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Abstract 

This thesis investigates the role of different initial value solvers in moving mesh software 

for solving second-order parabolic partial differential equations. We confine our atten- 

tion primarily to  the effect of the implicit ODE solver DDASSL used in the software 

MOVCOL of Huang and Russell, which is based on a moving collocation method. The 

advantages and limitations of Backward Differentiation Formula (BDF) methods and 

Implicit Runge-Kutta (IRK) methods are discussed in this particular context and the 

alternative ODE solver PSIDE, which is based on a four-stage RADAU IIA algorithm, 

is examined. The new interface of PSIDE with MOVCOL is discussed in some detail. 

Its performance is compared with DDASSL for several numerical problems. 
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Chapter 1 

Introduction 

Many time dependent partial differential equations (PDEs) arise in physics and engi- 

neering. They have been used to predict and control the dynamic properties of physical 

constructions, weather, heating and melting of metals, flow of air past cars and air- 

planes, etc. They describe changes of weather, density, velocity, pressure, temperature, 

etc. For these physical processes, people wish to know not only how the solution changes 

in space, but also how the solution changes in time. 

In this thesis, we focus on using numerical methods for solving time dependent PDEs, 

such as the following general second-order PDE 

for xL(t) < x < xR(t)  and t, < t 5 tb supplemented with the boundary conditions 

BR(t ,  xR, x f ,  u(xR, t),  uz(xR, t ) ,  uzz(xR, t): ut(xR, t),  uzt(xR, t))  = 0 (1.3) 

for t, < t 5 tb and the initial condition 

where F, G ,  BL, BR, u and U are vector-valued functions for this PDE system. 

Various numerical discrete methods have been developed to approximate the exact 

solutions of PDEs. 

the mesh is chosen. 

where the number 

Most of them involve iterative procedures which depend upon how 

Normally, there are two main choices. One choice is the fixed mesh, 

and location of mesh points are fixed. The other is the adaptive 
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mesh approach, in which the mesh points are changed appropriately as time and the 

solution change. It has been shown that for some time dependent PDEs, which have 

large solution variations, such as boundary layers, shock layers or contact surfaces, an 

adaptive mesh is better than a fixed mesh. As pointed out in [ll], by using adaptive 

mesh methods, one can achieve significant improvements in both accuracy and efficiency. 

The adaptive mesh methods can be divided into two categories: static and dynamic. 

For the static method, the equation and the discrete solution are initially defined on a 

given mesh. During the calculation, a new mesh is constructed, based on the properties 

of a certain function that measures the goodness of approximation. This new mesh 

might have a different number of mesh points from the old mesh. The solution is then 

interpolated from the old mesh to the new mesh, and a new approximation to the 

solution is done on the new mesh. The redistribution of the mesh points, the possible 

addition of new nodes and the interpolation of dependent variables from the old mesh 

to the new mesh are all done a t  a fixed time [lo]. 

The dynamic method is known as the moving mesh method. A mesh equation 

involving mesh speeds is used to move a fixed number of mesh points. The original PDE 

and the mesh equation are generally solved simultaneously for the physical solution and 

the mesh. The key in developing a moving mesh method lies in formulating a satisfactory 

mesh equation. In [lo], several moving mesh partial differential equations(MMPDEs) 

based on the equidistribution principle are derived and studied both theoretically and 

numerically. Among them, the TVIMPDE4 and MMPDE6 which we consider later are 

easy to implement. Moreover, it has been found that under general conditions, for the 

above MMPDEs, not only are mesh crossings guaranteed not to  occur, but the meshes 

retain equidistribution for the monitor function [I l l .  Among moving mesh methods, 

there are moving finite element methods (MFE) 1191, 1201 and moving finite difference 

methods [5]. 

In this thesis, we investigate the software MOVCOL from Huang and Russell [12], 

which is composed of five parts: Driver, MOVCOL, DDASSL, DLINPK and DAUX. 

The basic algorithm for this software is a moving collocation method, which uses a 

cell averaging cubic Hermite collocation discretization for the physical PDEs and a 

central finite difference discretization for the MMPDE. During the discretization, an 

ODE system 

F ( t !  Y, Y') = 0 (1.5) 
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where F, y and y' are vector valued functions, is constructed. 

The original MOVCOL software uses the Fortran code DDASSL to solve the resulting 

initial value problems. However, DDASSL has some computational limitations due to 

the properties of its basic algorithm, BDF(Backward differentiation formula) methods. 

In this thesis, we examine the possibilities of using other software to  replace DDASSL 

in MOVCOL. 

Among the variety of software which could be considered, we pay attention to  soft- 

ware which could solve an ODE system of form (1.5) since this formula has advantages 

in the numerical computation [4]. As one type of the one-step methods, IRK (Implicit 

Runge-Kutta) methods have their potential advantages compared with multi-step meth- 

ods such as BDF methods. Based on the above considerations, the software PSIDE is 

a reasonable choice. This software is not only based on a four-stage RADAU IIA al- 

gorithm, which is one of the IRK methods, but also is suitable for solving the problem 

(1.5). 

We develop the new interface of PSIDE with MOVOL and also explore the case of 

putting DDASSL and PSIDE with MOVCOL together. Numerical experiments have 

been done for a simple problem, heat conduction problem, the Gray-Scott problem and 

a scalar combustion problem. 

An outline of this thesis is as follows. In Chapter 2, we present the fundamental 

ideas of moving mesh methods and a moving collocation method, the basic algorithm 

for MOVCOL and some issues related to the implementation of MOVCOL. In Chapter 

3, DDASSL and its basic algorithm, a BDF method, is introduced. We discuss the 

possibility of using the alternative ODE solver PSIDE to replace DDASSL in Chapter 

4. In Chapter 5, the resulting two versions of MOVCOL are applied to several bench 

mark problems. Finally, Chapter 6 contains conclusions and comments. 



Chapter 2 

Moving Mesh Method and 

MOVCOL Code 

In this chapter, we focus on the software MOVCOL from Huang and Russell in 1996 [12]. 

We start with a review of moving mesh methods, based on the equidistribution principle, 

and several versions of moving mesh partial differential equations (MMPDEs). Then 

we describe the discretization process for MMPDEs and physical PDEs with a moving 

collocation method and introduce the basic algorithm for MOVCOL. 

2.1 Moving mesh method 

Moving mesh methods have been widely used in the last twenty years for solving PDEs 

which have rapidly solution change behaviors. 

2.1.1 Equidistribution Principle 

Most moving mesh methods are based on the idea of the equidistribution principle 

(EP),  which is first presented by De Boor [I]. Since the EP  plays a fundamental role in 

formulating MMPDEs, we first give a detailed description of it. 

Consider a one dimensional time independent PDE 

L for a = x < x < xR = b supplemented with the boundary conditions 
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where F, G, B L ,  BR and u are vector-valued functions. 

We introduce a monitor function 

which provides some measurement of the difficulty of approximating u ( x )  on the bounded 

interval [a, b]. Then a mesh is selected as follows: 

is chosen to evenly distribute M among the subintervals, i.e, 

In other words, the EP involves selecting the mesh points so that some measure of 

the solution error is equal over each subinterval. It also could be written down as 

where 
b 

o = M ( x ) d x .  (2.8) 

We set [O, 11 as the computational domain for a computational variable ( in our future 

computations. For a mapping x ( J )  from [a, b] to  [ O , l ] ,  the mesh is defined in the following 

way: 

where 

is a uniform mesh on [0,1]. 

