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Abstract

Our current understanding of biology suggests that early life relied predominantly
on RNA for both catalysis and the storage of genetic information. Tremendous efforts
have been undertaken to confirm that the catalytic abilities of RNA can sustain this
“RNA World”. However, the ability of ribozymes to utilize certain chemistries known to
be critical for present-day biology, and hence likely to be important for ribo-organisms,
has yet to be demonstrated.

Numerous natural and artificial ribozymes have been shown to facilitate reactions
that invert stereochemistry at phosphorous reaction centres. I have isolated and
characterized an RNA-capping ribozyme that retains stereochemistry during the synthesis
of'a 5'-5" RNA cap. Stereochemical data determined using thio-phosphate modifications,
together with an early rate-limiting step, suggest that this ribozyme utilizes two distinct
inverting chemical steps - proceeding via a ribozyme-covalent intermediate - during
catalysis.

A ribo-organism, like contemporary organisms, would have required ribozymes to
replicate an RNA genome within some sort of primordial compartment. To provide
support for this requirement, I have isolated an improved RNA polymerase ribozymoc,
referred to as B6.61, from a mutagenized pool containing ~9 x 10'* different sequences
using a novel large-scale in vitro compartmentalization system. B6.61 polymerized all
tested primer-template (PT) complexes faster than its parent, the Round-18 polymerase
ribozyme. For one PT complex a rate enhancement of more than 80 fold was obscrved

for extensions longer than one helical turn. The new variant also exhibited improved

i



fidelity on a number of templates. Most interestingly, B6.61 was found to copy one PT
complex by almost two complete turns of an RNA helix.

To further study RNA-mediated replication, I investigated the role of nucleic acid
structure during the course of oligonucleotide extension by T7 RNA polymerase. In
addition to normal transcription, the enzyme can produce anomalous transcripts in the
absence of a promoter. [ have found oligonucleotides that are able to form transient
unimolecular loop structures closed by as little as one base-pair to be viable substrates.
This intermittent extension process was found to be quite efficient, and adds to the

understanding of viral RNA replicative strategies.

Keywords: RNA world; ribozyme; capping; stereochemistry; retention; covalent
intermediate; replication; polymerization; extension; fidelity; viral replication; viroid; in

vitro selection; compartmentalization
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CHAPTER 1:
Introduction; the “RNA world”
and ribozyme chemistry

“... Butif (and oh! what a big if1) we could conceive in some warm little pond, with all
sorts of ammonia and phosphoric salts, lights, heat, electricity, etc. present, that a protein
compound was chemically formed ready to undergo still more complex changes, at the
present day such matter would be instantly devoured or absorbed, which would not have
been the case betore living creatures were formed. ...”

Charles Darwin Letter to J.D. Hooker, February 1, 1871

1.1  Setting the stage:

Throughout mankind’s history, philosophers and scientists have struggled in
formulating a definite hypothesis that could explain the emergence of life on our planet.
All known organisms, past and present, use the same polymer (DNA) for storing genetic
information and employ the same class of catalysts (largely protein enzymes) to ensure
their survival. This observation strongly suggests that all life forms descended from a
common ancestor that utilized the very same polymers. In all domains of lifc these two
polymers are dependent on each other; the DNA nucleotide sequence encodes the amino
acid content of the proteins and hence their function, while proteins are required for the
maintenance and replication of the DNA genome. The communication between DNA
and proteins is actively carried out by RNA, which was once thought to be its only role
(Gesteland et al., 2006).

The DNA/RNA/protein central dogma of molccular biology is too complicated to
have arisen de novo, as it requires both nucleic acid and proteins to be formed
simultaneously from simple abiotic organic precursors (Orgel, 2004b). This prompted
researchers to ask which arose first- functional proteins or informational nuclcic acid-

that 1s, a “chicken and egg” paradox. In the 1960s it was well established that the



