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ABSTRACT 

Molecular characterization of cDNA clones from double-stranded (ds) RNA in 

Chalara elegans was accomplished. The cDNA clones derived from a 5.3 kb dsRNA 

present in strains of C. elegans showed nucleotide sequence homology to viruses 

belonging to Totiviridae. The cDNA clones derived from a 2.8 kb dsRNA in strains 

BK18 and WASH revealed nucleotide sequence homology to the Mitovirus group. Two 

cDNA clones derived from a 12 kb dsRNA in strain NC1527 revealed no significant 

sequence homology to any known virus group. These results suggest the occurrence of at 

least three different virus groups in C. elegans. The genetic relatedness among dsRNAs 

in C. elegans strains was determined using Northern blot and cDNA sequence analysis. 

The clones derived from a 2.8 kb dsRNA cross-hybridized with 2.8 kb dsRNA occurring 

in C. elegans strains from diverse geographic regions worldwide. However, the cDNA 

clones derived from either a 5.3 kb or 12 kb dsRNA cross-hybridized only with the 

similar-sized dsRNAs, mainly in strains originating from same geographic regions. 

Sequence analysis of the full-length cDNA clone from the 2.8 kb showed the presence of 

one large open reading frame (OW), when the mitochondrial genetic code was used. The 

ORF 1 contained RdRp conserved motifs present in other mitochondrial RNA viruses. 

This dsRNA copurified with mitochondria and named Chalara elegans 18 virus (Ce 1 8V), 

a new mitovirus. A latently-infected strain (BKl8C) which was obtained by high 

temperature incubation of 2.8 kb dsRNA-containing strain (BK18) for 2-3 months 

showed enhanced pathogenicity on carrots, but no differences in culture morphology or 

various enzymatic assays was detected. A full-length cDNA clone of the 5.3 kb dsRNA 

in strain CKP was also obtained. Sequence analysis revealed the presence of three ORFs, 



which shared some homology either to the coat protein or RdRp regions of Totiviridae. 

Partial cDNA clones were obtained from additional dsRNA in strain CKP which shared 

some homology to the RdRp regions of Totivirus, suggesting coinfection by two 

distinctive totivirus-like dsRNAs in strain CKP of C. elegans. Results from this study 

demonstrate the presence of diverse novel dsRNA elements in C. elegans with differing 

biological effects. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Origins of viruses 

The origins of viruses are not clearly understood due to a lack of virus fossil 

records and the high rate of variation in their genome sequences. However, some new 

technologies, such as polymerase chain reaction (PCR) and other sensitive molecular 

techniques, have been used in many viral-related studies, resulting in enormous increases 

in our knowledge of viral genome sequences. Using the information from viral genomic 

sequences, comparative analysis has been done to show some similarities among viruses 

and between viral and cellular proteins, which give some idea as to how they possibly 

originated and evolved (Gorbalenya, 1995; McGeoch, 1995). 

It has been postulated that the origins of life on planet Earth started with RNA as 

the genetic material, which later gave rise to cells with DNA genomes (Darnell and 

Doolittle, 1986). The nature of the earliest viruses can never be determined; however, it 

is likely that they arose very early during the evolution of life on Earth. It has been 

suggested that the elemental life form involving RNA replicons might be the origin of 

present RNA viruses (Becker, 2000; Holland and Domingo, 1998). Such primitive RNA 

molecules provide a replicate domain framework for the first true RNA viruses, which 

could have emerged when ancestral RNA replicons acquired genes for capsid, and 

possibly other proteins. These RNA viruses may have continued to evolve with the 



evolution of the "DNA world" since the cells that had developed the DNA genomes still 

included in their genome the genes that coded for RNA molecules and RNA polymerases. 

This hypothesis was supported by comparative sequence analysis, which indicated that 

both RNA and DNA viruses have common archaic evolutionary roots in genome 

structural organization and in certain domains (Gorbalenya, 1995; McGeoch, 1995). 

However, it is also true that both DNA and RNA viruses could have emerged and 

evolved through a variety of mechanisms, such as mutation, recombination and 

reassortment of various genetic sources (Becker, 1998; Holland and Domingo, 1998). 

Indeed, it is quite unlikely that all viruses could have arisen from a single set of ancestral 

RNA molecules. It is more probable that viruses originated or evolved from many events 

by acquiring diverse genetic elements, such as other primitive replicons during the 

evolution of life. 

1.2 Virus evolution 

Virus evolution could have occurred via three major strategies, including 

recombination, mutation and reassortment (Holland and Domingo, 1998; Domingo et al., 

1996). All of these forces may generate diversity in viral genomes under natural 

selection pressures. 

1.2.1 Mutation 

All RNA viruses have extremely high mutation rates because of lack of error- 

proof activity of viral RNA-dependent RNA polymerase (RdRp). Mutation rate can be 

defined as the actual rate of misincorporation of nucleotides, while the mutation 



frequency can be defined as the real misincorporation of nucleotides that become 

established in the population. Several studies have shown that the averaged 

misincorporation rates are about 1 o ' ~  or one error per 10 kb genome (Domingo and 

Holland, 1994). This is a high rate compared to that of cellular DNA-dependent DNA 

polymerases (DdDps), which is about 1 o - ~  (Rossinck, 1997). This high mutation rate can 

generate RNA viruses with great adaptability. In addition to the mutation rate, the 

mutation frequency can be one of the forces which generate diversity in viruses 

(Domingo and Holland, 1997; Rossinck, 1997). Similar mutation rates can be found in 

all RNA viruses, while the mutation frequency differs dramatically, depending on the 

virus (Aranda et al., 1993; Fraile et al., 1996). 

1.2.2 Recombination and reassortment 

Recombination has been considered to be one of the major mechanisms in the 

evolution of viruses. RNA recombination could occur either through homologous 

recombination between two nearly identical RNAs, or through nonhomologous 

recombination between two RNAs that have a short parallel stretch of complementarity 

(Simon and Bujarski, 1994). Phylogenetic analyses of many different RNA viruses, such 

as luteoviruses, nepoviruses and bromoviruses, have shown that recombination events 

could have occurred and played a role in virus evolution (Allison et al., 1989; Gibbs, 

1995; LeGall et al., 1995). In addition to recombination, some RNA viruses have 

segmented genomes and reassortment among RNA segments could allow the evolution or 

generation of new viruses (Zaccomer et al., 1995). 



2.1 Origins of plant viruses 

A major debate in the field of plant viruses focuses on whether the origin of RNA 

viruses is monophyletic or polyphyletic (Gorbalenya, 1995; Rossinck, 1997; Rossinck, 

2003). The monophyletic argument suggests that all RNA viruses were derived from an 

original set of domains with shuffling, which resulted in somewhat conserved domains 

with or without different genomic arrays (Gorbalenya, 1995; Dolja and Carrington, 1992). 

Genetic variation among viruses can occur during long-term mixed infections with 

different viruses, which eventually result in the loss or replacement of specific parts of 

the virus genome (Delmer et al., 1993). A well-known example can be found inpea 

enation mosaic virus. In this virus, both RNAl and RNA2 contain conserved motifs; 

however, RNA1 is similar to a luteovirus, while RNA2 is similar to carmoviruses and 

tombusviruses (Delmer et al., 1993). 

The argument for polyphyletic origin states that the genomes of viruses were 

derived from different origins, such as different portions of the host plant genome, and 

that they evolved independently (Gorbalenya, 1995). This theory is supported by 

evidence of sequence diversity present in specific viral regions, such as the movement 

protein gene. Many virus features are common for plant and animal viruses. However, 

plant viruses have to evolve specific mechanisms for successful transmission to the host 

plant, because plants have thick cell walls, which are absent in animal cells. Successful 

plant viruses must develop strategies to move both cell-to-cell and through the plant 

systemically. Sequence analysis of many movement protein genes has revealed that the 

sequence similarity is low among the viruses, which might indicate diverse origins 

(Goldbach, 1986; Goldbach et al., 1994). 



Plant viruses may have genes of both monophyletic and polyphyletic origins and 

they use these two strategies together for adaptations in host plants. Some domains, such 

as RdRp regions, appear to be monophyletic, while other domains, such as movement 

genes, may have arisen from diverse origins, such as host genomes, which could provide 

better adaptations to specific host plants (Rossinck, 1997; Rossinck, 2003). 

3.1 Origins of fungal viruses 

Fungal viruses or mycoviruses are present in numerous fungi and typically 

contain double-stranded (ds) RNA genomes (Buck, 1986; Ghabrial, 1980; Ghabrial, 

1998). The absence of an extracellular infection mode is one of the characteristics of 

these viruses and, therefore, they have evolved efficient horizontal transmission modes 

through either hyphal anastomosis between individual fungal isolates, or vertical 

transmission through fungal spores (Buck, 1986; Ghabrial, 1994). A large number of 

mycoviruses are known to be associated with cryptic symptoms in fungi, which is 

considered as strong evidence that these viruses have evolved in close association with 

their hosts (Bruenn, 1993; Lemke, 1979). The death of the fungal host caused by 

mycovirus pathogenesis would result in mycovirus elimination because of the apparent 

absence of an extracellular infection mode. 

Several families of dsRNA viruses of fungi, including Hypoviridae, Narnaviridae, 

Partitiviridae, and Totiviridae, have been classified based on their fungal host, the 

number of genome segments and their capsid structure (Ghabrial et al., 1995A; Ghabrial 

et al., 1995B; Hillman et al., 1995; Hong et al., 1999; Tuomivirta and Hantula, 2004; 

Wickner et al., 2000). These dsRNA viruses are considered to be polyphyletic because of 



the diversities in their genomes. Comparative genetic analysis of the amino acid 

sequences of RdRp regions, which are considered to be the most highly conserved genes 

among RNA viruses, revealed little similarity among dsRNA viruses (Koonin, 1991 ; 

Koonin, 1992). Phylogenetic analysis of RdRp regions among dsRNA viruses revealed a 

lack of conservation of primary sequence and size. This was interpreted as suggesting 

multiple evolution events occurring in different (+) strand RNA viruses (Koonin, 1992; 

Koonin and Dolja, 1993). 

The mycoviruses are believed to have ancient origins (Bruenn, 1993; Ghabrial, 

1998). Several genetic studies of dsRNA viruses have revealed that original dsRNA 

virus groups could infect cells before divergence of protozoa and fungi (Huang and 

Ghabrial, 1996; Ghabrial, 1998). This hypothesis is supported by the finding that the 

totivirus, HvlgOSV, found in plant pathogenic fungi is more closely related to the 

Leishmaniaviruses (LRV1 and LRV2) found in protozoa than to the yeast viruses. This 

suggests that Hv190SV and LRVs existed prior to the divergence of protozoa and fungi, 

which is believed to have happened very early in evolution (Ghabrial, 1998). 

