW QG"

This appendix provides details for deriving the exact travelling dipole solution to the leading
order quasigeostrophic equations, considered first in Sections 3.2.3 and defined as the leading

order rSW QGY model in Section 3.3.3. From Equation (3.55)".

)
My T (Hyq) = 0, (E.1)
Ot

where
q = (V*—1)H,, (E.2)

and the Jacobian of two functions, J and ¢ is

_ . af g 0f dg
J(f, = ST T T o b
(/.9) drdy  Jy dr o

Following the method in [5], consider a travelling dipole solution to ¢, advecting at constant

velocity ¢ ina, by letting 0; = —cdy, where 9, # 0. Equation (I5.1) becomes
J((Ho +cy)q) = 0, (E.4)
with solution ¢ = —a (> + cy) = ¢ for ¢ > 0. For a dipole of radius a, let
o r<a
o = ( _1.5)
0 r>ua

YI'he equivalent. equation in Sccetion 3.2.3, equation (3.29), is obtained by letting h = [ for negligible /1.

7
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The solution form is then

—o(Ho+cy) ©r<a
g =
0 7>

For the outer region, 1 > a, goyy = 0 1s solved for Hygy

Gont = (v2 - 1)[]5()111. = 0 (E()>
with general solution
[/’n r .
Hoyone = \' (’) (A Slll(’li()) + 7 ('()5(116’)) (E7>
I (a) /

for integer 7 and constants A and B, where I, (r) is the modified Bessel function of the
second kind.

For the inner region, » < a, giny = —o(Hojn + ¢y) 1s solved for Hypy,
2 )
Ginn = (v - 1) Hopn = —0 (Hoinn + cy) (E.8)

with general solution, where y = 7sin 6,

Jn(rvo —1 . . .
Hyiy = ;,IE(,L—\/%T% (C'sin(nf) + D cos(n)) — o(j . 7 sin(0) (E.9)

tor integer nand constants C' and D, where J, () is the modified Bessel function of the first

kind.

Continuity in ¢(r,0) across the boundary at r = « is imposed by restricting

dout(,0) = quula,0) (I5.10)
0 = —o(Homn(a,0) + cy) (I5.11)

where letting y = ¢ sin 8 on the bonndary,
Hoinn (@, 0) = —casind. (E.12)
Substituting into the definition of Hyi, (1.9),

j:é(%— _:i ; (C'sin(nd) + D cos(nh)) — p—

The equation form restricts n = 1 and D = 0, reducing the above equation to
[ s &

o

rsin(f). (E.13)

—casinfgd =

—casing = ((7 —u (‘01> sin(f) (E.14)
o
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where C' = -5 vields the inner solution

¢ Ji(r -1 7
ac [ Si(rvo—1) /o) s, (.15)
.]1((1,\/0'— 1) a :

Continuity in g(r, #) across the boundary at » = « is imposed by restricting

Hoinn (7'7 0) =

o—1

Hoout ((1'1 {)) = -H(Jinn(‘lw ()) (El())
I, C Jilavo —1 . ~
tula) (Asin(nd) + Bceos(nd)) = “ < ovo—1) 0) sin b, (E.17)
K, (a) oc—1\J(aveo —1)
where =1, B =0 and A = —auc yicelds the outer solution
Ky(r :
Hoow(1,0) = —ac ‘,‘('> sin 0. (B.18)
K I ((L)
Continuity in the geostrophic velocities, u = —%%Q LU= %i ((3.27) and (3.28)), is obtained

by imposing continuity in the first spatial derivatives of Hy.  Continnity in Hy implies

continuity in —)(I,”-, and it is sufficient to impose

O Hoou (a0
C ngﬁii = Hoow (1, 0) (E.19)

LR () e ( _L I (avo —1) 0) _
sin 6,

—act L sing = Vo -1~

: E.20
Ki(a) og-—1 Jy(avo —1) a ( )

which reduces to
Kola 2 Jolav/o — 1
(o — 1)M L7 - o _0(~,_)
Ki(a) «a ,]1 (ayo —1)

I . . . . g - . .
By imposing continuity in ¢, Hy and )[‘l the spatial derivative of g, :—)? is discontimious

at ¢ = «. haplications in using this exact solution as a test for nunerical convergence are
considered in Scction 4.5.2.

The complete travelling dipole solution, with radius 7 = a, is of the form

O
—o (Hy + ¢ r < a
(1 — 0( 0 (!/> ! “ (EQl)
0 T
" ac ;:IE('I)) sin @ r < a (£.22)
b — (—*ﬁgu\/;j_—ig — %) sinfl r >« .

(I5.23)
where o is given by
(o0 —1)— — = Vo-1 )
Ky (a) « Jilava — 1)

Solving numerically with @ = 1, the smallest o & 16.3868925833852.

