
H.264 MOTION ESTIMATION AND FLEXIBLE
TRIANGLE SEARCH

Raymond Ngun
B . A.Sc., Simon Fraser University, 2002

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING SCIENCE

In the
School

of
Engineering Science

O Raymond Ngun 2006

SIMON FRASER UNIVERSITY

Fall 2006

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Project:

Raymond Ngun

Master of Engineering Science

H.264 Motion Estimation and Flexible Triangle Search

Supervisory Committee:

Chair: Dr. Ivan Bajic
Assistant Professor of Engineering Science

Date DefendedIApproved:

Dr. Jie Liang
Senior Supervisor
Assistant Professor of Engineering Science

Dr. Mohamed M. Rehan
Supervisor
Principal Scientist, Broadcorn Canada

SIMON FRASER
UNIVERSITY~ i bra ry

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www.lib.sfu.ca> at: ~http://ir.lib.sfu.calhandle/1892/112>) and, without changing
the content, to translate the thesislproject or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006

ABSTRACT

Motion estimation (ME) in H.264 can account for 90% of the encoding time. As

such, ME optimization techniques are extensively researched. In this project, we studied

and implemented ME technique called Flexible Triangle Search (FTS). Its performance

is compared to other ME techniques found in the Joint Video Team (JVT) reference

software. Results show the FTS rate-distortion (R-D) curve is very close to the R-D

curves of other ME techniques and in turn is close to the optimum Full Search (FS) R-D

curve. The benefit of the FTS technique is its complexity which is shown to be

significantly less than FS and up to 30% savings from other techniques. FTS is then

implemented as a quarter-pixel ME technique while full-pixel ME is completely

bypassed. Experimental results show 41% savings in complexity is possible over other

sub-pixel ME techniques. The results make FTS an attractive ME technique.

ACKNOWLEDGEMENTS

The author would like to thank the senior supervisor, Dr. Jie Liang and

supervisor, Dr. Mohamed M. Rehan for their helpful suggestions, guidance, and support

throughout the course of the project. Both of their participation is instrumental in

completing the project. In addition, the author thanks his manager, Philip Houghton, for

supporting the research.

Finally, the author thanks his parents and fiancCe for support and encouragement.

TABLE OF CONTENTS

.. Approval .. 11

... ... Abstract 111

Acknowledgements .. iv

Table of Contents ... v
. . List of Figures .. v11
... List of Tables .. vlll

Glossary .. ix

CHAPTER 1 Introduction .. 1

CHAPTER 2 H.264 Concepts ... 4
2- 1 B-Frames .. -5
2-2 Variable Block-Size ME and Smaller Block Sizes ... 6
2-3 Quarter-Pixel ME and Improved Interpolation ... 7

... 2-4 Motion Vectors Outside Picture Boundaries 8
2-5 Multiple Reference Frames ... 8

.. 2-6 Weighted Prediction 9
2-7 In-loop De-blocking Filter ... 9
2-8 Entropy Coding ... 10
2-9 Slices .. 10

.. 2-10 Intra Prediction 10

CHAPTER 3 JVT Motion Estimation Techniques .. 12
... 3-1 Median Prediction 13

... 3-2 Full Search 14
3-3 Unsymmetrical-Cross Multi-Hexagon-Grid Search 14

... 3.3.1 UMHexagonS MV Prediction 14
.. 3-3.2 SAD Prediction for Early Termination 15

.. 3-3.3 UMHexagonS Patterns 16
.. 3-4 Simplified Unsymmetrical Hexagon Search -16

.. 3-5 Enhanced Predictive Zonal Search 17

.. CHAPTER 4 Flexible Triangle Search 19
... 4- 1 Full-Pixel FTS 24

4-2 Full-Pixel FTS Simulation Results .. 25
... 4-3 Enhanced and Predictive FTS 37

4-4 Enhanced and Predictive FTS Simulation Results .. 39

... Sub-pixel FI'S 47
Sub-pixel FI'S Simulation Results .. 51

CHAPTER 5 Conclusions ... 62
5-1 Ongoing Research ... 64

Appendices .. 65
Appendix A: Detailed Analysis of the Carphone Video Sequence 65

Car Phone Video Sequence Using FP-FTS .. 65
Car Phone Video Sequence Using EFTS and PITS .. 68
Car Phone Video Sequence Using QP-FTS ... 71

Reference List ... 75

LIST OF FIGURES

Figure 2- 1 .
Figure 2.2 .
Figure 2.3 .
Figure 2.4 .
Figure 2.5 .
Figure 2.6 .
Figure 2.7 .
Figure 3- 1 .
Figure 4- 1 .
Figure 4.2 .
Figure 4.3 .
Figure 4.4 .
Figure 4.5 .
Figure 4.6 .
Figure 4.7 .
Figure 4.8 .
Figure 4.9 .
Figure 4.10 .
Figure 4- 1 1 .
Figure 4.12 .
Figure 4.13 .
Figure 4- 14 .
Figure 4- 1 5 .
Figure 4.16 .
Figure 4.17 .
Figure 4- 18 .
Figure 4.19 .
Figure 4.20 .
Figure 4-2 1 .
Figure 4.22 .
Figure 4.23 .
Figure 4.24 .
Figure 4.25 .

... H.264 Encoder 5
Illustration of a B-Frame ... 6

... Variable Block-Sizes 7
Quarter-Pixel and Half-Pixel Grid ... 8

.. Multiple Reference Frames 9

Slices .. 10
Intra-Prediction .. 11
Median Prediction Neighbors .. 13
FTS Triangles and Reflections .. 21
FTS Triangles Levels 0 through 2 ... 21
Foreman Luma R-D Curve .. 26
Foreman Luma R-D Curve (Close-up) ... 27
Foreman Chroma U R-D Curve ... 28
Foreman Chroma V R-D Curve ... 28
Foreman Block Matches Required .. 30
Foreman Block Matches Required Ignoring FS .. 31
Foreman Average SAD Operations ... 33
Foreman Average SAD Operations ignoring FS 34
Foreman Maximum SAD Operations .. 36
Foreman Luma R-D Curve Using EFTS and PFTS 40
Foreman Chroma U R-D Curve Using EFTS and PFTS 41
Foreman Chroma V R-D Curve Using EFTS and PFTS 41
Foreman Block Matches Using EFTS and PFTS 42
Foreman Average SAD Operations Using EFTS and PFTS 44
Foreman Maximum SAD Operations Using EFTS and PFTS 46
Foreman Luma R-D Curve Using QP-FTS Compared to FP-FTS 51
Foreman Luma R-D Curve Using QP-FTS ... 52
Foreman Luma R-D Curve Using QP-FTS (Close-up) 52
Foreman Chroma U R-D Curve Using QP-FTS .. 53
Foreman Chroma V R-D Curve Using QP-FTS .. 54
Foreman Block Matches Using QP-FTS ... 55

Foreman Average SAD Operations Using QP-FTS 57
Foreman Maximum SAD Operations Using QP-FTS 59

vii

LIST OF TABLES

... Table 4- 1 : FTS Level 0 Look-up Table 22
..................... Table 4-2: Average Number of Block Match Operations per Macroblock 32

Table 4-3: Average Number of SAD Operations per Macroblock 35
.............................. Table 4-4: Maximum Number of SAD Operations per Macroblock 36

Table 4-5: Average Number of Duplicate Block Match Operations per
.. Macroblock 38

Table 4-6: Average Number of Block Match Operations per Macroblock Using
... EFTS and PFTS 43

Table 4-7: Average Number of SAD Operations per Macroblock Using EFTS
and PFTS .. 45

Table 4-8: Maximum SAD Operations per Macroblock Using EFTS and PFTS 47
Table 4-9: Average Number of Block Match Operations per Macroblock 56
Table 4-10: Average Number of Block Match Operations per Macroblock Using

QP-FTS ... -56
Table 4-1 1: Average Number of SAD Operations per Macroblock 58

Table 4-12: Average Number of SAD Operations per Macroblock Using QP-FTS 58
Table 4-13: Maximum SAD Operations per Macroblock ... 60
Table 4-14: Maximum SAD Operations per Macroblock Using QP-FTS 60

GLOSSARY

DCT

EFTS

EPZS

m-FTS

FTS

HEX

HP-FTS

iDCT

ITU-T

JM

JVT

MB

ME

MPEG

MV

PFTS

PSNR

QP

QP-FTS

R-D

SAD

SHEX

SP-FTS

UMHexagonS

Discrete Cosine Transform

Enhanced Flexible Triangle Search

Enhanced Predictive Zonal Search

Full-Pixel Flexible Triangle Search

Flexible Triangle Search

Hexagon Search

Half-Pixel Flexible Triangle Search

Inverse Discrete Cosine Transform

International Telecommunication Union Standardization Sector

Joint Model

Joint Video Team

Macroblock

Motion Estimation

Moving Picture Experts Group

Motion Vector

Predictive Flexible Triangle Search

Peak Signal-to-Noise Ratio

Quantization Parameter

Quarter-Pixel Flexible Triangle Search

Rate-Distortion

Sum of Accumulated Differences

Simplified Hexagon Search

Sub-pixel Flexible Triangle Search

Unsymmetrical Multi-Hexagon Search

CHAPTER 1
INTRODUCTION

H.264 is the latest video coding standard developed by the Moving Picture

Experts Group and the ITU-T Video Coding Experts Group in the Joint Video Team

(JVT). The main goal of this standard is to improve the rate-distortion (R-D) efficiency

as compared to the available standards such as H.263 and MPEG-2. By improving R-D

efficiency, better quality video is made possible under bandwidth limitations. As such,

H.264 is beneficial to applications like video telephony over the internet.