4.1 DsRNAs in Cryphonectria parasitica 

4.1.1 Introduction 

In the 1960s, chestnut trees infected with the chestnut blight fungus, 

Cryphonectriaparasitica, in North America were introduced to Europe, and the pathogen 

quickly started to infect European chestnuts and cause serious problems (Grente, 1965; 

Grente, 1969). Antonio Biraghi, an Italian pathologist, found that some of the originally 

infected trees survived, and consequently, Jean Grente, a French mycologist, isolated 



non-lethal fungal strains from such infected trees (Biraghi, 1946; Anagnostakis, 1987, 

Grente, 1965). These strains had unique characteristics, such as lighter pigmentation and 

less virulence to host trees, so they were named "hypovirulent strains" (Grente and Sauret, 

1969). 

DsRNAs were found in these hypovirulent strains and these dsRNAs were 

considered a fungal virus (Choi and Nuss, 1992; VanAlfen et al., 1975). Infection by this 

virus could perturb various normal developmental processes of the host fungus, including 

reduction of sexual or asexual sporulation, reduction of virulence, and reduction of 

pigment production (Grente and Suaret, 1969; Griffin et al., 1983; Jaynes and Elliston, 

1982). The transfer of these dsRNAs through hyphal anastomosis from hypovirulent to 

virulent strains resulted in the development of various hypovirulent characteristics in 

virulent strains, which gave rise to studies on developing the dsRNAs as potential 

biological control agents (Anagnostakis, 1982; VanAlfen et al., 1975). 

The exact mechanisms of hypovirulence caused by dsRNAs are still not clearly 

understood, although numerous studies have been conducted (Elliston, 1982; Nuss, 1992; 

Nuss and Koltin, 1990, Dawe and Nuss, 2001). Molecular characterization of diverse 

dsRNA fragments, their effects on fungal hosts, and the potential use of dsRNAs as 

biological control agents will be discussed in this section. 

4.1.2. Molecular characterization of dsRNA 

4.1.2.1 Hypoviruses in C. parasitica 

The best-studied hypovirus in C, parasitica is the Cryphonectria hypovirus 1 - 

EP7 13 (CHV 1 -EP7 13) (Shapira et al., 199 1). CHV 1 -EP7 13 was isolated from one of the 



European hypovirulent isolates (EP7 13) of C. parasitica. In 1992, Choi and Nuss 

developed a full-length cDNA copy of this virus and transformed virus-free C. parasitica 

spheroplasts with this cDNA copy (Choi and Nuss, 1992; Chen et al., 1993). These 

transformants showed the hypovirulent characteristics, confirming that the dsRNA was 

the causal agent of hypovirulence in C. parasitica (Choi and Nuss, 1992; Chen et al., 

1994). The development of full-length cDNA clones has been used in many different 

ways, including the functional analysis of CHV 1 -EP7 1 3 (Chen et al., 1993; Chen and 

Nuss, 1999; Chen et al., 2000). 

The coding strand of CHV 1 -EP7 13 is 12,7 12 nucleotides long, excluding the 

poly(A) tail (Shapira et al., 1991). Two large open reading frames, ORF A and ORF B, 

were found in the genome. ORF A encods two polypeptides, p29 and p40, which are 

released from a polyprotein, p69, by autocatalytic activity of p69 (Choi et al., 1991 a; 

Choi et al., 1991 b). O W  B encods a large polyprotein and also releases a polyprotein 

(p48) by autocatalytic activity (Shapira and Nuss, 1991). The junction between O W  A 

and ORF B contains 5'-UAAUG-3', which may serve as both a termination codon 

(UAA) for ORF A and an initiation codon (AUG) for ORF B. The RdRp motifs were 

found in ORF B and shared sequence homology to that of potyviruses, which are one of 

the largest and most common plant virus groups (Choi et al., 1991; Koonin et al., 1991) 

Research on C. parasitica field isolates revealed considerable variability in 

virulence and morphology, suggesting the possible presence of different hypoviruses in C. 

parasitica (Elliston, 1978; Elliston, 1985; Enebak et al., 1994b; MacDonald and 

Fulbright, 199 1). The CHV 1 -Euro7 was selected to develop cDNA clones because its 

effects on the host fungus, C. parasitica, were quite different compared to that of CHV1- 



EP7 13 (Chen and Nuss, 1999). Strain EP7 13 conferred highly debilitating symptoms, 

such as retarded growth rate, small cankers on chestnut trees, and reduced spore 

production. In contrast, C. parasitica infected with strain Euro7 showed faster growth, 

large canker expansion, and increased capacity for spore production compared to EP7 13 

infected one. Full-length cDNA clones were developed for this second hypovirus in C. 

parasitica, and named CHVl -Euro7. Sequence comparison between these two 

hypoviruses, CHV 1 -EP7 13 and CHVl -Euro7, revealed high similarities at the level of 

both nucleotide and amino acid sequences (Chen and Nuss, 1999). 

Two additional hypoviruses, CHV2 and CHV3, have been characterized in C. 

parasitica. CHV2 was first isolated in New Jersey from isolate NB58 of C. parasitica 

(Hillman et al., 1992). The genomic structure of CHV2 was quite similar to that of 

CHVl (Hillman et al, 1992; Hillman et al., 1994). Both hypoviruses have two ORFs and 

poly A tails at the 3' end; however, CHV2 lacks the papain-like proteinase which is 

present in the ORFA of CHV 1. The third hypovirus group (CHV3), first identified in a 

Grand Haven isolate, GH2, had a relatively smaller genome size (9 kb) and contained 

only one ORF rather than two ORFs as was found in CHV 1 and CHV2 (Fulbright et al., 

1983; Yuan and Hillman, 2001). However, the ORF in CHV3 contained a putative 

proteinase, RNA polymerase, and helicase domains that were similar to those identified 

in both ORFs in CHV 1 and CHV2. An amino acid sequence comparison showed that 

CHVl and CHV2 were more closely related to each other than to CHV3 (Smart et al., 

2000). 



4.1.2.2. Various dsRNAs in C. parasitica 

In addition to the presence of hypoviruses in C. parasitica, the presence of other 

virus groups has been documented (Hillman et al., 1992; Hillman et al., 1994). In 1994, a 

small dsRNA from isolate NB63 1 of C. parasitica was reported (Polashock and Hillman, 

1994). The culture morphology of this strain was similar to that of the dsRNA-free 

isolate, but virulence and laccase production were reduced. Full-length cDNA clones of 

the dsRNA were produced and revealed the complete nucleotide sequence of this dsRNA. 

The entire sequence of this dsRNA in C. parasitica was 2,728 bp long, which was much 

smaller than the other hypoviruses, which ranged from 9 kb to 12 kb. The deduced 

amino acid sequence analysis revealed that there were no large ORFs when the 

cytoplasmic genetic code was used. However, one large ORF was observed when the 

mitochondria1 genetic code was used, suggesting that this virus might be present in the 

mitochondria. Isolation of mitochondria and nuclease assays confirmed the presence of 

this small dsRNA in mitochondria and it was named Cryphonectria parasitica mitovirus 

1-NB631 (CpMV1-NB631) (Wickner et al., 2000). 

In 1994, Enebak et al. reported the presence of multiple dsRNA fragments in a 

hypovirulent isolate of C. parasitica, and that these dsRNAs were genetically unique 

(Enebak et al., 1994a). Recently, Hillman et al. (2003) reported that virus particles were 

purified from a distinct hypovirulent isolate of C. parasitica that contained 1 1 dsRNA 

segments. These purified virus particles were reintroduced into a virus-free isolate of C. 

parasitica, resulting in morphology similar to that of dsRNA-containing isolates, 

suggesting that these dsRNAs were responsible for hypovirulence traits. Sequence 



analysis of three large fragments among 11 revealed that these fragments were closely 

related to other known viruses belonging to Reoviridae. 

In addition to the presence of different virus groups in C. parasitica, defective 

interfering (DI) and satellite dsRNAs were also observed (Hillman et al., 2000; Yuan and 

Hillman, 2001). In CHV3-GH2, an isolate which contained CHV3 hypovirus, an 

additional three small dsRNAs, [dsRNA2 (3.6 kb), dsRNA3 (1.9 kb) and dsRNA4 (0.9 

kb)], were present. Sequence analysis of dsRNA2 revealed one O W ,  which consisted of 

protease and helicase domains of hypovirus CHV3, indicating that this dsRNA could be a 

defective RNA of CHV3. However, the other two dsRNAs (dsRNA3 and dsRNA4) 

shared little sequence homology with dsRNAl and dsRNA2 in CHV3-GH2, suggesting 

that these dsRNAs were satellite RNAs (Yuan and Hillman, 2001). 

4.1.3. Functional analysis of hypoviruses 

The full-length infectious clones of hypovirus in C. parasitica have been used in 

various aspects of research, including functional analysis of the hypovirus genome. A 

transformation study with O W  A of CHV1 -EP7 13 into a dsRNA-free isolate showed the 

development of orange pigmentation, reduction of both asexual sporulation and laccase 

production, but no changes in virulence, suggesting that this ORFA region of CHV1- 

EP713 was responsible for other phenotypic changes but not virulence in the host fungus 

(Rigling et al., 1989; Rigling and Van Alfen, 199 1 ; Nuss, 1996). Further investigations 

using various mutants of these hypoviruses showed that p29 regions could be the specific 

regions responsible for these phenotypic changes (Craven et al., 1993). For example, one 

deletion mutant, Ap29, which lost 88% of the p29 coding domain in O W  A, showed viral 



replication and hypovirulence, but there was a restoration of phenotypic changes, such as 

reduction of orange pigment, increased conidiation and laccase production (Craven et al., 

1993). Suzuki et al. (1 999) further characterized the symptom determinant regions of 

p29 in CHV1 -EP713. They found that the region from Phe-25 to Gln-73 of p29 could be 

essential for development of phenotypic changes and showed a moderate level of 

sequence similarity with the N-terminal region of the HC-pro papain-like protease in the 

potyvirus group. Four conserved cysteine residues, Cys-38, Cys-48, Cys-70, and Cys-72, 

were observed and more detailed studies using mutational analysis were conducted for 

these conserved regions. Mutation of both Cys-38 and Cys-48 revealed no changes, 

while mutation of Cys-70 resulted in the development of severe phenotypic traits, such as 

retarded growth rate and altered culture morphology. However, substitution of a glycine 

for Cys-72 showed a reduction of symptom expression (Craven et al., 1993; Suzuki et al., 

1 999). 

