
The Role of Initial Value Solvers in a Moving Mesh
Method

Lin (Linda) J u

B.Sc, Jilin University, China, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN THE DEPARTMENT

OF

MATHEMATICS

@ Lin (Linda) J u 2007

SIMON FRASER UNIVERSITY

Spring, 2007

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Lin (Linda) Ju

Master of Science

The Role of Initial Value Solvers in a Moving Mesh Method

Examining Committee: Dr. David Muraki

Chair

Dr. Robert Russell

Senior Supervisor

Date Approved:

Dr. John Stockie

Supervisor

Dr. Manfred Trummer

Supervisor

Dr. J .F Willams

External Examiner

A p r i l 2 , 2007

SIMON FRASER
u ~ ~ v ~ w ~ n l i brary

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www.lib.sfu.ca> at: <http:llir.lib.sfu.ca/handleIl892/112>) and, without changing
the content, to translate the thesislproject or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Spring 2007

Abstract

This thesis investigates the role of different initial value solvers in moving mesh software

for solving second-order parabolic partial differential equations. We confine our atten-

tion primarily to the effect of the implicit ODE solver DDASSL used in the software

MOVCOL of Huang and Russell, which is based on a moving collocation method. The

advantages and limitations of Backward Differentiation Formula (BDF) methods and

Implicit Runge-Kutta (IRK) methods are discussed in this particular context and the

alternative ODE solver PSIDE, which is based on a four-stage RADAU IIA algorithm,

is examined. The new interface of PSIDE with MOVCOL is discussed in some detail.

Its performance is compared with DDASSL for several numerical problems.

Acknowledgments

Firstly, I would like to express my deepest gratitude a md sincerest appreciation to my

supervisor Dr. Robert D. Russell for all his patience, guidance, encouragement and

constant support during my study at Simon Fraser University.

I would also like to thank my committee members, Dr. John Stockie, Dr. Manfred

Trummer and Dr. J .F. Willams for their feedback and helpful comments.

Moreover, special thanks to my colleague Xiangmin Xu, for all her help and encour-

agement during this thesis work.

Finally, my thanks also go out to everyone in the applied mathematics department

for so many memorable times spent together.

Dedication

To my parents.

Contents

Approval . ii
...

Abstract . 111

Acknowledgments . iv

Dedication . v

Contents . vi

List of Tables . viii

List of Figures . ix

1 Introduction . 1

2 Moving Mesh Method and MOVCOL Code 4

2.1 Moving mesh method . 4

. 2.1.1 Equidistribution Principle 4

2.1.2 Moving Mesh Equations 7

2.1.3 Spatial Smoothing Moving Mesh Equation 9

2.2 Moving Collocation Method . 10

2.2.1 Physical PDE . 10

2.2.2 MMPDE . 13

2.3 Implementation of MOVCOL . 14

3 DDASSL . 17

3.1 Theory of DAEs . 17

3.2 Backward Differentiation Formula 18

3.3 Basic Algorithm for DDASSL . 18

3.4 Limitations . 22

3 .41 Higher Index problems 22

3.4.2 Inconsistent Initial Values 23

4 Alternative Solvers . 25

4.1 Implicit Runge Kutta Methods 26

4.2 PSIDE . 26

4.2.1 Introduction . 26

4.2.2 Getting Start with PSIDE 27

4.2.3 Limitations . 27

4.3 Other Possibilities . 28

5 Numerical Experiments . 30

5.1 Simple Problem . 31

5.2 Heat Conduction Problem . 36

5.3 Scalar Combustion Model . 42

. 5.4 Gray-Scott Problem 43

. 6 Conclusions and Future Work 48

6.1 Conclusions . 48

. 6.2 Future Work 49

Appendix

A Reformulation of ODE systems by example 51

Bibliography . 60

vii

List of Tables

Computation time and error for a simple problem when at01 = rtol =

n p t s = 4 1 . . 31

Computation time and error for a simple problem using MOVCOL with

MMPDE6. 36

Computation time and error for the heat conduction problem with MM-

PDE6 when npts = 21. 38

Computation time and error for the heat conduction problem with MM-

PDE6 when n p t s = 61 . 39

The computation time for the scalar combustion problem using MOVCOL

. . . . with DDASSL and MOVCOL with PSIDE when M M P D E = 6. 45

viii

List of Figures

2.1 Numerical solution and mesh points for Burgers equation at time =

0.4375. 6

5.1 Numerical solution and exact solution for the simple problem by MOV-

COL with PSIDE a t npts = 41, at01 = rtol = and with MMPDE6. 32

5.2 Numerical solution and exact solution for the simple problem by MOV-

COL with PSIDE at npts = 101, at01 = rtol = and with MMPDE6. 33

5.3 Computation error for the simple problem for I\/IOVCOL with DDASSL

. a t at01 = rtol = npts = 41 and with MMPDE6. 34

5.4 Computation error for the simple problem for MOVCOL with PSIDE at

. at01 = rtol = npts = 41 and with MMPDE6. 34

5.5 Computation error for the simple problem for MOVCOL with DDASSL

. a t at01 = rtol = npts = 101 and with MMPDE6. 34

5.6 Computation error for the simple problem for MOVCOL with PSIDE a t

at01 = rtol = npts = 101 and with MMPDE6. 34

5.7 Computation error for the simple problem for MOVCOL with DDASSL

. a t at01 = rtol = npts = 11 and with MMPDE6. 35

5.8 Computation error for the simple problem for MOVCOL with PSIDE at

at01 = rtol = npts = 11 and with MMPDE6. 35

5.9 Computation error for the simple problem for MOVCOL with DDASSL

at at01 = rtol = lo-" npts = 101 and with MMPDE6. 35

5.10 Computation error for the simple problem for MOVCOL with PSIDE at

at01 = rtol = npts = 101 and with MMPDE6. 35

5.11 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with PSIDE from time=O to time= 3.0, when at01 = rtol =

1 0 - 6 a n d n p t s = 6 1 . 40

5.12 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with DDASSL from time=O to time= 0.7, when at01 =

r t o l = a n d n p t s = 2 1 . 40

5.13 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with DDASSL at time=0.8, when at01 = rtol = and

n p t s = 2 1 . 40

5.14 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with DDASSL a t time= 0.9, when at01 = rtol = and

npts = 21 .

5.15 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with DDASSL a t time=l.O, when at01 = rtol = and

npts = 21 .

5.16 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with DDASSL a t time= 1.1, when at01 = rtol = and

. n p t s = 2 1

5.17 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with PSIDE a t time=0.8, when at01 = rtol = and

npts = 2 1 . 41

5.18 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with PSIDE a t time= 0.9, when at01 = rtol = and

n p t s = 2 1 . 41

5.19 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with PSIDE at time=l.O, when at01 = rtol = and

n p t s = 2 1 . 42

5.20 Numerical solution and exact solution for the heat conduction problem

for MOVCOL with PSIDE a t time= 1.1, when at01 = rtol = and

n p t s = 2 1 . 42

5.21 Numerical solution for the Scalar Combustion Model for MOVCOL with

PSIDE from time 0 to time 2.5. The arrow shows the direction in which

time increases. 43

5.22 Numerical solution for the Scalar Combustion Model for MOVCOL with

PSIDE from time 0 to time 2.9 . 44

5.23 Numerical solution for the I D Gray-Scott problem for WIOVCOL with

PSIDE a t time=200, when at01 = rtol = lop6, npts = 41 and with

MMPDE6 . 45

5.24 Mesh trajectory for the I D Gray-Scott problem for MOVCOL with PSIDE

at time=200, when at01 = rtol = npts = 41 and with MMPDE6 . . 45

5.25 Numerical solution for the I D Gray-Scott problem for WIOVCOL with

PSIDE a t time=500, when at01 = rtol = npts = 41 and with

MMPDE6 . 46

5.26 Mesh trajectory for the 1D Gray-Scott problem for MOVCOL with PSIDE

at time=500, when at01 = rtol = npts = 41 and with MMPDE6 . . 46

5.27 Numerical solution for the 1D Gray-Scott problem for MOVCOL with

PSIDE a t time=1500, when at01 = rtol = npts = 41 and with

MMPDE6 . 46

5.28 Mesh trajectory for the ID Gray-Scott problem for MOVCOL with PSIDE

a t time=1500, when at01 = rtol = npts = 41 and with MMPDE6 . 46

5.29 Numerical solution for the ID Gray-Scott problem for MOVCOL with

PSIDE at time=2000, when at01 = rtol = n p t s = 41 and with

h4MPDE6 . 47

5.30 Mesh trajectory for the 1D Gray-Scott problem for MOVCOL with PSIDE

a t time=2000, when at01 = rtol = n p t s = 41 and with hIMPDE6 . 47

Chapter 1

Introduction

Many time dependent partial differential equations (PDEs) arise in physics and engi-

neering. They have been used to predict and control the dynamic properties of physical

constructions, weather, heating and melting of metals, flow of air past cars and air-

planes, etc. They describe changes of weather, density, velocity, pressure, temperature,

etc. For these physical processes, people wish to know not only how the solution changes

in space, but also how the solution changes in time.

