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ABSTRACT 

Motion estimation (ME) in H.264 can account for 90% of the encoding time. As 

such, ME optimization techniques are extensively researched. In this project, we studied 

and implemented ME technique called Flexible Triangle Search (FTS). Its performance 

is compared to other ME techniques found in the Joint Video Team (JVT) reference 

software. Results show the FTS rate-distortion (R-D) curve is very close to the R-D 

curves of other ME techniques and in turn is close to the optimum Full Search (FS) R-D 

curve. The benefit of the FTS technique is its complexity which is shown to be 

significantly less than FS and up to 30% savings from other techniques. FTS is then 

implemented as a quarter-pixel ME technique while full-pixel ME is completely 

bypassed. Experimental results show 41% savings in complexity is possible over other 

sub-pixel ME techniques. The results make FTS an attractive ME technique. 
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CHAPTER 1 
INTRODUCTION 

H.264 is the latest video coding standard developed by the Moving Picture 

Experts Group and the ITU-T Video Coding Experts Group in the Joint Video Team 

(JVT). The main goal of this standard is to improve the rate-distortion (R-D) efficiency 

as compared to the available standards such as H.263 and MPEG-2. By improving R-D 

efficiency, better quality video is made possible under bandwidth limitations. As such, 

H.264 is beneficial to applications like video telephony over the internet. 

The basic building blocks of the H.264 encoder are motion estimation (ME), 

discrete-cosine transform (DCT), quantization, and entropy coding. The building blocks 

of the decoder include de-quantization, inverse discrete-cosine transform (iDCT), and 

reconstruction of the picture. Of the basic buildmg blocks, ME consumes up to 70% of 

the processing time and possibly even 90% when multiple reference frames are used. 

ME in H.264 is quite complex due to the number of features that is used in an attempt to 

reduce bit-rate while maintaining good picture quality (i.e. R-D efficiency). As such, 

much research has been completed on this topic. 

The purpose of motion estimation is to remove temporal redundancy between 

frames resulting in better compression. H.264 uses block-based motion estimation 

whereby each frame is divided into a group of macroblocks. Certain frames in a video 

sequence are compressed using discrete cosine transform, quantization, and variable 

length coding. These frames or I-frames are reconstructed and used as reference frames 



for subsequent frames. ME is used in the subsequent frames or P-frames to remove 

temporal redundancy between the I and P frames. Instead of encoding actual data in the 

P-frames, motion vectors (MV) are encoded instead along with its error relative to the I- 

frame. Based on DCT and variable length coding, these MV and its errors can be 

compressed more efficiently than the original data resulting in overall better compression. 

The JVT team developed a reference H.264 software, namely the Joint Model 

(JM), and is currently on revision 10.2. The software implements the recommendations 

that they have set forth for the standard. In regards to ME, JVT has implemented four 

ME techniques in their software namely the Full Search (FS), Unsymmetrical-cross 

Multi-Hexagon-Grid Search (UMHexagonS), Simplified UMHexagonS, and the 

Enhanced Predictive Zonal Search (EPZS). 

This paper describes the ME techniques available in the JM and outlines another 

ME technique called the Flexible Triangle Search (FTS) [4]. The FTS ME technique is 

implemented and its performance is compared to the techniques in JM. Several 

enhancements are then made to FTS to further improve its complexity and the results of 

these enhancements are analyzed [5] [7]. Finally, being a full-pixel algorithm, the FTS 

algorithm is extended as a sub-pixel ME where it is used as a quarter-pixel ME technique. 

Here, full-pixel ME is completely bypassed. 

The FTS algorithm has been implemented in H.263 and analyzed in [4]. Based on 

the results in [4], the authors further enhanced it in enhanced FTS in [5] and predictive 

FTS in [7]. Both the enhanced FTS and predictive FTS were completed in H.263 as well. 

Finally, the authors extended FTS to a half-pixel implementation in [6]. This document 

extends the concepts in [4], [ 5 ] ,  and [7] into H.264. Some of the concepts in H.264 are 



used with FTS to further improve FTS performance over its H.263 counterpart. Also, 

this document further extended FTS to a quarter-pixel implementation in H.264. 

In this document, Chapter 2 provides a brief overview of H.264 and its special 

features. Chapter 3 discusses ME and briefly describes the ME techniques in JM. 

Finally, Chapter 4 discusses and analyzes the performance of the FTS algorithm, 

enhancements to the algorithm, and its extension as a sub-pixel ME technique. 



CHAPTER 2 
H.264 CONCEPTS 

There are a growing number of applications begging for video capabilities that 

carry its data over media like cable modems, DSL, and WiFi. Some of the older 

standards like MPEG-2 worked great for high bandwidth applications like high definition 

TV but falls short for bandwidth limited applications. The Moving Pictures Experts 

Group (MPEG) and ITU-T Video Coding Experts Group in a coalition as the Joint Video 

Team (JVT) developed a new standard, H.264, which aims to improve coding efficiency 

and hence reduce bit-rate. In addition, special attention is paid to ensure that quality is 

maintained. This is, in other words, known as improving on rate-distortion (R-D) 

efficiency. In order to do this, JVT introduced many features in H.264 aimed to 

accomplish just this. 

It should be noted that the standard itself only standardizes the decoder by 

imposing restrictions on the bit stream and syntax. Thus, all encoders must adhere to the 

bit stream defined in the standard. As a result, there is freedom for the developers to 

implement the encoder in any way they desire. This allows the developer to make the 

complexity, time to market, and quality tradeoffs that is necessary for their application. 

Figure 2-1 depicts the basic building blocks of the H.264 encoder. 



Figure 2-1. H.264 Encoder 
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Note that the encoder contains the basic building blocks of the decoder as well 

since the encoder needs to decode the signal in order to generate reference frames used 

for ME. The Motion Estimation/Compensation block is the block of interest. Based on a 

reference frame which can be a frame in the past or a frame in the future, it determines 

motion vectors (MV) representing the movement of the objects in the picture. The de- 

blocking filter is common in a block-based codec like H.264 to remove blocking artifacts. 

The transform block is used to remove spatial redundancy. And finally, the data is 

quantized and entropy coded. 

Output 

The following sub-sections list just some of the features of H.264 that help 

improve the coding efficiency and picture quality. 

2-1 B-Frames 

Bi-directional motion vector (MV) prediction is not a new idea but it is included 

in the standard because of it's usefulness in providing better compression. The concept 

of bi-directional prediction is to use both the past and future frames as reference. The 



frame coded using this prediction technique is known as a B-frame. Figure 2-2 depicts 

bi-directional prediction. 

Figure 2-2. Illustration of a B-Frame 
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Note that B-frames are never used as reference frames. 

2-2 Variable Block-Size ME and Smaller Block Sizes 

A standard macroblock (MB) size is 16x16 pixels but the standard allows the use 

of differing block sizes in ME. The differing block sizes allow for more precise and 

accurate motion vectors. Figure 2-3 depicts the available block sizes used in the standard 

and they are 16x16, 16x8, 8x16, 8x8, 8x4,4x8, and 4x4 pixels. 



Figure 2-3. Variable Block-Sizes 

2-3 Quarter-Pixel ME and Improved Interpolation 

In previous standards, the introduction of half-pixel ME dramatically improved 

the picture quality by allowing for a better match between the current and reference 

frames. In H.264, this concept has been pushed a step further to include quarter-pixel 

ME. In addition, an improved interpolator has been introduced to calculate the quarter- 

pixels. Figure 2-4 depicts half-pixel and quarter-pixel locations as lower-case letters and 

integer-pixel locations as capital letters. 