The similarity between the fungal hypoviruses and plant potyviruses, especially 

functional and structural similarities for p29 and HC-pro, are particularly interesting 

(Koonin et al., 1991; Suzuki et al., 1999). It has been known that the HC-pro could be 

involved in various functions, such as aphid transmission, long distance movement, and 

promotion of genome amplification in plants (Atreya et al., 1992; Carrington et al., 1989; 

Cronin et al., 1995; Kasschau et al., 1997; Thornbury et al., 1985). Recently, HC-pro 

was considered to play an important role as a viral suppressor of post-transcriptional gene 

silencing (Kasschau and Carrington, 1998; Liave et al., 2000). In this regard, the 

relationships between the p29 and HC-pro could indicate that these two viral proteins 

may interact with ancestrally-related regulatory proteins in their respective hosts. 



Full-length cDNA clones were developed from two isolates of C. parasitica, 

which contain different CHV 1 viruses, CHV 1 -EP7 13 and CHV 1 -Euro7 (Chen and Nuss, 

1999; Shapira et al., 1991). These isolates were selected because of the existence of 

significant phenotypic differences. Sequence analysis of these two hypoviruses revealed 

a high sequence identity, both at the nucleotide and amino acid levels, ranging from 87- 

93% and 90-98%, respectively. However, when these two hypoviruses were introduced 

independently into virus-free strains of C. parasitica to determine their effects on the host 

fungus, it revealed major differences in development of hypovirulence traits, which were 

similarly observed in the original dsRNA-containing field isolate. Therefore, this result 

could indicate that these two hypoviruses (CHV1 -EP7 13 and CHV 1 -Euro7), are the 

major factors determining hypovirulence traits in C. parasitica, rather than host genetic 

background, and could be named as severe and mild hypoviruses, respectively. Because 

of the high nucleotide sequence similarity between CHV 1 -EP7 13 and CHVl -Euro7, 

recombinant chimeras were used to determine the viral determinants responsible for 

specific hypovirulent traits (Chen et al., 2000). A recombinant chimera containing 

CHV 1 -Euro7 O W  A and CHV 1 -EP713 ORF B showed severe hypovirulent traits, 

suggesting that the ORF B region of CHV 1 -EP7 13 could confer the severe hypovirulence 

traits. Further analyses using various recombinant chimeras have revealed that it could 

be possible to develop an engineered hypovirus which expressed different symptoms by 

mixing and matching specific domains of these two CHV 1 s (Chen et al. 2000). 



4.1.4. Hypovirus effects on fungal gene expression 

The changes in fungal virulence associated with infection of hypoviruses were 

considered as an important tool to understand the basis of fungal virulence. Comparative 

studies of extracellular enzyme activities showed some differences between virulent and 

hypovirulent isolates of C. parasitica and were extended to the genetic level (Powell and 

VanAlfen, 1987a; Powell and VanAlfen, 1987b; Zhang et al., 1993). Using sequences 

derived from known extracellular enzymes, several genes, such as cryparin, laccase, 

cutinase and cellulase, have been cloned from C. parasitica (Kazmierczak et al., 1996; 

McCabe and VanAlfen, 1999; Varley et al., 1992; Zhang et al., 1994; Zhang et al., 1998). 

Most enzymes could be down-regulated by infecting with CHV 1 ; however, some of the 

enzymes could be up-regulated (Chen et al., 1996; Powell and VanAlfen, 1987b). 

Laccase is a copper-containing phenol oxidase. It is not clearly understood what 

the function of this enzyme is in the development of virulence of C. parasitica. However, 

some studies have shown that laccases in other fungi could play important roles related to 

fungal development and virulence, including degradation of lignin, formation of fruiting 

bodies, and pigment production (Ander and Eriksson, 1976; Leatham and Stahmann, 

198 1 ; Leonard, 197 1 ; Marbach et al., 1985). It has been speculated that the lack of 

canker penetration by hypovirulent isolates of C. parasitica could be related to the 

reduced expression level of laccase (Rigling et al., 1989; Rigling and VanAlfen, 1991). 

Genetic analysis of C. parasitica revealed the presence of three laccase genes, which are 

lac 1, lac 2, and lac 3 (Kim et al., 1995; Rigling and VanAlfen, 1993). Expression levels 

of laccase genes could vary depending on the environment, such as nutrient medium, the 

age of the culture, and the amount of light available (Choi et al., 1992). CHV 1 infection 



could result in a 75% reduction in laccase enzyme activity (Rigling and VanAlfen, 1991 ; 

Choi and Nuss, 1992). Subsequent studies have revealed that laccase expression levels 

could be regulated at the level of transcription or stability of laccase mRNA (Choi et al., 

1992; Rigling and VanAlfen, 1991). A similar result was observed in a hypovirulent 

isolate of another fungal species, Diaporthe ambigua (Smit et al., 1996). 

Cutinase is another enzyme reduced by hypovirus infection. Cutinase is 

considered to be important in plant pathogenic fungi because it can degrade plant cuticles 

and help fungal penetration into host cells. Indeed, positive relationships between the 

amount of cutinase produced and virulence have been reported in some plant pathogenic 

fungi (Li et al., 2003; Rogers et al., 1994; Schafer, 1993). Varley et al. (1 992) showed 

that a hypovirulent strain of C. parasitica produced significantly lower amounts of 

cutinase compared to that of a virulent strain, suggesting the dsRNA presence could have 

had some effect on cutinase gene expression. Several other hydrolytic enzymes, 

including polygalacturonases and cellulases, which are considered to play important roles 

in fungal peneration and pathogenesis, were also significantly reduced by infection of C. 

parasitica with a hypovirus (Gao et al., 1996; Gao and Shain, 1995). 

Although a number of genes related to fungal pathogenesis have been 

characterized following infection by hypoviruses, many genes or proteins probably act in 

concert to cause hypovirulence traits, because fungal pathogenesis is a complex process. 

It has been proposed that hypovirus infection could perturb regulatory mechanisms in 

fungi, such as signal transduction pathways (Dawe and Nuss, 2001; Larson et al., 1992). 

The G proteins are known to be involved in signal transduction pathways and consist of 

three units (a, p, and y). The Ga  subunit cloned from C. parasitica and named cpg-1, 



showed 98% homology to that of Neurospora crassa (Zhang et al., 1998; Gao and Nuss, 

1996). Hypovirus infection resulted in the down-regulation of cpg-1, indicating an 

association between virus infection and signal transduction pathways in C. parasitica. 

The second G protein subunit gene, cpg-2, was also cloned from C. parasitica (Gao and 

Nuss, 1996). However, deletion of this gene from C. parasitica showed a mild 

phenotype compared to the deletion of cpg-1, suggesting that each G protein subunit had 

different effects on the development of hypovirulence traits. Although the detailed 

mechanisms by which hypoviruses interact with or regulate the signal transduction 

pathways of host fungi are not clearly understood, it is possible that the G proteins could 

be responsible for transmitting the virus signals to initiate complex hypovirulence 

phenotypic traits. 

4.1.5. Hypovirus as potential biological control agent 

Extensive studies on hypovirulence were first conducted to develop the potential 

of biological control agents. Several reports showed that the hypovirus-mediated 

hypovirulence could effectively contribute to control of chestnut blight disease in Europe 

(Anagnostakis, 1987). However, it has been observed that the efficacy of hypovirulence 

control strategies for chestnut blight disease in North America was much lower than in 

Europe (Dawe and Nuss, 2001). One of the possible reasons for this lower efficacy could 

be the presence of diverse vegetative compatibility groups (VCG)s in C. parasitica in 

North America (Anagnostakis, 1977; Anagnostakis and Day, 1979). Fungal isolates 

which belong to different VCGs cannot form hyphal anastomosis and virus transmission 

is restricted. Indeed, field isolates surveyed for their VCGs revealed that the VCGs in C. 



parasitica populations in North America were more diverse relative to that found in 

Europe (Anagnostakis, 1988). Another way to spread hypovirus is through either asexual 

or sexual spores. However, hypovirus transmission through ascospores was restricted in 

C. parasitica. Also, the efficiency of hypovirus transmission through conidia was quite 

variable, ranging from 10 to 90%, depending on the fungal and hypovirus genome (Shain 

and Miller, 1992; Dawe and Nuss, 2001). 

In this regard, the transgenic hypovirulent strains which contain the hypovirus 

genome in their chromosomes have some advantages in hypovirus transmission. Because 

the hypovirus genome has been integrated into the fungal chromosome, the viral genetic 

information could be inherited through ascospore progeny (Anagnostakis et al., 1998). 

Also, because of the allelic rearrangement of VCG loci, the progenies derived from 

hypovirus transgenic isolates could have diverse VCGs, which is beneficial for hypovirus 

transmission in nature. The possible use of hypoviruses as biological control agents was 

also examined in other fungal species, such as Cryphonectria radicalis, Cryphonectria 

havenesis, Cryphonectria cubensis and Endothia gyrosa (Chen et al., 1996a). Hypovirus 

infection using spheroplasts with synthetic transcripts resulted in various phenotypic 

changes, implying that the hypovirus could induce similar hypoviurlence traits in 

different fungal species. Further extension of hypovirus (CHV 1 -EP7 13) infection to 

other fungal species, such as Valsa ceratosperma and Phomposis sp., were also reported, 

implying the hypovirus in C. parasitica could possibly be used as biological control 

agents of other plant pathogenic fungi (Sasaki et al., 2002). 



5.1 Totivirus in Helminthosporium victoriae 

5.1.1 Introduction 

Helminthosporium victoriae was first described in 1946 and caused Victoria 

blight disease on oats (Meehan and Murphy, 1946). This fungus can produce a host- 

specific toxin called "victorin" and the amounts of victorin were correlated with fungal 

virulence (Wolpert et al., 1985). Isolates of H. victoriae with low virulence were found 

to produce low amounts of victorin (Ghabrial, 1986). The culture morphology of isolates 

with reduced virulence included retarded growth rate, and aerial mycelial collapse was 

also observed. These characteristics were transmitted through hyphal anastomosis. The 

presence of dsRNA in these isolates was observed and a correlation between dsRNA and 

diseased phenotype was reported (Ghabrial, 1980; Ghabrial, 1986). 