In this thesis, we focus on using numerical methods for solving time dependent PDEs,

such as the following general second-order PDE

for xL(t) < x < xR(t) and t, < t 5 tb supplemented with the boundary conditions

BR(t , xR, x f , u(xR, t), uz(xR, t) , uzz(xR, t): ut(xR, t), uzt(xR, t)) = 0 (1.3)

for t, < t 5 tb and the initial condition

where F, G , BL, BR, u and U are vector-valued functions for this PDE system.

Various numerical discrete methods have been developed to approximate the exact

solutions of PDEs.

the mesh is chosen.

where the number

Most of them involve iterative procedures which depend upon how

Normally, there are two main choices. One choice is the fixed mesh,

and location of mesh points are fixed. The other is the adaptive

CHAPTER 1. INTRODUCTION 2

mesh approach, in which the mesh points are changed appropriately as time and the

solution change. It has been shown that for some time dependent PDEs, which have

large solution variations, such as boundary layers, shock layers or contact surfaces, an

adaptive mesh is better than a fixed mesh. As pointed out in [ll], by using adaptive

mesh methods, one can achieve significant improvements in both accuracy and efficiency.

The adaptive mesh methods can be divided into two categories: static and dynamic.

For the static method, the equation and the discrete solution are initially defined on a

given mesh. During the calculation, a new mesh is constructed, based on the properties

of a certain function that measures the goodness of approximation. This new mesh

might have a different number of mesh points from the old mesh. The solution is then

interpolated from the old mesh to the new mesh, and a new approximation to the

solution is done on the new mesh. The redistribution of the mesh points, the possible

addition of new nodes and the interpolation of dependent variables from the old mesh

to the new mesh are all done a t a fixed time [lo].

The dynamic method is known as the moving mesh method. A mesh equation

involving mesh speeds is used to move a fixed number of mesh points. The original PDE

and the mesh equation are generally solved simultaneously for the physical solution and

the mesh. The key in developing a moving mesh method lies in formulating a satisfactory

mesh equation. In [lo], several moving mesh partial differential equations(MMPDEs)

based on the equidistribution principle are derived and studied both theoretically and

numerically. Among them, the TVIMPDE4 and MMPDE6 which we consider later are

easy to implement. Moreover, it has been found that under general conditions, for the

above MMPDEs, not only are mesh crossings guaranteed not to occur, but the meshes

retain equidistribution for the monitor function [I l l . Among moving mesh methods,

there are moving finite element methods (MFE) 1191, 1201 and moving finite difference

methods [5].

In this thesis, we investigate the software MOVCOL from Huang and Russell [12],

which is composed of five parts: Driver, MOVCOL, DDASSL, DLINPK and DAUX.

The basic algorithm for this software is a moving collocation method, which uses a

cell averaging cubic Hermite collocation discretization for the physical PDEs and a

central finite difference discretization for the MMPDE. During the discretization, an

ODE system

F (t ! Y, Y') = 0 (1.5)

CHAPTER 1. INTRODUCTION 3

where F, y and y' are vector valued functions, is constructed.

The original MOVCOL software uses the Fortran code DDASSL to solve the resulting

initial value problems. However, DDASSL has some computational limitations due to

the properties of its basic algorithm, BDF(Backward differentiation formula) methods.

In this thesis, we examine the possibilities of using other software to replace DDASSL

in MOVCOL.

Among the variety of software which could be considered, we pay attention to soft-

ware which could solve an ODE system of form (1.5) since this formula has advantages

in the numerical computation [4]. As one type of the one-step methods, IRK (Implicit

Runge-Kutta) methods have their potential advantages compared with multi-step meth-

ods such as BDF methods. Based on the above considerations, the software PSIDE is

a reasonable choice. This software is not only based on a four-stage RADAU IIA al-

gorithm, which is one of the IRK methods, but also is suitable for solving the problem

(1.5).

We develop the new interface of PSIDE with MOVOL and also explore the case of

putting DDASSL and PSIDE with MOVCOL together. Numerical experiments have

been done for a simple problem, heat conduction problem, the Gray-Scott problem and

a scalar combustion problem.

An outline of this thesis is as follows. In Chapter 2, we present the fundamental

ideas of moving mesh methods and a moving collocation method, the basic algorithm

for MOVCOL and some issues related to the implementation of MOVCOL. In Chapter

3, DDASSL and its basic algorithm, a BDF method, is introduced. We discuss the

possibility of using the alternative ODE solver PSIDE to replace DDASSL in Chapter

4. In Chapter 5, the resulting two versions of MOVCOL are applied to several bench

mark problems. Finally, Chapter 6 contains conclusions and comments.

Chapter 2

Moving Mesh Method and

MOVCOL Code

In this chapter, we focus on the software MOVCOL from Huang and Russell in 1996 [12].

We start with a review of moving mesh methods, based on the equidistribution principle,

and several versions of moving mesh partial differential equations (MMPDEs). Then

we describe the discretization process for MMPDEs and physical PDEs with a moving

collocation method and introduce the basic algorithm for MOVCOL.

2.1 Moving mesh method

Moving mesh methods have been widely used in the last twenty years for solving PDEs

which have rapidly solution change behaviors.

2.1.1 Equidistribution Principle

Most moving mesh methods are based on the idea of the equidistribution principle

(EP), which is first presented by De Boor [I]. Since the EP plays a fundamental role in

formulating MMPDEs, we first give a detailed description of it.

Consider a one dimensional time independent PDE

L for a = x < x < xR = b supplemented with the boundary conditions

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE

where F, G, B L , BR and u are vector-valued functions.

We introduce a monitor function

which provides some measurement of the difficulty of approximating u (x) on the bounded

interval [a, b]. Then a mesh is selected as follows:

is chosen to evenly distribute M among the subintervals, i.e,

In other words, the EP involves selecting the mesh points so that some measure of

the solution error is equal over each subinterval. It also could be written down as

where
b

o = M (x) d x . (2.8)

We set [O, 11 as the computational domain for a computational variable (in our future

computations. For a mapping x (J) from [a, b] to [O , l] , the mesh is defined in the following

way:

where

is a uniform mesh on [0,1].

To define x (J) , we expand the equidistribution principle to a continuous form and

from the time-independent

tional domain. Specifically,

case to the time-dependent case under the above computa-

(2.7) is changed to

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE 6

where

The following figure shows the adaptive mesh points chosen for the Burgers equation

at time t = 0.4375.

Figure 2.1: Numerical solution and mesh points for Burgers equation at time = 0.4375.

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE 7

It indicates that there are more mesh points in the interval where the solution changes

rapidly and fewer points in the interval where the solution is relative smooth. This result

shows the reasonableness of the EP for adaptivity.

2.1.2 Moving Mesh Equations

For moving mesh methods, we solve the original partial differential equation and the

mesh equation simultaneously t o obtain both the physical solution approximation and

the mesh results.

The above description of the E P indicates that the key in developing a moving mesh

method lies in formulating a satisfactory mesh equation. In addition to the capability

of concentrating a sufficient number of points in regions of rapid variation of the solu-

tion, a satisfactory mesh equation should be simple, easy to program, and reasonably

insensitive to the choice of its adjustable parameters. As compared with the problem of

discretizing the underlying physical equation, this task is somewhat artificial. That is,

the construction of a moving mesh equation must be guided by both physical arguments

and effective numerical principles.

The moving mesh partial differential equation (M M P D E) is the equation which

shows how the mesh changes as the time and physical solution change, so that the

nodes will keep concentrated in regions of rapid variation of the solution. It is based on

the equidistribution principle we mentioned in section 2.1.1. Differentiating (2.11) with

respect to J once, we can get

Differentiating (2.11) with respect to J twice, it yields

d d
-{M(x(E, t) , t) W ~ (J , t)} = 0 (2.14)

In [23], if we differentiate (2.13) with respect to t , it is the conservative form of an

MMPDE

after dividing by $ then combining with (2,13), we can also get

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE 8

Since there is no term O(t) in equation (2.14), we use the later time t + r instead of

t , so that the mesh satisfies

d a
- { M (x (~ , t + r), t + 7)-x(t, t + 7)) = 0. at at

We use Taylor expansions for the above equation,

and

d
+r-M(x(J, t) , t) + 0(r2).

a t
(2.19)

After dropping higher order terms, we can get

We call this MMPDE2. In principle, it is reasonable to drop out the term X$M and
F

~ Z M [lo] , thus we can get the following simplification: a c a

This is MMPDE4

Since the integration of the monitor function represents an error measurement in the

interval, we define this error measure as W , which is generally related to some monitor

function by

where M is acertain monitor function. After discretizing the above formula

and using midpoint rule, we can get

On the other hand, the node speed is determined by

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE 9

where X is a positive parameter, Wi is an error indicator on the subinterval (xi, xi+l)

and w is the average of the W, values.