Figure 2-4. Quarter-Pixel and Half-Pie1 Grid 

2-4 Motion Vectors Outside Picture Boundaries 

Because an object can be moving outside of the picture, H.264 allows motion 

vectors to point outside the picture boundaries. The pixel information outside picture 

boundaries is deduced by the pixels at the edge of the picture. Again, this allowed for 

better and more accurate motion vectors and as a result, reduced bit-rate. 

2-5 Multiple Reference Frames 

The standard introduces the ability to utilize multiple reference frames to improve 

compression at the cost of much higher complexity and memory requirements. The 



concept of multiple reference frames is extremely useful for sequences where repetition is 

common. Figure 2-5 depicts the use of multiple reference frames to find the best (least 

cost) motion vector. 

Figure 2-5. Multiple Reference Frames 
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2-6 Weighted Prediction 

Weighted prediction is an interesting concept introduced by the standard that 

allows for the motion compensated picture to be weighted and offset by certain amounts. 

This greatly helps scenes where fading can occur. 

2-7 In-loop De-blocking Filter 

It is quite common for block-based video coding to produce artifacts at block 

edges and this is commonly known as blocking artifacts. Using a de-blocking filter to 

remove these artifacts is not a new idea. In H.264, the de-blocking filter is included in 

the motion compensation process. This allows for inter-prediction to perform better as 

subsequent frames can be predicted better. 



2-8 Entropy Coding 

H.264 supports context-adaptive entropy coding in context-adaptive binary 

arithmetic coding (CABAC) and context-adaptive variable-length coding (CAVLC). 

Context adaptation greatly improves performance of the codec. 

2-9 Slices 

A slice is a collection of MBs that can be independently decoded without 

information from other blocks. Figure 2-6 shows a frame split into 3 slices. 

Figure 2-6. Slices 
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Slices are useful in separating the contents of the picture such that each slice has 

very little correlation with other slices. 

2-10 Intra Prediction 

A novel idea in H.264 is intra prediction where surrounding pixels are used to 

estimate a 4x4 luma frame. Depicted in Figure 2-7, the 4x4 block of pixels shown in 

lower case letters are predicted by the neighboring pixels in shaded boxes. 



Figure 2-7. Intra-Prediction 

Intra-prediction can be performed in 9 different modes whereby differing sets of 

the neighboring pixels are used to capture the direction of movement. 



CHAPTER 3 
JVT MOTION ESTIMATION TECHNIQUES 

The purpose of motion estimation is to remove temporal redundancy between 

frames. The basis of motion estimation is that an object from one frame has moved 

slightly in the picture in the next frame. Since the object has already been encoded, a 

motion vector describing the objects motion can be encoded instead. By doing this, much 

compression can be attained. Also, sub-pixel ME can be used to improve the 

performance. 

Motion vectors are determined by calculating the distortion between a block in the 

frame being encoded and the reference frame. Typically, a search range exists in the 

reference frame to find the best match motion vector. Because the cost of ME is related 

to both the ME residual and the motion vector, typically a Lagrangian cost function is 

used. The Lagrangian cost function is shown in Equation 3-1. 

In Equation 3-1, mv, is the prediction for the MV, and h being the Lagrange 

multiplier. The symbol mv represents a motion vector with horizontal and vertical 

components. The distortion, D, is a function of original signal, s, and the coded signal, c. 

It is based on the sum-of-accumulated differences between the reference frame and the 

current frame and is given in Equation 3-2. 



In Equation 3-1, the size of the motion vector is reduced by a parameter called 

mv,. This parameter is a prediction of the motion vector and is described in the following 

section. 

3-1 Median Prediction 

To reduce the size of the encoded motion vectors, the motion vector of the block 

is first predicted. And instead of encoding the full motion vector, the difference between 

the full motion vector and the predicted motion vector is encoded., One such prediction 

which has proven to be very useful and effective is the median predictor. Referring to 

Figure 3-1, the motion vector of block E is estimated based on the spatially adjacent 

blocks A, B, and C. 

Figure 3-1. Median Prediction Neighbors 

The formula used in the median predictor is given in Equation 3-3. 

There are certain rules to follow if any of blocks A, B, or C do not exist. If A 

does not exist, the motion vector of A is assumed to be (0,O). If block C does not exist, 



the motion vector of block C is assigned to the motion vector of block D. If both blocks 

B and C do not exist, then the motion vector of A is used. 

Armed with a very effective MV predictor that is used in all the motion estimation 

techniques in JM, the ME techniques are analyzed next. 

3-2 Full Search 

The full search is an exhaustive search of the search grid on the reference frame. 

If the search range is + 16, then there are 1089 search points. Such an exhaustive search 

is computationally expensive but this algorithm yields the best R-D efficiency. 

Some very simple optimizations have been done by JVT in the JM. The first is a 

form of early termination whereby if an intermediate SAD value is greater than a 

previously calculated SAD value, then the calculation can stop. A second optimization is 

useful in reducing the complexity when using variable block sizes and involves 

calculating SAD values of larger blocks by summing the SAD values of the smallest 4x4 

blocks. 

3-3 Unsymmetrical-Cross Multi-Hexagon-Grid Search 

The Unsummetrical-Cross Multi-Hexagon-Grid Search (UMHexagonS) is a 

complete solution that involves MV prediction, search algorithms, and SAD prediction. 

3-3.1 UMHexagonS MV Prediction 

UMHexagonS adds three more MV predictors in addition to the median predictor. 

The first predictor added is the upper layer (UpLayer) predictor whereby the MV of a 

larger block size is used as the estimate of a smaller block size. 



The second predictor added is the Corresponding-block predictor whereby the 

MV of the collocated block in the previous frame is used as an estimate. Finally, the 

third predictor added is the Neighboring Reference-Frame predictor whereby the multiple 

reference frame feature is taken advantage of. 

3-3.2 SAD Prediction for Early Termination 

In addition to MV predictors, the algorithm further adds an early termination 

technique based on SAD prediction. SAD prediction is very similar to MV prediction 

and thus includes the median predictor, uplayer predictor, corresponding-block predictor, 

and the neighboring reference-frame predictor. The SAD prediction is used as an early 

termination condition and is described in Equation 3-4 and Equation 3-5. 

The idea behind SAD prediction is that the best possible SAD value is predicted 

and if a SAD value is calculated to be close enough to the predicted SAD, it is assumed 

the most optimal SAD value and hence MV is found. Hence, during the search process, 

if a calculated SAD is less than the predicted SAD multiplied by (l+P), the whole search 

is terminated assuming the best MV has been found. It is clear that the selection of P 

affects the speed and the quality of the algorithm. 

Armed with MV and SAD predictors, UMHexagonS implements a complex 

search pattern. 



3-3.3 UMHexagonS Patterns 

The UMHexagonS involves the following steps. 

1. MV prediction as described in the previous sections 

2. Unsymmetrical-cross search - A cross search is performed whereby there are 

more horizontal test points than there are vertical test points. Hence, the term 

unsymmetrical. This is done with the belief that horizontal movement is heavier 

than vertical movement. Also, the algorithm believes that the cross-search will 

effectively locate the area of minimum distortion. The minimum cost from this 

search is used as the search center for the next step. 

3. Uneven Multi-Hexagon-grid search - In this step, a full search with range 2 is 

done about the search center to fine tune the MV. In case this traps the result in a 

local minimum or there is irregular motion, a growing 16 point hexagon search 

pattern is done. The 16 point hexagon is again weighted for horizontal motion. 

4. Extended hexagon based search - This step is typically done if the big hexagon 

search is successful. This indicates that the search resulted in MV outside of 

search center. As such, the MV is further fine tuned with a small hexagon and the 

search is completed only when the minimum is found in the center of the 

hexagon. 