The presence of dsRNAs in H. victoriae is particularly interesting not only 

because of the hypovirulence caused by these dsRNAs, but also because of the presence 

of two viruses in infected isolates. Based on their sedimentation values, these two viruses 

were named Helminthosporium victoriae 190s virus (Hv190SV) and Hv145S virus 

(Sanderlin and Ghabrial, 1978). Hypovirulence appeared to be correlated with the 

concentration of Hv145S virus, rather than of Hv190S virus. However, no fungal isolates 

which contained only Hv145S virus alone were found, suggesting that the Hv145S virus 

depended on Hv190S virus for replication and/or encapsidation (Sanderlin and Ghabrial, 

1978). Soldevila et al. (2000) reported that the Hv145S encoded its own RdRp gene, 

indicating it can replicate by itself without the help of the Hv19OS virus. However, 

further studies related to encapsidation with or without Hv190S are needed. 



5.1.2. Helminthosporium victoriae 190s (Hv19OS) virus 

Helminthosporium victoriae 190s (Hv19OS) has isometric virus particles, 40 nm 

in diameter, and the total nucleotide sequence is 5,178 bp in size (Huang and Ghabrial, 

1996). The complete nucleotide sequence has been determined and the virus is classified 

in the family Totiviridae, which can infect either fungi or parasitic protozoa (Ghabrial, 

1998). Two large overlapping open reading frames (ORF 1 and ORF 2) were found and 

they encoded a coat protein (CP) and an RNA-dependent RNA polymerase (RdRp) 

protein, respectively. The junction between these two open reading frames has a 5'-  

AUGA-3' sequence which overlaps with the stop codon (UGA) for the upstream CP ORF 

and the translational start codon (AUG) of downstream RdRp ORF (Huang and Ghabrial, 

1996; Huang et al., 1997). 

Genome expression strategies of the Hv190S virus appeared to be quite different 

from that in other totiviruses, such as ScV-L-A in yeast and LRVl in protozoa. Other 

totiviruses expressed their RDRP protein as a fusion protein (CP-RdRp) by fusing ORFl 

and 2 via a ribosomal translational frameshifting (Icho and Wickner, 1989). However, 

Hv190S virus seemed to translate both CP and RdRp proteins by using an internal 

initiation mechanism (Soldevila and Ghabrial, 2000). Similar expression strategies of 

Hv190S virus were predicted in two other totiviruses (SsRVl and SsRV2), which can 

infect the filamentous fungus Sphaeropsis sapinea (Preisig et al., 1998). The observation 

that totiviruses infecting filamentous fimgi could be different in terms of expression of 

RdRps compared to the totivirus infecting either yeast or parasitic protozoa could have 

important implications in understanding the interactions between totiviruses and fungal 

hosts during their evolution. 



5.1.3 Helminthosporium victoriae 145s (Hv145S) virus 

Four dsRNAs were associated with Hv145S virus and their sizes were 2.7,2.9, 

3.1 and 3.6 kbp, respectively (Sanderlin and Ghabrial, 1978). Northern blot hybridization 

using cDNA clones of Hv145S virus revealed that there was no detectable homology 

between Hv145S and Hv190S viruses (Soldevila et al., 2000; Soldevila and Ghabrial, 

2000). In addition, the four dsRNA fragments in Hv145S virus each contained unique 

nucleotide sequences. Highly conserved sequences at their 5'- and 3'-ends were 

observed, implying that all four dsRNAs may utilize the same RdRp protein for their 

replication (Soldevila et al., 2000). 

Sequence analyses of these Hv145S viruses revealed some sequence homology to 

other chrysoviruses, which belong to the family Partitiviridae, and all of them contained 

only one large OW.  The amino acid sequence of dsRNA I showed the highly conserved 

motifs of RdRps of RNA viruses, while the remaining dsRNAs 2,3, and 4 did not show 

any statistically significant sequence similarity to known viruses. However, dsRNA 2 

contained a coding region for a potential coat protein, which is a characteristic of the 

family Partitiviridae (Ghabrial et al., 1995). 

5.1.4 Interactions between dsRNA and host fungi 

Because of their limited genome size, it is not surprising that viruses use host 

fungal proteins for their own use. Recently, one cellular protein called HV-p68 was 

found to copurify with the viral dsRNAs in H victoriae (Soldevila et al., 2000). Sucrose 

density gradient centrifugation with purified virus preparations from diseased isolates of 

H victoriae revealed several differently sedimenting species, including virion 



components (HV 190s- 1 and HV 190s-2), and host protein HV-p68. Agarose gel 

electrophoresis of each sediment revealed that the HV-p68 fraction contained mainly 

145s dsRNAs. The complete sequence of HV-p68 revealed 70% identity to the alcohol 

oxidase protein in yeasts. Expression of the HV-p68 gene at the transcriptional level was 

elevated (1 0-20 fold) in diseased isolates and the protein product was also found to be 

overproduced when Western blot analysis was performed. Further experiments revealed 

that HV-p68 could bind both viral RNAs (190s and 145s dsRNAs), suggesting the 

presence of RNA-binding activity in HV-68 protein (Soldevila et al., 1998; Soldevila and 

Ghabrial, 200 1). 

It has been speculated that HV-p68 in H. victoriae could have functions similar to 

that of alcohol oxidase in yeast. In yeast, alcohol oxidase can convert alcohol to 

aldehyde, which is toxic to both yeasts and filamentous fungi. Accumulation of such 

toxic intermediates by overexpression of HV-p68 could lead to the various diseased 

phenotypes seen in H. victoriae. Also, it has been suggested that the HV-p68 in H. 

victoriae could involve the signal transduction pathways similar to that observed in C. 

parasitica; however, more detailed studies are required (Ghabrial et al., 2002). 

6.1. Mitoviruses in Ophiostoma novo-ulmi 

6.1.1 Introduction 

The plant pathogenic fungus Ophiostoma ulmi is an ascomycete and can cause 

Dutch elm disease (Laut et al., 1973; Karnosky, 1979). This fungus can be transmitted 

by elm bark beetles, infect the xylem of elm trees and produce wilt toxins called cerato- 

ulmins (CU), which result in the blockage of the xylem and death of trees (Lea and 



Brasier, 1983). The first serious loss of elm trees caused by this fungus occurred around 

19 10 in Northern Europe, and the pathogen spread rapidly world-wide to regions 

including North America and part of Asia (Brasier, 1 99 1 ; Karnesky, 1979). A new more 

aggressive species called 0. novo-ulmi, which can cause almost 100% mortality in 

mature elms, was discovered during the 1940s. Two races of 0. novo-ulmi, called the 

Eurasian (EAN) and North American (NAN) races, have been distinguished and appear 

to have different geographic origins, such as Ukraine or Romania for EAN race and 

North America for NAN race (Brasier, 199 1). 

The presence of dsRNAs in Ophiostoma was first observed in 1980 (Brasier, 

1983). Both 0 .  ulmi and 0 .  novo-ulmi appeared to contain multiple dsRNA fragments. 

However, the frequency of dsRNAs was much higher in 0. ulmi than in 0. novo-ulmi 

(Brasier, 1986). At first, the correlation between the presence of dsRNAs and their 

effects on the fungal host was undetermined, because of the multiplicity of dsRNA 

fragments and large differences in fungal genetic backgrounds. However, more detailed 

studies on the dsRNAs revealed that some specific dsRNA fragments present in both 0 .  

ulmi and 0. novo-ulmi could cause diseased phenotypic traits in the fungal host (Brasier, 

1986). 

The diseased phenotypic trait was first described in an 0 .  novo-ulmi NAN race 

isolate from France and named as a disease-factor (d-factor) in 1983 (Brasier, 1983; 

Sutherland and Brasier, 1995). Many Ophiostoma isolates infected with the d-factor 

were obtained from natural diseased trees and showed quite variable phenotypes. Based 

on the order of discovery, different d-factors have been numbered, such as dl-, d2-, d3- 

and dl2. Hyphal anastomosis between diseased and healthy isolates resulted in the 



development of "d-reaction" in the healthy isolate, which showed slower growth rate and 

distinct culture morphology (Brasier, 1984; Brasier, 1986). Experiments with isolates 

containing marker genes revealed that the d-factor could be caused by extranuclear 

elements (Brasier, 1984). 

6.1.2. &-factors associated with dsRNA fragments 

Examination of d2-factor-containing isolates revealed the presence of 10 dsRNA 

fragments by polyacrylamide gel electrophoresis (Rogers et al., 1986). The fragments 

were various sizes, ranging from 0.33 kb (RNA-10) to 3.49 kb (RNA-1) (Rogers et al., 

1986). However, minor differences both in the sizes and numbers of dsRNA fragments 

were observed among d2 factor isolates of 0. novo-ulmi. For example, L13d2 isolate 

contained all 10 dsRNA fragments except RNA-7. Also, further analysis using a high 

resolution PAGE system revealed two more dsRNA fragments, RNA-1 b and RNA-3b, in 

L8d2 isolate for a total of 12 dsRNA fragments in one isolate (Cole et al., 1998). 

Electron microscopy did not detect any virus-like particles in d2 factor isolates of 

0. novo-ulmi. However, the dsRNA fragments were co-purified with the mitochondria 

fraction, suggesting that these dsRNA fragments could localize in the mitochondria 

(Buck, 1986). Also, it has been shown that the diseased isolates of 0. novo-ulmi had 

reduced cytochrome oxidase levels compared to the healthy isolates, indicating the d 

factors could affect mitochondria1 function (Rogers et al., 1988). 

Transmission studies showed that all dsRNA fragments could be transferred into 

dsRNA-free isolates by hyphal anastomosis if both isolates belonged to the same 

vegetative compatibility group (Brasier, 1984; Rogers et al., 1986). Transfer rate of 



dsRNA fragments through conidia occurred at a high frequency, up to 100%; however, 

some of the progeny derived from single conidia showed the loss of several dsRNA 

fragments (Rogers et al., 1986). A few isolates derived from single conidia also showed 

reversion from a diseased phenotype to a healthy phenotype and these changes were 

correlated with the loss of some dsRNA fragments, such as RNA-4, RNA-7 and RNA- 10, 

implying that these dsRNAs could possibly be responsible for the diseased phenotype in 

0. novo-ulmi (Cole et al., 1998; Rogers et al., 1986). 