Eliminating w by substracting equation (2.25) on two consecutive intervals, we can

get

xi+l - 2xi + xi-, = -X(r/vz - Wi4) (2.26)

If we denote X by $ and use (2.23)) we can regard (2.26) as a centered finite difference

approximation of an MMPDE. We call this formula MMPDE6,

The constructions are very different and in their final forms, the moving mesh equa-

tions appear to be quite different from each other. Some versions of MMPDEs are

derived from MMPDE4 and MMPDE6. We describe one from MMPDE4 in the next

subsection.

2.1.3 Spatial Smoothing Moving Mesh Equation

There is another important version of an MMPDE. From (2:14), we notice that the

initial transformation is assumed to be a smooth transformation [13]. For most problems

which have large solution variations, their corresponding monitor functions are generally -
non-smooth in space. Thus we introduce a smoothing monitor M which satisfies the

following equation which makes this transformation smooth:

and

where A is a positive number and A = $$
Thus we obtain a smooth verision of MMPDE4

where 7i = (I - X2A)($)-l, n = (&)- I and r is the smoothing parameter,

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE 10

Numerical experiments in [13] indicate that the spatial smoothing is often essential

if the solution to the physical PDE changes rapidly. Furthermore, the numerical experi-

ments show this smoothing process at least will not deteriorate the computation results

significantly.

For moving mesh methods, the physical PDE and moving mesh equation are often

solved simultaneously for both the physical solution u(x, t) and the coordinate trans-

formation x (t , t). Two advantages of this simultaneous solution approach are that the

interpolation of the physical solution between different meshes is unnecessary and that,

after discretizing the physical PDE and MMPDE in space, the method of lines approach

can be employed using standard software to solve the resulting ODE system.

2.2 Moving Collocation Met hod

A new moving mesh method is introduced for solving the time dependent partial dif-

ferential equations (PDE) in divergence form. The method uses a cell averaging cubic

Hermite collocation discretization for the physical PDEs and a three point finite differ-

ence discretization for the moving mesh equations. The collocation method can offer

higher order convergence, provide an approximating solution continuously, and be im-

plemented easily while staying simple for general boundary conditions [12]. Therefore,

it remains popular among a variety of ODE and PDE software, including the moving

mesh software.

2.2.1 PhysicalPDE

We use a cell averaging cubic Hermite collocation method to discretize the physical

PDE. The cubic Hermite polynomial ,u(x, t) is the approximation for the solution u(x, t)

at time t E [t,, tb] on the fixed number of mesh points

X1 (t) := xL (t) < . . . < XnPts (t) := xR(t) (2.29)

where npts is the number of mesh points and

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE 11

for a: E [X , (t) , Xi+, (t)] , i = 1 ,2 , . . . , npts - 1 , where vi(t) and vz j i (t) are defined as the

approximation of u (X , (t) , t) and u z (X i (t) , t) .
The local coordinate di) is defined by

and the respective shape functions are

$2(s) := s(1 - s) ~

& j (s) := (3 - 2s)s2

4 4 (~) := (s - 1)s2

for x E [X i (t) , Xi+l (t)] , i = 1,2, . . . , npts - 1. We have

where $ j , (2) and (3) are functions of s(').

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE

Based on the conservation law, our physical PDE (1 .1) satisfies

L F d x = G (z = x ~ , t - G L z ~ , t

for t E (tal t b] .
Then we can get the cell average for each half of [X i , Xi+1]

for i = 1 , . . . , npts - 1 and t E (L a , t b] , where

After that, we use the piecewise linear approximation to get

where Xi,j : = X i + s j H j , j = 1 ,2 .

The two Gauss Points on [0, I] are

1
s2 = - (I + l / h) .

2 (2.40)

After simplification, we can get

1
F(Xz,11t) = (E) (- (1 + 2 / A) ~ i (t) + (4/J(3))Gi+li2(t) + (1 - 2 / h) ~ i + l (t)) (2.41)

1
F(Xi.2, t) = (%)(- (1 - 2 / A) ~ i (t) - (4 / &)) ~ i + l j 2 (t) + (1 + 2 / h) ~ i + l (t)) (2.42)

This conservative method is analyzed in [l o] .

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE

2.2.2 MMPDE

Even though it has been proved that the above cubic Hermite collocation method can

bring higher accuracy than a standard finite difference scheme [12], it has the price

of more computation time and a more complicated computation. Our aim is to use a

relatively simple method for the MMPDE since experience has shown that the accuracy

of the mesh solution does not need to be as high as that of the physical solution [lo].

Therefore, we consider using a finite difference scheme for the MMPDE.

We use the three point finite different method to discretize the moving mesh partial

differential equations. Since MMPDE4 and MMPDE6 are the common choices in our

further computation, we give the details of discretizing them by the centered finite

difference scheme.

For MMPDE4.

we discretize it to obtain

For MMPDE6:

it yields

Third order convergence in space for the moving collocation method has been demon-

strated numerically in terms of the rate of convergence. It is slower than the traditional

(fourth order) cubic Hermite collocation on a fixed mesh but much faster than the second

order of the commonly used moving finite difference methods. The moving collocation

method can also produce results for small and moderate numbers of mesh points with

more accuracy 1121.

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE

2.3 Implementation of MOVCOL

Several moving mesh codes have been used in a variety of research fields now. The one

we focus on is named MOVCOL, which was published by Huang and Russell in 1996.

MOVCOL is designed to be as easy to use as possible, while providing enough flexibility

and control for solving a wide variety of problems. In this subsection, we outline what

a user must to do to solve a problem with MOVCOL and describe the basic algorithm

of MOVCOL.

We emphasize that MOVCOL is designed for solving second order problems of the

form
d

F (t , X, u 1 U X , ut, uxt) = -G(t , X , U , U X , U ~ , uxt) (2.47)
dx

for xL(t) < x < xR(t) and ta < t < tb supplemented with the boundary conditions

for t, < t 5 tb and the initial condition

where F, G , BL, BRl u and U are vector-valued functions of this PDE systems.

This software includes 5 parts: EXAMPLE, MOVCOL, DDASSL, DLINPK and

DAUX.

EXAMPLE is a set of subroutines which is written by the user to define the physical

PDEs, MMPDEs, boundary conditions, initial condition, monitor function, physical do-

main and computational domain. We write down drivers for several numerical problems

in the Appendix.

As the core part of the code, MOVCOL uses the moving collocation method we

mentioned in the last section to discretize the physical PDEs and MMPDEs.

The call to MOVCOL is

CALL M O V C O L (n p d e , np t s , a to l , t o u t a , n tou ta , p a r , iflag, rwork, lrw,

iwork, liw)

For these input values, n p d e means the number of physical PDEs in (2.47); n p t s

is the number of mesh points used in the computation. At01 and r t o l represent the

absolute and relative tolerance for time integration which is used in DDASSL; t o u t a

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE 15

is the real array for the time integration and ntouta is the length of this array. The

option vector par is related to many features of MOVCOL. Several of them are worth

mentioning.

MOVCOL can solve four types of MMPDEs, from the fixed mesh case, MMPDE4 to

MMPDE6 and the spatial smoothing MMPDE (2.28). If we do not specify, it will default

to solve the last type of MMPDE. MOVCOL also defines rwork and iwork as the space

to save real and integer work variables. These two arrays are very important since they

take control of the interface of MOVCOL with the ODE solvers. The specification of the

length of these variables can be quite sensitive here. Either too large or too small of the

value of these numbers could lead the interface to fail to work. This constraint brings

some difficulties for changing the current ODE solver DDASSL to an alternative one

since the user has to understand all the basic algorithms for the software. If MOVCOL

fails, the scalar variable iflag should be examined to see what specific error caused the

difficulty. Those details are mentioned in the documentation of MOVCOL.

The design of the monitor function also can affect the accuracy and efficiency of the

code. A common choice for the monitor function is the arc-length function

Other possible choices are

M (x) = 1+ 1 u 1

and the curvature monitor function

where a is a positive number.

