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Abstract 

This thesis deals with model based fault diagnosis problems for several classes of 

systems with complexities such as uncertainties and nonlinearities. To deal with 

system con~plexities, robust and adaptive approaches are used as the main tools. To 

focus more on fault isolation and estimation, novel observer and output estimator 

based fault diagnosis schemes are proposed. 

Chapters 2 to  4 employ robust approaches to  deal with complexities such as non- 

linearities and nonparametric uncertainties. Robust observers, that is, Unknown In- 

put Observers (UIOs) and Sliding Mode Observers (SMOs), are designed to  solve 

fault diagnosis problems for Lipschitz nonlinear systems and Takagi-Sugeno fuzzy 

system represented uncertain nonlinear systems. UIO and SMO based fault diagnosis 

schemes, whose main novelty lies in the fault isolation, are proposed. 

Chapters 5 and 6 also use robust approaches to  attack more challenging complexi- 

ties such as unmatched uncertainties. A novel idea which advocates output estimator 

design and abandons the state observer design is proposed. Robust output estima- 

tor based fault diagnosis schemes are developed for a class of linear systems with 

both matched and unmatched non-parametric uncertainties. The output estimator 

approach is extended to  a more general class of linear systems, and a high-order slid- 

ing mode differentiator based actuator fault diagnosis scheme is designed, which is 

the first in fault diagnosis. 

Chapters 7 and 8 use adaptive approaches to cope with complexities such as para- 

metric uncertainties. Adaptive output estinmtor based fault diagnosis schemes are 

designed for sensor and actuator fault diagnosis problems in unknown linear Multi- 

Input Multi-Output (MIMO) and Multi-Input Single-Output (MISO) systems. A 



novel idea involving integration of fault isolation design functions into controller de- 

signs is put forward in actuator fault diagnosis. 

The results in this thesis demonstrate that: 1) the proposed robust observer based 

fault diagnosis schemes are powerful in dealing with matched uncertainties and certain 

types of nonlinearities; 2) the proposed robust output estimator (and output derivative 

estimator) based fault diagnosis schemes are powerful in counteracting unmatched 

non-parametric uncertainties; and 3) the adaptive output estimator approach is very 

promising and powerful in coping with parametric uncertainties. 

The thesis concludes by discussing important open problems for future research. 

Keywords: Fault diagnosis; control systems; observer; output estimator; robust; 

adaptive 
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the estimate of the unknown parameter vector 6, 

the filter state related to control inputs 

a sliding mode term 

a sliding mode term dependent on the set s 

the filter state related to system outputs 

the filter state related to y, 

p, pis, constants in sliding mode terms related to the set s 

Pi constant design parameters in sliding mode terms 

Ti functions in back-stepping controller design 

v the filter state related to control inputs 

4 the empty set 

X a complex number 
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Introduction 

A typical control system, which is shown in Fig. 1.1, consists of actuators, sensors 

and a process to be controlled. Actuators are used to generate the desired inputs 

in order to control the process to  behave as expected, while sensors provide all the 

measurements needed for computing the desired inputs and for monitoring the system. 

A practical control system is designed in such a way that the desired performances 

can be achieved when all actuators, all sensors, and all components of a process work 

normally. 

Unfortunately, no real control systems are free of faults. In fact, actuators, sensors, 

and the components of a process in any control system may be faulty. Throughout this 

thesis, a fault is defined as any change in an actuator, sensor, or process component 

that leads to any undesired system performances (excluding a complete breakdown of 

the control system, which is defined as a failure). 

When actuator faults occur, the faulty actuators are no longer able to  generate 

the desired control inputs. Some examples of actuator faults are damage in bearings, 

deficiencies in force and momentum, defects in gears, aging effects, and stuck faults. 

When sensor faults occur, correct nieasurenlents needed for computing control inputs 
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Figure 1.1: A typical control system 

References - Inputs - Actuators Cc 

and for system performance monitoring can not be provided. Typical examples of 

sensor faults are scaling errors, drift, hysteresis, dead zone, and contact failures. When 

some components of the process are faulty, the original process has changed into a 

different process so that the controller designed for the original process is no longer 

able to achieve the expected system performance. Some examples of component faults 

are cracks, ruptures, leaks, loose parts, and abnormal system parameter variations. 

Faults can lead to  production deterioration or damages to machines that not only 

cost a vast amount of money, but can also lead to disasters that claim both property 

and human life. According to  [I], the explosion at the Kuwait Petrochemical's Mina 

Alahmedi refinery in June, 2000 resulted in about 100 million dollars in damages. The 

paper also noted that minor accidents in the chemical industry cost billions of dollars 

every year. Much worse than the loss of money, aircraft accidents, due to faults in 

the control systems, may result in tragedies that make many families lose their loved 

ones. Some recent examples of such events are described in [2] .  

The growing demands for quality, cost efficiency, reliability, and human safety 

in modern control systems call for fault diagnosis. The research on fault diagnosis 

has attracted many people from civil and military industries as well as universities 

Measured Outputs 

Sensors Process 
Outputs 

b 
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[3, 4, 5, 6, 7, 8, 9, 10, 111, and interest in this research field is still increasing [ l ,  121. 

Because various kinds of complexities (uncertainties and/or nonlinearities) are 

unavoidable in practical systems, any practical fault diagnosis should be carried out 

by taking complexities into consideration. Such complexities make fault diagnosis 

problems in control systems very challenging, and many fault diagnosis problems 

are still largely open. This observation, together with the great importance of fault 

diagnosis, motivates the research of this thesis. Robust approaches and adaptive 

approaches are chosen in this thesis work to deal with different kinds of complexities in 

control systems in order that better solutions could be provided for some inadequately 

solved or unsolved fault diagnosis problems. 

1.1 Complexities in Control Systems 

Because the fault diagnosis research is carried out for complex systems, some discus- 

sions on system complexities are presented in this section. 

In control systems, uncertainties and nonlinearities are two basic types of complex- 

ities. Uncertainties can be divided into two classes: parametric uncertainties, which 

are characterized in terms of unknown parameters, and non-parametric uncertainties, 

which include modelling errors and disturbances. Nonlinearities could be classified as 

special nonlinearities (e.g., Lipschitz type nonlinearity and bilinear type nonlinearity), 

and general nonlinearit ies. 

The presence of uncertainties and nonlinearities in control systems constitutes a 

major challenge to model based fault diagnosis. For example, the existence of uncer- 

tainties, even i11 linear systems, makes the observer design very dificult or sometimes 

iinpossible to  achieve exact state estimation 1131. The difficulty encountered in ob- 

server design for nonlinear systems is well known. So far, nonlinear observer design 
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can only be acconlplished systenlatically for some special classes of nonlinear systems; 

for example, Lipschitz systems [14, 15, 161, bilinear systems [17: 18, 19, 201, 1. 1nea.riz- 

able systems [21, 221, and other special types of nonlinear systems [23, 24, 251. For 

general nonlinear systenls, no universal method for observer design is available. 

To see the complexities in control systems more clearly, a classification of control 

systems based on nonlinearity and uncertainty is given in Figure 1.2. 

1.2 The Tasks of Fault Diagnosis and Related 

Problems 

Given a complex system, the tasks of fault diagnosis considered in this thesis are fault 

detection, fault isolation and fault estimation, which are defined as follows: 

Fault detection is to  make a decision on whether or not faults have occurred 

in control systems; 

Fault isolation determines the number and the location of faults; and 

0 Fault estimation estimates the faults. 

This thesis investigates the following problems that are closely related to the tasks 

of fault diagnosis: 

Fault detection problems: 

- FDPl Is fault detection possible? 

- FDP2 How to  detect the faults? 

Fault isolation problems: 
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A Linear systems 
without uncertainties 

Linear systems with 
parametric uncertainties 

Linear , 
systems 

Linear systems with 
non-parametric uncertainties 

Linear systems with parametric 

Systems 

Nonlinear systems 
without uncertainties 

Nonlinear systems with 
parametric uncertainties Nonlinear 

systems 
Nonlinear systems with 

non-parametric uncertainties 

onlinear systems with parametric 
and non-parametric uncertainties 

Figure 1.2: System classification based on complexities 
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- FIPl Is fault isolation possible? 

- FIP2 How many faults can be isolated simultaneously? 

- FIP3 How to design fault isolation schemes to isolate single/multiple 

faults? 

Fault estimation problems: 

- FEPl Is it possible to estimate the faults? 

- FEP2 How to estimate the faults? 

Because fault detection is needed in any practical control system such as a car 

engine, it has been studied extensively in the literature. As already shown in the 

literature, fault detection problems, usually easier than fault isolation and estimation 

problems, are solved better than fault isolation and estimation problems [ I ,  3, 4, 5, 

6, 7, 8, 9, lo]. 

Fault isolation, although almost equally important as fault detection, has received 

much less attention. Some important results are found in [l, 3, 4, 5 ,  6, 7, 8, 9, 101 

and the references listed therein. As noted in several recently published works [13, 

26, 27, 28, 291, although solutions have been provided for fault isolation problems for 

some control systems such as aircraft control systems, certain fault isolation problems 

are not solved satisfactorily and there are still open problems for many other complex 

coiltrol systems. 

Fault estimation used to be regarded as less inlportant [9] than fault detection 

and isolation and has been studied even less. However, it is very useful for fault 

accomn~odation ancl fault tolerant control [ll] in aircraft control systems, ancl is 

gaining more interest because some fault esti~natioii techniques can be used directly 

for both fault detection a,nd fault isolation. Some examples using the sliding mode 
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based fault estimation techniques have been proposed in [27, 30, 317, but much work 

remains to  be completed. 

1.3 The Purpose of This Thesis 

This thesis is to solve model based fault diagnosis problems defined in Section 1.2 for 

several classes of systems with complexities such as uncertainties and nonlinearities. 

In accordance with Fig. 1.2, the systems considered include nonlinear systems with 

matched non-parametric uncertainties (formerly called unknown inputs in the litera- 

ture), linear systems with both matched and unmatched non-parametric uncertainties, 

and linear systems with parametric uncertainties. 

The fault diagnosis problems will be solved based on observer design as well as 

output estimator design. The main tools used to deal with system complexities are 

robust and adaptive approaches. Based on the observation that fault detection is 

solved better than fault isolation and estimation, the research of this thesis will focus 

more on fault isolation and estimation problems. 

1.4 Model Based Fault Diagnosis-A Literature 

Review 

Fault diagnosis methods may be classified into two major groups: model-free methods 

and model based methods. The advantages and disadvantages of these methods can 

also be found in [9]. 

According to [9], model-free fault diagnosis niethods include: physical redun- 

dancy, special sensors installed for fault  diagnosis purpose,  limit checking, 

spec t rum analysis, and knowledge based logic reasoning. 
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Model-free fault diagnosis method can not capture the system dynamics suffi- 

ciently, and thus can not be used in fault diagnosis problems of systems with rich 

dynamics such as fault diagnosis of a car engine which undergoes frequent start and 

stop. Model based fault diagnosis makes use of both quantitative mathematical mod- 

els and qualitative models. Because this thesis is devoted to deterministic quantitative 

mathematical model based methods, a detailed review will only be given on research 

in this area. For simplicity, in the rest of this thesis, the word model  is used to stand 

for a determinist ic  quantitative mathematical  model. 

1.4.1 Model Based Fault Diagnosis Methods 

It is widely accepted that model fault diagnosis consists of two stages: residual gen- 

eration and decision making based on residual evaluation [32]. The residuals are 

generated for fault diagnosis purpose. Corresponding to different residual generation 

techniques, model based fault diagnosis methods that have been developed in the 

literature can be divided into four groups: 

parity space approach 

parameter estimation approach 

observer based approach 

direct output estimator based approach 

Because neither a parity space approach nor a parameter estimation approach 

is used in this thesis, no review is given here for these two approaches. However, 

researchers interested in the parity space approaches can consult [ti, 9: 331 and those 

interested in the parameter estimation approaches can check [4, 121. 
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Both observer based approach and direct output estimator based approach are 

enlployed in this thesis. A detailed review of each approach will be given in the 

following two subsections. 

1.4.2 Observer Based Fault Diagnosis 

Observer-based approach is the most extensively used method in model based fault 

diagnosis. Various types of observers have been proposed for fault diagnosis purposes: 

the Beard-Jones fault detection filter, the unknown input observer, the sliding mode 

observer, the adaptive observer, the H, observer, and the iterative learning observer. 

In this subsection, only four types of observer based fault diagnosis will be re- 

viewed: the Beard-Jones fault detection filter based fault diagnosis, the unknown 

input observer based fault diagnosis, the sliding mode observer based fault diagnosis, 

and the adaptive observer based fault diagnosis. Readers interested in the H, ob- 

server based fault diagnosis are referred to [34, 35, 361, and those interested in the 

iterative learning observer based fault diagnosis are referred to [37, 38, 391. 

1. Beard-Jones Fault Detection Filter (BJFDF) Based Fault Diagnosis 

In [40], fault detection filter was first proposed to generate directional residuals 

for linear systems without uncertainties. The main idea of the BJFDF is that 

each directional residual is designed in correspondence to a particular fault or a 

particular group of faults. This approach was refined in a geometric framework 

in [41] and [42]. The design problem of BJFDF was later investiga.ted in [43, 

44, 45, 461. Since 1990s, various extensions of the BJFDF have been conducted 

including the robust BJFDF design in [35, 47, 48, 491, the BJFDFs for singular 

perturbed systems and time delay systems in [50] and [36], and the BJFDFs for 

Lipschitz nonlinear systeins and affine non1inea.r systems in [51: 521 a.nd [53]. 
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2. Unknown I n p u t  Observer (UIO) Based Fault  Diagnosis 

In this thesis, the terms unknown inputs and non-parametric uncertainties will 

be used interchangeably. The design of observers for systems subject to unknown 

inputs has attracted considerable attention in the past, and nlany types of UIOs 

are now available. Reduced order linear UIOs are designed in [54, 55, 56, 571, 

while full order linear UIOs have been designed in 1581 and [59]. UIOs for 

nonlinear systems were designed in 118, 19, 20, 60, 61, 62, 63, 64, 65, 66, 671, 

where [18, 19, 20, GO] considered bilinear systems, [61, 62, 63, 641 were devoted 

to Lipschitz nonlinear systems, and 165, 66, 671 attempted designs for more 

classes of nonlinear systems. 

In order to accomplish fault diagnosis efficiently for systems with uncertainties, 

generating residuals that are insensitive to those uncertainties is desirable. If 

uncertainties are treated as unknown inputs, UIOs can be readily used for fault 

diagnosis. Amongst the various robust fault diagnosis schemes, the UIO based 

fault diagnosis scheme is one of the schemes that have been studied the most 

extensively (see [29, 61, 62, 66, 68, 69, 70, 71, 72, 73, 74, 751 and the related 

references listed therein). Many existing fault diagnosis schemes based on UIO 

were proposed only for linear uncertain systems [69, 70, 71, 72, 74, 751. Develop- 

ing nonlinear robust fault diagnosis schemes based on UIO has been attempted. 

A UIO based fault diagnosis scheme for bilinear systems was proposed in [73]; 

UIO based fault diagnosis schemes were designed in [29, 62, 611 for Lipschitz 

nonlinear systems; and nonlinear UIO based fault diagnosis schemes have been 

proposed in [66, 681 for a more general class of nonlinear systenls that are in a 

suitable forill or can be transformed into that structure. 

The main difficulty in nonlinear UIO based fault diagnosis is the design of 



Chapter I. Introduction 

nonlinear UIOs, because no systematic design method is available for general 

uncertain nonlinear systems. Besides the design difficulty, most existing UIO 

based schemes assume that the fault distribution matrix is known, which is often 

not the case for fault isolation problems, and many of them are only devoted 

to  fault detection or single fault isolation. Even for linear systems, the fault 

diagnosis problems raised in Section 1.2 have not been solved completely, and 

this fact motivated the research in [29], where a relatively complete solution 

was provided for Lipschitz nonlinear systems. As for general nonlinear systems, 

solving the fault diagnosis problems using UIO design is still largely open. 

3. Sliding Mode Observer (SMO) Based Fault Diagnosis 

Because sliding mode observers (SMOs) are robust to uncertainties, they can 

be used in robust fault diagnosis. 

In general, the SMO based fault detection and isolation (FDI) techniques are 

classified into two categories. The first category uses SMOs to  make the output 

estimation error insensitive to uncertainties, but sensitive to faults ([27, 76, 77, 

781). [76, 77, 781 only considered the fault detection problem, while a scheme in 

[27] focused on the fault isolation problem. 

The second category employs SMOs to  reconstruct or estimate the faults 

[27, 30, 31, 79, 80, 81, 821. In [30, 31, 79, 801, fault detection and isolation 

problems for linear systems were solved under the assumption that the fault 

distribution matrix is known. In [78, 811, the solutions for fault detection and 

isolation problems were provided for nonlinear systems under structural con- 

straints. Again, the distribution of faults is assumed to be known, and the con- 

struction of the state trarisformation for nonlinear systems is not an easy task. 
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In [27], two schemes were proposed for a class of uncertain Lipschitz nonlinear 

systems to remove the need for knowing the distribution of faults. However, the 

assumption that all the system inputs can be reconstructed may not be possible 

for some systems. This assumption is removed in [82]. Since Lipschitz nonlinear 

systems are only a restricted type of special nonlinear systems, designing SMOs 

to solve fault diagnosis problems for general nonlinear systems still remains to 

be solved. 

4. Adapt ive  Observer Based Fault  Diagnosis 

Although many adaptive observers have been designed for both linear [83, 84, 851 

and nonlinear systems [86, 87, 88, 89, 90, 91, 921, the adaptive observer design 

for an unknown linear MIMO system remains unsolved because none of the 

existing adaptive observers are applicable. 

In the fault diagnosis community, two types of adaptive observer based fault 

diagnosis schemes have been proposed. One type assumes that the systems 

(or nominal systems) are known, and faults can be properly parameterized. 

The works in [93, 94, 95, 961 belong to this type, where persistent excitation 

conditions are required. The schemes in [97, 98, 991 belong to this type too, 

where a compact convex region to which the unknown parameter vector O* 

belongs needs to be determined using some knowledge about the faults. 

Another type deals with systems with unknown parameters and does not make 

assuniptions on the faults. The works in [73, 100, 101, 102, 1031 belong to this 

type. Although [loo, 1031 considered nonlinear systems, how to apply these 

adaptive schemes to unknown linear systems is not clear. The only adaptive 

observer fault diagnosis scheme for unknown linear systems was proposed in 
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[102], where a proportional-integral adaptive observer was designed for fault 

diagnosis for single-input single-output (SISO) linear systems. For general un- 

known multi-input multi-output (MIMO) linear and nonlinear systems, how to 

use adaptive approaches to solve the related fault diagnosis problems is still an 

open problem. 

1.4.3 Direct Output Estimator Based Fault Diagnosis 

A necessary assumption for the observer based fault diagnosis is that systems under 

consideration are observable or a t  least detectable. When the systems under study are 

not detectable, observer design is impossible, and thus the observer based approach 

cannot be used for fault diagnosis. 

Another limitation of observer based fault diagnosis is that asymptotical state es- 

timation using an observer is sometimes inlpossible even for linear observable systems 

whose unknown inputs do not satisfy certain matching conditions [13]. The unknown 

inputs, which do not satisfy certain matching conditions, is termed as unmatched 

unknown inputs in this thesis. If unmatched unknown inputs are present, observer 

based fault diagnosis using asymptotical state estimation might not be possible. 

One well known approach that could be used for fault diagnosis of systems not 

detectable is the parity space approach. It was first developed for discrete-time sys- 

tems in 132, 1041, and was later extended to continuous systems in 11051. When the 

systems have parametric uncertainties, parity space approach is very hard to use if 

not impossible. Note that the functional observers developed in 11061 are actually 

a generalized output estimator based on the rather complicated special coordinate 

basis transformation in [107]. This thesis uses different approaches to achieve output 

estimator. design. 
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Because only output estimators are actually needed for fault diagnosis purpose, 

it is possible to  abandon the idea of observer design through employing the idea of 

direct output estimator design. The idea of direct output estimator design for fault 

diagnosis was first proposed and studied systematically in [13] for a class of linear 

systems with unmatched unknown inputs. This idea wa.s extended in [108], where 

direct estimators for both the outputs and their derivatives were designed for the 

purpose of fault diagnosis. 

Because the existence of a direct output estimator does not necessarily require 

the systems under study t o  be detectable, direct output estimator based fault diag- 

nosis removes the assumption needed for observer based fault diagnosis. This idea is 

particularly useful for adaptive fault diagnosis. Using the idea, sensor fault diagnosis 

problenls are solved elegantly for MIMO linear systems with parametric uncertainties 

[log], and actuator fault diagnosis problems are solved also for multi-input-single- 

output (MISO) linear systems with parametric uncertainties [110]. Because the direct 

output estimator based approach is a novel approach developed only very recently, 

much work is needed for linear systems with both parametric and non-parametric un- 

certainties as well as for various types of uncertain nonlinear systems. Direct output 

estimator based fault diagnosis will gain more popularity and make more contributions 

to  model based fault diagnosis in the future. 

1.5 Thesis Contributions 

The contributions of the thesis are summarized below. 

1. Fault  diagnosis of nonlinear sys tems w i t h  matched  non-parametric 

uncertainties-Robust observer based approach  
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For a class of Lipschitz nonlinear systems with matched non-parametric 

uncertainties, a novel UIO is proposed. To ease the design difficulty, a 

Linear Matrix Inequality (LMI) based UIO design approach is developed. 

By employing a bank of the proposed UIOs, a UIO based robust fault 

diagnosis scheme is proposed, which provides solutions for the actuator 

fault detection and isolation problems raised in Section 1.2. The scheme, 

when applied to linear systems, is also new. 

For the same class of uncertain Lipschitz nonlinear systems, an SMO based 

robust fault diagnosis scheme is designed in a parallel manner. Unlike the 

UIO based scheme, which does not solve the fault estimation problems, the 

SMO based approach is able to solve all the problems raised in Section 1.2 

for actuator faults. 

For a class of nonlinear systems with matched non-parametric uncertainties 

and that can be represented by Takagi-Sugeno (TS) fuzzy models, a UIO 

based robust fault diagnosis scheme is constructed with the intention to 

extend the ideas employed in the UIO based scheme for Lipschitz nonlinear 

systenls to more general nonlinear systems. The design of the UIO is more 

difficult and is formulated as an LMI problem in order to ease the design 

difficulty. Both the actuator fault detection and isolation problems are 

solved. 

2. Fault  diagnosis of linear systems wi th  bo th  matched a n d  unmatched 

non-parametric uncertainties-Robust direct ou tpu t  es t imator  based 

approach 
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For a class of linear systems with both matched and unmatched non- 

parametric uncertainties and with relative degree one, a canonical sys- 

tem form is first established to split the non-parametric uncertainties into 

matched and unmatched uncertainties. Based on the canonical system 

form, a robust actuator fault diagnosis scheme based on the direct output 

estimator design is proposed using sliding mode techniques. It provides so- 

lutions to all the problems raised in Section 1.2, and its advantage is that 

it can be applied to certain systems where observers can not be designed 

to achieve asymptotical state estimation. 

For a more general class of linear systems, which have both matched and 

unmatched non-parametric uncertainties, a relative degree larger than one, 

and are not necessarily detectable, an input-output relation is derived. By 

extending the idea of direct output estimation to the direct estimation of 

both the outputs and their derivatives and by employing the input-output 

relation, a robust fault diagnosis scheme based on direct estimation of out- 

puts and their derivatives is designed for actuator fault diagnosis, which is 

the first scheme using robust high-order sliding-mode robust differentiators 

(HOSMRDs). The scheme is able to solve all the problems raised in Section 

1.2 for actuator faults. Its advantage is that it can be applied to systems 

that are not detectable, where observer based fault diagnosis schemes are 

inlpossible to use. 

3. Fault diagnosis of linear systems with parametric uncertainties- 

Adaptive direct output estimator based approach 
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For a class of linear multi-input multi-output (MIMO) systems with un- 

known system parameters, a new fault diagnosis scheme is proposed for 

adaptive sensor fault detection and isolation problems. The scheme aban- 

dons the idea of designing adaptive observers to estimate all the states 

and employs the design of adaptive output estimators to estimate only the 

outputs. Firstly, an MIA40 system is decomposed into a group of IvIISO 

systems and a transfer function description for each MIS0 system is pre- 

sented. Secondly, inspired by [83, 1111 and based on each transfer function 

as well as for each output, an output equation, suitable for output esti- 

mator design, is derived by filtering the corresponding output and all the 

inputs properly. Thirdly, using the derived output equations, adaptive out- 

put estimators are designed for all outputs. Finally, based on the designed 

output estimators, the adaptive sensor fault detection and isolation prob- 

lems are solved. The proposed fault diagnosis scheme enables us to treat 

each output separately, and thus makes the difficult sensor fault isolation 

problem an easy task. It does not require the original systems to  be de- 

tectable. No such scheme has been proposed even for known linear MIMO 

systems in the literature. 

Actuator fault diagnosis in linear systems with unknown system parame- 

ters is much harder than sensor fault diagnosis, which is why an adaptive 

actuator fault diagnosis scheme is designed only for unknown linear MIS0 

systems. The original systems do not have to be detectable, and the de- 

signed scheme is even new for known linear systems. Again, the scheme 

abandons the idea of designing adaptive observers to  estimate all the states 

and employs the design of an adaptive output estimator to estimate only 
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the output. To solve the detection problem, an adaptive estimate of the 

output signal is constructed. By comparing it with the output of the sys- 

tem, any type of actuator fault can be detected. In order to  solve the much 

more complicated fault isolation problenls using an adaptive approach, only 

constant actuator faults are considered, which arise when the actuator out- 

put (such as a valve) is stuck at  some fixed value. A novel idea which entails 

controller design for fault isolation is proposed. Thus, the controller in this 

case is not only designed to meet the control objective, but also to  help 

with fault isolation, in case of an actuator failure. To accomplish this, as- 

suming that there are m inputs, a group of additive functions, called fault 

isolation design functions, in m - 1 inputs is introduced solely for fault 

isolation purpose. Assume that only fewer than m - 1 faults can occur, to 

isolate the faults, C& + . - .  + C,"-' adaptive estimates of the output are 

defined. Isolation is accon~plished by comparing these estimates with the 

output of the actual system. 

1.6 Thesis Outline 

The remainder of this thesis is organized as follotvs: Chapter 2 proposes a UIO based 

robust fault diagnosis scheme for a class of Lipschitz nonlinear systems with matched 

non-parametric uncertainties, which solves the fault detection and isolation problems. 

In a parallel manner, Chapter 3 develops an SMO based robust fault diagnosis scheme 

for the same class of systenls considered in Chapter 2. The scheme not only solves 

the fault detection and isolation problems, but also the fault estimation problems. 

Chapter 4 designs a UIO based robust fault diagnosis for a class of uncerta.in nonlin- 

ear systems, which has matched non-parametric uncertainties and can be represented 
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by TS fuzzy models. The scheme is able to provide solutions for the fault detection 

and isolation problems. Robust approaches are used as tools to deal with matched 

non-parametric uncertainties in these three chapters, and all fault diagnosis schemes 

are based on observer design. Chapter 5 is concerned with systems with both matched 

and unmatched non-parametric uncertainties. By developing a canonical system form, 

which separates the matched and unmatched uncertainties explicitly, an output esti- 

mator, other than a state observer based fault diagnosis scheme, is constructed using 

robust approaches. The scheme provides solutions for all the problems raised in Sec- 

tion 1.2. In Chapter 6, the main ideas in Chapter 5 are extended to more general 

uncertain linear systems, where a robust actuator fault diagnosis scheme is designed 

based on an input-output relation and the use of robust high-order sliding-mode dif- 

ferentiators. The designed scheme again solves all the problems raised in Section 1.2. 

Adaptive approaches are used in Chapter 7, where an adaptive sensor fault diagnosis 

scheme is presented for linear MIMO systems with parametric uncertainties. Based 

on a novel idea called controller design for fault diagnosis, Chapter 8 proposes an 

adaptive actuator fault diagnosis scheme for linear MIS0 systems with parametric 

uncertainties. Finally, Chapter 9 provides conclusions and future works. 

Publication Notes 

All the works in this thesis have been either published or submitted for publication. 

The main results on fault diagnosis for a class of Lipschitz nonlinear systems with 

iliatched non-parametric uncertainties in Chapter 2 was published in [29]. The works 

based on the direct estimation of outputs, presented in Chapter 5, appeared in [13]. 

The fault diagnosis scheme based on the direct estimation of outputs and their deriva- 

tives was reported in [108]. Chapter 8 is adapted from the paper in [110], which has 
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been published in the refereed journal International Journal of Control. 

The work reported in Chapter 3 was submitted to a refereed journa1,revised ac- 

cording t o  the reviewers' comments, and is pending for publication. The works ac- 

complished in Chapter 4 and Chapter 7 have been accepted by a refereed conference. 



Chapter 2 

UIO Based Fault Diagnosis for 

Uncertain Lipschitz Nonlinear 

Systems 

In this chapter, the fault diagnosis problems for a class of Lipschitz nonlinear systems 

with matched non-parametric uncertainties are considered using a novel UIO design. 

2.1 Introduction 

In the monitoring and diagnostic of complex dynamical systems that are subject to 

non-parametric uncertainties, robust approaches are usually employed. A robust fault 

diagnosis scheme is a procedure that can generate residuals that are sensitive to faults, 

but insensitive to uncertainties and/or unknown disturbances. 

To deal with various types of unknown inputs (or non-parametric uncertainties), 

two strategies using robust approaches have been developed. One strategy is to remove 

the effect of the unknown inputs con~pletely by designing fault diagnosis schemes that 
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are invariant to the unknown inputs. Schemes based on the design of unknown input 

observers (UIOs) and sliding mode observers (SMOs) adopt this strategy. The other 

strategy is to attenuate the effect of the unknown inputs to a minimum level in certain 

sense; i.e., minimizing the H m  gain of the unknown inputs. Generally, this strategy 

will lose the invariant property to matched unknown inputs. 

The UIO based robust FDI problem has been studied extensively; however, most 

existing UIO based fault diagnosis schemes were proposed only for linear uncertain 

systems 171, 75, 70, 72, 69, 741. Built upon the reduced order UIO design proposed 

in [56] and for a broad class of faults that can be represented by a state space model, 

fault detection and estimation problems were solved successfully in [69]. Through 

proper state transformations, [70] was able to deconlpose the original system into two 

subsystems. A reduced order UIO was designed and used to solve component and 

actuator fault isolation problems. Similar to (701, [72] presented a new method to 

design reduced order UIOs and designed a bank of UIOs to isolate one single fault. 

Using a special canonical form obtained also by state transformation, a reduced order 

UIO was designed easily in [74], and a particular actuator fault and sensor fault 

isolation problem was solved successf~~lly. A full order UIO was designed using a 

parametric approach for robust fault detection in [75]. 

The development of robust fault diagnosis schemes based on nonlinear UIO design 

has been attempted. A fault diagnosis scheme based on reduced-order UIO design for 

bilinear systems was proposed in [73]. [61] extended linear UIO design to a class of 

Lipschitz nonlinear systems and developed sufficient condition for the existence of the 

proposed UIOs using linear matrix inequalities (LMIs) a.nd linear matrix equalities 

(LMEs). Then, by treating the actuator fanlts as unknown inputs, a bank of UIOs 

was designed to isolate one single a,ctuator fault. However, finding a solution that 
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satisfies the LMIs and LMEs is not an easy task. Assuming the fault distribution 

matrix is known (though often not the case for a fault isolation problem), [62] also 

proposed a UIO based fault diagnosis scheme that required to solve a more difficult 

parametric Lyapunov equation. Sensor fault diagnosis for a class of uncertain Lip- 

schitz nonlinear systems was considered in [112], where LMI technique was used to 

design the observer, but disturbailces were not taken into consideration. For a more 

general class of nonlinear systems that are in a suitable form or can be transformed 

into that structure, [66, 681 proposed a fault diagnosis scheme based on a bank of 

nonlinear UIOs. 

Besides the design difficulty, most existing UIO based schemes assume that the 

fault distribution matrix is known, which is often not the case for fault isolation 

problems. Many schemes are only devoted to fault detection or single fault isolation. 

Moreover, if not properly designed, existing UIO based schemes will fail to isolate a 

single fault or even to  detect faults . Therefore, even for linear systems, the fault 

diagnosis problems raised in Section 1.2 have not been solved completely. This obser- 

vation motivated the research in this chapter, where a relatively complete solution is 

provided for the fault diagnosis problems of a class of uncertain Lipschitz nonlinear 

systems. Because uncertain linear systems can be viewed as special cases of uncertain 

Lipschitz nonlinear systems, the proposed fault diagnosis scheme can be applied to 

uncertain linear systems. 

The remainder of this chapter is arranged as follows. In Section 2.2, the system 

is described, the problems are formulated, and then particular system structures are 

developed for the sake of both actuator and sensor fault diagnosis. In Section 2.3, a 

novel diagnostic UIO with a special property suitable for fault isolation purposes is 

proposed with the necessary condition and sufficient conditions for its existence. The 
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LMI based sufficient condition provides a systematic way to design the UIO using the 

LMI toolboxes. Based on a new concept, which is called UIO Induced Actuator Fault 

Isolation Index (UIOIAFIX),  Section 2.4 solves the actuator fault diagnosis problems 

using the novel UIO design technique. In Section 2.5, two examples illustrate the 

design of the proposed fault diagnosis scheme and how to test effectiveness of the 

scheme. One example considers Lipschitz nonlinear systems with non-parametric 

uncertainties while the other considers a practical example, where a linearized model 

of a tailless jet fighter taken from [I131 is used. Conclusions and discussions are made 

in the last section. 