Sequence analysis of dsRNA fragments following the development of cDNA 

clones showed that RNA-4 consisted of 2,599 nucleotides and an O W ,  which may 

encode a 783 amino acid protein (Hong et al., 1999). This O W  had 11 UGA codons, 

which do not act as stop codons but encode for tryptophan in the mitochondria of most 

fungi (Hong et al., 1998; Hong et al., 1999). Also, the dsRNA sequence contained high 

ratios of A and U residues, which is a characteristics of mitochondria1 DNA genomes. 

The putative proteins in ORF 1 showed the conserved motifs present in the RdRp of RNA 

viruses (Hong et al., 1998; Hong et al., 1999). 

Sequence analysis of RNA-7 showed it to be 1,057 nucleotides long and could be 

derived from RNA-4 with three internal deletions (Hong et al., 1999). Because of large 

deletions in the RdRp regions of RNA-7, RNA-7 replication could be dependent on 

RNA-4. Both 5' and 3'- ends of RNA-7 showed sequence identity to those regions of 

RNA-4, indicating that these regions could act as recognition sites for the RdRp encoded 

RNA-4. Other dsRNA fragments, such as RNA-3a (2,6 17 bp), RNA-5 (2,474 bp) and 

RNA-6 (2,343 bp), were also characterized by developing cDNA clones (Hong et al., 

1998; Hong et al., 1999). Each of these dsRNAs contained one large OW, which could 



encode RdRp proteins of 71 8 amino acids, 729 amino acids and 695 amino acids, 

respectively. These O W s  also showed mitochondria1 genome characteristics, similar to 

those found in RNA-4. 

Comparison of nucleotide sequences among the dsRNAs revealed a range of 

identities both at the nucleotide and amino acids levels. Nucleotide identities among 

RNAs 3a, 4, 5, and 6 ranged from 42.9% to 54.8% and amino acid identities of ORFs 

among them ranged from 20.3% to 33.3% (Hong et al., 1998; Hong et al., 1999). 

Because of these large differences in RdRp regions among dsRNA fragments, it is more 

likely that each dsRNA fragment replicated independently in one isolate of 0. novo-ulmi. 

Also, a dsRNA transfer study through conidia or ascospores showed that dsRNA 1 a, 1 b, 

2 and 3a could replicate independently, because it was found that some progenies, 

derived either from single conidia or ascospores, contained only one dsRNA fragment 

such as RNA-2 (Rogers et al., 1986). Similar single conidia progenies which had only 

one dsRNA fragment or had lost a specific dsRNA fragment were observed, suggesting 

these large dsRNAs 1 a, 1 b, 2 and 3a could replicate independently (Cole et al., 1998). In 

contrast to the independent replication of the large dsRNA fragments, small dsRNAs 

such as RNA-7 to 10, could be derived from the large dsRNA fragments and be too small 

to encode their own RdRps, suggesting that they may need the large dsRNA fragment for 

their replication. Indeed, a dsRNA transfer study through single conidia showed that the 

failure of the transfer of dsRNA-1 b via single conidia resulted in the loss of the smaller 

dsRNA-8, suggesting that the dsRNA-8 needed the dsRNA-1 b for replication (Rogers et 

al., 1986). Although it is not clearly known how these independent dsRNA fragments 

could be present together in one mitochondrion, the dsRNA transfer study through 



conidia showed that these dsRNAs could be present in one cell because a high number of 

progeny derived from single conidia contained all these dsRNAs (Rogers et al., 1986; 

Cole et al., 1998). 

6.1.3. Problems in use of dsRNA fragments as biological control agents 

The relationship between the presence of dsRNAs and various d-factors and 

symptoms in 0. novo-ulmi led to interest in the use of these dsRNAs as potential 

biological control agents for Dutch elm disease. However, there are several problems to 

be overcome. In field experiments, the number of conidia required for the development 

of successful infection of elm trees is quite different between d-factors in infected and 

healthy isolates (Webber, 1987; Webber 1993). Infection of the highly susceptible tree 

host, U. procera, required 50,000 conidia of a d2-infected isolate, but only 500 to 1,000 

conidia of a healthy isolate. Therefore, inoculation of sufficient numbers of conidia of a 

diseased fungal isolate to compete with a healthy isolate in nature could not be easily 

obtained. In addition to this problem, other factors, such as the relative resistance of the 

tree host, various dsRNA effects on the fungus, and complex environmental conditions, 

need to be considered during evaluation of dsRNAs as a biological control agent for this 

pathogen (Sutherland and Brasier, 1997; Webber, 1993). 

These dsRNAs would be better biological control agents if d-factor associated 

dsRNAs could be easily transferred from diseased to healthy isolates and infect a much 

larger population of 0. novo-ulmi. However, it has been suggested that vegetative 

compatibility reactions could greatly restrict dsRNA transfers among the 0. novo-ulmi 

population, depending on the severity of the incompatibility reaction (Webber, 1993). 



High transmission of dsRNA fragments through conidia has been observed; however, a 

proportion of the conidia showed a loss of some dsRNA fragments (Rogers et al., 1986). 

Moreover, dsRNA transmission through ascospores of 0. novo-ulmi is quite restricted. 

Therefore, more detailed work related to the d-factor associated dsRNAs and host fungus 

is needed before the use of these dsRNA fragments as biological control agents of Dutch 

elm disease is feasible. 

6.1.4. Presence of OnuMV3a in other fungi-Sclerotinia homoeocarpa 

The presence of dsRNA elements in Sclerotinia homoeocarpa, which is the causal 

agent of dollar spot disease of turfgrass, was observed and could cause hypovirulence 

traits such as retarded growth rate and abnormal culture morphology (Zhou and Boland, 

1997; Zhou and Boland, 1998). Two genetically distinct dsRNA fragments were detected 

in S. homoeocarpa; however, only the L-dsRNA (2.6 kb) seemed to be correlated with 

the hypovirulence traits (Deng and Boland, 2001). Molecular characterization of the L- 

dsRNA was recently reported by developing full-length cDNA clones (Deng and Boland, 

2003). 

The L-dsRNA was 2,632 bp in size and showed one large open reading frame 

(OW) when the mitochondria1 genetic code was used. This O W  might encode a protein 

of 720 amino acids containing conserved motifs of RdRp regions of other RNA viruses. 

Ultrastructural analysis with TEM showed the presence of degenerated mitochondria in a 

hypovirulent isolate of S. homoeocarpa, and the L-dsRNA was co-purified with 

mitochondria, indicating that the L-dsRNA has similar characteristics to other known 

mitoviruses (Boland, 1992). 



Sequence analysis of L-dsRNA revealed interesting results, which were the high 

sequence identities at both the nucleotide (92.4%) and amino acid (95.1%) levels to the 0. 

novo-ulmi mitovirus 3a-Ld (OnuMV3a) in 0. novo-ulmi (Deng and Boland, 2003). Due 

to the high sequence identities, these two dsRNAs were considered to be conspecific, and 

the L-dsRNA in strain Shl2B of S. homoeocarpa was named 0. novo-ulmi mitovirus 3a- 

Shl2B (OnuMV3a-Shl2B). It is not clearly understood how these similar dsRNAs could 

be present in two taxonomically distinct fungi; however, because of the presence of high 

sequence identities between these two dsRNA fragments, it has been proposed that 

horizontal transmission of the dsRNA between these two different fungal groups may 

have occurred (Deng and Boland, 2003). 

7.1. Overview of the plant pathogenic fungus, Chalara elegans 

Chalara elegans NagRaj & Kendrick (syn. Thielaviopsis basicola (Berk. &Br.) 

Fen.) is a plant pathogenic fungus which causes black root rot disease on more than 100 

host plants (Nag Raj and Kendrick, 1975; Yarwood, 1981). This fungus has been widely 

distributed in many regions worldwide, including agricultural and non-cultivated soils. 

Although the optimum conditions for C. elegans vary depending on the host plant species 

(Lloyd and Lockwood, 1963; Mauk and Hine, 1988), this fungus generally grows best at 

temperatures between 20•‹C to 25OC and pHs from 5.5 to 6.5 (Punja, 1992). 

The pathogen initially infects the host plant roots through a wound site and results 

in the development of above-ground symptoms, including stunting, wilting and chlorosis 

of the foliage. In the early stages of disease, the infected roots are normally white; 

however, the root systems become black and water-soaked as the disease progresses. 



Two types of asexual spores have been found on infected roots and are produced in 

culture. One type is the phialospores (endoconidia), are hyaline, cylindrical in shape and 

are produced first in large numbers. The other type, chlamydospores, are darkly 

pigmented, thick-walled and responsible for the long term survival of C. elegans. 

Various strategies have been attempted to control the black root rot disease. In 

some cases, such as C. elegans on groundnut, resistant cultivars have been successfully 

developed and used for controlling the disease (Jones and Van Der Menve, 1986; Cilliers, 

2001). However, because little is known about the cultural practices which may reduce 

or limit the development of black root rot disease, in most cases preventative strategies, 

such as sanitation and avoidance of wounding have been used to control black root rot 

disease due to C. elegans (Daughtrey et al., 1995; Punja et al., 1992). 

A large number of field isolates of C. elegans were shown to contain dsRNAs, 

which were quite variable both in number and size (Bozarth and Goenaga, 1977; Bottacin 

et al., 1994). In some strains, only one dsRNA fragment near 2.8 kb in size was observed, 

while other strains contained multiple dsRNA fragments ranging from 2.5 kb to 12 kb in 

size, suggesting the possible presence of diverse mycovirus groups in C. elegans 

(Bottacin et al., 1994). Previous experiments revealed that certain dsRNA fragments 

could have some effect on the host fungus; however, the relationship between the dsRNA 

and C. elegans is not clearly understood (Bottacin et al., 1994; Punja, 1995). Research 

related to dsRNA characterization, including the development of cDNA clones, could 

help to elucidate the roles of dsRNAs in C. elegans. Sequence information and molecular 

characterization of dsRNAs in C. elegans should provide insight into the biology of 



dsRNA and its function in C, elegans, as has been demonstrated for other plant 

pathogenic fungi. 

8.1 Research objectives 

The objectives of this study were to: 1) develop cDNA clones from diverse 

dsRNA fragments in C. elegans isolates and determine the genetic relatedness among 

dsRNA fragments by Northern blot analysis; 2) compare cDNA sequence information to 

known virus groups to determine how many different dsRNA groups are present in C. 

elegans; 3) develop full-length cDNA clones of specific dsRNA fragments to 

characterize them at the molecular level; and 4) attempt to eliminate dsRNA fragments in 

C. elegans strains using various methods and to use these dsRNA-cured strains to 

understand the relationship between the specific dsRNA fragment and the biology of C. 

elegans. 