The basic building blocks of the H.264 encoder are motion estimation (ME),

discrete-cosine transform (DCT), quantization, and entropy coding. The building blocks

of the decoder include de-quantization, inverse discrete-cosine transform (iDCT), and

reconstruction of the picture. Of the basic buildmg blocks, ME consumes up to 70% of

the processing time and possibly even 90% when multiple reference frames are used.

ME in H.264 is quite complex due to the number of features that is used in an attempt to

reduce bit-rate while maintaining good picture quality (i.e. R-D efficiency). As such,

much research has been completed on this topic.

The purpose of motion estimation is to remove temporal redundancy between

frames resulting in better compression. H.264 uses block-based motion estimation

whereby each frame is divided into a group of macroblocks. Certain frames in a video

sequence are compressed using discrete cosine transform, quantization, and variable

length coding. These frames or I-frames are reconstructed and used as reference frames

for subsequent frames. ME is used in the subsequent frames or P-frames to remove

temporal redundancy between the I and P frames. Instead of encoding actual data in the

P-frames, motion vectors (MV) are encoded instead along with its error relative to the I-

frame. Based on DCT and variable length coding, these MV and its errors can be

compressed more efficiently than the original data resulting in overall better compression.

The JVT team developed a reference H.264 software, namely the Joint Model

(JM), and is currently on revision 10.2. The software implements the recommendations

that they have set forth for the standard. In regards to ME, JVT has implemented four

ME techniques in their software namely the Full Search (FS), Unsymmetrical-cross

Multi-Hexagon-Grid Search (UMHexagonS), Simplified UMHexagonS, and the

Enhanced Predictive Zonal Search (EPZS).

This paper describes the ME techniques available in the JM and outlines another

ME technique called the Flexible Triangle Search (FTS) [4]. The FTS ME technique is

implemented and its performance is compared to the techniques in JM. Several

enhancements are then made to FTS to further improve its complexity and the results of

these enhancements are analyzed [5] [7]. Finally, being a full-pixel algorithm, the FTS

algorithm is extended as a sub-pixel ME where it is used as a quarter-pixel ME technique.

Here, full-pixel ME is completely bypassed.

The FTS algorithm has been implemented in H.263 and analyzed in [4]. Based on

the results in [4], the authors further enhanced it in enhanced FTS in [5] and predictive

FTS in [7]. Both the enhanced FTS and predictive FTS were completed in H.263 as well.

Finally, the authors extended FTS to a half-pixel implementation in [6]. This document

extends the concepts in [4], [5] , and [7] into H.264. Some of the concepts in H.264 are

used with FTS to further improve FTS performance over its H.263 counterpart. Also,

this document further extended FTS to a quarter-pixel implementation in H.264.

In this document, Chapter 2 provides a brief overview of H.264 and its special

features. Chapter 3 discusses ME and briefly describes the ME techniques in JM.

Finally, Chapter 4 discusses and analyzes the performance of the FTS algorithm,

enhancements to the algorithm, and its extension as a sub-pixel ME technique.

CHAPTER 2
H.264 CONCEPTS

There are a growing number of applications begging for video capabilities that

carry its data over media like cable modems, DSL, and WiFi. Some of the older

standards like MPEG-2 worked great for high bandwidth applications like high definition

TV but falls short for bandwidth limited applications. The Moving Pictures Experts

Group (MPEG) and ITU-T Video Coding Experts Group in a coalition as the Joint Video

Team (JVT) developed a new standard, H.264, which aims to improve coding efficiency

and hence reduce bit-rate. In addition, special attention is paid to ensure that quality is

maintained. This is, in other words, known as improving on rate-distortion (R-D)

efficiency. In order to do this, JVT introduced many features in H.264 aimed to

accomplish just this.

It should be noted that the standard itself only standardizes the decoder by

imposing restrictions on the bit stream and syntax. Thus, all encoders must adhere to the

bit stream defined in the standard. As a result, there is freedom for the developers to

implement the encoder in any way they desire. This allows the developer to make the

complexity, time to market, and quality tradeoffs that is necessary for their application.

Figure 2-1 depicts the basic building blocks of the H.264 encoder.

Figure 2-1. H.264 Encoder

Motion
Estimation

Input 1

F
Transform 4 Quantization ---+

Inverse
Transform

} pF-
Quantization

Entropy
Coding

Note that the encoder contains the basic building blocks of the decoder as well

since the encoder needs to decode the signal in order to generate reference frames used

for ME. The Motion Estimation/Compensation block is the block of interest. Based on a

reference frame which can be a frame in the past or a frame in the future, it determines

motion vectors (MV) representing the movement of the objects in the picture. The de-

blocking filter is common in a block-based codec like H.264 to remove blocking artifacts.

The transform block is used to remove spatial redundancy. And finally, the data is

quantized and entropy coded.

Output

The following sub-sections list just some of the features of H.264 that help

improve the coding efficiency and picture quality.

2-1 B-Frames

Bi-directional motion vector (MV) prediction is not a new idea but it is included

in the standard because of it's usefulness in providing better compression. The concept

of bi-directional prediction is to use both the past and future frames as reference. The

frame coded using this prediction technique is known as a B-frame. Figure 2-2 depicts

bi-directional prediction.

Figure 2-2. Illustration of a B-Frame

Frame N-1

N

Frame

Note that B-frames are never used as reference frames.

2-2 Variable Block-Size ME and Smaller Block Sizes

A standard macroblock (MB) size is 16x16 pixels but the standard allows the use

of differing block sizes in ME. The differing block sizes allow for more precise and

accurate motion vectors. Figure 2-3 depicts the available block sizes used in the standard

and they are 16x16, 16x8, 8x16, 8x8, 8x4,4x8, and 4x4 pixels.

Figure 2-3. Variable Block-Sizes

2-3 Quarter-Pixel ME and Improved Interpolation

In previous standards, the introduction of half-pixel ME dramatically improved

the picture quality by allowing for a better match between the current and reference

frames. In H.264, this concept has been pushed a step further to include quarter-pixel

ME. In addition, an improved interpolator has been introduced to calculate the quarter-

pixels. Figure 2-4 depicts half-pixel and quarter-pixel locations as lower-case letters and

integer-pixel locations as capital letters.

Figure 2-4. Quarter-Pixel and Half-Pie1 Grid

2-4 Motion Vectors Outside Picture Boundaries

Because an object can be moving outside of the picture, H.264 allows motion

vectors to point outside the picture boundaries. The pixel information outside picture

boundaries is deduced by the pixels at the edge of the picture. Again, this allowed for

better and more accurate motion vectors and as a result, reduced bit-rate.

2-5 Multiple Reference Frames

The standard introduces the ability to utilize multiple reference frames to improve

compression at the cost of much higher complexity and memory requirements. The

concept of multiple reference frames is extremely useful for sequences where repetition is

common. Figure 2-5 depicts the use of multiple reference frames to find the best (least

cost) motion vector.

Figure 2-5. Multiple Reference Frames

Frame N-2

I n I Frame N-1

Frame

2-6 Weighted Prediction

Weighted prediction is an interesting concept introduced by the standard that

allows for the motion compensated picture to be weighted and offset by certain amounts.

This greatly helps scenes where fading can occur.

2-7 In-loop De-blocking Filter

It is quite common for block-based video coding to produce artifacts at block

edges and this is commonly known as blocking artifacts. Using a de-blocking filter to

remove these artifacts is not a new idea. In H.264, the de-blocking filter is included in

the motion compensation process. This allows for inter-prediction to perform better as

subsequent frames can be predicted better.

2-8 Entropy Coding

H.264 supports context-adaptive entropy coding in context-adaptive binary

arithmetic coding (CABAC) and context-adaptive variable-length coding (CAVLC).

Context adaptation greatly improves performance of the codec.

2-9 Slices

A slice is a collection of MBs that can be independently decoded without

information from other blocks. Figure 2-6 shows a frame split into 3 slices.

Figure 2-6. Slices

Slice 2

I Slice 3 I

I Slice 4

Slices are useful in separating the contents of the picture such that each slice has

very little correlation with other slices.

2-10 Intra Prediction

A novel idea in H.264 is intra prediction where surrounding pixels are used to

estimate a 4x4 luma frame. Depicted in Figure 2-7, the 4x4 block of pixels shown in

lower case letters are predicted by the neighboring pixels in shaded boxes.

Figure 2-7. Intra-Prediction

Intra-prediction can be performed in 9 different modes whereby differing sets of

the neighboring pixels are used to capture the direction of movement.

CHAPTER 3
JVT MOTION ESTIMATION TECHNIQUES

The purpose of motion estimation is to remove temporal redundancy between

frames. The basis of motion estimation is that an object from one frame has moved

slightly in the picture in the next frame. Since the object has already been encoded, a

motion vector describing the objects motion can be encoded instead. By doing this, much

compression can be attained. Also, sub-pixel ME can be used to improve the

performance.

Motion vectors are determined by calculating the distortion between a block in the

frame being encoded and the reference frame. Typically, a search range exists in the

reference frame to find the best match motion vector. Because the cost of ME is related

to both the ME residual and the motion vector, typically a Lagrangian cost function is

used. The Lagrangian cost function is shown in Equation 3-1.

In Equation 3-1, mv, is the prediction for the MV, and h being the Lagrange

multiplier. The symbol mv represents a motion vector with horizontal and vertical

components. The distortion, D, is a function of original signal, s, and the coded signal, c.