! Kola) - 200 Yt Jolaveo —1



Appendix F

Exact Solution to rSW Wawve

This analysis follows that in [8], and provides details in the derivation of the exact travelling

wave solution of 3.3.1. Beginning with the »SW Wave cquations, (3.44), (3.45):

u o du d (v Du
— +Rlu—+v— | —v+— | — — — = 0, F.1
N t < O )y> du: (();1: ()y> (F.1)
v 3 dv o [ov  Du
—+R u;—l—v. +u A+ f——ﬁ—l = 0, (F.2)
ot o Ny dy \ e Dy
we scek travelling wave solutions in @ with speed ¢, so that % =0 and % = —<1%:
ou 0%
- (¢c—Ru)— —-v+-— = 0, (F.3)
or o
v
- (¢ —Ru) L +u = 0. (F.4)
da
To obtain a system of differential equations, first solve (F.4) for f%
ov |
— = ——u, 1.5
O ¢ — Ru ! (F5)
then differentiating with respect to 2, substitute into (F.3) and solve for ;%,
du C— Ru)?
L (_(‘*’)_‘;.U_ (F.6)
dw ¢ —(¢—Ru)
To obtain the lirst integral equation, multiply (F.3) by % and substitute (I'.4)
v D Ov O
v—+u—— ——=— = 0 E7
oe T 0r T 9w 022 (F.7)

Integrating, and again substituting (F.4) reveals the first integral relation, for constant ('

. ; 1 :
N = (. F'R
vT 4w <l - Ru) C (F.8)
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Appendix G

Third-Order Runge-Kutta and
Adams-Bashforth

This appendix fills in the details in applying the third order Adams Bashforth (AB3) and
third order Runge-Kutta (RK3) methods to the integrating factor formulation of rSW QG
and 7SW QGT!.
For a general partial differential equation,
2 - s (G.1)
A3 and RK3 are applied to obtain approximate numerical solutions, where 7 is the number

of iterations, and At is the uniform time step,

At , e . |
AB3: Qn,+l - Qn + E (2';_/ (tna Qn) - “)/ (trl,—la Qn.—l) + 5/ (tnf2v Qn—2)) (C‘Q)
1 i .
RK3: Q.1 = Q.+ 6 (Sl + 45, + S;g) (G..‘i)
where

Sl — A’./ (in, Qn)
At AS‘
Sy = Abf <f + 5 Qu t —Zl> (G.4)
, Sl ne
Sy = Aff ty + Af-, Qn - ? + 259

The integrating factor formulation of 7SW QG” and rSW QGT! is

J LT e . ,
= (011\;‘\ f,q> - """A'“'N\E\ (q), (G.5)
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which assumes the form of (G.1) by letting

0 = {?/IIEI‘“"/(}’ (G.6)
f(t,.Q) = (’,"‘E‘HZJ\fE <(f"’EH'Q)- (G.7)

Iivaluated at distinet time intervals,

T|H{” ~ B}
Qn = ()'MA' Uns ( 1‘&)

Sty Q) = A (G (CLY)

This is precisely the form of the AB3 formulation, and so substituting into (G.2).

h . NETI AL o R .
et Yner = e/l t”(ln + 12 <23(i/ . [’“A[/? (qn)
: 1_:8,,,; roq TH,,,; ~ v
— LGt "N (1) + otk ZJVE((]“,Q)) (G.10)

ey ME . . . . . -
Dividing by /et where ¢, = nAt, gives the time independent integrating factor for-

nmulation for AB3:

NE Al . )
(]HJr! - (r’fﬂ‘HﬂA"(}u, + ﬁ <23(37,l|k|bA"/\[ﬁ ((171)
—1(5(’,72““"“ A",/V’E ((}/1,71) + 5(’7";/’“‘1]‘ ALJ\/‘E ((211-2)) . (Gll)

The RIGS formulation is slightly more complicated, since f(4, Q) is not evaluated at regular

intervals. Therefor, we rewrite Sy, 9 and Sy by substituting (G.6) and (G.7) into (G.4),
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and introduce sy, g9 and sy as the time independent, components
. e N
S, = Atttk t,LM\_ﬁ(q”)
N
T thg, (G.12)

é’.) — At(f“vm‘ﬂ((”‘{y%)/\/‘k 4/1A“(I+A() <Q” 521>>

' i (?4“/\ At ((%*“‘E”” Q, + (2‘11’*"&/4,&))
l 2
= /_\i,(ﬂ"mg("”*%)/\/’ﬁ <(’_%/1/;“A- <(1n + l)>

B N S P (G.13)
Sy = AR AN gr (R (5 (Q - % +25~g>>
_ At()mmh‘(/”+AL)/V'E <(,*}ll:"“L\l (07/1!:3/,,1 Qn
1 7/15&1 v ¢ 7;//\7""1 y
——5(’, Sy 427 LSy
e £ . S s
— AI(J//\H (L,H*L\I)A/'E <({/1A?‘AI <(:[”v - 71) + 2({7%“/\ Ats;;)
_ /I\H (ta+at) g (G.14)
where
8 = At/\/};((},l) (G.15)
LR AS
S2 = AHV-E <("_%M\ af <(1n + 5 )) (G.16)
- S
sy = AI‘J\/-E ((%MHA" <(1,L — 7) -+ 26" IHFAL ) (G.17)
Rewriting the general RK3 method (G.3),
LIS e . 1 L8 LB At 58 \
L ("”+A')(2n+1 = g i <(3;11Am,,s] +4(?Mk|8(t”+%)sg 4+ eIk (t,u+m)33>
)

Dividing by eIt +A0 oiyegs the time independent integrating factor formulation for RK3:

~ I8 AL ~ l ATNE _1 . .
dn+1 — ;1|A|"‘_\.1,(1” -+ 6 (1? MAPALS! + 4de 2“‘“ A’s) + S;) (6'18)
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