During the discretization, an ODE system.

is constructed. This code uses the Differential Algebraic Equations (DAEs) solver

DDASSL to solve this system.

The call to DDASSL is

CALL DDASSL (RES, neq, t , y, yprime, tout, info, rtol, atol, idid, rwork,

lrw, iwork, liw, rpar, ipar, JAC)

CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE 16

If DDASSL fails, the scalar variable idid will show the specific error message. The
documentation in DDASSL gives a detailed explanation of all the error messages.

The user subroutines R E S l l l and JAC222 must be declared externally. Even though

there is an option in DDASSL which could allow the user to specify the JAC111, it is not

recommended to let DDASSL write J A C l l l directly because this matrix is not easy to

write and debug. We default it to be approximated by DDASSL with a finite difference

scheme. More details about DDASSL are mentioned in the next chapter.

DLINPK and DAUX are auxiliary linear algebra routines when DDASSL is being

used.

Finally the algorithm for MOVCOLl is as follows:

S t e p 1: Check the input parameters and set the default values.

S t e p 2: Call MOVCOLl (main subroutine of MOVCOL).

S t e p 3: MOVCOLl

S u b s t e p l : Define the parameters in the following way:

where lc = 1, . . . , npde and j = 1 , . . . , npts

Substep2: Start computing the initial mesh from a uniform mesh.

Substep3: Compute the initial value of y'. Call DDASSL with a first-order backward

differentiation formula and two time integration steps.

Substep4: Compute u , u,, ut at x, where j = 1 , . . . , npts .

Substep5: External subroutine RES111. Use the cubic Hermite collocation discretiza-

tion for the physical PDEs and a three point finite difference discretization for the

MIvIPDEs.

Substep6: Call DDASSL to solve the ODE system.

Chapter 3

DDASSL

In this chapter, we describe DDASSL, the initial value solver which is used in MOVCOL

and the backward differentiation formulas (BDF) algorithm which it is based on.

3.1 Theory of DAEs

A DAE is a system of differential-algebraic equations. There is algebraic constraint on

the variable such as

XI = f (x , y , t) (3.1)

G(x, y, t) = 0. (3.2)

If we differentiate the constraint equation respect to t, we can get

G,(x, Y , t)xl + G,(x,Y, t)yl = -Gt(x, Y, t). (3.4)

If g, is nonsingular, it means we can generate the continuous function satisfying

and then we call this an index 1 DAE. Otherwise, with some algebraic manipulations

and coordinate changes we can rewrite (3.4) to (3.2) and differentiate with respect to t

again. The index of the DAE is the minimum number of times that the system needs

to be differentiated to get an implicit ODE.

Recall that in the previous chapter, when the method of lines is used to discretize

the MMPDE and the physical PDE, the DAE system we obtain is of index 0.

CHAPTER 3. DDASSL 18

The Backward Differentiation Formula (BDF) [8] is one of the main numerical meth-

ods for solving DAEs.

3.2 Backward Differentiation Formula

The simplest first order BDF method is the implicit Euler method, which consists of

replacing the derivative in F (t , y,, y;) = 0 by a backward difference

where h = tn - tn-l.

The k-th order (constant step-size) BDF consists of replacing y' by the derivative of

the polynomial which interpolates the computed solution at k+ 1 times t,, tn-l,. . . ,tn-k,

evaluated at t,. It yields
PYn

J'(tn1 yn, h) = 0 (3.7)

k where py, = Cz=, criyn-i and i = 0 ,1 , . . . , k are the coefficients of the BDF method.

The resulting system of nonlinear equations for yn a t each time step is usually solved

by Newton's method. It has been proved in [4] that this method is stable for ODES

when k < 7. We are going to show more computational details about the fixed leading

coefficients BDF methods which are used by DDASSL in the next section. This fixed

leading coefficients formula is a compromise between the fixed coefficient and variable

coefficient approaches, offering a stable and efficient computation.

3.3 Basic Algorithm for DDASSL

DDASSL is a Fortran code which is designed by L.Petzold [21] for solving DAE problems

of index less than or equal to 1,

F (t l Y , Y') = 0 (3.8)

where F, y, and y' are N-dimensional vectors. In this section, we give a detailed de-

scription of the computational algorithm used by DDASSL.

CHAPTER 3. DDASSL 19

At first it uses a variable order and variable step-size, but a fixed leading coefficient

BDF method to approximate the derivatives; then Newton's method is used to solve

the resulting nonlinear system at each time step. LINPACK is called to deal with the

linear systems and the linear least square problems.

This code implements the backward differentiation formulas from order one through

five to solve an implicit differential equation system for y and y'.

We assume that we have the approximations yn-, to the exact solution ~ (t , - ~) for

i = 0 , 1 , . . . , k where k is the order of the BDF we currently use, and we plan to find

the approximation of the solution at the time tn+l.

A predictor polynomzal ~ : + ~ (t , - ~) is defined to serve as an initial guess for yn-,. It

interpolates yn-, at the last k + 1 time steps, so that

The predicted values for y and y' at tn+l are obtained by evaluating ~ : + ~ (t) and w k c l (t)

at tn+ll
(0) = P

Yn+l wn+l (',+I), (3 .12)

The fixed leading coefficient form of the kth order BDF method is used to develop the

corrector formula,
C

wn+l (tn+l) = ~ n + l l (3 .14)

C P
wn+l (tn+l - %+I) = wn+l1 (t n + l - ihn+l), 1 5 i 5 k (3 .15)

C IC
F(tn+llw,+l(tn+l),w,+l(tn+l)) = 0 . (3 .16)

The solution to the corrector formula is the vector yn+l such that the corrector polyno-

mial w:+,(t) and its derivative satisfy the DAE at tn+l, and the corrector polynomial

interpolates the predictor polynomial at k equally spaced points behind tn+l.

The value of the predictor yrjl, y'!il and the corrector yn+l at tn+, are defined in

terms of polynomials which interpolate the solution at previous time steps. Thus the

predictor polynomial is

CHAPTER 3. DDASSL 20

where

Evaluating w:+, a t tn+l, we can obtain

where

The corrector formula and the predictor polynomials satisfy the relationship

where

b(tn+l - 2hn+l) = 0, 2 = 1 , 2 , . . . , k. (3.30)

Differentiating (3.29) and evaluating a t tn+l gives

where the leading fixed coefficients a, are

CHAPTER 3. DDASSL

In order to solve for y;+, , the corrector iteration must solve

The above equation must be solved for yn+l at each time step. To simplify the notation,

we rewrite it as

F ~ Y , QY + P) = 0 (3.35)

'(0) (0) where a = -* and P = Y , + ~ - ayn+, .
In (3.34), all variables are evaluated at tn+1, a is a constant which changes whenever

the step-size or order changes, and p is a vector which remains constant while we are

solving the corrector equation. We use the modified Newton iteration to solve the

corrector equation (3.33)

where y z 1 is W[+l and G is the iteration matrix

The matrix G is factorized into a product of an upper and lower triangular matrix,

G = LU. So (3.35) is then solved by

where b(") = y("+') - ("1 and r(") = - Y cF(t , y("), ay(") + p) . In DDASSL, the matrix

G may be dense or have a banded structure. The factorization of G and the solution of

the system in (3.37) are performed by routines in the LINPACK software package.

Normally, especially for large systems, the work of computing and factoring G dom-

inates the cost of the integration. Often the matrices and change whenever

the step-size or order of the method being used changes. The constant a depends on

the choice of order or step-size. Whenever either the derivative matrix or g , or a~ ay

a changes, we have to recalculate the iteration matrix G. Otherwise, we can fix the

iteration matrix as the one in the previous step. We define Z as the current constant

related to the order and step-size, so the iteration matrix is

CHAPTER 3. DDASSL 2 2

If (?? is close enough to G, then the algorithm will converge successfully. If DDASSL

fails to converge after four iterations of (3.35), then it needs to rebuild a new iteration

matrix G. In DDASSL, the matrix G is computed by finite difference methods. It is

also worth mentioning that DDASSL can achieve the same order of convergence for this

class of DAEs as it does for ODES.

3.4 Limitations

In our experience, the majority of DAEs problems whose index are 0 or 1 can be solved

successfully with DDASSL. However, we also notice DDASSL has limitations, some of

which we summarize below.