To define x ( J ) ,  we expand the equidistribution principle to a continuous form and 

from the time-independent 

tional domain. Specifically, 

case to the time-dependent case under the above computa- 

(2.7) is changed to 
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where 

The following figure shows the adaptive mesh points chosen for the Burgers equation 

at time t = 0.4375. 

Figure 2.1: Numerical solution and mesh points for Burgers equation at  time = 0.4375. 
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It indicates that  there are more mesh points in the interval where the solution changes 

rapidly and fewer points in the interval where the solution is relative smooth. This result 

shows the reasonableness of the EP for adaptivity. 

2.1.2 Moving Mesh Equations 

For moving mesh methods, we solve the original partial differential equation and the 

mesh equation simultaneously t o  obtain both the physical solution approximation and 

the mesh results. 

The above description of the E P  indicates that  the key in developing a moving mesh 

method lies in formulating a satisfactory mesh equation. In addition to  the capability 

of concentrating a sufficient number of points in regions of rapid variation of the solu- 

tion, a satisfactory mesh equation should be simple, easy to  program, and reasonably 

insensitive to  the choice of its adjustable parameters. As compared with the problem of 

discretizing the underlying physical equation, this task is somewhat artificial. That is, 

the construction of a moving mesh equation must be guided by both physical arguments 

and effective numerical principles. 

The moving mesh partial differential equation ( M M P D E )  is the equation which 

shows how the mesh changes as the time and physical solution change, so that the 

nodes will keep concentrated in regions of rapid variation of the solution. It is based on 

the equidistribution principle we mentioned in section 2.1.1. Differentiating (2.11) with 

respect to  J once, we can get 

Differentiating (2.11) with respect to  J twice, it yields 

d d 
-{M(x(E, t ) ,  t )  W ~ ( J ,  t)} = 0 (2.14) 

In [23], if we differentiate (2.13) with respect to  t ,  it is the conservative form of an 

MMPDE 

after dividing by $ then combining with (2,13), we can also get 
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Since there is no term O(t) in equation (2.14), we use the later time t + r instead of 

t ,  so that the mesh satisfies 

d a 
- { M ( x ( ~ ,  t + r),  t + 7)-x(t,  t + 7)) = 0. at at 

We use Taylor expansions for the above equation, 

and 

d 
+r-M(x(J, t ) ,  t )  + 0(r2). 

a t  
(2.19) 

After dropping higher order terms, we can get 

We call this MMPDE2. In principle, it is reasonable to  drop out the term X$M and 
F 

~ Z M  [lo] ,  thus we can get the following simplification: a c a  

This is MMPDE4 

Since the integration of the monitor function represents an error measurement in the 

interval, we define this error measure as W ,  which is generally related to some monitor 

function by 

where M is acertain monitor function. After discretizing the above formula 

and using midpoint rule, we can get 

On the other hand, the node speed is determined by 
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where X is a positive parameter, Wi is an error indicator on the subinterval (xi, xi+l) 

and w is the average of the W, values. 

Eliminating w by substracting equation (2.25) on two consecutive intervals, we can 

get 

xi+l - 2xi + xi-, = -X(r/vz - Wi4)  (2.26) 

If we denote X by $ and use (2.23)) we can regard (2.26) as a centered finite difference 

approximation of an MMPDE. We call this formula MMPDE6, 

The constructions are very different and in their final forms, the moving mesh equa- 

tions appear to  be quite different from each other. Some versions of MMPDEs are 

derived from MMPDE4 and MMPDE6. We describe one from MMPDE4 in the next 

subsection. 

2.1.3 Spatial Smoothing Moving Mesh Equation 

There is another important version of an MMPDE. From (2:14), we notice that the 

initial transformation is assumed to be a smooth transformation [13]. For most problems 

which have large solution variations, their corresponding monitor functions are generally - 
non-smooth in space. Thus we introduce a smoothing monitor M which satisfies the 

following equation which makes this transformation smooth: 

and 

where A is a positive number and A = $$ 
Thus we obtain a smooth verision of MMPDE4 

where 7i = (I - X2A)($)-l, n = (&)- I  and r is the smoothing parameter, 
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Numerical experiments in [13] indicate that the spatial smoothing is often essential 

if the solution to the physical PDE changes rapidly. Furthermore, the numerical experi- 

ments show this smoothing process at  least will not deteriorate the computation results 

significantly. 

For moving mesh methods, the physical PDE and moving mesh equation are often 

solved simultaneously for both the physical solution u(x, t)  and the coordinate trans- 

formation x ( t ,  t). Two advantages of this simultaneous solution approach are that the 

interpolation of the physical solution between different meshes is unnecessary and that, 

after discretizing the physical PDE and MMPDE in space, the method of lines approach 

can be employed using standard software to solve the resulting ODE system. 

2.2 Moving Collocation Met hod 

A new moving mesh method is introduced for solving the time dependent partial dif- 

ferential equations (PDE) in divergence form. The method uses a cell averaging cubic 

Hermite collocation discretization for the physical PDEs and a three point finite differ- 

ence discretization for the moving mesh equations. The collocation method can offer 

higher order convergence, provide an approximating solution continuously, and be im- 

plemented easily while staying simple for general boundary conditions [12]. Therefore, 

it remains popular among a variety of ODE and PDE software, including the moving 

mesh software. 

2.2.1 PhysicalPDE 

We use a cell averaging cubic Hermite collocation method to discretize the physical 

PDE. The cubic Hermite polynomial ,u(x, t )  is the approximation for the solution u(x, t)  

at  time t E [t,, tb] on the fixed number of mesh points 

X1 (t)  := xL (t)  < . . . < XnPts (t) := xR(t)  (2.29) 

where npts is the number of mesh points and 
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for a: E [ X ,  ( t ) ,  Xi+, ( t ) ] ,  i = 1 ,2 ,  . . . , npts - 1 ,  where vi( t )  and vz j i ( t )  are defined as the 

approximation of u ( X , ( t )  , t )  and u z ( X i ( t )  , t )  . 
The local coordinate di)  is defined by 

and the respective shape functions are 

$2(s) := s(1 - s ) ~  

& j ( s )  := (3  - 2s)s2 

4 4 ( ~ )  := ( s  - 1)s2 

for x E [ X i ( t ) ,  Xi+l ( t ) ] ,  i = 1,2,  . . . , npts - 1. We have 

where $ j ,  (2) and (3) are functions of s('). 
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Based on the conservation law, our physical PDE (1 .1)  satisfies 

L F d x  = G ( z = x ~ , t  - G L z ~ , t  

for t E (tal t b ]  . 
Then we can get the cell average for each half of [ X i ,  Xi+1] 

for i = 1 , .  . . , npts  - 1 and t E ( L a ,  t b] ,  where 

After that, we use the piecewise linear approximation to  get 

where Xi,j  : = X i  + s j H j ,  j = 1 ,2 .  

The two Gauss Points on [0,  I ]  are 

1 
s2 = - ( I  + l / h ) .  

