A GRAPHICAL TOOL FOR EXPLORING SNP-BY-ENVIRONMENT
INTERACTION IN CASE-PARENT TRIOS

Linnea Duke
B.Sc. Joint Major in Biology and Chemistry,
University of Northern British Columbia, 2002

M.A. Criminology, Simon Fraser University, 2004

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Statistics and Actuarial Science

(© Linnea Duke 2007
SIMON FRASER UNIVERSITY
Spring 2007

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.



Name:
Degree:

Title of project:

Examining Committee:

Date Approved:

APPROVAL

Linnea Duke
Master of Science

A Graphical Tool for Exploring SNP-by-Environment Inter-

action in Case-Parent Trios

Dr. Richard Lockhart
Chair

Dr. Jinko Graham
Senior Supervisor
Simon Fraser University

Dr. Brad McNeney
Simon Fraser University

Dr. Denise Daley
External Examiner
University of British Columbia

March 48, 206+

ii



SIMON FRASER

umvsnsmr"bl'al'y

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the ‘“Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http:/ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to transiate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for muitiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this

author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Spring 2007



Abstract

We propose a data-smoothing method for exploring statistical interaction between a single
nucleotide polymorphism (SNP) and non-genetic risk factors in case-parent trios. Our
smoother can be used as a diagnostic tool for checking for the presence or the form of
the interaction. The smoother arises from a case-only analysis conditional on parental
genotypes. Conditioning on parental genotypes helps to protect against the false impression
of interaction that traditional case-only analyses can give when genotypes and non-genetic
risk factors are not independent in the population. We discuss the theoretical motivation
for the smoother, and illustrate its use with simulated data. We show that the effect of the

SNP would have been missed if the interaction suggested by the smoother had not been

modelled.

Keywords: age-dependent genetic risks; exploratory data analysis; family-based associa-
tion studies; gene-by-environment interaction; generalized additive models; single-nucleotide

polymorphisms

Subject Terms: Genetics—Statistical methods; Genetic epidemiology—Statistical meth-

ods
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Chapter 1

Introduction

1.1 Genetic Association Studies

Population-based association studies investigate the correlation between genetic variants,
such as the various alleles of a gene, and a trait, such as disease status, at the population
level (Cardon and Bell 2001). Clayton (2003) proposes three scenarios for explaining the
presence of associations at the population level between the genotype at a particular locus
and disease status. In the first scenario, the association arises because the locus of interest
is the disease-predisposing locus and different genotypes have different levels of risk. In the
second scenario, the locus of interest is not the disease-predisposing locus, but is physically
linked to and in linkage disequilibrium with the locus of interest. Linkage disequilibrium
(LD) is defined as the non-random association of genotypes at different loci (Freeman and
Herron 2007), and is synonymous with gametic phase disequilibrium or allelic association
(Cardon and Bell 2001). Finally, in the third scenario, the locus of interest is not linked to
the disease-predisposing locus and the association is the result of confounding by population
admixture or stratification. A “real” association is represented by the first two scenarios.
In contrast, population associations that result from population stratification or admixture
are of little interest with respect to the investigation of disease aetiology. As a result, it
is important that these “spurious” associations are excluded from the study by design,
analysis, or both (Clayton 2003).

The main goal of a candidate gene association study is to determine if the gene under
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study has a direct causal relationship with disease status. However, this goal is seldom
possible in association studies involving unrelated individuals (e.g. case-control studies),
because such studies are generally not able to distinguish between a gene having a direct
causal effect on disease status, and a gene in linkage disequilibrium with the causal gene
(Thomas 2004). Association studies alone are not enough to establish a causal link between a
genetic variant and a disease; however, according to Thomas (2004), appropriately designed
association studies are able to eliminate those associations that result from population
stratification.

Ideally, association studies that are conducted on a population basis use well established
epidemiological study designs such as case-control or cohort designs. With both cohort and
case control study designs, careful attention must be paid to the selection of appropriate
controls; for instance, ethnic origin must be carefully controlled through matching of cases
and controls in order to avoid detection of spurious associations (Thomas 2004). In con-
trast, family-based association studies investigate the correlation between genetic variants
and trait differences on the basis of the nuclear family. Therefore, the problems usually as-
sociated with population substructure are reduced or eliminated through the use of internal
(i.e. family) controls (Lazzeroni and Lange 1998).