3.4.1 Higher Index problems

Sometimes the failure of DDASSL in special situations could be due to the index prob-

lem. In particular, the error estimates used in DDASSL may fail to converge for higher

index problems. As a response to a large integration error estimate, the code repeats re-

ducing the step-size until the iteration matrix becomes ill-conditioned. For small enough

step sizes, this condition problem causes the Newton iteration to not converge, and the

code eventually fails due to multiple convergence test failures. It also deserves men-

tioning that the failures will not necessarily occur on the first step because sometimes

DDASSL can start solving a smooth higher index system and fail after a step-size or

order change or rapid change in the solution.

In this thesis, we mainly focus on MOVCOL combined with initial value solvers for

solving 1-D in space second-order problems. However, we notice that people are paying

increasingly more attention to solving fourth- or sixth-order problems with moving mesh

software. The common way of solving these problems is converting it into a system of

second-order PDEs.

We consider the sixth-order nonlinear diffusion equation

where u 2 0 is the thickness of a fluid film beneath an elastic plate and p = is the

pressure within the film [6].

CHAPTER 3. DDASSL

We convert this equation to

Ut = -(un(v2)z)z

v2 = Vlzz (3.43)

where (3.41) and (3.42) are the algebraic constraints of the DAE.

This is a DAE system of index 2. Since DDASSL has limitation for solving such

problems, we may have to use other software to replace it if we want to solve higher

order problem in this method.

3.4.2 Inconsistent Initial Values

Based on the basic algorithm we described before, DDASSL needs a consistent set of

initial values F(to , y(O), yl(0)) = 0. But it is possible that in some cases, we may not

know both initial values for y(O) and yl(0), and thus DDASSL may fail in the first step.

For some cases if we only know y(O), DDASSL has an algorithm [4] to compute yl(0)

automatically. For MOVCOL, only y(O) is given, so we always need to start looking for

yl(0). Frequently either the successful convergence test will fail or the Newton iteration

may fail due to the poor initial estimation. Even initial guesses which are only slightly

inconsistent could cause DDASSL to fail to complete the first step.

In this general code, there is another option in DDASSL to compute the starting

guess for the initial value yl(0) if we know y(O). In this case, DDASSL takes a small

implicit Euler step for its first step, and uses a damped Newton iteration to solve the

nonlinear system. The error estimate for this step is different from the estimate which

DDASSL usually uses because the initial derivatives are not available for use in an error

estimate.

In the basic algorithm of MOVCOL, DDASSL does this work in the substep3 as

we mentioned in section (2.3). We fix the first order of BDF method and a small time

step-size with DDASSL in this substep. Otherwise DDASSL will use a variable order

and variable step-size approach. It may bring more accuracy for the guess of the initial

value, but cost relatively more computation time. We define y'(O) = 0 first, then use the

above process to get the initial guess yl(0)

CHAPTER 3. DDASSL 24

Due to the limitations of DDASSL, we discuss the possibilities of using other ODE

solvers to replace DDASSL in the next chapter.

Chapter 4

Alternative Solvers

There are a variety of ODE solvers. When we consider which kind of ODE solver should

be used to replace DDASSL, we have to keep in mind which kind of ODE system is

investigated. There are several reasons to consider (3.8) rather than trying to rewrite

them as an explicit ODE system, so in this thesis, we will pay more attention to the

potential software which solves (3.8).

As general-purpose software for solving second order partial differential equations,

MOVCOL generates the DAE system F (t , y, y') = 0 automatically for any second order

PDEs provided by the user. It is very likely that for a specific problem, one can rewrite

the resulting DAE system into an explicit form of B(t , y)yl = F (t , y); however, this

would require the user to have a very good sense of the way MOVCOL discretizes for

the physical PDEs and the MMPDE. Even if this is the case, for the sake of numerical

efficiency, the change to an explicit form can destroy sparsity and prevent the exploita-

tion of the system structure [4]. Most of all, this has to be done case by case, which

conflicts with the concept of designing general-purpose software.

Recently, people have paid more attention to using IRK (Implicit Runge-Kutta)

methods to solve DAE problems. Especially for the case of using moving mesh methods

to solve PDEs, each interpolation of a variable onto a new mesh generates a discontinu-

ity of that variable in time. Since IRK is a one-step method, it has a potential advantage

compared to a multi-step method such as BDF in approximating rapidly changing func-

tions. Due to their one step nature, IRK methods are potentially more efficient for these

problems than multi-step methods. Even though both methods have to restart at the

discontinuity point, the IRK method can restart at a higher order rather than at a lower

CHAPTER 4. ALTERNATIVE SOLVERS

order like multi-step methods.

4.1 Implicit Runge Kutta Methods

An S stage IRK method applied to the DAE (3.l)and (3.2) is

where h = tn - tn-1. It yields

4.2 PSIDE

4.2.1 Introduction

PSIDE's full name is Parallel Software for IDES (Implicit Differential Equations). It is

a Fortran code for solving the implicit differential equations

on shared memory computers.

The algorithm for PSIDE is based on a four-stage Radau IIA method, which is one

of the implicit Runge-Kutta methods. The linear systems are solved by a modified

Newton process, in which every Newton iterate itself is computed by means of the

Parallel Iterative Linear Solver for Runge-Kutta (PILSRK) proposed in [14]. A Fortran

code CACM423 is also required as a substitute for the linear algebra routine LAPACK.

Implementing the RADAUII method requires high computational costs. PSIDE is

designed for using 4 processors to compute those 4 stages in parallel to increase the

speed of computation. Solving (4.4) with the four stage RADAUII methods means to

solve for Y from the nonlinear system

CHAPTER 4. ALTERNATIVE SOLVERS

where

Y = (Y?, Y?, Y ~ ~ , YT) = 0,

h is the step-size and the matrix A

i
0.1129994793231 -0.0403092207235 0.0258023774203 -0.0099046765072

0.2343839957473 0.2068925739354 -0.0478571280485 0.0160474228065

0.2166817846232 0.4061232638674 O.l89O3651817OO -0.0241821048998

0.2204622111767 0.3881934688432 0.3288443199800 0.06250000000000 I
(4.7)

is the 4 x 4 RADAUII matrix. X = (I l l l 1, l)T and I is an identity matrix.

4.2.2 Getting Start with PSIDE

There are three important subroutines we need to mention for PSIDE. The first one is

GEVAL, which defines the IDE problem

We must declare GEVAL as the external statement in our own program. IERR is an

integer flag which is always equal to zero on input. Subroutine GEVAL should set

IERR = -1 if GEVAL cannot be evaluated for the current values of y and dy. PSIDE

will then try to prevent IERR = -1 by using a smaller step-size.

To solve the IDE, it is necessary to use the partial derivatives J = dG/dy. The

solution will be more reliable if we provide J via the subroutine JEVAL.

The third subroutine is MNUM. To solve the IDE it is also necessary to use the

partial derivatives M = dG/dyf . The solution will be more reliable if we provide M via

MEVAL.

However, sometimes we can use dummy routines to take the place of those external

subroutines. If we define MNUM = TRUE and JNUM = TRUE, PSIDE will approxi-

mate M and J by numerical differentiation automatically.

4.2.3 Limit at ions

Even though PSIDE is powerful software in scientific computation, it still has some

limitations in practical applications. We summarize two of them here.

CHAPTER 4. ALTERNATIVE SOLVERS 2 8

PSIDE is designed to run on a four processor workstation. Since the parallel com-

putation can do the four stage computation at the same time, it will efficiently reduce

the cost of the implicit Runge-Kutta method and also keep the good properties for this

method such as relatively highly computational accuracy. However, not all computers

have four processors. PSIDE can still work in a one processor computer and maintain

the high computational accuracy, but cost a large amount of computation time.

We use LAPACK to solve the linear algebraic system for PSIDE. For the implemen-

tation of LAPACK, we need a machine with LAPACK and a machine with optimized

BLAS. However, not all systems have both available. Downloading and installing both

packages can be a complicated process. There is a Fortran routine called CACM423

which could replace a machine tuned LAPACK and machine optimized BLAS [24].

4.3 Other Possibilities

We have mentioned in the previous chapter that we can discretize the MMPDE and the

physical PDE in the form

using the method of lines. Even though we have been discussing a lot about the advan-

tages of working directly with (4. l o) , we examine the possibilities of working with

In the appendix, we rewrite the system into an explicit form for Burgers' equation

to facilitate a better understanding of the underlying collocation method for MOVCOL

and the choice of different ODE/DAE solvers. Consider

1
Z L (X , 0) = sin(2n-x) + - sin(irx), 0 5 x < 1.

2

For simplicity, we give the reformulation for a three points mesh case

CHAPTER 4. ALTERXATIVE SOLVERS

where the boundary condition and initial condition are

For the sake of simplicity, we discretize the equation on a moving mesh with only 3

mesh points. Details for discretizing MMPDE4 and MMPDEG are also provided. As for

the smooth version of MMPDE4, we show that it is not linearly implicit and thus can

not be rewritten into the explicit form. In this case, one has to choose a DAE solver for

F (t , y , y ') = 0 over a DAE solver for By' = F (t , y) .