It is based on the sum-of-accumulated differences between the reference frame and the

current frame and is given in Equation 3-2.

In Equation 3-1, the size of the motion vector is reduced by a parameter called

mv,. This parameter is a prediction of the motion vector and is described in the following

section.

3-1 Median Prediction

To reduce the size of the encoded motion vectors, the motion vector of the block

is first predicted. And instead of encoding the full motion vector, the difference between

the full motion vector and the predicted motion vector is encoded., One such prediction

which has proven to be very useful and effective is the median predictor. Referring to

Figure 3-1, the motion vector of block E is estimated based on the spatially adjacent

blocks A, B, and C.

Figure 3-1. Median Prediction Neighbors

The formula used in the median predictor is given in Equation 3-3.

There are certain rules to follow if any of blocks A, B, or C do not exist. If A

does not exist, the motion vector of A is assumed to be (0,O). If block C does not exist,

the motion vector of block C is assigned to the motion vector of block D. If both blocks

B and C do not exist, then the motion vector of A is used.

Armed with a very effective MV predictor that is used in all the motion estimation

techniques in JM, the ME techniques are analyzed next.

3-2 Full Search

The full search is an exhaustive search of the search grid on the reference frame.

If the search range is + 16, then there are 1089 search points. Such an exhaustive search

is computationally expensive but this algorithm yields the best R-D efficiency.

Some very simple optimizations have been done by JVT in the JM. The first is a

form of early termination whereby if an intermediate SAD value is greater than a

previously calculated SAD value, then the calculation can stop. A second optimization is

useful in reducing the complexity when using variable block sizes and involves

calculating SAD values of larger blocks by summing the SAD values of the smallest 4x4

blocks.

3-3 Unsymmetrical-Cross Multi-Hexagon-Grid Search

The Unsummetrical-Cross Multi-Hexagon-Grid Search (UMHexagonS) is a

complete solution that involves MV prediction, search algorithms, and SAD prediction.

3-3.1 UMHexagonS MV Prediction

UMHexagonS adds three more MV predictors in addition to the median predictor.

The first predictor added is the upper layer (UpLayer) predictor whereby the MV of a

larger block size is used as the estimate of a smaller block size.

The second predictor added is the Corresponding-block predictor whereby the

MV of the collocated block in the previous frame is used as an estimate. Finally, the

third predictor added is the Neighboring Reference-Frame predictor whereby the multiple

reference frame feature is taken advantage of.

3-3.2 SAD Prediction for Early Termination

In addition to MV predictors, the algorithm further adds an early termination

technique based on SAD prediction. SAD prediction is very similar to MV prediction

and thus includes the median predictor, uplayer predictor, corresponding-block predictor,

and the neighboring reference-frame predictor. The SAD prediction is used as an early

termination condition and is described in Equation 3-4 and Equation 3-5.

The idea behind SAD prediction is that the best possible SAD value is predicted

and if a SAD value is calculated to be close enough to the predicted SAD, it is assumed

the most optimal SAD value and hence MV is found. Hence, during the search process,

if a calculated SAD is less than the predicted SAD multiplied by (l+P), the whole search

is terminated assuming the best MV has been found. It is clear that the selection of P

affects the speed and the quality of the algorithm.

Armed with MV and SAD predictors, UMHexagonS implements a complex

search pattern.

3-3.3 UMHexagonS Patterns

The UMHexagonS involves the following steps.

1. MV prediction as described in the previous sections

2. Unsymmetrical-cross search - A cross search is performed whereby there are

more horizontal test points than there are vertical test points. Hence, the term

unsymmetrical. This is done with the belief that horizontal movement is heavier

than vertical movement. Also, the algorithm believes that the cross-search will

effectively locate the area of minimum distortion. The minimum cost from this

search is used as the search center for the next step.

3. Uneven Multi-Hexagon-grid search - In this step, a full search with range 2 is

done about the search center to fine tune the MV. In case this traps the result in a

local minimum or there is irregular motion, a growing 16 point hexagon search

pattern is done. The 16 point hexagon is again weighted for horizontal motion.

4. Extended hexagon based search - This step is typically done if the big hexagon

search is successful. This indicates that the search resulted in MV outside of

search center. As such, the MV is further fine tuned with a small hexagon and the

search is completed only when the minimum is found in the center of the

hexagon.

3-4 Simplified Unsymmetrical Hexagon Search

As shown in the UMHexagonS, the search pattern is complex and contains many

search points. The temporal MV predictors (corresponding block and neighboring

reference frame predictors) are expensive to implement. Also, the calculation of P is a

challenge and expensive as well. The simplified UMHexagonS serves to alleviate the

listed deficiencies with UMHexagonS. This is accomplished in three ways. First, the

simplified UMHexagonS removes the temporal predictors. Second, a faster sub-pixel

ME is implemented. And third, a faster integer pixel ME is implemented by removing

the local full search and by implementing additional early termination techniques.

The early termination techniques are based on convergence/intensive conditions.

Convergence condition indicates global minima. As a result of meeting the convergence

condition, the cross and big hexagon searches are no longer needed. Also, an intensive

condition attempts to avoid local minima.

It turns out that with this simplified model, a bit rate savings of up to 18% was

seen at little or no cost to quality. Also, the ME time was reduced by as much as 55%

compared to UMHexagonS .

3-5 Enhanced Predictive Zonal Search

The Enhanced Predictive Zonal Search (EPZS) is primarily based on effective

methods of predicting the MV. Several predictors are used and classified under predictor

sets. The following are the predictor sets.

Set 1: Median predictor

Set 2: MV of previous frame (collocated lock), spatially adjacent blocks (used in

median predictor), and (0,O)

Set 3: Accelerator motion vector (Calculated based on previous 2 frames) and

adjacent blocks in previous frame

EPZS involves first testing the first predictor set and terminates the test based on a

threshold TI that is set to number of pixels in current block. If this test fails, the other

predictor sets are checked and early terminated against an adaptive early termination

threshold T2 shown in Equation 3-5 is used.

In Equation 3-5, a and b are fixed values and MinJi are minimum distortion

values calculated in the search. In order to maintain stability, the following term in

Equation 3-6 is added to prevent against inadequate and incorrect early termination.

In Equation 3-6, Np is defined to be the number of pixels in the frame.

Finally, EPZS employs simple search patterns to fine tune the search. Namely, it

uses the diamond search, square search, and the Extended EPZS pattern.

CHAPTER 4
FLEXIBLE TRIANGLE SEARCH

The search shape in the Flexible Triangle Search (FI'S) is the triangle [4]. It is an

interesting shape in that there are three test points (triangle vertices) compared to 4 for

diamond. Immediately, it seems like the search will result in less test points, so a natural

question is how effective this method is. In the FI'S algorithm, the triangle is quickly

moved from areas of high error to areas of low error by performing certain operations.

Small to large triangles are used to allow for fine to coarse movements. Expansion is

used to move the triangle quickly away from areas of high error and contraction is used to

fine tune a search.

FTS is in fact based on the simplex algorithm for ME but the simplex algorithm is

used in the continuous domain. As such, to use the simplex algorithm in an integer

search is difficult since estimates are needed to map the continuous domain into the

integer domain. It is shown [4] that this may result in the collapse of the triangle into one

or two vertices. In addition, floating-point calculations are used and are very

computationally expensive. FI'S allows the simplex algorithm to be used in an integer

grid by defining a finite set of triangles to perform the search. The vertices of these

triangles will always lie on the integer grid. Certain operations can be performed on the

triangle including reflection, translation, contraction, and expansion. Since the triangles

are typically predetermined, the operations are easily performed using look-up tables.

The operations that are performed on the triangle are as follows:

Reflection - reflecting away the vertex with the highest cost about the other two

vertices. If the new vertex has lower cost, then the reflection is successful.

Expansion - increase the size of the triangle by increasing the level. The purpose

of the expansion is to move a particular vertex further in the particular direction of

lower cost.

Contraction - When reflection fails, it is expected that the triangle is in an area of

lowest cost (hopefully the global minima). As such, contraction is used by

reducing levels to fine tune the MV.

Translation - On a successful expansion, it may seem the area of lowest cost is

further in the direction of the expansion. Hence, translation is used to move the

whole triangle in the general direction.

Figure 4-1 and Figure 4-2 depicts some of the valid operations on the triangle.

The smallest triangle that is 1 pixel by 1 pixel in size is assigned level 0. The triangles in

each level represent the possible reflections of the triangles in the level. Translation is

not shown since it is simply a shift of the whole triangle. A triangle is defined by an

identifying number and its level. For example, a T24 triangle is the fourth triangle in

level 2. The vertices of the triangle are denoted Vo, VA, and VB where Vo is the origin of

the triangle, VA is the vertex counterclockwise from Vo and VB is the last vertex.

Figure 4-1. FTS Triangles and Reflections

Figure 4-2. FTS Triangles Levels 0 through 2

Note that in Figure 4-2, three levels of triangles are used. More levels can be

added but simulations showed [4] that 3 levels are sufficient. Typically, predetermined

triangles are used so that it can be easily referenced via tables in software. An example

of a level 0 lookup table around the Vo vertex is included in Table 4-1.

Table 4-1: FTS Level 0 Look-up Table

The following is a detailed step-by-step FTS algorithm.

1. Initialization

Initialize the triangle to level 0 and initialize the vertices

Current

V0, VA, an(

chosen as the initial search point generated by MV prediction.

Initialize K to 0 and a translation vector Vd to 0.

Also initialize V,, to Vo.