Family-based study designs are a popular strategy for protecting against spurious asso-
ciations due to hidden population structure. In the simplest form of a family-based design,
genotype information is collected from unrelated cases and their parents. Additional infor-
mation on non-genetic factors, such as the age of the case may also be collected. In essence,
the non-transmitted genotypes of the parents of the case are used as the reference, rather
than the genotypes of controls from the general population. The focus of this project will
be on case-parent trio data.

Several innovative methods have been proposed for the analysis of case-parent trio data.
Spielman et al. (1993) introduced the transmission/disequilibrium test (TDT), based on
scoring the transmissions of heterozygous parents to affected children. A convenient feature
of the TDT is that it requires no knowledge of the penetrance or risk model for the disease.
To increase the power to detect linkage and association between a genetic marker and

a disease with a variable age of onset, Li and Fan (2000) partially specify the disease
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penetrance with a Cox proportional-hazards (PH) model for age at onset (Collett 2003).
Their PH model leads to a score test for linkage and association that is robust to the
form of the underlying baseline hazard rate, under the PH assumption. However, both
the TDT and robust score test have limitations as they cannot incorporate age-dependent
genetic risks (i.e. statistical interaction between age and the genotype) which imply non-PH.
Since we are interested in exploring statistical interaction between age and genotype in our
example dataset, we need exploratory and analytical methods that allow for the possibility
of interaction. As we will discuss in Chapbter 3, conditional logistic regression is the analytic
method we chose to follow up on the results of our exploration of statistical interaction. If
our smoother suggests that interaction is present, conditional logistic regression allows us

to include interaction terms in the risk model.

1.2 Transmission/Disequilibrium Test (TDT)

The TDT is a family-based test for linkage in the presence of association or for association
in the presence of linkage (Ewens and Spielman 2003). The TDT was originally proposed as
a method for reducing or eliminating the detection of spurious associations resulting from
population stratification (Spielman et al. 1993). The TDT achieves this goal by creating
an internal control group via conditioning on the observed parental genotypes. Specifically,
the marker alleles not transmitted to the affected children become the control set for the
marker alleles transmitted to the affected children.

Throughout this discussion, consider a diallelic locus with alleles + and —. The null
hypothesis for the TDT is a composite null hypothesis of no association or no linkage.
The alternative hypothesis is the hypothesis of association and linkage. If the marker
locus and the disease locus are not linked or not associated then, with respect to the
genotypes of the child at the marker locus, our case-parent trios are just a random sample
of trios from the population. In other words, in the absence of linkage or association,
the fact that the trios are ascertained through a diseased case should not influence the
genotype distribution of the marker in the cases. Thus, under the null hypothesis, the allelic

transmissions of heterozygous parents to affected children should have the same distribution
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Non-Transmitted Allele

Transmitted Allele + — Total
+ n1 n12 ni.
- 121 122 n2.
Total .1 n.2 2n

Table 1.1: Contingency table for the transmission/disequilibrium test.

as allelic transmissions of heterozygous parents to a random sample of children.

Table 1.1 summarizes all the allelic transmissions from parents to cases. The n;; and
no9 entries of Table 1.1 represent transmissions from homozygous parents, and as a result,
these transmissions can be discarded from the analysis because they are not informative.
Such transmissions are not informative because there is no variation in what they transmit;
homozygous parents are only able to transmit the allele for which they are homozygous.
In contrast, the transmissions from heterozygous parents are informative because they can
transmit either one of their two available alleles. According to Mendelian law, each allelic
transmission from a heterozygote parent to a random child may be considered to be an
independent Bernoulli trial with p = 0.5. Under the composite null hypothesis of no linkage
or no association, the proband may be taken to be a random child. Under the more spe-
cific (restricted) null hypothesis of no linkage, all affected children within a family (except
for monozygotic twins) may be taken to be random children. As illustrated in Table 1.1,

there is a total of nj9 + ng; cases with heterozygous parents. Hence, under the null, 7o