cvolution of all living organisms occurred by natural selection through mutations and
replication (Woese, 1967). Thus, the contest between nucleic acid and proteins was
simplified by asking which polymer is capable of sustaining a self-replicating system.
With the structurc of the DNA double helix solved (Watson & Crick, 1953a, b), it was
well understood how nucleic acid could direct the synthesis of its complement from
mononucleotides through Watson-Crick base-pairing, while a general mechanism for
replicating a polypeptide was, and still is, unknown. Therefore, the answer to the
“chicken and egg” dilemma was obvious: nucleic acid preceded proteins (Woese, 1967).
The ability of RNA to servc as a genetic carrier was accepted because it is very
similar to DNA, and some viruses use it specifically for this purpose (Ortin & Parra,
2006). Additionally, in 1965 the secondary structure of alanine tRNA from yeast was
reported (Holley, 1965) showing that RNA, like proteins, could adopt a secondary
structurc. With these two factors in mind, Orgel and Crick boldly made the controversial
suggestion that RNA could act functionally as a catalyst and hence was once the sole
polymer in living organisms (Crick, 1968; Orgel, 1968). They used the argument that
nucleotide coenzymes used by protein enzymes were molecular fossils from an era where
RNA functioned independently of protein (White, 1976). Francis Crick went on to
suggest that the original ribosome was composed solely ot RNA (Crick, 1968). It was
agreed that the existence of such a ribo-organism would only be possible if RNA could
assume some of the functions currently performed by protein enzymes. However, the
authors of all these papers failed to recognize that RNA catalysts are still present in
modern metabolism, and assumed that the superior protein enzymes have entirely

replaced them.



The surprising discovery by Cech and Altman that RNA, like protein enzymes,
can catalyze reactions (Kruger et al., 1982; Guerrier-Takada et al., 1983) bolstered those
previous assumptions and sparked interest in RNA-mediated catalysis. The role of
catalytic RNAs, ribozymes, in contemporary biology was further substantiated by
discoveries showing that RNA was able to catalyze a diverse set of reactions, most are
critical for viral replication or genomic organization (Buzayan et al., 1986; Peebles et al.,
1986; Forster & Symons, 1987b, a; Uhlenbeck, 1987; Kuo et al., 1988; Saville & Collins,
1990). The hypothesis that RNA preceded the DNA/RNA/protein world was no longer
ignored, and was eventually coined by Gilbert as the “RNA World” hypothesis (Gilbert,
1986). The hypothesis was given a major boost by the recent demonstration that protein
synthesis is an RNA-catalyzed reaction as revealed by recent crystal structures of the
ribosome (Ban et al., 2000; Nissen et al., 2000).

The origin of life has traditionally been studied using two approaches; looking
backward through phylogenetic or palacontologic evidence, or moving forward starting
with small molecules and conditions believed to be present on early earth (Benner et al.,
2006). Because approaching the problem from the first window is beyond the scope of
this thesis and has proven to be difficult (Bartel & Unrau, 1999), it will not be discussed
any further.

Supporters of the “RNA World” hypothesis are divided into two different classes
(Benner et al., 2006). While both groups agree that RNA was once the sole polymer
responsible for the storage of genetic information and catalysis, one group is more
stringent in that they state that a ribo-organism was the first form of life, while the other

group believes that some RNA-like polymer may have preceded RNA. The purpose of



the following sections is to provide a summary of the advances made in the ficld of
prebiotic chemistry in support of the “RNA first” hypothesis. We will conclude that
RNA was probably not the first polymer to support life, and put forward a few plausible

alternative polymers that may have reigned in a pre-RNA era.

1.2 Moving forward “RNA first” perspective:

For the “RNA first” hypothesis to be sound, there must be a pathway that could
explain the de novo emergence of RNA from inanimate matter. The dawn of RNA on
early earth has been of interest to many prebiotic chemists and has been subdivided into
three main problems: 1) prebiotic synthesis of nucleotides, 2) prebiotic synthesis of
polynucleotides, and 3) nonenzymatic replication of RNA. Having solved these
problems, natural selection of functional ribozymes in the prebiotic soup could lead to the

first ribo-organism (Orgel, 2004b).

1.2.1 Prebiotic synthesis of nuclecosides.

In prebiotic chemistry, conditions that are likely to have been prevalent on the
primitive earth are usced during the course of the synthesis of the desired material. The
term “prebiotic” is not well defined and somewhat elastic, since no one is in a position to
claim what the early earth looked like (Lazcano & Miller, 1996). However, a few general
restrictions have been agreed upon by the community. First, the starting material, besides
being plausibly prebiotic to the researcher, must be present in adequate amounts. Second,
water must be used as the solvent if applicable, and third the yield must be respectable

(Orgel, 2004b).