2 (2.40) 

After simplification, we can get 

1 
F(Xz,11t) = ( E ) ( - ( 1 + 2 / A ) ~ i ( t )  + (4/J(3))Gi+li2( t )  + ( 1 - 2 / h ) ~ i + l ( t ) )  (2.41) 

1 
F(Xi.2,  t )  = (%)(- ( 1  - 2 / A ) ~ i ( t )  - ( 4 / & ) ) ~ i + l j 2 ( t )  + ( 1 + 2 / h ) ~ i + l ( t ) )  (2.42) 

This conservative method is analyzed in [ l o ] .  



CHAPTER 2. MOVING MESH METHOD AND MOVCOL CODE 

2.2.2 MMPDE 

Even though it has been proved that the above cubic Hermite collocation method can 

bring higher accuracy than a standard finite difference scheme [12], it has the price 

of more computation time and a more complicated computation. Our aim is to use a 

relatively simple method for the MMPDE since experience has shown that the accuracy 

of the mesh solution does not need to be as high as that of the physical solution [lo]. 

Therefore, we consider using a finite difference scheme for the MMPDE. 

We use the three point finite different method to discretize the moving mesh partial 

differential equations. Since MMPDE4 and MMPDE6 are the common choices in our 

further computation, we give the details of discretizing them by the centered finite 

difference scheme. 

For MMPDE4. 

we discretize it to obtain 

For MMPDE6: 

it yields 

Third order convergence in space for the moving collocation method has been demon- 

strated numerically in terms of the rate of convergence. It is slower than the traditional 

(fourth order) cubic Hermite collocation on a fixed mesh but much faster than the second 

order of the commonly used moving finite difference methods. The moving collocation 

method can also produce results for small and moderate numbers of mesh points with 

more accuracy 1121. 
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2.3 Implementation of MOVCOL 

Several moving mesh codes have been used in a variety of research fields now. The one 

we focus on is named MOVCOL, which was published by Huang and Russell in 1996. 

MOVCOL is designed to be as easy to use as possible, while providing enough flexibility 

and control for solving a wide variety of problems. In this subsection, we outline what 

a user must to do to solve a problem with MOVCOL and describe the basic algorithm 

of MOVCOL. 

We emphasize that MOVCOL is designed for solving second order problems of the 

form 
d 

F ( t ,  X,  u 1  U X ,  ut, uxt) = -G(t , X , U , U X , U ~ ,  uxt) (2.47) 
dx 

for xL(t )  < x < xR(t) and ta < t < tb supplemented with the boundary conditions 

for t, < t 5 tb and the initial condition 

where F, G ,  BL, BRl u and U are vector-valued functions of this PDE systems. 

This software includes 5 parts: EXAMPLE, MOVCOL, DDASSL, DLINPK and 

DAUX. 

EXAMPLE is a set of subroutines which is written by the user to  define the physical 

PDEs, MMPDEs, boundary conditions, initial condition, monitor function, physical do- 

main and computational domain. We write down drivers for several numerical problems 

in the Appendix. 

As the core part of the code, MOVCOL uses the moving collocation method we 

mentioned in the last section to discretize the physical PDEs and MMPDEs. 

The call to  MOVCOL is 

CALL M O V C O L ( n p d e ,  np t s ,  a to l ,  t o u t a ,  n tou ta ,  p a r ,  iflag, rwork,  lrw, 

iwork, liw) 

For these input values, n p d e  means the number of physical PDEs in (2.47); n p t s  

is the number of mesh points used in the computation. At01 and r t o l  represent the 

absolute and relative tolerance for time integration which is used in DDASSL; t o u t a  
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is the real array for the time integration and ntouta is the length of this array. The 

option vector par is related to  many features of MOVCOL. Several of them are worth 

mentioning. 

MOVCOL can solve four types of MMPDEs, from the fixed mesh case, MMPDE4 to 

MMPDE6 and the spatial smoothing MMPDE (2.28). If we do not specify, it will default 

to solve the last type of MMPDE. MOVCOL also defines rwork and iwork as the space 

to  save real and integer work variables. These two arrays are very important since they 

take control of the interface of MOVCOL with the ODE solvers. The specification of the 

length of these variables can be quite sensitive here. Either too large or too small of the 

value of these numbers could lead the interface to fail to work. This constraint brings 

some difficulties for changing the current ODE solver DDASSL to an alternative one 

since the user has to understand all the basic algorithms for the software. If MOVCOL 

fails, the scalar variable iflag should be examined to  see what specific error caused the 

difficulty. Those details are mentioned in the documentation of MOVCOL. 

The design of the monitor function also can affect the accuracy and efficiency of the 

code. A common choice for the monitor function is the arc-length function 

Other possible choices are 

M ( x )  = 1+ 1 u 1 

and the curvature monitor function 

where a is a positive number. 

During the discretization, an ODE system. 

is constructed. This code uses the Differential Algebraic Equations (DAEs) solver 

DDASSL to solve this system. 

The call to DDASSL is 

CALL DDASSL (RES, neq, t ,  y, yprime, tout, info, rtol, atol, idid, rwork, 

lrw, iwork, liw, rpar, ipar, JAC) 
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If DDASSL fails, the  scalar variable idid will show the specific error message. The 
documentation in DDASSL gives a detailed explanation of all the error messages. 

The user subroutines R E S l l l  and JAC222 must be declared externally. Even though 

there is an option in DDASSL which could allow the user to specify the JAC111, it is not 

recommended to let DDASSL write J A C l l l  directly because this matrix is not easy to 

write and debug. We default it to be approximated by DDASSL with a finite difference 

scheme. More details about DDASSL are mentioned in the next chapter. 

DLINPK and DAUX are auxiliary linear algebra routines when DDASSL is being 

used. 

Finally the algorithm for MOVCOLl is as follows: 

S t e p  1: Check the input parameters and set the default values. 

S t e p  2: Call MOVCOLl (main subroutine of MOVCOL). 

S t e p  3: MOVCOLl 

S u b s t e p l :  Define the parameters in the following way: 

where lc = 1, .  . . , npde and j = 1 , .  . . , npts  

Substep2:  Start computing the initial mesh from a uniform mesh. 

Substep3:  Compute the initial value of y'. Call DDASSL with a first-order backward 

differentiation formula and two time integration steps. 

Substep4:  Compute u ,  u,, ut at  x, where j = 1 , .  . . , npts .  

Substep5:  External subroutine RES111. Use the cubic Hermite collocation discretiza- 

tion for the physical PDEs and a three point finite difference discretization for the 

MIvIPDEs. 

Substep6:  Call DDASSL to solve the ODE system. 



Chapter 3 

DDASSL 

In this chapter, we describe DDASSL, the initial value solver which is used in MOVCOL 

and the backward differentiation formulas (BDF) algorithm which it is based on. 

3.1 Theory of DAEs 

A DAE is a system of differential-algebraic equations. There is algebraic constraint on 

the variable such as 

XI = f ( x , y , t )  (3.1) 

G(x, y, t) = 0. (3.2) 

If we differentiate the constraint equation respect to t, we can get 

G,(x, Y ,  t)xl + G,(x,Y, t)yl = -Gt(x, Y,  t). (3.4) 

If g, is nonsingular, it means we can generate the continuous function satisfying 

and then we call this an index 1 DAE. Otherwise, with some algebraic manipulations 

and coordinate changes we can rewrite (3.4) to (3.2) and differentiate with respect to t 

again. The index of the DAE is the minimum number of times that the system needs 

to be differentiated to get an implicit ODE. 

