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Abstract 

We propose a data-smoothing method for exploring statistical interaction between a single 

nucleotide polymorphism (SNP) and non-genetic risk factors in case-parent trios. Our 

smoother can be used as a diagnostic tool for checking for the presence or the form of 

the interaction. The smoother arises from a case-only analysis conditional on parental 

genotypes. Conditioning on parental genotypes helps to  protect against the false impression 

of interaction that traditional case-only analyses can give when genotypes and non-genetic 

risk factors are not independent in the population. We discuss the theoretical motivation 

for the smoother, and illustrate its use with simulated data. We show that the effect of the 

SNP would have been missed if the interaction suggested by the smoother had not been 

modelled. 

Keywords: age-dependent genetic risks; exploratory data analysis; family-based associa- 

tion studies; gene-by-environment interaction; generalized additive models; single-nucleotide 

polymorphisms 

Subject Terms: Genetics-Statistical methods; Genetic epidemiology-Statistical meth- 

ods 
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Chapter 1 

Introduction 

1.1 Genetic Association Studies 

Population-based association studies investigate the correlation between genetic variants, 

such as the various alleles of a gene, and a trait, such as disease status, a t  the population 

level (Cardon and Be11 2001). Clayton (2003) proposes three scenarios for explaining the 

presence of associations at  the population level between the genotype a t  a particular locus 

and disease status. In the first scenario, the association arises because the locus of interest 

is the disease-predisposing locus and different genotypes have different levels of risk. In the 

second scenario, the locus of interest is not the disease-predisposing locus, but is physically 

linked to and in linkage disequilibrium with the locus of interest. Linkage disequilibrium 

(LD) is defined as the non-random association of genotypes at  different loci (Freeman and 

Herron 2007), and is synonymous with gametic phase disequilibrium or allelic association 

(Cardon and Bell 2001). Finally, in the third scenario, the locus of interest is not linked to 

the disease-predisposing locus and the association is the result of confounding by population 

admixture or stratification. A "real" association is represented by the first two scenarios. 

In contrast, population associations that result from population stratification or admixture 

are of little interest with respect to the investigation of disease aetiology. As a result, it 

is important that these "spurious" associations are excluded from the study by design, 

analysis, or both (Clayton 2003). 

The main goal of a candidate gene association study is to determine if the gene under 
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study has a direct causal relationship with disease status. However, this goal is seldom 

possible in association studies involving unrelated individuals (e.g. case-control studies), 

because such studies are generally not able to distinguish between a gene having a direct 

causal effect on disease status, and a gene in linkage disequilibrium with the causal gene 

(Thomas 2004). Association studies alone are not enough to establish a causal link between a 

genetic variant and a disease; however, according to Thomas (2004), appropriately designed 

association studies are able to eliminate those associations that result from population 

stratification. 

Ideally, association studies that are conducted on a population basis use well established 

epidemiological study designs such as case-control or cohort designs. With both cohort and 

case control study designs, careful attention must be paid to the selection of appropriate 

controls; for instance, ethnic origin must be carefully controlled through matching of cases 

and controls in order to avoid detection of spurious associations (Thomas 2004). In con- 

trast, family-based association studies investigate the correlation between genetic variants 

and trait differences on the basis of the nuclear family. Therefore, the problems usually as- 

sociated with population substructure are reduced or eliminated through the use of internal 

(i.e. family) controls (Lazzeroni and Lange 1998). 

Family-based study designs are a popular strategy for protecting against spurious asso- 

ciations due to hidden population structure. In the simplest form of a family-based design, 

genotype information is collected from unrelated cases and their parents. Additional infor- 

mation on non-genetic factors, such as the age of the case may also be collected. In essence, 

the non-transmitted genotypes of the parents of the case are used as the reference, rather 

than the genotypes of controls from the general population. The focus of this project will 

be on case-parent trio data. 

Several innovative methods have been proposed for the analysis of case-parent trio data. 

Spielman et al. (1993) introduced the transmission/disequilibrium test (TDT), based on 

scoring the transmissions of heterozygous parents to affected children. A convenient feature 

of the TDT is that it requires no knowledge of the penetmnce or risk model for the disease. 

To increase the power to detect linkage and association between a genetic marker and 

a disease with a variable age of onset, Li and Fan (2000) partially specify the disease 
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penetrance with a Cox proportional-hazards (PH) model for age at onset (Collett 2003). 

Their PH model leads to  a score test for linkage and association that is robust to  the 

form of the underlying baseline hazard rate, under the PH assumption. However, both 

the T D T  and robust score test have limitations as they cannot incorporate age-dependent 

genetic risks (i.e. statistical interaction between age and the genotype) which imply non-PH. 

Since we are interested in exploring statistical interaction between age and genotype in our 

example dataset, we need exploratory and analytical methods that allow for the possibility 

of interaction. As we will discuss in Chapter 3, conditional logistic regression is the analytic 

method we chose to  follow up on the results of our exploration of statistical interaction. If 

our smoother suggests that interaction is present, conditional logistic regression allows us 

to  include interaction terms in the risk model. 

1.2 Transmission/Disequilibrium Test (TDT) 

The T D T  is a family-based test for linkage in the presence of association or for association 

in the presence of linkage (Ewens and Spielman 2003). The TDT was originally proposed as 

a method for reducing or eliminating the detection of spurious associations resulting from 

population stratification (Spielman et al. 1993). The TDT achieves this goal by creating 

an  internal control group via conditioning on the observed parental genotypes. Specifically, 

the marker alleles not transmitted to  the affected children become the control set for the 

marker alleles transmitted to  the affected children. 

Throughout this discussion, consider a diallelic locus with alleles + and -. The null 

hypothesis for the T D T  is a composite null hypothesis of no association or no linkage. 

The alternative hypothesis is the hypothesis of association and linkage. If the marker 

locus and the disease locus are not linked or not associated then, with respect to  the 

genotypes of the child a t  the marker locus, our case-parent trios are just a random sample 

of trios from the population. In other words, in the absence of linkage or association, 

the fact that the trios are ascertained through a diseased case should not influence the 

genotype distribution of the marker in the cases. Thus, under the null hypothesis, the allelic 

transmissions of heterozygous parents to  affected children should have the same distribution 
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Non-Transmitted Allele 
Transmitted Allele + - Total 

- n21 n22 n2. 
Tot a1 n 1 n. 7 2n 

Table 1.1: Contingency table for the transmission/disequilibrium test. 

as allelic transmissions of heterozygous parents to a random sample of children. 

Table 1.1 summarizes all the allelic transmissions from parents to cases. The n l l  and 

7122 entries of Table 1.1 represent transmissions from homozygous parents, and as a result, 

these transmissions can be discarded from the analysis because they are not informative. 

Such transmissions are not informative because there is no variation in what they transmit; 

homozygous parents are only able to transmit the allele for which they are homozygous. 

In contrast, the transmissions from heterozygous parents are informative because they can 

transmit either one of their two available alleles. According to  Mendelian law, each allelic 

transmission from a heterozygote parent to a random child may be considered to be an 

independent Bernoulli trial with p = 0.5. Under the composite null hypothesis of no linkage 

or no association, the proband may be taken to be a random child. Under the more spe- 

cific (restricted) null hypothesis of no linkage, all affected children within a family (except 

for monozygotic twins) may be taken to be random children. As illustrated in Table 1.1, 

there is a total of n12 + 7x21 cases with heterozygous parents. Hence, under the null, nl2 

is binomially distributed with probability of success equal to 0.5, mean (n12 + n21) , and 
2 

variance (n12 + n21) 
4 

. Thus, the null hypothesis will be rejected if n,ls differs too much from 

Mendelian expectations. The binomial test statistic can be standardized by centering with 

its mean and scaling with its standard deviation under the null hypothesis. This process 

produces a z-score, which using the normal approximation to  the binomial, is asymptoti- 

cally normal under the null hypothesis. Furthermore, squaring the z-score produces a test 

statistic that is asymptotically X2 with one degree of freedom. Therefore, the binomial test 
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statistic can be written as: 

TDT = 
(nl2 + n21, 

which after simplification, reduces to  

TDT = 
(n12 - 7 2 2 1 ) ~  

n12 + n2l 

However, since we are using a continuous distribution (i.e. normal) to approximate a 

discrete distribution (i.e. binomial), a continuity correction can improve the accuracy of the 

approximation. After such a continuity correction, the transmission/disequilibrium statistic 

becomes: 

1.3 A Log-Linear Model of Disease Risk 

Self et al. (1991) propose a likelihood approach to the analysis of case-parent trio data. 