2.2 Problem Formulation and Particular System 

Structures for Fault Diagnosis 

2.2.1 Problem Formulation 

The uncertain nonlinear systems considered are of the following form 

where the state vector x = (xl . - . x , ) ~  E Rn, the output vector y = (yl - - . yPlT E 

RP, and the input vector u = (ul . . . E RnZ. f (x) is a known vector function of 

z, and d E Rq is the unknown input vector which may consist of disturbances and/or 

other system uncertainties. A is the system state matrix in RnXn,  B is the system 

input matrix in RnXm, C is the system output matrix in RpXn, and D is the system 

unknown input matrix in RnXQ. For notational convenience, let B = (bl - .  . b,) arid 

T T  c = (c?' - - - cp ) . 
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The following assumptions are needed: 

Assunlption A21: A, B, C, D are known, both B and D are of full column rank, 

and p 2 q. 

Assumption A22: For f (x), a positive constant y exists such that 

for all x, 2.  

Remark 2.2.1 f (x) satisfying A22 is  said to  be a Lipschitz function. The inequality 

(2.2) i s  the well known Lipschitz condition. Although Lipschitz nonlinear systems are 

a restricted class of nonlinear systems, they still represent a broader class of systems, 

which include linear systems as special cases(corresponding to  f (x) = 0). Given the 

fact that most fault diagnosis has been studied for linear systems, i t  i s  not so restrictive 

to  study the fault diagnosis problems of Lipschitz nonlinear systems. Also note that 

some general nonlinearities can be treated as unlcnown inputs, therefore (2.1) actually 

includes a fairly broad class of uncertain systems. 

Two fault diagnosis problems are formulated as below: 

Actuator fault detection and isolation (FDI) problems - Assume that 

only actmtor faults can occur, the objective is to carry out a systematic study 

on the fault detection and isolation problenls in Section 1.2. 

Sensor FDI problems - Assume that only sensor faults can occur, the ob- 

jective is to carry out a systematic study on the fault detection and is01 a t '  ion 

problems in Section 1.2. 
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2.2.2 A Particular System Structure for Actuator FDI 

For notational simplicity, throughout this thesis, let 4 denote the empty set, and 2' 

denote the set consisting of all subsets of a given set S .  Additionally, two sets are 

defined as SI = {1,2: - - - , m )  and So = {1,2, - - . , p ) .  

To develop a particular system representation for actuator FDI, for any s = 

{il, - . - ,ill E 2'1 with 1 5 1 5 m, denote B, = (bil - - bi,), and define B, as 

the complementary matrix of B, consisting of the remaining columns of B. Similarly, 

denote u, = (uil . - and ii, as a column vector consisting of the remaining 

components of u. 

Now, by rewriting (2.1), a particular system structure is obtained as follows: 

x = AX + f ( x )  + B,ii, + B,U, + ~ d ,  

3 = Cx. 

Remark 2.2.2 This system structure is obtained by regrouping the system inputs. It 

allows the designer to treat any combination of inputs as unknown inputs. By treating 

each of the C i  combinations of inputs in u, as unknown inputs, the system structure 

is especially convenient for fault isolation. 

2.2.3 A Particular System Structure for Sensor FDI 

Similarly, to develop a particular system structure for sensor FDI, for any s = 

{il, . . - , i l }  E 2'0 with 1 5 1 5 p and s f 4, denote C, = ( c l ,  - , c : ) ~ ,  and define 

c, as the complementary matrix of C, consisting of the remaining rows of C. Also 

denote y, = (pi, - . . 7 ~ ~ ~ ) ~  and 5, as a vector consisting of the remaining coinpouents 

of Y. 
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As in [31] ,  y, is filtered as 

where A f ,  is chosen to  be Hurwitz, and Af,, (E RLX' )  and Bf,, are chosen as any 

invertible matrices in RcX1. 
T T T  By defining zaUg, = ( x  cs ) , 3 = (jj: ,T:)T, and using ( 2 . 1 )  and ( 2 . 4 ) ,  a partic- 

ular system structure is obtained as 

where 

Remark 2.2.3 This  system structure i s  obtained by regrouping and filtering the out- 

puts. If y ,  is treated as unknown inputs, i t  is  easy to  see that (2.3) and (2.5) actually 

have the same system structure. This obsermation is suficient to develop UIO based 

schemes only for actuator FDI because, with on19 a few slightly diflerent matrix ma-  

nipulations, sensor FDI can be solved using the same schemes. Therefore, in the rest 

of th,is chapter, only actuator FDI is considered. 

2.3 A Novel Nonlinear Diagnostic UIO 

As stated in Remark 2.2 .3 ,  because considering actuator FDI problems is sufficient, a 

novel diagnostic nonlinear UIO is only proposed for system ( 2 . 3 ) .  In this section, suffi- 

cient conditions for its existence are presented, and an LMI based sufficient condition 

is derived for the purpose of UIO design. 
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2.3.1 A Diagnostic UIO 

For any s, it is desired to design a UIO such that only the inputs in us, besides 

d, are treated as unknown inputs. In this way, the state estimation error will be 

insensitive to the il . - - ilth actuator faults, but sensitive to any other actuator faults. 

Because the UIOs designed is specially for the purpose of fault diagnosis, it is called 

a diagnostic observer. 

uH is defined as the healthy actuator output vector; that is, when all actuators 

are healthy, uH = u, otherwise, uH # u. Let uf and ii: be defined in the same way 

as us and i&, respectively. By treating us as an unknown input vector, a diagnostic 

UIO for (2.3) is introduced as follows: 

where 1V,, G,, L,, A& are defined as 

By defining e, = 5, - x, the following is easy to derive: 

e,  = N,e, + Ms( f ( i s )  - f (x)) + Gs(@ - ii,) - &IS B,,u, - M, Dv. (2.9) 

Clearly, all the observer gain matrices defined by (2.8) are determined by E, and 

K,. For fault diagnosis purposes, E, a.nd K.s should be chosen such that the observer 

given by (2.7) and (2.8) satisfies the following requirements: 
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0 UIO Condition 1 (UIOC1) Ms(D B,) = 0. 

UIO Condition 2 (UIOC2) G,, that is, M ~ B , ,  is of full column rank. 

UIO Condition 3 (UIOC3) N, is Hurwitz. 

The following remark presents some discussions on the above requirements. 

Remark 2.3.1 If U I O C 2  is not satisfied, that is, G ,  is not of full column rank, then 

e,  is not affected by any faults such that iif - ii, # 0 and G,(iir - ii,) = 0. In such 

a case, correct fault isolation cannot be made based on  a bank of UIOs. This implies 

that existing UIO based fault isolation schemes (none of which have such a condition) 

may fail if not properly designed. Existing fault detection schemes based on a UIO 

may encounter the same problem ( that is, faults may not be detected). This is the 

reason why U I O C 2  is needed to improve the performance of the proposed FDI scheme. 

The novelty of the proposed diagnostic observer is discussed in the following re- 

mark. 

Remark 2.3.2 The novelty of the diagnostic observer is that 1) all combinations of 

the inputs can be treated as unknown inputs; 2) U I O C 2  is required particularly for 

fault diagnosis purposes; and 3) .iiy (instead of ii, as in  conventional UIO design) is 

also used in the observer design for purpose of fault diagnosis. 

2.3.2 Conditions for the Existence of the UIO 

In this subsection, a necessary condition for the existence of the UIO given by (2.7) 

and (2.8) is provided first. Then, sufficient conditions are derived, and an LMI based 

sufficient condition is given to ease the difficulty in the UIO design. 

Based on the results obtained in 130, 59, 1141, proving the following necessary 

condition for the existence of the UIO given by (2.7) and (2.8) is straightforward. 
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Theorem 2.1 If the observer given by (2.7) and (2.8) exists such that U I O C l  - 
U I O C 3  are satisfied, the following two conditions must be met: 

1) there exist Es and a full column rank matrix X, such that 

2) for any complex x with R e ( x )  > 0,  rank = n + q + l .  
0 0 

I n  A Bs 

The uncertainties that satisfy the above necessary conditions are called matched 

uncertainties. 

Remark 2.3.3 Compared with conventional UIOs, the condition U I O C 2  actually 

constrains the feasible solutions of E,, which in turn shrinks the feasible set of all 

feasible E,. However, for the purpose of fault isolation, this condition is necessary 

and has to be added. This fact will be shown more clearly later in  the fault isolation 

problems. 

For simplicity, it is assumed rank C ( D  B, B , ~ )  = m + q. Then, for any X ,  of full 

column rank, E,  can always be given in the following form: 

where Xf = ( X T X ) - ' X T  and Y,  can be chosen freely. 

Remark 2.3.4 Under the condition that the rank C ( D  B, B,) = m + q, E, always 

has solutions for any X, of full column rank, which means one has the freedom to 

choose X,. 

In the remainder of this subsection, sufficient conditions for the existence of the 

UIO given by (2.7) and (2.8) will be derived, which satisfies U I O C l  - UIOC3.  

The first sufficient condition is given in Theorem 2.2. 
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Theorem 2.2 Under assumptions A21 and A22 and assuming that fiy = ii,, if there 

exist E, and Ks such that 

2. M,B, is of full column rank; 

3. there exists a symmetric positive definite matrix, P,, satisfying the following 

matrix inequality 

then U I O C l  to U I O C 3  are satisfied, and, moreover, e, exponentially approaches zero, 

and is thus made invariant with respect to us and d .  

Proof. Because 1 is the same as U I O C 1 ,  2 is the same as UIOC2,  and 3 implies 

U I O C 3 ,  U I O C l  - U I O C 3  are satisfied. 

Now, it needs to show e, approaches zero exponentially fast. 

Because U I O C l  is true, MsBs = 0 and MsD = 0. Using these and fif = us, (2.9) 

becomes 

For convenience, let -Q, = NF P? + P, N, + P, M,s MT P, + y I .  By choosing a Lyapunov 

function as Vg = e;P,e, and differentiating it with respect to t along (2.13), one gets 
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Because Q, > 0, (2.14) implies that e, will exponentially approach zero as t goes to 

infinity. B 

The problem remaining is how to design E, and Ks such that all the conditions 

needed are met. According to Theorem 2.2, the design of these matrices involves 

solving a highly nonlinear matrix inequality (2.12), which is a very difficult task. To 

overcome the difficulty encountered in designing Es and K,, an LMI based sufficient 

condition will be derived in the remainder of this section. 

For simplicity, the following notations are introduced: 

The LMI based sufficient condition is given in the following theorem. 

Theorem 2.3 Under assumptions A21 and A22, and assuming that fif = ii,, and if 

there exists a solution of P, > 0, R, > 0, and Rs for the following LMI 

x11 x12 

(XG I )  < o  

where Xll and X12 a7.e defined as 

X I ,  = [(I + w~,c)A]*P, + P,(I + W1,C)A + ( w ~ , c A ) ~ R ,  + RS(W3,CA) 

+ ( I / C ' ~ , ~ C A ) ~ Y T  + ( ~ 2 , ~ c A )  - cTfi-ir - l?,C + 71, (2.17) 

and 
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Then, by letting Y, = P;'%, K, = P,-'K,, and X, = P,-'R,B,, all the gains 

defined by (2.8) can be computed easily as follows: 

h/l, = I+E,C, 

N, = MSA- K,C, 

G = ki, B,, 

L, = K,(I +CE,)  - M,AE,. 

and the observer given by (2.7) and (2.8) satisfies UIOCl  N 

e, approach zero exponentially. 

(2.19) 

UIOC3 and can make 

Proof. Using the definitions of E,s, Wl,, and W2,, one obtains 

Using X, = P-'R,B,, the definition of W3, and Y,  = P-'%',, one derives 

(2.21) shows that E, can be computed using the first equation in (2.19). Because E, 

and K, can be computed, by definition, all the other observer gains can be con~puted 

using (2.19). 

In the remaining part of this proof, it will be shown that the observer given by 

(2.7) and (2.8) satisfies UIOCl  - UIOC3 and can make e, exponentially approach 

zero. 

First, since Y, a.nd X, exist, E,  exists and can be computed by (2.21), which is 

equivalent, to (2.11). Therefore, by definition, E, satisfies 
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and 

(2.22) and (2.23) imply both conditions 1 and 2, required by Theorem 2.2, are satisfied 

using the fact B is of full column rank. Second, it will be shown that condition 3 in 

Theorem 2.2 is also satisfied; that is, there exists P, > 0 such that (2.12) is true. 

Using (2.21) and the definitions of K,, x, N,, MS, Xll, and Xlz,  it is easy to show 

that 

x11 = [ ( I  + E,C)A]~P + P(I + E,C)A - CT1(,TPS - PsKsC + y l  

= CP, + PsNs + 71, 

and 

It is well known that 

is equivalent to  Xl l  + X12X$ < 0. This fact, together with (2.24) and (2.25), implies 

It has been proved that all the conditions needed by Theorem 2.2 are met. There- 

fore, according to Theorem 2.2, UIOCl  - UIOC3 are met and e, is made to expo- 

nentially approach zero. I 

Remark 2.3.5 Designing UIOs for linear systems is not an  easy task.: but the design 

of UIOs for Lipschitz nonlinear systems is even harder, and  no systematic way has 

been proposed. The contribution here is that an LlMI based suficient condition given 
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by (2.1 6) (2.18) is derived for a class of Lipschitz nonlinear systems. This LMI 

condition provides a systematic way to solve the dificult design problem of E, and K, 

using the eficient algorithms provided by Matlab's LMI toolbox. 

Remark 2.3.6 Because the literature has paid little attention to U I O C 2 ,  no tech- 

nique has been proposed to ensure U I O C 2 .  In the proposed UIO design, a technique 

is  provided for ensuring that U I O C 2  is  met automatically as long as the LMI given 

by (2.1 6) - (2.1 8) has a feasible solution. 

Remark 2.3.7 The LMI based UIO design procedure is still valid for s = 4 i f  one 

uses B ,  = B and ( D  B,) = D. If there exists a UIO for such a case, the uncertainties 

represented by d are called matched. The UIO designed for this case could be used 

for fault detection. 

2.4 The Solution of Actuator FDI Problems 

In this section, the actuator FDI problem formulated in Section 2.2 is investigated. 

The solution of this problem is closely related to  a new concept, which is called the 

UIO Induced Actuator Fault Isolation Index (UIOIA FIX)  and is defined based on the 

existence conditions of a bank of UIOs. 

Definition 2.4.1 System (2.1) is said to have a UIO Induced Actuator Fault Isolation 

Index (UIOIAFIX) equal to 1 i f  and on13 if Theorem 2.1's two conditions 1 )  and 2 )  

are satisfied for all the sets of the form s = { i l ,  . . - , i l )  E 2S1 with 1 being the largest 

number that has this prope.r.ty. 

For simplicity, AFIX is used to stand for UIOIAFIX in the remaining part of this 

chapter. 
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Remark 2.4.1 If  there does not exist any 1 > 0 such that A F I X  = 1 ,  then system 

(2.1) does not have any AFIX .  For consistency, A F I X  = 0 i s  used to  denote this 

situation. 

The AFIX has the following property. 

Lemma 2.4.1 For system (2. I ) ,  one always has 0 5 A F I X  5 min{m, p - q) . 

Proof. If A F I X  = 1 > 0, by definition, both conditions 1) and 2) in Theorem 2.1 

are satisfied for any set of the form s = {il, - - - ,ill. Obviously, condition 2) requires 

(D B,) is of full column rank and has rank 1 + q. This fact, together with condition 

l), implies that 1 + q must be less than the number of rows of C, that is, 1 + q < p, 

which is equivalent to 1 5 p - q. I 

To accomplish fault isolation, two observer schemes are proposed in the literature: 

the dedicated observer scheme(D0S)  11151, and the generalized observer scheme(G0S)  

[6]. Both schemes aim to properly design a group of N residuals (i.e., r l ,  - , r N ) .  The 

idea of DOS is to design the residuals such that ri is only sensitive to the ith fault or 

fault group, but insensitive to all other faults or fault groups. On the contrary, the 

idea of GOS is to design the residuals such that ri is sensitive to all faults or fault 

groups except the ith one. 

Because of the form of the diagnostic observer given by (2.7) and (2.8), only G O S  

scheme could be designed for this thesis. For a fixed 1 ,  if, for each set s = { i l , .  . , i l l ,  
a UIO is designed, there are a total of CAI UIOs. 

Theorem 2.4 Under assumptions A21 and A22, and i f  a bank of UIOs of the form 

given by (2.7) and (2.8) are used for actuator fault diagnosis, then the maximum 

number of actuator faults that can be simultaneously isolated is equal to the Actuator 

Fault Isolation Index (AFIX) .  
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Proof. Two cases for A F I X  = 0 and A F I X  > 0,  are considered. 

For the case A F I X  = 0 ,  the proof needed is to show that no single act 
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,uator fault 

can be isolated and only fault detection is possible. In order to isolate one single 

fault, m residuals must be designed based on m UIOs of the form given by (2.7) and 

(2.8) such tha.t each residual is insensitive to  only one actuator fault but sensitive all 

other actuator faults. If this could be done, one would have A F I X  >_ 1 by definition, 

which contradicts A F I X  = 0. This proves that single fault isolation is impossible. 

Note that A F I X  = 0 is equivalent to s = 6 ,  then, according to Remark 2.3.7, a UIO 

is still possible to design such that U I O C l  - UIOC3 are satisfied, which means that 

fault detection is possible. 

Suppose A F I X  = I > 0,  by the definition of A F I X ,  for each set s = {il, . . . , ill, a 

UIO given by (2.7) and (2.8) exists and can be designed such that UIOCl  UIOC3 

are satisfied. Without loss of generality, 1 actuators are assumed to be faulty. Because 

UIOCl  and UIOC3 are satisfied, it follows from (2.9) that 

If the faulty actuator group is u i l , - .  ,uiL, iir = fi,, which, together with (2.26), 

implies that limt,,e, = 0 according to Theorem 2.2. For any s # {il , - , ir ) , then 

iiy - ii, # 0. This together with UIOC2 and (2.26) implies that e, will not tend to 

zero. 

Based on the above discussions, if r, is defined as ey, = Ce,, then r, is insensitive 

to a.ny fault in the actuator group ZL~, , . . . . 7 ~ i , ,  but is generally sensitive to  any other 

actuator faults. According to the idea of GOS, this implies that it is possible to isolate 

I faults simultaneously. 

The possibility of isolating A F I X  = I > 0 faults has been proved. 
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To design a GOS to isolate 1 + 1 faults, any combination of 1 + 1  inputs must be 

treated as unknown inputs. Assume that,  for all sets of the form s = { i l ,  . - . , i l+l ) ,  

a UIO given by (2.7) and (2.8) can be designed such that U I O C l  - UIOC3 are 

satisfied. Then, by the definition of A F I X ,  A F I X  = 1 + 1 , which contradicts the 

fact that A F I X  = 1. This completes the proof. I 

Actually, Theorem 2.4 has provided a solution for FDP1, which is shown more 

clearly in the following corollary. 

Corollary 2.4.1 Under the assumptions of Theorem 2.4, if A F I X  > 0 ,  actuator 

fault detection i s  always possible, and if A F I X  = 0 ,  fault detection m a y  or may  not 

be possible. 

Proof. For the case when A F I X  > 0 ,  according to Theorem 2.4, it is obvious 

that actuator fault detection can be achieved sinlply because fault isolation can be 

accomplished. For the case when A F I X  = 0 ,  if the UIO for the case when s = 4 can 

be designed such that UIOCl  - UIOC3 are satisfied, actuator fault detection can 

be carried out. However, if a UIO can be designed such that U I O C l  and UIOC3 can 

only be satisfied under the condition that M,B = 0 ,  actuator fault detection cannot 

be achieved because the UIO is insensitive to  any actuator faults. This completes the 

proof. I 

Theorem 2.4 has also provided a solution for FIPl and FIP2, as shown in the 

following corollary. 

Corollary 2.4.2 Under the assumptions of Theorem 2.4, if A F I X  = 0 ,  actuator 

fault isolation i s  impossible; if A F I X  = 1, only one single fault can be isolated; and 

i f  A F I X  > 1, actuator fault isolation can be achieved for a single fault, two faults, 

and u,p t o  A F I X  faults. 
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Theorem 2.5 provides theoretical support for the design of a GOS based fault isolation 

scheme. 

Theorem 2.5 Under assumptions A21 and A22, and assuming that all conditions in 

Theorem 2.2 are met and CMS Bs is of full column rank for all s ,  the bank of UIOs 

designed can make all residuals satisfy the property of GOS; that is, each residual is 

only insensitive to faults in a particular actuator group while sensitive to all other 

faults outside the actuator group. 

Proof. For any set s, according to  Theorem 2.2, e, will exponentially approach 

zero for any input in u s .  Hence, rs ( t )  is insensitive to  any fault in the actuator 

group corresponding to us. For faults outside this actuator group, they will lead to  

fiy - fi, # 0. This fact, together with the fact that C n / I s ~ ,  is of full column rank, 

implies that r,(t) is sensitive to  the faults outside the actuator group corresponding 

t o  us. This completes the proof. I 

Theorem 2.6 serves as a foundation for determining number of faults. 

Theorem 2.6 Under all conditions in Theorem 2.5, if the number of actuator ,faults 

is 0 < n~ 5 AFIX,  then the number of residuals (i.e.,r,(t)), which are insensitive to 
A F I X - n  J the n~ faults, is equal to Crn-,, . 

Proof. Because there are n/ faults, the number of actuator groups defined according 
A F I X - n j  to  us,  which include the faulty actuators, is equal to C,-,, . According to Theorem 

A F I X - n f  2.5, all these C,,-nf residuals are insensitive t o  the n~ faults, and any other residual 

is sensitive to  some of the n~ faults. I 

A F I X - n  j Remark 2.4.2 If there are n~ faults and n/ 5 A F I X ,  exactly C,,, residuals 

are insensitive to the actuator faults. Therefore, once the number of residuals insen- 

sitive to the actuator faults is determined (y,,,), the number of faults TLJ is fownd by 
A F I X - n J  - solving Cm-, - Snum. 
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For any set s = {i l ,  - .  . , iAFIX}, rs denotes the residual defined according to ey,. 

The following result is useful in fault isolation. 

Theorem 2.7 Under the assumptions of Theorem 2.5, suppose only g n u ,  residuals 
A F I X - k  - are under the threshold and CmAk - gnu, has an  integer solution for It.. Denote 

these residuals as . . , rSgnum, and define sj = {i); ,  . . , iaFIx}, 1 5 j 5 gnu,,, and 

let SF = n?;" s j .  Then, the number of elements i n  SF is  the number of faults and 

each element i n  SF identifies a particular fault. 

AFIX-nf Proof. According to Theorem 2.5, Cm-,,J residuals should be under the thresh- 

old if there are nf faults. Because gnu, residuals are under the threshold, that is, 

AFZX-k - r,,, . - . , rsgnU,, and the equation - gnu, has an integer solution for k ,  faults 

can only occur in actuator groups corresponding to us,, . . . , usgn,, . This fact, together 

with the definition of SF, supports the conclusions of the theorem. I 

Assuming that fewer than A F I X  actuator faults can occur at the same time, 

the following actuator fault detection and isolation scheme is designed for solving 

the fault detection problems(FDP1 and FDP2)and the fault isolation problems 

(FIP1 ,  F IP2 ,  FIP3):  

Step 1 Compute A F I X .  

Step 2 If A F I X  = 0, no fault can be isolated and only fault detection is possible. 

Fault detection can be achieved using the UIO designed for the case s = 4. Stop. 

Step 3 If A F I X  > 0, both fault detection and fault isolation can be accom- 

plished. If A F I X  = m, then let I = m- 1 and go to Step 4. If 0 < A F I X  < m, 

then 1 = A F I X ,  go to Step 4. 

Step 4 Fault detection and isolation 
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1. For each set s = {il, . . . , i l l ,  design a UIO given by (2.7) and (2.8) satisfying 

UIOCl  - UIOC3. 

2. Define residuals rs(t) = ((Ce, ( 1  2/iVn,,al (t), where Nnmmal(t) is chosen such 

that rs(t) 5 1 when only possible faulty actuators correspond to  us; and 

r, (t) > 1 otherwise. 

3. The threshold is chosen as 1. 

4. Fault Detection: If any of the Ch residuals is larger than the threshold 

at  any time constant, faults are detected. Otherwise, no fault has been 

detected. 

5 .  After faults are detected, the fault detection time is denoted as Tdetect, and 

a fault isolation time interval(FIT1) is chosen as (Tdetect, Tdeted + A) with 

A suitably large. Fault isolation is carried out on FITI. 

6. For residuals that are below the threshold on the FITI, monitor each of 

them on the FITI to determine the tendency of the residuals. 

7. Count the number of residuals that are below the threshold and that have 

no tendency to  increase, and denote the number as gnu,. 

8. If gnu, = 0 and if I = m - 1, all actuators are faulty. If 1 < m - 1, 

then more than I actuators are faulty and exact fault isolation cannot be 

achieved. Stop. 

9. If g,,, = 1, then n ,  = I and there are I actuator faults. If r, is the only 

residual that is under the threshold, then the il . . ilth actuators are faulty. 

Fault isolation is completed, and stop. 

I -"  - 10. If g,, ,,,, > 1, then solve C ,,,-,, - gnu,, for n ~ .  If there is no integer solution 

for n/, then the number of faults occurred can not be determined and fault 
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isolation cannot be accomplished. Stop. If an integer solution of nf exists, 

the number of faults is equal to n~ < 1.  

11. If the number of faults 7 t f  < 1 is determined and n, < 1 ,  ~ : _ " n / ,  = g,, 

actuator groups have residuals under the threshold. Denote these actuator 

. j  groupsasu , , , l<  j < g n U m w i t h s j = { i ~ , - - - , z , ) , l <  j<g,,,. 

12. Fault Isolation for g,,, > 1: Let SF = n p ~  S j ,  and if SF = {i l l  , in , ) ,  

then the faulty actuators are the il - . - in,th actuators. 

Remark 2.4.3 The novelty of this fault detection and isolation scheme lies mainly 

in the isolation part. No such scheme has been proposed in the literature. The scheme 

has several novel elements: 1)  fault detection can be achieved as a byproduct of fault 

isolation; 2 )  the number of faults and the isolation of faults can be accomplished using 

only Ch. UIOs; 3) the idea of combining the concepts of fault isolation time interval 

(FITI)  and the tendency checking to  carry out fault isolation is very useful. For fast 

fault isolation, one may  want to  use a small FITI,  however too small a FITI  may 

lead to a wrong fault uolation decision, which can be seen later in Example 2 for the 

slow incipient fault case. Obviously, there is a trade08 between fast fault isolation and 

obtaining a right decision. The combination of these two concepts provides a better 

way to overcome the diflculty. One can use a relatively small FITI  to realize fast fault 

isolation, while using tendency checking to reduce the wrong fault isolation rate. This 

idea is especially w e b 1  for slow incipient fault isolation and is also clearly shown in 

Example 2 fo7. slow incipient fault isolation. 

Remark 2.4.4 Sensor fault diagnosis can be acco,mplished in almost the same way as 

actuator fault diagnosis by defining a sirnilar concept called the Sensor Fault Isolation 

Index (SFIX). Note that AFIX is gene.r.ally not equal to SFIX.  In fact, based on (2.5) 

and (2.6), it can be shown that 0 5 S F I X  5 y, ,which implies that th,e number of 
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sensor faults that can be isolated is less than even for linear systems with d = 0. 

However, for linear sy.stems with d = 0,  the number of sensor faults that can be isolated 

may  be equal to  p 1461. Although sensor fault isolation can not be solved completely 

by treating i t  as an  actuator fault isolation problem, the sensor fault isolation method 

i n  this chapter provides an  alternative to  ezisting sensor fault diagnosis methods. 

Examples and Simulation Results 

In this section, two examples are provided to show how the proposed fault diagnosis 

scheme is designed and how to test its effectiveness. The first example shows that the 

proposed UIO FDI scheme works for uncertain Lipschitz nonlinear systems. The other 

example considers a linearized model of a tailless jet fighter taken from [113], which 

provides an opportunity to deal with a more practical problem and to verify that the 

proposed UIO based FDI scheme can indeed be used for the fault diagnosis of linear 

systems. For both examples, the proposed UIO FDI scheme is used to accomplish 

actuator FDI and sinlulation results are presented. 

2.5.1 Example 1 with Simulation Results 

The following uncertain nonlinear system is considered: 

where 

A = 
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f ( x )  = (0.2sin(10x5) 0.1cos(2x4) 0 0 o ) ~  and d = O.OSsin(2t). 

For this system, A F I X  = 3, which is equal to the number of actuators. Let 

1 = m - 1 = 3 - 1 = 2 and s = {il, i2). Then, based on the LMI based sufficient 

condition, a UIO of the form given by (2.7) and (2.8) is written as 

Because there are three sets of the form s = {il,i2), that  is, {1,2), {1,3) ,  and 

{2,3} respectively, three UIOs can be designed. The observer gain matrices are com- 

puted easily using Matlab and its LMI toolbox. 

In the sin~ulations, N,,,,[(t) = 0.00001 is chosen, and 7-12, 7-13, and 7-23 are defined 

according to  {1,2), {1,3), and {2,3). The simulation results are plotted in Figure 

2.1. 

At 53, the first actuator has an abrupt fault, and does not produce any output, 

i.e., ul = 0. Based on the proposed FDI scheme, the fault diagnosis is accomplished 

as follows: faults are detected after 0.07 seconds because the residual 7-23 goes beyond 

the threshold. By choosing F I T I  = (5.07s, 7.5s) and checking the tendency of 7-12 

and 7-13, it is found that they are well below the threshold and the tendency for them 
2-n is to decrease. Therefore, it is concluded g,,, = 2. By solving C3-n,: = 2, it yields 

nf = 1, which implies that the number of faults is one. Because 7-12 and 7-13 are under 

the threshold, SF = {I) ,  which means the first actuator is faulty. The decision is 

correct in this case. 
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Figure 2.1: Fault isolation with tendency checking - Nonlinear case 

2.5.2 Example 2 with Simulation Results 

A linearized model of a tailless jet fighter taken from [113] is given as. 

where x = ( a ,  p ,p ,  q,  T ) ~  with a being the angle of attack, /3 being the sideslip angle, 

and p, q ,  T being the roll rate, pitch rate, and yaw rate, respectively. The control u 

is defined as u = ( b e / ,  be,. , bpj /ap!  6omtl 6amtr)T wit11 be1 , be, , bpj lap ,  domt, bamtr being the 

deflections of left and right elevons: pitch flap, and left and right all moving tips, 

respectively. The system matrices are defined as follows: A is the same as in Example 
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1, C =  15, and 

B =  

For this system, AFIX = 5, which is equal to the number of actuators. Now, let 

1 = m - 1 = 5 - 1 = 4. As in Example 1, let s = {il,i2,i3,i4), based on the LMI 

based sufficient condition, a UIO given by (2.7) and (2.8) is 

For all possible sets of the form s, i.e., { l ,2 ,  3,4) ,  {1,2,3,5),{1,2,4,5}, {1,2,4,5}, 

and {2,3,4,5), five UIOs can be designed. Again, the observer gain matrices are 

computed easily using Matlab and its LMI toolbox. 

In the simulations, for the sake of comparisons, two types of actuator faults are 

introduced. The first type is abrupt faults (here, the first three actuators became at  

and after 5s, that is, ul  = ua = ug = O), the second type is slow-changing faults ( e g ,  

-0.05t H. u1 ,u2 = e -0.05t H u2 ;u2 = e -0.05t H u1 = e u3 a t  and after 5s). 

In this example, fV,,,,l(t) = 0.0001 is chosen, and ~ ~ ~ ~ ~ ( t ) ,  7.1235, 7.1245, r1345, and 

r2345 are computed according to the proposed FDI scheme. The simulation results for 

abrupt fault detection are plotted in Fig. 2.2, while those results for slow-changing 

fault are presented in Fig. 2.3. 

Fig. 2.2 and Fig. 2.3 show: abrupt faults are detected very quickly with a detection 

time of 0.07s; while slow-changing faults are detected quite slo\vly with a detection 

time of 5.71s. 
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The simulation results for abrupt fault isolation are presented in Fig. 2.4. In such 

a case, F I T 1  = (5.05s, 5.5s) is chosen. Fig. 2.4 shows that T1234 and T1235 are so small 

compared with the threshold that they are almost at the same level of the time axis 

while r12d5, 7-13~5, and r2355 are far beyond the threshold. Therefore, according to the 

proposed FDI scheme, g,,, = 2. By solving C:I% = 2, it yields n, = 3; i.e., three 

faults occurred. Additionally, S = {1,2,3) means the first three actuators are faulty, 

which is a correct isolation decision. The fault isolation time is within one second. 

Threshold 

Figure 2.4: Fault isolation - Abrupt fault case 

The simulation results for slow-changing fault isolation are plotted in Fig. 2.5, 

Fig. 2.6, and Fig. 2.7. 