3-4 Simplified Unsymmetrical Hexagon Search 

As shown in the UMHexagonS, the search pattern is complex and contains many 

search points. The temporal MV predictors (corresponding block and neighboring 

reference frame predictors) are expensive to implement. Also, the calculation of P is a 



challenge and expensive as well. The simplified UMHexagonS serves to alleviate the 

listed deficiencies with UMHexagonS. This is accomplished in three ways. First, the 

simplified UMHexagonS removes the temporal predictors. Second, a faster sub-pixel 

ME is implemented. And third, a faster integer pixel ME is implemented by removing 

the local full search and by implementing additional early termination techniques. 

The early termination techniques are based on convergence/intensive conditions. 

Convergence condition indicates global minima. As a result of meeting the convergence 

condition, the cross and big hexagon searches are no longer needed. Also, an intensive 

condition attempts to avoid local minima. 

It turns out that with this simplified model, a bit rate savings of up to 18% was 

seen at little or no cost to quality. Also, the ME time was reduced by as much as 55% 

compared to UMHexagonS . 

3-5 Enhanced Predictive Zonal Search 

The Enhanced Predictive Zonal Search (EPZS) is primarily based on effective 

methods of predicting the MV. Several predictors are used and classified under predictor 

sets. The following are the predictor sets. 

Set 1: Median predictor 

Set 2: MV of previous frame (collocated lock), spatially adjacent blocks (used in 

median predictor), and (0,O) 

Set 3: Accelerator motion vector (Calculated based on previous 2 frames) and 

adjacent blocks in previous frame 



EPZS involves first testing the first predictor set and terminates the test based on a 

threshold TI that is set to number of pixels in current block. If this test fails, the other 

predictor sets are checked and early terminated against an adaptive early termination 

threshold T2 shown in Equation 3-5 is used. 

In Equation 3-5, a and b are fixed values and MinJi are minimum distortion 

values calculated in the search. In order to maintain stability, the following term in 

Equation 3-6 is added to prevent against inadequate and incorrect early termination. 

In Equation 3-6, Np is defined to be the number of pixels in the frame. 

Finally, EPZS employs simple search patterns to fine tune the search. Namely, it 

uses the diamond search, square search, and the Extended EPZS pattern. 



CHAPTER 4 
FLEXIBLE TRIANGLE SEARCH 

The search shape in the Flexible Triangle Search (FI'S) is the triangle [4]. It is an 

interesting shape in that there are three test points (triangle vertices) compared to 4 for 

diamond. Immediately, it seems like the search will result in less test points, so a natural 

question is how effective this method is. In the FI'S algorithm, the triangle is quickly 

moved from areas of high error to areas of low error by performing certain operations. 

Small to large triangles are used to allow for fine to coarse movements. Expansion is 

used to move the triangle quickly away from areas of high error and contraction is used to 

fine tune a search. 

FTS is in fact based on the simplex algorithm for ME but the simplex algorithm is 

used in the continuous domain. As such, to use the simplex algorithm in an integer 

search is difficult since estimates are needed to map the continuous domain into the 

integer domain. It is shown [4] that this may result in the collapse of the triangle into one 

or two vertices. In addition, floating-point calculations are used and are very 

computationally expensive. FI'S allows the simplex algorithm to be used in an integer 

grid by defining a finite set of triangles to perform the search. The vertices of these 

triangles will always lie on the integer grid. Certain operations can be performed on the 

triangle including reflection, translation, contraction, and expansion. Since the triangles 

are typically predetermined, the operations are easily performed using look-up tables. 

The operations that are performed on the triangle are as follows: 



Reflection - reflecting away the vertex with the highest cost about the other two 

vertices. If the new vertex has lower cost, then the reflection is successful. 

Expansion - increase the size of the triangle by increasing the level. The purpose 

of the expansion is to move a particular vertex further in the particular direction of 

lower cost. 

Contraction - When reflection fails, it is expected that the triangle is in an area of 

lowest cost (hopefully the global minima). As such, contraction is used by 

reducing levels to fine tune the MV. 

Translation - On a successful expansion, it may seem the area of lowest cost is 

further in the direction of the expansion. Hence, translation is used to move the 

whole triangle in the general direction. 

Figure 4-1 and Figure 4-2 depicts some of the valid operations on the triangle. 

The smallest triangle that is 1 pixel by 1 pixel in size is assigned level 0. The triangles in 

each level represent the possible reflections of the triangles in the level. Translation is 

not shown since it is simply a shift of the whole triangle. A triangle is defined by an 

identifying number and its level. For example, a T24 triangle is the fourth triangle in 

level 2. The vertices of the triangle are denoted Vo, VA, and VB where Vo is the origin of 

the triangle, VA is the vertex counterclockwise from Vo and VB is the last vertex. 



Figure 4-1. FTS Triangles and Reflections 

Figure 4-2. FTS Triangles Levels 0 through 2 

Note that in Figure 4-2, three levels of triangles are used. More levels can be 

added but simulations showed [4] that 3 levels are sufficient. Typically, predetermined 



triangles are used so that it can be easily referenced via tables in software. An example 

of a level 0 lookup table around the Vo vertex is included in Table 4-1. 

Table 4-1: FTS Level 0 Look-up Table 

The following is a detailed step-by-step FTS algorithm. 

1. Initialization 

Initialize the triangle to level 0 and initialize the vertices 

Current 

V0, VA, an( 

chosen as the initial search point generated by MV prediction. 

Initialize K to 0 and a translation vector Vd to 0. 

Also initialize V,, to Vo. 

2. Determine costs 

Ve with Vo 

Vo Reflection 

New Triangle I Origin Shift 

Calculate the cost using the Lagrangian cost function of the three vertices. Assign 

the most expensive vertex as Vh and the least expensive as V1. 

Vo Reflection 

New Triangle I Test Point 

If this step is reached after a successful expansion or translation, go to step 6. 

Otherwise, go to step 3. 

3. Reflection 



Reflect the triangle away from vertex with largest cost (Vh) and hence obtain a 

new vertex Vr. Calculate the cost of the new vertex V,. 

If the new vertex results in a smaller cost, the reflection is successful. And if 

successful, go to step 4. Otherwise, if the reflection is unsuccessful, proceed to 

step 5. 

4. Expansion 

Locate an expansion vertex V, based on the appropriate table for the current level 

and calculate the cost of V,. 

If the cost of V, is less than the cost of V,, then expansion was successful. If 

successful, increase the triangle level and calculate the translation vector to be Vd 

= v, - v,. 

If expansion is not successful, replace Vh by Vr. 

Update V,, if necessary. 

Go back to step 2 after updating K = K + 1. 

5. Contraction 

Reduce triangle level for fine tuning and go back to step 2 after updating K = K + 

1. 

6. Translation 

Test a new vertex Vt by translating VI by Vd (i.e Vt = V1 + Vd). 

If the cost of Vt is less than V1, then translation was successful. Hence, replace V1 

by Vt and update V,, if necessary. 



0 Go back to step 2 after updating K = K + 1. 

The exit conditions of the algorithm are the following. 

1. No more contractions are possible. 

2. Search iterations reached a limit KMax. 

3. If the calculated cost is less than a predetermined exit SAD. The exit SAD 

condition could be similar to that used in UMHexagonS. 

Note that via simulations, it was determined that KMax of 8 is sufficient and that 

any greater value yield negligible to no return on quality. Unfortunately, there is no clear 

method to determine KMax except by trial and error. KMax can be a function of the 

search window and the value of 8 is determined with a search window of +16. 