They begin with a statistical model that characterizes the multiplicative factor by which 

the risk of developing disease in individuals with one set of covariate values differs from the 

risk of developing disease in individuals with a different set of covariate values. With its 

focus on describing relative risk, their model takes the traditional epidemiologic approach 

t o  discovering the factors underlying disease aetiology. Disease risks depend only on the 

child's unordered genotype G, and covariate values X and are log-linear in the sense that 

or 

1% ( P ( D  = 1 I G, = g, X = x))  = log(k) + z(g)P + h(x)y, 

where D = 1 if the child develops the disease during the period of the disease incidence 

study and is 0 otherwise, k is a proportionality constant, P and y are unknown coefficients 

estimated from regression analysis, h(x) is a user-specified function of x ,  and z ( g )  codes 
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the child's unordered genotype. For instance, two copies of the - allele could be coded as 

2, one copy of the - allele could be coded as 1 and zero copies of the - allele could be 

coded as 0. This coding method implies that risk changes by a multiplicative factor exp(P) 

with each additional copy of the minor allele. Therefore, if the values of X are fixed, the 

risk for heterozygotes is exp(P) times that for individuals homozygous for the major allele, 

and the risk for individuals that are homozygous for the minor allele is exp(P) times that 

for heterozygotes. One further point of interest regarding the risk model is that it does not 

include terms for statistical interaction between the SNP and the non-genetic risk factor. 

Moreover, if the non-genetic covariate X is age and the follow-up time for the disease- 

incidence study is short, the risk model (1.3) is well approximated by the Cox proportional 

hazards model for disease age-at-onset proposed by Li and Fan (2000), with baseline hazard 

rate Xo(x) proportional to exp (h(x)y). To see why, suppose the study period is of length 

dx and note that P ( D  = 1 I G = g, X = x) is the probability that a disease-free subject of 

age x with genotype g at the beginning of the study develops the disease by the end of the 

study, or 

P ( D  = 1 I G = g, X = x) = P(disease in (x, x + dx) I disease free at age x, G = g) . 

The hazard rate, X,(x), for a disease-free subject of age x with genotype g is their instan- 

taneous probability of developing the disease, or 

P(disease in (x, x + dx) I disease free at age x, G = g) 
Xg(x) = lim 

~ X L O  dx 

Thus, for a short study period of length dx, 

P ( D = 1  ( G = g , X = x )  
E Xg (x) . 

dx 

Substituting the right-hand side of expression 1.3 for P ( D  = 1 I G = g, X = x) in expression 

1.4 gives: 

Comparing equation 1.5 to the Cox proportional hazards model 
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k 
we see that the baseline hazard rate Xo(x) = - exp(h(x)y). Finally, noting that k and 

dx 
dx are both constants with respect to x, we obtain the result that Xo(x) is approximately 

proportional to exp(h(x)y). 

Although Self et al. (1991) use a regression approach, their risk model is not a logistic 

regression model. In a logistic regression model, the log-odds of disease would be modelled 

as linear in the predictors. In contrast, the log-linear risk model used by Self et al. (1991) 

models the log-risk of disease as linear in the predictors. However, as will be shown in 

Chapter 2, the likelihood for the Self et al. (1991) model, and hence, the likelihood for our 

extension of the Self et al. (1991) model, is very similar to that of a conditional logistic 

regression model for matched case-control data (Hastie and Tibshirani 1990). As a result, 

we can exploit statistical software, such as the clogit () function in the R survival package, 

that is readily available for conditional logistic regression analysis. 

The statistical model proposed by Self et al. (1991) was developed for estimating the 

relative risk of disease given a particular Human Leukocyte Antigen (HLA) haplotype. The 

Human Leukocyte Antigen complex or major histocompatibility complex (MHC) is the 

name given to a group of genes located on human chromosome six. The HLA genes code 

for cell-surface antigen-presenting proteins that are critical to the functioning of the immune 

system, and as a result are highly polymorphic. Since Self et al. (1991) are concerned with 

the risk associated with certain haplotypes in the HLA region of the genome, their risk 

model is based on the assumption of an infinitely polymorphic marker, where everyone is 

heterozygous for different alleles (haplotypes). In contrast, the risk model that we develop 

in Chapter 2 is based on a diallelic marker. The implications of this distinction will be 

discussed more fully in Chapter 2. 

1.4 Generalized Additive Models 

The following description of generalized additive models is based on work by Hastie and 

Tibshirani (1990). Consider the simplest case of the linear regression model, with n mea- 

surements of the response variable Y and n measurements of a single predictor variable, 
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X :  

E ( Y  ( X )  = c r + X P ,  

where cr and the p are regression parameters that must be estimated from the data. The 

goal of the linear regression model is to describe the dependence of E ( Y  I X ) ,  as a linear 

function of the predictor, X .  As long as the dependence of E ( Y  I X )  is linear, model 

1.6 is extremely useful. When E ( Y  I X )  does not depend linearly on X ,  a common "fix" 

is to incorporate non-linear terms for the predictor into the linear regression model. For 

example, if the dependence of E ( Y )  on X is believed to be quadratic, then an X 2  term can 

be added so that 

E ( Y  I X )  = + XPI + x2,&. 

As before, a, and p2 are regression parameters that must be estimated from the data. 

However, deciding what polynomial terms to  include in the model can be difficult as the 

dependence of E ( Y  1 X )  on X is often not easy to determine by simple inspection of a 

scatterplot of the data. Instead, smoothers may be used to  allow the data itself to reveal 

the functional form of E ( Y  I X ) .  

Scatterplot smoothers are extremely useful because they reveal the true functional form 

of the data without imposing a rigid parametric model on the dependence between the 

response variable and the predictor variable. Since we are interested in describing the 

dependence between E ( Y  I X )  and X as flexibly as possible, the linear regression model 

1.6 can be generalized as follows: 

where f (X)  is an unspecified function. 

By definition, a smoother is a tool that visually summarizes the dependence between the 

response variable Y and the predictor X by producing an estimate of the dependence that 

is less variable than the response itself. The visual summary of the dependence produced 

by a smoother is called a smooth, and therefore, the visual estimate of f (X)  from equation 

1.7 is referred to as a smooth. Commonly used smoothers include the running mean (i.e. 

moving average) smoother and the loess (i.e. local polynomial regression fitting) smoother. 

Most smoothers employ local averaging, where a subset of the values of the response Y with 
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associated values of the predictor X close to some target value of the predictor are used to 

produce an estimate of the mean response at the target value. We refer to a neighbourhood 

as the subset of (X, Y) pairs with predictor values close to the target value. Therefore, two 

obvious questions are: (i) How big should the neighbourhoods be? and (ii) How should the 

responses in each neighbourhood be averaged? 

The main difference between types of smoothers is their method of averaging the re- 

sponse values within each neighbourhood. For instance, the running mean smoother gives 

equal weight to each value in the neighbourhood. In contrast, in loess, the response values 

in the neighbourhood are weighted according to their distance from the target value using 

a tri-cube weight function (Cleveland 1979). The size of the neighbourhood used for the 

smoothing is typically represented in the form of an adjustable smoothing parameter. For 

example, in loess, the smoothing parameter indicates the fraction of the data to include in 

the neighbourhood, and can take any value between zero and one. The smoothing parame- 

ter in loess is referred to as the span. Other smoothers, known as smoothing splines rely on 

a smoothing parameter referred to as the target equivalent degrees of freedom, but we will 

not consider these here. 

A trade-off between bias and variance exists with respect to the chosen size of the neigh- 

bourhoods. Large neighbourhoods can produce estimates of E(Y ) X )  with low variance but 

high bias and small neighbourhoods can produce estimates with small bias but high vari- 

ance. Intuitively, this means that, in general, the larger the neighbourhoods the "smoother" 

the estimate of the dependence between E(Y I X )  and X .  

Typically, we have more than one predictor variable of interest. Thus, model 1.7 can be 

extended to multiple predictors as follows: 

where f (XI) and f (X2) are both unspecified functions that can be estimated iteratively 

using a backjitting algorithm. For instance, given an estimate, fl (XI),  of f l  (XI):  

1. Estimate f2(X2) by smoothing the residual Y - f1(x1) on X2. 

2. Refine the estimate of f l  (XI)  by smoothing Y - f 2 ( ~ 2 )  on XI 
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3. Continue this process until the estimates of fi(X2) and fl(X1) no longer change 

between iterations. 