Recall that in the previous chapter, when the method of lines is used to discretize 

the MMPDE and the physical PDE, the DAE system we obtain is of index 0. 
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The Backward Differentiation Formula (BDF) [8] is one of the main numerical meth- 

ods for solving DAEs. 

3.2 Backward Differentiation Formula 

The simplest first order BDF method is the implicit Euler method, which consists of 

replacing the derivative in F ( t ,  y,, y;) = 0 by a backward difference 

where h = tn - tn-l. 

The k-th order (constant step-size) BDF consists of replacing y' by the derivative of 

the polynomial which interpolates the computed solution at k+  1 times t,, tn-l,. .  . ,tn-k, 

evaluated at t,. It yields 
PYn 

J'(tn1 yn, h) = 0 (3.7) 

k where py, = Cz=, criyn-i and i = 0 ,1 , .  . . , k are the coefficients of the BDF method. 

The resulting system of nonlinear equations for yn a t  each time step is usually solved 

by Newton's method. It has been proved in [4] that this method is stable for ODES 

when k < 7. We are going to show more computational details about the fixed leading 

coefficients BDF methods which are used by DDASSL in the next section. This fixed 

leading coefficients formula is a compromise between the fixed coefficient and variable 

coefficient approaches, offering a stable and efficient computation. 

3.3 Basic Algorithm for DDASSL 

DDASSL is a Fortran code which is designed by L.Petzold [21] for solving DAE problems 

of index less than or equal to 1, 

F ( t l  Y ,  Y') = 0 (3.8) 

where F, y, and y' are N-dimensional vectors. In this section, we give a detailed de- 

scription of the computational algorithm used by DDASSL. 
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At first it uses a variable order and variable step-size, but a fixed leading coefficient 

BDF method to approximate the derivatives; then Newton's method is used to solve 

the resulting nonlinear system at each time step. LINPACK is called to  deal with the 

linear systems and the linear least square problems. 

This code implements the backward differentiation formulas from order one through 

five to  solve an implicit differential equation system for y and y'. 

We assume that we have the approximations yn-, to the exact solution ~ ( t , - ~ )  for 

i = 0 , 1 , .  . . , k where k is the order of the BDF we currently use, and we plan to find 

the approximation of the solution at the time tn+l. 

A predictor polynomzal ~ : + ~ ( t , - ~ )  is defined to serve as an initial guess for yn-,. It 

interpolates yn-, at the last k + 1 time steps, so that 

The predicted values for y and y' at tn+l are obtained by evaluating ~ : + ~ ( t )  and w k c l ( t )  

at tn+ll 
(0) = P 

Yn+l wn+l (',+I), (3 .12)  

The fixed leading coefficient form of the kth order BDF method is used to develop the 

corrector formula, 
C 

wn+l ( tn+l)  = ~ n + l l  (3 .14)  

C P 
wn+l (tn+l - %+I)  = wn+l1 ( t n + l -  ihn+l), 1 5 i 5 k (3 .15)  

C IC 
F(tn+llw,+l(tn+l),w,+l(tn+l)) = 0 .  (3 .16)  

The solution to  the corrector formula is the vector yn+l such that the corrector polyno- 

mial  w:+,(t) and its derivative satisfy the DAE at tn+l,  and the corrector polynomial 

interpolates the predictor polynomial at k equally spaced points behind tn+l. 

The value of the predictor yrjl, y'!il and the corrector yn+l at tn+, are defined in 

terms of polynomials which interpolate the solution at previous time steps. Thus the 

predictor polynomial is 



CHAPTER 3. DDASSL 20 

where 

Evaluating w:+, a t  tn+l, we can obtain 

where 

The corrector formula and the predictor polynomials satisfy the relationship 

where 

b(tn+l - 2hn+l) = 0, 2 = 1 , 2 , .  . . , k. (3.30) 

Differentiating (3.29) and evaluating a t  tn+l gives 

where the leading fixed coefficients a, are 
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In order to solve for y;+, , the corrector iteration must solve 

The above equation must be solved for yn+l at  each time step. To simplify the notation, 

we rewrite it as 

F ~ Y ,  QY + P) = 0 (3.35) 

'(0) (0) where a = -* and P = Y , + ~  - ayn+, . 
In (3.34), all variables are evaluated at  tn+1, a is a constant which changes whenever 

the step-size or order changes, and p is a vector which remains constant while we are 

solving the corrector equation. We use the modified Newton iteration to solve the 

corrector equation (3.33) 

where y z 1  is W[+l and G is the iteration matrix 

The matrix G is factorized into a product of an upper and lower triangular matrix, 

G = LU. So (3.35) is then solved by 

where b(") = y("+') - ("1 and r(") = - Y cF( t ,  y("), ay(") + p) .  In DDASSL, the matrix 

G may be dense or have a banded structure. The factorization of G and the solution of 

the system in (3.37) are performed by routines in the LINPACK software package. 

Normally, especially for large systems, the work of computing and factoring G dom- 

inates the cost of the integration. Often the matrices and change whenever 

the step-size or order of the method being used changes. The constant a depends on 

the choice of order or step-size. Whenever either the derivative matrix or g ,  or a~ ay 

a changes, we have to recalculate the iteration matrix G. Otherwise, we can fix the 

iteration matrix as the one in the previous step. We define Z as the current constant 

related to the order and step-size, so the iteration matrix is 
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If (?? is close enough to  G, then the algorithm will converge successfully. If DDASSL 

fails to converge after four iterations of (3.35), then it needs to rebuild a new iteration 

matrix G. In DDASSL, the matrix G is computed by finite difference methods. It is 

also worth mentioning that DDASSL can achieve the same order of convergence for this 

class of DAEs as it does for ODES. 

3.4 Limitations 

In our experience, the majority of DAEs problems whose index are 0 or 1 can be solved 

successfully with DDASSL. However, we also notice DDASSL has limitations, some of 

which we summarize below. 

3.4.1 Higher Index problems 

Sometimes the failure of DDASSL in special situations could be due to the index prob- 

lem. In particular, the error estimates used in DDASSL may fail to converge for higher 

index problems. As a response to a large integration error estimate, the code repeats re- 

ducing the step-size until the iteration matrix becomes ill-conditioned. For small enough 

step sizes, this condition problem causes the Newton iteration to not converge, and the 

code eventually fails due to multiple convergence test failures. It also deserves men- 

tioning that the failures will not necessarily occur on the first step because sometimes 

DDASSL can start solving a smooth higher index system and fail after a step-size or 

order change or rapid change in the solution. 

In this thesis, we mainly focus on MOVCOL combined with initial value solvers for 

solving 1-D in space second-order problems. However, we notice that  people are paying 

increasingly more attention to solving fourth- or sixth-order problems with moving mesh 

software. The common way of solving these problems is converting it into a system of 

second-order PDEs. 

We consider the sixth-order nonlinear diffusion equation 

where u 2 0 is the thickness of a fluid film beneath an elastic plate and p = is the 

pressure within the film [6]. 
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We convert this equation to 

Ut = -(un(v2)z)z 

v2 = Vlzz (3.43) 

where (3.41) and (3.42) are the algebraic constraints of the DAE. 