For the slow-changing fault case, F I T I  = (11.71s, 15s) is chosen. Then, base 

on Figure 2.5 and as in the abrupt fault case, it can be concluded that the first 

three actuators are faulty, which is again a correct isolation decision. However, if 
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0.8 Threshold 

Figure 2.5: Fault isolation - Slow-changing fault case 

0.8 Threshold 

Figure 2.6: Fault isolation without teudency checking - Slow-changing fault case 
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Figure 2.7: Tendency checking - Slow-changing fault case 

FITI = (11.71s, 13s) is chosen, Fig. 2.6 shows that r1234, 7-1235, r1345, and r2345 are 

all below the threshold. If tendency checking is not completed, g,,, = 4: which 

yields nf = 1 and S = (3). The conclusion is only one fault occurred, where the 

third actuator is faulty. Unfortunately, this decision is wrong. However, if tendency 

checking is implemented, as shown in Figure 2.7, there is a clear tendency for both 

r1234 and r1235 to decrease and for both r1345 and r2345 to increase. This observation 

implies that both r1345 and 7-2345 may exceed the threshold in the future and only 

7-1234 and 7-1235 will stay below it. At this time, one may make a decision that only 

~ 1 2 3 4  and ~ 1 2 3 5  will stay below the threshold and that gnu, = 2, which will lead to  a 

correct decision. With the help of tendency cliecking, fault isolation can be achieved 

two seconds earlier. 

This exainple shows that the proposed UIO based FDI scheine works very well 



Chapter 2. UIO Based Fault Diagnosis for Lipschitz Nonlinear Systen~s 5 1 

for abrupt actuator faults in t e r m  of the time a,nd accuracy of making decisions on 

fault detection and isolation. Compared with abrupt actuator faults, slow-changing 

faults need a longer time to be detected and isolated. The idea of combining the FIT1 

and tendency checking works well for slow-changing faults and may help isolate faults 

correctly in shorter time. 

2.6 Conclusions and Discussions 

Using the UIO design to  achieve actuator or sensor fault detection and isolation 

has been studied in a detailed and systematic way for a class of uncertain Lipschitz 

nonlinear systems. 

Firstly, by regrouping the system inputs or by regrouping and filtering the system 

outputs, a particular system structure has been developed, which is in suitable form 

for UIO design. 

Secondly, based on the particular system structure, a novel diagnostic UIO has 

been designed with a special property suitable for fault isolation purpose. Necessary 

and sufficient conditions for its existence were provided. The LMI based sufficient 

condition enables the designers to use Matlab's LMI toolbox, which makes the difficult 

UIO design problem much easier. 

Thirdly, given that the proposed nonlinear UIOs are used for FDI, answers have 

been provided for the formulated actuator FDI problem, which are closely related to 

a new concept called the UIO Induced Actuator Fault Isolation Index (UIOIAFIX). 

To be specific, fault detection can be performed if UIOIAFIX 2 0, which solves 

FDP1; fault isolation can only be accomplished for the case where UIOIAFIX > 0, 

which provides a solution for FIP1; the number of faults can be isolated is eqml to 

UIOIAFIX,  which answers FIP2; FDP2 and FIP3 are solved through proposing 
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a UIO based FDI scheme, which was given in detail and presented in steps. 

Two examples were given to show how the proposed FDI scheme was used as 

well as the effects of the FDI scheme. The simulation results in the first example 

show the proposed FDI scheme works well in abrupt fault detection and isolation 

for uncertain Lipschitz nonlinear systems. The simulation results for the linearized 

tailless jet fighter model not only showed that the FDI scheme can detect and isolate 

the abrupt fault very fast, but it can also detect and isolate slow-changing faults 

effectively. 

Because uncertain Lipschitz nonlinear systems only represent a restricted class 

of uncertain nonlinear systems, more research is needed for more general uncertain 

nonlinear systems. One extension in this direction has already been completed in this 

thesis and will be presented in Chapter 4. 

Another restriction of the proposed fault diagnosis approach is its ability to  do 

sensor fault isolation. As mentioned in Remark 2.4.4, even for known linear systenls 

with d = 0, the number of sensor faults that can be isolated is less than :. This 

restriction is completely removed in Chapter 7 by an approach based on an adaptive 

output estimator for linear systems with only parametric uncertainties. 



Chapter 3 

SMO Based Fault Diagnosis for 

Uncertain Lipschitz Nonlinear 

Systems 

In this chapter, the same class of systems considered in Chapter 2 is revisited. The 

research is carried out in a parallel manner to solve not only fault detection and 

isolation problems, but also fault estimation problems by employing SMO design. 

3.1 Introduction 

As mentioned in Chapter 2, besides UIOs, SMOs can also be used to deal with matched 

uncertainties in fault diagnosis. Since an SMO based strategy is used to accomplisl~ 

the fault diagnosis tasks in this work, only a review of this class of fault diagnosis 

schemes is provided. 

In general, the SMO based FDI techniques are classified into two categories. The 

5 3 



Chapter 3. SMO Basecl Fault Diagnosis for Lipschitz Systems 

first category uses SMOs to make the output estimation error insensitive to un- 

certainties such as disturbances or unknown nonlinearities, but sensitive to faults 

[27, 76, 77, 781. The fault detection problem was only considered in [76, 77, 781, while 

a scheme in [27] focused on the fault isolation problem. The second category employs 

SMOs to reconstruct or estimate the faults 127, 30, 31, 811. In [30] and [31], fault 

detection and isolation problems for uncertain linear systenls were solved under the 

assumption that the fault distribution matrix was known. 

Nonlinear SMO based FDI problem has also been the subject of studies in recent 

years. For a class of systems that have, or can be transformed into, a special canonical 

form, SMO based FDI schemes were designed in 178, 811. The distribution of faults 

was assumed to be known, and the construction of the state transformation was not an 

easy task. In [27], a scheme was proposed to reconstruct all the inputs (both normal 

and faulty) for a class of uncertain Lipschitz nonlinear systems, which removed the 

need for knowing the distribution of faults. However, some systems may not satisfy 

the assumption that all the inputs can be reconstructed. This observation, along with 

the desire to solve fault estimation problems that are not considered in the UIO based 

fault diagnosis, motivated the research reported in this chapter. 

The main purpose of this chapter is to present a detailed and systematic study of 

the design process of an SMO based fault diagnosis scheme for a class of Lipschitz 

uncertain nonlinear systems, which can solve fault detection, fault isolation, and fault 

estimation (FDIE) problems. 

The remainder of the chapter is arranged as follows. In Section 3.2, fault diagnosis 

problems are formulated. In Section 3.3, diagnostic SMOs that are suitable for the 

purpose of fault isolation are presented. The SMO existence conditions are given, and 

the properties of the proposed SMOs are investigated. Fina~lly, LMI ba.sed methods 
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are derived to provide a systematic approach for the design of the proposed SMOs. 

Section 3.4 solves both actuator and sensor FDIE problems based on concepts called 

SlMO Induced Actuator Fault Isolation Index (SMOIAFIX) and S M O  Induced Sensor 

Fault Isolation Index (SMOISFIX). In Section 3.5, an example is presented to show the 

effect of the proposed FDIE scheme in detecting, isolating, a.nd estimating actuator 

faults that change slowly or fast. Finally, conclusions and discussions are made in the 

last section. 

3.2 Problem Formulation 

The uncertain nonlinear systems of the form (2.1) are revisited under assumptions 

A21 and A22. For simplicity, in this and the following chapters, all notations that are 

not explicitly defined are defined the same way as those in Chapter 2. 

The following two fault diagnosis problems are formulated: 

Actuator FDIE problem - Assuming that only actuator faults can occur, the 

objective is to carry out a systematic study on the design of diagnostic SMOs 

to solve all fault detection, isolation, and estimation problems. 

Sensor FDIE problem - Assuming that only sensor faults can occur, the 

objective is t o  carry out a systematic study on the design of diagnostic SMOs 

to solve all fault detection, isolation, and estimation problems. 

3.3 Nonlinear Diagnostic SMOs 

In this section, two diagnostic nonlinear SNlOs are proposed based on modifying the 

well-known Walcott-Zak SMO; one is for system (2.3)) and the other is for system 
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(2.5). Necessary conditions for the existence of the proposed observers are provided. 

Finally, the properties of these observers along with systematic LMI based methods 

for their design are investigated. 

3.3.1 A Diagnostic SMO for Actuator FDIE 

For any given set s = {il, - , i l l  E 2 s ~  with 1 5 I 5 m, it is desired to  design an 

SMO such that,  in addition to  d ( t ) ,  the inputs in us are treated as uncertainties. In 

this way, the state estimation error will be insensitive to the actuator faults in the 

actuator group us, but sensitive to any other actuator faults outside of the group. 

Because the proposed SMO is specially designed for the purpose of fault diagnosis, in 

the remainder of this chapter, it is referred t o  as a diagnostic observer. 

To design the required ShlO for (2.3), the following assumption is needed: 

Assumption A31: For a given set s = {il , - . - , il) E 2'1 with 1 5 1 5 m, assume 

that L,, Fl,, F2,, a positive definite symmetric matrix P,, and E ,  > 0 exist 

such that 

If Assumption A31 is satisfied, then an SMO can be designed as 

where 2, is the estimate of x, pl,, and p 2 ,  are defined as 
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and 

with eys = C 2 s  - y and pl,  and p2, chosen to be large enough constants. 

By defining e, = 2 ,  - x, the following is derived: 

Remark 3.3.1 Several comments about the designed SMO are listed as follows. 

Firstly, it is an SMO for Lipschitz uncertain nonlinear systems, which has not been 

designed in  the literature. Secondly, the second matrix inequality i n  (3.1) is introduced 

to ensure the asymptotic stability of (3.3) and to also reduce the observer design difi-  

culty. Other observer techniques for Lipschitz nonlinear systems may lead to  a more 

dificult design problem; for comparison, see the observer design techniques in 1521 

and [I 121. Thirdly, the use of iiy other than U s  is convenient for fault diagnosis and 

is diferent from conventional SMOs. Fourthly, while conventional SMOs can not, the 

SMO in this chapter can be used directly for fault isolation without any modification 

because of the dependence of the S M 0  on the set s. Finally, treating all the inputs in 

us  as uncertainties removes the need to know the distribution of faults. 

3.3.2 A Diagnostic SMO for Sensor FDIE 

For any given set s = {il , - . - , i l )  E 2"0 with 1 5 1 5 p, it is desired to design an SMO 

such that, in addition to d ( t ) ,  the outputs in ys are treated as uncertainties. As a 

result, the state estimation error will be insensitive to the sensor faults in the sensor 

group y,, but sensitive to any other sensor. faults outside of this group. 

Denote yH = (yr . - yF)T as the healthy output vector; that is, when all sensors 
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are healthy, one has yH = y, otherwise, yN # y. Let y f  = (y: - - y f ) T  and let 8.f 

denote a vector consisting of the remaining components of yH. 

To design the required SMO for (2.5),  the following assumption is needed: 

Assumption A32: For a given set s = {il, - .  - , il) E 2'0 with 1 < 1 5 p, assume 

that L,, F I,, F2,, a positive definite matrix P3, and E ,  > 0 exist such that 

If Assumption A32 is satisfied, then an SMO can be designed as 

where i ,,,,, is the estimate of zaUg,,, pl,, and ~2~ are defined as 

and 

with eys = giaug,s - L , ~  y , and pl ,  and p2, are design constants. 

By defining e, = i,,,,, - z,,,,,, the following is derived: 
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3.3.3 Necessary Conditions for the Existence of SMOs 

Based on either 1301 or [114], necessary conditions for the existence of the two SMOs 

can be given in Lemma 3.3.1 and Lemma 3.3.2. 

Lemma 3.3.1 A necessary condition for the existence of the SMO given by (3.2) 

is that the rank C ( B ,  D)=rank (B, D ) ,  and that for any complex number X with 

Re(X)  2 0,  the following is true 

rank = n + rank (B ,  D )  
0 0 

Lemma 3.3.2 A necessary condition for the existence of the SMO given by (3.5) is 

that the rank (C,D) =rank D, and that for any complex number X with Re(X)  >_ 0,  

the following is true 

Remark 3.3.2 The necessary conditions i n  the two lemmas are not new results; they 

have already been proved or implied by [I141 and [30]. The reason for their presence 

is to show their dependence on the set s. Their dependence on the set s leads to the 

introduction of new concepts called the SMO Induced Actuator Fault Isolation Index 

(SMOIAFIX) and the SMO Induced Sensor Fault Isolation Index (SMOISFIX), which 

will be defined i n  Section 3.4. 

As in Chapter 2, the uncertainties satisfying the above necessary conditions are called 

matched uncertainties. 

3.3.4 Properties of the Designed SMOs 

In this subsection, the properties of the proposed SMOs by (3.2) and (3.5) are inves- 

tigated, and two results are given below. 
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Theorem 3.1 Under assumptions A21, A22, and A31, if iif = G,, andu, is bounded, 

then the SMO given by (3.2) ensures that e, exponentially approaches zero and thus 

is invariant with respect to us and d(t).  

Theorem 3.2 Under assumptions A21, A22, and A31, if ij = ijN, and y, is bounded, 
-3 -S 

then the SIMO given by (3.5) ensures that e, exponentially approaches zero and thus 

is invariant with respect to y, and d(t). 

Because the proof of Theorem 3.1 and Theorem 3.2 are similar, only the proof of 

Theorem 3.2 is provided. Prooj Because fj = i jH,  it follows from (3.6) that 
-S -S 

By choosing a Lyapunov function as V = eTPses and differentiating it with respect 

to t along (3.7), 

By applying the two matrix equalities in A32 and choosing pl, > Ilys)ll and 

p2,lld(t)(( (this is possible because y, and d(t) are bounded), 

Because 2yP, - c,J < 0 implies that 27(lPs(( < E,, it follows from (3.9) that e, will 

converge to zero exponentially as t goes to infinity. I 
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Remark 3.3.3 Under the conditions in Theorem, 3.1, e, and thus ey, will tend to  

zero no  matter what us is; that is, e, and thus ey, will converge t o  zero asymptotically 

even if us # u:. Hence, es and ey, are insensitive t o  those actuator faults occurring 

amongst the actuator group us. Simi1a.r comments can be made for. the sensor faults. 

3.3.5 LMI Based SMO Synthesis 

In order to design the SMO given by (3.2) or (3.5) ,  one has to solve (3.1) or (3.4) 

for L,, Fl , ,  F2,, a positive definite matrix Ps, and E ,  > 0. Because (3.1) and (3.4) 

consist of two matrix inequalities and two matrix equations, solving them directly is 

very difficult. Fortunately, both (3.1) and (3.4) can be reformulated as LMIs using 

the technique introduced in [27] and thus the difficult SMO synthesis problem can be 

carried out easily using Matlab's LMI toolbox. For simplicity, only (3.1) is formulated 

as LMIs because (3.4) can be dealt with in a similar manner. 

Using the technique in [27], it is easy to show that the two matrix inequalities in 

(3.1) are equivalent to the following two matrix inequalities: 

where can be a,ny nonsingular matrix, A = T,A?~,-' ,  = CT-' s ) P s -  - ( T - l ) T ~  .S s s  T-' 

= -P,T,L,, and $i9 = ( T ' l ) T ~ ; l .  

Let G, = (B, D) and F '  = ( F I T  F2:). According to [30], if CG, is of full coluinn 

rank, a linear change of coordinates Ts can be found such that 
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where the upper zero block of G, is in R("-P)~('+Q), the lower zero block is in 

R(p-l-q)x( '+q) ,  G: is in R([+q)~('+q) and nonsingular, and To,, is in R p x p  and is or- 

thogonal. Guidelines for computing T, can be found in [30]. 

If Fs is defined accordingly to  G, as 

according t o  [27], PsGs = CTFT is equivalent to 

Now, by allowing P, = , (3.1) is equivalent to (3.10). Also 

note that (3.10) consists of two LMIs, (3.1) has been reformulated as LMIs given by 

(3.10). After a feasible solution for P, > 0 ,  Fs and E ,  > 0 is found for (3.10), P,,L,, 

and F, can be computed easily as 

Remark 3.3.4 The LMI based SMO design procedure is still valid for s = 4 if B, = B 

and ( D  B,) = D. If an SMO for such a case exists, the uncertainties represented by  

d ( t )  are called matched. The S M 0  designed for this case is useful for fault detection. 

3.4 The FDIE Strategy 

In this section, solutions for the problems forn~ulated in Section 3.2 using SMO design 

a,re provided. In order to accomplish this, new concepts called the SMO Induced 
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Actuator Fault Isolation Index (SMOIAFIX) and S M O  Induced Sensor Fault Isolation 

Index (SMOISFIX) are defined based on the existence conditions of a bank of SMOs 

as described in Definition 3.4.1. 

Definition 3.4.1 System (2.1) i s  said to  have an  SMO Induced Actuator Fault Iso- 

lation Index (SMOIAFIX)  (or an  S M O  Induced Sensor Fault Isolation Index (SMO- 

ISFIX))  equal t o  1 i f  and only i f  the conditions required by Lemma 3.3.1 (or Lemma 

3.3.2) are satisfied for all s = {il,...,il) E 2 S ~ ( o r s  = { i l , - - -  ,211 E 2'0). 1 i s  defined 

as the largest number that has this required property. 

For simplicity, AFIX and SFIX are used to stand for SMOIAFIX and SMOISFIX 

respectively in remainder of this section. 

Remark 3.4.1 The concepts of  AFIX and SFIX depend on  the system matrices and 

thus are system characteristics. The role of disturbances on  the AFIX or SFIX is 

also clearly shown. If there i s  no 1 > 0 such that A F I X  = 1 or S F I X  = 1 ,  system 

(2.1) does not have any AFIX or SFIX.  For consistency, this situation is denoted as 

A F I X  = 0 or S F I X  = 0. For A F I X  > 0, assume that r a n k ( B s  D )  = r a n k ( B s )  + 
r a n k ( D )  for any s = { i l ,  - . - , i A F I X )  E 2'1. Showing that 0 5 A F I X  5 p - q or 

0 5 S F I X  5 p - q is easy. 

Remark 3.4.2 The motivation for introducing AFIX and SFIX is to characterize the 

maximum number of faults that can be isolated. No such concept has been proposed i n  

the literature although the determination of the maximum number of faults has been 

discussed (more often implicitly or qualitatively). For example, refer to the results 

based on  invariant subspaces i n  1421 and th,ose based on  structured residuaLs i n  191 

and [lo]. The inunriant subspace basecl results use geometric methods, while AFIX 

and SFIX are defined based on algebmic conditions. Those structured residual based 

results focus on what kind of residuals have to be constructed to  isolate faults, while 

AFIX and SFIX are more clearly related to  the system structure. 
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Fault diagnosis can be implemented using the fault reconstruction technique [30, 

31, 271 via a single SMO design if A F I X  = m. Therefore, only the case for A F I X  < 

m is considered for actuator fault isolation and estimation. As argued in Chapter 2,  

because the elements in us or y, are treated as uncertainties, only the GOS scheme can 

be employed based on the structure of the designed SMO. The the following of this 

section, answers are provided for all the problems posed in Section 3.2 by enlploying 

the designed Sk i0  based GOS fault diagnosis scheme. 

Theorem 3.3 Under assumptions A21, A22, and A31, and assuming that only ac- 

tuator faults can occur, and that the diagnostic observer given by (3.2) is  used for 

actuator fault isolation, the maximum number of actuator faults that can simultane- 

ously be isolated i s  equal t o  the Actuator Fault Isolation Index (AFIX) .  

Theorem 3.4 Under assumptions A21, A22, and A31, as well as assuming that only 

sensor faults can occur, and that the diagnostic observer given by (3.5) is used for 

sensor fault isolation, the maximum number of sensor faults that can simultaneously 

be isolated is equal to  the Sensor Fault Isolation Index (SFIX).  

Proof. Only the proof of Theorem 3.3 is given because the other theorem can be 

proved similarly. 

By definition, no single actuator fault can be isolated if A F I X  = 0. Therefore, 

the theorem needs to be proved for the case when A F I X  > 0. 

By the definition of the A F I X ,  for each set of the form s = {il, . - . , inFIx)  E 2'1, 

an SMO given by (3.2) can be designed. In total, a bank of CtFIX  SMOS can be 

designed for all sets of the form s. Assume that tlie number of actuator faults is nj 

and nf 5 A F I X .  According to Theorem 3.1, for any us, which includes all the faulty 

actuators, e, and ey,$ tend to zero asymptotically. Hence, at  least c&, sets are of 

the form s such that e ,  and ey, tend to zero asymptotica.lly. If exactly cFFIx sets are 



Chapter 3. SMO Based Fault Diagnosis for Lipschitz S,ystems 

such sets, the n,j faulty actuators can he isolated. The detailed method for achieving 

fault isolation will be described later in this section. 

The remaining proof is that it is not possible to isolate I faults with 1 > A F I X .  

To design a GOS to isolate 1 faults, all inputs in u ,  must be able to be treated 

as ~ncerta~inties in the design of SMOs of the form (3.2) for all sets of the form 

s = { i l l  - - ,ill E 2 S ~ .  In such a case, it would lead to a,n Actuator Fault Isolation 

Index no less than 1 ,  which contradicts the definition of the Actuator Fault Isolation 

Index because 1 > A F I X .  This completes the proof. I 

Actually, Theorem 3.3 has provided solutions for F D P 1 ,  F D P 2 ,  FIP1, and FIP2 

at the same time. This point is illustrated more clearly in the following corollaries. 

Corollary 3.4.1 Under the assumptions of Theorem 3.3, if A F I X  = 0, actuator 

fault isolation is impossible and fault detection is possible; if A F I X  = 1, only one 

single fault can be isolated; i f  A F I X  = I > 1, actuator fault isolation can be performed 

for one up to 1 faults. 

Proof. For the case that A F I X  = 0, let s = 4, according to Remark 3.3.4, if an 

SMO exists such that it is invariant to the unknown inputs d ( t ) ,  it is obvious that 

fault detection is possible using such an SMO. The other points of this corollary are 

already proved in Theorem 3.3. I 

Corollary 3.4.2 Under the assumptions of Theorem 3.3, i f  A F I X  > 0, the maxi- 

m u m  number of actuator faults that can be simultaneously isolated is A F I X .  

Remark 3.4.3 Two  co9~llaries can also be given for sensor FDIE in the sam,e man- 

ner. 

For system (2.1),  assume that only one type of fault can occur, and also that fewer 

than A F I X  actuator ( S F I X  sensor) faults can occur a,t the same time. The goals 
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are to design a GOS scheme using as few SNIOs as possible to detect the faults, to 

determine the number of faults, and to isolate and estimate the faults. To accomplish 

these goals, a set of actuator groups characterized by us with s = {il, . - , i A F I X )  E 2'' 

are defined. For each actuator group us, an SMO is designed to make the output 

estimation error insensitive to any fault in this actuator group, but sensitive to any 

fault outside this actuator group. 

The following theorem provides theoretical support for the possibility of designing 

GOS based actuator FDIE schemes. 

Theorem 3.5 Under assumptions A21, A22, and A31, as well as assuming that only 

actuator faults can occur, that all the conditions in Theorem 3.1 are met,  and that 

CB, and ( B  D )  are of full column rank for any set s ,  a bank of SMOs can be used 

to define residuals that satisfp the property of GOS. That is, each residual is only 

insensitive to  faults in  a particular actuator group and sensitive to all other faults 

outside the actuator group. 

Proof. For any set s, if all actuator faults are inside the actuator group us, as implied 

by Theorem 3.1 and pointed out in Remark 3.3.3, ey, is insensitive to all actuator 

faults. 

On the other hand, any actuator fault outside the actuator group us will result in 

iiy - ii, # 0, which makes B,(C: - us) # 0. Because (B D )  is of full column rank, 

the nonzero term Bs(iiy - iis) in (3.3) cannot be attenuated by ,ds and 112,. This 

fact, together with (3.3), implies that e ,  is sensitive to any faults outside the actuator 

group u , ~ .  Note again because CB, is of full column rank, e y ,  is sensitive to any faults 

outside the actuator group us. 

It has been proved that for any set s, e y ,  is insensitive to all actuator faults inside 

the actuator group us, but sensitive to any actuator faults outside us. In total, one has 
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a bank of C$F'X SWlOs, and thus has CgFIX output estimation errors(eys). Clearly, 

CtFIX residuals can be defined using ey, to satisfy the property of GOS. I 

The situation is a bit more complicated for sensor FDIE. In this case, L, 

is first partitioned according to matrix c, as L, = 

I1 T 21 T T 
L1, = ( ( L ,  ) ( L ,  ) ) , the following theorem provides theoretical support for 

the design of the GOS based sensor FDIE schemes. 

Theorem 3.6 Under assumptions A21, A22, and A32, as well as assuming that only 

sensor faults can occur, that all conditions in Theorem 3.2 are met,  that c,Lkl is  of 

full column rank, and that rank(Ltl D )  = rank(Lil)+rankD, a bank of SMOs can 

be used to  define residuals that satisfy the property of GOS. That is, each residual is 

only insensitive to  faults in a particular sensor group and sensitive to  all other faults 

outside the sensor group. 

Proof: By definition, L ,  (& - f jH) = L1, (# - j j f ) .  Using this fact, (3.6) becomes 
-S 

By the definition of B, and D and employing (3.15),  the term Ll , (y ,  - # )  

will not be attenuated by p1, and p2, under the assunlption that rank(L.tl D )  = 

rank(Lil)+rank(D). Using this fact, the theorem can be proved using the same ar- 

guments in the proof of Theorem 3.5. I 

The theorem below serves as a foundation for determining the number of faults. 

Theorem 3.7 Under the conditions i n  Theorem. 3.5 (or Theorerm 3.6), if the number 

of faults is 0 < n/ < AFIX (or 0 < nf < SFIX), then the nzrmber of residuals, 
/WILY-nJ SFIX'-nJ  which are insensitive to  the nf faults, i s  equal t o  C,-,, (or cm-nJ ). 
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Proof. Because there are n f  faults, the number of sets of the form s = { i l ,  - - - , iAFIX) 

(or s = { i l ,  - - , iSFIX)), which include all faulty actuators (or sensors), is equal to  
AFIX-nf SFIX-nf 

Cm-nf (or Cm-nf ). According to  Theorem 3.5 (or Theorem 3.6), all residuals 

corresponding to  these sets are insensitive to  the nf faults and any other residual is 

sensitive t o  the faults. This completes the proof. I 

Remark 3.4.4 If there are nf faults and n~ < A F I X  (or nf < S F I X ) ,  exactly 
AFIX-nf SFIX-nj 

C,-,, (or C ) residuals are insensitive to all faults. Based on this fact, the 
AFIX-nf - SFIX-nj - number of faults n f  can be found b y  solving Cm-,f - gnum (or Cm-nf - gnum), 

where gnu, is the number of residuals that are insensitive to all faults. 

For any set s = {i l ,  - - - , iAFIX) (or s = {il, - - , iSFIX)), the residual defined 

according to  ey, is denoted as I-,. The following result is useful in fault isolation. 

Theorem 3.8 Under the assumptions of Theorem 3.7, suppose only gnu, residuals 

A F I X - k  - are under the threshold and Cmen, - gn~m (of Cm-nf = gnu,,) has an integer so- 

lution for k .  Denote those residuals as r,, , - . - , I-.~~,,~,,, , define sj  = {i;,... ,iLFIX), l < 
. j  j < gnum (or s, = {i;; 0 .  ,zSFIX), I 5 j < gnum), and let SF = n;:~ s j .  Then, the 

number of elements in SF is the number of faults, and each element in SF identifies 

a particular fault. 

AFIX-nl SFIX-nf Proof. According to Theoreni 3.7, a t  least C,-,, (or Cm-nl ) residuals are 

under the threshold if there are n f  faults. Because gnu, residuals (i.e., r,, , . - , r ,q,,U,) 

AFIX-k  - are under the threshold, and the equation Cm-nf SFIX-k - 
- gnum (or G,-nf - gnurn) has 

an integer solution for k ,  faults can only occur in actuator groups us,, . - . , usgnu,,, or 

sensor groups yS, ,  . , ZJ.~ ,,,,,,, ). This fact, together with the definition of SF, proves 

the conclusions of the theorem. I 

Assume that the fault isolation has been achieved using the technique provided in 

Theorem 3.8 and SF = (6, - - ,in,} is obtained. To estimate the faults, it is further 
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assumed that (B,  D) (or (L:' D)) is of full column rank for any set s (otherwise faults 

may be mixed with d ( t )  and may not be correctly estimated). A certain set so with 

the smallest residual is picked up for fault estimation. Because eso tends to zero, and 

e,, is assumed to  tend to  zero, according to  (3.3) (or (3.6)) and the idea of using a 

low-pass filter to estimate the equivalent control, the following approach is proposed 

to  estimate the faults: 

where pls0 (ij) is an element in plso that corresponds to  the index i j  , and L P F  denotes 

a low-pass filter. 

Remark 3.4.5 The fault estimation method based on  S M O  design has been proposed 

i n  the literature. In [27, 30, 311, in order to  estimate faults, continuous terms are 

used to approximate the discontinuous terms in SMOs. If one does not want to  modify 

the SMO, an  alternative method is to use a low-pass filter to achieve fault estimation, 

which is used i n  this chapter. 

Now, assuming that the number of faults that can occur are less than the A F I X  

(or SFIX) at  the same time, and that A F I X  < m for actuator FDIE, based on 

the results obtained, the following algorithm summarizes the proposed actuator (or 

sensor) FDIE strategy. 

FDIE Algorithm 

Step 1. Compute A F I X  (or S F I X ) .  

Step 2. If A F I X  = 0 (or SFIX = 0), no fault can be isolated. Fault detection can be 

achieved using the SMO for the case s = 4. If 0 < A F I X  (or 0 < SFIX), then 

go to Step 3. 
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Step 3. Perform fault detection and isolation: 

1. For each set s, design an SMO given by (3.2) (or (3.5)). 

2. Define residuals r,9(t) = IICe, l12/Nn,m,l (t),  where 1VnmmaL (t) is chosen such 

that r,(t) < 1 when only actuators (or sensors) in u ,  (or y,) are possibly 

faulty, and r,(t) > 1 otherwise. 

3. The threshold is chosen as 1. 

4. Fault Detection 

If any of the C2F'X (or CcFIX) residuals are larger than the threshold 

at any time constant, faults are detected. Otherwise, no fault has been 

detected. 

5. After faults are detected, denote the fault detection time as Tdetect7 choose 

a fault isolation time interval (FITI) as (TAtect, Tdelect + A) with A suitably 

large, during which one wishes to perform fault isolation. 

6. Count the number of residuals that are below the threshold, and denote 

the number as gnu,. 

7. If gnu, = 0, more than A F I X  actuators (or S F I X  sensors) are faulty and 

exact fault isolation cannot be achieved. Stop. 

8. If gnu, = 1, there are A F I X  actuator (or S F I X  sensor) faults. If r, is 

the only residual that is under the threshold and s = {il, . . - , iAFIX) (or 

s = {zl , . - . , isFIx)): then the z l  - - - iAFIXth actuators (or the i1 . . . isFIXth 

sensors) are faulty. Fault isolation is performed. Stop. 

A F I  Y-k - SFIX-L - 9. I f g n u m > l , ~ ~ l ~ e C ~ - <  -gn lLT, t (~rCm-k  -gnlLm)fork.Ifnointeger 

solution exists. the number of faults occurred cannot be determined and 
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fault isolation cannot be performed at  this moment. Choose a larger A, 

and go to Step 3.6. If an integer solution ko exists! the number of faults is 

ko 

10. After the number of faults is determined, sj = { i i ,  - - , i i F I X } ,  1 5 j 5 

gnum (or S j  = { i i ,  . . . , i fSFIX}, 1 < j _< gnum) is obtained and SF = n : ~  sj 

is computed. 

11. Fault Isolation for gnu, > 1: Denote SF = { i l ,  . . . , ilco}. Then, the faulty 

actuators (or sensors) are the il . . . ikot h actuators (or sensors). 

Step 4. Perform fault estimation 

Pick up a set so which corresponds to the best residual (or the smallest), then 

use (3.16) to estimate the faults by letting n~ = ko. 

Remark 3.4.6 The  above FDIE algorithm has provided systematic and detailed 

methods t o  perform FDIE. I n  the algorithm, fault detection is accomplished as a 

byproduct of fault isolation. The algorithm can detemnine how many faults can be 

isolated, make a decision on the number of faults, isolate, and estimate the faults. 

The idea of determining the number of faults is interesting and enables us  to  perform, 

the FDIE only using C;"IX (or C S F r X )  SMOs, which is the smallest number of SMOs 

needed for a GOS scheme (or for a c t u a t o ~  FDIE where one assumes A F I X  < m). 

The  idea of using fault isolation t ime interval (FITI)  to  accomplish the fault isolation 

is also needed for more solid isolation decisions. For fast fault isolation, a small FITI  

can be used, but too small of an  FITI  may  lead to  a wrong fault isolation decision. 

Obviously, there is n trade00 between fast fault isolation and an  accurate decision. 

Remark 3.4.7 The FDIE scheme is based on defining residuals using the output 

estimation error. For the case that A F I X  < rn, it is not clear how to  accomplish fault 
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diagnosis through directly reconstructing the faults employing SMOs like in 130, 311 

and [27] because the fault distribution matrix is not known. 