1.2.1.1 Ribose synthesis, the formose reaction.

The formose reaction, used to synthesize ribose, is the most prebiotically
plausible of the reactions required to generate RNA, and is the best understood (Mizuno
& Weiss, 1974). In 1861, Butlerow generated a sweet mixture when formaldehyde was
incubated with calcium hydroxide (Butlerow, 1861). The mixture was later characterized
to contain ribose and other sugars (Butlerow, 1861; Breslow, 1959; Zubay, 1998).
Intriguingly, the reaction is catalyzed by an impurity in the formaldehyde that Butlerow
fortunately failed to purify. Glycolaldehyde, which is made from the polymerization of
two formaldehyde molecules, acts as an initiator in the autocatalytic cycle. The cycle
procceds with forward and reverse aldol rcactions, where tautomerization plays a role in
the interconversion between aldehydes and ketones (Benner et al., 20006).

In the presence of hydroxidc ions, glycolaldehyde loses a proton to form an
enediolate. The carbon atom of the enediolate then attacks a molecule of formaldchyde
to form the three-carbon glyceraldehyde, which in turn can undergo the same reaction
with formaldchyde to form a four-carbon carbohydrate. This molecule can then undergo
cleavage, after isomerization, to form two molecules of glycolaldehyde resulting in an
auto-catalytic cycle (Figure 1-1a). The enediolate of glycolaldehyde can attack the
carbonyl carbon of glyceraldehyde to form a variety of pentosc sugars including ribose
(Figure 1-1b).

The formose reaction has one major shortcoming in that it fails to produce
significant amounts of ribose (Decker et al., 1982). Under alkaline conditions, ribose
loscs a proton to form an enediolate that can react with another ribose, formaldehyde, or

glyceraldehyde. The formose reaction, unless modified, usually ends up as an



uncharacterized brown mixture (Benner et al., 2006). Two methods have been recently
uscd to stabilize ribose and bias the formose reactions towards the synthesis of ribose. In
the first method, glycolaldehyde is substituted by glycolaldehyde phosphate, changing the
rcactive specics to phosphate esters (Mueller et al., 1990). Unlike the hydroxycarbonyl
group of sugar, the resulting pentosc-2,4- diphosphate cannot carry out a nucleophilic
attack. In a second surprising report, borate minerals were found to stabilize the cyclic
form of ribose by complexing with the 2', 3" hydroxyl groups rendering it unreactive

(Ricardo et al., 2004).
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Figure I-1: Proposed mechanism of the formose reaction. a) The reaction is catalyzed by
glycolaldehyde, and results in an autocatalytic cycle. In the presence of base, glycolaldehyde loses a proton
to form its enediolate, which then attacks one molecule of formaldehyde to produce the 3-carbon
glyceraldehyde. The glyceraldehyde in turn loses a proton to form an enediolate that can attack
formaldehyde generating a 4-carbon sugar, tetrulose. This sugar undergoes rearrangements through an
enediol to give a tetrose, which can fragment to produce two molecules of glycolaldehyde. b) The
enediolate of glycolaldehyde can attack glyceraldehyde to generate a pentose sugar. The resulting pentoses
are ribose, arabinose, xylose, or lyxose. One of the hydroxyl groups can attack the electrophilic carbony!
group producing the cyclic form of the sugar (Benner et al., 2006).

1.2.1.2 Synthesis of bases.

One of the most notable reactions in the history of prebiotic chemistry is the
synthesis of the purine base, adenine, from hydrogen cyanide (HCN) and ammonia
reported almost 50 years ago (Oro, 1961; Oro & Kimball, 1961, 1962). The reaction
goes through a set of HCN polymerization rcactions that lead to the accumulation of a
dark precipitate that releases appreciable amounts of adenine and trace amounts of

guanine upon hydrolysis (Miyakawa et al., 2000; Miyakawa et al., 2002b, a). The HCN



polymerization proceeds through the formation of an HCN tetramer, the only known
stable intermediate, followed by a complex and currently not understood series of
reactions. Several proposed mechanisms have been put forth that could explain the
synthesis of adenine from the HCN tetramer (Orgel, 2004a). Orgel and co-workers have
shown that the addition of ammonia to HCN produces formamidine, which when reacted
with the HCN tetramer gives 4-amino-5-cyano-imidazole (AICN). AICN then reacts
with onc moleculc of formamidine to produce adeninc (Ferris & Orgel, 1965, 1966a;
Sanchez et al., 1967, 1968), (Figure 1-2). Adenine has been also produced by the direct
addition of HCN to AICN, or by heating formamide (Saladino et al., 2001). The
production of AICN from HCN through formamidine requires high concentrations of
ammonia. The presence of ammonia on early earth is highly contentious, making thesc
syntheses controversial. Ferris and Orgel have shown that AICN can be produced
photochemically from HCN in quantitative yields (Ferris & Orgel, 1966b), and it has
becn regarded as a potential prebiotic route to adenine.