2. Determine costs

Ve with Vo

Vo Reflection

New Triangle I Origin Shift

Calculate the cost using the Lagrangian cost function of the three vertices. Assign

the most expensive vertex as Vh and the least expensive as V1.

Vo Reflection

New Triangle I Test Point

If this step is reached after a successful expansion or translation, go to step 6.

Otherwise, go to step 3.

3. Reflection

Reflect the triangle away from vertex with largest cost (Vh) and hence obtain a

new vertex Vr. Calculate the cost of the new vertex V,.

If the new vertex results in a smaller cost, the reflection is successful. And if

successful, go to step 4. Otherwise, if the reflection is unsuccessful, proceed to

step 5.

4. Expansion

Locate an expansion vertex V, based on the appropriate table for the current level

and calculate the cost of V,.

If the cost of V, is less than the cost of V,, then expansion was successful. If

successful, increase the triangle level and calculate the translation vector to be Vd

= v, - v,.

If expansion is not successful, replace Vh by Vr.

Update V,, if necessary.

Go back to step 2 after updating K = K + 1.

5. Contraction

Reduce triangle level for fine tuning and go back to step 2 after updating K = K +

1.

6. Translation

Test a new vertex Vt by translating VI by Vd (i.e Vt = V1 + Vd).

If the cost of Vt is less than V1, then translation was successful. Hence, replace V1

by Vt and update V,, if necessary.

0 Go back to step 2 after updating K = K + 1.

The exit conditions of the algorithm are the following.

1. No more contractions are possible.

2. Search iterations reached a limit KMax.

3. If the calculated cost is less than a predetermined exit SAD. The exit SAD

condition could be similar to that used in UMHexagonS.

Note that via simulations, it was determined that KMax of 8 is sufficient and that

any greater value yield negligible to no return on quality. Unfortunately, there is no clear

method to determine KMax except by trial and error. KMax can be a function of the

search window and the value of 8 is determined with a search window of +16.

4-1 Full-Pixel FTS

We first implement the FTS algorithm in the H.264 JM reference software to

work in the integer grid or as a full-pixel ME algorithm. It is compared against the search

algorithms already available in JM but with their respective sub-pixel refinements

disabled. The following are the parameters used for these tests.

QCIF

CABAC

Only 1st frame is I-Frame and no B-Frames

100 encoded frames

1 reference frame (no multiple reference frames)

No sub-pixel ME

Search range of +/-I6

Quantization Parameters of 8, 18,28, and 38

Variable size macroblocks is not supported. Only 16x16 macroblocks are used in

motion estimation.

Detailed analysis of the Foreman and Carphone video sequences are done but

results are obtained for many of the available video sequences. Analysis of the Foreman

sequences are found in the subsequent sections and analysis of the Carphone sequence

can be found in Appendix A.

4-2 Full-Pixel FTS Simulation Results

In evaluating the performance of FTS, we compare both the PSNRs of the

reconstructed video sequences and the complexities of different ME algorithms.

Typically PSNR is observed as a function of bit rate which produce the rate-distortion (R-

D) curve. Such a graph indicates the performance of the video encoder. In other words,

the graph shows the PSNR achievable by any search algorithm at any particular bit rate.

This can be very important since many applications are bandwidth constrained and

ideally the search algorithm exhibiting the best PSNR for the available bandwidth is

chosen. Equation 4-1 outlines the calculation of PSNR.

PSNRdB = 10 log,,
r2M:! 1

MSE in Equation 4-1 is the mean-squared-error which is the mean square of the

difference between the reference frame and the degraded frame and n is the number of

bits used to represent a video sample. Note that although PSNR allows for an automated

and consistent method of evaluating quality, it may not represent subjective quality.

Figure 4-3 and Figure 4-4 show graphs of the luma PSNR vs. bit rate or the R-D

curve for the Foreman video sequence.

Figure 4-3. Foreman Luma R-D Curve

Foreman - Y-PSNR vs. Bit Rate

o 200 400 600 a00 1000 1200

Bit Rate (kbps)

Figure 4-4. Foreman Luma R-D Curve (Close-up)

Foreman - Y-PSNR vs. Bit Rate

- FS

HEX

SHE>

-m- EPZS

-- 4 FTS

320 340 360 380 400 420 440

Bit Rate (kbps)

It can be seen that the Full Search (FS) algorithm exhibits the best PSNR at any

particular bit rate and is known as the optimum. Additionally, the performance of all the

search algorithms is very close to that of FS. Upon closer inspection, FTS does exhibit

the poorest performance compared to the other search algorithm. Specifically, FTS is 0.3

dB worst than FS but only 0.1 dB worst than simplified UMHexagonS. In other words,

at any particular bit-rate, FTS is 0.1 dB to 0.3 dB worst than the other search algorithms.

These figures are quite insignificant and if there are benefits elsewhere, it is an acceptable

trade-off. Figure 4-5 and Figure 4-6 show the chroma U and chroma V R-D curves of the

search algorithms.

Figure 4-5. Foreman Chroma U R-D Curve

Foreman - U-PSNR vs. Bit Rate

+ FS

HEX

SHEX

+ EPZS

I . FTS

300 320 340 360 380 400 420 440

Bit R a t e (kbps)

Figure 4-6. Foreman Chroma V R-D Curve

Foreman - V-PSNR vs. Bit Rate

325 345 365 385 405 425 445 465

Bit R a t e (kbps)

Figure 4-5 and Figure 4-6 show that the chroma R-D performance is comparable

to that of the luma R-D performance.

In addition to observing the R-D performance of a search algorithm, the

complexity must be looked at as well. If complexity is not an issue, the full search

algorithm can be used yielding the best R-D performance. Unfortunately, the complexity

of the FS algorithm is high for real world applications. Therefore, in choosing a search

algorithm, one must look at its complexity as well as its R-D curve.

As mentioned, motion estimation is performed using the SAD operation. And

since the SAD operation is performed for every pixel at every search position for the

entire macroblock, the number of SAD operations used is a good indication of

complexity. For example, to compute the SAD value at one search location requires

16x16 = 256 SAD operations. A SAD operation may further expand to one add, one

subtract, and one absolute difference operations. Thus, the total number of operations

required is 3x256 = 768. It should be clear that the most complex algorithm is full search

since it performs an exhaustive search at all search locations. Another method of

measuring complexity is the number of search positions or block matches that are

performed. A block match is defined as the calculation of a SAD value between a

macroblock and the reference frame. At first thought, the number of block matches may

simply be the number of SAD operations divided by 256 but this is not necessarily true.

It may be possible that less than 256 operations are required if early termination

techniques are available.

Starting with block matches, Figure 4-7 show the number of block matches

required for each of the search algorithms.

Figure 4-7. Foreman Block Matches Required

Foreman - Block Matches vs. Bit Rate

0 200 400 600 800 1000 1200

Bit Rate (kbps)

+ FS

HEX

SHE)

+ EPZS

-.* - FTS

As suspected, the full search algorithm requires the most block matches.

Specifically in a search area of k16, 33x33 = 1089 block match operations are required.

Figure 4-8 show the block matches required for the search algorithms ignoring the

complex FS algorithm.

Figure 4-8. Foreman Block Matches Required Ignoring FS

Foreman - Block Matches vs. Bit Rate

0 200 400 600 800 1000 1200

Bit Rate (kbps)

HEX

SHE>(

++ EPZS

; FTS

Figure 4-8 show that the EPZS algorithm performed the best of the available

search algorithms in the JM software. However, the FTS algorithm was able to

consistently use 65% fewer blocks matches than EPZS. This complexity reduction is the

highlight of the FTS algorithm. The 0.1 dB to 0.3 dB reduction in R-D performance is a

good trade-off for a 65% reduction in complexity.

Although FTS performed well for the Foreman sequence, it must be verified

against other sequences to ensure FTS performs well with varying scenarios in the video

sequence. Table 4-2 show the block matches required for other available video test

sequences.

Table 4-2: Average Number of Block Match Operations per Macroblock

Test Sequence

I car 1 47.56 1 93.96 1 47.19 1 15.99166.12%1

akiyo

news

silent

coastguard

foreman

carphone

1 claire 1 16.75 1 21.75 1 14.87 1 7.75 1 47.89% 1

HEX

I miss america 1 15.79 / 22.23 / 15.89 1 9.24 (41.83% 1

14.86

25.1 1

27.23

40.86

43.66

36.88

I Average 1 29.85 1 55.14 1 27.43 1 9.63 1 61.35% 1

SHEX

Table 4-2 show that the FTS sequence does indeed perform on average 61%

better than the EPZS algorithm. Specifically, FTS can be 42% to 78% better than EPZS

depending on the video sequence.

22.66

39.40

45.29

1 03.47

83.96

63.58

Observing block matches has its deficiencies since a block match operation may

require a variable number of SAD operations. Some algorithms have early termination

techniques such that not all 256 SAD operations need to be performed on a 16x16

macroblock. For example, if an intermediate SAD value is greater than a known

minimum SAD value, the calculation can stop. Hence, measuring the number of SAD

operations is a better indication of complexity. Figure 4-9 show the average number of

SAD operations required for each search algorithm.

EPZS

13.89

22.45

24.44

38.07

38.23

31.83

FTS FTS
Savings

over EPZS

6.85

7.1 4

8.92

8.33

12.14

10.32

50.69%

68.20%

63.51 %

78.1 1 %

68.24%

67.57%

Figure 4-9. Foreman Average SAD Operations

Foreman - Average SADs vs. Bit Rate

o 200 400 600 a00 1000 1200

Bit Rate (kbps)

+ EPZS

*c-. FTS f

Again, notice that FS is the most complex of the search algorithms. For a clearer

picture, Figure 4-10 show the average number of SAD operations without FS.