4-1 Full-Pixel FTS 

We first implement the FTS algorithm in the H.264 JM reference software to 

work in the integer grid or as a full-pixel ME algorithm. It is compared against the search 

algorithms already available in JM but with their respective sub-pixel refinements 

disabled. The following are the parameters used for these tests. 

QCIF 

CABAC 

Only 1st frame is I-Frame and no B-Frames 

100 encoded frames 

1 reference frame (no multiple reference frames) 



No sub-pixel ME 

Search range of +/-I6 

Quantization Parameters of 8, 18,28, and 38 

Variable size macroblocks is not supported. Only 16x16 macroblocks are used in 

motion estimation. 

Detailed analysis of the Foreman and Carphone video sequences are done but 

results are obtained for many of the available video sequences. Analysis of the Foreman 

sequences are found in the subsequent sections and analysis of the Carphone sequence 

can be found in Appendix A. 

4-2 Full-Pixel FTS Simulation Results 

In evaluating the performance of FTS, we compare both the PSNRs of the 

reconstructed video sequences and the complexities of different ME algorithms. 

Typically PSNR is observed as a function of bit rate which produce the rate-distortion (R- 

D) curve. Such a graph indicates the performance of the video encoder. In other words, 

the graph shows the PSNR achievable by any search algorithm at any particular bit rate. 

This can be very important since many applications are bandwidth constrained and 

ideally the search algorithm exhibiting the best PSNR for the available bandwidth is 

chosen. Equation 4-1 outlines the calculation of PSNR. 

PSNRdB = 10 log,, 
r2M:! 1 



MSE in Equation 4-1 is the mean-squared-error which is the mean square of the 

difference between the reference frame and the degraded frame and n is the number of 

bits used to represent a video sample. Note that although PSNR allows for an automated 

and consistent method of evaluating quality, it may not represent subjective quality. 

Figure 4-3 and Figure 4-4 show graphs of the luma PSNR vs. bit rate or the R-D 

curve for the Foreman video sequence. 

Figure 4-3. Foreman Luma R-D Curve 

Foreman - Y-PSNR vs. Bit Rate 
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Figure 4-4. Foreman Luma R-D Curve (Close-up) 

Foreman - Y-PSNR vs. Bit Rate 
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It can be seen that the Full Search (FS) algorithm exhibits the best PSNR at any 

particular bit rate and is known as the optimum. Additionally, the performance of all the 

search algorithms is very close to that of FS. Upon closer inspection, FTS does exhibit 

the poorest performance compared to the other search algorithm. Specifically, FTS is 0.3 

dB worst than FS but only 0.1 dB worst than simplified UMHexagonS. In other words, 

at any particular bit-rate, FTS is 0.1 dB to 0.3 dB worst than the other search algorithms. 

These figures are quite insignificant and if there are benefits elsewhere, it is an acceptable 

trade-off. Figure 4-5 and Figure 4-6 show the chroma U and chroma V R-D curves of the 

search algorithms. 



Figure 4-5. Foreman Chroma U R-D Curve 

Foreman - U-PSNR vs. Bit Rate 
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Figure 4-6. Foreman Chroma V R-D Curve 

Foreman - V-PSNR vs. Bit Rate 
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Figure 4-5 and Figure 4-6 show that the chroma R-D performance is comparable 

to that of the luma R-D performance. 

In addition to observing the R-D performance of a search algorithm, the 

complexity must be looked at as well. If complexity is not an issue, the full search 

algorithm can be used yielding the best R-D performance. Unfortunately, the complexity 

of the FS algorithm is high for real world applications. Therefore, in choosing a search 

algorithm, one must look at its complexity as well as its R-D curve. 

As mentioned, motion estimation is performed using the SAD operation. And 

since the SAD operation is performed for every pixel at every search position for the 

entire macroblock, the number of SAD operations used is a good indication of 

complexity. For example, to compute the SAD value at one search location requires 

16x16 = 256 SAD operations. A SAD operation may further expand to one add, one 

subtract, and one absolute difference operations. Thus, the total number of operations 

required is 3x256 = 768. It should be clear that the most complex algorithm is full search 

since it performs an exhaustive search at all search locations. Another method of 

measuring complexity is the number of search positions or block matches that are 

performed. A block match is defined as the calculation of a SAD value between a 

macroblock and the reference frame. At first thought, the number of block matches may 

simply be the number of SAD operations divided by 256 but this is not necessarily true. 

It may be possible that less than 256 operations are required if early termination 

techniques are available. 

Starting with block matches, Figure 4-7 show the number of block matches 

required for each of the search algorithms. 



Figure 4-7. Foreman Block Matches Required 

Foreman - Block Matches vs. Bit Rate 
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As suspected, the full search algorithm requires the most block matches. 

Specifically in a search area of k16, 33x33 = 1089 block match operations are required. 

Figure 4-8 show the block matches required for the search algorithms ignoring the 

complex FS algorithm. 



Figure 4-8. Foreman Block Matches Required Ignoring FS 
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Figure 4-8 show that the EPZS algorithm performed the best of the available 

search algorithms in the JM software. However, the FTS algorithm was able to 

consistently use 65% fewer blocks matches than EPZS. This complexity reduction is the 

highlight of the FTS algorithm. The 0.1 dB to 0.3 dB reduction in R-D performance is a 

good trade-off for a 65% reduction in complexity. 

Although FTS performed well for the Foreman sequence, it must be verified 

against other sequences to ensure FTS performs well with varying scenarios in the video 

sequence. Table 4-2 show the block matches required for other available video test 

sequences. 



Table 4-2: Average Number of Block Match Operations per Macroblock 

Test Sequence 

I car 1 47.56 1 93.96 1 47.19 1 15.99166.12%1 

akiyo 

news 

silent 

coastguard 

foreman 

carphone 

1 claire 1 16.75 1 21.75 1 14.87 1 7.75 1 47.89% 1 

HEX 

I miss america 1 15.79 / 22.23 / 15.89 1 9.24 ( 41.83% 1 

14.86 

25.1 1 

27.23 

40.86 

43.66 

36.88 

I Average 1 29.85 1 55.14 1 27.43 1 9.63 1 61.35% 1 

SHEX 

Table 4-2 show that the FTS sequence does indeed perform on average 61% 

better than the EPZS algorithm. Specifically, FTS can be 42% to 78% better than EPZS 

depending on the video sequence. 

22.66 

39.40 

45.29 

1 03.47 

83.96 

63.58 

Observing block matches has its deficiencies since a block match operation may 

require a variable number of SAD operations. Some algorithms have early termination 

techniques such that not all 256 SAD operations need to be performed on a 16x16 

macroblock. For example, if an intermediate SAD value is greater than a known 

minimum SAD value, the calculation can stop. Hence, measuring the number of SAD 

operations is a better indication of complexity. Figure 4-9 show the average number of 

SAD operations required for each search algorithm. 

EPZS 

13.89 

22.45 

24.44 

38.07 

38.23 

31.83 

FTS FTS 
Savings 

over EPZS 

6.85 

7.1 4 

8.92 

8.33 

12.14 

10.32 

50.69% 

68.20% 

63.51 % 

78.1 1 % 

68.24% 

67.57% 



Figure 4-9. Foreman Average SAD Operations 

Foreman - Average SADs vs. Bit Rate 

o 200 400 600 a00 1000 1200 

Bit Rate (kbps) 

+ EPZS 

*c-. FTS f 

Again, notice that FS is the most complex of the search algorithms. For a clearer 

picture, Figure 4-10 show the average number of SAD operations without FS. 



Figure 4-10. Foreman Average SAD Operations ignoring FS 

Foreman - Average SADs vs. Bit Rate 

25 1 I I 
0 200 400 600 800 1000 1200 

Bit Rate (kbps) 

-ac HEX 

SHEX 

++ EPZS 

FTS 

Again, EPZS performed the best but FTS is able to perform 35% to 52% better. 