This theoretical work for Burgers' equation provides a useful guidance for writing

the form of (4.1) for other problems. However, we notice that this task requires the user

to have a good understanding of both MOVCOL and ODE solvers.

Besides the direct use of IVP solvers based on Runge-Kutta methods instead of using

DDASSL, another alternative is that one may use implicit DAE solvers to generate

consistent starting values for higher order BDF methods solvers, and then use solvers

based on BDF methods to take care of other parts. Thus, we in principle exploit the

advantages of both methods.

Chapter 5

Numerical Experiments

In this chapter, we consider two versions of MOVCOL, one with DDASSL and the other

with PSIDE for several numerical experiments: a simple problem, a heat conduction

problem, a scalar combustion model and the Gray-Scott problem. We choose these

problems as our test examples because they have been used extensively in the literature

and show qualitatively different solution behavior. We use the following notations for

the error measurements:

e, = e(xi) = Iue(xi) - uc(xi) 1 ,

ue(xi) - uc(xi)
I I ~ R I I = I

ue (xi)
I ,

where n is the number of mesh points when we compute the solution, ue is the exact

or reference solution to the underlying problem and uc is the computed solution. All

computations presented in this thesis used a HITACHI-PC-UC5910A labtop in double

precision.

Throughout, we use the arc-length monitor function

for all the problems. In order to have a clear understanding of the computation efficiency

for both versions, we first consider the following two problems for which an analytic

solution is available.

CHAPTER 5. NUMERICAL EXPERIMENTS

5.1 Simple Problem

We start with a relatively simple problem

The boundary conditions and initial condition are derived from the exact solution. In

the following tables, P and D stand for the IVP solver PSIDE and DDASSL; at01

and rtol stand for the absolute error tolerance and the relative error tolerance used in

those IVP solvers; npts stands for the number of the mesh points when we compute the

solution and the length of time integration is from 0 to 0.7.

Table 5.1: Computation time and error for a simple problem when at01 = rtol =

npts = 41.

Here are some plots for the exact solutions, numerical solutions and errors.

A summary of the conclusions we get from the following tables is:

PSIDE

MMPDE4 MMPDE6

1. Table 5.1 shows that for each individual MOVCOL, MMPDE4 and MMPDE6

obtain similar results in terms of both accuracy and computational cost.

DDASSL

MMPDE4 MMPDE6

2. Deviations may be caused by inaccuracy in both the time integration and the

discrete approximation to the problem.

3. Table 5.2 shows for this problem, in most of the cases, PSIDE with MOVCOL can

get higher accuracy than the requirement, but it also will take much longer time.

4. PSIDE and DDASSL can obtain the same order of accuracy for roughly the same

computational time if fewer mesh points are used for PSIDE than DDASSL.

C H A P T E R 5. NUMERICAL EXPERIMENTS

numerical solution
+ exact solution I_-

Figure 5.1: Numerical solution and exact solution for the simple problem by MOVCOL
with PSIDE a t npts = 41, at01 = rtol = and with MMPDE6.

CHAPTER 5. NUMERICAL EXPERIMENTS

Figure 5.2: Numerical solution and exact solution for the simple problem by MOVCOL
with PSIDE at npts = 101, at01 = rtol = and with MMPDEG.

CHAPTER 5. NUMERICAL EXPERIMENTS

Figure 5.3: Computation error for Figure 5.4: Computation error for
the simple problem for MOVCOL the simple problem for MOVCOL
with DDASSL a t at01 = rtol = with PSIDE a t at01 = rtol = lop3,

n p t s = 41 and with MM- n p t s = 41 and with MMPDE6.
PDEG.

Figure 5.5: Computation error for Figure 5.6: Computation error for
the simple problem for MOVCOL the simple problem for MOVCOL
with DDASSL at at01 = rtol = with PSIDE at at01 = rtol =

lop3, npts = 101 and with MM- npts = 101 and with MMPDEG.
PDEG.

CHAPTER 5. NUMERICAL EXPERIMENTS

Figure 5.7: Computation error for Figure 5.8: Computation error for
the simple problem for MOVCOL the simple problem for MOVCOL
with DDASSL at at01 = rtol = with PSIDE at at01 = rtol = lou3,

n p t s = 11 and with MM- n p t s = 11 and with MMPDE6.
PDE6.

Figure 5.9: Computation error for Figure 5.10: Computation error for
the simple problem for MOVCOL the simple problem for MOVCOL
with DDASSL at at01 = rtol = with PSIDE at at01 = rtol =

n p t s = 101 and with MM- n p t s = 101 and with MMPDE6.
PDE6.

CHAPTER 5. NUMERICAL EXPERIMENTS 3 6

Table 5.2: Computation time and error for a simple problem using MOVCOL with
MMPDE6.

I, ,
Time (seconds) 11 23.833 0.841 4.206 0.340 0.321 0.130

at01 = r t o l 11

5.2 Heat Conduction Problem

The second problem, a heat conduction problem which has been considered by [18], is

u(x, t) = tanh(rlx + r2 t) , -3 5 x 5 3. (5.4)

The boundary conditions

and initial conditions

u(x, 0) = tanh(rlx), -3 5 x 5 3

are set from the given exact solution (5.4). In our experiments, we choose the small

diffusion term p = and rl = r2 = 5.0 and at01 = and rtol = The

wave velocity is c = 2 < 0. The solution has a steep wave front propagating to the

left side, which will reach the left boundary a t time t = 3. We test the problem with

and at01 = rtol = lop6 and 21 nodes and 61 nodes, and the moving mesh equation

MMPDEG.

CHAPTER 5. NUMERICAL EXPERIMENTS 37

From the numerical results,Table 5.3, Table 5.4 and Figures 5.11 - 5.20, we conclude

the following:

1. Using the maximum norm, we see the computational error is primarily when the

solution changes rapidly.

2. For the heat conduction problem, the solution starts to oscillate a t t = 0.7. The

oscillation becomes strong after t = 1.0. With the presence of numerical insta-

bilities, DDASSL will have difficulty to converge, and the numerical error goes

out of control; however, this oscillation doesn't affect the ODE solver PSIDE dra-

matically. Compared to MOVCOL with DDASSL, MOVCOL with PSIDE does

a better job in suppressing the numerical instability, and uses substantially less

time to get comparable results after the strong oscillation point t=1.0. However,

there is still numerical insatiability.

3. After using more mesh points for the heat conduction problem, the numerical

solutions becomes smoother and there are no obvious oscillations. In this case,

PSIDE uses more time than DDASSL, but DDASSL gets a better approximation

than PSIDE.

4. When we require more computational accuracy, (i.e., increase the absolute tol-

erance and relative tolerance from to the computation time for both

PSIDE and DDASSL increase correspondingly, but the approximation error in the

oscillatory part doesn't change significantly.

5 . The heat conduction problem is provided as a numerical experiment which gives

problems for moving mesh methods in [18], since the numerical solution has an

oscillatory part. We see that under the same conditions as above, MOVCOL with

PSIDE reduces this oscillation and improves the computational efficiency.

* once instability occurs, comparing these number will no longer make sense. However,

we see that MOVCOL with PSIDE does a better job than MOVCOL with DDASSL in

suppressing the instability.