Figure 4-10. Foreman Average SAD Operations ignoring FS

Foreman - Average SADs vs. Bit Rate

25 1 I I
0 200 400 600 800 1000 1200

Bit Rate (kbps)

-ac HEX

SHEX

++ EPZS

FTS

Again, EPZS performed the best but FTS is able to perform 35% to 52% better.

Notice here that although FTS performed better among the H.264 ME implementations, it

did not see the same percentage savings as seen with block matches. This would suggest

that EPZS performs other early termination techniques during SAD calculations. In fact,

in the FTS algorithm, the optimization allowing for early termination of the SAD

calculation cannot be implemented. Finally, Table 4-3 show the average number of SAD

operations for other video sequences.

Table 4-3: Average Number of SAD Operations per Macroblock

Akiyo 1 125237 1 187605 1 180695 1 173710 1 3.87% 1

Test Sequence

News 1 274621 1 401760 1 314535 1 181 147 1 42.41%

HEX

Claire 1 187968 1 218486 1 185226 1 196439 1 -6.05% 1

Silent

Coastguard

Foreman

Carphone

Car

Average 1 368457 1 623531 1 392575 1 244223 1 28.17% 1

SHEX

Although FTS performed worst in terms of the average SAD operations for a

couple of the video sequences, it still performed 28% better on average than the other

search algorithms.

In addition to average SAD operations, it is important to take note of peak

resource requirements. Hence, the peak number of SAD operations used is observed.

Figure 4-1 1 and Table 4-4 show the maximum SAD operations.

31 31 26

5051 20

525808

421 371

76 1 958

EPZS

488540

1 177764

895676

663875

1325480

FTS FTS
Savings

over EPZS

356599

529383

528774

426066

805052

226272

21 1202

307799

261 696

405309

36.55%

60.1 0%

41.79%

38.58%

49.65%

Figure 4-11. Foreman Maximum SAD Operations

Foreman - Maximum SADs vs. Bit Rate

0 200 400 600 800 1000 1200

Bit Rate (kbps)

Table 4-4: Maximum Number of SAD Operations per Macroblock

Test Sequence

--

Carphone 1 756864 1 1223488 1 732688 1 385792 1 47.35%

Akiyo

News

Silent

Coastguard

Foreman

Car 1 1407312 1 2046688 1 1638608 1 622336 1 62.02%

HEX

189280

498544

581 648

8451 68

1 172032

by using FTS. In fact, FTS is on average 38% better than other search algorithms.

SHEX

--

Claire

miss America

Average

298800

777040

886960

1 64451 2

1776496

Peak resource usage in terms of maximum number of SAD operations is reduced

264864

252944

6631 84

FTS
Savings

over EPZS

EPZS

228384

5471 04

601 392

799824

1385040

FTS

36771 2

389088

1045643

201 21 6

228608

289536

352000

606976

11.90%

58.21 %

51.86%

55.99%

56.1 8%

--

26051 2

282432

71 9554

--

251 904

2951 68

359282

3.30%

-4.51 %

38.03%

The FTS algorithm has shown to suffer insignificantly in terms of its R-D

performance. But the FTS algorithm has showed to save quite significantly in

complexity as shown by measuring block matches, average SAD operations, and

maximum SAD operations. This reduced complexity makes FTS attractive over other

search algorithms.

4-3 Enhanced and Predictive FTS

In Enhanced Flexible Triangle Search (EFTS), the FTS algorithm is further

reduced in complexity. Compared to the FTS algorithm, EFTS requires less SAD

calculations and less block matches. In addition, EFTS offers no degradation in video

quality compared to FTS.

During the reflection, expansion, contraction, and translation operations, the

vertices of the triangle may lie on a particular search position more than once. If this

occurs, the FTS algorithm is doing unnecessary work recalculating the SAD value for

that position. It is more efficient to use the SAD value calculated when the position was

originally searched and this forms the enhancement to FTS. This enhancement

minimizes the number of SAD operations and block matches at the expense of data

memory to store previously calculated results. Table 4-5 shows the number of

unnecessary block match operations for the foreman and car phone video sequences.

Table 4-5: Average Number of Duplicate Block Match Operations per Macroblock

Foreman

4.26

4.14

Sequence

Car Phone 1 8 I 3.82 I

As shown in Table 4-5, each macroblock in the Foreman sequence performs about

4.45 unnecessary block match operations. Since the FTS algorithm requires 12.7 block

match operations on average in the Forman sequence, 35% of the operations are

redundant and can be eliminated. In other words, this enhancement alone can save 35%

of FTS complexity making it an even more attractive ME technique.

Quantization Parameter

The modification to the FTS algorithm involves creating a data buffer to store

SAD values. Once a SAD value is calculated by FTS at a particular search position, the

resultant value is stored. When a new SAD value needs to be calculated, the buffer is

checked first to see if it has been previously calculated. If it has, the value from the

buffer is used and the additional SAD operations are eliminated. The amount of

computation required to perform these checks are significantly less than the number of

computations required to perform a SAD operation. Specifically, a SAD operation on

one macroblock will require 16x16~3 or 768 subtract, add, and absolute value operations

since a SAD operation requires one add, subtract, and absolute operations. In the

proposed solution, only two operations are needed to check if the SAD values have

already been calculated and to load or store the SAD value.

Average Duplicated Block
Match Operations per MB

In predictive FTS (PFTS), a technique is introduced to predict the initial search

direction of FTS. Note that in PFTS, the enhancement in EFTS is included. It is shown

[7] that by choosing the initial triangle correctly, the number of block matches and SAD

operations are reduced. This occurs since the search is directed toward the direction of

the minimum earlier. In addition, it is shown that this predictive algorithm will not affect

the PSNR performance of FTS.

PFTS chooses a search direction by choosing one of the four triangles found in

level 0 the search shall start with. Refer to Figure 4-2 for the four triangles available in

level 0. Each triangle represents a search in the direction of the quadrant it lives in. In

predicting the starting triangle, the SAD values of the four positions surrounding the

search centre which lie as a vertex to a triangle is evaluated. The two vertices of each

triangle ignoring the origin are then added together. Finally, the triangle with the two

vertices that add to the smallest value is chosen as the starting triangle and search

direction.

4-4 Enhanced and Predictive FTS Simulation Results

In the analysis of EFTS and PFTS, simulations are done with the EFTS

enhancement by itself and then with EFTS and PFTS together. From this point forward,

PFTS implies EFTS is included. Similar to the previous analysis of the FTS algorithm,

the R-D performance of EFTS and PFTS are observed. Figure 4-12 show the luma R-D

performance of EFTS and PFTS.

Figure 4-12. Foreman Luma R-D Curve Using EFTS and PFTS

Foreman - Y-PSNR vs. Bit Rate

1 * - FTS

0 200 400 600 800 1000 1200

Bit Rate (kbps)

Figure 4-12 show that EFTS and PFTS exhibit virtually the same R-D

performance. In fact, it is expected that EFTS perform the same as FTS since the only

change is to store calculated SAD values for later use and so the actual performance

remains unchanged. In addition, no significant R-D performance change was seen when

PFTS is added to EFTS. Figure 4-13 and Figure 4-14 show the chroma R-D performance

of EFTS and PFTS, which show similar results as the luma frame.

Figure 4-13. Foreman Chroma U R-D Curve Using EFTS and PFTS

Foreman - U-PSNR vs. Bit Rate

0 200 400 600 800 1000 1200

Bit Rate (kbps)

-+x ~ FTS

+ EFTS

PFTS+EFTS

Figure 4-14. Foreman Chroma V R-D Curve Using EFTS and PFTS

Foreman - V-PSNR vs. Bit Rate

55 T
--

200 400 600 800 1000 1200

Bit Rate (kbps)

- : FTS

+ EFTS

PFTS+EFTS

The block matches is observed to show the affect of EFTS and PFTS on

complexity. Figure 4-15 show the block matches of the EFTS and PFTS algorithms in

comparison to the original FTS algorithm.

Figure 4-15. Foreman Block Matches Using EFTS and PFTS

Foreman - Block Matches vs. Bit Rate

0 200 400 600 800 1000 1200

Bit Rate (kbps)

For the Foreman video sequence, Figure 4-15 show that EFTS exhibits an

improvement of 35% over FTS which is expected and shown earlier. In addition, by

adding the PFTS algorithm to FTS, another 5% to 13% savings can be obtained. Table

4-6 shows the effect of PFTS and EFTS over FTS for all the available video sequences.

Table 4-6: Average Number of Block Match Operations per Macroblock Using EFTS and PFTS

Test Sequence FTS EFTS

akiyo

silent 8.92 5.82

coastguard 1 8.33 1 5.61

foreman 12.14 7.87

carphone 10.32 6.62

car 15.99 10.70

claire 7.75 5.32

miss america 9.24 5.76

Average 9.63 6.39

Table 4-6 show that the EFTS algorithm is capable of achieving a 33% savings on

average over the FTS algorithm. In addition, the PFTS algorithm adds another 3% on

average of savings on top of the 33%. Notice that PFTS did perform slightly worse for

two of the sequences. Keeping in mind that these savings are on top of the 61% savings

FTS saw on top of the other search algorithms, EFTS and PFTS are very powerful.

Figure 4-16 show the average SAD operations required for EFTS and PFTS in

comparison to FTS.