Notice here that although FTS performed better among the H.264 ME implementations, it 

did not see the same percentage savings as seen with block matches. This would suggest 

that EPZS performs other early termination techniques during SAD calculations. In fact, 

in the FTS algorithm, the optimization allowing for early termination of the SAD 

calculation cannot be implemented. Finally, Table 4-3 show the average number of SAD 

operations for other video sequences. 



Table 4-3: Average Number of SAD Operations per Macroblock 

Akiyo 1 125237 1 187605 1 180695 1 173710 1 3.87% 1 

Test Sequence 

News 1 274621 1 401760 1 314535 1 181 147 1 42.41% 

HEX 

Claire 1 187968 1 218486 1 185226 1 196439 1 -6.05% 1 

Silent 

Coastguard 

Foreman 

Carphone 

Car 

Average 1 368457 1 623531 1 392575 1 244223 1 28.17% 1 

SHEX 

Although FTS performed worst in terms of the average SAD operations for a 

couple of the video sequences, it still performed 28% better on average than the other 

search algorithms. 

In addition to average SAD operations, it is important to take note of peak 

resource requirements. Hence, the peak number of SAD operations used is observed. 

Figure 4-1 1 and Table 4-4 show the maximum SAD operations. 
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EPZS 

488540 
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895676 

663875 

1325480 
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356599 

529383 
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426066 

805052 
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Figure 4-11. Foreman Maximum SAD Operations 

Foreman - Maximum SADs vs. Bit Rate 
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Table 4-4: Maximum Number of SAD Operations per Macroblock 

Test Sequence 

-- 

Carphone 1 756864 1 1223488 1 732688 1 385792 1 47.35% 

Akiyo 

News 

Silent 

Coastguard 

Foreman 

Car 1 1407312 1 2046688 1 1638608 1 622336 1 62.02% 

HEX 

189280 

498544 

581 648 

8451 68 

1 172032 

by using FTS. In fact, FTS is on average 38% better than other search algorithms. 

SHEX 

-- 

Claire 

miss America 

Average 

298800 

777040 

886960 

1 64451 2 

1776496 

Peak resource usage in terms of maximum number of SAD operations is reduced 

264864 

252944 

6631 84 

FTS 
Savings 

over EPZS 

EPZS 

228384 

5471 04 

601 392 

799824 

1385040 

FTS 

36771 2 

389088 

1045643 

201 21 6 

228608 

289536 

352000 

606976 

11.90% 

58.21 % 

51.86% 

55.99% 

56.1 8% 

-- 

26051 2 

282432 

71 9554 

-- 

251 904 

2951 68 

359282 

3.30% 

-4.51 % 

38.03% 



The FTS algorithm has shown to suffer insignificantly in terms of its R-D 

performance. But the FTS algorithm has showed to save quite significantly in 

complexity as shown by measuring block matches, average SAD operations, and 

maximum SAD operations. This reduced complexity makes FTS attractive over other 

search algorithms. 

4-3 Enhanced and Predictive FTS 

In Enhanced Flexible Triangle Search (EFTS), the FTS algorithm is further 

reduced in complexity. Compared to the FTS algorithm, EFTS requires less SAD 

calculations and less block matches. In addition, EFTS offers no degradation in video 

quality compared to FTS. 

During the reflection, expansion, contraction, and translation operations, the 

vertices of the triangle may lie on a particular search position more than once. If this 

occurs, the FTS algorithm is doing unnecessary work recalculating the SAD value for 

that position. It is more efficient to use the SAD value calculated when the position was 

originally searched and this forms the enhancement to FTS. This enhancement 

minimizes the number of SAD operations and block matches at the expense of data 

memory to store previously calculated results. Table 4-5 shows the number of 

unnecessary block match operations for the foreman and car phone video sequences. 



Table 4-5: Average Number of Duplicate Block Match Operations per Macroblock 

Foreman 

4.26 

4.14 

Sequence 

Car Phone 1 8 I 3.82 I 

As shown in Table 4-5, each macroblock in the Foreman sequence performs about 

4.45 unnecessary block match operations. Since the FTS algorithm requires 12.7 block 

match operations on average in the Forman sequence, 35% of the operations are 

redundant and can be eliminated. In other words, this enhancement alone can save 35% 

of FTS complexity making it an even more attractive ME technique. 

Quantization Parameter 

The modification to the FTS algorithm involves creating a data buffer to store 

SAD values. Once a SAD value is calculated by FTS at a particular search position, the 

resultant value is stored. When a new SAD value needs to be calculated, the buffer is 

checked first to see if it has been previously calculated. If it has, the value from the 

buffer is used and the additional SAD operations are eliminated. The amount of 

computation required to perform these checks are significantly less than the number of 

computations required to perform a SAD operation. Specifically, a SAD operation on 

one macroblock will require 16x16~3  or 768 subtract, add, and absolute value operations 

since a SAD operation requires one add, subtract, and absolute operations. In the 

proposed solution, only two operations are needed to check if the SAD values have 

already been calculated and to load or store the SAD value. 

Average Duplicated Block 
Match Operations per MB 



In predictive FTS (PFTS), a technique is introduced to predict the initial search 

direction of FTS. Note that in PFTS, the enhancement in EFTS is included. It is shown 

[7] that by choosing the initial triangle correctly, the number of block matches and SAD 

operations are reduced. This occurs since the search is directed toward the direction of 

the minimum earlier. In addition, it is shown that this predictive algorithm will not affect 

the PSNR performance of FTS. 

PFTS chooses a search direction by choosing one of the four triangles found in 

level 0 the search shall start with. Refer to Figure 4-2 for the four triangles available in 

level 0. Each triangle represents a search in the direction of the quadrant it lives in. In 

predicting the starting triangle, the SAD values of the four positions surrounding the 

search centre which lie as a vertex to a triangle is evaluated. The two vertices of each 

triangle ignoring the origin are then added together. Finally, the triangle with the two 

vertices that add to the smallest value is chosen as the starting triangle and search 

direction. 

4-4 Enhanced and Predictive FTS Simulation Results 

In the analysis of EFTS and PFTS, simulations are done with the EFTS 

enhancement by itself and then with EFTS and PFTS together. From this point forward, 

PFTS implies EFTS is included. Similar to the previous analysis of the FTS algorithm, 

the R-D performance of EFTS and PFTS are observed. Figure 4-12 show the luma R-D 

performance of EFTS and PFTS. 



Figure 4-12. Foreman Luma R-D Curve Using EFTS and PFTS 

Foreman - Y-PSNR vs. Bit Rate 
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Figure 4-12 show that EFTS and PFTS exhibit virtually the same R-D 

performance. In fact, it is expected that EFTS perform the same as FTS since the only 

change is to store calculated SAD values for later use and so the actual performance 

remains unchanged. In addition, no significant R-D performance change was seen when 

PFTS is added to EFTS. Figure 4-13 and Figure 4-14 show the chroma R-D performance 

of EFTS and PFTS, which show similar results as the luma frame. 



Figure 4-13. Foreman Chroma U R-D Curve Using EFTS and PFTS 

Foreman - U-PSNR vs. Bit Rate 

0 200 400 600 800 1000 1200 

Bit Rate (kbps) 

-+x ~ FTS 

+ EFTS 

PFTS+EFTS 

Figure 4-14. Foreman Chroma V R-D Curve Using EFTS and PFTS 

Foreman - V-PSNR vs. Bit Rate 
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The block matches is observed to show the affect of EFTS and PFTS on 

complexity. Figure 4-15 show the block matches of the EFTS and PFTS algorithms in 

comparison to the original FTS algorithm. 