Remark 3.4.8 Note, under the conditions required i n  this chapter, an unknown input 

observer (UIO) based FDI scheme may also be designed i n  a sirmilar way. SMOs are 

chosen for the following reasons. Firstly, the SMO based method can provide the 

estimation of the faults directly while existing UIO based methods usually do not. 

Secondly, SMO based schemes are an alternative to UIO based schemes, and a person 

more familiar with SMOs but not with UIOs can design and use SMOs. 

3.5 An Illustrative Example and Simulation Re- 

sults 

In this section, an example is given to  show the effects of the diagnostic scheme when 

applied to  an actuator FDIE problem of uncertain Lipschitz nonlinear systems. 

Given a system 

where 

A = 
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and d(t) = sin(0.5t)cos(2t). 

For this system, AFIX = 2, which is less than the number of actuators. Because 

SI = {1,2,3), there are in total three sets with two elements; that is, {1,2), {1,3), 

and {2,3). Using the LMI based design approach, three SMOs of the form given by 

(3.2) can be designed for s = {1,2), s = {1,3), and s = {2,3), respectively. 

In all simulations, the normalization signal is chosen as Nnmmal(t) = 0.001, and 

three residuals, r12, ~ 1 3 ,  ~23 ,  are defined according t o  s = {1,2), s = {1,3), and 

s = {2,3), respectively. For comparison, the scheme is tested on two types of incipient 

faults: one is changing slowly, and the other is changing faster (specific definition of 

faults are given later in this section). Simulation results are plotted in Fig. 3.1 t o  

Fig. 3.4. The first two figures are the results for the slowly changing actuator faults, 

while the last two are for the faster changing actuator faults. 

At t = 5s, the first and second actuators have faults defined as 

where i = 1,2,  and Pa is a parameter which irldicates the changing rate of the faults. 

Pa, = 2 and Pa = 10 are chosen to simulate the slow and fast actuator fault scenarios. 

For the slow actuator fault case, the FDIE is performed as follows. Because the 

residual rl3 in Fig. 3.1 exceeds the threshold, faults are detected at  5 . 1 6 ~ ~  which is 
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I I I Residual r,, i 

1 - 
0 

0.5 - 0 - Threshold 4 

n 

Figure 3.1: Nonlinear fault detection and isolation - Slow actuator fault case 

- - - The first actuator fault 

Figure 3.2: Nonlinear fault estimation - Slow actuator fa,ult case 
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, , , Residual r12 

I I Residual r,, eed - 
n. 

3 

2 - 4 - Threshold 4 
4 

1 - 

Figure 3.3: Nonlinear fault detection and isolation - Fast actuator fault case 

Fault estimation 

Figure 3.4: Nonlinear fault estimation - Fast actuator fault case 
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0.16s after faults occurred. By choosing FITI = (5.16s, 8.60s), as shown in Fig. 3.1, 

only r12 is well below the threshold; therefore g,, = 1. By solving c::: = 1, 1; = 2, 

which implies that the number of faults is two. Because r12 is under the threshold, 

S = {1,2), which means both the first and second actuators are faulty. The faults 

are isolated within four seconds after they were detected, and the decision is correct. 

Fig. 3.2 shows that accurate fault estimation has been achieved. 

For fast actuator fault case, the FDIE is performed as follows. Because the residual 

7-13 in Fig. 3.3 exceeds the threshold, faults are detected at 5.1 Is, which is 0.1 1s after 

faults occurred. Similar to the slow fault case, by choosing FITI = (5.11s, 6.60s), it 

follows from Figure 3.3 that two actuator faults are present and both the first and 

second actuators are faulty. The faults are isolated within two seconds after faults 

were detected, and the decision is correct. Again, as shown Fig. 3.4, the actuator 

fault can be estimated very accurately. 

Comparing the results for both cases, it is easy to see that faster changing faults 

can be detected and isolated sooner. 

3.6 Conclusions and Discussions 

Sliding mode observer design to achieve actuator or sensor fault detection, isolation, 

and estimation has been studied in a detailed and systematic way for a class of un- 

certain Lipschitz nonlinear systems. 

Based on the particular system representation developed in Chapter 2, a diagnos- 

tic SMO was designed with a special property suitable for fault isolation purposes. 

Necessary conditions were provided for the existence of SMOs for both actuator and 

sensor fault cases. To inake the SMO design easier, LMI based design approaches were 

derived to enable designers to use commercially available software such as Matlab's 
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LMI toolbox to carry out the otherwise difficult SMO design. 

Given that the proposed nonlinear SMOs are used for FDIE, answers were pro- 

vided for all the fault diagnosis problems raised in Section 1.2 by designing FDIE 

schemes, which were presented in steps. An example was given t o  show how to use 

the FDIE scheme and to also show its effectiveness. The simulation results show that 

the proposed FDI scheme does work well in detecting, isolating, and estimating both 

slow and fast changing faults for uncertain Lipschitz nonlinear systems in terms of 

providing correct FDI decisions and accurate fault estimation. 

Similar discussions as those made in Chapter 2 can be made here on the limitations 

of the SMO based fault diagnosis. Again, more research is needed to  extend the 

proposed FDIE schemes to more general nonlinear systems. 



Chapter 4 

UIO Based Fault Diagnosis for 

Uncertain Nonlinear Systems 

Represented by TS Fuzzy Models 

This chapter extends the results in Chapter 2 to more general nonlinear systems with 

matched non-parametric uncertainties, which can be represented by Takagi-Sugeno 

(TS) fuzzy systems. 

4.1 Introduction 

Because powerful design methods to deal with nonlinearities a.re lacking, existing 

nonlinear unknown input observers (NUIOs) a.re often designed under various restric- 

tions. Since UIO design for general nonlinear systems is still largely an open problen~, 

NU10 based nonlinear fault diagnosis remains also as a.n area for further research. 

This clmpter considers the NU10 design and NU10 based nonlinear fault diagnosis 

problen~s. 
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Takagi-Sugeno (TS) fuzzy systems can approximate general nonlinear systems 

or represent many of them [116]; therefore, they are promising for solving many 

nonlinear observer design and control problems. In addition, TS  fuzzy systems also 

have the advantage that they make it possible to  use the rich control system theory 

that has been developed over many years, which is the reason why nonlinear systems 

represented by TS fuzzy models are chosen to  be considered. 

Because results related to  UIO design and UIO based fault diagnosis have already 

been reviewed in Chapter 2, only the results related to fuzzy observer design based 

on TS fuzzy systems and their application to fault diagnosis will be reviewed. 

Because a TS fuzzy system is a blending of local linear models, many fuzzy ob- 

servers are designed by extending the observer design techniques developed for linear 

systems. Fuzzy observers are designed for two cases: for the case that the premise 

variables do not depend on unmeasured state variables [117, 118, 119, 120, 121, 122, 

123, 124, 125, 1261; and the case that the premise variables depend on unmeasured 

state variables [124, 127, 1281. 

All the observers in the cited references are designed based on the secalled parallel 

distributed compensation (PDC) concept. The main idea of PDC is like this: a local 

observer is first designed for each local linear model, then the overall observer is 

obtained by blending all the local observers in the same or similar way as the local 

linear models are blended. 

In [117], the separation property for linem systems was proved to be also true 

for TS fuzzy systems, and the stability of the fuzzy observer was provided as its 

byproduct. In [124], fuzzy observers were designed for both cases mentioned earlier 

in this introduction, where relaxed sufficient stability conditions were proved. LMI 

based designs were proposed for both the controller and observer design. In order 
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to further relax the sufficient stability conditions, sufficient conditions that are less 

conservative were established in [I181 and [125]. Fuzzy Thau-Luenberger Observers 

were proposed in 11271 for Lipschitz nonlinear systems, and an LMI based design 

technique was presented. Two sliding mode observers were designed in [128] for TS  

fuzzy systems with affine local models. In [121], robust observers were designed for 

TS  fuzzy systems whose local models have uncertainties. For TS fuzzy systems whose 

local models have both uncertainties and unknown disturbances, a robust observer 

with Lp gain was designed via solving the LMIs in [126]. For fuzzy systems whose 

local models have unknown inputs, a sliding mode observer was proposed to estimate 

the states in [120]. 

Fuzzy observers are not only used for control purpose, but also for fault diagno- 

sis. In [123], fuzzy observers based on TS fuzzy systems were designed for the fault 

diagnosis of induction motors in railway systems. To deal with the unknown inputs 

presented in the local models, fuzzy sliding mode observers were designed to  perform 

fault diagnosis for the three-tank benchmark system in [I191 and for a two-tank hy- 

draulic system in [122]. The robust observer in [126] was also designed for robust 

fault detection. 

In this chapter, several NU10 design and nonlinear fault diagnosis problen~s are 

addressed. For NU10 design, the following problems are studied: 

NU101 Extending linear UIO design techniques to TS  fuzzy systems. 

NU102 Determining conditions under which the state estimation error dynamics 

is stable and invariant to unknown inputs. 

Given that the designed NUIOs are employed to perform fault diagnosis, the fault 

detection and isolation problems raised in Section 1.2 are also investigated. 
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The literature has few results on NU10 design for nonlinear systerns that can be 

represented by TS fuzzy systems. As for the fault diagnosis problems, no systematic 

study exists that addresses all of these problems. The main purpose of this chapter is 

to solve all the NU10 design and nonlinear fault diagnosis problems in a systematic 

way for nonlinear systems represented by TS fuzzy systems. 

This chapter is arranged as follows. In Section 4.2, the system of interest is first 

described, and is then represented as a TS fuzzy system. In Section 4.3, the two 

NU10 design problems (i.e., NUIOl and NUI02)  are solved. In Section 4.4, a 

particular TS fuzzy system structure is proposed by regrouping the system inputs 

for the purpose of actuator fault diagnosis. Also shown is that sensor fault diagnosis 

can be reformulated as actuator fault diagnosis. In Section 4.5, the nonlinear fault 

detection and isolation problems are investigated for actuator faults and some results 

are derived. In Section 4.6, the Lorenz's chaotic system with multi-inputs is chosen 

as an example to show the effectiveness of the designed NUIOs and nonlinear fault 

diagnosis schemes. Conclusions and discussions are provided in the last section. 

Nonlinear Systems and its Fuzzy 

Representation 

The uncertain nonlinear systems considered are of the following form 

System 

where z(t)  E Rn is the state vector, y(t) E RP is the output vector, ~ ( t )  E Rm is 

the input vector, d(t) E Rq is the unknown input vector which may consist of system 

uncertainties and/or disturbances, and G is a constant output matrix. 
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Remark 4.2.1 For the general nonlinear output equation given by y ( t )  = h ( x ( t ) ) ,  

if is  of fall row rank, a state transformation z = O ( x ( t ) )  with (21, . . , z , ) ~  = h 

can be found such that i n  the new coordinates, the output vector takes on  the form 

of y ( t )  = C x ( t ) .  Therefore, the output equation y ( t )  = C x ( t )  is  without loss of 

generality. 

Takagi-Sugeno fuzzy systems are used to  represent (4 .1) ,  and the i th rule of the 

T S  fuzzy systems is of the following form: 

Plant Rule i: 

IF zl ( t )  is Mil, . . ., and z N ( t )  is MiN, THEN 

where Adij is a fuzzy set and r is the number of fuzzy rules. z j ( t ) ,  1 5 j _< N are the 

premise variables, which are assumed to  be independent of u ( t ) .  In this chapter, the 

linear models in the consequent parts are called local linear models. 

Given ( x ( t ) ,  u( t ) ,  d ( t ) ) ,  the final outputs of TS fuzzy systems are inferred as follows: 

where 

In this chapter, (4.2) is called a TS fuzzy system representation of (4.1). 

The following assumption is needed. 

Assumption A41: Ai, Bil D,, 1 5 i < r and C are known. 



4.3 NU10 Design and Stability Conditions 

In this section, the linear UIO design technique developed in [59] is extended to  design 

NUIOs for the following two cases: 

0 Case A, z l ( t )  - z N ( t )  do not depend on unmeasured state variables. 

0 Case B, z l ( t )  - z N ( t )  depend on unmeasured state variables. 

NU10 problems are studied for both Case A and B, and the results are presented 

in Subsection 4.3.1 and Subsection 4.3.2. 

4.3.1 NU10 Design and Stability Conditions-Case A 

The concept of PDC is used here to design an NU10 for (4.2),  and the i th observer 

rule is of the following form: 

Observer Rule i: 

IF z l ( t )  is Mil ,  ., and z N ( t )  is &IiN, THEN 

The overall fuzzy observer is given as 

where Ni, Gi,  Lil i = 1 ,2 , .  . , r and E will be specified later in this subsection. 

By defining e ( t )  = ?(t) - x ( t ) ,  it follows from (4.2) and (4.3)  that 
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where Ki = Li + Ni E .  

Theorem 4.1 provides a sufficient condition for the observer given by (4.3) to be 

an NUIO. 

Theorem 4.1 For the observer given by (4.3) and under assumption A41, the er- 

ror dynamics given by (4.4) is globally asymptotically stable at the origin if Ki,i = 

1,2 ,  - . . , r ,  E ,  and a positive definite symmetric matrix P can be chosen such that 

Proof. Using (4.5), it follows from (4.4) that 

Using (4.6), the stability result can be proved easily. 

Theorem 4.1 implies that the observer given by (4.3) is an NUIO, that is, e ( t )  

asymptotically approaches zero and is invariant with respect to  the unknown inputs 

in d( t ) .  

Equation (4.5) implies that 

EC(D1  . * . D,) = - (Dl  . . . D,) 

To ensure the existence of E ,  mother assumption is needed. 

Assumption A42: ro,nk(C(D1 . . . D,)) = rank( (Dl  . . . D,)). 
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Under assumption A42, a nonsingular matrix TD exists such that (Dl  - . - D,)TD = 

(DT1 0)) where DT1 is of full column rank. This fact, together with assumption A42, 

implies that rank(CDT1) = rank(DT1), and thus that CDTl is of full column rank. 

Based on the fact that CDTl is of full column rank, equation (4.8) requires all the 

possible solutions for E to have the following form: 

where Y is any compatible matrix and Xf = (XTX)-'XT. 

Because all possible solutions for E must have the form of (4.9), the only freedom 

left in E is the matrix Y; once Y is chosen, E is chosen. Also that Ni, Gi, i = 1,2, - - - , T 

can be determined once Li, i = 1,2, r and E are chosen. Now, the design of 

observer gain matrices is reduced to the design of Li, i = 1 ,2 ,  - .  . , r and Y such that 

the sufficient conditions in Theorem 4.1 can be satisfied, which is a very difficult design 

problem. In order to provide an efficient design method, the sufficient conditions given 

by (4.5) and (4.6) are reformulated as LNlIs. The result is given in Theorem 4.2. 

Theorem 4.2 For the observer given by (4.3) and under assumption A41, the error 

dynamics given by (4.4) is globally asymptotically stable at the orzgin if there exist 

Ki, 1 5 i 5 r ,  p, and a positive definite symmetric matrix P such that the following 

LMIs are satisfied 

[(I + uc )Ai ITp  + P ( I  + UC)Ai + ( v C A ~ ) ~ Y ~  + Y (vcA,) 

- C T ~ T - ~ L ~ < 0 , 1 5 i i r  (4.10) 

wh.e~.e U = -D(CDTl)+ and V = I - CDTI(CDTl)+, Ki = P-lKi, Y = P - ~ Y ,  and 

the observer gains are computed using (4.9) and (4.5). 

Proof. Clearly, using (4.9), the LMI based conditions given by (4.10) are equivalent 

to  those conditions required in Theorem 4.1. This completes the proof. I 
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4.3.2 NU10 Design and Stability Conditions-Case B 

For Case B, the observer design is also based on the concept of PDC, but becomes 

more involved. The it11 observer rule is of the following form: 

Observer Rule i: 

IF 21( t )  is Mil ,  . . ., and i N ( t )  is h/liI~, T H E N  

Similar to  Case A, the overall fuzzy observer is given as 

where Ni,  Gi, L,, i = 1,2 ,  . - , r and E will be specified later in this subsection. 

By defining e ( t )  = Z ( t )  - x ( t ) ,  it follows from (4.2) and (4.11) that 

where Ki = Li + N i E  and A(t) = (hi( i ( t ) )  - h i ( ~ ( t ) ) ) { A i ~ ( t )  + Biu ( t ) ) .  

Theorem 4.3 provides a sufficient condition for the observer given by (4.11) to be 

an NUIO. 

Theorem 4.3 For the obse~wer given by (4.11) and under assumption A41, the error 

clynamics given by (4.12) is globally asymptotically stable at the origin if IlA(t)ll 5 

rlle(t)l l ,  and i=f, for any 1 5 i < r ,  there exist N,, Li, Gi, E ,  and a positive definite 
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symmetric matrix P such that 

and 

Proof. Using ( 4 . 1 3 ) ,  (4 .12)  becomes 

By choosing V ( t )  = e T ( t ) P e ( t )  and differentiating it along (4 .15) ,  one obtains 

Clearly, using (4 .14) ,  (4 .16)  implies the conclusions of the theorem are true. This 

completes the proof. I 

Remark 4.3.1 The observer design for Case B is quite dinerent from that for Case 

B, and moreover, a stronger condition (i.e., (4.14)) is needed to guarantee the globally 
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asymptotic stability. Also, (4.14) is much harder to solve than (4.6) because less 

information is available to use. 

Remark 4.3.2 Using similar arguments to  those i n  Theorem 4.3, i t  can be proved 

that the results of the theorem still hold if 1 1  P ( I  + E C ) A ( t ) l l  5 y( le ( t )  1 1  and (4.14) is 

replaced with the following inequalities 

Detailed design for this situation is not given because i t  is  very similar to Case A .  If 

(4.14) fails to have any feasible solution, (4.17) can be used as an alternative. 

As in Case A, the following conditions in terms of LMIs are derived. 

Theorem 4.4 For the observer given by (4.11) and under assumption A41, the error 

dynamics given by (4.12) is globally asymptotically stable at the origin i f  IlA(t)ll 5 

ylle(t)ll, and i f ,  for 1 5 i 5 r ,  there exist K,, Y ,  and a positive definite symmetric 

matrix P such that the following LMIs are satisfied 

X i  f i [ P ( I  + U C )  + F(VC)]  
< 0 i 5 r (4.18) 

f i [ P ( I  + U C )  + F(vC)IT - I  

with X i  being defined as 

xi = ( ( I  + U C ) A i ) T ~  + P ( I  + U C ) A ,  + ( v c A ~ ) ~ F ~  + ~ ( v c A , )  
- C T ~ T - K i C + Y ~ , ~ 5 i < _ r ,  (4.19) 

and if Y = P - l Y ,  K i  = p-1Ki, and N i ,  L i , G i , i  = 1 , 2 , . . - , r  and E are computed 

according to (4.13) and E = U + Y V .  

Proof. Clearly, the LMIs given by (4.18) and (4.19) are equivalent to (4.14). This 

complete the proof. I 
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4.4 Particular TS Fuzzy System Structure for 

Fault Diagnosis 

Similar to  Chapter 2, system structures are developed for the purpose of fault diagno- 

sis. All undefined notations in this section are the same as those defined in Chapter 

2. 

4.4.1 A Particular System Structure for Actuator FDI 

For any 1 5 j 5 r and any s = { i l ,  - - - , i l }  E 2'1 with 1 5 1 5 m, denote Bj,, = 

(bj,il . . - bj,i,) and define q,, as the complementary matrix of Bj,, consisting of the 

remaining columns of Bj = (Bjt l  . . - Bj,,). 

Now, by rewriting (4.2), a particular system structure is obtained as follows: 

By defining Dj;, = (Bj;, D j )  and daUg(t)  = (u: d r ( t ) ) T ,  (4.20) can be rewritten as 

Remark 4.4.1 The system structure given by (4.21) is  obtained by regrouping the 

inputs and treating some inputs (i.e., the inputs included i n  u s )  as unknown inputs, 

which i s  very convenient for actuator fault diagnosis. One reason for this system 

structure is  that (4.21) has the same f o r n  as (4.2) and thus the UIO design techniques 

developed i n  the last section can be used directly. The other reason is that s can be 

any set, and c,!,, UIOs can be designed for all sets of the form s. 
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4.4.2 A Particular System Structure for Sensor FDI 

To develop a particular system structure for sensor FDI, for any set s, y, is filtered as 

where Aft,  is chosen to be Hurwitz and Bf,, as any invertible matrix. 

By defining a new state as z,,,,, = (xT J : ) ~  and using (4.2) and (4.22),  a particular 

system structure is obtained: 

- 
iaug.s - C hj ('(t) ) { A j ~ u g , s  + gju + &L + Qjd ( t ) }  

j=1 

where 

BY defining Dj,s = (B, Dj)  and daug(t)  = (9: d T ( t ) ) T ,  (4.23) can be rewritten as 

Remark 4.4.2 The  sys tem structure given by (4.26) i s  developed for sensor fault 

diagnosis. Using the system structure t o  perform sensor fault diagnosis i s  convenient 

because the sensor faults can be treated as actuator faults. Also, (4.26) has the same 

form of (4.2) and similar t o  the actuator fault case, NUIOs can be designed and used 

t o  perform sensor fault diagnosis. 
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4.5 Nonlinear Fault Diagnosis Based on NU10 De- 

sign for TS Fuzzy Systems 

In this section, the nonlinear fault detection and isolation problems (i.e., F D P I ,  

FDP2 ,  F I P I ,  F IP2 ,  and F IP3)  are solved by designing NUIOs based on the par- 

ticular system structures developed in the previous section. Because sensor faults can 

be treated as actuator faults, only actuator fault diagnosis problems are investigated. 

4.5.1 Fault Detection Using One NU10 

Under the assumption that no fault occurs and that the NU10 given by (4.3) is 

designed such that e(t) tends to zero, then, by defining r(t)  = I(y(t) - y (t) 1 1  = 1 1  Ce(t) 1 1 ,  
this NU10 makes r(t)  tend to zero as well. Based on this observation, F D P l  and 

F D P 2  can be solved as follows: 

Faults are detected; if lim~,oor(t) # 0 

No fault is detected; otherwise 

4.5.2 Actuator Fault Isolation Using a Bank of NUIOs 

Actuator fault isolation based on the NU10 design technique developed earlier in this 

chapter is now addressed. 

For any set of the form s ,  an NU10 that can be used for fault diagnosis for Case 

A has the following form: 

where fiy(t) is the desired input vector, fiy(t) = fi,(t) if no actuator related to fi,(t) 
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is faulty, and the matrices, Nj,S,Gj,s, LjYs, Es, and Ps = Pz > 0, satisfy 

The design of Nj,,, GjySl LjySl Es for j = 1,2,  . - , r can be carried out by solving LMIs 

as shown in Section 4.3.1. 

For Case B, an NU10 that can be used for fault diagnosis has the following form 

where As(t) = C;=l(hj(i(t)) - hj(z(t))){Ajx(t) + Bj,s~s}(t) and IIAs(t)ll 5 rsllesll. 

Because there are m actuators, In total, Ck sets have the form s. Thus, for each 

1, exactly Ck NUIOs of the form (4.27) and (4.28) need to be designed for Case A. 

Similarly, Ch NUIOs of the form (4.29) and (4.30 have to be designed for Case B. 
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Another assumption is needed. 

Assumption A3: An no 2 0 exists such that CNI,OGj, # 0. 

Remark 4.5.1 If assumption A 3  is not true and an  NUIO given by (4.27) and (4.28) 

(or (4.29) and (4.30)) exists, the state estimation error can be shown to approach 

zero no matter whether actuators related to ii,(t) are faulty or not, which means this 

observer is insensitive to all actuator faults, and thus is not useful for fault isolation. 

This observation is the reason A3  is needed for fault isolation. 

In order to  present answers for F I P 1 ,  F I P 2 ,  and F I P 3 ,  a concept, which is called 

the NUIO Induced Fault Isolation Index (NUIOIFIX) is defined below. 

Definition 4.5.1 System (4.2) or (4.1) is said to have an  NUIO Induced Actuator 

Fault Isolation Index (NUIOIAFIX) equal to 1 if and only i i  for all sets of the form 

s ,  systems given by (4.21) satisfy all the conditions in Theorem 4.1 for Case A (or 

Theorem 4.3 for Case B) ,  and in addition, assumption A 3  is satisfied. 1 i s  the largest 

number that has this property. 

For simplicity, AFIX will be used in the sequel to  stand for NUIOIAFIX. 

Remark 4.5.2 If there is no 1 > 0 such that A F I X  = 1 ,  system (4.2) or (4.1) does 

not have any AFIX.  For consistency, A F I X  = 0 is used to denote this situation. 

Because the AFIX i s  defined related to Case A or Case B ,  the AFIX for Case A 

might be diflerent from that for Case B .  

Suppose A F I X  > 0. As in Chapter 2,  only the idea of a GOS can be used to 

design a bank of residuals r , ( t ) ,  s E 2 S ~  such that r,(t)  is sensitive to  all faults, or 

fault groups, except those related to  s.  If the idea of the GOS is used, the following 

results are obtained. 
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Theorem 4.5 If NUIOs of the f o m  given by (4.27) and (4.28) for Case A (or (4.29) 

and (4.30) for Case B) are used to actuator fault isolation and under assumptions A41 

and A42, the maximum number of actuator faults that can be simultaneously isolated 

is equal to AFIX. 

Proof. The proof is only provided for NUIOs designed for Case A because it is almost 

the same for Case B. A F I X  = 0 and A F I X  > 0 are considered separately. 

For the case A F I X  = 0, the fact that no single actuator fault can be isolated 

and only fault detection is possible needs to  be proven. In order to isolate one single 

fault, m residuals based on m NUIOs of the form given by (4.27) and (4.28) for 

Case A must be designed such that each residual is insensitive to  only one actuator 

fault, but sensitive to all other actuator faults. If this condition is met, by definition, 

A F I X  >_ 1, which contradicts A F I X  = 0. This contradiction proves that single fault 

isolation is impossible. 

The following shows that the theorem is also true for the case when A F I X  > 0. 

Suppose A F I X  = 1 > 0, by the definition of the A F I X ,  for any set s = 

{ i l l . .  - ,  il), an NU10 given by (4.27) and (4.28) for Case A exists such that all the 

conditions in Theorem 4.1 are satisfied with &,,, ii,, Dj,,, and daug(t) being treated 

as Bj, u, Dj, and d(t) in (4.2), respectively. If actuators related to ii, are all healthy, 

then e,(t) = ws(t) - ESy(t) - x(t) will tend to zero for any us ( whether it contains 

faulty actuator inputs or not). Suppose 1 actuator faults are present and U,O is the 

faulty actuator group with so = {iy,. - - , iy), then ii: = i i ,o.  If no sensor is faulty, 

according to  Theorem 4.1, lirnt,,eso = 0. For any other actuator group us with 

s # so, ii: # ii,, which together with the definition of the AFIX cause e, to generally 

not tend to zero under assumption A3. If the residuals are defined as r, = IICe,ll, 

limt,,r,o = 0 and limt,,r, # 0 for s # so. The residuals satisfy the requirement of 
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GOS, and thus can be used to  simultaneously isolate 1 faults. 

To design a GOS to isolate 1 + 1 faults, any combination of 1 + 1 inputs must 

be able to  be treated as unknown inputs. For all sets of the form of s ,  assume that 

an NU10 of the form given by (4.27) and (4.28) can be designed such that all the 

conditions in Theorem 4.1 are satisfied. Then, A F I X  = 1 + 1 by definition, which 

contradicts the fact that A F I X  = 1. This contradiction proves that isolating 1 + 1 

faults is impossible. This completes the proof. I 

Actually, Theorem 4.5 has already provided solutions for F I P l  and F I P 2  at  the 

same time. This point is shown more clearly in the following corollaries. 

Corollary 4.5.1 For the isolation of actuator faults, assume that NUIOs of the form 

given by (4.27) and (4.28) are used for Case A ,  and that NUIOs of the form (4.29) 

and (4.30) are used for Case B. If A F I X  = 0, actuator fault isolation is impossible; 

if A F I X  = 1, isolating one single fault is possible; if A F I X  = 1 > 1, actuator fault 

isolation is possible from one single fault up to 1 faults. 

Corollary 4.5.2 For the isolation of actuator faults, assume that NUIOs of the form 

given by (4.27) and (4.28) are used for Case A ,  and that NUIOs of the form (4.29) 

and (4.30) are used for Case B. The maximum number of actuator faults that can be 

simultaneously isolated is A F I X  . 

Theorem 4.5 shows that a t  most A F I X  actuator faults CAN BE ISOLATED. 

Suppose that the number of faults is n f .  Now, the problem is designing a fault 

diagnosis scheme that is able to achieve fault isolation, that is, how is F I P 3  solved. 

To develop such a scheme, the following result is needed. 

Theorem 4.6 Under assumptions A41 and A42, and suppose that NUIOs of the 

form given by (4.27) and (4.28) for Case A (or (4.29) and (4.30) for Case B) are 
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designed such that all the conditions in Theorem 4.1 for Case A (or Theorem 4.3 for 

Case B) are satisfied. If n f  < A F I X ,  the number of residuals (i.e., r , ( t ) ) ,  which are 
A F I X - n f  insensitive to the n f  faults, is at least Cm-,, . 

Proof. Because only nf  faults exist, the number of sets of the form s, which include 
A F I X - n  

the faulty actuator group, is equal to Cm-,, '. According to Theorem 4.1 for Case 
A F I X - n  

A (or Theorem 4.3 for Case B), all Cm-., ' NUIOs result in residuals r ,  = IICe,ll 

tending to  zero as t 4 oo. This completes the proof. I 

A F I X - n f  Remark 4.5.3 Generally, if n < A F I X  faults exist, exactly Cm-,, residuals are 

insensitive to the faults. Therefore, once the number of those residuals (i.e., gnu,) is 
A F I X - n f  - obtained, the number of faults, n f ,  can be determined by solving Cm-,, - Snum. 

The following result in Theorem 4.7 is useful in fault isolation. 

Theorem 4.7 Under the assumptions of Theorem 4.6, suppose that only gnu, 

residuals, denoted by rS1 ,  . , , rSgnum , are found to tend to zero. Define Sj  = 

A F I X - n f  - 
{i: , - . , i a F I x }  , 1 5 j 5 gnum and let SF = nz''' Sj . If Cm-nf - gnum, SF 

can be denoted as S = { i l l  - - , in,}, and the nf faulty actuators are the il . - - in, th 

actuators. 

Proof. According to  Theorem 4.6, a t  least ~k_"nf, residuals should approach zero if 
A F I X - n f  - nf  faults occur. Because only gnu, residuals approach zero and Cm-,, - Snum , 

the faulty actuator group must and can only be included in the gnu, different sets 

. j  defined by S j  = {i:, - - . , zAFIX} ,  I 5 j < gnum. This fact equals to { i l ,  - . . , in,} E S j  

for any 1 < j 5 gnu, and S = { i l l .  - .  , in,) ,  which completes the proof. I 

Now assuming that A F I X  > 0 and nf < A F I X ,  the actuator fault detection and 

isolation scheme is given in the steps below: 
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Step 1 Fault detection can be performed as shown in Subsection 4.5.1. 

0 Step 2 Compute A F I X .  If A F I X  = 0, no fault can be isolated. If A F I X  = m, 

then let 1 = m - 1 and go to Step 3. If 0 < A F I X  < m, then 1 = A F I X ,  go to 

Step 3. 

0 Step 3 Fault isolation 

1. For each s ,  design an NU10 of the form given by (4.27) and (4.28) for Case 

A (or (4.29) and (4.30 for Case B). 

2. Define residuals r,(t) = IICeS II/Nnormal (t), where Nnmmal (t) is chosen such 

that r,(t) 5 1 when only actuators corresponding to s are possibly faulty, 

otherwise, rs(t) >_ 1. The threshold is chosen as 1. 

3. After faults are detected, denote the fault detection time as Tdeted, choose a 

fault isolation time interval(FIT1) as (Tdeted, Tdetect+A) where A is suitably 

large to  perform fault isolation. 

4. Count the number of residuals that are below the threshold and have no 

tendency to grow. This number is denoted as gnu,. 

5. If gnu, = 0, more than 1 actuators are faulty and exact fault isolation is 

impossible except for the case 1 = m - 1. Stop. 

6. If gnu, = 1, nf = 1 and 1 actuators have faults. If r, is the only residual that 

is under the threshold, the il . . ilth actuators are faulty. Fault isolation is 

achieved. 

1-nf - 
7. If gnu, > 1, solve C,-,, - gnu, for n f .  If no integer solution exists, 

the number of faults occurred cannot be determined and fault isolation is 



Chapter 4. Fault Diagnosis for Nonlinear Systems Represented by T S  Models 98 

impossible at  the moment. Stop. If an integer solution of nf  exists, the 

number of faults is equal to the integer solution of n f .  

8. If the number of faults nf is determined and ~k2:, = gnu, sets exist 

whose corresponding residuals are under the threshold, denote the sets 

Sj = { '  z ~ , - . - , z l } , l  . j  5 j < gnu,, and let SF = nZ?Sj and if SF = 

{il, . - - , in,}, then, the faulty actuators are the il . . . in,th actuators. 

Remark 4.5.4 Similar remarks can be made about this scheme as in Chapter 2. 