The models discussed above (Equations 1.6, 1.7 and 1.8) are referred to as additive 

models. They are additive models because of the underlying assumption that the predictor 

variables are additive in their effects. In other words, once the model has been fit, we can 

examine the marginal effects of the predictors separately. As a result, additive models are 

approximations of the true response surface. 

Equations 1.7 and 1.8 are both generalizations of the familiar linear regression model 

(1.6) because they do not impose a rigid parametric structure on the relationship between 

the response variable and the predictors. We can generalize these additive models further 

to accommodate non-normal responses as: 

where g is the "link7' function in a generalized linear model (McCullagh and Nelder 1989), 

E (fj(xj)) = 0 and the fj's are univariate smooth functions, one for each of the p predictors. 

Scatterplot smoothers similar to those discussed above can be used to estimate each of 

the fj's, and after the functional form of each of the fj's has been determined, standard 

generalized linear modelling incorporating the appropriate terms for the predictors (e.g. 

polynomial terms) can be undertaken. 

1.5 Thesis Overview 

In this thesis, we propose a data-smoothing method for exploring statistical interaction 

between a SNP and a non-genetic risk factor in case-parent trios. Chapter 1 provides back- 

ground information on genetic association studies and generalized additive models. Chapter 

2 develops the smoothing approach and Chapter 3 applies the smoothing approach to a sim- 

ulated dataset. Chapter 3 also follows up on the exploratory findings with likelihood-based 

tests. Finally, Chapter 4 summarizes the important results and discusses the possibilities 

for future research. 



Chapter 2 

Methods 

This chapter describes the notation used throughout and also presents the statistical moti- 

vation for the likelihood-based smoother. 

2.1 Notation 

Let D and X be the case's disease status and non-genetic covariate values, respectively. 

In this study design, the disease status for the child (case) is D = 1. Also, let G, = 

( (MI,  M2), (Fl, F2)) be the parental genotypes, where (MI, M2) and (Fl, F2) denote, re- 

spectively, the unordered genotypes of the mother and father with respect to grandparental 

origin. There are four possible combinations (MI,  Fl), (MI,  F2), (M2, Fl) and (M2, F2) of 

parental transmissions that could lead to the child. Following the notation of Self et al. 

(1991), we call this set of four possible combinations *. Further, let T, be the specific allele 

combination inherited by the child. We assume that all parental genotypes are available. 

Self et al. (1991) assumed an infinitely polymorphic marker rather than a diallelic 

marker, and so in their context T,, which is the specific allele combination inherited by the 

child, could be observed. Consequently, their likelihoods are based on observed data T,; 

in contrast, we have based our likelihoods on observed genotype data for a diallelic, single 

nucleotide polymorphism (SNP). As a result, we cannot directly observe T,. With SNPs, 

only G,, where G, is the unordered genotype of the child with respect to parental origin, 

can be observed. Since parental genotypes Gp and parental transmissions T, together imply 
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the offspring genotype G,, in our model we write G, = g(Gp, T,). 

We are interested in modeling the risk as function of the number of risk alleles that 

a child carries. In this context, we arbitrarily label the risk allele as the rarer, or minor 

allele, and denote it with a - sign. The major, or common, allele is denoted with a + 
sign. By convention, the major allele is listed first and the minor allele is listed second in 

heterozygotes. Given a diallelic locus, this means that a child can carry zero, one or two 

copies of the risk allele. Throughout, we code Gc as Z(G,) = (Z1, Z2) where (21, 2 2 )  = (0,O) 

if G, includes two copies of the + allele, (21, Z2) = (1,O) if G, includes one copy of the + 
allele and one copy of the - allele, and (21, Z2) = (1 , l )  if G, includes two copies of the - 

allele. 

2.2 Risk Model 

We use the following generalization of the Self et al. (1991) risk model presented in Chapter 

1 to accommodate statistical interaction between the SNP and the non-genetic risk factor: 

P ( D  = 1 I Gc = g,, X = x) = exp (k + z(g,)P + h(x) + z(g,) f (x)) . (2.1) 

In our generalization, k is the log-risk of disease in individuals with z(g,) = (0,O) and h(x) 

= 0. In this model, @ is a vector of regression parameters, with 0 = (PI, 0 2 )  and h(x) is 

the value of an unspecified function h when X = x. The function, f (z) = (fl(x),  f 2 ( ~ ) ) ~ ,  

is a vector with unspecified scalar elements f l  (x) and fi(x),  where f l  and f2  are smooth 

functions. 

Under this model, the risk for heterozygotes, at  a fixed value of the non-genetic covari- 

ates, X = x, is exp (Dl + f 1 (x)) times that of homozygotes for the major allele. Compar- 

atively, the risk for individuals carrying two copies of the minor allele is exp (p2 + f2(x)) 

times that of heterozygous individuals. Thus, under this model, both of the genotype rela- 

tive risks can vary across the levels of the non-genetic covariate, x. In this sense, the model 

allows for statistical interaction between G, and X. When fl(x) = f2(x) = 0 for all x,  

there is no interaction. We have deliberately left f = ( f l ,  f2)T unspecified. In this project, 

we propose to let the data tell US its form through exploratory plots that we will motivate 

in the next section. 



CHAPTER 2. METHODS 13 

2.3 Likelihoods Based on Transmission Data 

If we assume that (i) G, and X are conditionally independent given G,, and (ii) there is 

Mendelian segregation, then after conditioning on the genotype information of the parents, 

the disease status of the child, and the non-genetic covariate values of the child, we obtain 

the following result: 

In equation 2.2, g, = g(gp, t )  and g, = g(gp, t,), and the sum in the denominator is over the 

four possible values of T,. We now derive equation 2.2. From the definition of conditional 

probability, the probability shown on the left-hand side of equation 2.2 can be expanded as 

follows: 

Since U{T, = t.} = R ,  the sample space, the event {Gp = gp} can be partitioned as 
* 

so that 

We can therefore re-write 

Since T, and X are assumed to be conditionally independent given Gp, equation 2.4 becomes 
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Under the assumption of Mendelian segregation of the SNP in the population, the above 

equation simplifies further to 

As noted earlier in Section 2.1, the parental genotypes, Gp, along with their transmissions 

Tc to the child imply the child's unordered genotype G,. Therefore, we end up with 

Substituting equation 2.1 into equation 2.6 we obtain: 

which is the same expression as that presented in equation 2.2. Therefore, if we had an 

infinitely polymorphic genetic marker, so that the transmissions were always observable, 

the likelihood allowing for statistical interaction between Gc and X would be: 

N 
exp (z(gc)P + z(gc)f (XI)  

(', f ,  = n , exp ( z ( g * ) ~  + z(g*)f(x)) 
i=l 

where N is the number of case-parent trios. Equation 2.7 could then used to derive the 

maximum-likelihood estimators for the genetic risk parameters P and f .  

2.4 Likelihoods Based on Genotype Data 

In the case-parent study design, the observed data consists of the genotype of the case, 

G,, the genotypes of the parents, Gp and the non-genetic covariate values, X of the case. 

However, by conditioning on Gp and X we avoid the estimation of nuisance parameters, 

those parameters other than pl ,  P2, f l  and f2  in the risk model (2.1). Equation 2.2 provides 

a way to calculate the probability of obtaining G,, conditioned on Gp and X. However, 
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the expression P(G, = g, I Gp = gp,X = x, D = 1) represents what we will call the 

unconditional likelihood contributions of a trio with Gp = gp and X = x. The motivation for 

our smoother is to extract information about (Dl, f l )  by conditioning further on {G, = ++ 
or +-) -- ( 2 2  = O ) ,  and to extract information about (D2, f2) by conditioning further 

on {Gc = -- or +-) = {Z1 = 1). With this in mind, we refer to the probabilities, 

P(G, = g, ( Z2 = O,Gp = gp ,X = x , D  = 1) and P(G, = g, I Z1 = l , G p  = gp,X = 

x, D = 1) as the conditional likelihood contributions of a trio with Gp = gp and X = x. 

These conditional likelihood contributions provide the motivation for the exploratory plots 

presented in Chapter 3. However, we will first consider the unconditional likelihoods as 

they are required to derive the conditional likelihoods. These conditional likelihoods are 

discussed in Sections 2.6 and 2.7. 