CHAPTER 5. NUMERICAL EXPERIMENTS

Table 5.3: Computation time and error for the heat conduction problem with MMPDE6
when npts = 21.

at01 = rtol =

computation time I I IeI ICG I M I 2

I

1 .05 12 6.7274
1.2738 100.62

t=1.0
t = l . l

1.5210 12.2155'
2.3294 282.59018

1.63 0.66
2.74 18.52

at01 = rtol =

computation time I 1 14 loo l lellz

CHAPTER 5. NUMERICAL EXPERIMENTS

Table 5.4: Computation time and error for the heat conduction problem with MMPDE6
when npts = 61 .

at01 = rtol =

I IeI I2

P D

computation time

P D
I IeI Im

P D

CHAPTER 5 . NUMERICAL EXPERIMENTS

Figure 5.11: Numerical solution Figure 5.12: Numerical solution
and exact solution for the heat and exact solution for the heat
conduction problem for MOVCOL conduction problem for MOVCOL
with PSIDE from time=O to time= with DDASSL from time=O to
3.0, when at01 = rtol = and time= 0.7, when at01 = rtol =
npts = 61 and npts = 21

Figure 5.13: Numerical solution
and exact solution for the heat
conduction problem for MOVCOL
with DDASSL at time=0.8, when
at01 = rtol = and npts = 21

Figure 5.14: Numerical solution
and exact solution for the heat
conduction problem for MOVCOL
with DDASSL a t time= 0.9, when
at01 = rtol = and npts = 21

CHAPTER 5. NUMERICAL EXPERIMENTS

Figure 5.15: Numerical solution Figure 5.16: Numerical solution
and exact solution for the heat and exact solution for the heat
conduction problem for MOVCOL conduction problem for MOVCOL
with DDASSL at time=l.O, when with DDASSL at time= 1.1, when
at01 = rtol = and npts = 21 at01 = rtol = and npts = 21

Figure 5.17: Numerical solution
and exact solution for the heat
conduction problem for MOVCOL
with PSIDE a t time=0.8, when
at01 = rtol = and npts = 21

Figure 5.18: Numerical solution
and exact solution for the heat
conduction problem for MOVCOL
with PSIDE at time= 0.9, when
at01 = rtol = and npts = 21

C H A P T E R 5. NUMERICAL EXPERIMENTS 42

Figure 5.19: Numerical solution Figure 5.20: Numerical solution
and exact solution for the heat and exact solution for the heat
conduction problem for MOVCOL conduction problem for MOVCOL
with PSIDE a t time=l.O, when with PSIDE at time= 1.1, when
atol = rtol = and npts = 21 at01 = rtol = and npts = 21

5.3 Scalar Combustion Model

The third problem we present is a reaction-diffusion equation which models a problem

from combustion theory. This problem is described in [7], [22] as a model of a single-step

reaction diffusion and reads

where D = ~ e ~ / (a d) , and a = 1, d = 20, R = 5. We use atol = rtol = and

the number of points=41. The solution represents the temperature of a reaction in a

chemical system. For small times the temperature gradually increases from unity with

a "hot spot" a t x = 0.

Figures 5.21 and 5.22 show that the numerical solution reaches a steady state at

t = 2.9. Table 5.5 shows that with the same order of error tolerance and the same

number of mesh points, MOVCOL with PSIDE works way more slowly than MOVCOL

with DDASSL.

CHAPTER 5. NUMERICAL EXPERIMENTS

Figure 5.21: Numerical solution for the Scalar Combustion Model for MOVCOL with
PSIDE from time 0 to time 2.5. The arrow shows the direction in which time increases.

5.4 Gray-Scott Problem

As a final example, we consider a reaction diffusion system for a chemical species. The

Gray-Scott system is one such classical model [26]. The PDE models a chemical reaction

in the following way:

u + 2 v - - + 3 v ,

where U , V and P are chemical species. The details of this system are given by

dv
- = D,vx, + uv2 - (F + K) v
d t

(5.10)

where D, and D, represent the diffusion rates, K is the rate of conversion of V to P,

and F is the rate of the process that feeds U and drains U, V and P. In this system, U

and V react with each other and produce some spikes.

CHAPTER 5. NUMERICAL EXPERIMENTS

Figure 5.22: Numerical solution for the Scalar Combustion Model for MOVCOL with
PSIDE from time 0 to time 2.9

In our experiments, we consider the following choices for the parameters: D, =

D, = F = 0.024 and K = 0.06. The initial conditions are

The boundary conditions are Dirichlet boundary conditions on the domain [0, 11.

After comparing the mesh trajectory and the solution, from Figure 5.23 to Figure

5.30, it is not hard to see that the moving mesh code does an efficient and reliable job.

The mesh distribution is almost uniform when the physical solution is smooth. But

once the G-S model produces some spikes, the mesh trajectory will concentrate in the

corresponding areas. This verifies the basic idea of the moving mesh method: the mesh

concentrates in the areas where the physical solution changes fast.

These two equation systems show the version of MOVCOL with PSIDE can work

as well as MOVCOL with DDASSL for reaction diffusion systems where the equations

C H A P T E R 5. NUMERICAL EXPERIMENTS

Table 5.5: The computation time for the scalar combustion problem using MOVCOL
with DDASSL and MOVCOL with PSIDE when MMPDE = 6.

Figure 5.23: Numerical solution
for the 1D Gray-Scott problem
for MOVCOL with PSIDE at
time=200, when atol = rtol =

npts = 41 and with MM-
PDE6

Figure 5.24: Mesh trajectory
for the 1D Gray-Scott problem
for MOVCOL with PSIDE at
time=200, when atol = rtol =

npts = 41 and with MM-
PDE6

CHAPTER 5. NUMERICAL EXPERIMENTS

Figure 5.25: Numerical solution Figure 5.26: Mesh trajectory
for the 1D Gray-Scott problem for the 1D Gray-Scott problem
for MOVCOL with PSIDE at for MOVCOL with PSIDE at
time=500, when at01 = rtol = time=500, when at01 = rtol =

npts = 41 and with MM- lo-" npts = 41 and with MM-
PDE6 PDE6

Figure 5.27: Numerical solution Figure 5.28: Mesh trajectory
for the 1D Gray-Scott problem for the 1D Gray-Scott problem
for MOVCOL with PSIDE at for MOVCOL with PSIDE at
time=1500, when at01 = rtol = time=1500, when at01 = rtol =

npts = 41 and with MM- lop6, npts = 41 and with MM-
PDE6 PDE6

CHAPTER 5. NUMERICAL EXPERIMENTS

Figure 5.29: Numerical solution Figure 5.30: Mesh trajectory
for the 1D Gray-Scott problem for the 1D Gray-Scott problem
for MOVCOL with PSIDE a t for MOVCOL with PSIDE a t
time=2000, when atol = rtol = time=2000, when at01 = rtol =

npts = 41 and with MM- npts = 41 and with MM-
PDE6 PDE6

strongly affect each other.

The workstation we use to do these experiments only has one processor, which is a

possible reason that the cost of computation for PSIDE is very large here 1251 [2].

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we study the role of two different IVP solvers - DDASSL and PSIDE

- for solving second-order partial differential equations. The IVP equation system is

obtained by using moving mesh software which uses the method of lines as well as a

moving collocation scheme.

We start by briefly describing how MOVCOL discretizes second-order partial dif-

ferential equations of a general form based on moving mesh methods and collocation.

Basic algorithms as well as limitations of this software are then discussed. By success-

fully implementing PSIDE with MOVCOL, which originally works with DDASSL, we

are able to compare the two IVP solvers when incorporated into MOVCOL.

Numerical experiments show that for a simple problem with smooth solution profiles,

DDASSL works much faster; however PSIDE can achieve a higher order of accuracy.

PSIDE and DDASSL can obtain the same order of accuracy for roughly the same com-

putational time if fewer mesh points are used for PSIDE than DDASSL. For different

choices of moving mesh equations, e.g., MMPDE4 and MMPDEG, similar results are

obtained in terms of accuracy and computational cost.

For the heat conduction problem mentioned in [18] as a problem for which moving

mesh methods have difficulty, DDASSL indeed has difficulty in the time integration

when the numerical solution has strong spurious oscillations. PSIDE is doing much

better than DDASSL but still has strong oscillations. After we increase the number

of mesh points, the oscillation in the solution disappear and then both PSIDE and

CHAPTER 6. CONCLUSIONS AND FUTURE W O R K 49

DDASSL work well. The resulting accuracy and efficiency comparison is then similar

to the smooth case.

For the scalar combustion problem for which the moving mesh method works very

well [18], both versions indeed work well. However, PSIDE is much slower than DDASSL

in this case. The successful application of PSIDE to the Gray-Scott model proves that

our current version can also work well for systems which have more than one physical

equations.

As we see in those experiments, using a one processor workstation, DDASSL can

reach the required accuracy in reasonable time. PSIDE can achieve higher accuracy

for the same tolerance but takes a longer time to finish its task. It is our conclusion

that while choosing one ODE solver over another in practical can depend on the user's

requirement for both computational cost and accuracy, DDASSL is in general very

competitive.

Future Work

While we have successfully implemented PSIDE with MOVCOL and done the compari-

son with the combination of DDASSL and MOVCOL for several numerical problems, a

lot of work could still be done in order to enable us to further investigate the potential

of PSIDE.

First, further numerical comparisons of the two versions could be done for the last two

problems. We didn't test the computational accuracy of the scalar combustion problem

and the Gray Scott problem, which would require computing a reference solution with

large N. Further work is also needed for testing PSIDE on problems for which DDASSL

has difficulties getting started.