Figure 4-15. Foreman Block Matches Using EFTS and PFTS 

Foreman - Block Matches vs. Bit Rate 
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For the Foreman video sequence, Figure 4-15 show that EFTS exhibits an 

improvement of 35% over FTS which is expected and shown earlier. In addition, by 

adding the PFTS algorithm to FTS, another 5% to 13% savings can be obtained. Table 

4-6 shows the effect of PFTS and EFTS over FTS for all the available video sequences. 



Table 4-6: Average Number of Block Match Operations per Macroblock Using EFTS and PFTS 

Test Sequence FTS EFTS 

akiyo 

silent 8.92 5.82 

coastguard 1 8.33 1 5.61 

foreman 12.14 7.87 

carphone 10.32 6.62 

car 15.99 10.70 

claire 7.75 5.32 

miss america 9.24 5.76 

Average 9.63 6.39 

Table 4-6 show that the EFTS algorithm is capable of achieving a 33% savings on 

average over the FTS algorithm. In addition, the PFTS algorithm adds another 3% on 

average of savings on top of the 33%. Notice that PFTS did perform slightly worse for 

two of the sequences. Keeping in mind that these savings are on top of the 61% savings 

FTS saw on top of the other search algorithms, EFTS and PFTS are very powerful. 

Figure 4-16 show the average SAD operations required for EFTS and PFTS in 

comparison to FTS. 



Figure 4-16. Foreman Average SAD Operations Using EFTS and PFTS 

Foreman - Average SADs vs. Bit Rate 
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Again, EFTS performed 35% better than FTS and PFTS performed an additional 

4% to 13% better. Table 4-7 show the results of other video sequences. 



Table 4-7: Average Number of SAD Operations per Macroblock Using EFTS and PFTS 

1 akiyo 1 173710 1 119360 1 31.29% 1 127356 1 -6.70% 

Test Sequence 

-- 

Similar to the results obtained from measuring block matches, average SAD 

FfS 

news 

silent 

coastguard 

foreman 

carphone 

car 

claire 

miss america 

operation measurements show the same 33% improvement by EFTS and an additional 

3% improvement by adding PFTS. Finally, Figure 4-17 show the maximum SAD 

operations for the Foreman video sequence using EFTS and PFTS. Again, this is 

EFTS 

/ Average 1 244223 1 162131 1 33.33% 1 155976 1 3.02% 

181147 

226272 

21 1202 

307799 

261 696 

405309 

196439 

234434 

important for some systems to know its peak resource requirements. 
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Savings 
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Figure 4-17. Foreman Maximum SAD Operations Using EFTS and PFTS 

Foreman - Maximum SADs vs. Bit Rate 
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EFTS showed a lower but significant 27% improvement over FTS in peak 

resource usage. The addition of PFTS on the other hand had a relatively small negative 

effect at higher bit rates of 5% but up to 14% savings at lower bit rates. Table 4-8 show 

the maximum SAD operations for other video sequences using EFTS and PFTS. 



Table 4-8: Maximum SAD Operations per Macroblock Using EFTS and PFTS 

Test Sequence 

car 1 622336 1 457472 1 26.49% 1 416512 1 8.95% 

akiyo 

news 

silent 

coastguard 

foreman 

claire 1 251904 / 162048 1 35.67% 1 148992 1 8.06% 

U S  

miss america 1 295168 1 180992 1 38.68% 1 152064 1 15.98% 

201 21 6 

228608 

289536 

352000 

606976 

Average 1 359282 1 244395 1 33.18% 1 234439 1 2.34% 

EFTS 

Notice that although for the coastguard sequence and some of the other sequences 

the peak resources usage has gone up, the peak usage is still on average 33% better for 

EFTS and an additional 2% better when PFTS is added. Also, acknowledge these values 

are savings on top of what FTS already provides. 

128256 

164096 

185856 

21 91 36 

440576 

Significant improvements of around 33% were seen with EFTS over FTS and a 

smaller improvement of 3% was seen with PFTS. The effects of PFTS was shown to be 

negative on some video sequences but was still able to obtain a 3% improvement on 

average. Finally, it was seen that these improvements came with little cost in terms of R- 

D performance. 

EFTS 
Savings 
over FTS 

4-5 Sub-Pixel FTS 

In Sub-Pixel Flexible Triangle Search (SP-FTS), FTS is extended from full-pixel 

motion estimation to sub-pixel motion estimation. A new FTS technique performed in 

quarter-pixel accuracy is presented here. Full-pixel FTS, as presented in previous 
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sections, has sub-pixel ME disabled and shall be referred to as FP-FTS. In SP-FTS, full- 

pixel and sub-pixel motion estimations are combined into a single step by eliminating 

full-pixel ME. Half-Pixel FTS (HP-FTS) has shown in H.263 [6] to have lower 

complexity than a two-stage full-pixel and half-pixel motion estimation technique. In 

this section, SP-FTS is extended to H.264 where quarter-pixel motion estimation is 

available. H.264 motion estimation can be viewed as a three step process whereby full- 

pixel, half-pixel, and quarter-pixel refinements are done. The proposal in this section is 

Quarter-Pixel FTS (QP-FTS), whereby these three steps are combined into one by 

eliminating full-pixel and half-pixel refinements. In addition to QP-FTS, for comparison 

purposes, the original FP-FTS algorithm is combined with full sub-pixel search (SP-FS). 

FP-FTS and SP-FS shall be referred to as (FP-FTS+SP-FS). The idea of SP-FS will be 

discussed later in more detail. 

In sub-pixel motion estimation, intermediate pixels are obtained from integer 

pixels using interpolation. Half-pixel values are obtained using a one dimension 6-tap 

finite-impulse-response (FIR) filter. The interpolation filter is applied horizontally and 

vertically to obtain all the half-pixel points. The quarter-pixel values are then obtained 

by averaging integer and half-pixel values. Refer to Figure 2-4 for the half and quarter- 

pixel grid. 

In Figure 2-4, pixel positions marked by upper-case letters are integer pixel 

locations. Lower-case letters mark half-pixel positions and quarter-pixel locations. But 

note that positions half-pixel positions are also quarter pixel positions. The positions n 

and e are calculated using Equation 4-2. 



e, = ( A - 5 ~ + 2 0 ~ + 2 0 0 - 5 ~ +  F) 

n, = ( G - 5 ~ + 2 0 ~ + 2 0 1 - 5 ~ + ~ )  

e = (e, +l6)>> 5 

n = (n, +l6)>> 5 

The values n and e are further clipped to the range of 0 to 255. Half-pixel 

location p is calculated using the same FIR filter as described in Equation 4-3. 

Again, the final value of p is clipped to the range of 0 to 255. 

The quarter-pixel locations at e,f, g, u, etc are calculated by averaging the two 

nearest integer and half-pixel locations. The value is also rounded up by adding 1 before 

averaging. For example, d is calculated in Equation 4-4. 

On the other hand, quarter sample locations at h and j are calculated using the 

diagonal half pixel neighbours as shown in equation 4-5. 

Note that the discussed interpolation method is used in the luma frames where 

motion estimation is performed. The benefits of sub-pixel motion estimation and 

specifically quarter-pixel motion estimation in H.264 over half-pixel motion estimation in 

H.263 is to provide more accurate estimation of motion and thus increase PSNR and 

improve the R-D curve. The trade-off for the improvement in R-D is the increase in 

complexity required to calculate the interpolated frames. 