4.6 An Example and Simulation Results 

In this section, a Lorenz's chaotic system with multi-inputs is chosen as an example t o  

show the effects of our NUIOs and NU10 based fault diagnosis scheme. The system 

is described as 

1 1 0  
where C = ( ) and xl E [-30,301. 

0 0 1  
Let 

B =  (i P I ) 7 B 1 =  ( i ) , B 2 =  ( H ) B 3 =  (I). 
Using the technique developed in [116], (4.31) can be represented by a TS fuzzy 

system described by the following two rules. 

Plant Rule i: 
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IF xl (t) is Ml, THEN 

Given (x(t), u(t)), the final outputs of TS fuzzy systems are inferred as follows: 

where hi = Mi and Ml(zl) + M2(x1) = 1. 

4.6.1 The Design of NUIOs and Their Effects on State Esti- 

mat ion 

For the purpose of fault isolation, NUIOs are designed to treat ul ,  u2, and u3 as 

unknown inputs. Directly designing NUIOs is not easy because system (4.31) is 

nonlinear. However, if the system is represented as (4.32), NUIOs can be designed 

using the NU10 given by (4.29) and (4.30) for Case B, note that xl is not available. 

When ul is treated as an unknown input, the NU10 is 
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where Njtl, Gjtl, Ljtl, j = 1,2, .  . - , T and El are computed using Matlab's LMI toolbox 

When u2 is treated as an unknown input, the NU10 is 

where Nj,2, Gj,2, Lj,2, j = 1,2, - - . , T and E2 are computed using Matlab's LMI toolbox 
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When u3 is treated as an unknown input, the NU10 is 

where Nj,3, Gj,3, Lj,3, j = 1,2, - . - , T and E3 are computed using Matlab's LMI toolbox 

as (-0.8000 0.6000 ) (-l.OOOo 0.6000) 

E3 = -0.6000 0.2000 , G1,3 = G2,3 = -1.0000 0.2000 , 
-0.2000 -0.6000 - 1 .OOOO 0.4000 

-383.1578 -337.9578 -276.3925 

-172.6436 -190.2436 -149.9157 

-257.1262 -243.3262 -264.981 1 

-383.1735 -373.9735 -324.3951 

-172.6278 -202.2278 -125.9132 

-257.1262 -267.3262 -276.9811 

-205.8216 430.4432 -237.0284 408.8568 

-94.7938 205.8542 

-151.1667 313.8667 -167.9667 311.4667 

The simulation results for the above three NUIOs are presented in Fig. 4.1 to  Fig. 

4.3, respectively. 

As expected, when the system is free of faults, the simulation results in Fig. 4.1 to 

Fig. 4.3 show that all the three NUIOs can estimate the system states asymptotically. 

4.6.2 Fault Diagnosis Based on the Design of the NU10 

Three NUIOs of the form given by (4.29) and (4.30) can be designed for s = {1,2}, 

s = {1,3), and s = {2,3), respectively, and satisfy all the conditions of Theorem 
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x 
1.5 

I- State estimation eorror of x, 

, , , State estimation eorror of x, 
8 , .  . . . State estimation eorror of x, 

Time(s) 

Figure 4.1: The state estimation errors for the first NU10 

Figure 4.2: The state estimation errors for the second NU10 
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Figure 4.3: The state estimation errors for the third NU10 
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, , , State estimation eorror of xpl 
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4.3. However, A F I X  # 2 because Assumption A3 is not satisfied by any of the 

three NUIOs. This claim is shown using the fact that Es(I + EsC) = 0 for any 

s. In fact, AFIX = 1. According to  Theorem 4.5, only one actuator fault can be 

isolated. Because fault detection is easier, only simulation results for fault isolation 

are presented in Fig. 4.4. The first actuator becomes faulty a t  3s: i.e., ul(t) = 0 after 

the time of 3s. 

.- 
C 

2 .- 
.d 

V) 
a -0.05 

3 
U) 

-0.1 

-0.15 

In the simulation, Nnmmal(t) = 0.005. At 3 . 5 2 ~ ~  7-2 exceeds the threshold, faults 

are detected. For FIT1 = (3.52s, 3.7s), Fig. 4.4 shows that residuals 7-2 and 7-3 

exceed the threshold on the FITI, while residual 7-2 stays close to zero. Using the 

proposed fault isolation scheme in the previous section, a decision can be made that 

one actuator is faulty and that the faulty actuator is the first one related to  211. Thus, 

. . . , , , , , , , , , , ,  
@ - 

4 
@ 

- , 0 

I 
I 

-I 
I 
I - 

correct decision is made. 
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Figure 4.4: Fault isolation of a single actuator fault 

4.7 Conclusions and Discussions 

For nonlinear systems that can be represented by TS fuzzy systems, two types of 

nonlinear unknown input observers (NUIOs) were designed for two cases. One case 

is where the premise variables do not depend on the unmeasured state variables; the 

other case is that the premise variables depend on the unmeasured state variables. For 

both types of NUIOs, sufficient conditions for the existence of NUIOs were established, 

and the LMI based ones were proposed to ease observer design. 

After the NUIOs were designed, fault detection and isolation problems for non- 

linear systems described by TS fuzzy systems were then studied using NU10 design 

technique, and solutions for the problems were provided. A fault detection scheme 

was proposed using the NUIOs designed, which solved F D P l  and FDP2. To solve 

fault isolation problems, a bank of NUIOs were designed. Based on this bank of 
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NUIOs, results were obtained on the possibility of isolating single and/or multiple 

faults, which provides solutions for FIPl and FIP2. FIP3 was solved by providing 

a fault isolation scheme. 

A Lorenz's chaotic system with multi-inputs was chosen as an example t o  show 

the effect of NUIOs designed and the proposed fault diagnosis scheme. Simulation 

results show that accurate state estimation is achieved when NUIOs are used, and 

actuator faults can be isolated successfully. 

Because uncertain nonlinear systems that can be represented by TS fuzzy systems 

are only a limited class of nonlinear systems, much work is needed for more general 

uncertain nonlinear systems. Finding sufficient conditions that are less conservative 

for NU10 design based on TS fuzzy systems is another future research topic. 



Chapter 5 

Output Estimator Based Fault 

Diagnosis for Uncertain Linear 

Systems 

In previous chapters, fault diagnosis schemes are proposed based on the robust ob- 

server design for systems with matched non-parametric uncertainties. In order to  deal 

with unmatched uncertainties, this chapter abandons the idea of observer design, and 

proposes to  use output estimator design to carry out fault diagnosis for a class of 

linear systems with both matched and unmatched uncertainties. 

5.1 Introduction 

Chapter 2 and 3 showed that either UIOs or SMOs can be designed to completely 

remove the effect of the unknown inputs under the condition that the unknown inputs 

are matched. Chapter 4 also requires the uncertainties to satisfy certain matching 

conditions. 
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If the uncertainties do not satisfy the matching conditions, neither UIOs or SMOs 

used in previous chapters can be designed such that the effect of the unknown inputs 

can be removed completely. In order to  design fault diagnosis schemes that are not 

affected by unknown inputs, a new design methodology is needed. 

In this chapter, in order to  solve the challenging fault diagnosis problem for sys- 

tems with unmatched uncertainties, a novel idea is proposed. It abandons the idea 

of designing a whole state observer that is invariant to unknown inputs because it 

is sometimes very restrictive. Instead, the idea advocates the design of an output 

estimator invariant to  unknown inputs because it is sufficient for the purpose of fault 

diagnosis. 

No research has been found on the design of fault diagnosis schemes which are 

invariant t o  the unmatched unknown inputs. Furthermore, no systematic study has 

been carried out to  solve all fault diagnosis problems raised in Section 1.2. The main 

purpose of this chapter is to present a detailed study of those problems for a class 

of linear systems with unmatched unknown inputs using an output estimator design 

based on sliding mode approaches. 

The rest of this chapter is arranged as follows. In Section 5.2, the system of 

interest is described, and a canonical system structure is developed through state and 

input transformations, which is suitable for sliding mode output estimator(SM0E) 

design. In Section 5.3, SMOEs are designed based on the canonical system derived in 

the last section, and their properties are investigated. Section 5.4 discusses all fault 

diagnosis problems raised in Section 1.2 for both actuator and sensor faults using the 

output estimator design technique. In Section 5.5, an example is given to  show the 

effect of the output estimator based fault diagnosis scheme in terms of actuator fault 

detection, isolation and estimation. Conclusions and discussions are presented in the 
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last section. 

5.2 System Formulation and A Canonical System 

Structure 

5.2.1 System Formulation 

The uncertain linear systems considered are of the following form: 

i = Az + Bu + Dldl ( t )  + D2d2(t) 

y = C z  

where z E Rn is the state vector, y E RP is the output vector, u E P is the input 

vector, and dl E Rql and d2 E Rq2 are bounded unknown input vectors which may 

consist of system uncertainties and/or disturbances. 

The following assumptions are made. 

Assumption A51: A, B, C ,  Dl ,  D2 are known. 

Assumption A52: B and D = (Dl  D2) are both full column rank. 

Assumption A53: rank (CD1)  = rank Dl. 

Assumption A54: For any complex number s with Re(s) 2 0, the rank 

~ s s u m ~ t i o n ~ 5 5 :  rank C(D1  4) = rank (CD1).  

Remark 5.2.1 As proved in [I  141, for any unknown input vector d l  ( t )  to be a 

matched unknown input vector, that matched conditions A53 and A54 must be satis- 

fied. If d ( t )  = (dy &)T is defined, d(t) is not a matched unknown input vector because 

of A55. This fact means no UIOs or SMOs used in Chapter 2 and Chapter 3 can be 

designed such that the state estimation error is invariant to d( t )  for systems of the 

form (5.1) 
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5.2.2 A Canonical System Structure 

Theorem 5.1 presents a canonical system structure for system (5.1) and the conditions 

under which system (5.1) can be transformed into the canonical form. 

Theorem 5.1 Under assumptions A51 and A52, the assumptions A53,A54, and A55 

are necessary and suficient conditions for system (5.1) to be transformed through 

a state transform T and a n  unknown input transform Td = (: yr) into the 

canonical form 

where x = (x: x; x : ) ~  = T z  with x l  E Rn-P-l, x2 E R1, and a3 E RP; d ( t )  = T d d ( t )  

with d ( t )  = (d: G ) T ;  and the system matrices are defined according to x as 

Proof. Necessity: Let D = (D l  a). Clearly, D = TDT;', which implies T D 1  = 

( 0  0 D T , ) ~ .  Because A52 implies that r a n k ( T D l )  = r a n k ( D 1 )  = ql,  r a n k ( d 1 ~ )  = q l .  

Subsequently, 

On the other hand, 
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In conclusion, rank(CD)  = rank(CD1) = ql, which implies that A53 and A55 are 

satisfied. 

Now, A54 needs to be proved. Clearly, 

(; y ) (S I ' ,  A Dl 

T-' 0 

0 ) ( , ) = ( y D ' ) .  0 (5.4) 

Note that T D l  = (0 0 Dr3)T,  and using the definition of A and C and the facts 

that All and A 2 2  are Hurwitz, for any complex number s with Re(s) 2 0, it follows 

that 

This fact together with (5.4) proves A54 is satisfied. 

Sufficiency: If A53 and A54 are satisfied, according to [145], a state transform 

x l  = T l z  exists such that 

where A:, is Hurwitz and T l D 2 =  ( (D2:)T  (D2;)T)T .  

Note that T l D l  = ( 0  (D1 i )T )T  and by the definition of T l D 2 ,  the fol- 

lowing equations hold: CD1 = CT1- lTIDl  = (0 I ) T l D l  = Dl;  and C D  = 

CT1- l (T lD1 T l D 2 )  = ( D l ;  0 2 ; ) .  A53 implies that  a matrix E exists such that 

Now, by choosing T i 1  = (I:  yo:) and letting d( t )  = Td (ii::;) , the follow- 
. - 

ing is obtained: 
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Let BD = ( B l l  02;) .  If the pair (A:,, BD) is not controllable, a nonsingular 

matrix T s  exists such that 

Note that A:, is Hurwitz, so are All and Az2. Now, let T = (: - i) TI and 

x = T z .  Define TsA;, = (A: Ay3)T, Ail = (A31 A32), ,433 = A;,, and B3 = B12, the 

canonical form (5.2) is reached using (5.7). This completes the proof. I 

Remark 5.2.2 If the pair (A:,, BD) is controllable, the block related to x2 is not in 

the canonical system structure. 

Remark 5.2.3 The advantage of this canonical system structure is that it separates 

the matched and unmatched unknown inputs (i.e., dl(t) and & ( t ) )  so that they can be 

dealt with separately, which eases the task of designing an asymptotic output estimator. 

5.3 A Sliding Mode Output Estimator 

In the fault diagnosis literature, output estimators were often designed based on 

observers with certain desirable properties, and focus was often on the design of the 

observers. In this section, output estimators are designed directly using the sliding 

mode technique without the design of observers. Two types of output estimators are 

designed. One is suitable for actuator fault diagnosis, and the other is good for sensor 

fault diagnosis. 

5.3.1 Sliding Mode Output Estimator for Actuator Fault Di- 

agnosis 

The following assumption is needed: 
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Assumption A56: CB is of full column rank; i.e., B3 is of full column rank. 

Assuming only actuator faults can occur, the task of the output estimator based 

actuator fault diagnosis is to ensure that the output estimation error is invariant to  

all unknown inputs and certain group of inputs. 

Denote B 3  = ( ~ 3 , 1  . - B3,m), and for any s = {il, - - , il} E 2'1, where ij E 

{ 1 , 2 , . - - , m )  for any 1 _< j _< 1, let ~ 3 , ~  = ( B ~ , ~ ~ ~ . . . , B ~ , ~ , ) .  If one takes away 

all columns of B3,s from B3, the remaining columns of B3 constitute a new matrix 

denoted by B;,~. 

It follows from (5.2) and (5.3) that 

Note that All and A22 are Hurwitz and d(t) is bounded. The following SMOE can 

be designed. 

where A3 is any Hurwitz matrix, and ys and $2 are the estimates of y and x2, respec- 

tively. Let P be a positive definite symmetric matrix such that ATP + PA3 < 0, the 

sliding mode terms are defined as 

and 
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and 

where es = ys - y ,  and pl, p2 and pg are chosen such that pl > 1 1 ~ ~ 1 1 ,  p2 > IIusll, and 

P3 > l l~ l ( t ) l l .  

The property of the designed output estimator is given in Theorem 5.2. 

Theorem 5.2 Under assumptions A51 to A56, i f  = us, us and y are bounded, 

and pl,  pa and pg are chosen such that pl > 1121 1 1 ,  p2 > ((us 1 1 ,  and p3 > Ild; ( t )  1 1 ,  the 

SMOE given by (5.9) can ensure that e, exponentially approaches zero, and thus is 

invariant with respect to  us and d ( t ) .  

Proof. The following is derived: 

Because is Hurwitz, positive definite matrices P2 and Q2 exist such that 

-Q2 = p2A22 + AT2p2. Let -Q = PA3 + A r P  and choose a Lyapunov function V = 

ezPes  + 5$P2z2. Differentiating the Lyapunov function, the following is obtained: 

Using the definition of pl,, because All is Hurwitz and us, y and d l ( t )  are bounded, 

xl  is bounded. Hence, pl can be chosen such that pl > llxl 11. Clearly, 2 e : ~ A ~ ~ ( p l ,  - 

x l )  5 0, 2ezPB3,,(p2, - us) _< 0, and 2 e ~ ~ D ~ , ~ ( p 3 ,  - d l ( t ) )  < 0. Using these three 

inequalities, it follows from (5.11) that 
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Note that for any positive k, the following is always true. 

If k is chosen such that Q = Q - P/k > 0, the following is obtained: 

Because llZ2)12 exponentially converges to zero, (5.13) implies that e, exponentially 

approaches zero despite the presence of unknown inputs. I 

Remark 5.3.1 Unlike in (301, x l  cannot be estimated because of the presence of the 

unmatched disturbance &(t) .  Therefore, i n  the output estimator design, x l  is treated 

as an unknown input vector. 

5.3.2 Sliding Mode Output Estimator for Sensor Fault Diag- 

nosis 

Assuming only sensor faults can occur, the task of the output estimator based sensor 

fault diagnosis is to  ensure that  the output estimation error is invariant to  all unknown 

inputs and certain group of outputs. 

Similarly, to develop an SMOE for sensor fault diagnosis, denote C = 

(CT - - - CF)T and C, = ( C z ,  - .  - , C,T)T. If all rows of Cs are taken away from 

C ,  the remaining rows of C constitute a new matrix denoted by C,". 

Also denote x3,, as a vector consisting of the il . i l th components of x3 and it:,, 

as a vector consisting of the remaining components. 

It follows from (5.2) and (5.3) that 
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A33,s and A;,, are defined the same way as Cs and Cz, whereby 

All other notations are defined the same way as C, and C:. 

Remark 5.3.2 Unlike the output estimator design for actuator fault diagnosis, for 

sensor fault diagnosis, x2 cannot be estimated asymptotically once sensor faults occur. 

Hence, some design freedom is lost because its estimation can no longer be used. 

Therefore, only the diflerential equation in (5.14) can be used. 

Define y, and y," the same way as x3,, and a;;,,. Denote the actual system output 

vector as yH. yH = y = x3 if all the sensors are healthy. Here, an estimator is designed 

for y: based on (5.14) by treating xl, x2, x3,+ and d l ( t )  as unknown inputs. 

As in the last subsection, an estimator for y," is given as 

where Ag is any Hurwitz matrix, and 2;,, is the estimate of y,". Let P be a positive 

definite symmetric matrix such that ATP + PA3 < 0; then the sliding mode terms 

are defined as follows 
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and 

where e: = ?:,, - y,C, and pj with 1 5 j I 4 are chosen such that pl > llxl 1 1 ,  p2 > ( ( x 2  1 1 ,  

P3 > l1x3,s11, and P4 > Ild;(t)ll. 

The property of the designed output estimator is given in Theorem 5.3. 

Theorem 5.3 Under assumptions A51 to A56, i f  ( y : )H  = y,", u and x3 are bounded, 

and pj, 1 _< j 5 4 are chosen such that pl > 1 1 ~ ~ 1 1 ,  p2 > IIx211, p3 > 11x3,,11, and 

p4 > Ildl ( t )  1 1 ,  the SMOE given by (5.15) can ensure that e: exponentially approaches 

zero, and thus is invariant with respect to  y, and d ( t ) .  

Proof Because ( y , C ) H  = y,C implies x : ,  = y,", the theorem can be proved similarly to 

Theorem 5.2. I 

5.4 Solutions of Fault Diagnosis Problems 

For simplicity and clarity, in this section, only solutions for actuator fault diagnosis 

problems are provided because sensor fault diagnosis is performed in exactly the same 

way. Note that all the results obtained are under the assumption that only actuator 

faults can occur. 

Actuator fault diagnosis is accomplished by examining (5.8) and (5.9). In order to 

provide solutions for actuator fault diagnosis problems in an efficient and clear way, 

let U = and V,  = (U ~ 3 , ~ ) .  Additionally, a concept called the Output 

Estimator Induced Actuator Fault Isolation Index (OEIAFIX) is defined. 

Definition 5.4.1 System (5.1) is said to have an Output Estimator Induced Actuator 

Fault Isolation Index (OEIAFIX) equal to 1 if and only if for any s, one always has 

rank(V,)  = rank (U)  + 1. 1 is the largest number that has this property. 
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Remark 5.4.1 If there is no  1 > 0 such that O E I A F I X  = I ,  then system (5.1) 

does not have any OEIAFIX.  For consistency, O E I A F I X  = 0 is used to denote this 

situation. 

The Output Estimator Induced Actuator Fault Isolation Index (OEIAFIX)  has the 

following property. 

Lemma 5.4.1 For system (5.1), 0 5 O E I A F I X  5 p - r a n k ( U )  is always true. 

Proof. From Remark 5.4.1 and the definition of OEIAFIX, O E I A F I X  2 0 is always 

true. On the other hand, because the matrix V, has p rows, r a n k ( U )  + 1 5 p, which 

proves the lemma. I 

For simplicity, AFIX is used to stand for OEIAFIX. The following result is ob- 

tained. 

Theorem 5.4 Under assumptions A51 to A56, assume that only actuator faults can 

occur and the SMOE given by (5.9) is  used to  perform actuator fault isolation. If 

A F I X  < rn, the maximum number of actuator faults that can be simultaneously 

isolated is equal to the A F I X  - 1. 

Proof. Two cases need to  be considered: 1 ) A F I X  <_ 1, and 2) A F I X  > 1. 

For the case A F I X  5 1, it needs to be shown that no single actuator fault can be 

isolated. When A F I X  = 0, rank(U B3) = r a n k ( U ) ,  which implies that,  for any fixed 

1 > 0 and s, the output estimation error, e,, resulting from using (5.9) is invariant to 

any bounded input vector u because all u can be incorporated into the channels of 

p1, and p3,, i.e., the output estimation error will be insensitive to all actuator faults. 

Because all possible output estimation errors are insensitive to  all faults, no faults can 

be isolated. Moreover, no actuator faults can be detected. When A F I X  = 1, for any 

s = {il}, rank(l / ,  B3) = rank (V , ) ,  which implies that the output estimation error, 



Chapter 5 Output Estimator Based fault diagnosis 

ey,, resulting from using (5.9) is invariant to any bounded input vector u because all u 

can be attenuated by pl,,  p2, and p3,, i.e., the output estimation error is insensitive 

to  all actuator faults. Because all possible output estimation errors are insensitive 

to  all faults, no faults can be isolated. Moreover, no faults can be detected when 

I = 1. However, I = 0, the SMOE given by (5.9) (without the term p2,) can be used 

to  detect faults because actuator faults can not be attenuated by p1, and p3,. The 

output estimation error will be sensitive to  actuator faults, and thus actuator faults 

can be detected. 

For the case A F I X  > 1, it is needed to  prove that isolating actuator faults is 

possible. 

Assume exactly A F I X  - 1 actuator faults are present. Let I = A F I X  - 1; then, for 

any set s, e,, resulting from (5.9) is invariant to  any actuator faults within the actuator 

group corresponding to us. However, it is sensitive to  any actuator fault outside the 

actuator group corresponding to  us because the definition of A F I X  ensures such 

actuator faults lie in independent channels of pl,, p2, and p3,. Because there are 

A F I X  - 1 actuator faults, the arguments above imply that only one set of the form 

s exists with output estimation error tending to  zero. For all other sets, the resulting 

output estimation errors do not approach zero in general because they are sensitive to  

those actuator faults. Therefore, A F I X  - 1 actuator faults can be isolated because 

only one output estimation error tends to zero while the rest do not. 

Now, it is needed to show that isolating more than A F I X  - 1 actuator faults is 

not possible. If A F I X  - 1 actuator faults occur, and I = A F I X  - 1 is chosen, by 

the definition of A F I X ,  all output estimation errors resulting from (5.9) are sensitive 

to actuator faults. Because A F I X  < m, only the fact that more than A F I X  - 1 

actuator faults have occurred can be concluded, however they cannot be isolated. If 
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1 2 A F I X  - 1 is chosen, for all s ,  the resulting output estimation errors from (5.9) 

approach zero because all the inputs are attenuated by pl,, p2, and p3,. In such a 

situation, no faults can be isolated. I 

In the proof of Theorem 5.4, fault detection using the SMOE given by (5.9) (with- 

out the term p2,) is not possible for A F I X  = 0, but is possible for A F I X  > 0. This 

fact solves F D P l  and FDP2.  

Theorem 5.4 has also given solutions for both FIPl and F I P 2  at the same time, 

which are shown more clearly in the following corollaries. 

Corollary 5.4.1 Under the assumptions of Theorem 5.4, if A F I X  5 1, actuator 

fault isolation is impossible; i f  A F I X  = 2, only a single fault can be isolated; if 

A F I X  > 2, actuator fault isolation can be performed for one up to A F I X  - 1 faults. 

Corollary 5.4.2 Under the assumptions of Theorem 5.4, if A F I X  > 1, the maxi- 

m u m  number of actuator faults that can be simultaneously isolated is A F I X  - 1. 

For a system like (5.1) and under the condition that only actuator faults can occur, 

it was proved that at most A F I X  - 1 actuator faults can be isolated at the same 

time if A F I X  < m. 

In the remainder of this section, a design method is introduced that uses as few 

SMOEs as possible to  detect the faults, determine the number of faults, and also 

isolate and estimate the faults. 

Theorem 5.5 provides theoretical support for the possibility of designing actuator 

fault diagnosis schemes based on SMOEs. 

Theorem 5.5 Under the assumptions of Theorem 5.4, assume that there are nj ac- 

tuator faults and nf  5 A F I X  - 1. A bank of SMOEs can be defined to generate a 

group of residuals such that each residual is  only insensitive to faults i n  a particular 

actuator group but sensitive to all other faults outside the actuator group. 
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Proof. Let 1 = AFIX  - 1. For any s, if all the actuator faults are inside the 

actuator group corresponding to us, e, approaches zero exponentially, which means 

e, is insensitive to any actuator faults inside the actuator group corresponding to us. 

On the other hand, if any actuator fault lies outside the actuator group corre- 

sponding us, G: - G, f 0, which makes the term Bj,,(G: - G,) # 0. Because of 

the definition of A F I X ,  the nonzero term B&(G: - G,) cannot be attenuated by 

pl,,  p2, and p3,. Therefore, e, is sensitive to any faults outside the actuator group 

corresponding to us. I 

Theorem 5.6 serves as a foundation for determining the number of faults. 

Theorem 5.6 Under all conditions in Theorem 5.5, if the number of faults is 

0 < nf 5 A F I X  - 1, the number of output estimation errors (e,(t) with s = 

AFIX-1-n f  
{ i l l  - - - , iAFIx-)I ,  which are insensitive to the nf faults is equal to Cm-,, 

Proof. Because only n f  faults occur, the number of sets of the form s = 

AFIX-1-nf  
{ i l l  - - , i A F I X - )  , which include the faulty actuator group, is equal to Cm-,, 

According to Theorem 5.5, all output estimation errors corresponding to  these 
A F I X -  1-nf 

6,-nf sets are insensitive to  the nf faults and any other output estimation 

errors are sensitive to  the faults. This completes the proof. I 

AFIX-1-nf  Remark 5.4.2 If nf < AFIX  - 1 faults occur, exactly C,-,, output estima- 

tion errors are insensitive to the faults. Therefore, once the number of those output 

estimation errors (gnu,) is obtained, the number of faults n f  is found by  solving 
AFIX-1-n f  - 

Cm-nf - gnvm 

The following result is useful in fault isolation. 

Theorem 5.7 Under the assumptions of Theorem 5.5, suppose that only gnu, output 

..i estimation errors, i.e., es, with Sj  = {i;, . - - , zAFIXFl )  and 1 < j 5 gnu,, approach 
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AFIX-1-nj - 
zero and an integer nf exists such that C,-,, - gnum. Define SF = Sj. 

Then, SF can be denoted as SF = {il, .  - . , in , ) ,  and the nf faulty actuators are the 

ilth to the in,th actuators. 

AFIX-1-nf - Proof. According to Theorem 5.5, a t  least Crn-,, - gnu, output estimation 

errors approach zero if nf faults occur. Because only gnu, output estimation errors 
AFIX-1-nf - 

approach zero and Cm-,, - gnu,, nf  actuator faults have occurred. If the faulty 

actuator group is denoted as uil, - - . , uin, , this faculty actuator group must and can 

only be included in the gnu, different groups defined by us,, 1 < j 5 gnu,, which are 

insensitive to  the faults. Therefore, by definition, it follows that {il, . - , in,) E Sj for 

any 1 5 j 5 gnum and SF = {il, - . - , in,). This completes the proof. I 

Assume nf < A F I X  - 1 faults occur and SF = {il,  - .  . ,in,). Then, ex- 
AFIX-1-nf 

actly C,-,, residuals are insensitive to the faults. According to Theorem 

5.7, the fault isolation can be performed. To estimate the faults, a certain set 

Sjs = {ijs , - - , z ~ ~ ~ ~ - ~ )  . js with the smallest output estimation error is picked. Be- 

cause e,,, tends to  zero, and if e,:, ,... j3 is assumed to tend to zero, according to  

(5.10), the faults can be estimated using a low-pass filter as 

where p2,js(ij) is the element in p2,js that corresponds to  the index ij, and LPF 

denotes a low-pass filter. 

An actuator fault diagnosis scheme is given in the steps below. 

Step 1 Compute A F I X .  

Step 2 If A F I X  5 1, no fault can be isolated, stop. If 1 < A F I X  < m, let 

1 = A F I X  - 1, go to Step 3. 
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Step 3 Fault detection and isolation 

1. For each set s, design an SMOE given by (5.9). 

2. Define residuals r, (t) = Ile, 11 INnormal (t) , where Nnmmal (t) is chosen such 

that r,(t) 5 1 when only actuators corresponding to s are possibly faulty, 

otherwise r,(t) > 1. 

3. The threshold is chosen as 1. 

4. Fault Detection: If any of the Ck residuals is larger than the threshold at 

any time constant, faults are detected. Otherwise, no fault is detected. 

5. After faults are detected, denote the fault detection time as Tdetectl choose 

a fault isolation time interval (FITI) as (Tdetedl Tdetect + A) with A suitably 

large, and perform fault isolation on the FITI. 

6. Count the number of residuals that are below the threshold, and denote 

the number as gnu,. 

7. If gnu, = 0, more than I actuators are faulty and exact fault isolation 

cannot be achieved. Stop. 

8. If gnu, = 1, nf = I and I actuator faults occurred. If r, is the only residual 

that is under the threshold, the ilth, to  the ilth actuators are faulty. Fault 

isolation is done. Stop. 

9. If gnu, > 1, solve c:::,', = gnu, for nf. If no integer solution for nf exists, 

the number of faults occurred cannot be determined and fault isolation 

cannot be accomplished at this moment. Choose a larger A, and go to 

Step 3.6. If an integer solution of nf exists, the number of faults is equal 

to nf < I. 
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10. If the number of faults nf < 1 is determined and c:?:, = g,, resid- 

uals are under the threshold. Denote the corresponding sets as S j  = 

{i!, . . - ,if), 1 l j l g n -  

11. Fault Isolation for grim > 1: Let SF = nzy Sj .  If SF = {ill . . . , inf) ,  the 

faulty actuators are the i l th to the infth actuators. 

12. Fault estimation: Pick up a set s = {i;, - . . , i:) which corresponds to the 

smallest residual; then use (5.16) to  estimate the faults by letting il = 

.j zj , . . .  , i l  = zl. 

Remark 5.4.3 No such SMOE based fault diagnosis scheme has been proposed in the 

literature to deal with unmatched unknown inputs. 

5.5 An Example and Simulation Results 

To show the effectiveness of the fault diagnosis scheme, a linearized model of a tailless 

jet fighter in [I131 is taken as an example with an added unmatched uncertainty. 

The model is given as. 

where z = (a, p, p, q, r)T whose a is the angle of attack, ,8 is the sideslip angle, p, q, r 

are the roll rate, pitch rate, and yaw rate, respectively. The control u is defined 

as U = (be1 her bp lap , bamt~, bamtr)T with be1 be,, bp lap bamtl, bamtr being defined as the 

deflections of the left and right elevons, the pitch flap, and the left and right all moving 



Chapter 5 Output Estimator Based fault diagnosis 

tips, respectively. The system matrices are defined as follows: 

and 

For this system, A F I X  = 3 can be verified. Therefore, at most 2 actuator faults 

can be isolated. Because m = 5 and A F I X  - 1 = 2, in total C; = 10 sets exist, 

i.e., s = {l ,2) ,  s = {l ,3) ,  s = {1,4), s = {l,5),  s = {2,3), s = {2,4), s = {2,5), 

s = {3,4), s = {3,5), and s = {4,5). 

In the simulations, the first and the second actuators become stuck after 5s. In 

total, ten SMOEs are designed. Nnmmal(t) = 0.00001 is used, and the simulation 

results are plotted in Fig. 5.1 to Fig. 5.3. 

Because the faults are abrupt, fault detection is fast, i.e., 0.37s after the faults 

occurred because 7-25 in Fig. 5.2 exceeds the threshold. If F I T I  = (5.37s, 7s), Fig. 

5.1 and Fig. 5.2 show that only rl2 stays below the threshold on the chosen interval 

F I T I .  According to Step 3.8 in the fault diagnosis scheme, gnu, = 1, which leads to  

a conclusion that two faults have occurred, and that the faulty actuators correspond 
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Figure 5.1: 

VI 
LW 

Time@) 

Aircraft fault detection 

Time@) Time@) 

and isolation - The first six residuals 

Figure 5.2: Aircraft fault detection and isolation - The other four residuals 



Chapter 5 Output Estimator Based fault diagnosis 

I -The second actuator fault] \ 
, - , - ,  Fault estimation I \ I 

Figure 5.3: Aircraft actuator faults and their estimations 

to 7-12, i.e. the first and the second actuators. Thus, a correct fault isolation decision 

is made. Fig. 5.3 shows the actuator faults can be estimated accurately. 

As shown in Fig. 5.1, 7-15 exceeds the threshold at 6.58s. If A < 6.58, 7-12 and 7-15 

are below the threshold, which leads to a wrong fault isolation conclusion. Therefore, 

the choice of FITI is important for fast and correct fault isolation. 

The choice of Nnmmal(t) also plays a very important role in correct fault isolation. 