2.4.1 Unconditional Likelihood Tables 

Tables 2.1 - 2.3 list the possible outcomes for T,, the corresponding outcomes G,, the 

codings Z(G,) = (Z1, Z2), and the probabilities associated with each outcome of T,, as 

calculated using equation 2.2. These probabilities are first calculated up to a constant 

of proportionality, and then exactly, for each parental mating type. Of the six possible 

unordered parental mating types from a diallelic locus, only three lead to variation in G,, 

and are therefore considered informative: 

2. Gp = (--,+-) or (+-, --), and 
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GP Tc Gc (Z1, Z2) Numerator of Equation 2.2 P(Tc I Gp, X, D) 

Table 2.1: Unconditional likelihood information for first parental mating type, Gp = 
(++, +-) or (+-, ++) 
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Table 2.2: Unconditional likelihood information for second parental mating type, G, = 

(--, +-) or (+-, --) 
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The information presented in Tables 2.1 - 2.3 can be used to calculate the probability 

of obtaining a case with a particular genotype from a particular parental mating type. For 

example, if we restrict our attention to the first parental mating type, and if Gp = (++, +-), 

the probability that we observe a case with genotype G, = (+-) can be calculated using 

the following information: 

1. {Tc = (M1,F2)) + {Gc = +-), and {T, = (M2, F2)) + {G, = +-). 

Thus, using the information provided in Table 2.1, G, = (+-) with probability 

which simplifies to 

The probability of observing the other possible levels of G, can be calculated analogously 

using the appropriate information from Tables 2.1 - 2.3. 

The exact probabilities P(T, = t ( Gp = gp ,X = x, D = 1) for each of the three 

informative parental mating types are obtained by applying equation 2.2. Specifically, we 

divide the numerator of equation 2.2 for the specific T, value of interest by the sum over 

all possible outcomes of T, for that mating type. For example, consider the second row of 

Table 2.2. Given that Gp = (--, +-), then for T, = (MI,  F2), the entry for (Z1, Z2) must 

be (1,l). Consequently, the numerator of equation 2.2 is 

The numerator of equation 2.2 is similarly obtained for the other three outcomes of T,. 

Summing the numerators for all four possible outcomes of T,, the denominator of equation 
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2.2 is therefore: 

Dividing the numerator by the denominator, we obtain 

as specified in the entry for P(Tc I G,, X, D)  in the second row of Table 2.2. 

2.5 Motivation for Smoothing 

Conditioning on Z2 = 0 and Z1 = 1 motivates a smoothing strategy for exploring the 

functional form of fl and f2,  respectively. Specifically, we propose to fit two generalized 

additive logistic models 

1. Z1 on X ,  with an intercept term, in which the trios from the first mating type of 

Gp = (++, +-), or (+-, ++) have a zero offset and trios from the third mating type 

of G, = (+-, +-) have an offset of log(2). 

2. Z2 on X with an intercept term in which trios from the second mating type of G, = 

(+-, --) or (--, +-) have zero offset and trios from the third mating type of G, = 

(+-, +-) have offset - log(2). 

The resulting smoothed values of f l  and f2 will provide insight into the form of the statistical 

interaction between the child's genotype and non-genetic covariates. The offset referred to 

above is simply a predictor with a fixed coefficient that allows us to specify the correct 

conditional likelihood (Vittinghoff et al. 2005). 

However, conditioning further on Z2 = 0 and Z1 = 1 results in a loss of information. 

For example, consider the case-parent trios from the third parental mating type, G, = 
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(+-, +-). By conditioning on the event Z2 = 0, for inference on (PI, f l ) ,  we exclude 

case-parent trios with G, = (--) from the analysis. Without conditioning, trios with 

G, = (+-, +-) and G, = (--) would have contributed information to the likelihood. As 

a result, not all of the information on fl is incorporated into the smooth. Such conditioning 

is equivalent to combining all trios from the first mating type with trios having G, = (++) 

or (+-) from the third mating type. The loss of information resulting from conditioning 

on Z1 = 1 is analogous to the loss of information resulting from conditioning on Z2 = 0. 

Conditioning on Z1 = 1 amounts to combining all trios from the second mating type with 

trios from the third mating type having G, = (+-) or (--). 

2.6 A Smoother for fi by Conditioning on Z2 = 0 

2.6.1 First Parental Mating Type, G, = (++, +-) or (+-, ++) 

Using the probabilities presented in Table 2.1 and conditioning on {G, = (++) U (+-)), 

or {Z2 = 0) , we obtain 

and 
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The two values of G, are synonymous with values of Z1. Thus, for these trios we can rewrite 

the conditional likelihood contribution, given Z2 = 0 as 

This expression has the same form as the likelihood contribution from a generalized additive 

logistic model for Z1 on X ,  with P1 as the intercept. We lose no information from these 

trios by conditioning on Z2 = 0 as Z2 = 0 for all trios from the first mating type. 

2.6.2 Second Parental Mating Type, G, = (--, +-) or (+-, --) 

Referring to the probabilities presented in Table 2.2 and conditioning on Z2 = 0, we obtain 

Therefore, these trios make no contribution to the conditional likelihood for (PI, f l ) .  How- 

ever, these trios would not have contributed any information about these parameters any- 

way, even if we did not condition on Z2 = 0 because 

Thus, no further information is lost for these trios by conditioning on Z2 = 0. 

2.6.3 Third Parental Mating Type, G, = (+-, +-) 

Table 2.3 shows that there are two possible outcomes for G, when Gp = (+-, +-). These 

two outcomes for G, correspond to Z1 = 0 or Z1 = 1. By referring to Table 2.3 and 
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conditioning on 22 = 0, we obtain 

When 22 = 0, G, must be either (++) or (- -). Hence, 

Thus, the conditional likelihood contribution of a case-parent trio with Gp = (+-, +-), 

given 22 = 0 can be re-written as 

Equation 2.8 is also of the same form as the likelihood contribution from a generalized 

additive logistic model for Z1 on X with intercept Dl. However, equation 2.8 contains an 

offset term, log(2). For this parental mating type, some information about and fl is lost 

by conditioning on 22 = 0. First, as noted in Section 2.5, trios with G, = (--) that would 

have contributed to the unconditional likelihood are excluded. Second, even for those trios 

with 22 = 0, only partial information about Dl and fl is used. Referring to Table 2.3, we 

see that without the conditioning, such trios would have contributed 



C H A P T E R  2. METHODS 24 

These unconditional likelihood contributions can be combined into a single expression 

that is analogous (but not equal) to the conditional likelihood contribution given in equation 

2.8. 

2.7 A Smoother for fi by Conditioning on Z1 = 1 

To explore the functional form of f2 we use a similar approach, except this time we condition 

on {Gc = +- or --) - {Z1 = 11, rather than on Z2 = 0. The derivation of the conditional 

likelihoods for the f2 smoother is analogous to the derivation of the conditional likelihoods 

for the fl smoother. Consequently, we skip the details and present only the final likelihoods. 

2.7.1 First Parental Mating Type, G, = (++, +-) or (+-, ++) 

Referring to Table 2.1 and conditioning on Z1 = 1, we obtain 

2.7.2 Second Parental Mating Type, G, = (+-, --) or (--, +-) 

Referring to Table 2.2 and conditioning on Z1 = 1, we obtain 

and 

The outcomes G, = (+-) and G, = (--), are synonymous with values of Z2; therefore, the 

conditional likelihood contribution of the second mating type, given Z1 = 1 can be written 
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2.7.3 Third Parental Mating Type, Gp = (+-, +-) 

As shown in Table 2.3, (Z1, Z2) = (0,O) for G, = (++); therefore, 

As a result, trios with G, = (++) and parents in the third mating type do not contribute 

anything to the conditional likelihood. In contrast, by referring to Table 2.3, we obtain 

When Z1 = 1, G, must be either (+-) or (--). Hence, 

The two values of G, from the third parental mating type, G, = (+-, +-) are synonymous 

with values of Z2; therefore, we can re-write the conditional likelihood contribution from 

trios of the third parental mating type, given Z1 = 1 as 

The present chapter discussed the theoretical development of our method for investigating 

genotype-by-environment interaction in case-parent trios. In the next chapter, we demon- 

strate how this method can be applied using a simulated dataset. 



Chapter 3 

Application 

This chapter describes the simulation procedure used to generate the simulated dataset, 

diabdat. This chapter also presents descriptive summaries of the simulated dataset. Fol- 

lowing the descriptive summaries, we apply our smoothing approach to explore the statis- 

tical interaction present in the simulated dataset. Finally, we confirm the results of the 

exploratory analysis with likelihood-based tests. 