Typically, in motion estimation, a full-pixel search is completed first in a 

specified search area. Once the minimum is found, half-pixel motion estimation is used 

to test surrounding half-pixel locations to fine tune the minimum. In the case of H.264, 

further refinement is done by testing the quarter-pixel locations around the half-pixel 

locations. Depending on the technique, all or a subset of these half-pixel and quarter- 

pixel locations are tested. If all of these positions are tested, it is known as full half-pixel 

and full quarter-pixel search. 

In the JVT H.264 reference software, a quarter-pixel interpolated frame is always 

computed before any motion estimation is done. Instead of electing to interpolate the 

whole frame, a technique can be used to only interpolate the samples that are necessary 

during motion estimation. However, such a method is likely to be inefficient since 

samples may be calculated more than once because samples may be used in the motion 

estimation of several macroblocks. Also, if half and quarter motion vectors exist, the 

encoder is required to compute these anyway for its motion compensation block. As 

such, the quarter-pixel interpolated frame is used in FTS. The QP-FTS algorithm is 

completely executed in the quarter-pixel interpolated frame. The QP-FTS algorithm is 

the same as that described in FP-FTS. 

The QP-FTS is implemented in the H.264 JM software and its performance is 

compared to that of the other search algorithms. In previous simulations, the respective 

sub-pixel refinement for each search algorithm was disabled. For these simulations, the 

sub-pixel refinements are re-enabled. In addition, the integer FTS technique is paired 

with the full search sub-pixel motion estimation (FP-FTS+SP-FS). Whereby the full 



search sub-pixel motion estimation performs an exhaustive search of neighbouring eight 

half-pixel positions and then the neighbouring eight quarter-pixel positions. 

4-6 Sub-pixel FTS Simulation Results 

Starting with the R-D performance of QP-FTS, the R-D performance is compared 

to FP-FTS and FP-FTS+SP-FS. It is expected that since ME is done in quarter-pixel 

accuracy, the PSNR performance is better. Figure 4-18 compares the R-D performance 

of QP-FTS against FP-FTS and FP-FTS+SP-FS. 

Figure 4-18. Foreman Luma R-D Curve Using QP-FTS Compared to FP-FTS 
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Figure 4-18 shows that QP-FTS performs better than FP-FTS by 1 dB and FP- 

FTS+SP-FS is 1.75 dB better than FP-FTS. Figure 4-19 and Figure 4-20 show the 

performance of QP-FTS against other available ME technieques. 



Figure 4-19. Foreman Luma R-D Curve Using QP-FTS 
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Figure 4-20. Foreman Luma R-D Curve Using QP-FTS (Close-up) 
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Instead of improving R-D, QP-FTS exhibited worst performance by 0.8 dB 

compared to FP-FTS+SP-FS. This is not too surprising since the combination of a full 

pixel FTS search and a full sub-pixel search can exhibit the ideal SP-FTS performance. 

Figure 4-21 and Figure 4-22 show the R-D performance of the chroma frames which 

exhibit the same results as the luma frame. 

Figure 4-21. Foreman Chroma U R-D Curve Using QP-FTS 
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Figure 4-22. Foreman Chroma V R-D Curve Using QP-FTS 
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Figure 4-23 show the complexity of the search algorithms based on the number of 

block matches. It is expected that the complexity of sub-pixel search algorithms are 

significantly more complex than the full-pixel search results presented in earlier sections. 

For example, FP-FTS exhibited an average of 6.15 block matches per macro-block. As 

discussed, full sub-pixel search requires 16 block matches. Hence, it is expected that FP- 

FTS+SP-FS will require l6+6.l5 = 22.15 block matches per macro-block. Indeed, the 

value of 22.15 block matches per macro-block was measured. 



Figure 4-23. Foreman Block Matches Using QP-FTS 
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Figure 4-23 show that FP-FTS+SP-FS performed better than the JM techniques. 

Specifically, FP-FTS+SP-FS performed 55% to 60% better than EPZS. This 

improvement is similar to that seen when only full-pixel ME was used. Also, QP-FTS 

performed better than FP-FTS+SP-FS by 29% to 33%. Hence, although QP-FTS 

exhibited slightly worst performance in terms of R-D, the savings it exhibits in 

complexity may be an attractable trade-off. Table 4-9 shows the performance of FP- 

FTS+SP-FS and QP-FTS over other video sequences. 



Table 4-9: Average Number of Block Match Operations per Macroblock 

Test Sequence 

akiyo 

I claire 1 32.42 1 27.68 1 30.74 1 21 .16 1 31 .15% 1 

HEX 

news 

silent 

coastguard 

foreman 

carphone 

car 

I miss america 1 31.36 1 30.14 1 31.99 1 20.87 1 34.76% 1 

29.75 

Average 

SHEX 

41.46 

44.47 

58.72 

60.52 

54.28 

62.92 

Table 4-10: Average Number of Block Match Operations per Macroblock Using QP-FTS 

26.01 

EPZS 

45.30 

53.44 

119.23 

100.95 

79.10 

109.30 

akiyo 

29.60 

Test Sequence 

news 

FP-FTS+SP-FS 

37.31 

40.25 

54.25 

54.97 

48.17 

62.03 

silent 

FTS 
Savings 

over EPZS 

21.01 

QP-FTS 

coastguard 

29.01 % 

21.33 

21.83 

21.30 

23.28 

22.22 

25.38 

foreman 

42.83% 

45.77% 

60.73% 

57.64% 

53.87% 

59.08% 

QP-FTS Savings 
over EPZS 

carphone 

QP-FTS Savings 
over FTS 

car 

I claire 1 14.70 1 52.1 9% 1 30.55% 

1 miss america 1 16.02 1 49.92% 1 23.23% 

Average 

FP-FTS+SP-FS performed very well across the board averaging a 46% savings in 

complexity. QP-FTS performed on average 33% better than FP-FTS+SP-FS and more 

significantly, it performed on average 64% better than EPZS. Again, the savings in 



complexity may be worth the trade-off in R-D performance. Figure 4-24 shows the 

average SAD operations required by the sub-pixel search algorithms. 

Figure 4-24. Foreman Average SAD Operations Using QP-FTS 
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Table 4-1 1 summarizes the results of average SAD operations for all the video 

sequences. 



Table 4-11: Average Number of SAD Operations per Macroblock 

I akiyo 1 315357 1 261810 1 374188 1 325721 1 12.95% 

Test Sequence 

news 

silent 

HEX 

I coastguard 1 8531 12 1 1505507 1 848816 1 470646 1 44.55% 

foreman 

SHEX 

I carphone 1 765198 1 959058 1 756505 1 489579 1 35.28% 

car 

I claire 1 489543 1 340227 1 489464 1 438339 1 10.45% 

FTS 
Savings 
over 
EPZS 

EPZS 

I miss america 1 550718 1 415290 1 559312 1 477420 1 14.64% 

FP-FTS+SP-FS 

Table 4-12: Average Number of SAD Operations per Macroblock Using QP-FTS 

I Average 

Test Sequence 

coastguard 

673764 

akiyo 

news 

silent 

foreman 

EPZS 

I carphone 

840047 

3741 88 

555985 

601 776 

I car 

QP-FTS 

I claire 

687428 

320276 

331 21 4 

340454 

I miss america 

QP-FTS 
Savings over 
EPZS 

I Average 

458409 

QP-FTS 
Savings over 
FTS 

14.41 % 

40.43% 

43.43% 

Looking at average SAD operations, the FTS algorithms did not perform as well 

as what was seen in block matches. Still, FTS with full sub-pixel search still performed 

30% better than EPZS and QP-FTS added another 17% savings on top of that or 41% 

29.61 % 

1.67% 

16.72% 

14.1 1% 



savings over EPZS. Figure 4-25 shows the maximum SAD operations for the search 

algorithms. 