This is a DAE system of index 2. Since DDASSL has limitation for solving such 

problems, we may have to use other software to replace it if we want to solve higher 

order problem in this method. 

3.4.2 Inconsistent Initial Values 

Based on the basic algorithm we described before, DDASSL needs a consistent set of 

initial values F( to ,  y(O), yl(0)) = 0. But it is possible that  in some cases, we may not 

know both initial values for y(O) and yl(0), and thus DDASSL may fail in the first step. 

For some cases if we only know y(O), DDASSL has an algorithm [4] to compute yl(0) 

automatically. For MOVCOL, only y(O) is given, so we always need to start looking for 

yl(0). Frequently either the successful convergence test will fail or the Newton iteration 

may fail due to  the poor initial estimation. Even initial guesses which are only slightly 

inconsistent could cause DDASSL to  fail to complete the first step. 

In this general code, there is another option in DDASSL to compute the starting 

guess for the initial value yl(0) if we know y(O). In this case, DDASSL takes a small 

implicit Euler step for its first step, and uses a damped Newton iteration to solve the 

nonlinear system. The error estimate for this step is different from the estimate which 

DDASSL usually uses because the initial derivatives are not available for use in an error 

estimate. 

In the basic algorithm of MOVCOL, DDASSL does this work in the substep3 as 

we mentioned in section (2.3). We fix the first order of BDF method and a small time 

step-size with DDASSL in this substep. Otherwise DDASSL will use a variable order 

and variable step-size approach. It may bring more accuracy for the guess of the initial 

value, but cost relatively more computation time. We define y'(O) = 0 first, then use the 

above process to get the initial guess yl(0) 
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Due to the limitations of DDASSL, we discuss the possibilities of using other ODE 

solvers to replace DDASSL in the next chapter. 



Chapter 4 

Alternative Solvers 

There are a variety of ODE solvers. When we consider which kind of ODE solver should 

be used to replace DDASSL, we have to keep in mind which kind of ODE system is 

investigated. There are several reasons to consider (3.8) rather than trying to rewrite 

them as an explicit ODE system, so in this thesis, we will pay more attention to the 

potential software which solves (3.8). 

As general-purpose software for solving second order partial differential equations, 

MOVCOL generates the DAE system F ( t ,  y, y') = 0 automatically for any second order 

PDEs provided by the user. It is very likely that for a specific problem, one can rewrite 

the resulting DAE system into an explicit form of B( t ,  y)yl = F ( t ,  y); however, this 

would require the user to have a very good sense of the way MOVCOL discretizes for 

the physical PDEs and the MMPDE. Even if this is the case, for the sake of numerical 

efficiency, the change to an explicit form can destroy sparsity and prevent the exploita- 

tion of the system structure [4]. Most of all, this has to  be done case by case, which 

conflicts with the concept of designing general-purpose software. 

Recently, people have paid more attention to using IRK (Implicit Runge-Kutta) 

methods to solve DAE problems. Especially for the case of using moving mesh methods 

to  solve PDEs, each interpolation of a variable onto a new mesh generates a discontinu- 

ity of that variable in time. Since IRK is a one-step method, it has a potential advantage 

compared to a multi-step method such as BDF in approximating rapidly changing func- 

tions. Due to their one step nature, IRK methods are potentially more efficient for these 

problems than multi-step methods. Even though both methods have to  restart at  the 

discontinuity point, the IRK method can restart at  a higher order rather than at  a lower 
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order like multi-step methods. 

4.1 Implicit Runge Kutta Methods 

An S stage IRK method applied to the DAE (3.l)and (3.2) is 

where h = tn - tn-1. It yields 

4.2 PSIDE 

4.2.1 Introduction 

PSIDE's full name is Parallel Software for IDES (Implicit Differential Equations). It is 

a Fortran code for solving the implicit differential equations 

on shared memory computers. 

The algorithm for PSIDE is based on a four-stage Radau IIA method, which is one 

of the implicit Runge-Kutta methods. The linear systems are solved by a modified 

Newton process, in which every Newton iterate itself is computed by means of the 

Parallel Iterative Linear Solver for Runge-Kutta (PILSRK) proposed in [14]. A Fortran 

code CACM423 is also required as  a substitute for the linear algebra routine LAPACK. 

Implementing the RADAUII method requires high computational costs. PSIDE is 

designed for using 4 processors to compute those 4 stages in parallel to increase the 

speed of computation. Solving (4.4) with the four stage RADAUII methods means to 

solve for Y from the nonlinear system 
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where 

Y = (Y?, Y?, Y ~ ~ ,  YT) = 0, 

h is the step-size and the matrix A 

i 
0.1129994793231 -0.0403092207235 0.0258023774203 -0.0099046765072 

0.2343839957473 0.2068925739354 -0.0478571280485 0.0160474228065 

0.2166817846232 0.4061232638674 O.l89O3651817OO -0.0241821048998 

0.2204622111767 0.3881934688432 0.3288443199800 0.06250000000000 I 
(4.7) 

is the 4 x 4 RADAUII matrix. X = ( I l l l  1, l )T  and I is an identity matrix. 

4.2.2 Getting Start with PSIDE 

There are three important subroutines we need to mention for PSIDE. The first one is 

GEVAL, which defines the IDE problem 

We must declare GEVAL as the external statement in our own program. IERR is an 

integer flag which is always equal to zero on input. Subroutine GEVAL should set 

IERR = -1 if GEVAL cannot be evaluated for the current values of y and dy. PSIDE 

will then try to prevent IERR = -1 by using a smaller step-size. 

To solve the IDE, it is necessary to use the partial derivatives J = dG/dy.  The 

solution will be more reliable if we provide J via the subroutine JEVAL. 

The third subroutine is MNUM. To solve the IDE it is also necessary to use the 

partial derivatives M = dG/dyf .  The solution will be more reliable if we provide M via 

MEVAL. 

However, sometimes we can use dummy routines to take the place of those external 

subroutines. If we define MNUM = TRUE and JNUM = TRUE, PSIDE will approxi- 

mate M and J by numerical differentiation automatically. 

4.2.3 Limit at ions 

Even though PSIDE is powerful software in scientific computation, it still has some 

limitations in practical applications. We summarize two of them here. 
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PSIDE is designed to run on a four processor workstation. Since the parallel com- 

putation can do the four stage computation at  the same time, it will efficiently reduce 

the cost of the implicit Runge-Kutta method and also keep the good properties for this 

method such as relatively highly computational accuracy. However, not all computers 

have four processors. PSIDE can still work in a one processor computer and maintain 

the high computational accuracy, but cost a large amount of computation time. 

We use LAPACK to  solve the linear algebraic system for PSIDE. For the implemen- 

tation of LAPACK, we need a machine with LAPACK and a machine with optimized 

BLAS. However, not all systems have both available. Downloading and installing both 

packages can be a complicated process. There is a Fortran routine called CACM423 

which could replace a machine tuned LAPACK and machine optimized BLAS [24]. 