Figure 4-16. Foreman Average SAD Operations Using EFTS and PFTS

Foreman - Average SADs vs. Bit Rate

350000

, _ _ - --
300000

250000

B 200000
V)
Q

150000
a3
2

100000

50000

0

0 200 400 600 800 1000 1200

Bit Rate (kbps)

- - FTS - EFTS

PFTS+EF

Again, EFTS performed 35% better than FTS and PFTS performed an additional

4% to 13% better. Table 4-7 show the results of other video sequences.

Table 4-7: Average Number of SAD Operations per Macroblock Using EFTS and PFTS

1 akiyo 1 173710 1 119360 1 31.29% 1 127356 1 -6.70%

Test Sequence

--

Similar to the results obtained from measuring block matches, average SAD

FfS

news

silent

coastguard

foreman

carphone

car

claire

miss america

operation measurements show the same 33% improvement by EFTS and an additional

3% improvement by adding PFTS. Finally, Figure 4-17 show the maximum SAD

operations for the Foreman video sequence using EFTS and PFTS. Again, this is

EFTS

/ Average 1 244223 1 162131 1 33.33% 1 155976 1 3.02%

181147

226272

21 1202

307799

261 696

405309

196439

234434

important for some systems to know its peak resource requirements.

EFTS
Savings
over FTS

129750

14761 8

142307

199651

16791 7

271 308

1351 16

1461 55

EFTS +
PFTS

28.37%

34.76%

32.62%

35.1 4%

35.84%

33.06%

31.22%

37.66%

PFTS
Savings

over EFTS
7

135964

1 471 48

13741 7

1 85731

153938

253982

131 664

130585

-4.79%

0.32%

3.44%

6.97%

8.32%

6.39%

2.55%

10.65%

Figure 4-17. Foreman Maximum SAD Operations Using EFTS and PFTS

Foreman - Maximum SADs vs. Bit Rate

0 200 400 600 800 1000 1200

Bit Rate (kbps)

- .I - FTS - EFTS - PFTS+EFTS

EFTS showed a lower but significant 27% improvement over FTS in peak

resource usage. The addition of PFTS on the other hand had a relatively small negative

effect at higher bit rates of 5% but up to 14% savings at lower bit rates. Table 4-8 show

the maximum SAD operations for other video sequences using EFTS and PFTS.

Table 4-8: Maximum SAD Operations per Macroblock Using EFTS and PFTS

Test Sequence

car 1 622336 1 457472 1 26.49% 1 416512 1 8.95%

akiyo

news

silent

coastguard

foreman

claire 1 251904 / 162048 1 35.67% 1 148992 1 8.06%

U S

miss america 1 295168 1 180992 1 38.68% 1 152064 1 15.98%

201 21 6

228608

289536

352000

606976

Average 1 359282 1 244395 1 33.18% 1 234439 1 2.34%

EFTS

Notice that although for the coastguard sequence and some of the other sequences

the peak resources usage has gone up, the peak usage is still on average 33% better for

EFTS and an additional 2% better when PFTS is added. Also, acknowledge these values

are savings on top of what FTS already provides.

128256

164096

185856

21 91 36

440576

Significant improvements of around 33% were seen with EFTS over FTS and a

smaller improvement of 3% was seen with PFTS. The effects of PFTS was shown to be

negative on some video sequences but was still able to obtain a 3% improvement on

average. Finally, it was seen that these improvements came with little cost in terms of R-

D performance.

EFTS
Savings
over FTS

4-5 Sub-Pixel FTS

In Sub-Pixel Flexible Triangle Search (SP-FTS), FTS is extended from full-pixel

motion estimation to sub-pixel motion estimation. A new FTS technique performed in

quarter-pixel accuracy is presented here. Full-pixel FTS, as presented in previous

36.26%

28.22%

35.81 %

37.75%

27.41 %

EFTS +
PFTS

PFTS
Savings

over EFTS

133376

172800

1 881 60

280576

404480

-3.99%

-5.30%

-1.24%

-28.04%

8.1 9%

sections, has sub-pixel ME disabled and shall be referred to as FP-FTS. In SP-FTS, full-

pixel and sub-pixel motion estimations are combined into a single step by eliminating

full-pixel ME. Half-Pixel FTS (HP-FTS) has shown in H.263 [6] to have lower

complexity than a two-stage full-pixel and half-pixel motion estimation technique. In

this section, SP-FTS is extended to H.264 where quarter-pixel motion estimation is

available. H.264 motion estimation can be viewed as a three step process whereby full-

pixel, half-pixel, and quarter-pixel refinements are done. The proposal in this section is

Quarter-Pixel FTS (QP-FTS), whereby these three steps are combined into one by

eliminating full-pixel and half-pixel refinements. In addition to QP-FTS, for comparison

purposes, the original FP-FTS algorithm is combined with full sub-pixel search (SP-FS).

FP-FTS and SP-FS shall be referred to as (FP-FTS+SP-FS). The idea of SP-FS will be

discussed later in more detail.

In sub-pixel motion estimation, intermediate pixels are obtained from integer

pixels using interpolation. Half-pixel values are obtained using a one dimension 6-tap

finite-impulse-response (FIR) filter. The interpolation filter is applied horizontally and

vertically to obtain all the half-pixel points. The quarter-pixel values are then obtained

by averaging integer and half-pixel values. Refer to Figure 2-4 for the half and quarter-

pixel grid.

In Figure 2-4, pixel positions marked by upper-case letters are integer pixel

locations. Lower-case letters mark half-pixel positions and quarter-pixel locations. But

note that positions half-pixel positions are also quarter pixel positions. The positions n

and e are calculated using Equation 4-2.

e, = (A - 5 ~ + 2 0 ~ + 2 0 0 - 5 ~ + F)

n, = (G - 5 ~ + 2 0 ~ + 2 0 1 - 5 ~ + ~)

e = (e, +l6)>> 5

n = (n, +l6)>> 5

The values n and e are further clipped to the range of 0 to 255. Half-pixel

location p is calculated using the same FIR filter as described in Equation 4-3.

Again, the final value of p is clipped to the range of 0 to 255.

The quarter-pixel locations at e,f, g, u, etc are calculated by averaging the two

nearest integer and half-pixel locations. The value is also rounded up by adding 1 before

averaging. For example, d is calculated in Equation 4-4.

On the other hand, quarter sample locations at h and j are calculated using the

diagonal half pixel neighbours as shown in equation 4-5.

Note that the discussed interpolation method is used in the luma frames where

motion estimation is performed. The benefits of sub-pixel motion estimation and

specifically quarter-pixel motion estimation in H.264 over half-pixel motion estimation in

H.263 is to provide more accurate estimation of motion and thus increase PSNR and

improve the R-D curve. The trade-off for the improvement in R-D is the increase in

complexity required to calculate the interpolated frames.

Typically, in motion estimation, a full-pixel search is completed first in a

specified search area. Once the minimum is found, half-pixel motion estimation is used

to test surrounding half-pixel locations to fine tune the minimum. In the case of H.264,

further refinement is done by testing the quarter-pixel locations around the half-pixel

locations. Depending on the technique, all or a subset of these half-pixel and quarter-

pixel locations are tested. If all of these positions are tested, it is known as full half-pixel

and full quarter-pixel search.

In the JVT H.264 reference software, a quarter-pixel interpolated frame is always

computed before any motion estimation is done. Instead of electing to interpolate the

whole frame, a technique can be used to only interpolate the samples that are necessary

during motion estimation. However, such a method is likely to be inefficient since

samples may be calculated more than once because samples may be used in the motion

estimation of several macroblocks. Also, if half and quarter motion vectors exist, the

encoder is required to compute these anyway for its motion compensation block. As

such, the quarter-pixel interpolated frame is used in FTS. The QP-FTS algorithm is

completely executed in the quarter-pixel interpolated frame. The QP-FTS algorithm is

the same as that described in FP-FTS.

The QP-FTS is implemented in the H.264 JM software and its performance is

compared to that of the other search algorithms. In previous simulations, the respective

sub-pixel refinement for each search algorithm was disabled. For these simulations, the

sub-pixel refinements are re-enabled. In addition, the integer FTS technique is paired

with the full search sub-pixel motion estimation (FP-FTS+SP-FS). Whereby the full

search sub-pixel motion estimation performs an exhaustive search of neighbouring eight

half-pixel positions and then the neighbouring eight quarter-pixel positions.

4-6 Sub-pixel FTS Simulation Results

Starting with the R-D performance of QP-FTS, the R-D performance is compared

to FP-FTS and FP-FTS+SP-FS. It is expected that since ME is done in quarter-pixel

accuracy, the PSNR performance is better. Figure 4-18 compares the R-D performance

of QP-FTS against FP-FTS and FP-FTS+SP-FS.

Figure 4-18. Foreman Luma R-D Curve Using QP-FTS Compared to FP-FTS

Foreman - Y-PSNR vs. Bit Rate

200 250 300 350 400

Bit Rate (kbps)

- FP-FTS

I -- x- QP-FTS

Figure 4-18 shows that QP-FTS performs better than FP-FTS by 1 dB and FP-

FTS+SP-FS is 1.75 dB better than FP-FTS. Figure 4-19 and Figure 4-20 show the

performance of QP-FTS against other available ME technieques.