The most plausible prebiotic route to pyrimidines is through the reaction of
cyanoacetylene with urea to produce cytosine (Figure 1-3), which can hydrolyze to form
uracil. The tenability of this synthesis stems from the observation that cyanoacetylene 1s
readily formed when an electric discharge passes through a mixture of nitrogen and
methane (Ferris et al., 1968). Furthermorce, the synthesis of pyrimidines through this

route can proceed in parallel to that of adenine from HCN (Orgel, 2004b).
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Figure 1-2: A possible prebiotic route to adenine and guanine from HCN. HCN undergoes a series of
polymerization reactions to form a tetramer. The tetramer, through a reaction with formamidine or by
photoisomerization, produces 4-amino-5-cyano-imidazole (AICN). AICN has been shown to react with
HCN to give adenine (Saladino et al., 2001). The hydrolysis product of AICN, 4-amino-imidazole-5-
carboxamide, can react with cyanogen to produce guanine.
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Figure 1-3: Plausible prebiotic synthesis of cytosine. Fhe hydrolysis of cyanoacuylene gives
cyanoacetaldehyde, which reacts with urea to produce cytosine (Ferris et al., 1968).



1.2.1.3 Nucleoside synthesis.

The synthesis of nucleosides from ribose and bases 1s the most problematic
reaction in the chain of reactions required for the prebiotic synthesis of RNA (Muller,
2006). Nevertheless, if D-ribose is heated together with guanine in seawater in dry
phases, ~5% of the reaction products is authentic f-guanosine. The equivalent reaction
for adeninc is not as promising, as the major reaction takes place at the amino group (N6)
of the base. However, 3% of B-D-adenosine can be produced if the reaction products are
mildly hydrolyzed (Fuller et al., 1972).

Cytidine and uridine syntheses are even more problematic and to date no direct
synthesis for either has been reported (Joyce, 2002). a-cytidine has been synthesized by
incubating a mixture of ribose, cyanamide, and cyanoacetylene in aqueous solution.
When ribose is substituted by ribose-5-phosphate, a-cytidine-5'-phosphate is obtained
with a yield of 40%; the nucleotide can be photo-anomerized to the B-anomer but only in
5% yield (Sanchez & Orgel, 1970). In a recent report by the Sutherland group, a-D-
cytidine-5'-phosphate was synthesized by first reacting 2-aminooxazole, a condensation
product of glycolaldehyde and cyanamide, with D-glyceraldehyde-3-phosphate to give
pentose-aminooxazoline-5'-phosphates (Figure 1-4). In the second step the nucleotide 1s
tormed by the treatment with cyanoacetylene, similar to the previous synthesis (Anastasi

et al., 2007).
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Figure 1-4: Possible prebiotic synthesis of the nucleotide a-D-cytidine-5'-monophosphate. D-
glyceraldehyde reacts with 2-aminooxazole, a condensation product of glycolaldehyde and cyanamide to
give pentose aminooxazolines (the ribose product is shown). In the second step, ribose aminooxazoline
reacts with cyanoacetylene producing the nucleotide (Anastasi et al., 2007).

1.2.2 Prebiotic synthesis of polynucleotides.
1.2.2.1 Activation of nucleotides.

The polymerization of nucleotides into oligonucleotides requires the nucleotides
to be first activated. Two modes for the activation of nucleotides have been proposed,
phosphorylation and phosphorimidazolides (Figure 1-5, discussed in the next section).

Early attempts to phosphorylate nucleotides using inorganic phosphates employec
cyanamide or cyanate as condensing agents. Although these methods proceed with
appreciable yields of phosphorylated nucleotides, they require the reaction to be
conducted in the absence of water as it effectively competes for the activated phosphate
intermediate trimetaphosphate (Lohrmann & Orgel, 1968). The first successtul attempt
to phosphorylate nucleotide under aqueous conditions utilized ammonium phosphate and

urea as a catalyst, and heating at moderate temperatures of 50 to 70°C (Lohrmann &
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Orgel, 1971). This procedure results in ~70% of the starting nucleotide converted to a
mixturc of 2’, 3" and 5’ phosphorylated product. This protocol has been altered to allow
for the biased synthesis of 5’-activated