For example, if NnoTmal(t) = 0.001, it follows from Fig. 5.1 that r12, 7-13, and 7-23 

are below the threshold, which causes gnu, = 3. Based on gnu, = 3, fault isolation 
2-nf 

cannot be achieved because C5-,, = gnu, does not have an integer solution. 
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5.6 Conclusions and Discussions 

In this chapter, for a class of systems with unmatched unknown inputs, a systematic 

and detailed study was carried out on how to  design output estimators for actuator 

or sensor fault detection, isolation and estimation. 

Firstly, a canonical system structure was developed. It separates the matched 

and unmatched unknown inputs explicitly and is in a very suitable form for sliding 

mode output estimator (SMOE) design. Secondly, based on the particular system 

structure, SMOEs were designed and proved to  be invariant to  both matched and 

unmatched unknown inputs. Thirdly, given that the proposed SMOEs are used for 

fault diagnosis, solutions were provided to all the fault diagnosis problems. 

Finally, the simulation results for the linearized tailless jet fighter model showed 

that the fault diagnosis scheme detected and isolated abrupt faults successfully. Sim- 

ulations also show that accurate fault estimation is possible. 

Although direct output estimator based fault diagnosis schemes have strength in 

dealing with situations that are impossible for existing observer based fault diagnosis 

schemes, they are designed to  complement the existing observer based fault diagnosis 

schemes rather than replace them completely. Whenever fault diagnosis scheme design 

based on the observer design is possible, observer based fault diagnosis schemes should 

be used to accomplish fault diagnosis. 

Because only a class of linear systems is considered, extensions to more general 

linear systems and nonlinear systems remain to be investigated. 



Chapter 6 

Actuator Fault Diagnosis for 

Uncertain Linear Systems Based 

Robust Different iator (HOSMRD) 

In Chapter 5, output estimator based fault diagnosis schemes were proposed for sys- 

tems with unmatched non-parametric uncertainties by abandoning the idea of observer 

design. This chapter aims to extend the research in Chapter 5 to  a more general class 

of linear systems by designing a fault diagnosis scheme using the estimates of both 

the outputs and their high order derivatives as well. 

6.1 Introduction 

Many observer based fault diagnosis schemes (including those schemes in Chapter 2 

through Chapter 4) proposed for systems subject to unknown inputs operate on three 
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assumptions: firstly, the system under consideration is at least detectable; secondly, 

the unknown inputs satisfy certain matching conditions; and thirdly, the relative de- 

grees from the generalized input vector, including both known and unknown inputs, 

to the outputs are no larger than one, which is often implicit. For example, the exis- 

tence conditions of the SMO in [30] are actually a certain type of matching conditions 

imposed on the unknown inputs, which imply a relative degree one requirement. High 

order sliding mode observers do not need the relative degree one condition, thereby 

requiring less restrictive matching conditions, and thus they can be used to  solve more 

challenging fault diagnosis problems (see [129] and the references listed therein). Ob- 

viously, when the system under consideration is not detectable, observer based fault 

diagnosis schemes can no longer be used. For systems that are detectable but do 

not satisfying the relaxed matching conditions in [129], whether observer based fault 

diagnosis schemes can be designed or not is unclear. These observations with the idea 

of designing direct output estimators motivate the research in this chapter to develop 

a new fault diagnosis scheme that does not rely on observer design. 

Although some results have been reported on fault diagnosis for nonlinear systems 

[27, 76, 811, fault diagnosis on linear systems subject to unknown inputs has not been 

studied for the case that none of the three assumptions mentioned earlier are met. 

This observation is the reason why uncertain linear systems are studied in this chapter 

before attempting fault diagnosis for nonlinear systems. 

The goal of this chapter is to address this challenging fault diagnosis problem in 

order to develop a novel actuator fault diagnosis scheme for a general class of linear 

systems subject to unknown inputs that can work either with or without those three 

assumptions. In order to achieve this goal, as in Chapter 5, fault diagnosis based on 

observer design is abandoned. Instead, fault diagnosis based on estimator design of 
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the outputs and their high order derivatives is employed. To overcome the difficulty 

caused by high relative degrees, the recently developed high-order sliding-mode robust 

differentiators (HOSMRDs) (see [I301 and references listed therein) will be used to 

estimate the output derivatives. 

The remainder of this chapter is arranged as follows. In Section 6.2, the system 

of interest is described, and a particular input/output relation suitable for actuator 

fault diagnosis is derived. In Section 6.3, an HOSMRD is introduced and its properties 

that were obtained in [I301 are briefly reviewed. In Section 6.4, the problems listed 

in Section 6.2 are solved. In Section 6.5, an example is given to show the effect of the 

actuator fault diagnosis scheme on actuator fault detection, isolation, and estimation. 

Finally, conclusions and discussions are presented in the last section. 

6.2 Preliminaries 

6.2.1 System Description and Fault Diagnosis Problem For- 

mulat ion 

Consider a class of linear systems with unknown inputs in the following form 

where x E Rn is the state vector, y = (yl yz.. - yp)T E Rp is the output vector, u E Rm 

is the input vector, and d E RQ is a bounded unknown input vector which may consist 

of system uncertainties and/or disturbances. 

The following two assumptions are needed. 

Assumption A61: Matrices A, B, C, D are known. 
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Assumption A62: Matrices B  and D are both of full column rank, C is of full row 

rank. 

Remark 6.2.1 The S M O  i n  (301 requires two conditions to ensure its existence: 1)  

the invariant zeros of (A ,  D l  C )  must have negative real parts, and 2)  rankCD =rankD = 

q, which implies that the relative degrees from d to the outputs are one. These two 

conditions, which are called matching conditions i n  this chapter, are also required by 

the UIOs i n  [27, 70, 691. The latter condition is recently removed i n  [129], where re- 

laxed matching conditions are allowed. In  this chapter, no such conditions have been 

assumed. Moreover, the system is not necessarily required to be detectable. 

For system (6.1), all fault detection, isolation, and estimation problems raised in 

Section 1.2 will be studied for actuator faults. 

6.2.2 An Input/Output Relation 

In order to  derive an input/output relation that can be used for actuator fault diag- 

nosis and that does not involve the derivatives of either the known inputs in u  nor the 

unknown inputs in d ,  a generalized input vector is defined as ud = (uT dr)T as well 

as a new input distribution matrix Bd = ( B  D ) .  Additionally, the concept of relative 

degree from the generalized input vector ud to  the i th output yi with 1 5 i 5 p is 

introduced. 

Definition 6.2.1 For the system i n  (6.1) and any 1 5 i 5 p, ri is  said to be the 

relative degree from the input vector ud to the i t h  output yi i f  CiAjBd = 0 for 1 5 j 5 

ri - 2 and CiATi-'Bd # 0 ,  where Ci is the i t h  row of C .  

Remark 6.2.2 If CiBd # 0 ,  the relative degree is one. If D = 0 ,  the resulting relative 

degree is from the input vector u to an  output. If ri is  infinity, clearly, yi is  not affected 

by either u  or d .  
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Because of Remark 6.2.2, another assumption is needed. 

Assumption A63: For any 1 5 i 5 p, ri is finite. 

Under assumption A63, the following are derived: 

Defining 0 = (CT - . - (CIArl-l)T CF - - .  (CpAr~-l)T)T. NOW, select all the 

independent rows from 0 in the following manner: first, pick C1, - a ,  Cp because C 

is of full row rank, second, find all the rows from CIA, - - , CpA, which together with 

Cl, - . - , Cp form another set of independent rows of 0;  continue until no dependent 

rows can be found. Finally, use all the independent rows obtained to form a new 

matrix as To = (CT - CT . . - (CpA'p)T)T, which is of full row rank and 

has the same rank as 0. 

Note, because To is of full row rank, T, can be chosen such that T = (Tz TT)T is 

nonsingular. Now, let w = (wT w;IT = Tx  with wl = Tox. Clearly, wl consists of 

the outputs and their derivatives. 

Define matrices Yd, M ,  Nu, and Nd as 

Partition M according t o  w = (wT w T ) ~  such that M = (MI M2). It follows from 

(6.2) that 
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Let M2.d = ( M 2  Nd)  and choose M .  such that M$dM2,d = 0 and rank (Mzd)  + 
r a n k ( M h )  = n.  Denote Y,, = M ~ ~ Y ~ ,  Mio = M t d M l ,  Nio = MidNu.  The following 

relation is obtained 

The above relation involves only the inputs, the outputs, and their high order 

derivatives. Consequently,it is called an input/output relation. The fault diagnosis 

will be performed based on this relation. 

Remark 6.2.3 (6.5) is obtained by  treating w2 as an unknown vector. Some de- 

tectable faults in some traditional FDI schemes [27, 70, 69, 301 may become unde- 

tectable for systems where w2 is available. When wz can be estimated, b y  letting 

M2,d = Nd and Mi, = M ~ ~ M  and replacing wl with w ,  the problem of fault de- 

tectablity loss can be easily fixed. Because w2 is often not available through observer 

design if the system under consideration is either undetectable or not satisfying the 

relaxed matching conditions in 11291, treating w2 as an unknown vector allows us to 

be able to develop a novel actuator fault diagnosis scheme based on (6.5) for those 

challenging systems where observer based fault diagnosis might not be possible. 

6.3 High Order Sliding Mode Robust Differentia- 

tors (HOSMRDs) 

Because HOSMRDs will be used to obtain high order derivatives of the outputs, an 

HOSMRD is introduced and its properties obtained in [I301 are listed in this section. 
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6.3.1 An HOSMRD 

Let f ( t )  = fo(t) + n(t)  be a function on [0, oo), where fo(t) is an unknown base 

function with the nth derivatives having a Lipschitz constant L, and n( t )  is a bounded 

Lebesgue-measurable noise with unknown features. The problem of HOSMRD design 

is to find real-time robust estimations of fo(t), fo(t),  . . - , fp ) ( t )  that are exact when 

n( t )  = 0. An HOSMRD proposed in [130] has the following form: 

io = vo,vo = -Xolzo - f ( t) l  nl(n+l)sign(zo - f ( t ) )  + zl 
Z1 = v1,vl = -XIIzl-vol (n-l)lnsign(zl - vo) + z2 

where X o ,  X I ,  . . - , A, are positive design parameters. 

6.3.2 The Properties of the HOSMRD 

With respect to the HOSMRD given by (6.6), the following three results are proved 

in [130]. 

Theorem 6.1 If n( t )  = 0 and all the parameters are chosen properly, after a finite 

transient, the following equalities are tme: 

Theorem 6.2 If ln(t)l = I f  ( t )  - fo(t) 1 5 E and all the parameters are chosen properly, 

after a finite transient, the following inequalities are obtained: 
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(i+l) 
1 ~ i - f ~  (t)l I vie (n-i)I(n+l),  i = 0, 1, . . . , n - 1 

where pi, i = 0, 1, - - - , n and vi, i = 0,1, - - - , n - 1 are some positive constants which 

are only dependent on the parameters of the dinerentiator. 

Consider the discrete-sampling case, when zo(t) - f ( t )  is replaced by zo( t j )  - f ( t j )  

on [tj,  tj+i) with T = tj+1 - t j .  

Theorem 6.3 Let T be the constant sampling time. If n ( t )  = 0 and all the parameters 

are chosen properly, after a finite transient, the following inequalities are obtained: 

6.4 Fault Diagnosis Based on the Input/Output 

Relation and the HOSMRD 

The fault diagnosis problems are solved in this section. For simplicity, all notations 

not defined are the same as those in Chapter 2. Several new notations are introduced 

as follows. Denote Nio = (Nio,1 . . . Nio,,). For any s = {il l  . . . , i l}  E 2'1 with 

1 5 1 5 m ,  define Nio,* = (Nio,il, - .  . , Nioti,), where ij  E {1 ,2 , -  - .  , m )  for any 1 5 j 5 1 

and NiOTij is the ij-th column of Nio. If all columns of N i , ,  are taken away from Nio, 

the remaining columns of Nio constitute a new matrix denoted by Ni0,,. 
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6.4.1 Actuator Fault Detection and Generalized Actuator 

Fault Isolation Index 

To solve the fault detection and isolation problems, two concepts are introduced: 1) 

Input-Output Relation Induced Actuator Fault Isolation Index ( IORIAFIX) ,  and 2 )  

actuator fault detectability. 

Definition 6.4.1 System (6.1) is  said to have an  Input-Output Relation Induced Ac- 

tuator Fault Isolation Index ( IORIAFIX)  equal to 1 if and only if for all sets of the 

form s = { i l , .  . . , i l l ,  rank(Ni,,,) = 1. 1 is  the largest number for which this rank 

condition holds. 

Remark 6.4.1 I n  previous chapters, diflerent concepts of the actuator fault isolation 

index (AFIX)  were defined under certain matching conditions and/or the relative de- 

gree one requirement. Those concepts are not suitable here because all the conditions 

needed are missing. Therefore, in order to provide concise answers to the fault diag- 

nosis problems, the concept of IORIA FIX i s  introduced. For simplicity, A FIX is still 

used to stand for IORIAFIX.  

If A F I X  = m, clearly, all the inputs can be reconstructed using sliding mode 

technique based on (6.5), making actuator fault diagnosis almost trivial. For this 

reason, in the remaining part of this chapter, only the case where A F I X  < m is 

studied. 

Definition 6.4.2 For System (6.1), actuator faults are said to  be detectable if resid- 

uals based o n  the measured variables can be designed such that they will approach zero 

(or enter a small neighborhood of the origin) when no actuator fault is  present, but 

will not approach zero (or enter a small neighborhood of the origin) for at least one 

type of actuator fault. 
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Remark 6.4.2 The fault detectability concept introduced here is very weak because 

all working fault detection schemes assume this fault detectability. It actually allows 

certain types of faults to  remain undetected. One reason for this is  that designing 

a residual that is  sensitive to all types of faults is  very difficult if not impossible. 

Another reason is that a necessary and sufficient condition for fault detectability can 

be derived. 

To perform fault detection, an estimator for KO is designed as 

,. 
where H is chosen to be any Hurwitz matrix, and and '61,HOSMRD are 

the estimates of KO and wl obtained using HOSMRDs given by (6.6). 

Theorem 6.4 Given that assumptions A61 through A63 hold and that the assump- 

tions i n  Theorem 6.1 are satisfied, and assuming that only actuator faults can occur 

(TI )  ('PI and that the HOSMRDs given by (6.6) are used to estimate yl , .  - - , y1 ,. . .,yp, a ,  yp . 
,. ,. 

Then, limt--.oo(Ko - = 0 when no actuator fault occurs, i.e., when 

uH = U .  

Proof. Because all assumptions in Theorem 6.1 are satisfied, it is possible to obtain 

the exact estimation of jrl , . , j"),. . a ,  yp, . - , yp) after the transient periods, which 
,. 

implies = KO and '61,HOSMRD = w1. Because = KO and 

'61,HOSMRD = WI after the transient periods, it follows from (6.5) and (6.10) that 

where j $ , ~ ~ ~ ~ ~ ~  = go - Finally, because H is Hurwitz and uH - u = 0, 

the theorem is proved using (6.11). I 
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Based on Theorem 6.4 and by defining r ( t )  = 1 1 % ~  - ~ o , H O S M R D l l ,  the actuator 

fault detection can be performed as follows: 
A 

limt_,m(Y,o - X o , ~ o S M ~ ~ )  # 0 Failure 
Fault detection strategy 

Otherwise N o  Failure 

Obviously, the above strategy solves FDP2. F D P l  is solved by Theorem 6.5. 

Theorem 6.5 If all the assumptions of Theorem 6.4 are satisfied, actuator faults 

are detectable using r ( t )  = 1 1 % ~  - ~ o , H o s M R D ~ ~  resulting from (6.10) if and only if 

A F I X  2 1. 

Proof. Sufficiency. Because A F I X  > 1, NiOj, 1 5 j 5 m are all nonzero. Assume 

that 1 5 m actuators are faulty and that they correspond to Ni0,,; therefore u y  -us  # 

0. Using (6.11), 

Because all columns of N i , ,  are nonzero, infinite low frequency fault signals exist 

such that u f  - us  # 0 and Nio,s(uf - u s )  # 0. Using this fact and the fact that 

H is Hurwitz, (6.12) ensures limt_,m(Y,o - # 0 for a t  least one type of 

actuator fault. This fact together with Theorem 6.4 proves that actuator faults are 

detectable by definition. 

Necessity. If 1 = 1, (6.12) becomes 

~ ~ O . H O S M R D  = H%,HOSMRD + ~ io , j ( u :  u j ) .  (6.13) 

In order to  use r ( t )  = llxo - Y,o,HosMRD 1 1  to achieve single actuator fault detection, 

it is required that r ( t )  should not approach zero for some u 7  - uj # 0. For this to  

happen, Nioj # 0 is required. In order for any single actuator fault to  be detectable, 

Nio,j # 0 with 1 5 j 5 m are needed, which implies that A F I X  2 1. This completes 

the proof. I 
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Remark 6.4.3 If A F I X  = 0 ,  at least one column of Nio is a zero column. Faults 

that occurred i n  the actuator corresponding t o  the zero column are not detectable using 

(6.10). A F I X  2 1 guarantees that faults i n  all actuators are detectable. 

6.4.2 Actuator Fault Isolation 

In order to solve the fault isolation problem, a concept called actuator fault isolata- 

bility is introduced. 

Definition 6.4.3 System (6.1) is  said to  have actuator fault isolatability with respect 

t o  1 faults i f  a bank of residuals based on  the measured variables can be designed such 

that they can be used to  isolate at least one of the 1 actuator faults. 

Similar comments to  those of Remark 6.4.2 can be made here. Because A F I X  < 

m, in order to  perform fault isolation, a bank of CL estimators has to  be designed for 

Y,, which takes on the following form: 

where s = { i l ,  . , i r }  E 2'1 H is chosen to be any Hurwitz matrix, and go,HOSMRD 
and w ~ , ~ ~ ~ ~ ~ ~  are the same as defined in the last subsection. 

The sliding-mode term p, is defined as 

where e,,, = Y , , ,  - Y,o,HOSMRD, and p is chosen such that p > 11u, 1 1 .  P is a symmetric 

positive definite matrix such that HTP + PH < 0.  

Theorem 6.6 Under assumptions A61 through A63 and the assumptions in Theorem 

6.1, assume that only actuator faults can occur and all the signals remain bounded 
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after the occurrence of faults. Then, limt,,e,,, = 0 if the HOSMRDs given by (6.6) 

("1,. . .,?i,, . . . , y f i )  and 6; = B,. i s  used to estimate yl ,  - - - , y, 

Proof. Because the assumptions in Theorem 6.1 are satisfied, Ro,HOSMRD = I$, and 

~ h ~ , ~ ~ ~ ~ ~ ~  = w1 after the transients. As a result, when fir = ii,, it follows from (6.5) 

and (6.14) that 

By choosing V = e&Pe,,, and differentiating it along (6.15),  the following is 

obtained: 

Because of the definition of p, and the boundness of us, p can be chosen large 

enough such that 

Because H is Hurwitz and H T P  + P H  < 0 ,  limt,,e,,, = 0 follows from (6.17) 

immediately. I 

Remark 6.4.4 Theorem 6.6 implies that e,,, i s  invariant to any actuator faults con- 

tained in  u s .  This property is very important i n  the design of the fault isolation 

scheme. 

Based on Theorem 6.6 and by defining r , ( t )  = Ile,,,ll, solutions for F I P l  and 

F I P 2  are obtained in Theorem 6.7. 

Theorem 6.7 Under assumptions A61 through A63 and the assumptions in Theorem 

6.1, assume that only actuator faults can occur and all the system signals remain 
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bounded after the occurrence of faults, and that the HOSMRD given by (6.6) is used 

to estimate j l ,  - . - , y?),. . .,$, . . . , y p ) ,  system (6.1) has actuator fault isolatability 

with respect to 1 faults with a bank of residuals chosen as rs(t) resulting from (6.14) 

if and only if A F I X  > 1 + 1. 

Proof Sufficiency. Assume the number of faults is I. By assumption, 1 < m. 

Assume the faults correspond to  a particular set s o  = {iy, - .  . ,iQ). For this set, 

- H  - us, - us, = 0. According to Theorem 6.6, limt+,rso(t) = 0. However, for any other 

set s = {il, - - . , il) such that s # so, without loss of generality, one can assume il = 

.o iy , . . . , i j  = z j  andij+i # a,, - - . , i l  # iy with j < 1, iiy-iis = uiy+ H ,,..., i~ -"q+l,...,i~ # 0. 

This fact together with (6.5) and (6.14) leads to 

Because A F I X  2 1 + 1, NiOj, 1 < j < m are all nonzero and rank(Ni0,, Ni0,in) = 

I + 1, j + 1 < k 5 1. These facts imply that infinite types of actuator faults exist 

H such that Nio,ip+ ,,..., ip ( Y. ;+,,...$ - u ~ ; + ~  , . . . , i~ )  cannot be attenuated by the sliding mode 

term p,. Among all possible faults, infinite faults with low enough frequencies exist 

such that limt+,rs(t) # 0 because H is Hurwitz. This argument holds for all s # so. 

Because the choices of possible faults are infinite, a t  least one type of actuator fault 

exists such that limt,,rs(t) # 0 for all s # so .  Based on the above arguments, obvi- 

ously, the 1 actuator faults can be isolated according to  the residual that approaches 

zero. This completes the sufficiency proof. 

Necessity. For 1 faults to  be isolated using the bank of residuals rs(t), A F I X  2 

1 + 1 needs to  be proven. Suppose A F I X  < 1. Then,a set s = {il, - . , il) exists 

such that s # s o  and rank(Nio,+ N+ ... io)  = I. These facts together with (6.18) 
3+11 ' 1 

imply limt,,rs(t) = 0. Because limt,,rso(t) = 0 is true, the isolation of I faults 
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is impossible because one and only one residual is allowed, which contradicts the 

assumption that 1 faults can be isolated. Thus the necessity is proved. I 

Based on Theorem 6.6, Theorems 6.8 and 6.9 can be proved, which can be used 

to determine the number of faults and to isolate them. 

Theorem 6.8 Assuming that the conditions in Theorem 6.6 are satisfied, if the num- 

ber of faults is 0 < nf 5 A F I X  - 1, the number of residuals(r,(t)) that are insensitive 
AFIX-1-nj to the nf faults, is at  least Cm-,, 

Theorem 6.9 Under the assumptions of Theorem 6.8 and assuming that nf ac- 

tuator faults have occurred, uppose that the number of residuals approaching zero, 

is equal to gnum, and that the residuals are denoted as r,,, 1 5 j < gnum, where 

.j ij AFIX-1-nj - sj = { z l l . . . l  AFIx - l } l l  5 j 5 gnum. Let SF = n p ~ s j .  ~f Cm-,, - gnum, 

SF has exactly nf elements, and SF = {ill - - - ,in,) determines that the nf faulty 

actuators are the i l th  to the in, th actuators. 

6.4.3 Actuator Fault Estimation 

Assume that nf 5 A F I X  - 1 faults occur and SF = {il, - , in,) is determined 

according to Theorem 6.9. To estimate the faults, pick up a certain set smin = 

.min {i';"i", - - - , zAFIX-i) with the smallest residual. Because eysmin tends to zero, and if 

the derivative of eysmin is also assumed to tend to zero, according to (6.15) and the 

idea of using low-pass filter to estimate the equivalent control, the following approach 

is proposed to estimate the faults, where the i th actuator fault is defined as ui - uy .  

where UC is the estimate of the i j th actuator fault, psmin(ij) is the element in psmin 

that corresponds to  the index ij, and L P F  denotes a low-pass filter. 
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Based on the above, the solution to  FEPl and F E P 2  is that estimating the shape 

of the actuator faults is possible and can be achieved using (6.19). 

6.4.4 The Complete Fault Diagnosis Strategy 

The overall fault diagnosis strategy is summarized in the steps of the following algo- 

rithm: 

Step 1 Compute A F I X  

Step 2 If A F I X  5 1, no fault can be isolated based on the input/output relation 

and only fault detection is possible. The fault detection can be performed using 

(6.10) and r ( t )  = llR0 - g o , ~ ~ ~ ~ ~ ~ 1 l .  Stop. 

Step 3 Perform fault detection and isolation for the case 1 < A F I X  < m in the 

following manner: 

1. For each set s = (21, - .  - , iAFIX-l}, design an estimator for KO given by 

(6.14) based on (6.5) and HOSMRDs given by (6.6). 

2. Define residuals rN,s (t) = rs (t)/Nnormal (t) , where Nnmmal (t) is chosen such 

that ~ ~ , ~ ( t )  5 1 when only actuators corresponding to s are possibly faulty, 

and ~ ~ , ~ ( t )  > 1 otherwise. 

3. The threshold is chosen t o  be 1. 

4. If any of the C:F'X-l residuals is larger than one at any given time, faults 

are detected. Otherwise, no fault has been detected. 

5. Once faults are detected, denote the fault detection time as Tdetect. Choose 

a fault isolation time interval (FITI) as (Tdetect, Tdetect + A) with A suitably 

large, and perform fault isolation on the FITI. 
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6. Count the number of residuals that are below the threshold, and denote it 

as gnume 

7. If gnu, = 0, more than A F I X  - 1 actuators are faulty and exact fault 

isolation can not be achieved. Stop. 

8. If gnum = 1, nf = A F I X  - 1 and A F I X  - 1 actuators are faulty . If r ~ , ~  

is the only residual that is under the threshold, the i l th to the iAFIX-l th 

actuator corresponding to this particular s are faulty. Fault isolation is 

accomplished. Stop. 

AFIX-1-nf - 9. If gnu, > 1, then solve C,-,, - gnu, for nf .  If there is no integer 

solution for n f ,  then the number of faults occurred can not be determined 

and fault isolation can not be performed. If there is an integer solution of 

nf ,  then it is concluded the number of faults is equal to the integer solution 

of nf .  

10. If the number of faults nf < A F I X  - 1 is determined and there are 
AFIX-1-nf - 

Cm-n - gnu, sets such that their corresponding residuals are below 

the threshold. Denote these sets by s j  = {ii,.  . - , i~FIx-l},  1 5 j 5 gnu,, 

and compute SF = sj and if SF = {il, - - , inf }, then the faulty 

actuators are the ilth actuator; - -,and the in, th actuator. 

-,in Step 4. Perform fault estimation by picking up Smin = {iyin, . - - , z ~ ~ ~ ~ - ~ }  which 

corresponds to the smallest residual. Then, use (6.19) to estimate the faults. 

Remark 6.4.5 The use of HOSMRDs in fault diagnosis is the first reported in the 

literature. Moreover, no observer based fault diagnosis schemes have been proposed in 

the literature that are capable of dealing with linear systems not necessarily detectable, 

with unmatched unknown inputs and with high relative degrees. 
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6.5 An Example and Simulation Results 

To show the effectiveness of the proposed fault diagnosis scheme, the following system 

is chosen: 

where d = O.Olcos(t) and the system matrices are shown below. 

This system is not detectable and does not satisfy the relaxed matching conditions 

in [129]. Simple computation shows that the relative degrees from the generalized 

inputs to  the first output, the second output, and the third output are all 2,2,2. For 

this system, AFIX = 2, and according to  Theorem 6.7, isolating one actuator fault 

is possible. In the simulations, an incipient fault occurs at  t = 3s and takes form as 

ulf = U I  - U? = 0.02(t - 3), t > 3. N,,,,[(t) is chosen as 0.01, and r l ( t ) ,  r2(t),  and 

rg(t)  are used to  denote the normalized residuals corresponding t o  s = (11,s = (2) 

and s = (3). The fault detection and isolation simulation results are plotted in Fig. 

6.1. 
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Figure 6.1: Actuator fault detection and isolation 

Actuator fault is detected a t  t = 4.09s because r3(t) > I at that moment. Now, 

choose FIT1 as (4.09s, 5s) and monitor the residuals on this interval, rl (t) is far less 

than one, while rg(t) > 1 and r3(t) > 1. According to  the fault diagnosis scheme, 

the first actuator is faulty while the second and the third one are healthy. The faulty 

actuator is isolated and correct fault isolation decision is made. 

The fault estimation results are plotted in Fig. 6.2, which shows a very promising 

performance in estimating the shape of the fault. 

6.6 Conclusions and Discussions 

This chapter addressed the fault diagnosis problem for two challenging situations in 

linear systems: 1) when the system is not detectable, and 2) when the unknown inputs 

do not satisfy certain matching conditions. In such situations, designing observers to  
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Figure 6.2: Actuator fault estimation 

achieve asymptotic estimation of all system states is very difficult if not impossible. 

By abandoning the idea of designing observers to  estimate all the system states, an 

input/output relation was derived, which involves only the measured outputs and 

their derivatives to  perform fault diagnosis. Based on the relation and on the use of 

the recently developed high-order sliding mode robust differentiators (HOSMRDs), 

fault detection, isolation, and estimation problems were studied, and answers were 

provided in terms of a concept called Input-Output Relation Induced Actuator Fault 

Isolation Index ( IORIAFIX)  

The input/output relation based actuator fault diagnosis scheme using HOSMRDs 

offers a new way to  carry out fault diagnosis that is different from observer design 

based approach. Its strength lies in its capability to deal with difficult situations where 

observer based fault diagnosis might fail to be applicable. The relation between the 
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observer based approach and the method in this chapter needs to be fully explored in 

future research. 

The need for using high order differentiators is a limitation when the measurement 

noises are present. The method of designing new input/output relation based fault 

diagnosis schemes, which do not depend on high order output derivatives, is a topic 

of future research. 



Chapter 7 

Adaptive Sensor Fault Detect ion 

and Isolation in Unknown Linear 

Systems 

In previous chapters, only non-parametric uncertainties were considered, and the sys- 

tem parameters were assumed to be known. In this chapter, linear systems with 

parametric uncertainties (i.e., linear systems with unknown parameters) are consid- 

ered, and the adaptive sensor fault detection and isolation problems are studied. 

7.1 Introduction 

In both the literature and in previous chapters of this thesis, a common assumption for 

robust fault detection and isolation (FDI) schemes is that the system (or the nominal 

system) parameters were known. If the system parameters are unknown, most robust 

approaches cannot be used any more. Instead, adaptive approaches are needed to 

solve FDI problems. Since this chapter deals with the adaptive approach, only those 
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fault diagnosis results using adaptive approaches will be discussed. 

Two types of adaptive FDI schemes have been proposed in the past. One class 

of approach assumes the systems (or nominal systems ) are known. The schemes in 

[93, 941 belong to  this class, where adaptive observers were designed to  perform FDI 

under the assumption that the faults can be modelled by OTu, where O is a constant 

unknown parameter matrix. The adaptive FDI scheme designed for SISO systems in 

[95] is also of the same class, where faults are linearly parameterized and persistent 

excitation conditions are required. The schemes in [97,98,99] belong to this class too, 

where faults are parameterized and a compact convex region to which the unknown 

parameter vector O* belongs needs t o  be determined, additionally, some knowledge 

about faults has to  be used. 

The other class of adaptive ,FDI schemes deal with systems with unknown pa- 

rameters. The works in [loo, 102, 103, 110, 1311 belong to  this class. Although 

nonlinear systems were considered in [loo, 103, 1311, those adaptive schemes might 

not be applicable to  the unknown linear systems considered in this chapter because 

they were designed under various system restrictions. The only adaptive FDI schemes 

for unknown linear systems in the literature were proposed in [I021 and [110]. The 

FDI scheme in [I021 was based on a PI  adaptive observer and was designed for SISO 

linear systems, while the FDI scheme in [I101 was based on an adaptive output esti- 

mator design and was proposed for MIS0 linear systems. The FDI scheme in [I101 

was only proposed for actuator fault diagnosis, and can only solve the fault isolation 

problem for constant actuator faults. For general unknown MIMO linear systems, 

solving the fault detection and isolation problems with adaptive approaches is a large 

open research topic. 

Most of the above mentioned adaptive FDI schemes (except the one in [110]) rely 
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on adaptive observer design. Their main idea is to  first estimate all the state variables, 

and then use the estimated state to  estimate the outputs in order to  generate suitable 

residuals. However, adaptive observer design is not possible for undetectable linear 

systems. Even for the systems that are detectable, the adaptive observer design 

problem is only well solved for unknown systems with single output ([86, 83, 87, 

88, 89, 1021). As for general unknown MIMO linear systems, the problem remains 

open because none of the existing adaptive observers designed for MIMO systems 

are applicable to  such systems [84, 85, 90, 91, 921. Moreover, for the purpose of 

fault diagnosis, observer design is not always necessary because all that is needed is 

to  estimate all the outputs rather than all the states. Therefore, output estimators 

rather than observers are sometimes preferred in fault diagnosis, see Chen and Saif 

[13, 1101. 