Figure 4-19. Foreman Luma R-D Curve Using QP-FTS

Foreman - Y-PSNR vs. Bit Rate

400 600

Bit Rate (kbps)

-+-HEX

-m- SHEX

EPZS

+ FP-FTSiSP

QP-FTS

Figure 4-20. Foreman Luma R-D Curve Using QP-FTS (Close-up)

Foreman - Y-PSNR vs. Bit Rate

-+-HEX

-m-SHEX

EPZS

+ FP-FTSiS --., QP-FTS

315 335 355

Bit Rate (kbps)

Instead of improving R-D, QP-FTS exhibited worst performance by 0.8 dB

compared to FP-FTS+SP-FS. This is not too surprising since the combination of a full

pixel FTS search and a full sub-pixel search can exhibit the ideal SP-FTS performance.

Figure 4-21 and Figure 4-22 show the R-D performance of the chroma frames which

exhibit the same results as the luma frame.

Figure 4-21. Foreman Chroma U R-D Curve Using QP-FTS

Foreman - U-PSNR vs. Bit Rate

+HEX

--eSHEX

E PZS

+++ FP-FTS+SP-

QP-FTS

30 -

1
25 I

I

0 200 400 600 800 1000

Bit Rate (kbps)

Figure 4-22. Foreman Chroma V R-D Curve Using QP-FTS

Foreman - V-PSNR vs. Bit Rate

-HEX

SHEX

EPZS

+ FP-FTS+SP-FS

QP-FTS

0 200 400 600 800 1000

Bit Rate (kbps)

Figure 4-23 show the complexity of the search algorithms based on the number of

block matches. It is expected that the complexity of sub-pixel search algorithms are

significantly more complex than the full-pixel search results presented in earlier sections.

For example, FP-FTS exhibited an average of 6.15 block matches per macro-block. As

discussed, full sub-pixel search requires 16 block matches. Hence, it is expected that FP-

FTS+SP-FS will require l6+6.l5 = 22.15 block matches per macro-block. Indeed, the

value of 22.15 block matches per macro-block was measured.

Figure 4-23. Foreman Block Matches Using QP-FTS

Foreman - Block Matches vs. Bit Rate

Bit Rate (kbps)

+HEX

SHEX

EPZS

+ FP-FTS+SP-FS

QP-FTS

Figure 4-23 show that FP-FTS+SP-FS performed better than the JM techniques.

Specifically, FP-FTS+SP-FS performed 55% to 60% better than EPZS. This

improvement is similar to that seen when only full-pixel ME was used. Also, QP-FTS

performed better than FP-FTS+SP-FS by 29% to 33%. Hence, although QP-FTS

exhibited slightly worst performance in terms of R-D, the savings it exhibits in

complexity may be an attractable trade-off. Table 4-9 shows the performance of FP-

FTS+SP-FS and QP-FTS over other video sequences.

Table 4-9: Average Number of Block Match Operations per Macroblock

Test Sequence

akiyo

I claire 1 32.42 1 27.68 1 30.74 1 21 .16 1 31 .15% 1

HEX

news

silent

coastguard

foreman

carphone

car

I miss america 1 31.36 1 30.14 1 31.99 1 20.87 1 34.76% 1

29.75

Average

SHEX

41.46

44.47

58.72

60.52

54.28

62.92

Table 4-10: Average Number of Block Match Operations per Macroblock Using QP-FTS

26.01

EPZS

45.30

53.44

119.23

100.95

79.10

109.30

akiyo

29.60

Test Sequence

news

FP-FTS+SP-FS

37.31

40.25

54.25

54.97

48.17

62.03

silent

FTS
Savings

over EPZS

21.01

QP-FTS

coastguard

29.01 %

21.33

21.83

21.30

23.28

22.22

25.38

foreman

42.83%

45.77%

60.73%

57.64%

53.87%

59.08%

QP-FTS Savings
over EPZS

carphone

QP-FTS Savings
over FTS

car

I claire 1 14.70 1 52.1 9% 1 30.55%

1 miss america 1 16.02 1 49.92% 1 23.23%

Average

FP-FTS+SP-FS performed very well across the board averaging a 46% savings in

complexity. QP-FTS performed on average 33% better than FP-FTS+SP-FS and more

significantly, it performed on average 64% better than EPZS. Again, the savings in

complexity may be worth the trade-off in R-D performance. Figure 4-24 shows the

average SAD operations required by the sub-pixel search algorithms.

Figure 4-24. Foreman Average SAD Operations Using QP-FTS

Foreman - Average SADs vs. Bit Rate

0 200 400 600 800 1000

Bit Rate (kbps)

-HEX

-m- SHEX

E PZS

+ FP-FTS+SP-FS

- QP-FTS

Table 4-1 1 summarizes the results of average SAD operations for all the video

sequences.

Table 4-11: Average Number of SAD Operations per Macroblock

I akiyo 1 315357 1 261810 1 374188 1 325721 1 12.95%

Test Sequence

news

silent

HEX

I coastguard 1 8531 12 1 1505507 1 848816 1 470646 1 44.55%

foreman

SHEX

I carphone 1 765198 1 959058 1 756505 1 489579 1 35.28%

car

I claire 1 489543 1 340227 1 489464 1 438339 1 10.45%

FTS
Savings
over
EPZS

EPZS

I miss america 1 550718 1 415290 1 559312 1 477420 1 14.64%

FP-FTS+SP-FS

Table 4-12: Average Number of SAD Operations per Macroblock Using QP-FTS

I Average

Test Sequence

coastguard

673764

akiyo

news

silent

foreman

EPZS

I carphone

840047

3741 88

555985

601 776

I car

QP-FTS

I claire

687428

320276

331 21 4

340454

I miss america

QP-FTS
Savings over
EPZS

I Average

458409

QP-FTS
Savings over
FTS

14.41 %

40.43%

43.43%

Looking at average SAD operations, the FTS algorithms did not perform as well

as what was seen in block matches. Still, FTS with full sub-pixel search still performed

30% better than EPZS and QP-FTS added another 17% savings on top of that or 41%

29.61 %

1.67%

16.72%

14.1 1%

savings over EPZS. Figure 4-25 shows the maximum SAD operations for the search

algorithms.

Figure 4-25. Foreman Maximum SAD Operations Using QP-FTS

Foreman - Maximum SADs vs. Bit Rate

+HEX

SHEX

EPZS

-++ FP-FTS+SP-FS

-.M- QP-FTS

0 200 400 600 800 1000

Bit Rate (kbps)

Table 4-13 show the results of measuring maximum SAD operations for the rest

of the video sequences.

Table 4-13: Maximum SAD Operations per Macroblock

Test Sequence HEX SHEX EPZS FP-FTS+SP-FS FTS
Savings
over
EPZS

akiyo 391408 405856 426256 346656 18.67%

news 779600 986992 806720 456400 43.43%

silent 888896 10991 68 867680 468000 46.06%

coastguard 1061 21 6 1 978448 1070816 704224 34.23%

I foreman 1 1568064 1 2188736 1 1729488 (802752 1 53.58%

I carphone 1 1 1 18032 1 1594576 (1088896 1 565584 1 48.06%

I claire 1 589616 1 522080 1 563168 1 467648 1 16.96%

I missamerica 1 624208 / 605504 1 643680 1 509456 1 20.85%

I Average 1 982366 1 1317335 1 1025742 1 572041 1 37.91%

Table 4-14: Maximum SAD Operations per Macroblock Using QP-FTS

I a kiyo 1 426256 1 348160 1 18.32% 1 -0.43% 1

Test Sequence

I news 1 806720 1 362240 1 55.10% 1 20.63% 1
I silent 1 867680 1 361984 1 58.28% 1 22.65% 1

EPZS

The results are consistent with measuring block matches and average SAD

operations. FTS with full sub-pixel search performed on average 38% better and QP-FTS

added another 24% savings or 5 1 % savings over EPZS.

QP-FTS

coastguard

foreman

carphone

car

claire

miss america

Average

QP-FTS
Savings over
EPZS

1 07081 6

1729488

1088896

2034976

5631 68

643680

1025742

QP-FTS
Savings over
FTS

460288

441 088

4341 76

435456

408064

442880

41 0482

57.02%

74.50%

60.1 3%

78.60%

27.54%

31.20%

51.1 9%

34.64%

45.05%

23.23%

47.39%

12.74%

13.07%

24.33%

FTS was extended as a SP-FTS algorithm in two ways. FTS paired with a full

half-pixel and quarter-pixel searches showed significant improvement in complexity over

other JM sub-pixel ME techniques. But, FTS showed little effect to the R-D

performance. Also, FTS was implemented in the quarter-pixel domain completely

bypassing full-pixel and half-pixel searches. Here results showed further improvement

over FTS but came at a cost of slightly reduced R-D performance as compared to other

sub-pixel ME techniques. However, SP-FTS showed to produce better R-D performance

than any of the full-pixel ME techniques.

CHAPTER 5
CONCLUSIONS

This document discussed the H.264 standard produced by the Joint Video Team

and some of its features that are introduced in the standard. All these features of H.264

serve the purpose of maintaining high picture quality while reducing bit rate. In other

words, the rate-distortion efficiency is improved. The objective of improving the rate-

distortion efficiency is to better enable video applications on more bandwidth limited

applications that carry its data over cable, DSL, and WiFi. Of course, rate-distortion

efficiency does not come free as it is a trade-off with complexity.