3.1 Simulation Procedure 

The simulated dataset consists of 600 case-parent trios. Genotypes were coded using a + to 

represent the major allele, and a - to represent the minor allele. The 600 simulated case- 

parent trios were randomly sampled from a subdivided population of infinite size, comprised 

of two non-mixing subpopulations in Hardy-Weinberg equilibrium. The single nucleotide 

polymorphism (SNP) had a minor allele frequency of 0.3 in the first subpopulation, and 0.5 

in the second subpopulation. 

From each infinite subpopulation, 1,000,000 individuals were randomly sampled to form 

500,000 mating pairs. For each mating pair, one child was generated according to Mendelian 

segregation probabilities. Each child was then randomly assigned a value for the dietary 

factor. In the first subpopulation, the distribution of the dietary factor was normal with 

a mean of 15 and a standard deviation of one. In contrast, the distribution of the dietary 

factor in the second subpopulation was normal with a mean of ten and standard deviation 
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of one. Therefore, the dietary factor was simulated independently of age and gender, but 

the dietary factor and SNP genotypes were correlated due to their mutual dependence on 

subpopulation membership. 

The parent-child trios from the two subpopulations were then combined into one large 

dataset, representing a random sample of 1,000,000 trios from the overall population. Age 

and gender were then simulated for each child in the dataset. The age distribution for the 

children was normal with a mean of 40 years and a standard deviation of 15 years, and 

was simulated independently of the child's SNP genotype, gender and the dietary factor. 

Although rare, any ages greater than 100 and less than zero were re-distributed uniformly 

between zero and 20 years. The gender of each child was simulated to be male or female 

with equal probability. The gender of the children was assigned independently of the child's 

SNP genotype, age and the dietary factor. Male cases were coded with a one and females 

were coded with a zero. 

The probability of disease in the combined population was set to be - 1.7/lOOO, in order 

to mimic the yearly incidence of type 1 diabetes in northern European populations such as 

Sweden (A. Lernmark, personal communication). Given the small probability of disease, a 

large number of children, and therefore a large number of mating pairs had to be simulated 

to generate our final dataset of 600 case-parent trios. 

The next phase of the simulation was to assign disease status to each of the children 

present in the data set. The disease status of a child was represented using a zero or one; a 

disease status of zero represented an unaffected child and a disease status of one represented 

an affected child. The case genotype information, G, = g, was coded as follows: 

1. zl(g) = 1 if g = (+-) or (--), else zl(g) = 0, and 

2. z2(g) = 1 if g = (--) , else z2(g) = 0. 

The log-risk model used to simulate the cases was 
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mgeno dgeno cgeno age sex diet 
+- +- +- 11.9 1 15.6 

Table 3.1: First five rows of the diabdat dataset. 

where A represents the age of the case in years, and S represents the gender of the case. In 

equation 3.1, I ( a )  = 1 if a > 13 and 0 otherwise and log(.03) is the log-risk in (++) females 

aged 13 years. Equation 3.1 was used to assign a disease status to each child in the combined 

dataset. Children with disease status of zero and their parents were eliminated from the 

dataset. Trios in which both parents were homozygous were also eliminated. Six hundred 

case-parent trios were selected a t  random from the remaining trios to produce diabdat. 

Therefore, the resulting dataset consists of the diseased child (case), the genotypes of his/her 

parents, and the case's age, gender and dietary factor value. Table 3.1 shows the first five 

rows of diabdat. A description of the contents of each column is presented below: 

1. mgeno, the mother's genotype, 

2. dgeno, the father's genotype, 

3. cgeno, the child's (case's) genotype, 

4. age, the age-of-onset for the child in years, 

5. sex, the gender of the child, coded as a 1 for males and a 0 for females 

6. diet, the child's dietary factor value. 
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Age (years) 

Figure 3.3: Age-of-onset distribution for the cases in the simulated dataset. 

The theoretical disease risk curves as a function of age, for different gender and genotype 

combinations are presented in Figure 3.1. The curves reflect the peak incidence of type 1 

diabetes around puberty. They also mimic the male preponderance among older-onset 

patients, observed in the Swedish population (A. Lernmark, personal communication). For 

example, as shown in Figure 3.2 for the (++) genotype, the risk curve for males is higher 

than that for females at age > 15 years. 

3.2 Descriptive Summaries 

3.2.1 Marginal Distributions in Cases 

The proportions of males and females among the sampled cases were approximately equal; 

of the 600 cases, 314 (52%) were male and 286 (48%) were female. Figure 3.3 illustrates 

the age-of-onset distribution for the diabdat dataset. The age-of-onset for the simulated 

data set had a range of 3.2 - 22.9 years of age, with a mean age of 13.4 years and standard 

deviation of 3.6 years. The dietary factor distribution for the cases is presented in Figure 
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Dietary Factor (units) 

Figure 3.4: Distribution of the dietary factor for the cases in the simulated dataset. 

3.4. As expected, the case distribution of the dietary factor is bimodal, with peaks centred 

on the subpopulation mean values of ten and 15. Overall, the range of the dietary factor 

was 7.1 - 17.6 units, with a mean of 12.6 units. Ignoring gender, age and the dietary factor, 

188/600 = 31% of the cases had zero copies of the risk allele, 2831600 = 47% of the cases 

had one copy of the risk allele and 129/600 = 22% of the cases had two copies of the risk 

allele. 

3.2.2 Joint Distributions in Cases 

We next looked at pairwise distributions of the risk factors in order to assess the possibility 

of their association in cases. Such an association would be consistent with statistical inter- 

action between the risk factors provided they  are independent  in the populat ion (Piegorsch 

et al. 1994). 

Figure 3.5 presents the age-of-onset distribution for the cases by gender and shows that 

male cases have a slightly older mean age-of-onset than female cases. The mean age and 
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Gender (0 = Female, 1 = Male) 

Figure 3.5: Case age-of-onset distribution by gender in the simulated dataset. 

standard deviation for the female cases was 13.12 f 3.45 years. In comparison, the mean 

age and standard deviation for the male cases was 13.72 f 3.78. A t-test revealed that the 

mean age-of-onset for the male cases was statistically different from the mean age-of-onset 

for the female cases (a = 0.05, df = 598, t = -2.007, p-value = 0.045). Such an association 

between age-at-onset and gender was simulated through an interaction term in the risk 

model (equation 3.1), and leads to a male preponderance among older-onset cases (e.g. 

2 15 years of age). To further verify that this preponderance was reflected in our data, the 

male and female cases were grouped into two age categories: < 15 years of age and 2 15 

years of age (Table 3.2). As expected, a goodness-of-fit test of independence revealed that 

the greater number of males in the 2 15 age category was statistically significant (a = 0.05, 

df = 1, X 2  = 4.57, p-value = 0.032). 

Figure 3.6 presents the distribution of the dietary factor for the cases as a function of 

gender in the simulated dataset. Based on Figure 3.6, the dietary factor does not appear 

to be associated with the gender of the case. No association between the dietary factor 

and gender was simulated in the data. Table 3.3 shows the gender distribution within each 
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Age-of-Onset 
Gender < 15(%) 2 15(%) Total 
Male 197(49) 117(58.5) 314 

Female 203(51) 83(41.5) 286 
Total 400(100) 200(100) 600 

Table 3.2: Male preponderance in older onset cases in the simulated dataset. 

Gender (0 = Female, I = Male) 

Figure 3.6: Case dietary factor distribution by gender in the simulated dataset. 
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Genotype 
Gender + - (%) + + (%) - - ( %  Total 
Male 144 (51) 98(52) 72(56) 314 

Female 139 (49) 90(48) 57(44) 286 
Total 283 (100) 188 (100) 129(100) 600 

Table 3.3: Gender distribution for each of the three genotypes. 
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Figure 3.7: Scatterplot of case age-of-onset versus the dietary factor in the simulated 
dataset. 

of the three genotypes. No association between gender and genotype was modeled in the 

simulated dataset. As expected, a chi-square goodness-of-fit test confirmed this lack of 

association in Table 3.3 ( a  = 0.05, df = 2, X 2  = 0.868, p-value = 0.648). 

Figure 3.7 is a scatterplot of the case age-of-onset versus the case dietary factor. The 

scatterplot reveals two slightly overlapping ellipsoids of roughly equal size and dispersion 

centred at the subpopulation mean values of ten and 15 of the dietary factor. Figure 3.7 

indicates correctly that there is no association between case age-of-onset and the dietary 

factor in the simulated dataset. 