CHAPTER 2 

OCCURRENCE OF GENETICALLY DIVERSE DOUBLE- 

STRANDED RNA ELEMENTS IN CHALARA ELEGANS 

(THZELA VIOPSZS BASZCOLA) a 

2.1. Introduction 

Chalara elegans Nag Raj and Kendrick (syn. Thielaviopsis basicola (Berk. and 

Br.) Fen.) is a soilborne dematiaceous hyphomycete that causes black root rot disease on 

numerous plant species, which include several economically important crops (Nag Raj 

and Kendrick, 1975; Punja et al., 1992; Yarwood, 1981). A high proportion (up to 80%) 

of field isolates of C. elegans were reported to contain dsRNA fragments ranging in size 

from 2.6 kb to 12 kb, and some isolates contained eight or more fragments (Bottacin et 

al., 1994; Bozarth and Goenaga, 1977). The extent of genetic diversity among these 

dsRNA elements is unknown. Such information would enhance the understanding of 

how these elements may have originated and been disseminated in the fungal population 

as well as providing insights into their potential effects on the biology and pathogenicity 

of C. elegans. Specific dsRNA fragments were previously shown to alter pathogenicity, 

spore production, growth rate, pigmentation, and survival of some strains of C. elegans 

when they were eliminated from the specific strain (Bottacin et al., 1994; Punja 1995). 

a Prepared as a manuscript submitted to Phytopathology. 



The degree of genetic diversity among dsRNA fragments in fungi is generally 

determined by a comparison of molecular weight sizes on agarose gels, Northern blot 

hybridization, and sequence characterization ( A h  and Lee, 2001 ; Buck, 1986; Dawe and 

Nuss, 200 1). Currently, there are at least four described virus families in fungi, including 

Partitiviridae, Narnaviridae, Hypoviridae and Totiviridae (Ghabrial et al., 1995A; 

Ghabrial et al., 1995B; Hillman et al., 1995; Hong et al., 1999; Wickner et al., 2000). In 

Cryphonectria parasitica and Rhizoctonia solani, a wide range of nucleotide sequence 

diversity was reported among dsRNA fragments within isolates (Anagnostakis, 1982; 

Bharathan and Tavantzis, 1990; Chen et al., 1996). The presence of multiple infections 

with several related or unrelated dsRNA fragments in one isolate can also lead to 

complex relationships among dsRNA fragments (Nuss and Koltin, 1990; Rong et al., 

2001). For example, up to 12 unencapsidated dsRNAs, ranging in size from 0.33 to 3.5 

kb (all belonging to Narnaviridae), were observed in one isolate of the Dutch elm disease 

fungus, Ophiostoma novo-ulmi (Hong et al., 1999). Co-infection with two distinct 

dsRNAs (belonging to Totiviridae) was observed in one isolate of Sphaeropsis sapinea 

(Preisig et al., 1998). The presence of defective dsRNA and/or satellite dsRNA, which 

can induce significant changes in fungal phenotype, was reported in C. parasitica 

(belonging to Hypoviridae) and Saccharomyces cerevisiae (belonging to Totiviridae) 

(Hillman et al., 2000; Wickner, 1996). All these reports indicate that complex dsRNA 

elements can occur within a single fungal species. 

The objective of this study was to determine the extent of genetic diversity among 

dsRNA fragments in C. elegans. We developed cDNA clones from selected dsRNA 

fragments in six representative strains of C. elegans using random and specific primers, 



and assessed the genetic relatedness among dsRNA fragments in 2 1 strains through 

Northern blot hybridization. Lastly, we obtained sequence information for all cDNA 

clones and compared this to previously published virus groups. 

2.2. Materials and Methods 

2.2.1. Fungal isolates. 

The strains of C. elegans included in this study are described in Table 1. All 

cultures were maintained on V8 agar (VSA, containing V8 juice, 150 ml; Bacto agar, 15 

g; distilled water, 850 ml; ampicillin, 100 mg) at ambient room temperature (2 1-23•‹C). 

Actively-growing cultures were initiated by transferring an 8-mm diameter mycelial plug 

to a fresh V8A plate and incubating at room temperature for 4-5 days prior to conducting 

the analysis described below. 

2.2.2. Extraction of dsRNA 

Each strain was transferred to 100 ml of potato dextrose broth (PDB, Difco 

Laboratories, Detroit, MI), and incubated at room temperature for 10- 14 days. Mycelium 

was harvested through MiraclothR using a vacuum, blotted dry between paper towels, 

and then ground with a mortar and pestle in 2X STE (0.1 M Tris-HC1, 0.2 M NaCl and 2 

mM EDTA, pH 6.8) and transferred to a 15 ml Falcon tube. The volume was adjusted to 

5 ml with 2X STE and 500 p1 of 10% SDS was added. Each sample was incubated at 

37•‹C for 30 min with occasional hand-mixing. An equal volume of phenol: chloroform: 

isoamylalcohol(25: 24: 1) was added, the mixture was incubated at room temperature for 

5 min and centrifuged at 8,000 g for 10 min. The supernatant was transferred to a new 
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Falcon tube, an equal volume of chloroform: isoamylalcohol(24: 1) was added and 

mixture incubated at room temperature for 5 min, then centrifuged at 8,000 g for 10 min. 

The aqueous phase was transferred to a new 15 ml Falcon tube and precipitated with an 

equal volume of isopropanol followed by centrifugation at 8,000 g for 15 min. The 

resulting pellet was washed with 70% ethanol and air-dried by inverting the tubes. The 

pellet was resuspended in 100 p1 TE buffer, treated with RQl DNase (Promega, 

Madison, WI) by incubating at 37OC for 30 min, followed by RNase A treatment by 

adding 30 p1 of 5 M NaCl and 1 pl of 5 mglml RNase A (USB, Cleveland, OH) at 37OC 

for 10 min. Total nucleic acids were further treated with phenol/ chloroform purification, 

precipitated with two volumes of 100% ethanol and 0.1 volume of 3 M NaOAc (pH 6.8) 

by incubating at -20•‹C for 1 hour, and washed with 70% ethanol (Sambrook et al., 1989). 

The pellet was resuspended in 4.25 ml of 1X STE and 750 p1 of 100% ethanol, and 

applied to a CF- 1 1 cellulose column prepared in a 5 ml syringe with glass wool plug. 

The column was washed with 15 ml of STE: EtOH (85%: 15%) mixture and the dsRNA 

sample was eluted by adding 4 ml of 1X STE (Morris and Dodds, 1979). The dsRNA 

was precipitated with ethanol, resuspended with 30 p1 of diethylpyrocarbonate (DEPC) 

treated water, and used for low-melting agarose gel purification. 

2.2.3. Low-melting agarose gel purlJication of dsRNA fragments 

The dsRNA samples prepared by CF-11 column chromatography were subjected to 

electrophoresis at 80 V for 30 rnin in a 1% low melting agarose gel and the dsRNA 

fragments were examined under UV light. The predominant dsRNA bands (2.8, 5.3 and 

12 kb in size, see Fig. 1) were cut out with a scalpel and the gel-blocks containing the 



described dsRNA bands were resuspended in 450 p1 of 1X STE and incubated at 65OC 

until the gel was completely melted. The sample was treated twice with 500 pl of phenol 

with vortexing for 1 min and centrifuged at 10,000 rpm for 10 min at room temperature. 

The aqueous layer was treated with 500 p1 of chloroform: isoamylalcohol(24: I), 

centrifuged at 18,000 g for 10 min, precipitated with ethanol by incubating at -80•‹C for 1 

hr, centrifuged at 18,000 g for 30 min, and washed with 70% ethanol. The dsRNA pellet 

was dried under speed vacuum for 10 min, resuspended in 20 pl DEPC-treated water and 

used for cDNA production and cloning. 

2.2.4. cDNA production and cloning 

A 2.5 pl sample of dsRNA was mixed with 1 pl of random hexanucleotides (3 

pglpl) (Invitrogen, Carlsbad, CA), boiled for 10 min and immersed in ice. First-strand 

cDNA was synthesized using 3.5 pl of heat-denatured dsRNA with random primer 

mixture, 1 pl of 100 mM DTT (Gibco BRL, Grand Island, NY), 2 pl of 5X first strand 

synthesis buffer, 0.5 p1 of each 10 mM dNTP (Amersham, NJ), 0.25 pl of RNase 

inhibitor (1 0 unitjpl) (Invitrogen, Carlsbad, CA), 0.5 p1 of Superscript I1 reverse 

transcriptase (200 dp l )  (Gibco BRL, Grand Island, NY) and 2.25 p1 of DEPC-treated 

water. The mixture was incubated at 42OC for 45 min and denatured at 99OC for 5 min. 

The second-strand cDNA was synthesized in PCR reactions containing the following 

components: 10 pl of first-strand cDNA synthesis, 1 p1 of each 10 mM dNTPs, 1.5 p1 of 

50 mM MgC1, 1 pl of random primer (3 pglpl), 0.5 pl of Taq polymerase (5 unitjpl), 0.5 

pl of Taq extender (5 unitlpl), 5 pl of 10X Taq extender buffer, and 30.5 pl of DEPC- 

treated water. Amplification conditions were one cycle at 94•‹C for 5 min, 35 cycles each 



at 94•‹C for 1 min, 55•‹C for 45 sec, 72•‹C for 2 min, and one cycle at 72•‹C for 10 min for 

final extension. Amplified RT-PCR products were subjected to electrophoresis at 60 V 

for 1 hr in a 1% agarose gel and visualized under UV light. The distinct DNA bands 

were purified using Qiaquick gel extraction kit (Qiagen, GmbH, Germany), and cloned 

using the TOP0 vector kit (Invitrogen, Carlsbad, CA) following the manufacturer's 

protocol. 

2.2.5. RT-PCR with dsRNA speciJic primers 

Specific primers were designed based on sequence information derived from 

cDNA clones of dsRNA fragments in strains BK18, CKP, and NC 1527 (Table 2). As a 

positive control, RT-PCR was performed with total nucleic acids extracted from strain 

CKP using various combinations of these forward and reverse primer sets. Also, these 

dsRNA-specific primer sets were used to either extend or generate more cDNA fragments 

from dsRNAs in several C. elegans strains with or without combinations of random 

primer. 

2.2.6. DNA sequencing 

Plasmids containing inserts were selected and sent to the Nucleic Acids Protein 

Service (NAPS) unit at the University of British Columbia (Vancouver, BC) for bi- 

directional sequencing using M13 reverse and forward primers. Sequences of cDNA 

inserts obtained were then compared to known fungal virus groups using the BLAST 

program (htt~:llwww.ncbi.nlm.nih.nov/ BLAST/) and also used to align partial cDNA 

fragments with each other. 