Second, we have showed in this thesis that an DAE system of the following form

could be obtained for second-order PDEs case by case with TVIOVCOL. The explicit

form of (6.1) for Burgers' equation is reformulated which has only three mesh points for

simplicity. This would provide us some guidance on how to expand this specific case to

other cases in the future.

Finally, and perhaps most important of all, it would be interesting to run the ver-

sion of PSIDE with MOVCOL using a machine tuned LAPACK and machine optimized

CHAPTER 6 . CONCLUSIONS AND FUTURE W O R K 50

BLAS and in parallel. As a parallel code, it has been showned that running PSIDE with

four processors reduces the computation time dramatically especially when a higher

order of accuracy is required [25], [2]. We believe those changes will increase the com-

putational efficiency for this new version and also will be helpful in investigating other

properties of PSIDE combined with MOVCOL.

Appendix A

Reformulation of ODE systems by

example

Consider Burgers' Equation

1
u(x, 0) = s i n (2 ~ x) + - s i n (~ x) , 0 < x 5 1.

2
For sake of simplicity, we investigate the case where the mesh has only three points

in the physical domain [0, 11,

The equation can be written as

where

F = ut

We follow the procedure of how MOVCOL forms the DAE system using cubic Her-

mite collocation for the physical PDE and a finite different scheme for the moving mesh

equation. We aim to obtain the following linearly implicit DAE system that can be

handle by RADAU5 or other ODE solvers:

APPENDIX A . REFORMULATION OF ODE SYSTEMS B Y EXAMPLE 5 2

B(t , Y)Y1 = F(t , Y), (A.3)

where

Y = [~ z (x l) , x 2 , ~ (x 2) , ~ z (x 2) ~ z (x 3) 1 T ~ (A.4)

For the physical PDE, we have

where

Imposing the boundary conditions

Xl = 0, x3 = I , u (x l) = 0, ,u(xg) = 0

APPENDIX A . REFORMULATION OF ODE SYSTEMS BY EXAh4PLE 53

to the above formulas, they are simplified to

Thus

(A. 10)

APPENDIX A . REFORMULATION OF ODE SYSTEMS B Y EXAMPLE 54

and

The two Gaussian points are
1 1

and

APPENDIX A. REFORMULATION O F ODE SYSTEMS B Y EXAMPLE 5 5

d@3 1 3 l 2 - = 3(1- -) - - (I - -) = 1
ds1 2 d3
d@3 -- 1 3 1

- 3(1+ -) - - (I + -I2 = 1
d ~ 2 2 h

d@4 3 -- 1 1
- -(1 - -)' - (1 - -) = -0.1547005

ds1 2 & &
d a 4 3 1 1
- = -(1 + -)' - (1 + -) = 2.154701.
d ~ 2 2 4 4

We choose arc-length function as monitor function

M = JW
From MMPDE4 (2.43)

we obtain

From MMPDE6 (2.45)

1
(x2)t = -[PI3 + M2 - (Mi + 2M2 + h f s) ~ ~] , 47

which yields

So for the case with MMPDE4

APPENDIX A. REFORMULATION OF ODE SYSTEMS BY EXAMPLE 56

For the case with MMPDE6

and

Bg =

Next,

where

- -
0.3101~2 Q 1 0.0962 -0.0352 0

2 . 5 2 3 2 ~ ~ Q2 -0.0962 - 0 . 1 3 1 4 ~ ~ 0

0 Q3 0.8472 0.3101(1 - ~ 2) -0.0352(1- x 2)

0 Q4 -1.8471 0.3101(1 - x 2) -0.1314(1 - x 2)

0 1 0 0 0 - -

,

APPENDIX A . REFORMULATION OF ODE SYSTEIvIS BY EXAMPLE 5 7

APPENDIX A. REFORMULATION OF ODE SYSTEW B Y EXAMPLE

and

Thus for MMPDE4, we have

we also have

for MMPDE6.

For the smooth version of MMPDE4

(A. 15)

APPENDIX A. REFORMULATION OF ODE SYSTEMS BY EXAMPLE 59

The discretizations are given by a finite difference scheme

where
1

%+ Azhz (yi+$ - 2 ~ i + $ + ~ i - i 1, 2- l = Y . I - - (A.17)

and
1 -
N (A.18)

yi+i = ki+l - ii + (xi+l - xi) '

After substituting (A.17) and (A.18) into (A.16), we obtain a nonlinear term like

xl+lxi. Software like RADAU which is designed for linear implicit differential equations

will not be able to solve this type of DAEs. Therefore we can not apply this form to

the smooth version of MMPDE4.

Bibliography

[I] De.Boor, Good approximation by splines with variable knots 11, in Springer

Lecture Notes Series 363, Springer-Verlag, Berlin, 1973.

[2] J . Bruder , Numerical results for a parallel linearly-implicit Runge-Kutta method,

Computing, 59, 139-151, 1997.

[3] RRichard L. Burden, J . Douglas Faires, Numerical Analysis.(eighth edition), 2004.

141 KK .E.Brenhan, S.L.Campbel1, and L.R.Petzold, Numerical Solution of Initial-

Value Problems in Differential- Algebraic Equations, SIAM, (second edition), 1996.

[5] EE.A.Dorfi and L.O1c.Drury, Simple adaptive grids for 1-D initial value problems,

J . Comput. Phys, 69, 175-195, 1987.

[6] A.Flitton and J.King, Moving-boundary and fixed-domain problems for a sixth-

order thin-film equation, European Journal on Applied Mathematics 15, 713-754,

2004.

[7] RR.M.Furzeland, J.G.Verwer, and P.A.Zegeling, A Numerical study of three

moving grid methods for one-dimensional partial differential equations which are

based on the method of lines, J . Comput. Phys., 69, 175-195,1987.

BIBLIOGRAPHY 61

[8] CC.W.Gear, The simultaneous numerical solution of differential-algebraic equa-

tions, IEEE Tramcircuit Theory, CT- 18, 89-95, 1971.

[9] EE.Hairer, S.P.Neirsett and G.Wanner, Solving Ordinary Differential Equations

I-Nonstiff Problems, Springer-Verlag, 1987.

[lo] WWeizhang Huang, Yuhe Ren, Robert D Russell, Moving mesh partial differential

equations (MMPDEs) based on the equidistribution principle, SIAM J. Numer,

31, 709-730, 1994.

[ll] WWeizhang Huang, Yuhe Ren, Robert D Russell, Moving mesh methods based

upon moving mesh partial differential equations, J.Comp.Phys, 113, 279-290, 1994.

[12] WWeizhang Huang, Robert D Russell, A moving collocation method for solving

time dependent partial differential equations, J IMACS, 20,101-1 16, 1996.

1131 WWeizhang Huang, Robert D Russell, Analysis of Moving mesh partial differential

equations with spatial smoothing, J .Siam. anal, 34,1106- 1126, 1997.

1141 PP.J.van der Houwen and J.J.B.de Swart, Parallel Linear system solver for

Runge-Kutta methods, Advances in Computational Mathematics, 7, (157-181),

1997.

[15) EE.Hairer, and G.Wanner, Solving Ordinary Differential Equations 11-stiff and

Differential-Algebraic Problems , Springer-Verlag, 1991.

[16] KK.R.Jackson and R.Sacks-Davis. An alternative implementation of variable step-

size multistep formulas for stiff ODES, ACM Trans.IvIath.Software, 6, 295-318,1980.

BIBLIOGRAPHY 6 2

[17] S.Li and L.Petzold, Moving mesh Methods with Upwinding Schemes for Time-

Dependent PDEs, J.Comp.Phys, 131, 368-377, 1997.

[18] S.Li, L.Petzold and Y .Ren, Stability of Moving Mesh Systems of Partial Differential

Equations, SIAM J.Sci.Comput. 20, (719-738), 1998.

[19] KK.Miller. Moving finite elements 11, SIAM J . Numer. Anal, 18, (1033-1057), 1981.

[20] KK.Miller, R.N. Miller, Moving finite elements I, SIAM J . Numer. Anal, 18,

1019-1032, 1981.

[21] L.Petzold, Differential /algebraic equations are not ODES, SIAM

J.Sci.Statist.Comput. 3, 367-384, 1982.

[22] L.Petzold , Obervations on an adpative moving grid method for one-dimensional

systems of partial differential equations. Appl. Numer.Math, 3, 347-360, 1987.

[23] A.B.White, JR, On selection of equidistributing meshes for two-point boundary-

value problems, SIAM J.Numer.Ana1. 16, 472-502, 1979.

[26] P.Zegeling and H.Kok, Adaptive moving mesh computations for reaction-diffusion

systems. Journal. Comp. Appl Math, 168, 519-528, 2004.