Figure 3.8 shows the distribution of case ages as a function of case genotype. The 
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Genotype 

Figure 3.8: Case age-of-onset distribution by genotype in the simulated dataset. 

median age-of-onset for cases with genotypes (++), (+-) and (- -) was 14.7 years, 13.2 

years, and 12.6 years, respectively. A one-way analysis of variance indicated that the mean 

age-of-onset for the cases within each genotype were significantly different (F2,597 = 21.869, 

p-value < 0.001). A plot of the residuals versus predicted values (not shown) indicated that 

the normality and equal variance assumptions were reasonable, despite the slight skewing 

visible in Figure 3.8. Based on the ANOVA results, the age-of-onset was associated with 

genotype in cases, with the age-of-onset decreasing for increasing number of copies of the 

risk allele. Such an association is consistent with the statistical interaction between these 

risk factors modeled in equation 3.1. 

As illustrated in the boxplots presented in Figure 3.9, diet appears to vary substantially 

by genotype. The median value of the dietary factor for cases with genotypes (++), (+-) 

and (--), was 11.3 units, 13.1 units and 14.3 units, respectively. However, it is important 

to emphasize that no interaction between genotype and the dietary factor was modeled in 

our simulated dataset (see equation 3.1). Indeed, the dietary factor was not even a risk 

factor for disease. Therefore, this is a false association due to the fact that the dietary 
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Genotype 

Figure 3.9: Case dietary factor distribution by genotype in the simulated dataset. 

factor and minor allele frequency both varied as a function of subpopulation membership. 

Thus, if subpopulation membership is not taken into account, a researcher could be misled 

by a case-only analysis that suggests interaction between diet and genotype. 

3.2.3 Parent-of-Origin Effects 

Parent-of-origin effects were not simulated in this dataset. As expected, when the proportion 

of times the risk allele was transmitted to the affected child by heterozygous mothers was 

compared to the same proportion for heterozygous dads, no parent-of-origin effects were 

apparent. Specifically, the risk allele was transmitted 1591324 = 49.1% of the time in 

heterozygous mothers compared to 1481294 = 50.3% of the time in heterozygous fathers. 

3.3 Transmission/Disequilibrium Test (TDT) 

As discussed in Chapter 1, the TDT statistic may be constructed from the allelic trans- 

missions of heterozygous parents. Under the null hypothesis of no linkage or association, 
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parents + + * + - - - * + -  + - * + -  
n (%) 268 (44.6) 154 (25.7) 178 (29.7) 
child ++ +- -- +- ++ +- -- 

observed 139 129 80 74 49 80 49 
expected 134 134 77 77 44.5 89 44.5 
X2(df) 0.373 (1) 0.234 (1) 1.82 (2) 
p-value 0.541 0.629 0.402 

Table 3.4: Conditional genotype frequencies in cases and expectations under no association. 

Non-Transmitted Allele 
Transmitted Allele + - Total 

Total 655 54 5 1200 

Table 3.5: Contingency table for the transmission/disequilibrium test in the diabdat 
dataset. 

the transmissions of heterozygote parents to the cases should have the same distribution as 

transmissions to a random sample of children. Table 3.4 presents the observed conditional 

genotype frequency in cases versus the expected conditional genotype frequency in cases 

under the null hypothesis of no linkage or no association. According to Table 3.4 heterozy- 

gous parents transmit the minor allele, - to the cases 3871778 = 49.7% of the time. Table 

3.5 can be constructed from the data presented in Table 3.4. The test statistic in equation 

1.2 can be calculated using the cell counts presented in Table 3.5: 

Thus, the TDT provides no evidence for linkage and association between the SNP and 

disease (p-value = 0.91). 

3.4 Exploring Interaction with Transmission-Based Plots 

Investigations of non-infectious disease aetiology are often based on the assumption that the 

disease is caused by alleles interacting with environmental factors. Umbach and Weinberg 

(2000) consider the situation where a diallelic locus and a binary exposure both influence 

disease susceptibility. One proposed method of investigating such gene-by-environment in- 

teraction is an extension of the TDT which tests for difference~ in the transmission rate of 
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NB: 95% CIS assume independent 
transmissions 
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Figure 3.10: Percent times heterozygous parents transmitted the minor allele to the child, 
by child's age-at-onset. 

the risk allele from heterozygous parents to exposed versus unexposed cases. This method 

uses an equal-transmission-rate null hypothesis as a proxy for the no-interaction hypothe- 

sis. However, such an approach is not generally valid (Umbach and Weinberg 2000). First, 

if there is an association between allele frequency and exposure levels in the general pop- 

ulation, gene-by-environment interaction may be detected even if such interaction does 

not exist. Second, a test based on transmission rates ignores the fact that parents have 

been ascertained through their affected child and assumes statistical independence of alleles 

transmitted by parents who are both heterozygous. However, for some disease models, this 

assumption may not hold under the alternative hypothesis of linkage and association. 

Figures 3.10 and 3.11 illustrate the basic idea behind the approach. Figure 3.10 was 

generated by dividing up the age range of the cases into three approximately equal-sized 

groups. Then, for each of the three age groups the proportion of times that a heterozygous 

parent transmitted the minor allele to their child was calculated and plotted as a percentage. 

The error bars shown in the plot were constructed using binomial probabilities, and assume 
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NB: 95% CIS assume independent 
transmissions 
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Figure 3.11: Percent times heterozygous parents transmitted the minor allele to the child, 
by child's level of the dietary factor. 
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statistical independence of the alleles that are transmitted by parents in case-parent trios 

with both parents heterozygous. As noted previously, transmissions of these alleles at  the 

candidate locus are not, in general, statistically independent. Thus, the error bars shown 

may be too narrow. Figure 3.10 suggests the risk allele is transmitted more often than 

would be expected under Mendelian segregation when the case has a young age-at-onset 

but not when the case has an older age-at-onset. Hence, Figure 3.10 is very suggestive of 

an interaction between the SNP genotype and the age. This result is not unexpected given 

that genotype by age interaction was modeled in our simulated dataset. Therefore, the 

interaction suggested by Figure 3.10 is valid. 

Figure 3.11 was obtained in the same manner as Figure 3.10 and shows transmission 

rates of heterozygous parents by the levels of the child's dietary factor. There is a weak 

suggestion that the risk allele is transmitted more often than would be expected when the 

case has low levels of the dietary factor but not when the case has higher levels. Genotype- 

by-diet interaction was not modeled, but allele frequency and dietary factor exposure levels 

are associated in our simulated dataset. Therefore, Figure 3.11 may be misleading because 

a transmission-based approach was used to explore gene-by-environment interaction. 

With this in mind, we would like to create a visual representation of genotype-by- 

environment interaction that is valid more generally, so long as the probability models are 

specified correctly. The smoother motivated in Chapter 2 should provide a valid visual 

representation of genotype-by-environment interaction because it is likelihood-based. 

3.5 Exploring Interaction with Our Smoother 

We implemented our smoother in the trioplot() function (see Appendix A) and applied it 

to the simulated dataset. The panel on the left of Figure 3.12 gives the smooth for f l  and 

the panel on the right gives the smooth for f 2 ,  with both smooths centred by their average 

in the dataset. In the absence of statistical interaction, f l  = f2  = 0 and the resulting 

smooth is expected to be a roughly horizontal line through zero. The series of short vertical 

lines along the x-axis in the two panels is called the rugplot and it indicates the locations 

of the observed data. The data values are randomly jittered to break ties. The dotted lines 
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1 vs 0 minor allele 2 vs 1 minor allele 

Figure 3.12: Smooths of age specific log relative risks from the simulated dataset 

above and below the estimated smooth are the pointwise 95% confidence limits which are 

obtained by adding and subtracting 2 x the standard error from each fitted value (Hastie 

1993). 

The smooth in Figure 3.12 suggests that statistical interaction between the SNP and 

age is present. Such interaction is expected. As will be demonstrated in the next section, 

incorporating an interaction term into the risk model is important for detecting an associa- 

tion between the SNP and the disease. Figure 3.12 also indicates that data at the youngest 

and oldest ages are sparse which, together with a smoothing window of only half the reg- 

ular size, explains the wide confidence limits a t  these ages in both panels. In contrast to 

the SNP-by-age interaction evident in Figure 3.12, the smooth in Figure 3.13 suggests no 

statistical interaction between the SNP and the dietary factor as a horizontal line through 

zero can be drawn within bounds of the pointwise 95% confidence limits for the smooth. 

This result is not unexpected given that no statistical interaction between the SNP and the 

dietary factor was simulated. 