(n12 + n21), and
2

. Thus, the null hypothesis will be rejected if n;s differs too much from

is binomially distributed with probability of success equal to 0.5, mean

. (n12 + ngy)
variance ————

Mendelian expectations. The binomial test statistic can be standardized by centering with
its mean and scaling with its standard deviation under the null hypothesis. This process
produces a z-score, which using the normal approximation to the binomial, is asymptoti-
cally normal under the null hypothesis. Furthermore, squaring the z-score produces a test

statistic that is asymptotically x? with one degree of freedom. Therefore, the binomial test
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statistic can be written as:

n12 + N
(n12 - —12—21)2
DT = (n12 + ng1 )

4
_ (n12 — E[n12))?
Var[nlg]

which after simplification, reduces to

(n12 - n21)2
N1z + noy

TDT =

However, since we are using a continuous distribution (i.e. normal) to approximate a
discrete distribution (i.e. binomial), a continuity correction can improve the accuracy of the
approximation. After such a continuity correction, the transmission/disequilibrium statistic

becomes:
(In1g — ng1| — 1)*
712 + N9y

TDT =

(1.2)

1.3 A Log-Linear Model of Disease Risk

Self et al. (1991) propose a likelihood approach to the analysis of case-parent trio data.
They begin with a statistical model that characterizes the multiplicative factor by which
the risk of developing disease in individuals with one set of covariate values differs from the
risk of developing disease in individuals with a different set of covariate values. With its
focus on describing relative risk, their model takes the traditional epidemiologic approach
to discovering the factors underlying disease aetiology. Disease risks depend only on the

child’s unordered genotype G. and covariate values X and are log-linear in the sense that
P(D = 1{G. = g, X = ) = kexp(2(g)5 + h(z)7) (1.3)
or
log (P(D =1][G, = g,X =x)) =log(k) + 2(9)5 + h(z)7,

where D = 1 if the child develops the disease during the period of the disease incidence
study and is 0 otherwise, k is a proportionality constant, 3 and -y are unknown coefficients

estimated from regression analysis, h(z) is a user-specified function of z, and 2(g) codes
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the child’s unordered genotype. For instance, two copies of the — allele could be coded as
2, one copy of the — allele could be coded as 1 and zero copies of the — allele could be
coded as 0. This coding method implies that risk changes by a multiplicative factor exp(53)
with each additional copy of the minor allele. Therefore, if the values of X are fixed, the
risk for heterozygotes is exp(3) times that for individuals homozygous for the major allele,
and the risk for individuals that are homozygous for the minor allele is exp(() times that
for heterozygotes. One further point of interest regarding the risk model is that it does not
include terms for statistical interaction between the SNP and the non-genetic risk factor.
Moreover, if the non-genetic covariate X is age and the follow-up time for the disease-
incidence study is short, the risk model (1.3) is well approximated by the Cox proportional
hazards model for disease age-at-onset proposed by Li and Fan (2000), with baseline hazard
rate Ao(x) proportional to exp (h(x)v). To see why, suppose the study period is of length
dz and note that P(D =1| G = g, X = z) is the probability that a disease-free subject of
age r with genotype g at the beginning of the study develops the disease by the end of the
study, or

P(D=1]|G =g,X = z) = P(disease in (z,z + dzx) | disease free at age z,G = g).

The hazard rate, Ag(z), for a disease-free subject of age z with genotype g is their instan-

taneous probability of developing the disease, or

Mg(2) = lim P(disease in (z,x + dz) | disease free at age z,G = g)
dz|0 dz

Thus, for a short study period of length dz,

P(D=1|G=g,X =1)
dx

~ Ag(z). (1.4)
Substituting the right-hand side of expression 1.3 for P(D =1 | G = g, X = z) in expression
1.4 gives:

kexp (2(g9)8 + h(z)7)
dzx

~ Ag(z). (1.5)
Comparing equation 1.5 to the Cox proportional hazards model

Ag(z) = o(x) exp (2(9)B),



CHAPTER 1. INTRODUCTION 7

we see that the baseline hazard rate Ao(z) =~ d_ka: exp(h(z)v). Finally, noting that k& and
dx are both constants with respect to z, we obtain the result that A\g(z) is approximately
proportional to exp(h(z)7).