4.3 Other Possibilities 

We have mentioned in the previous chapter that we can discretize the MMPDE and the 

physical PDE in the form 

using the method of lines. Even though we have been discussing a lot about the advan- 

tages of working directly with (4. l o ) ,  we examine the possibilities of working with 

In the appendix, we rewrite the system into an  explicit form for Burgers' equation 

to facilitate a better understanding of the underlying collocation method for MOVCOL 

and the choice of different ODE/DAE solvers. Consider 

1 
Z L ( X ,  0) = sin(2n-x) + - sin(irx), 0 5 x < 1. 

2 

For simplicity, we give the reformulation for a three points mesh case 
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where the boundary condition and initial condition are 

For the sake of simplicity, we discretize the equation on a moving mesh with only 3 

mesh points. Details for discretizing MMPDE4 and MMPDEG are also provided. As for 

the smooth version of MMPDE4, we show that it is not linearly implicit and thus can 

not be rewritten into the explicit form. In this case, one has to choose a DAE solver for 

F ( t ,  y ,  y ' )  = 0 over a DAE solver for By' = F ( t ,  y ) .  

This theoretical work for Burgers' equation provides a useful guidance for writing 

the form of (4.1) for other problems. However, we notice that this task requires the user 

to have a good understanding of both MOVCOL and ODE solvers. 

Besides the direct use of IVP solvers based on Runge-Kutta methods instead of using 

DDASSL, another alternative is that one may use implicit DAE solvers to generate 

consistent starting values for higher order BDF methods solvers, and then use solvers 

based on BDF methods to take care of other parts. Thus, we in principle exploit the 

advantages of both methods. 



Chapter 5 

Numerical Experiments 

In this chapter, we consider two versions of MOVCOL, one with DDASSL and the other 

with PSIDE for several numerical experiments: a simple problem, a heat conduction 

problem, a scalar combustion model and the Gray-Scott problem. We choose these 

problems as our test examples because they have been used extensively in the literature 

and show qualitatively different solution behavior. We use the following notations for 

the error measurements: 

e, = e(xi) = Iue(xi) - uc(xi) 1 ,  

ue(xi) - uc(xi) 
I I ~ R I I  = I 

ue (xi) 
I ,  

where n is the number of mesh points when we compute the solution, ue is the exact 

or reference solution to the underlying problem and uc is the computed solution. All 

computations presented in this thesis used a HITACHI-PC-UC5910A labtop in double 

precision. 

Throughout, we use the arc-length monitor function 

for all the problems. In order to have a clear understanding of the computation efficiency 

for both versions, we first consider the following two problems for which an analytic 

solution is available. 
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5.1 Simple Problem 

We start with a relatively simple problem 

The boundary conditions and initial condition are derived from the exact solution. In 

the following tables, P and D stand for the IVP solver PSIDE and DDASSL; at01 

and rtol stand for the absolute error tolerance and the relative error tolerance used in 

those IVP solvers; npts  stands for the number of the mesh points when we compute the 

solution and the length of time integration is from 0 to 0.7. 

Table 5.1: Computation time and error for a simple problem when at01 = rtol = 

npts  = 41. 

Here are some plots for the exact solutions, numerical solutions and errors. 

A summary of the conclusions we get from the following tables is: 

PSIDE 

MMPDE4 MMPDE6 

1. Table 5.1 shows that for each individual MOVCOL, MMPDE4 and MMPDE6 

obtain similar results in terms of both accuracy and computational cost. 

DDASSL 

MMPDE4 MMPDE6 

2. Deviations may be caused by inaccuracy in both the time integration and the 

discrete approximation to the problem. 

3. Table 5.2 shows for this problem, in most of the cases, PSIDE with MOVCOL can 

get higher accuracy than the requirement, but it also will take much longer time. 

4. PSIDE and DDASSL can obtain the same order of accuracy for roughly the same 

computational time if fewer mesh points are used for PSIDE than DDASSL. 
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numerical solution 
+ exact solution I_- 

Figure 5.1: Numerical solution and exact solution for the simple problem by MOVCOL 
with PSIDE a t  npts = 41, at01 = rtol = and with MMPDE6. 
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Figure 5.2: Numerical solution and exact solution for the simple problem by MOVCOL 
with PSIDE at  npts = 101, at01 = rtol = and with MMPDEG. 
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Figure 5.3: Computation error for Figure 5.4: Computation error for 
the simple problem for MOVCOL the simple problem for MOVCOL 
with DDASSL a t  at01 = rtol = with PSIDE a t  at01 = rtol = lop3, 

n p t s  = 41 and with MM- n p t s  = 41 and with MMPDE6. 
PDEG. 

Figure 5.5: Computation error for Figure 5.6: Computation error for 
the simple problem for MOVCOL the simple problem for MOVCOL 
with DDASSL at at01 = rtol = with PSIDE at  at01 = rtol = 

lop3,  npts  = 101 and with MM- npts  = 101 and with MMPDEG. 
PDEG. 
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Figure 5.7: Computation error for Figure 5.8: Computation error for 
the simple problem for MOVCOL the simple problem for MOVCOL 
with DDASSL at  at01 = rtol  = with PSIDE at  at01 = rtol = lou3, 

n p t s  = 11 and with MM- n p t s  = 11 and with MMPDE6. 
PDE6. 

Figure 5.9: Computation error for Figure 5.10: Computation error for 
the simple problem for MOVCOL the simple problem for MOVCOL 
with DDASSL at at01 = rtol  = with PSIDE at at01 = rtol = 

n p t s  = 101 and with MM- n p t s  = 101 and with MMPDE6. 
PDE6. 
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Table 5.2: Computation time and error for a simple problem using MOVCOL with 
MMPDE6. 

I, , 
Time (seconds) 11 23.833 0.841 4.206 0.340 0.321 0.130 

at01 = r t o l  11 

5.2 Heat Conduction Problem 

The second problem, a heat conduction problem which has been considered by [18], is 

u(x,  t )  = tanh(rlx + r2 t ) ,  -3 5 x 5 3. (5.4) 

The boundary conditions 

and initial conditions 

u(x, 0) = tanh(rlx),  -3 5 x 5 3 

are set from the given exact solution (5.4). In our experiments, we choose the small 

diffusion term p = and rl = r2 = 5.0 and at01 = and rtol = The 

wave velocity is c = 2 < 0. The solution has a steep wave front propagating to the 

left side, which will reach the left boundary a t  time t = 3. We test the problem with 

and at01 = rtol = lop6 and 21 nodes and 61 nodes, and the moving mesh equation 

MMPDEG. 



CHAPTER 5. NUMERICAL EXPERIMENTS 37 

From the numerical results,Table 5.3, Table 5.4 and Figures 5.11 - 5.20, we conclude 

the following: 

1. Using the maximum norm, we see the computational error is primarily when the 

solution changes rapidly. 

2. For the heat conduction problem, the solution starts to oscillate a t  t = 0.7. The 

oscillation becomes strong after t = 1.0. With the presence of numerical insta- 

bilities, DDASSL will have difficulty to converge, and the numerical error goes 

out of control; however, this oscillation doesn't affect the ODE solver PSIDE dra- 

matically. Compared to MOVCOL with DDASSL, MOVCOL with PSIDE does 

a better job in suppressing the numerical instability, and uses substantially less 

time to get comparable results after the strong oscillation point t=1.0. However, 

there is still numerical insatiability. 