The trioplot() function can also be used to  explore SNP interaction with a nominal 
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Figure 3.13: Smooths of dietary factor specific log relative risks from the simulated dataset. 

covariate, such as gender. This situation is the simplest example of a smooth (Hastie and 

Tibshirani 1990). Figure 3.14 presents the plots generated by using the trioplot() function 

to investigate SNP-by-gender interaction. As in the earlier plots, the first panel presents the 

results for f l ,  and the second panel presents the results for fi. SNP-by-gender interaction 

seems unlikely given the overlapping confidence intervals. 

3.6 Likelihood-Based Tests 

The exploratory phase discussed in the previous section indicates that a term representing 

SNP-by-age interaction should be included in the model fit to the diabdat dataset. To 

fit our risk model, we can exploit the fact that the likelihood has the same form as the 

likelihood from a conditional logistic regression for a matched case-control study (Hastie 

and Tibshirani 1990). In our case, the match-sets are the four possible "pseudo-sibs" in * 

that could have resulted from the parents' transmissions. Our likelihood also has the same 

form as a Cox proportional-hazards likelihood for survival data, with the risk-sets being the 
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Figure 3.14: Smooths of gender specific log relative risks from the simulated dataset. 

four pseudo-sibs (Collett 2003). 

R's clogit () function for conditional logistic regression was used to fit various risk models 

to our simulated dataset. In order to use the clogit() function, the diabdat dataset had 

to be "expanded" into the required match-sets. The first three match-sets for the expanded 

diabdat dataset are shown in Table 3.6. The first column of Table 3.6 identifies the family, 

and the last column of the table gives the affection status of the child. The row with an 

affection status of one represents the original case. The remaining three rows within each 

family represent the pseudo-sibs. The age, gender and dietary factor for each of the pseudo- 

sibs remains the same as that for the original case. The column titled "ncop" indicates the 

number of copies of the minor allele that the original case and the three pseudo-sibs possess. 

The expanded dataset was first used to fit the following risk model: 

where Po, P1 and P2 are regression parameters, Zl(g) = 1 if g = (+-) or (--) and zero 

otherwise, and Z2(9) = 1 if g = (--) and zero otherwise. This risk model considered only 
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famid age sex diet ncop aff 
1 11.9 1 15.6 0 0 

Table 3.6: The first three match-sets of the expanded diabdat  dataset. 

a genetic main effect and was specified by the following model formula in clogit () 

In the above formula, the term I(ncop > 0) is an indicator function that represents Z1 and 

I(ncop = 2) is an indicator function that represents Z2. For example, consider the fourth 

row of Table 3.6. This pseudo-sib carries two copies of the minor allele; therefore, the term 

I(ncop > 0) equals one and the term I(ncop = 2) equals one. The term strata(famid) 

tells the clogit() function that match-sets are indicated by the family identification code. 

In this way, the clogit() function allows us to condition on parental genotypes. Under this 

risk model, the score test for the genetic effect is not significant (Score test = 1.93, df = 2, 

p-value = 0.38). 

Since the smooth for age (presented in Figure 3.12) suggests a linear statistical interac- 

tion between SNP and age we next considered the risk model: 

where Po - P5 are regression parameters, Zl(g) and Z2(g) are defined as in equation 3.2 

and a is the age of an individual. This risk model considers main effects for the genotypes 

and age, as well as their interaction, and was specified by the following model formula in 
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clogit () : 

af f - I(ncop > 0) + I(ncop = 2) + I ((ncop > 0) * age) + 
I ((ncop = 2) * age) + strata(f amid), 

Since we are conditioning on the parental genotypes and the age of an affected child, the 

main effect for age cancels out in the numerator and denominator of the conditional like- 

lihood (because all pseudo-sibs within the same family have the same age). Therefore, P3 

is not estimable under this model. As a result,, we do not need to specify the main effect 

for age in the model formula for clogit(). Under this interaction model, the score test for 

the overall genetic effect is significant (Score test = 33.7, df = 4, p-value = 8.7 x 

Therefore, adjusting for the interaction uncovers a genetic effect that would otherwise have 

been missed. 

Our smooths for SNP-by-diet interaction suggested no genotype-by-diet interaction (Fig- 

ure 3.13). To check this result, we considered the risk model in equation 3.2, with a now 

being the level of an individual's dietary factor. The risk model was specified by the fol- 

lowing model formula in clogit (): 

The resulting score test confirmed that there is no SNP-by-diet interaction (Score test 

= 3.16, df = 4, p-value = 0.53). Likewise, the score test for SNP-by-gender interaction was 

also insignificant (Score test = 3.39, df = 4, p-value = 0.50). 

In summary, is it worthwhile emphasizing that without accounting for SNP- by-age in- 

teraction, the genetic effect would have been missed. However, when the possibility of 

interaction is taken into account, the genetic effect is detected. 



Chapter 4 

Conclusions and Future Work 

We proposed a data-smoothing method for exploring statistical interaction between a single 

nucleotide polymorphism (SNP) and a non-genetic risk factor, such as age, in case-parent 

trios. Our smoother can be used as a diagnostic tool for checking for the presence of inter- 

action after conducting a genetic association test, such as the transmission/disequilibrium 

test, that does not account for interaction. Alternatively, if an interaction model is fit to 

the data, the smoother can be used to check the adequacy of the chosen model. 

As illustrated in Chapter 3, our smoother uncovered important genotype-by-age inter- 

action in the simulated dataset. The subsequent incorporation of a genotype-by-age inter- 

action term into our risk model allowed us to detect an overall genetic effect that would 

otherwise have been overlooked. Further, our investigation of genotype-by-diet interac- 

tion illustrated that our smoothing method was not misled by the population substructure 

present in our simulated dataset. Transmission based approaches can be misled by such 

substructure (Umbach and Weinberg 2000) and in fact suggested possible genotype-by-diet 

interaction. Therefore, our smoothing method provides a more robust tool for exploring 

statistical interaction than a transmission-based approach. 

We used simulated data to illustrate the properties of our smoothing method. Therefore, 

one obvious direction for future work would be to apply the smoother to a real dataset. Some 

other possible extensions of this work include the development of more efficient smoothers 

that enable us to use all of the data available. As discussed in Chapter 2, conditioning on 

{G, = ++ or +-) - ( 2 2  = 0) to extract information about (Dl, f l )  and then conditioning 
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on { G, = +- or -- ) z { Z1 = 1 ) to extract information about (P2, f2)  resulted in a 

loss of information. For example, by conditioning on the event Z2 = 0, case-parent trios 

with G, = (--) were excluded from the estimation of f l .  Similarly, by conditioning on 

the event 21 = 1, case-parent trios with G, = (++) were excluded from the estimation of 

f2. As a result, not all of the available data is incorporated into the smooths for f l  and 

fi. Since data collection is an expensive and time-consuming procedure, we would like to 

extend our current method so that all of the available data is used. 

Family-based association studies that require the affected child's genotype and the geno- 

types of the child's parents are limited to diseases with a relatively early age-of-onset because 

parental genotype information for late age-of-onset diseases (e.g. Alzheimer's disease) may 

not be obtainable; the parents of the affected child may no longer be alive to sample. As a 

result, our approach would not be applicable to diseases with a late age-of-onset. 

In this project, we assumed that all parental genotypes were available. However, missing 

parental information is a common problem in family-based association studies using real 

data, and according to Curtis and Sham (l995), incorrectly applying the standard TDT to 

trios in which missing parental genotypes can be inferred from the genotype of the affected 

child can produce false-positive results, particularly when dealing with a diallelic locus. In 

their paper, Curtis and Sham (1995) demonstrate how bias in the standard TDT can result 

when genotype information on one parent is missing and the other parent is heterozygous 

(i.e. informative). They consider a diallelic locus with one common allele and one extremely 

rare allele and show that, even if transmissions from the heterozygous parent can be inferred 

given the genotype of the affected child, including such trios leads to an apparent (but false) 

preferential transmission of the inore common allele. Thus, such incomplete trios should not 

be included in a standard TDT analysis. With this issue in mind, it would be interesting 

to investigate whether our method can be extended to correctly incorporate trios with one 

heterozygous parent and another parent with missing genotype information. 