Although Self et al. (1991) use a regression approach, their risk model is not a logistic
regression model. In a logistic regression model, the log-odds of disease would be modelled
as linear in the predictors. In contrast, the log-linear risk model used by Self et al. (1991)
models the log-risk of disease as linear in the predictors. However, as will be shown in
Chapter 2, the likelihood for the Self et al. (1991) model, and hence, the likelihood for our
extension of the Self et al. (1991) model, is very similar to that of a conditional logistic
regression model for matched case-control data (Hastie and Tibshirani 1990). As a result,
we can exploit statistical software, such as the clogit() function in the R survival package,
that is readily available for conditional logistic regression analysis.

The statistical model proposed by Self et al. (1991) was developed for estimating the
relative risk of disease given a particular Human Leukocyte Antigen (HLA) haplotype. The
Human Leukocyte Antigen complex or major histocompatibility complex (MHC) is the
name given to a group of genes located on human chromosome six. The HLA genes code
for cell-surface antigen-presenting proteins that are critical to the functioning of the immune
system, and as a result are highly polymorphic. Since Self et al. (1991) are concerned with
the risk associated with certain haplotypes in the HLA region of the genome, their risk
model is based on the assumption of an infinitely polymorphic marker, where everyone is
heterozygous for different alleles (haplotypes). In contrast, the risk model that we develop
in Chapter 2 is based on a diallelic marker. The implications of this distinction will be

discussed more fully in Chapter 2.

1.4 Generalized Additive Models

The following description of generalized additive models is based on work by Hastie and
Tibshirani (1990). Consider the simplest case of the linear regression model, with n mea-

surements of the response variable Y and n measurements of a single predictor variable,
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X:
EY |X)=a+ X5, (1.6)

where a and the § are regression parameters that must be estimated from the data. The
goal of the linear regression model is to describe the dependence of E(Y | X), as a linear
function of the predictor, X. As long as the dependence of E(Y | X) is linear, model
1.6 is extremely useful. When E(Y | X) does not depend linearly on X, a common “fix”
is to incorporate non-linear terms for the predictor into the linear regression model. For
example, if the dependence of E(Y) on X is believed to be quadratic, then an X? term can
be added so that
EY |X)=a+ X8 + X%5s.

As before, a, §; and (39 are regression parameters that must be estimated from the data.
However, deciding what polynomial terms to include in the model can be difficult as the
dependence of E(Y | X) on X is often not easy to determine by simple inspection of a
scatterplot of the data. Instead, smoothers may be used to allow the data itself to reveal
the functional form of E(Y | X).

Scatterplot smoothers are extremely useful because they reveal the true functional form
of the data without imposing a rigid parametric model on the dependence between the
response variable and the predictor variable. Since we are interested in describing the
dependence between E(Y | X) and X as flexibly as possible, the linear regression model

1.6 can be generalized as follows:
EY | X)=a+ f(X), (1.7)

where f(X) is an unspecified function.

By definition, a smoother is a tool that visually summarizes the dependence between the
response variable Y and the predictor X by producing an estimate of the dependence that
is less variable than the response itself. The visual summary of the dependence produced
by a smoother is called a smooth, and therefore, the visual estimate of f(X) from equation
1.7 is referred to as a smooth. Commonly used smoothers include the running mean (i.e.
moving average) smoother and the loess (i.e. local polynomial regression fitting) smoother.

Most smoothers employ local averaging, where a subset of the values of the response Y with
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associated values of the predictor X close to some target value of the predictor are used to
produce an estimate of the mean response at the target value. We refer to a neighbourhood
as the subset of (X,Y") pairs with predictor values close to the target value. Therefore, two
obvious questions are: (i) How big should the neighbourhoods be? and (ii) How should the
responses in each neighbourhood be averaged?