3. After using more mesh points for the heat conduction problem, the numerical 

solutions becomes smoother and there are no obvious oscillations. In this case, 

PSIDE uses more time than DDASSL, but DDASSL gets a better approximation 

than PSIDE. 

4. When we require more computational accuracy, (i.e., increase the absolute tol- 

erance and relative tolerance from to  the computation time for both 

PSIDE and DDASSL increase correspondingly, but the approximation error in the 

oscillatory part doesn't change significantly. 

5 .  The heat conduction problem is provided as a numerical experiment which gives 

problems for moving mesh methods in [18], since the numerical solution has an 

oscillatory part. We see that  under the same conditions as above, MOVCOL with 

PSIDE reduces this oscillation and improves the computational efficiency. 

* once instability occurs, comparing these number will no longer make sense. However, 

we see that MOVCOL with PSIDE does a better job than MOVCOL with DDASSL in 

suppressing the instability. 
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Table 5.3: Computation time and error for the heat conduction problem with MMPDE6 
when npts = 21. 

at01 = rtol = 

computation time I I IeI ICG I M I 2  

I 

1 .05 12 6.7274 
1.2738 100.62 

t=1.0 
t = l . l  

1.5210 12.2155' 
2.3294 282.59018 

1.63 0.66 
2.74 18.52 

at01 = rtol = 

computation time I 1 14 loo l lellz 
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Table 5.4: Computation time and error for the heat conduction problem with MMPDE6 
when npts = 61 . 

at01 = rtol = 

I IeI I2 

P D 

computation time 

P D 
I IeI Im 

P D 
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Figure 5.11: Numerical solution Figure 5.12: Numerical solution 
and exact solution for the heat and exact solution for the heat 
conduction problem for MOVCOL conduction problem for MOVCOL 
with PSIDE from time=O to time= with DDASSL from time=O to 
3.0, when at01 = rtol = and time= 0.7, when at01 = rtol = 
npts = 61 and npts = 21 

Figure 5.13: Numerical solution 
and exact solution for the heat 
conduction problem for MOVCOL 
with DDASSL at  time=0.8, when 
at01 = rtol = and npts = 21 

Figure 5.14: Numerical solution 
and exact solution for the heat 
conduction problem for MOVCOL 
with DDASSL a t  time= 0.9, when 
at01 = rtol = and npts = 21 
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Figure 5.15: Numerical solution Figure 5.16: Numerical solution 
and exact solution for the heat and exact solution for the heat 
conduction problem for MOVCOL conduction problem for MOVCOL 
with DDASSL at  time=l.O, when with DDASSL at  time= 1.1, when 
at01 = rtol = and npts = 21 at01 = rtol = and npts = 21 

Figure 5.17: Numerical solution 
and exact solution for the heat 
conduction problem for MOVCOL 
with PSIDE a t  time=0.8, when 
at01 = rtol = and npts = 21 

Figure 5.18: Numerical solution 
and exact solution for the heat 
conduction problem for MOVCOL 
with PSIDE at  time= 0.9, when 
at01 = rtol = and npts = 21 
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Figure 5.19: Numerical solution Figure 5.20: Numerical solution 
and exact solution for the heat and exact solution for the heat 
conduction problem for MOVCOL conduction problem for MOVCOL 
with PSIDE a t  time=l.O, when with PSIDE at  time= 1.1, when 
atol = rtol = and npts  = 21 at01 = rtol = and npts  = 21 

5.3 Scalar Combustion Model 

The third problem we present is a reaction-diffusion equation which models a problem 

from combustion theory. This problem is described in [7], [22] as a model of a single-step 

reaction diffusion and reads 

where D = ~ e ~ / ( a d ) ,  and a = 1, d = 20, R = 5. We use atol = rtol = and 

the number of points=41. The solution represents the temperature of a reaction in a 

chemical system. For small times the temperature gradually increases from unity with 

a "hot spot" a t  x = 0. 

Figures 5.21 and 5.22 show that the numerical solution reaches a steady state at 

t = 2.9. Table 5.5 shows that  with the same order of error tolerance and the same 

number of mesh points, MOVCOL with PSIDE works way more slowly than MOVCOL 

with DDASSL. 



CHAPTER 5.  NUMERICAL EXPERIMENTS 

Figure 5.21: Numerical solution for the Scalar Combustion Model for MOVCOL with 
PSIDE from time 0 to time 2.5. The arrow shows the direction in which time increases. 

5.4 Gray-Scott Problem 

As a final example, we consider a reaction diffusion system for a chemical species. The 

Gray-Scott system is one such classical model [26]. The PDE models a chemical reaction 

in the following way: 

u + 2 v - - + 3 v ,  

where U ,  V and P are chemical species. The details of this system are given by 

dv 
- = D,vx, + uv2 - ( F  + K ) v  
d t  

(5.10) 

where D, and D, represent the diffusion rates, K is the rate of conversion of V to P, 

and F is the rate of the process that  feeds U and drains U, V and P. In this system, U 

and V react with each other and produce some spikes. 
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Figure 5.22: Numerical solution for the Scalar Combustion Model for MOVCOL with 
PSIDE from time 0 to  time 2.9 

In our experiments, we consider the following choices for the parameters: D, = 

D, = F = 0.024 and K = 0.06. The initial conditions are 

The boundary conditions are Dirichlet boundary conditions on the domain [0, 11. 

After comparing the mesh trajectory and the solution, from Figure 5.23 to  Figure 

5.30, it is not hard to see that the moving mesh code does an efficient and reliable job. 

The mesh distribution is almost uniform when the physical solution is smooth. But 

once the G-S model produces some spikes, the mesh trajectory will concentrate in the 

corresponding areas. This verifies the basic idea of the moving mesh method: the mesh 

concentrates in the areas where the physical solution changes fast. 

These two equation systems show the version of MOVCOL with PSIDE can work 

as well as  MOVCOL with DDASSL for reaction diffusion systems where the equations 
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Table 5.5: The computation time for the scalar combustion problem using MOVCOL 
with DDASSL and MOVCOL with PSIDE when MMPDE = 6. 

Figure 5.23: Numerical solution 
for the 1D Gray-Scott problem 
for MOVCOL with PSIDE at 
time=200, when atol = rtol = 

npts = 41 and with MM- 
PDE6 

Figure 5.24: Mesh trajectory 
for the 1D Gray-Scott problem 
for MOVCOL with PSIDE at  
time=200, when atol = rtol = 

npts = 41 and with MM- 
PDE6 
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Figure 5.25: Numerical solution Figure 5.26: Mesh trajectory 
for the 1D Gray-Scott problem for the 1D Gray-Scott problem 
for MOVCOL with PSIDE at  for MOVCOL with PSIDE at  
time=500, when at01 = rtol = time=500, when at01 = rtol = 

npts = 41 and with MM- lo-" npts  = 41 and with MM- 
PDE6 PDE6 

Figure 5.27: Numerical solution Figure 5.28: Mesh trajectory 
for the 1D Gray-Scott problem for the 1D Gray-Scott problem 
for MOVCOL with PSIDE at  for MOVCOL with PSIDE at 
time=1500, when at01 = rtol = time=1500, when at01 = rtol = 

npts = 41 and with MM- lop6,  npts = 41 and with MM- 
PDE6 PDE6 
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Figure 5.29: Numerical solution Figure 5.30: Mesh trajectory 
for the 1D Gray-Scott problem for the 1D Gray-Scott problem 
for MOVCOL with PSIDE a t  for MOVCOL with PSIDE a t  
time=2000, when atol = rtol = time=2000, when at01 = rtol = 

npts = 41 and with MM- npts = 41 and with MM- 
PDE6 PDE6 

strongly affect each other. 