Parental genotypes may be missing not only because of a later-onset disease but also 

because of genotyping error. For example, some parents who are sampled may not be able 

to be reliably genotyped and so their genotypes will not be called. In SNP genotyping, 

heterozygotes can be more difficult to call than homozygotes (Mitchell et al. 2003), leading 
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to diflerential dropout (Hao and Cawley 2007), in which the genotypes that fail to be called 

are more likely to be heterozygous. Allen et al. (2003) define infomnative missingness as 

any situation where the parent's genotype at the locus under investigation is associated with 

the reason why the parent is missing. Differential dropout can therefore lead to informative 

missingness. Failing to account for informative missingness may result in biased inference 

(Little and Rubin 2002). In their paper, Hao and Cawley (2007) show that the presence of 

even moderate differential dropout leads to severe bias in the standard TDT. 

Undetected genotyping error may also exist in the complete case-parent trio data that 

we do have. For example, according to Cutler et al. (2001), heterozygotes also tend to have 

higher miscall rates. This phenomenon is known as allelic dropout. Gordon et al. (2001) 

showed that the TDT can have inflated type 1 error rates under simple models of genotyping 

error. Further, Mitchell et al. (2003) demonstrated that undetected genotype errors can 

cause apparent over transmission of common alleles in the TDT and concluded that such 

errors may contribute to an inflated false-positive rate among reported TDT associations. 

In our approach, we have assumed that the genotypes are uninformatively missing and 

are observed without error. Allowing for both differential and allelic dropout would thus 

be a very important direction for future extensions of our approach. A possible starting 

point might be the work of Chen (2004), which is conceptually similar to our approach, but 

allows for informatively missing parents. It would be interesting to see if our results could 

be extended to accommodate not only informatively missing parents, but also genotyping 

error. 

An additional direction for future research would be to try settings for the smoothing 

parameter of the loess smoother (Cleveland et al. 1993) other than the value of 213 that 

we used in our approach. It would be interesting to explore how the appearance of the 

smooth changes as the smoothing parameter is altered. We are interested in investigating 

the sensitivity of the suggested interaction (or lack of interaction) to adjustments of the 

smoothing parameter. Cross-validation (CV) can be used to help select the appropriate 

span size or appropriate target equivalent degrees of freedom. Suppose we have a set of 

n points, represented as (xi, yi), where i represents the ith point. In leave-out-one cross- 

validation, one of the n points is temporarily removed and the smooth is estimated using 
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the remaining n - 1 points. This process is repeated, one point at a time, for all n points. 

The cross-validation sum of squares is then calculated. Using the notation developed by 

Hastie and Tibshirani (1990) the cross-validation sum of squares is: 

where X represents the smoothing parameter or span, the superscript -i indicates that 

the i th point has been removed from the computation, and fyi(xi)  indicates the fit at xi 

for smoothing parameter is A. When the cross-validation sum of squares is computed for a 

number of different X then the value of A, referred to as i, that minimizes the cross-validation 

sum of squares is selected as the most appropriate value for the smoothing parameter or 

span (Hastie and Tibshirani 1990). However, this approach has a few limitations, including 

the fact that it is computationally intensive for large datasets, and that it requires pre- 

selection of an appropriate subset of X values, which may be hard to determine from the 

outset of the analysis. In our context, a set of possible span values (eg.  1/4,1/3,2/3, 

and 314) could be evaluated using cross-validation, thereby providing a more rigorous span 

selection procedure for use in our smoothing method. For a more in-depth discussion of the 

benefits and limitations of using cross-validation for selection of the smoothing parameter, 

see Hastie and Tibshirani (1990). 

We chose a loess smoother because we felt it was more intuitive with respect to how the 

smoothing parameter is set. In loess, the smoothing parameter, or span, is set by specifying 

the proportion of the data to use in the calculation of each plotted point in the estimated 

curve. Therefore, the larger the span (i.e. the closer the span is to one), the larger the 

window and smoother the estimated curve. Further, loess smoothers have several attractive 

features, including: (i) they can adapt their window size to reflect the density of the points 

in a given neighbourhood, and (ii) since they use a smooth weighting function called a 

tri-cube function, they are not as "wiggly" as smoothers based on running means (Hastie 

and Tibshirani 1990). Other smoothers are available in R's gam package; for example, the 

function s ( )  fits a smoothing spline to the data (Hastie 1993). The smoothing spline option 

may be a viable alternative, but we have not considered it here. However, the choice of 

smoother may be largely subjective. As long as the smoothing parameter is appropriately 
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specified there do not seem to be large differences between the various types of smoothers 

(Silverman 1984; Miiller 1987). Therefore, it is probably more important to investigate 

various smoothing parameters rather than different smoothers. 

Finally, it would be exciting to explore the two major underlying assumptions of this 

method: (i) conditional independence of the case's genotype and the non-genetic covari- 

ate, given the parental genotypes, and (ii) Mendelian transmission probabilities and then 

adapt our method to handle those situations where these two assumptions are not met. 

In case-control or case-only association studies, incorrectly assuming independence of the 

genetic and non-genetic risk factors in the population leads to false-positive statistical in- 

teractions (e.g. Shin et al. 2005). By analogy, one would expect that incorrectly as- 

suming independence within a family in a family-based association study would also lead 

to a false impression of interaction. It is more difficult to speculate on the impact that 

non-Mendelian transmission will have on our smoother. However, adjusting for known non- 

Mendelian transmission appears to be relatively straightforward. The derivation of the 

likelihood contributions suggests that the disease risks P ( D  = 1 I Tc = t,  G, = g,, X = x) 

in equation 2.5 should be reweighted by the true non-Mendelian offspring probabilities 

P(Tc = t I Gp = gp), given the parental mating type. When these non-Mendelian offspring 

probabilities are known, they would lead to different offset terms in the smoother that are 

specific to the parental mating type. 



Appendix A 

The trioplot () Function 

The R function trioplot() produced the smooths presented in Figures 3.12, 3.13 and 3.14. 

The trioplot function takes the following arguments: 

i .  a dataframe with columns for parental genotypes, child genotypes and the non-genetic 

covariates of the child, 

i i .  the name of the two columns in the dataframe that hold parental genotypes, as genotype 

objects, 

iii. the names of the column in the dataframe that holds the child genotypes, as genotype 

objects, 

iv. the name of the non-genetic covariate being examined for interaction with genotype, 

and 

v. the character string or number that represents the minor allele. 

In order to apply the trioplot function several R packages must be loaded. The first necessary 

package is the genetics package. This package converts the parental genotypes and child 

genotypes into genotype objects. The smooths themselves are generated via a generalized 

additive model, and as a result, the gam package must be loaded as well. At the time this 

project was written, R could be downloaded from http://cran.r-project.org/. 

After basic error checking to ensure that only trios with complete genotype information 

are included in the generation of the smooths, the function determines which trios contain 
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informative parental genotypes. This step is accomplished by counting the number of copies 

of the minor allele that are present in each parent. Only those trios where at least one parent 

is heterozygous are informative (i.e. can have offspring that are genetically different). Next, 

the complete and informative trios are checked to ensure that no Mendelian inconsistencies 

are present. Further, since we are interested in exploring statistical interaction between the 

SNP and a non-genetic covariate, the selected trios are also checked to ensure that complete 

data on the non-genetic covariate is present. Only those trios that are complete, informative, 

contain no Mendelian inconsistencies, and contain valid values for the non-genetic covariate 

are retained to produce the smooths. 

As discussed in Chapter 2, the smooths are generated by forming two groups. The first 

group is created by pooling the cases that contain zero or one copy of the minor allele, and 

the second group is formed by pooling the cases that contain one or two copies of the minor 

allele. After each grouping, we can apply the gam() function. In order to use the gam() 

function we must specify the formula, which as with other regression models is of the form 

response N predictors, and the family. Specifying the family ensures that the appropriate 

error distribution and link function is used in the generalized additive model. Since we are 

working with a binary response for each group, we specified the family as binomial with the 

canonical logit link (McCullagh and Nelder 1989). 

The response variable for the first generalized additive model is an indicator variable for 

cases that have one copy versus zero copies of the minor allele. The second gam was fitted 

using an indicator of two versus one copy of the minor allele as the response variable. Both 

of these generalized additive models were generated using the function lo() as the smoother. 

In order to use the lo() function we specified both the span and the degree of smoothing. 

In lo(), the argument span is the smoothing parameter, and it essentially indicates the size 

of the neighbourhood to use for taking the moving average. We specified our span to be 

213 of the data; however, the span in the function lo() can be set to any value between 

zero and one. Setting the span to zero implies no smoothing, whereas setting the span to 

one means that all of the data passed to the function is used to generate the smooth. The 

argument degree specifies the degree of the local polynomial to be fit. In lo() the degree is 

currently restricted to one or two; for our purposes we set the degree to the default (one). 
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