Realizing that the fault diagnosis problems of general unknown MIMO linear sys- 

tems remain a fruitful area of research, the purpose of this chapter is to  make some 

contributions in this direction. By taking advantage of the fact that only output es- 

timators are needed for fault diagnosis, a sensor fault detection and isolation scheme 

is proposed based on the design of adaptive output estimators for general unknown 

MIMO linear systems in this chapter. Firstly, an MIMO system is decomposed into a 

group of MIS0 systems and then a transfer function description for each MIS0 sys- 

tem is presented. Secondly, based on each transfer function and for each output, an 

output equation is obtained by filtering the corresponding output and all the inputs 

properly, which is suitable for output estimator design. Thirdly, using the derived 

output equations, adaptive output estimators are designed for all outputs. Finally, 

based on the designed output estimators, the adaptive sensor fault diagnosis problems 

are solved. 
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The remainder of the chapter is arranged as follows: In Section 7.2, the MIMO 

system model is introduced and the problem of interest is formulated. In Section 7.3, 

an MIMO system is decomposed into a group of MIS0 systems and a transfer function 

description for each MIS0 system is presented. In Section 7.4, in order to design 

output estimators, an output equation is derived for each MIS0 based on its transfer 

function. In Section 7.5, adaptive output estimators are designed based on the output 

equations derived. Based on the designed adaptive output estimators, the difficult 

sensor fault detection and isolation problem is solved completely in a straightforward 

manner. Simulation results are presented in Section 7.6 to  show the effectiveness of 

the proposed adaptive FDI method. Finally, conclusions and discussions are made in 

the last section. 

7.2 Systems of Interest and Problem Formulation 

Consider MIMO systems described as 

where x(t),  y(t), and u(t) are the system state vector, output vector, and input vector 

respectively, and x(t)  E Rn, y(t) = (yl(t) - . yp(t))T, ~ ( t )  = (ul(t) - - - ~ , ( t ) ) ~ .  A, 

B, and C are all unknown matrices. 

Assumption A71: n, m, and p are known. 

Under only one assumption, A71, the adaptive observer design is extremely diffi- 

cult, if not impossible, because no adaptive observer has been found for the system 

under consideration. Hence, the idea of fault diagnosis based on adaptive observers 

has to  be abandoned. Instead, the idea of an adaptive output estimator design for 
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fault diagnosis is proposed, which leads to  the following problem formulation. 

Adaptive Sensor Fault Detection and Isolation Problem: Assume that 

assumption A71 is satisfied and only sensor faults can occur. Design an fault diagnosis 

scheme based on the design of adaptive output estimators such that it can solve the 

fault detection and isolation problems; i.e., FDP1 ,  FDP2 ,  F I P 1 ,  F I P 2 ,  and F I P 3 ,  

adaptively once they occur. 

Remark 7.2.1 If systems given by (7.1) are not detectable, no observers can be de- 

signed to estimate all the states asymptotically, and thus existing observer based fault 

diagnosis schemes can not be applied. However, designing output estimators for such 

systems is possible and output estimators are often suficient for the purpose of fault 

diagnosis. In the problem formulation, the latter fact is the reason why systems given 

by (7.1) are not required to be observable or even detectable. It is the idea of designing 

output estimators rather than state observers that leads to an elegant solution to the 

Adaptive Sensor Fault Detection and Isolation Problem. 

7.3 System Decomposition and Related Transfer 

Function Description 

Estimating all the outputs directly from the MIMO system (7.1) is very difficult, 

which is the motivation for transforming the difficult MIMO output estimator design 

problem into several simpler MIS0 output estimator design problems by decomposing 

the MIMO systems into a group of MIS0 systems. 

Let C = (CT . . C;)* and B = (B1 . - B ) .  Obviously, a MIMO system given 

by (7.1) can be decomposed into p MIS0 systems, where for 1 5 j 5 p, the j t h  MIS0 
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system is of the following form: 

~ ( t )  = 

yj(t> = 

4) is not necessarily ( Because letectable, it is not appropriate to design any 

observer for the MIS0 system defined by (7.2). In order to estimate the outputs 

without designing observers for the MIS0 system defined by (7.2), the input-output 

relation of u(t)  and y j ( t )  described by the following transfer function is used. 

where 

and sn + an-lsn-l +.  - -  + als + a0 = det(s1- A). 

For convenience, define a ( s )  = sn + an-lsn-l + - - -  + als  + a0 and bjl(s)  = 

bjl,n-lsn-l + . + bjl,ls + bjl,o. 

7.4 Output Equations for MIS0 Systems 

For each 1 5 j < p, based on (7.3) and (7.4), and inspired by [83] and [ I l l ] ,  the 

following state space realization can be given for (7.3): 
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Note that (7.5), which is observable, is not the same as (7.2), which might not be 

observable. It is also crucial to know that the outputs for both (7.5) and (7.2) are 

the same. Therefore, (7.5) can always be used to estimate yj regardless of whether 

(7.2) is observable or not. This observation implies that the original system (7.1) is 

where xj  = ( x ~ , ~  xj,n)T and 

not required to be observable for the purpose of output estimation. 

For each 1 5 j 5 p, in order to estimate yj, first the state estimate for (7.5) needs 

to be derived. To do so, ul, 1 5 1 5 m and yj are filtered by m + 1 n-dimensional 

filters defined as 

A =  

where A0 = A - k( l  0 . - .  0), k = (kl . kn)T is chosen such that A. is Hurwitz, and 

for any 1 5 i 5 n,  ei = (ei,i, - .  - , ei,n)T E Rn is defined by ei,i = 1 and ei,j = 0 for 

j # i. 

After some matrix manipulations, the following relationships are obtained: 

- 
0 1 0 . - .  0 

0 0 1 ' . .  0 

: : .  . .  . . . . . 

0 0 - . -  0 1 

0 0 0 . . -  0 - 
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where a(Ao) and bjl(Ao) with 1 5 1 5 m are matrix polynomials with a(s) and bjl(s) 

with 1 5 1 5 m being defined as earlier 

Now, the estimate for xj  is formed as 
m 

4 = C bjl(Ao)h - a(Ao)qj. (7.10) 
1=1 

Using (7.5) and (7.7)-(7. lo), the estimation error E j  = ( ~ j , l ,  ~ j , 2 ,  . . - , ~ j , n ) ~  = xj-5j 

i < - n - 1 , l  5 1 5 m. Then (7.10) can be rewritten as 

n-1 m n-1 

Clearly, all the J- and v-signals and their derivatives are explicitly available: 

Remark 7.4.1 Based on the expressions in (7.12), the derivatives of J- and 

v-signals can be computed by the right-hand side of the differential equations, which 

means that there is no need to differentiate the J- and v- signals to obtain their 

derivatives. 

Note the estimate given by (7.10) cannot be applied directly because the param- 

eters ai,O 5 i 5 n -  1 and bli,O< i 5 n -  1,l I 1 5 m are unknown. 

7.5 Adaptive Fault Detection and Isolation 

For each 1 5 j 5 p, under a no fault scenario, it follows from (7.5) and (7.11) that  
m 

~. - t. 
3 - 3n.2 - (Cj(2) + e T ~ j ) a  + x(~(2) + ers)bj i  + &j,t (7.13) 

1=1 



Chapter 7. Adaptive Sensor Fault Detection and Isolation 157 

where EL = (Ejn,l,  t jn.2,  . . . 5jn.n)l E(2) = (Ej(n-I),?, . . - 1  E j 0 . 2 ) ~  and ~ ( 2 )  = (vl(n-l),2, . . ~ 1 0 ~ 2 )  

are computed by (7.12). 

The output equation given by (7.13) is desirable because all the outputs are already 

isolated. If an estimate for each yj can be established based on (7.13), the sensor fault 

detection and isolation is straightforward. 

In model based fault diagnosis, in order to detect and isolate faults, often quantities 

called residuals are generated and monitored. To this end, for each 1 < j < p, an 

estimate for the output yj will be constructed based on (7.13). Because the parameter 

vectors a, bjl with 1 5 I 5 m in (7.13) are unknown and ~ j , 2  is not available, in order 

to construct an estimate for the output yj, the unknown parameter vectors have to 

be replaced by their estimates, and the term ~ j , 2  is not considered. Therefore, by 

utilizing the adaptive technique, an estimate of the output yj is given as 

where 6% and $1, 1 5 I 5 m are the estimates of a and bjl, 1 < I < m, and > 1 is 

a positive design constant. 

The update laws for the unknown parameter vectors are given as 

where ya and ybji with 1 < 1 < m are positive design constants. 
vj 

Indeed, (7.14) and (7.15) constitute an adaptive estimate for yj. By letting j = 

1,2,  . . . , p, all the outputs (i.e., yl, y2, - , y,) can be estimated adaptively based on 

(7.14) and (7.15). By defining the residuals as rj ( t )  = yj - yj, j = 1,2, . - , p, the 

following result is obtained. 
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Theorem 7.1 Under Assumption A71, assume that no actuator faults occur and also 

that all the inputs and measured outputs are still bounded after the occurrence of sensor 

faults. For any 1 5 j 5 p, i f  the j t h  sensor is healthy, and yj is  estimated adaptively 

using (7.14) and (7.1 5), limt,,rj(t) = 0 is true. 

Proof. It follows from (7.13) and (7.14) that 

where ~j satisfies ij = AOE~ and A. is Hurwitz. 

By choosing a Lyapunov function a s  

where Po is the positive definite solution of PoAo + ATPo = - I .  

By differentiating the above Lyapunov function with respect to time t as well as 

using (7.16), the following is obtained: 

T 
T j E j , 2  - E j  E j .  

By substituting (7.15) into the above equation, the following is reached: 

< 0 (since cyj > 1) .  - 
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Because < 0, V, ( t )  is bounded. Hence r j  ( t ) ,  the estimates a,, and 6 j r  with 

1 5 1 5 m are all bounded. Because y j ( t )  and ul(t)  with 1 I 1 5 m are bounded, 

all J- and u- signals are bounded. Therefore it follows from (7.16) that ~ ~ ( t )  is 

bounded. From (7.19),  S," r id t  is bounded. This fact together with the boundness of 

.i.j(t) proves that limt,,rj(t) = 0. This completes the proof. I 

Remark 7.5.1 The approach taken to  adaptively construct the output estimates is 

quite dinerent from other adaptive observer based techniques proposed i n  the literature. 

The main advantage here is that the original systems are no  longer required t o  be 

detectable. Another attractive feature of the proposed approach is that the output 

estimates are constructed i n  a decoupled way, which makes the sensor fault isolation 

almost trivial. 

Theorem 7.1 serves as a foundation for adaptive fault detection and isolation. 

Based on it, both adaptive fault detection and adaptive fault isolation become almost 

trivial, which will be treated in the following subsection for clarity. 

7.5.1 Adaptive Sensor Fault Detection and Isolation 

If no actuator faults can occur and all sensors work normally, according to Theorem 

7.1, all the residuals (i.e., r l ( t ) ,  . a * ,  r,(t)) tend to zero. Hence, a fault is declared if 

any of the p residuals is nonzero. Moreover, if no actuator faults can occur, The- 

orem 7.1 shows that, for any 1 < j < p, limt,,rj(t) = 0 when the j- sensor is 

normal, regardless whether other sensors are faulty or not. This fact implies that if 

limt,,rj(t) # 0, the j-th sensor is faulty. Based on this observation, if a common 

threshold is chosen for all residuals, sensor fault isolation can be performed very easily 

through simply monitoring all the p residuals. The number of residuals that exceed 

the threshold is the number of sensor faults; and the sensors corresponding to those 
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residuals are faulty. To be specific, adaptive sensor fault detection and isolation is 

accomplished using the following procedure. 

0 Step 1 Solve equations (7.14) and (7.15) to obtain yj for j = 1,2 ,  . . . , p. 

0 Step 2 For j = 1,2 ,  . - . , p, compute the residual r j  ( t )  = yj - yj. 

0 Step 4 Choose a common threshold 6 for all r j ( t ) ,  j = 1 , 2 , .  . - ,p .  

Step 5 For each 1 < j 5 p, compare the residual r j ( t )  with the threshold 6.  If 

any residual exceeds its corresponding threshold, that sensor is detected to be 

faulty. 

0 Step 6 Count the number of residuals that exceed the threshold to determine 

the number of sensor faults. All the sensor faults are isolated as those that 

correspond with the residuals. 

Remark 7.5.2 Note that the fault detection is not limited to sensor fault detection. 

If all sensors are known to be normal, i t  can also be used to  detect actuator faults. If 

it is  not known whether the sensors or actuators are faulty a priori, the algorithm can 

still be employed t o  indicate faults. 

Remark 7.5.3 Unlike fault detection, fault isolation is only applicable to sensor 

faults. A s  for actuator faults, a diflerent algorithm has t o  be developed. Adaptive 

actuator fault isolation is much more dificult (as can be shown in the algorithm ob- 

tained i n  the next chapter for unknown M I S 0  linear systems, which can only be used 

to  isolate constant actuator faults with the help of fault isolation design functions). 

7.5.2 A Discussion on Threshold Selection 

Theoretically speaking, thresholds ( 6 )  can be chosen arbitrarily small. However, in 

practical situations, because other unconsidered uncertainties may exist, too small a 
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E may lead to too many false alarms. On the other hand, too large E may increase the 

missed detections. A trade-off has to be made on the choice of a suitable threshold. 

In the following, some insights will be provided on threshold selection through 

investigating the relation between the design constant cyj and the threshold E .  

Denote Mj (t) = - ( t j ( 2 )  + e T ~ j )  ( B ~ ~  - a) + x> ( ~ ( 2  + erw) ($1 - bjl) - Ej,2- Using 

( 7 . m  

J 0 

Assume that JMj(t) 1 5 Mjo, it follows from (7.20) that 

In steady state, lrj(t)l 5 *. Based on this inequality, faults cannot be detected 
cwj 

if E > &. With a fixed Mjo, the upper bound of lrj(t)l decreases as cyj increases, 
cwj 

which implies the missed detections might increase as cyj increases. Therefore, cyj 

should be chosen as small as possible to reduce the missed detection rate. 

7.6 An Example and Simulation Results 

In this section, a linearized model of a tailless jet fighter taken from [I131 is first used 

to illustrate the use of the proposed adaptive FDI scheme to detect and isolate sensor 

faults. Simulation results are then provided to show the effectiveness of the proposed 

FDI scheme. The model is described as 

where x = (a ,  P,p, q,  r)T with a being the angle of attack, P being the sideslip 

angle, and p ,q , r  being the roll rate, pitch rate, and yaw rate respectively, and 
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U = (be1 bet- 1 bp lap 1 bamtl, bamtt-)T with be1 bet- 1 bp lap damtl, bamtr being the deflections 

of left and right elevons, the pitch flap, and the left and right all moving tips, respec- 

t ively. 

The system matrices are defined as follows. 

B =  

and C = 15. 

The MIMO system, (7.22), is decomposed into five MIS0 systems given below. 

The transfer functions of the MIS0 systems are as follows: 
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where a ( s )  = s5 + 1 .949s4 + 2.239s3 + 0.7881s2 - 0.09934s - 0.3748. 

To design and test the proposed adaptive FDI scheme, both A and B are assumed 

to be unknown. Thus, all the parameters in all transfer functions are unknown. 

The following filters are needed for adaptive sensor fault detection and isolation: 

where A. is defined as before, but in R5x5. 

7.6.1 Output Estimates for Fault Detection and Isolation 

Based on (7.14) and (7.15) in Section 7.5, the adaptive estimates for the outputs are 

given as: 

is a positive design constant. 

The update laws for the unknown parameter vectors are given below 
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where y, and ybjl, 1 5 j, I 5 5 are positive design constants. 
% 

With the help of the above estimates, fault detection and isolation can be per- 

formed as in Section 7.5. 

7.6.2 Simulation Results 

In the simulations, five residuals are monitored to carry out the adaptive fault detec- 

tion and isolation. 

In all simulations, the design parameters are chosen as k = (17.5 120 402.5 659 420)T, 

and all the c- constants and the y- constants are chosen to equal 2. The first three 

sensors are faulty at  and after 5s. Two types of faults are considered, which are 

defined as follows. 

Case A The sensors have scaling errors, i.e., yj(t) = 0.5xj(t), j = 1,2,3,  where 

xj(t) is the real output, and yj(t) is measured by the sensor 

Case B The sensors have drifting faults, i.e., y(t) = x(t) - 0.02([1 0 0 0 01 + 
[0 1 0 0 01 +[0 0 1 0 O])(t -5), where x(t) is the real output vector, and y(t) is the 

output vector measured by the sensors. The measured output values provided 

by the first three sensors are drifting away slowly from their real values. 

The results for Case A are presented in Fig. 7.1, while those for for Case B are 

shown in Fig. 7.2, where the threshold is chosen as 0.001. Fig. 7.1 clearly shows 

that scaling sensor faults can be successfully detected very quickly with the chosen 

threshold and the faulty ones are the first three. Similar conclusion can be made 

about the results presented in Fig. 7.2. Clearly, satisfactory FDI performance has 

been achieved. 
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Figure 7.1: Fault detection and isolation for Case A 
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Figure 7.2: Fault detection and isolation for Case B 
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7.7 Conclusion and Discussions 

In this chapter, an adaptive sensor fault detection and isolation problem was studied 

and solved for the considered class of unknown MIMO linear systems. One novelty 

of the proposed approach is that by directly designing an output estimator design 

rather than a state observer for the original systems, the original system is no longer 

required to be observable or detectable, which is a must for observer based fault 

diagnosis. Another novelty of the proposed approach is formulating the difficult fault 

diagnosis problem for a MIMO system as a group of simpler fault diagnosis problems 

for a group of separate MIS0 systems. This formulation was achieved by decomposing 

the MIMO system with p outputs into p MIS0 systems. The simulation results show 

that the designed adaptive fault detection and isolation scheme works well in sensor 

fault detection and isolation for both scaling error sensor faults and drifting sensor 

faults. 

Although the sensor fault detection and isolation problem is solved well for the 

considered class of unknown MIMO systems, a similar solution of the actuator fault 

isolation problem has not been achieved for the same class of systems. Thus, one 

future research topic is to solve the actuator fault isolation for unknown MIMO linear 

systems. The results in the next chapter represent an effort in this direction. Exten- 

sions of these results to nonlinear MIMO systems with unknown parameters are also 

interesting for future investigation. 



Chapter 8 

Adaptive Actuator Fault 

Detection, Isolation, and 

Accommodation in Unknown 

Linear Systems 

Unlike previous chapters, this chapter solves not only actuator fault detection and 

isolation problems, but also actuator fault accommodation problem. Because adaptive 

actuator fault detection, isolation, and accommodation for general unknown MIMO 

systems are very difficult to  solve, this chapter only considers MIS0 systems with 

unknown system parameters. 

8.1 Introduction 

In Chapter 7, adaptive sensor fault detection and isolation problems have been com- 

pletely solved for a class of MIMO systems with unknown system parameters. Because 
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detailed review on adaptive fault diagnosis was already provied in Chapter 7, only 

results related to fault accommodation and active fault diagnosis are reviewed. 

Recently, results were obtained on fault accommodation by using adaptive a p  

proaches (see for example, the work in [132, 133, 134, 1351). Inspired by model 

reference adaptive control, a series of results which successfully solved the adaptive 

actuator fault accommodation problems for unknown linear systems with multiple 

faults were reported (see [136, 137, 138, 1391 and the related reference list therein). 

Note that one community of the researchers has mostly studied fault detection 

and isolation, but not the fault accommodation problem, while the fault-tolerant 

control community has not been concerned with fault diagnosis [140? 1. A few 

works address both FDI and accommodation problems as a whole. The most recent 

effort in this direction was in [141], where uncertain nonlinear systems with known 

nominal nonlinearities were considered under the assumptions that the full states are 

measurable and the faults can be approximated by online approximators, as in [97]. 

Every one of the fault diagnosis schemes mentioned above uses a passive approach 

to  detect and isolate faults. To enhance the performance of fault detection and iso- 

lation, active fault diagnosis is sometimes preferred, where, if permitted, specially 

designed auxiliary signals or test signals are used. Some works related to  active fault 

diagnosis are in [I421 and the references listed therein. One disadvantage of active 

fault diagnosis is that,  in certain cases, the system's performance will be degraded 

because of the auxiliary signals. Thus, these signals may not be allowed. An example 

is in automotive applications [143], where passive detection of faults in an Exhaust 

Gas Recirculating (EGR) valve is a challenging task, whereas, active diagnosis of the 

valve is relatively simple. However, active means of EGR valve diagnosis generally 

lead to  higher vehicle emission levels and therefore are not desirable. To deal with 
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this disadvantage of active fault diagnosis, a novel idea is proposed in this chapter, 

which integrates the auxiliary signal design into the controller design. Here, the aux- 

iliary signals do not degrade the system performance when there is no fault, but they 

enhance fault detection and isolation. 

The objective of this chapter is to present new adaptive schemes to solve both FDI 

and accommodation problems for a class of unknown MIS0 systems with multiple 

actuator faults. The method developed in the last chapter of using direct output 

estimators is used here to perform fault diagnosis. Also proposed is a novel idea 

of controller design for fault isolation, i.e., some fault isolation design functions are 

introduced in the controller designed for the healthy system in order to efficiently 

solve isolation problem when faults occur. To accommodate actuator faults, the 

faulty actuators are taken off and the control is realized using an adaptive controller 

which uses the healthy actuators. The controller design for the healthy system, as 

well as the controller which accommodates faults after they are detected, are designed 

using the controller backstepping design met hod [Ill]. 

The remainder of the chapter is arranged as follows: In Section 8.2, the system 

model is introduced and the problem of interest is formulated. In Section 8.3, an 

output formula is derived for output estimator design. In Section 8.4, by using the 

controller design for fault isolation and the backstepping design, a controller for the 

healthy system is proposed. A group of fault isolation design functions, which are 

only used for fault isolation, are introduced in the controller design. In Section 8.5, 

a new adaptive fault detection scheme is proposed. In Section 8.6, the actuator 

fault isolation problem is studied. Unlike fault detection problem, only constant 

actuator faults are taken into account using the adaptive technique, a group of output 

estimators are designed for all possible fault combinations in order to isolate multiple 



Chapter 8. Adaptive Actuator Fault Detection, Isolation and Accommodation 172 

faults. The method of designing fault isolation design functions is discussed and a 

universal isolatability theorem is presented at the end of the section, which forms 

a solid basis for fault isolation in the studied class of systems. In Section 8.7, an 

adaptive fault accommodating controller is proposed and designed. Simulation results 

are presented in Section 8.8 to show the effectiveness of the proposed adaptive FDI 

and accommodation methods. Finally, concluding remarks are presented in the last 

section. 

8.2 Problem Formulation 

Consider MIS0 systems described as 

where x ( t ) ,  y ( t ) ,  and u(t)  are the system state vector, output, and input vector, 

respectively, and x ( t )  E Rn, y ( t )  E R, u(t)  = (ul(t) . . . ~ ~ ( t ) ) ~ .  A, B and C are all 

unknown matrices. 

The transfer function of a system of the form (8.1) is denoted as 

where G j ( s )  with 1 5 j 5 m are defined as 

Remark 8.2.1 Although i n  practice, M I S 0  systems are not prevalent, practical ex- 

amples, like the Boeing 747 airplane model used in  11391, do exist. Because an MIMO 

system can be decomposed into several M I S 0  systems, the FDI research on  MIS0  
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systems might provide direct solutions to the FDI problems for some MIMO systems, 

which could serve as a starting point and a possible new way to  solve general MIMO 

FDI problems. 

Adaptive Fault Detection, Isolation, and Accommodation (FDIA) Prob- 

lem: Assume that all the parameters in the transfer function of (8.1) are unknown, 

and also that only actuator faults can occur. Design an adaptive control system such 

that it can solve the fault detection and isolation problems as well as accommodate 

adaptively the faults once they occur. 

The above problem is solved in three steps. As a first step, adaptive fault detection 

is performed. After detecting the fault(s), adaptive fault isolation over a fixed time 

period is performed. Finally, once the fault is identified, the faulty actuators are 

accommodated adaptively. 

Remark 8.2.2 Based on  the above problem formulation, two tasks are performed: 

adaptive FDI, and adaptive fault accommodation. The adaptive fault accommodation 

problem was considered i n  a series of work 1136, 137, 138, 1391 for systems i n  state 

space and transfer function description, but the FDI problem was not addressed. O n  

the other hand, [I341 and [I351 have reported some work on  the problem as described 

above. Their method can work well for a single actuator fault case i n  completely 

known systems. If the system has uncertainties and/or multiple actuator faults occur, 

whether their method can work or how to extend their results, remains to be seen. 
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8.3 An Output Formulae for Output Estimator 

Design 

As in [ I  111, represent the system (8.2) as 

k = Ax - ay  + blul + . . - + b,um 

where 

Remark 8.3.1 When m = 1, u l ( t )  = u ( t ) ,  (8.4) is the same as (2.1) i n  [I 1 I]. 

In the remainder of this section, the state estimate will be derived for (8.4). To do 

so, u j ,  1 5 j 5 m and y are filtered with m + 1 n-dimensional filters of the following 

form: 

where A. = A - k ( 1  0 . . - 0 )  and k = ( k l  . . . kn)T is chosen such that A. is Hurwitz. 

For any 1 5 i <_ n ,  ei = (eiTl,  . . . , ei,n)T E Rn is defined by ei,i = 1 and e i ,  = 0 for 

j # i. 
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After some matrix manipulations, it can be shown that 

where a ( ~ 0 )  and bj(Ao), 1 5 j 5 m, are matrix polynomials with a(s)  and bj(s), 1 < 
j 5 m being defined in (8.3). 

Now the state estimate is formed as 

Using (8.4) and (8.6) to (8.8), the estimation error E = x - 2 is verified to satisfy 

6 = AOE. Using Ji = Abq, 0 5 i 5 n - 1, Jn = -A;S.q and vji = A6Aj, 0 5 i < - pj, 1 < - 

j 5 m, (8.8) can be rewritten as 

Clearly, all the J- and v-signals and their derivatives are explicitly available: 

Remark 8.3.2 Based on the expressions in (8.10), the derivatives of J- and 

v-signals can be computed by the right-hand side of the differential equations, dif- 

ferentiating the J- and v- signals to obtain their derivatives is not necessary. 

Based on (8.9), an output formula, on which output estimators can be designed 

for fault diagnosis, is derived as 
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where E,T = (S,,l1<n,21. . t n n  <(2) = (<n-1,2, - 1  <0,2), vj(2) = (vjp,,2, . . 1 vj0,2), 

which are computed by (8.10). For notational convenience, Vs,n,j = (1 - sgn(n - 

pl - 1))(1 + sgn(pj - pl)) ( l  0 .  . - 0) is introduced. 

8.4 Controller Design for the Healthy System 

In this section, an adaptive controller is designed under the condition that the systems 

considered are healthy. This controller is used in the healthy system to  achieve the 

desired control objectives. A novel idea is proposed: designing the controller with an 

outlook towards the FDIA task. Specifically, designing a controller which can assist in 

fault isolation is advocated. As such, the controller is designed to not only achieve the 

control objective, but to  also provide flexibility which can b e  used for fault isolation. 

This task is achieved by introducing a group of fault isolation design functions as 

additive terms in the redundant inputs to  the system. 

The control objective is: For a given reference signal y,(t), design a controller 

for system (8.2) such that all closed-loop signals are bounded and the output of the 

system can track the reference signal asymptotically. 

All actuators are used to  accomplish the control objective as long as they are 

healthy. Any undefined notation in this section is defined as in Section 8.3. 

Denote Zm ( s )  = ELl bi ( s )  . Note that pl 2 - - - > p,, one can denote Zm (s) = 

Zm,pl~P1 + .+ Zm,ls+ Zm,o. Let Zm = (O&pl-llx I z;fl)T with 2; = [Zm,,, . . . Zm,o]. 

To realize the control objective, the following assumptions are needed: 

Assumption A81: Zm(s) is Hurwitz and Zm,pl # 0. Moreover, the sign of Z,,,, is 

known. 

Assumption A82: The reference signal y,(t) and its first n - pl derivatives are 

known and bounded. In addition, y!"-pl)(t) is piecewise continuous. 
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Remark 8.4.1 Assumption A81 is equivalent to min imum phase and known high- 

frequency gain sign requirements, which are basic assumptions i n  adaptive control of 

linear systems. Assumption A82 is also required i n  [ I l l ] .  

Obviously, (8.4) can be rewritten as 

Now, let ul( t )  = u(t) ,  u2(t) = f2(t) + u(t) ,  -.., um(t) = fm(t) + u(t) ,  where the 

functions f2(t), -, fm(t) are bounded design functions which are mainly introduced 

for fault isolation. Therefore, they are called fault isolation design functions (FIDFs). 

Because FIDFs are introduced for fault isolation and they will not affect the control 

performance, the method of choosing these functions is discussed later in the fault 

isolation section. 

The reason that all the controls include the same term u(t)  is that the backstepping 

design will be used, which is only applicable for SISO systems in [ I l l ] .  By regarding 

u(t)  as a new input, the MIS0 systems can be viewed as SISO systems, hence, the 

backstepping design in [ I l l ]  can be applied. 

Remark 8.4.2 Although diflerent adaptive controllers such as the model reference 

adaptive controller could be designed for the considered M I S 0  systems, integrating the 

FIDF design with those adaptive controllers needs further investigation. However, as 

long as FIDFs can be introduced into those adaptive controllers i n  the same manner, 

the FDI problem can be solved i n  exactly the same way because the FDI strategy does 

not depend on specific controller design. 

Define p = n - p l ,  first considered is the case p > 1. It follows from (8.12) that 
m 

x = AOX + ( k  - a ) y  + blu( t )  + bi(u + f r ( t ) )  
i=2 
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In order to design u(t) ,  the following filters are defined: 

If u(t) is treated as ul ( t )  and f j ( t )  as uj( t )  for 2 <_ j < m, according to Section 

where vlp1,2 is defined as the second component of vlpl,  deriving the following is easy: 
m 

Y = Jn,2 - ( J ( 2 )  + eTy)a + vl(2)Zm + + gj(2)bj + ~ 2 .  (8.16) 
j=2 

Using (8.12)-(8.16), adaptive backstepping design developed in [ill] can be applied 

to design a controller for (8.12). Because the backstepping design is quite standard 

now, the adaptive controller for (8.12) is directly given as 

and the update law for the unknown parameters is given as 

8 = T ~ ,  

: inv 

Zm,p1 = ' Y s P ( Z m , p l ) z ~ [ c i z l  + dl21 + Jn,2 - Yr + aTe]. 
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The notations in the above equations are defined as 
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-T T A .  

where 0 is an estimate of 6 = (-aT 2; 6; - bm) , and Z:,& is an estimate of 
1 

Zm,pl ' - uT = + eTy uq2) 2/2(2) - - - f jm (2 ) )  with el = (1 0 - - - O)T E Rn, and 

T 
ijT = uT - en+1u1p,,2, where en+l is defined in the same way as e, but in R"+E:=~ p i f  " .  

For all 1 5 i 5 p, ci and d, are the positive design constants, l? and y are the positive 

design matrix and constant, respectively. With u(t) ,  all the controls can be computed 

as ul ( t )  = u(t) ,  ~2 ( t )  = f 2 ( t )  + ~ ( t ) ,  . ( t )  = fm ( t )  + ~ ( t ) .  

Now, the case p = I is considered. The control law takes a much simpler form: 

and the update laws for the unknown parameters are given as 

where uT = ( t ( 2 )  + ~ T Y  ~ ( 2 )  $2(2) . ' .  $m(2)) with $ j (2 )  = Cj(2)  + ( I  + sgn(pj  - 

p l ) ) ( l  0 .  - - 0 )  f j  for 2 5 j 5 m and ( 1  0 .  . o ) ~  E Rpl+', and the definition of ij is the 

same. 

When the controller for the healthy system is applied, the following stability result 

is obtained. 

Theorem 8.1 When the system has no fault, application of the controller designed 

for the healthy system results i n  closed-loop s.lgnals that are bounded. Furthermore, the 
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output will track the reference signal y:(t) asymptotically; i.  e., limt-tw 1 y ( t )  - y;(t)l = 

0 .  

Proof. It follows from assumptions A81 and A82 that all the requirements needed 

by the adaptive backstepping controller in [ I l l ]  are also satisfied. Based on these 

observations, the theorem is proved in the same manner as in [ I l l ] .  I 

Remark 8.4.3 Note that f j  for 2 5 j 5 m affect the controller directly through 

either w (p = 1 )  or P, (p > 1). Moreover, according to  (8. I d ) ,  they affect the controller 

design indirectly through Cj i  for 2 5 j 5 m, 0 5 i 5 pj .  However, Theorem 8.1 proves 

that the auxiliary signals introduced in the controller do not lead t o  the loss of the 

asymptotic tracking property. 

Remark 8.4.4 The controller given by (8.17) to  (8.22) is  a new one because FIDFs 

are introduced at the controller design step for the purpose of fault isolation. 

8.5 Adaptive Fault Detection 

In this section, an adaptive fault detection scheme is provided for any type of actuator 

fault. 

Under a no-fault scenario, (8.11) can be derived and is rewritten as 

where ul ( t )  = u(t) ,  u2(t)  = f2( t )  + ~ ( t ) ,  - - ., u m ( t )  = fm(t) + u(t) ,  and for notational 

convenience, = ( 1  - sgn(p  - 1 ) ) ( 1 +  sgn(pj  - p l ) ) ( l  0 .  - - 0 )  is introduced. 

Remark 8.5.1 Obviously, 1 - sgn(p  - 1 )  # 0 is equivalent to p = 1, i.e. pl = n - 1, 

which means that the terms VSgnjuj,  2 5 j 5 m disappear when p > 1. B y  introducing 

Vsgn,juj, both the case p > 1 and p = 1 can be dealt with i n  a united way, but not 

separately as in the controller design. 
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In model based fault detection, in order to detect faults, often quantities called 

residuals are generated and monitored. Residuals large in magnitude would then 

indicate a fault. To this end, an estimate of the output is constructed based on (8.25). 