Figure 4-25. Foreman Maximum SAD Operations Using QP-FTS 
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Table 4-13 show the results of measuring maximum SAD operations for the rest 

of the video sequences. 



Table 4-13: Maximum SAD Operations per Macroblock 

Test Sequence HEX SHEX EPZS FP-FTS+SP-FS FTS 
Savings 
over 
EPZS 

akiyo 391408 405856 426256 346656 18.67% 

news 779600 986992 806720 456400 43.43% 

silent 888896 10991 68 867680 468000 46.06% 

coastguard 1061 21 6 1 978448 1070816 704224 34.23% 

I foreman 1 1568064 1 2188736 1 1729488 ( 802752 1 53.58% 

I carphone 1 1 1  18032 1 1594576 ( 1088896 1 565584 1 48.06% 

I claire 1 589616 1 522080 1 563168 1 467648 1 16.96% 

I missamerica 1 624208 / 605504 1 643680 1 509456 1 20.85% 

I Average 1 982366 1 1317335 1 1025742 1 572041 1 37.91% 

Table 4-14: Maximum SAD Operations per Macroblock Using QP-FTS 

I a kiyo 1 426256 1 348160 1 18.32% 1 -0.43% 1 

Test Sequence 

I news 1 806720 1 362240 1 55.10% 1 20.63% 1 
I silent 1 867680 1 361984 1 58.28% 1 22.65% 1 

EPZS 

The results are consistent with measuring block matches and average SAD 

operations. FTS with full sub-pixel search performed on average 38% better and QP-FTS 

added another 24% savings or 5 1 % savings over EPZS. 

QP-FTS 

coastguard 

foreman 

carphone 

car 

claire 

miss america 

Average 

QP-FTS 
Savings over 
EPZS 

1 07081 6 

1729488 

1088896 

2034976 

5631 68 

643680 

1025742 

QP-FTS 
Savings over 
FTS 

460288 

441 088 

4341 76 

435456 

408064 

442880 

41 0482 

57.02% 

74.50% 

60.1 3% 

78.60% 

27.54% 

31.20% 

51.1 9% 

34.64% 

45.05% 

23.23% 

47.39% 

12.74% 

13.07% 

24.33% 



FTS was extended as a SP-FTS algorithm in two ways. FTS paired with a full 

half-pixel and quarter-pixel searches showed significant improvement in complexity over 

other JM sub-pixel ME techniques. But, FTS showed little effect to the R-D 

performance. Also, FTS was implemented in the quarter-pixel domain completely 

bypassing full-pixel and half-pixel searches. Here results showed further improvement 

over FTS but came at a cost of slightly reduced R-D performance as compared to other 

sub-pixel ME techniques. However, SP-FTS showed to produce better R-D performance 

than any of the full-pixel ME techniques. 



CHAPTER 5 
CONCLUSIONS 

This document discussed the H.264 standard produced by the Joint Video Team 

and some of its features that are introduced in the standard. All these features of H.264 

serve the purpose of maintaining high picture quality while reducing bit rate. In other 

words, the rate-distortion efficiency is improved. The objective of improving the rate- 

distortion efficiency is to better enable video applications on more bandwidth limited 

applications that carry its data over cable, DSL, and WiFi. Of course, rate-distortion 

efficiency does not come free as it is a trade-off with complexity. 

It has been shown that the ME component of H.264 consumes 70% of encoder 

processing time when a single reference frame is used. In fact, ME will consume up to 

90% when multiple reference frames are used. These numbers make ME the heaviest 

component in H.264 and as such have been a popular research topic and have spurred this 

document as well. The JVT group implemented the JM, an H.264 reference software, 

that supports 4 ME techniques. These techniques are Full Search, Unsymmetrical-cross 

Multi-Hexagon-Grid Search, Simplified UMHexagonS, and Enhanced Predictive Zonal 

Search. Via tests, it was shown that Full Search resulted in the best R-D efficiency but at 

the cost of very high complexity. The UMHexagonS introduced many MV predictors, 

early termination with SAD prediction, and a complex search pattern. Unfortunately, 

UMHexagonS was still too complex and a simplified version was added that removed 

some MV predictors, added more early termination conditions, and simplified the search 



pattern. As a result, ME time was reduced significantly and it also resulted in greater R- 

D efficiency. EPZS is an algorithm that concentrates on MV predictors and an adaptive 

early termination condition. As such, EPZS has very simple search patterns to refine the 

MV. Through simulations, it was shown that the simplified EPZS performed the best of 

all the ME techniques in JM other than FS. 

In this project we implement the Flexible Triangle Search that uses the triangle as 

the search pattern with three test points at its vertices. Starting from the smallest triangle, 

the triangle is reflected, expanded, translated, and contracted. These operations allow the 

triangle to quickly move from areas of high error to areas of low error. In order to 

implement this algorithm, three levels of pre-determined triangles were used that allowed 

easy implementation via look-up tables. 

In the implementation of FTS, the median MV predictor was re-used and the 

Lagrangian cost function was used. Results show that FTS only dropped by 0.3 dB and 

0.1 dB from the FS and EPZS respectively. On the other hand, the FI'S algorithm 

showed improvement on ME time of up to 30% over EPZS. Hence, FTS affected R-D 

efficiency little but was able to greatly reduce the complexity of ME. 

Noticing an inefficiency in the algorithm, the Enhanced FTS modification is 

presented that save intermediate SAD results so that SAD values for a particular search 

location isn't calculated twice. In addition, an optimization is made to predict the 

direction of the minimum in Predictive FTS. This is done by directing the triangle in the 

particular direction by choosing the correct starting triangle. Both these modifications 

are shown to not affect R-D while EFTS reduced complexity by another 33% over the 

original FI'S algorithm and PFTS added another 3% savings. 



Finally, the FTS algorithm is extended as a sub-pixel ME in two ways. First the 

PFTS algorithm is paired with a half and quarter-pixel full search. Results show that this 

alone provided a savings of 30% over other sub-pixel ME. Second, the FTS algorithm 

was executed directly in the quarter-pixel interpolated frame and any ME in the full-pixel 

and half-pixel frames are skipped. Although this exhibited a 0.8 dB reduction in R-D 

curve, it provided a savings of 41% over other sub-pixel ME techniques and 17% savings 

over FTS paired with half and quarter-pixel full search. 

Significant savings alone can be achieved by using full-pixel FTS that can be 

further paired with full half and quarter-pixel searches for increased R-D. Even more 

savings are possible when QP-FTS is considered but at a cost of slightly reduced R-D. 

5-1 Ongoing Research 

On forward looking, much more work needs to be done in validating FTS. Tests 

need to be completed that verifies if the algorithm will not be trapped in a local minimum 

since it does not perform any special searches specifically far from the search center. The 

UMHexagonS accomplishes this by the use of the big hexagon search. 

Also, several enhancements can be added to compliment the FTS algorithm. For 

example, we can take advantage of the benefits of some MV and SAD predictors used in 

UMHexagonS, Simplified UMHexagonS, and EPZS. Also, in sub-pixel ME, the FTS 

algorithm can be paired with more efficient sub-pixel searches rather than full half and 

full quarter-pixel searches. 



APPENDICES 

Appendix A: Detailed Analysis of the Carphone Video Sequence 

This appendix contains the detailed analysis of the carphone video sequence using 

the various versions of FTS discussed in this document. This appendix presents the 

various graphs for carphone that were done for the foreman video sequence. 
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Carphone - Block Matches vs. Bit Rate 
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Carphone - Maximum SADs vs. Bit Rate 
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Carphone - Maximum SADs vs. Bit Rate 
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Car Phone Video Sequence Using QP-FTS 
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Foreman - Maximum SADs vs. Bit Rate 
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