The main difference between types of smoothers is their method of averaging the re-
sponse values within each neighbourhood. For instance, the running mean smoother gives
equal weight to each value in the neighbourhood. In contrast, in loess, the response values
in the neighbourhood are weighted according to their distance from the target value using
a tri-cube weight function (Cleveland 1979). The size of the neighbourhood used for the
smoothing is typically represented in the form of an adjustable smoothing parameter. For
example, in loess, the smoothing parameter indicates the fraction of the data to include in
the neighbourhood, and can take any value between zero and one. The smoothing parame-
ter in loess is referred to as the span. Other smoothers, known as smoothing splines rely on
a smoothing parameter referred to as the target equivalent degrees of freedom, but we will
not consider these here.

A trade-off between bias and variance exists with respect to the chosen size of the neigh-
bourhoods. Large neighbourhoods can produce estimates of E(Y | X) with low variance but
high bias and small neighbourhoods can produce estimates with small bias but high vari-
ance. Intuitively, this means that, in general, the larger the neighbourhoods the “smoother”
the estimate of the dependence between E(Y | X) and X.

Typically, we have more than one predictor variable of interest. Thus, model 1.7 can be

extended to multiple predictors as follows:
E(Y | X1, X2) = a+ fi(X1) + f2(X2), (1.8)

where f(X;) and f(X2) are both unspecified functions that can be estimated iteratively

using a backfitting algorithm. For instance, given an estimate, fi(X1), of f1(X1):
1. Estimate f2(X2) by smoothing the residual ¥ — f;(X;) on Xo.

2. Refine the estimate of f1(X;) by smoothing ¥ — f2(X2) on Xj.
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3. Continue this process until the estimates of fo(X52) and f1(X;) no longer change

between iterations.

The models discussed above (Equations 1.6, 1.7 and 1.8) are referred to as additive
models. They are additive models because of the underlying assumption that the predictor
variables are additive in their effects. In other words, once the model has been fit, we can
examine the marginal effects of the predictors separately. As a result, additive models are
approximations of the true response surface.

Equations 1.7 and 1.8 are both generalizations of the familiar linear regression model
(1.6) because they do not impose a rigid parametric structure on the relationship between
the response variable and the predictors. We can generalize these additive models further

to accommodate non-normal responses as:

P
gEY | X)=a+)_ fiz;)

j=1

where g is the “link” function in a generalized linear model (McCullagh and Nelder 1989),
E (f;(z;)) = 0 and the f;’s are univariate smooth functions, one for each of the p predictors.
Scatterplot smoothers similar to those discussed above can be used to estimate each of
the f;’s, and after the functional form of each of the f;’s has been determined, standard
generalized linear modelling incorporating the appropriate terms for the predictors (e.g.

polynomial terms) can be undertaken.

1.5 Thesis Overview

In this thesis, we propose a data-smoothing method for exploring statistical interaction
between a SNP and a non-genetic risk factor in case-parent trios. Chapter 1 provides back-
ground information on genetic association studies and generalized additive models. Chapter
2 develops the smoothing approach and Chapter 3 applies the smoothing approach to a sim-
ulated dataset. Chapter 3 also follows up on the exploratory findings with likelihood-based
tests. Finally, Chapter 4 summarizes the important results and discusses the possibilities

for future research.



Chapter 2

Methods

This chapter describes the notation used throughout and also presents the statistical moti-

vation for the likelihood-based smoother.

2.1 Notation

Let D and X be the case’s disease status and non-genetic covariate values, respectively.
In this study design, the disease status for the child (case) is D = 1. Also, let G, =
((My, My), (F1, F3)) be the parental genotypes, where (M;, M) and (Fy, F») denote, re-
spectively, the unordered genotypes of the mother and father with respect to grandparental
origin. There are four possible combinations (M, F1), (M1, Fy), (M, F1) and (Ma, Fy) of
parental transmissions that could lead to the child. Following the notation of Self et al.
(1991), we call this set of four possible combinations . Further, let T, be the specific allele
combination inherited by the child. We assume that all parental genotypes are available.
Self et al. (1991) assumed an infinitely polymorphic marker rather than a diallelic
marker, and s