Because the parameter vectors a ,  bj, 1 5 j 5 m in (8.25) are unknown and ~2 is not 

available, in order to construct an estimate of the output, the unknown parameter 

vectors have to be replaced by their estimates and the term ~2 is not considered. 

Therefore, by using the adaptive technique, an estimate of the output is given as 

,. 
where h and bj for 1 5 j 5 m are the estimates of a and bj for 1 5 j 5 m, and c > 1 

is a positive design constant. The update laws for the unknown parameter vectors 

are given as 

where ya and ybj, 1 5 j < m are positive design constants. 

Now, by defining a residual as r ( t )  = y - y, the result in Theorem 8.2 is obtained. 

Theorem 8.2 Assume that no faults occur, and that the control law designed for the 

healthy system is applied. If (8.26) with (8.27) is applied to estimate the output signal, 

limt,,r(t) = 0. 

Proof. It follows from (8.26) and (8.25) that 

where E satisfies E = AO& and A. is Hurwitz. 
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Choose a Lyapunov function as 

where Po is the positive definite solution of PoAo + A:Po = - I .  By using (8.28) 

and differentiating the above Lyapunov function with respect to t,  the following is 

obtained: 

By substituting (8.27) into the above equation, the following is derived: 

< 0 (since c > 1). - 

A 

Based on the inequality, V(t) is bounded. Hence r(t), the estimates 13 and &,1  5 

j 5 m are all bounded. Because y(t) and uj(t), 1 5 j 5 m are bounded, all J and 

v- signals are bounded. Hence, the boundness of i ( t )  follows. Rom (8.31), Jomr2dt 

is concluded to be bounded, which together with the boundness of r(t)  proves that 

limt,,r(t) = 0. This completes the proof. I 

According to Theorem 8.2, r(t)  = y - y tends to zero if no faults occur. Hence, a 

fault is declared if r ( t )  is nonzero. Based on this observation, adaptive fault detection 

is accomplished as follows: 

if Ir(t)l 5 E, no fault occurs, 

ifIr(t)l > E, faults occur, 
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where c is a pre-specified threshold. 

Because limt,,r(t) = 0 has been proved, theoretically c can be chosen arbitrarily 

small. However, in practical situations, because other unconsidered uncertainties may 

exist, too small an c may lead to  too many false alarms. Conversely, too large c may 

increase the number of missed detections. A trade-off is needed on the choice of a 

suitable threshold. 

In the following, the relationship between the output estimate design constant c 

and c is briefly discussed. By denoting M( t )  = -(C2) + eTy)(a - a) + C&(Vj(2) + 
~ / s , ~ , ~ u ~ ) ( G  - bj) - ~2 as well as using (8.28), the following equation is obtained: 

Assume that I M( t )  1 < Mo. Then, from (8.33) 

In steady state, ir(t)l < ?. Based on this inequality, faults cannot be detected 

if c > ?. With fixed Mo, the upper bound of ir(t)l decreases as c increases, which 

implies the missed detections might increase as c increases. Therefore, c should be 

chosen as small as possible t o  reduce the missed detection rate. 

8.6 Adaptive Fault Isolation 

As in previous chapters and for notational convenience, let s = {jl - 0  - jh) E 2'1, 

where 1 < h 5 m - 1 and j, E {1,2, - . -  ,m) ,  1 5 g 5 h. 

Unlike the fault detection case, fault isolation cannot be solved for any type of 

actuator fault using an adaptive technique. To carry out fault isolation, the type 

of faults must be restricted. To be specific, the actuator faults are assumed to be 



Chapter 8. Adaptive Actuator Fault Detection, Isolation and Accommodation 185 

modelled as 

where iij is a constant and t j  is the instant at which the j th actuator has failed. 

Remark 8.6.1 This type of fault can often occur i n  practice. For example, in aircraft 

control systems, one may encounter these faults [136, 134, 1351. Because the adap- 

tive control literature has shown that an  adaptive technique works satisfactorily for 

slow time-varying parameters as well, an  reasonable expectation is that the adaptive 

fault detection scheme might also work well for slow time-varying faults. However, 

the constant actuator fault assumption is quite restrictive. For other types of faults, 

adaptive fault isolation might be possible if the design technique here is  combined with 

those reported i n  [97] and [ l d l ] .  This approach is left as a future research topic. 

Assume at least one actuator is healthy. Suitable formulas for state estimation 

and the system output are derived for the case when h actuator faults occur, where 

h satisfies 1 5 h 5 m - 1. These formulas are used for isolating the faults. Suppose 

that the jlth to the jhth actuator have faults with each j, E SI for 1 5 g < h .  Then, 

by the definition, uj,(t) = Ejg  for 1 5 g 5 h. For analysis, n-dimensional filters are 

defined as 
- 
X j g  = A  O X j g  + eniijg, 1 < g < h. (8.36) 

Accordingly, define 
. - 

6. 39% . = A " .  O < _ i < p j g , l L g < h .  0 39 

It is easy to show that V j g i  satisfies 
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Noting that ujg ( t )  = G j g  for 1 5 g 5 h and using (8 .8) ,  when faults occur, the 

state estimate can be formed as 

h 

By defining the estimation error as E = x - 2, and using (8.36)-(8.39),  = Aoc  

Similar to  Section 8.3, the following relationship is obtained: 

Using (8.36)- (8.40),  the actual output satisfies 

where VSgnj j ,  2 5 j j m are defined in the last section. 

Because all G j g ,  1 5 g j h are constants and A. is Hurwitz, X j g  = 8jg + ojg ( t )  

for 1 5 g 5 h,  where each Ojg  is an unknown constant vector since the fault tijg is 

unknown, and each o jg ( t )  tends to zero exponentially. These facts together with the 
- 

definition of Gjg  imply that 8, and o , ( t )  exist such that c:=, Gjg(2)bj = Or + o.(t) .  

where 8, is an unknown parameter and o,( t )  tends to  zero exponentially. Substitute 

the expression of xi=, f i j g ( 2 ) 6 j  into (8.41),  the following equation is obtained: 

As in Section 8.5 and based on (8.42) ,  an estimate for the output of the system as 

can be constructed as 
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where ii, and bj are the estimates of a and b, respectively, and c, > 1 is a positive 

design constant. 

The update laws for the unknown parameter vectors are given as 

where all y-s are positive design constants. 

For all 1 5 h 5 m - 1 and all s = { j l  - - .h} E 2 f i ,  C i  adaptive estimations 

for the output can be constructed, which are given by (8.43) and (8.44). 

Define a group of residuals as r,(t) = y, - y for all s. For notational convenience, 

define sl - s2 as a set that includes all elements in set sl that are not in set s2. The 

following result, as described in Theorem 8.3, is obtained. 

Theorem 8.3 Assume that 1 5 m - 1 actuator faults have occurred at the same time, 

but 1 is not known. Also assume that the output y and the inputs are bounded. If, for 

all s ,  (8.43) with (8.44) are applied to estimate the output signal, and if the j f t h  to 

the j:th actuators are faulty and let s f  = { j f ,  - .  - , j [ } ,  the following equations hold 

true: 

For s f ,  

limt,,r,, ( t )  = 0. 

0 For s # s f ,  
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Proof Let h = I and jl = j [ ,  - - .  , jl = j{, it follows from (8.42) that 

Using (8.43), 

- 
where hs, and 6j;,,, 1 5 j 5 m are the estimates of a and 6 j ,  1 5 j 5 m, and cs, > 1 

is a positive design constant. 

It follows from (8.44) that 

where yas and yb,,, , are positive design constants. 
f 

Now, by defining a residual as r s j ( t )  = ysj - y, it follows from (8.48) and (8.49) 

that 
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Choose a Lyapunov function as 

By differentiating V with respect to t and using (8.50) and (8.49), 

Since, by definition, both osf (t) and E2 tend to zero exponentially, they are 
A - 

bounded. This fact together with (8.52) implies that V and hence r,, , ii,, , and bj;,, 

are all bounded. This boundness together with the boundness of y and the healthy 

system inputs proves that r,, is also bounded. From the exponential convergence of 

osf (t) and F2, S,"[o,, (t) + E2I2dt is bounded. Using this fact and (8.52), rif dt is 

bounded. Noting that f,, is bounded, it follows immediately that 

Then, for any s # s f ,  it follows from (8.43) and (8.47) that 

According to the definitions of S,,,, S,, and SA,,, clearly 
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,. 

+ (0s - es,)  - osf ( t )  - E2.  (8.55) 

Note, S,,, = SAT,  U (S,,, - S,,,) and S ,  = SAYS U (S,, - S,,,), the following is obtained: 

By the definition of D E ( t ) ,  (8.56) is the same as (8.46). I 

Based on (8.46) in the above theorem, Theorem 8.4 provides a result on universal 

isolability. 

Theorem 8.4 Under the conditions of Theorem 8.3, n o  matter how many  constant 

faults have occurred, they can always be isolated by the proper choice of fault isolation 

design functions; i. e., f j  ( t ) ,  2 5 j 5 m. 

Proof. From (8.46), r, does not tend to zero if D E ( t )  is not vanishing and changes 

with time fast enough so that 8, cannot track it asymptotically. By definition, 

D E ( t )  = Cj,gc,,-sA,, ( v j ( 2 )  Vsgn , j%)6j  - CjE%,,  -s,,~ ( v j ( 2 )  + Kgn, juj )bj  For any 

s # sf,  Sets - SA,, and S,, - S,,, cannot be both empty, but S,,, - SA,,  n Sc,f  - SA,,  is 

empty. These facts together with the definitions of v j ( 2 )  and FDIFs imply that there 

are infinite choices of FDIFs which can make D E ( t )  a non-vanishing time-varying sig- 

nal that changes with time fast enough. Therefore, the FDIFs can always be chosen 

such that only the residual corresponding to the fault combination can tend to zero, 
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and all other residuals r,, do not. By checking which residual tends to zero, isolating 

the faulty actuators can always be achieved. I 

The above theorem states that any 1 < m actuator faults which occur at  the same 

time can always be isolated as long as the FDIFs are chosen properly. As argued in 

the above proof, to guarantee actuator fault isolation, the FIDFs (fj(t), 2 5 j 5 m) 

have to be chosen such that for any s # sf, the corresponding DE(t)  does not vanish 

and changes with time fast enough so that 8, cannot track it asymptotically. 

In order to determine a method for choosing fj(t), 2 5 j 5 m, the definitions of 

uj, 2 5 j 5 m are rewritten as 

Note that DE(t)  depends on uji, 0 5 i 5 pj, 2 5 j 5 m. To make it a non- 

vanishing time-varying signal with suitably fast changing rate, ujil 0 5 i 5 pj, 2 5 

j 5 m has to change fast enough and be non-vanishing. To this end, from (8.57), 

f j  (t), 2 5 j < m have to be chosen as non-vanishing time-varying functions with a rate 

that changes fast enough. This fact excludes the possibility to  choose fj(t), 2 5 j 5 m 

as either constant or slow time-varying signals. 

Based on the discussions above, fj(t), 2 5 j 5 m have to be chosen as non- 

vanishing time-varying functions with fast enough changing rate. Actually, infinite 

choices of fj(t),  2 5 j 5 m exist, which means that they can be chosen almost 

arbitrarily as long as they are non-vanishing time-varying functions with fast enough 

changing rate. Three choices are given below as examples: 

(a) fj(t) = dfj s i n (q t ) ,  2 5 j 5 m; 

( b )  fj(t) = dfj cos(wjt), 2 5 j 5 m; 



Chapter 8. Adaptive Actuator Fault Detection, Isolation and Accommodation 192 

where d f j ,  2 5 j < - m are signal magnitudes that can be chosen, and wj ,  wlj , wzj, 2 5 

j 5 m are frequencies that are chosen suitably large and are different from one 

another. For example, wj # wk if j # k .  

Remark 8.6.2 Because the filters designed act like low-pass filters, FIDFs with too 

large of ~ j , w ~ ~ , w 2 ~ , 2  5 j 5 m will be blocked by the filters, and thus will not have 

much eflect on  favlt isolation. I n  this case, the scenario is  similar t o  choosing all 

FIDFs as zeros. Moreover, too large of wj ,  w l j ,  waj, 2 5 j < m may also cause a 

stability problem of the closed-loop systems especially i n  presence of faults. Therefore, 

for the purpose of favlt isolation, w j , w ~ ,  ~ 2 j ,  2 < j < m should be chosen suitably 

large i n  order t o  ensure f j ( t ) ,  2 5 j < m are non-vanishing time-varying functions 

with fast enough changing rate. 

Remark 8.6.3 If u l ( t )  = = u,(t) = u is taken for healthy system controller 

design, as i n  [138], and if bl = . . . = b,, D E ( t )  = 0 for all t .  I n  svch a case, 

all residuals tend t o  zero; hence, favlt isolation cannot be achieved. B y  introducing 

FDIFs, this dificulty is  easily addressed. Simulation studies show that there may  be 

other situations which can make D E ( t )  tend t o  zero when the adaptive technique is 

applied. I n  svch cases, the use of FDIFs is also a good approach t o  solve the isolation 

problems. 

The adaptive fault isolation is performed by following the steps of the following 

algorithm: 

Step 1 Choose proper FDIFs which are different from one another. For example, 

those in (8.58).  

Step 2 Solve equations (8.43) and (8.44) to obtain y, for all sets in 2'1. 
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0 Step 3 For 1 5 h 5 m - 1, compute r,(t)  = y, - y. 

0 Step 4 Choose a constant T 

0 Step 5 Compare all residuals on the time interval [dt,  dt + TI, where dt is the 

time instant when the faults are detected. 

0 Step 6 The residual which tends to  zero corresponds to  the fault combination, 

which determines both the number of actuator faults and the faulty actuators. 

Remark 8.6.4 I n  simulation studies, i t  was discovered that i n  order to avoid ewo- 

neous isolation of the faulty actuators, the residuals must be compared over a certain 

t ime interval to  determine which one has a tendency to  zero. Too small a T may in- 

crease the rate of wrong isolation decisions. Too large a T is  often undesirable because 

the control system needs to  return to normal performance as quick as possible. 

Remark 8.6.5 If the same technique employed i n  Section 8.5 is used, similar rela- 

tionship is established between the adaptive output estimator design parameters (i.e., 

c,, s E 2 S ~ )  and the residuals. 

8.7 Adaptive Fault Accommodation 

The task of actuator fault accommodation is to  achieve the same control objective even 

when actuator faults occur. The same controller structure as that of the controller for 

the healthy system is used for the adaptive accommodating controller. The design of 

the adaptive accommodating controller is based on the exact isolation of the faults. 

The idea is to take the faulty actuators out of operation and to  use the remaining 

actuators to achieve the control objective. 
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Assume that 1 actuator faults have been isolated and the faulty combination is 

jl . . jl. Denote the index of the healthy actuators as jl+1, - - - , j,. For simplicity, and 

with a slight abuse of notation, denote uj,+, and bj,+i as ui and bi, respectively for 

1 5 i 5 m - 1 and let u1 = u and ui = u+ f i ( t )  for 2 5 i 5 m - I .  Then, by replacing 

m with m - 1 and defining all notations in the no-fault controller given in Section 

8.4 accordingly, the adaptive fault accommodation controller can be given exactly by 

(8.17)-(8.22) for p > 1 and (8.23) with (8.24) for p = 1, which is not be repeated here. 

The controller given by (8.17)-(8.22) or (8.23) with (8.24) can always be designed 

no matter the number of faulty actuators as long as at  least one actuator is healthy. 

The problem is under what assumptions it can still achieve the control objective. Ac- 

cording to Section 8.4, if Assumption A81 is still satisfied with the healthy actuators, 

the control objective can be maintained by using the adaptive fault accommodation 

controller. This assumption can be further weakened by assuming that A81 is satisfied 

by at least one subset of healthy actuators. 

Remark 8.7.1 Directly switching off faulty actuators and turning on the adaptive 

accommodation controller may result i n  non-smooth system behavior. One way to 

overcome this problem is to choose the controller design constants to ensure u ( t )  con- 

tinuous at the switching point. 

Remark 8.7.2 Note that the system has to work under faulty conditions until all 

faults are isolated and the adaptive accommodating controller is turned on. Also, 

the adaptive fault accommodation scheme heavily depends on the FDI scheme of this 

chapter. If faults cannot be isolated, other accommodation schemes, for example those 

proposed i n  [136, 138, 137, 1391, should be explored. A better adaptive FDIA scheme 

for M I S 0  systems may be created by combining the FIDF based FDI scheme in  this 

chapter with the adaptive accommodation controller proposed i n  [136, 138, 137, 1391. 
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8.8 An Example and Simulation Results 

In this section, it is first illustrated on how to  use the proposed FDI scheme to detect 

and isolate actuator faults and how to design adaptive accommodating controller 

for the lateral dynamics model of a Boeing airplane used in [139]. Some simulation 

results are then provided to show the effectiveness of the proposed FDI scheme and the 

adaptive accommodating controller. In horizontal flight at 40,000 f t and a nominal 

forward speed of 774 f tlsec, the linearized lateral dynamics model of a Boeing airplane 

used in [I391 is described as 

where x(t) = (p, y,,p, q5)T with p, y,,p, q5 being the side-slip angle, the yaw rate, the 

roll rate, and the roll angle respectively. u = (ul, u2, ~ 3 ) ~  is the control vector, which 

consists of three control signals to represent three rudder servos: Srl, Sr2, Sr3. A, B 

and C are 

This MIS0 system has three inputs and one output, and its transfer function is 

of the form: 
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To test the proposed adaptive FDIA schemes, all parameters are assumed unknown 

and the signs of b13, b23, and b33 are known to be negative. It is easy to check 

Assumption A81 is true, pl = pa = p3 = 3, and p = 4 - pl = 1. 

The following filters are needed for the healthy controller design, adaptive fault 

detection and isolation, and adaptive fault accommodation. 

where A. is defined as before but in R4x4, u is defined later, and f2 and f3 are 

determined using (8.58). 

8.8.1 Healthy Controller Design 

As in [139], two reference signals are chosen as yr,1(t) = 0.01 - 0 .01e -~~  and yrI2(t) = 

0.03(3sin(O.lt) - O.lcos(O.lt) + 0.1e-3t)/9.01. Obviously, assumption A82 is satisfied 

for both reference signals. 

Because p = 1, according to 8.4, the following controller for the healthy system is 

derived: 

with the update laws for the unknown parameters given as 

A 

e = r a ~ ~ ( t ) ,  
; inv 

Z3,3 = -721 [clzl + dl21 + 64,2 - Y T  + ~ ~ 8 1 ,  (8.63) 

T - where 8 is an estimate of 6' = (-aT 2: b; 6T)T with aT = (as a2 al  ao), bj - 

(bJ3 bj2 bjl bjO), 1 1 j 5 3 and Z3 = bl + bZ + b3. 29; is an estimate of -& with 
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23,3 = b13 + b23 + b33 and sgn(Z3,3) = -1. wT = ['$(2) + ~ T Y  Vl(2) $2(2) $3(2)] with 

+j(2) = 3j(2) + (1 0 0 0) f j  for j = 2,3 and aT = wT - e r ~ ~ ~ ~ , ~  with eg defined in 

the same way as ei but in R16. c1 and dl are positive design constants, I? and y are 

the positive design matrix and constant, respectively. With u(t), all the controls are 

computed as ul = u(t), u2 = f2(t) + ~ ( t ) ,  ug = f3(t) + ~ ( t ) .  

8.8.2 Construction of an Output Estimate for Fault Detec- 

t ion 

Based on (8.26) and (8.27) in Section 8.5, an adaptive output estimate is given as 

3 

S = -c(G - 3) + [4,2 - ([(2) + (1 0 0 0)y)ii + C(V~(~) + (1 0 0 o)u~)$ ,  (8.64) 
j=l 

A 

where c > 1 is a positive design constant, ii and 6j1 1 5 j < 3 are the estimates of a 

and bj, 1 5 j 5 3, which are updated as 

where ya and ybjl 1 < j 5 3 are positive design constants. 

By defining r(t)  = Q - y, the fault detection is performed by using the logic given 

in Section 8.5. 

8.8.3 Construction of Output Estimates for Adaptive Fault 

Isolation 

Based on (8.43) and (8.44) in Section 8.6, the adaptive estimates of the output used 

for fault isolation are given as 
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A 

where li, and bj are the estimates of a and bj respectively, and c, > 1 is a positive 

design constant. The update laws for the unknown parameter vectors are given as 

where all y-s are positive design constants. 

For this example, note that h = 1 and h = 2. Ci + C: = 6 output estimates are 

needed in total. With the help of the above estimates, fault isolation is performed as 

in Section 8.6. 

8.8.4 Adaptive Accommodating Controller 

For this example, if there are only fewer than 2 actuator faults, Assumption A81 is 

always satisfied after switching off the faulty controllers. Therefore, as discussed in 

Section 8.7, the adaptive accommodation controller can always be designed . 

8.8.5 Simulation Results 

In the simulations, initially a controller designed for the healthy system is being used 

and the adaptive fault detection scheme is also running in parallel in order to  detect 

possible faults. After faults are detected, the adaptive isolation scheme is switched on 

for a time period to  isolate the faults. After the faults have been successfully isolated, 

the faulty actuators are turned off and the adaptive accommodating controller is 

switched on. 
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In all simulations, the initial conditions are given as x(0)  = (0  0.005 0 o ) ~ ,  q(0)  = 

~ ~ ( 0 )  = X2(0) = X2(0) = (0  o o o ) ~ ,  a(o)  = (0.6 - 0.9 - 0.5 - o.ooqT, &(o) = 

(-0.43 -0.23 -0.1 - 0 . 0 5 ) ~ ,  b2(0) = (-0.5 -0 .2  -0.1 -0.05)T, i3 (0 )  = 

(-0.3 - 0.15 - 0.075 - 0.035)T, $(o)  = (-1.2 - 0.6 - 0.23 - 0 . 1 2 ) ~ ,  Z g ( 0 )  = -1, 

y(0) = 0.005, &(o)  = y2(0) = &(o)  = 0.005, y12(0) = Gl3(0) = y23(0) = 0.005, 
.. ,. 

til(()) = ii2(0) = ti3(()) = ti12(0) = Gl3(0) = ii23(0) = ii(o), b j  = bj;i ( 0 )  = bji2(0) = 
- - 
bj;3(0) = 4 1 2 ( 0 )  = &13(0) = %;23(0) = bj(0) for 1 < j < 3. 

The design parameters are chosen as k = (3.15 3.65 1.8375 0.3375)T, cl = dl = 

100, c = cl = c:! = cg = c12 = C13 = C23 = 10, I? = 21, and all y- constants are equal 

to 2. Additionally, f2( t)  = 0.02sin(3t) and f 3 ( t )  = 0.02sin(2t). 

In all simulations, the second actuator is faulty at ,  and after, 50s. For simplicity, 

four cases are defined as follows: 

Case A The reference signal is chosen as y,,l ( t )  and a constant fault is considered. 

Case B The reference signal is chosen as ~ , ~ ( t )  and a time-varying fault is 

considered. 

Case C The reference signal is chosen as yr,2(t) and a constant fault is considered. 

Case D The reference signal is chosen as yr,2(t) and a time-varying fault is 

considered. 

For fault detection, all four cases are considered with u2( t )  = 0.03 as a constant 

fault and u2(t) = 0.5(u(t)  + f2(t)) as a time-varying fault. In order to show the power 

of FIDFs, two groups of fault detection simulation results are provided in Fig. 8.1 

and Fig. 8.2. Fig. 8.1 shows the results when FIDFs are used, while Fig. 8.2 shows 

the results when FIDFs are not used (i.e., when f 2 ( t )  = f 3 ( t )  = 0) .  In both figures, 
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plots labelled with A, B,  C and D are results for Case A, Case B, Case C, and Case 

D, respectively. 

Figure 8.1: Fault detection with FIDFs 

Fig. 8.1 clearly shows that both the constant and time-varying fault is successfully 

detected with the chosen thresholds. Moreover, faults are detected within 0.05s for 

Case A, 1.55s for Case B, 0.05s for Case C, and 1.59s for Case D, respectively. 

However, as shown in Fig. 8.2, only constant actuator faults for Case A and Case C 

are detected while time-varying faults for Case B and Case D cannot be detected with 

the same thresholds. This result implies that, with FIDFs, the missed fault detection 

rate is reduced. 

For fault isolation, only Case A and Case C are considered, which correspond to 

constant fault cases. The simulation results for Case A and Case C are presented 

in Fig. 8.3 and Fig. 8.4. In both figures, the solid thin lines represent results when 
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Figure 8.2: Fault detection without FIDFs 

FIDFs are used while thick dashed lines represent results when FIDFs are not used. 

By comparing the six residuals rl(t), r2(t), r3(t), r12(t), r13(t), and ~ ~ ~ ( t )  shown 

in Fig. 8.3 on the time interval [50.05s, 70~1, amongst the six residuals shown by thin 

solid lines, only r2(t) has a tendency to approach zero, while all the other residuals 

do not have such a tendency. This behavior, according to the isolation scheme, leads 

to a correct decision that only one actuator is faulty and that actuator is the one 

corresponding to u2 (t ) . However, because those residuals represented by thick dashed 

lines all have the tendency to approach zero, no isolation decision can be made when 

FIDFs are not used. Same observations can be made based on Fig. 8.4. For both Case 

A and Case C ,  Fig. 8.3 and Fig. 8.4 show that correct fault isolation decisions can be 

made using the FIDF adaptive fault isolation scheme, however, without using FIDFs, 

adaptive fault isolation cannot be achieved for this given example. In conclusion, 
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Figure 8.3: Fault isolation for Case A: Thin solid lines: with FIDFs: Thick dashed 
lines: without FIDFs 
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Figure 8.4: Fault isolation for Case C: Thin solid lines: with FIDFs: Thick dashed 
lines: without FIDFs 
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FIDF based adaptive fault isolation scheme really works well and FIDFs are preferred 

for obtaining correct fault isolation decisions. 

The simulation results of the adaptive accommodation scheme for both Case A 

and Case C are presented in Fig. 8.5. The upper three plots are for Case A, while the 

lower three plots are for Case C. From the reference tracking error plots, the tracking 

performances are degraded during the presence of faults, but return to normal after 

the faults are isolated within 20s and the accommodating controller is switched on. 

Figure 8.5: Adaptive fault accommodation 

In order to show that the FIDFs can be chosen rather freely, isolation results for 

Case A with f2(t) = 0.02~0~(3t) and f3(t) = 0.02~0~(2t) are presented in Fig. 8.6. 

Based on these simulation results, a correct decision can again be made that only one 
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actuator is faulty and that actuator is the one corresponding to u2( t )  

Figure 8.6: Adaptive fault isolation with another group of FIDFs 

Simulations were also conducted on the effect of the adaptive fault isolation scheme 

for isolating very slow time-varying faults. The results for the fault uz(t) = 0.002(t - 

50)/7 for t 2 50s are given in Fig. 8.7. From Fig. 8.7 that only one actuator is faulty 

and that actuator is the one corresponding to u2( t ) ,  which are correct decisions. 

This result means the adaptive fault isolation scheme, although proposed for constant 

faults, may also work well for slow time-varying faults. 

8.9 Conclusion and Discussions 

In this chapter, an adaptive FDIA problem was studied and solved for a class of 

unknown MIS0 linear systems. One novelty of the idea was that of controller design 

with an eye towards the fault isolation problem. This design led to proposing the 
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Figure 8.7: Adaptive fault isolation for a slow time-varying fault 

use of fault isolation design functions, FIDFs, in the control law in this chapter. 

The simulation results show that the FIDF based technique works well in both fault 

detection for any types of actuator faults and in fault isolation for constant or very 

slow time-varying faults. 

One limitation of the proposed adaptive FDIA is that it only works for constant 

actuator faults. Future research is needed in this direction. 



Chapter 9 

Conclusions and Future Works 

9.1 Conclusions 

In this thesis, fault detection, isolation, and estimation problems have been formulated 

and addressed in a systematic way for several classes of systems subject to  various 

types of complexities such as nonlinearities, and nonparametric and parametric un- 

certainties. In order to  deal with the nonparametric and parametric uncertainties 

encountered in these problems, both observer and direct output estimator based fault 

diagnosis schemes have been proposed by using robust and adaptive approaches. The 

key results are listed below. 

Robust observers, that is, UIOs and SMOs, have been used to  solve the fault 

diagnosis problems for Lipschitz nonlinear systems as well as nonlinear sys- 

tems represented by TS  fuzzy systems. The fault isolation problems, which 

are solved less satisfactorily in the literature, were the main focus of all the 

related research. UIOs and SMOs based fault diagnosis schemes were proposed, 

whose main novelty lies in the fault isolation strategy. Related results were pre- 

sented in Chapter 2, Chapter 3, and Chapter 4. They demonstrate that robust 
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observer based fault diagnosis schemes are powerful in dealing with matched 

non-parametric uncertainties and can be designed in a careful way for certain 

types of nonlinear systems. 

If the uncertainties are not matched, observer based fault diagnosis becomes very 

challenging, if not impossible, because robust observers such as UIOs and SMOs 

used in this thesis may not be able to  be designed. In order to  deal with this 

difficult situation, a novel idea, which advocates direct output estimator design 

and abandons the observer design, was proposed. Using this idea and based on 

a new canonical system form derived from system decomposition, robust output 

estimator based fault diagnosis schemes were developed for a class of linear 

systems with both matched and unmatched non-parametric uncertainties. For 

this class of systems, neither UIOs nor SMOs can be designed to be completely 

decoupled from the unknown inputs. The results given in Chapter 5 prove that 

the idea of using direct output estimator design to perform fault diagnosis does 

work and can be used to solve more difficult fault diagnosis problems. 

Direct output estimator design based fault diagnosis was extended t o  a more 

general class of linear systems, which are with unmatched uncertainties and high 

relative degrees, and are not even detectable. A novel idea, which uses the design 

of output estimators and output derivative estimators, was proposed. Based on 

an input-output relation involving only the inputs and the outputs and their 

high order derivatives, a high-order sliding mode differentiator (HOSMD) based 

actuator fault diagnosis scheme was designed. The use of HOSMDs in fault di- 

agnosis is a first in fault diagnosis. The results shown in Chapter 6 demonstrate 

that very challenging fault diagnosis problems, which are not possible to  solve 

using an observer design, become solvable by employing the design of output 
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estimators and output derivative estimators. 

Direct output estimator design based fault diagnosis was used in sensor fault 

detection and isolation problems. A novel sensor fault diagnosis scheme was 

proposed using adaptive approaches for a class of MIMO linear systems with 

unknown parameters. The results presented in Chapter 7 show that the direct 

output estimator design is very promising and powerful in sensor fault diagnosis 

for the considered class of unknown MIMO linear systems. The fault detec- 

tion and isolation problems were solved completely under very weak conditions. 

The sensor fault diagnosis scheme is even new for known MIMO linear systems 

because it does not require the system under consideration to be detectable. 

Direct output estimator design was further employed for actuator fault diag- 

nosis problems, which, compared with sensor fault diagnosis, are much harder. 

Another novel idea, that is, integrating the fault isolation design functions in- 

troduced solely for fault diagnosis purpose into controller design, was proposed, 

without which, the idea of direct output estimator design alone can not solve 

the fault isolation problem. A novel adaptive actuator fault diagnosis scheme 

was designed only for a class of unknown MIS0 linear systems, which solved 

the fault detection problems completely, and achieved constant actuator fault 

isolation and accommodation. The results provided in Chapter 8 demonstrate 

that the idea of direct output estimator design for fault diagnosis together with 

the idea of integrating fault isolation design functions into controller design 

does work well in actuator fault detection and constant fault isolation. They 

also demonstrate actuator fault diagnosis is very difficult because parametric 

uncertainties are present. 
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In summary, the research in this thesis demonstrates that robust approaches are 

powerful in dealing with non-parametric uncertainties, while adaptive approaches have 

strength in dealing with parametric uncertainties. It also reveals both the strength 

and the weakness of observer based fault diagnosis. Moreover, this thesis offers a new 

way of performing fault diagnosis; that is, output estimator based fault diagnosis. 

Future Works 

This thesis has solved fault diagnosis problems for several classes of systems with 

only limited types of complexities. Because many other types of challenging system 

complexities need to be dealt with, the opportunities in the research of fault diagnosis 

are still many. Some of these opportunities are closely related to  the results in this 

thesis and are listed below. 

Fault diagnosis for linear systems with more challenging complexities: 

- Extend UIO, SMO, or output estimator based fault diagnosis to  linear 

systems with both parametric and non-parametric uncertainties. 

- Design UIO, SMO, or output estimator based fault diagnosis to  more 

classes of linear systems such as time-delay systems and algebraic- 

differential systems. 

Fault diagnosis for nonlinear systems with more challenging complex- 

ities: 

- Design UIO and SMO based fault diagnosis for systems with more general 

nonlinearities. 
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- Extend UIO and SMO based fault diagnosis to nonlinear systems with both 

parametric and non-parametric uncertainties. 

- Investigate the design of UIO and SMO based fault diagnosis for more 

classes of nonlinear systems, such as time-delay systems and algebraic- 

differential systems. 

- Employ output estimator design to carry out the fault diagnosis research 

proposed above. 
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