2.2.7. Northern blot hybridization 

DsRNA was extracted from the 2 1 strains listed in Table 1, purified using CF 1 1 

as described above, loaded on a 0.7% agarose gel, and electrophoresed at 60 V for 3 hi- in 

0.5 X TBE buffer. The gel was treated with 0.2 N HC1 for 10 min, denatured with 50 

mM NaOH and 1.5 M NaCl for 20 min, and neutralized with 1 M Tris and 1.5 M NaCl 

for 20 min. The dsRNA was transferred by capillary action to a nylon membrane (Roche 

Molecular Biochemicals, Switzerland) with 10X SSC (Sodium ChlorideISodium Citrate) 

overnight and cross-linked to the membrane by UV irradiation (Stratagene Crosslinker). 

Hybridization with dsRNA-specific cDNA probes was performed using the non- 

radioactive DIG system according to the manufacturer's protocol (Roche Molecular 

Biochemicals, Switzerland). 

2.3. Results 

2.3.1. dsRNA banding patterns 

The dsRNA banding patterns in 15 strains of C. elegans are shown in Fig. 1 and 

the approximate molecular weight sizes are summarized in Table 1. All strains shown in 

Fig. 1 contain multiple fragments, ranging in size from 2.0 kb to 12 kb. The remaining 

six strains not shown in Fig. 1 contained only a single 2.8 kb dsRNA fragment (Table 1). 

2.3.2. Development of cDNA clones 

Specific dsRNA fragments (2.8 and 5.3 kb) with high intensity fluorescence on agarose 

gels were selected from strains WASH and CKP, respectively, of C. elegans to represent 
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the two predominant sizes present in most strains. RT-PCR amplification using random 

primers generated multiple bands when viewed on agarose gels, varying in size from 100 

bp to almost 1 kb. Several large and distinct RT-PCR bands were selected, purified and 

cloned into TOP0 vector, yielding cDNA clones with inserts of various sizes ranging 

from 450 bp to 1 kb. To confirm that these clones were originally derived from the 

dsRNA fragments, Northern blot hybridization was performed prior to sequence analysis. 

One cDNA clone derived from strain CKP showed a strong signal with the original 5.3 

kb dsRNA fragment, but none of the cDNA clones derived from strain WASH showed 

any hybridization signals, suggesting these latter clones did not originate from the 2.8 kb 

dsRNA fragment (data not shown). 

RT-PCR with total nucleic acids extracted from strain CKP using dsRNA-derived 

primers designed from the partial 5.3 kb cDNA clone of this strain was successful. All 

primer sets amplified a single band and sizes were as predicted, indicating these primers 

were dsRNA-specific and RT-PCR could be used to generate or extend more cDNA 

fragments from dsRNAs in C. elegans (Fig. 2). However, all RT-PCR trials using 

dsRNA extracted from strains of C. elegans other than CKP were unsuccessful using 

these primers, indicating the potential existence of genetic dissimilarity between dsRNA 

fragments in these different C. elegans strains (data not shown). Additional RT-PCR 

reactions using either random primers only, or a mixture of random primers and dsRNA- 

derived primers, were performed with dsRNA extracted from additional C. elegans 

strains, including AK89-2, BK18,OR1, NC 1527, and WASH. These reactions generated 

more cDNA clones, which are described in Table 3. RT-PCR using primers BK18F1 and 



Fig. 2. Reverse transcription polymerase chain reaction (RT-PCR) using dsRNA specific 

primers derived from clone CIC from a 5.3 kb dsRNA fragment in strain CKP. A, 

Position of primers. Four primers were designated as F 1, F3, R1, and R3. Numbers and 

arrows indicate the position and orientation of each primer relative to clone C1 C. B, RT- 

PCR amplification products on a 1 % agarose gel. Lane 1 =F 1 and R1; lane 2=F3 and R3; 

lane 3=F1 and R3; lane 4=F3 and R l ;  lane 5=100 bp ladder. 



BK18R2, derived a partial cDNA clone of the 2.8 kb dsRNA fragment in strain BKl8, 

generated one more cDNA clone (WASH-3) from the 2.8 kb dsRNA fragment in 

WASH strain (data not shown). The size of the WASH-3 clone was about 300 

nucleotides long, corresponding to the predicted size based on sequence information. 

2.3.3. Northern blot hybridizations 

To estimate the relatedness among dsRNA fragments within a single strain of C. 

elegans, Northern blot hybridizations using all cDNA probes were first performed with 

the original six C. elegans strains from which the cDNA fragments were derived. Most 

of these strains (AK89-2, CKP, OR1, and NC1527) contained multiple dsRNA 

fragments, ranging in size from 2.5 kb to 12 kb (Fig. 1); however, two strains (BK18 and 

WASH) contained only one dsRNA fragment about 2.8 kb in size (Table 1). All cDNA 

clones hybridized to one specific dsRNA fragment in each strain without exception, 

indicating a lack of homology among dsRNA fragments within a single strain of C. 

elegans. This sequence diversity among dsRNA fragments within a single strain was also 

confirmed by analysis of two distinct clones (NC l527Al and NC 1 527B 1) derived from 

one strain, NC1527 (containing six fragments) (Fig. 3). These clones hybridized to a 5.3 

kb and 12 kb dsRNA fragment, respectively, with no cross hybridization observed to any 

of the other four dsRNA fragments present in this strain (Fig. 3). 

To examine the genetic relatedness among dsRNA fragments in additional C. 

elegans strains, dsRNAs were extracted from 15 strains and probed with all cDNA 

clones. The AK89-2C1 clone derived from the 5.3 kb dsRNA fragment in strain AK89-2 

hybridized to a similar-sized dsRNA fragment in all Arkansas strains, suggesting the 



Fig. 3. Hybridization of double-stranded (ds) RNAs in strain NC 1527 of C, eleguns with 

cDNA probe NC1527A1 (from a 5.3 kb fragment) and NC 1527B1 (from a 12 kb 

fragment). Lane 1 =1 kb DNA ladder. Lane 2=dsRNA banding pattern in strain NC 1527 

on a 0.7% agarose gel stained with ethidium bromide. Lanes 3 and 4=autoradiographs of 

Northern blots of dsRNAs shown in lane 2, probed with NC1527B1 (lane 3) and 

NC 1527A1 (lane 4), respectively. 



presence of sequence similarity among these fragments. No cross-hybridization was 

observed with any of the other lower molecular weight dsRNA fragments (Fig. 4). A 

similar result was observed with clones NC l527Al and NC l527B 1 derived from North 

Carolina strain NC1527. These clones hybridized to either the 5.3 kb or 12 kb dsRNAs 

in other North Carolina strains, respectively, but not to any of the other dsRNA fragments 

present (Fig. 4). 

Clone C l  C, derived from the 5.3 kb dsRNA fragment in strain CKP, hybridized to 

only the original 5.3 kb dsRNA fragment in this strain and not to any other dsRNAs 

(including a 5.3 kb fragment) in other C. elegans strains, indicating that this dsRNA 

fragment was unique (Fig. 4). In contrast, cDNA clone ORl(1 lCl) ,  derived from the 5.3 

kb fragment in Oregon strain OR1, cross-hybridized with a 5.3 kb dsRNA fragment in 

North Carolina C. elegans strains. All 5.3 kb dsRNA fragments in North Carolina strains 

showed a signal with the OR1 (1 1 Cl )  probe, indicating the presence of some sequence 

homology among these dsRNA fragments (Fig. 4). However, no cross-hybridization was 

observed using this probe to other different-sized dsRNA fragments in additional C. 

elegans strains (Fig. 4). 

Northern blot hybridization using cDNA clones BK18C3 and WASH-3 derived 

from a 2.8 kb fragment showed strong cross-hybridizations with all C. elegans strains 

which contained a single 2.8 kb dsRNA fragment, regardless of their geographic origin, 

suggesting that these similar-sized dsRNA fragments were closely related (Fig. 5). No 

cross-hybridization was observed with any of the other multiple dsRNA fragments in 

other C. elegans strains. 
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Fig. 5. Hybridization of BK18C3 probe to 2.8 kb double stranded (ds) RNAs in C. 

elegans strains. A) DsRIIA banding patterns of six C. elegans strains on a 0.7% agarose 

gel stained with ethidium bromide. B) Autoradiographs of Northern blots of dsRNAs 

shown in panel A probed with BK18C3. 



2.3.4. Sequence analysis of cDNA clones 

Sequence analysis was performed on the eight dsRNA-derived cDNA clones recovered in 

this study. The sequence information was used to align overlapping partial cDNA clones 

and to compare levels of sequence similarity with previously published virus groups 

using BLAST. The sequences of these clones have been deposited into GenBank, with 

accession numbers as follows: BK18C3 (AY556460), WASH-3 (AY556453), AK89-2C1 

(AY556454), C1C (AY556459), ORl(llC1) (AY556455), NC1527A1 (AY556456), 

NC1527B1 (AY556457) and NCl-1 (AY556458). The cDNA clones BK18C3 and 

WASH-3, derived from the 2.8 kb dsRNA fragment in strains BK18 or WASH, 

respectively, had 98% sequence identity at the nucleotide level, confirming the close 

genetic similarity predicted from the results of Northern hybridization analysis. BLAST 

searches with these two clones revealed some sequence similarity to the RdRp regions of 

viruses in the Family Narnaviridae (Table 3). The highest identity was 57% to the RdRp 

region of Ophiostoma novo-ulmi mitovirus 4-Ld. Sequence analysis of four more cDNA 

clones [AK89-2C 1, C 1 C, OR1 (1 1 C 1) and NC 1527A11, which all hybridized to 5.3 kb 

dsRNA fragments in Northern blots, showed homology to viruses in the family 

Totiviridae, indicating they likely belonged to this group (Table 3). However, depending 

on the cDNA clone, identities ranged from 23% to 43% to either the coat protein or RdRp 

regions of Totiviridae. Clones NC 1527B 1 and NC 1 - 1 derived from a 12 kb dsRNA 

fragment in strain NC 1527 overlapped with each other and established a continuous 2.5 

kb nucleotide sequence (data not shown). A BLAST search with this extended partial 

cDNA clone did not reveal significant homology to any of the previously described virus 

groups, indicating it might be a new virus. 
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2.4. Discussion 

In fungi, most viruses are known to be present as multiple fragments and the 

genetic relationships among them, even within a single strain, are quite variable (Buck, 

1984; Chu et al., 2002; Bharathan and Tavantzis, 1990; Kanematsu et al., 2004). In C. 

parasitica, Tartaglia et al. (1 986) reported that three dsRNA species were found in strain 

GH2. Further studies revealed that two of the dsRNA fragments shared some sequence 

homology at both 5' and 3' ends, but not with the third fragment (Tartaglia et al., 1986). 