It has been shown that the ME component of H.264 consumes 70% of encoder

processing time when a single reference frame is used. In fact, ME will consume up to

90% when multiple reference frames are used. These numbers make ME the heaviest

component in H.264 and as such have been a popular research topic and have spurred this

document as well. The JVT group implemented the JM, an H.264 reference software,

that supports 4 ME techniques. These techniques are Full Search, Unsymmetrical-cross

Multi-Hexagon-Grid Search, Simplified UMHexagonS, and Enhanced Predictive Zonal

Search. Via tests, it was shown that Full Search resulted in the best R-D efficiency but at

the cost of very high complexity. The UMHexagonS introduced many MV predictors,

early termination with SAD prediction, and a complex search pattern. Unfortunately,

UMHexagonS was still too complex and a simplified version was added that removed

some MV predictors, added more early termination conditions, and simplified the search

pattern. As a result, ME time was reduced significantly and it also resulted in greater R-

D efficiency. EPZS is an algorithm that concentrates on MV predictors and an adaptive

early termination condition. As such, EPZS has very simple search patterns to refine the

MV. Through simulations, it was shown that the simplified EPZS performed the best of

all the ME techniques in JM other than FS.

In this project we implement the Flexible Triangle Search that uses the triangle as

the search pattern with three test points at its vertices. Starting from the smallest triangle,

the triangle is reflected, expanded, translated, and contracted. These operations allow the

triangle to quickly move from areas of high error to areas of low error. In order to

implement this algorithm, three levels of pre-determined triangles were used that allowed

easy implementation via look-up tables.

In the implementation of FTS, the median MV predictor was re-used and the

Lagrangian cost function was used. Results show that FTS only dropped by 0.3 dB and

0.1 dB from the FS and EPZS respectively. On the other hand, the FI'S algorithm

showed improvement on ME time of up to 30% over EPZS. Hence, FTS affected R-D

efficiency little but was able to greatly reduce the complexity of ME.

Noticing an inefficiency in the algorithm, the Enhanced FTS modification is

presented that save intermediate SAD results so that SAD values for a particular search

location isn't calculated twice. In addition, an optimization is made to predict the

direction of the minimum in Predictive FTS. This is done by directing the triangle in the

particular direction by choosing the correct starting triangle. Both these modifications

are shown to not affect R-D while EFTS reduced complexity by another 33% over the

original FI'S algorithm and PFTS added another 3% savings.

Finally, the FTS algorithm is extended as a sub-pixel ME in two ways. First the

PFTS algorithm is paired with a half and quarter-pixel full search. Results show that this

alone provided a savings of 30% over other sub-pixel ME. Second, the FTS algorithm

was executed directly in the quarter-pixel interpolated frame and any ME in the full-pixel

and half-pixel frames are skipped. Although this exhibited a 0.8 dB reduction in R-D

curve, it provided a savings of 41% over other sub-pixel ME techniques and 17% savings

over FTS paired with half and quarter-pixel full search.

Significant savings alone can be achieved by using full-pixel FTS that can be

further paired with full half and quarter-pixel searches for increased R-D. Even more

savings are possible when QP-FTS is considered but at a cost of slightly reduced R-D.

5-1 Ongoing Research

On forward looking, much more work needs to be done in validating FTS. Tests

need to be completed that verifies if the algorithm will not be trapped in a local minimum

since it does not perform any special searches specifically far from the search center. The

UMHexagonS accomplishes this by the use of the big hexagon search.

Also, several enhancements can be added to compliment the FTS algorithm. For

example, we can take advantage of the benefits of some MV and SAD predictors used in

UMHexagonS, Simplified UMHexagonS, and EPZS. Also, in sub-pixel ME, the FTS

algorithm can be paired with more efficient sub-pixel searches rather than full half and

full quarter-pixel searches.

APPENDICES

Appendix A: Detailed Analysis of the Carphone Video Sequence

This appendix contains the detailed analysis of the carphone video sequence using

the various versions of FTS discussed in this document. This appendix presents the

various graphs for carphone that were done for the foreman video sequence.

Car Phone Video Sequence Using FP-FTS

Carphone - Y-PSNR vs. Bit Rate

I
I I I ,

0 100 200 300 400 500 600 700 800 900

Bit Rate (kbps)

Carphone - U-PSNR vs. Bit Rate

+- FS

HEX

SHEX

+ EPZS

N FTS

0 100 200 300 400 500 600 700 800 900

Bit Rate (kbps)

Carphone - V-PSNR vs. Bit Rate

: :k , , , , , ,T
25

0 100 200 300 400 500 600 700 800 900

Bit Rate (kbps)

+- FS

HEX

SHE>(

+ EPZS

-4-- FTS

Carphone - Block Matches vs. Bit Rate

0 100 200 300 400 500 600 700 800 900

Bit Rate (kbps)

- FS

-r-- HEX

SHEX

-++ EPZS

FTS

Carphone -Average SADs vs. Bit Rate

5000025

25
0 100 200 300 400 500 600 700 800 900

Bit Rate (kbps)

HEX

SHE

-++ EPZ

y FTS

Carphone - Maximum SADs vs. Bit Rate

0 100 200 300 400 500 604 700 800 900

Bit Rate (kbps)

Car Phone Video Sequence Using EFTS and PFTS

Carphone - Y-PSNR vs. Bit Rate

-- .

200 400 600 800 1000

Bit Rate (kbps)

Carphone - U-PSNR vs. Bit Rate

400 600

Bit Rate (kbps)

FTS - EFTS

PFTS+EFl

Carphone - V-PSNR vs. Bit Rate

400 600

Bit Rate (kbps)

FTS - EFTS

+ PFTS+EFT

Carphone - Block Matches vs. Bit Rate

0 200 400 600 800 1000

Bit Rate (kbps)

.*c FTS

--+- EFTS

--m- PFTS+E

Carphone - Average SADs vs. Bit Rate

0 ! 1 1
0 200 400 600 800 1000

Bit Rate (kbps)

-A .. FTS - EFTS

-PFTS+EFTS

Carphone - Maximum SADs vs. Bit Rate

0 200 400 600 800 1000

Bit Rate (kbps)

x-- FTS

+ EFTS

PFTS+EFTS

Car Phone Video Sequence Using QP-FTS

Carphone - Y-PSNR vs. Bit Rate

+HEX

-SHEX

EPZS

-w- FP-FTS+SP-F

, QP-FTS

0 200 400 600 800

Bit Rate (kbps)

Carphone - U-PSNR vs. Bit Rate

55 T-

O 200 400 600 800

Bit Rate (kbps)

-HEX

+SHEX

E PZS

+x- FP-FTS+SP-F!

QP-FTS

Carphone - V-PSNR vs. Bit Rate

0 100 200 300 400 500 600 700 800

Bit Rate (kbps)

-HEX

--c-SHEX

E PZS

+ FP-FTS+SP-FS

--*, QP-FTS

Carphone - Block Matches vs. Bit Rate

0 200 400 600 800

Bit Rate (kbps)

+HEX

SHEX

EPZS

+ FP-FTS+SP-FS

QP-FTS

Carphone - Average SADs vs. Bit Rate

0 200 400 600 800

Bit Rate (kbps)

+HEX

SHEX

EPZS

+ FP-FTS+S

QP-FTS

Foreman - Maximum SADs vs. Bit Rate

+HEX

SHEX

EPZS

+ FP-FTS+SP-FS

QP-FTS

0 100 200 300 400 500 600 700 800

Bit Rate (kbps)

REFERENCE LIST

[I] Hye-Yeon Cheong Tourapis, etc. "Fast Motion Estimation within the JVT codec",
JVT-E023.doc, 5th Meeting: Geneva, Switzerland, 9-17 October, 2002

[2] "ITU-T Recommendation H.264, Advanced video coding for generic audiovisual
services ", March 2005. http://www.itu.int/rec/T-REC-H.264-200503-Uen

[3] JM10.2, Reference Software of JVT, http://iphome.hhi.de/suehring/tml/index.htm.

[4] Mohamed M. Rehan, Pan Agathoklis, and Andreas Antoniou, "Flexible Triangle
Search Algorithm for Block-Based Motion Estimation", Electrical and Computer
Engineering, 2005, Canadian Conference on, May 1-4,2005, Pages 269-272

[5] ----------, "Block-Based Motion Estimation Using An Enhanced Flexible Triangle
Search Algorithm", Proceedings of Canadian Conference on Electrical and
Computer Engineering (CCECEOS), May 2005, pp. 259-262.

[6] Moharned M. Rehan and Pan Agathoklis, "Half-Pixel Accurate Motion-Estimation
Using A Flexible Triangle Search", Proceedings of IEEE Pacific Rim Conference
on Communications, Computers and Signal processing (PACRIM'O5), Aug.
2005, pp.233-236.

[7] ----------, "Prediction-Based Flexible Triangle Search Algorithm For Block Based
Motion Estimation", Proceedings of Canadian Conference on Electrical and
Computer Engineering (CCECE06), May 2006, pp. 2067-2070.

[8] Thomas Wiegand, Gary J. Sullivan, Gisle Bjgntegaard, and Ajay Luthra, "Overview
of the H.264IAVC Video Coding Standard, IEEE Transactions on Circuits and
Systems for Video Technology, Vo1.13, No. 7, July 2003

[9] Xiaoquan Yi, Jum Zhang, etc. "Improved and simplified fast motion estimation for
JM", JVT-P02l.doc, 16th Meeting: Poznan, Poland, 24-29 July, 2005

[lo] Zhibo Chen, Peng Zhou, etc. "Fast Motion Estimation for JVT", JVT-G016.doc, 7th
Meeting: Pattaya 11, Thailand, 7-14 March, 2003

[l 11 Zhibo Chen, Peng Zhou, etc. "Fast Integer Pel and Fractional Pel Motion Estimation
for JVT", JVT-F017.doc, 6th Meeting: Awaji, Island, 5-13 December, 2002