The workstation we use to do these experiments only has one processor, which is a 

possible reason that the cost of computation for PSIDE is very large here 1251 [2]. 
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Conclusions and Future Work 

6.1 Conclusions 

In this thesis, we study the role of two different IVP solvers - DDASSL and PSIDE 

- for solving second-order partial differential equations. The IVP equation system is 

obtained by using moving mesh software which uses the method of lines as well as a 

moving collocation scheme. 

We start by briefly describing how MOVCOL discretizes second-order partial dif- 

ferential equations of a general form based on moving mesh methods and collocation. 

Basic algorithms as well as limitations of this software are then discussed. By success- 

fully implementing PSIDE with MOVCOL, which originally works with DDASSL, we 

are able to compare the two IVP solvers when incorporated into MOVCOL. 

Numerical experiments show that for a simple problem with smooth solution profiles, 

DDASSL works much faster; however PSIDE can achieve a higher order of accuracy. 

PSIDE and DDASSL can obtain the same order of accuracy for roughly the same com- 

putational time if fewer mesh points are used for PSIDE than DDASSL. For different 

choices of moving mesh equations, e.g., MMPDE4 and MMPDEG, similar results are 

obtained in terms of accuracy and computational cost. 

For the heat conduction problem mentioned in [18] as a problem for which moving 

mesh methods have difficulty, DDASSL indeed has difficulty in the time integration 

when the numerical solution has strong spurious oscillations. PSIDE is doing much 

better than DDASSL but still has strong oscillations. After we increase the number 

of mesh points, the oscillation in the solution disappear and then both PSIDE and 



CHAPTER 6. CONCLUSIONS AND FUTURE W O R K  49 

DDASSL work well. The resulting accuracy and efficiency comparison is then similar 

to the smooth case. 

For the scalar combustion problem for which the moving mesh method works very 

well [18], both versions indeed work well. However, PSIDE is much slower than DDASSL 

in this case. The successful application of PSIDE to the Gray-Scott model proves that 

our current version can also work well for systems which have more than one physical 

equations. 

As we see in those experiments, using a one processor workstation, DDASSL can 

reach the required accuracy in reasonable time. PSIDE can achieve higher accuracy 

for the same tolerance but takes a longer time to finish its task. It is our conclusion 

that while choosing one ODE solver over another in practical can depend on the user's 

requirement for both computational cost and accuracy, DDASSL is in general very 

competitive. 

Future Work 

While we have successfully implemented PSIDE with MOVCOL and done the compari- 

son with the combination of DDASSL and MOVCOL for several numerical problems, a 

lot of work could still be done in order to enable us to further investigate the potential 

of PSIDE. 

First, further numerical comparisons of the two versions could be done for the last two 

problems. We didn't test the computational accuracy of the scalar combustion problem 

and the Gray Scott problem, which would require computing a reference solution with 

large N. Further work is also needed for testing PSIDE on problems for which DDASSL 

has difficulties getting started. 

Second, we have showed in this thesis that  an DAE system of the following form 

could be obtained for second-order PDEs case by case with TVIOVCOL. The explicit 

form of (6.1) for Burgers' equation is reformulated which has only three mesh points for 

simplicity. This would provide us some guidance on how to expand this specific case to 

other cases in the future. 

Finally, and perhaps most important of all, it would be interesting to run the ver- 

sion of PSIDE with MOVCOL using a machine tuned LAPACK and machine optimized 
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BLAS and in parallel. As a parallel code, it has been showned that running PSIDE with 

four processors reduces the computation time dramatically especially when a higher 

order of accuracy is required [25], [2]. We believe those changes will increase the com- 

putational efficiency for this new version and also will be helpful in investigating other 

properties of PSIDE combined with MOVCOL. 



Appendix A 

Reformulation of ODE systems by 

example 

Consider Burgers' Equation 

1 
u(x, 0) = s i n ( 2 ~ x )  + - s i n ( ~ x ) ,  0 < x 5 1. 

2 
For sake of simplicity, we investigate the case where the mesh has only three points 

in the physical domain [0, 11, 

The equation can be written as 

where 

F = ut 

We follow the procedure of how MOVCOL forms the DAE system using cubic Her- 

mite collocation for the physical PDE and a finite different scheme for the moving mesh 

equation. We aim to obtain the following linearly implicit DAE system that can be 

handle by RADAU5 or other ODE solvers: 
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B( t ,  Y)Y1 = F(t ,  Y), (A.3) 

where 

Y = [ ~ z ( x l ) , x 2 , ~ ( x 2 ) , ~ z ( x 2 ) ~ z ( x 3 ) 1 T ~  (A.4) 

For the physical PDE, we have 

where 

Imposing the boundary conditions 

Xl = 0, x3 = I ,  u (x l )  = 0, ,u(xg) = 0  
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to the above formulas, they are simplified to 

Thus 

(A. 10) 
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and 

The two Gaussian points are 
1 1 

and 
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d@3 1 3  l 2  - = 3(1-  -) - - ( I -  -) = 1 
ds1 2 d3 
d@3 -- 1 3  1 

- 3(1+  -) - - ( I +  -I2 = 1 
d ~ 2  2 h 

d@4 3 -- 1 1 
- -(1 - -)' - (1 - -) = -0.1547005 

ds1 2 & & 
d a 4  3 1 1 
- = -(1 + -)' - (1 + -) = 2.154701. 
d ~ 2  2 4 4 

We choose arc-length function as monitor function 

M = JW 
From MMPDE4 (2.43) 

we obtain 

From MMPDE6 (2.45) 

1 
(x2)t = -[PI3 + M2 - (Mi + 2M2 + h f s ) ~ ~ ] ,  47 

which yields 

So for the case with MMPDE4 
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For the case with MMPDE6 

and 

Bg = 

Next, 

where 

- - 
0.3101~2 Q 1  0.0962 -0.0352 0 

2 . 5 2 3 2 ~ ~  Q2 -0.0962 - 0 . 1 3 1 4 ~ ~  0 

0 Q3 0.8472 0.3101(1 - ~ 2 )  -0.0352(1- x 2 )  

0 Q4 -1.8471 0.3101(1 - x 2 )  -0.1314(1 - x 2 )  

0 1 0  0 0 - - 

, 
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and 

Thus for MMPDE4, we have 

we also have 

for MMPDE6. 

For the smooth version of MMPDE4 

(A. 15) 
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The discretizations are given by a finite difference scheme 

where 
1 

%+ Azhz (yi+$ - 2 ~ i + $  + ~ i - i  1, 2- l = Y .  I - -  (A.17) 

and 
1 - 
N (A.18) 

yi+i = ki+l - ii + (xi+l - xi) ' 

After substituting (A.17) and (A.18) into (A.16), we obtain a nonlinear term like 

xl+lxi. Software like RADAU which is designed for linear implicit differential equations 

will not be able to solve this type of DAEs. Therefore we can not apply this form to 

the smooth version of MMPDE4. 
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