Additional cloning and sequence analysis of these dsRNA fragments revealed that one 

dsRNA fragment was a satellite RNA, while another was a defective RNA derived from 

one dsRNA fragment by an internal deletion (Hillman et al., 2000). In addition to these 

defective interfering dsRNAs and satellite RNAs, mixed infections with two or more 

related or unrelated viruses have also been reported (Ghabrial, 1998; Nuss and Koltin, 

1990; Preisig et al., 1998). The presence of two unrelated viruses was observed in 

Helminthosporium victoriae, and these two viruses were classified as either Totiviridae or 

Chrysoviridae (Soldevila et al., 2000; Huang and Ghabrial, 1996). Also, Preisig et al. 

(1998) reported the occurrence of two distinct Totiviruses in an isolate of S. sapinea; the 

identities between these two viruses at the coat protein and RdRp levels were only 38% 

and 36%, respectively. 

The genetic relatedness among dsRNA fragments in C. elegans strains was first 

determined in this study by Northern blot hybridizations using several dsRNA-derived 

cDNA clones. Most of the clones were found to hybridize to similar-sized dsRNA 

fragments in other C. elegans strains only if they originated from similar geographic 

regions. This high degree of relatedness among similar-sized dsRNA fragments was not 



unexpected, since identical dsRNA banding patterns were observed on agarose gels in 

most C. elegans strains which originated from the same geographic region. In addition, 

Punja and Sun (1 999) previously demonstrated using random amplified polymorphic 

DNA (RAPD) analysis that strains of C. elegans from a similar geographic region were 

more closely related genetically than those strains which were derived from different 

geographic regions. Several studies have shown that the distribution of dsRNA 

hybridization groups was correlated with the geographic distribution of host fungi 

(Enebak et al., 1994; Peever et al., 1997). In C. parasitica, clones of CHV3-GH2 dsRNA 

derived from Michigan isolates hybridized to several other Michigan dsRNAs, but not to 

other dsRNAs found in isolates from Tennessee and West Virginia (Paul and Fulbright, 

1988). Also, clones of CHVl dsRNA in a C. parasitica strain derived from Europe 

hybridized only to dsRNAs from European isolates and not to any other North American 

isolates, except CHV2-NB58 (Enebak et al., 1994a; Enebak et al., 1994b; Hillman et al., 

1992). Although the genetic relatedness among dsRNAs in natural field populations of 

R. solani was considerably large, a higher genetic relatedness among dsRNAs was also 

observed in isolates from a common geographic region when compared to isolates of 

distant geographic origin (Bharathan and Tavantzis, 1990). 

There are some examples, however, which demonstrate that the genetic 

relatedness among dsRNA fragments is not limited to isolates of similar geographic 

origin. Two small dsRNA fragments (1 5 2 . 5  kb) present in Discula destructiva, the 

dogwood anthracnose fungus, shared sequence homology regardless of the geographic 

origin of isolates (Rong et al., 2001). Similar results were also found in C. parasitica and 

R. solani. The cDNA clones from SR2 dsRNA type of C. parasitica hybridized widely to 



those dsRNAs present in eastern North American isolates (Enebak et al., 1994b), while 

dsRNAs from a Japanese isolate of R, solani AG 3 hybridized to dsRNAs of some North 

American isolates (Bharathan and Tavantzis, 1990; Bharathan and Tavantizis, 1991). In 

our study, cross-hybridization of cDNA probes among strains of C. elegans from 

different geographic regions was rare and was only observed with the 2.8 kb dsRNA 

fragment. Clone BKl8C3 hybridized to the 2.8 kb dsRNA fragment in many C. elegans 

strains, regardless of the geographic origin of the strains, which included North America 

and Europe. However, no cross-hybridization was observed to other dsFWA fragments 

of different sizes, indicating that the 2.8 kb dsFWA fragment was unrelated to additional 

dsRNA fragments present in other isolates. Interestingly, this fragment was never found 

in association with any other dsFWA elements. With regard to the 5.3 kb dsFWA 

fragment, cross-hybridization was observed to a similar-sized dsFWA fragment present in 

North Carolina and Oregon strains, indicating some cross-homology between these 

dsFWA fragments despite their disparate geographic origins. No cross-hybridization was 

observed with any other different-sized dsFWA elements. 

Sequence analysis of the cDNA clones from the 2.8 kb and 5.3 kb dsFWA 

fragments obtained in this study suggested the presence of at least two virus groups in C. 

elegans. Most cDNA clones which hybridized to the 5.3 kb dsRNA fragment shared 

sequence homology to viruses in the Totiviridae, while the cDNA clones which 

hybridized to a 2.8 kb dsRNA fragment shared sequence homology to Narnaviridae. The 

occurrence of a Totivirus in C. elegans was not surprising since it is the one of the largest 

groups found in fungi (Nomura et al., 2003; Cheng et al., 2003; Ghabrial, 1998; Wickner 

et al., 2000). However, the presence of dsRNA with sequence similarity to the 



Narnaviridae family was unexpected because its occurrence is more restricted. Only a 

few fungi, including 0. novo-ulmi, C. parasitica, and S. cerevisiae, contain a mycovirus 

belonging to the family Narnaviridae (Hong et al., 1999; Polashock and Hillman, 1994; 

Wickner, et al., 2000). In addition to these virus groups, it is likely that additional related 

and/or unrelated viruses are present in C. elegans. Two cDNA clones (NC1527B1 and 

NC 1 - 1) derived from a North Carolina strain had no significant sequence homology to 

any of the previously published virus groups. These clones hybridized to only one 

dsRNA fragment (approximately 12 kb in size), which is larger in size compared with 

other viruses (Mitovirus and Totivirus) present in C. elegans, but similar in size to CHV1 

(Hypovirus) in C. parasitica. Sequence analysis of these clones showed a 19% identity at 

the amino acid level to the polyprotein regions of fava bean dsRNAs, which shared some 

homology to Potyviridae (data not shown). 

The extent of genetic variation within C. elegans populations was previously 

determined using RAPD analysis (Punja and Sun, 1999). It was proposed that host plant 

species might have an important role in exerting selection pressure on C. elegans 

populations. This may result in the evolution of distinct subpopulations, since many 

isolates derived from the same hosts were more similar to each other based on RAPD 

analysis, when compared with isolates derived from different hosts (Punja and Sun, 

1999). Such genetic differentiation of subpopulations in fungi is considered to be an 

important factor leading to genetic diversity of dsRNA fragments, since dsRNA 

transmission is dependent on the fungal host (Rogers et al., 1986; McCabe et al., 1999; 

Ihrmark et al., 2000; Cortesi et al., 2001). In this study, we observed that the extent of 

variation among partial cDNA clones from a 5.3 kb dsRNA fragment with sequence 



homology to the Totiviridae group was greater compared with the cDNA clones from a 

2.8 kb dsRNA fragment with sequence homology to the Narnaviridae family. 

Furthermore, the fungal strains containing the Totivirus dsRNA fragments were 

genetically more diverse compared to those isolates that harbored the Narnaviridae 

dsRNA fragments, based on RAPD marker analysis (Punja and Sun, 1999). Therefore, in 

light of the previously demonstrated high degree of genetic diversity among strains of C. 

elegans (Punja and Sun, 1999), a high degree of diversity among dsRNA fragments 

would be a predicted outcome, as was demonstrated in this study. In the absence of 

demonstrable hyphal anastomosis and exchange of cytoplasm among strains of C. 

elegans (author, unpublished data), the dsRNA elements in this pathogen should continue 

to remain distinct. Geographic isolation of strains may also preserve the uniqueness of 

dsRNA sequences. In contrast, however, the widespread occurrence and high genetic 

similarity among the 2.8 kb dsRNA fragments in C. elegans strains suggests that either 

horizontal transmission of this fragment may somehow have occurred or that this strain 

was widely disseminated. A high transmission rate of dsRNA through conidia (close to 

100%) can be demonstrated (author, unpublished data). These conidia (phialospores) are 

an important inoculum source to initiate disease and can survive in soil for extended 

periods and can potentially carry dsRNAs to new sites (Punja et al., 1992; Punja, 1995). 

The biological effects of the dsRNA elements in C. elegans appear to differ 

depending on the strain and specific fragment present (Bottacin et al., 1994; Punja, 1995). 

A distinct hypovirulence phenotype reported in fungi such as C. parasitica and D. 

ambigua (Dawe and Nuss, 2001; Rong et al., 2001) is absent in C. elegans. The loss of 

specific dsRNA fragments from C. elegans strains can result in enhanced growth but 



reduced sporulation, pigmentation and survival of the fungus (Punja 1995). The Northern 

hybridization data and the partial sequence information from this study provide evidence 

for considerable genetic diversity among dsRNA elements in C. elegans. Additional 

information, including the development of full-length cDNA clones of dsRNA elements, 

has confirmed the uniqueness of specific dsRNA elements in C. elegans (see chapters 3 

and 4). 



CHAPTER 3 

MOLECULAR AND BIOLOGICAL CHARACTERIZATION OF A 

MITOVIRUS IN CHALARA ELEGANS (THIELA WOPSIS 

BASICOLA)" 

3.1. Introduction 

The occurrence of double-stranded (ds) RNA elements has been described in 

many filamentous fungi (McCabe et al., 1999; Ghabrial, 1998); these dsRNAs can be 

associated with virus particles, and hence are termed mycoviruses (Ghabrial, 1998). 

These dsRNA elements do not have an extracellular phase during their life cycle and are 

dependent on the fungal host for their replication. Mycoviruses can be transmitted 

between strains of the same fungal species either through hyphal anastomosis (horizontal 

transmission) or via fungal propagules, e.g. conidia (vertical transmission) (Buck, 1986; 

Cortesi et al., 2001). Increasingly, dsRNA fragments in fungi are being sequenced and 

they have been classified into several families, including the Hypoviridae, Partitiviridae, 

Reoviridae and Totiviridae (Ghabrial et al., 1995a; Ghabrial et al., 1995b; Hillman et al., 

1995; Hillman et al., 2003). These families are distinguished by differences in virion 

structure, genome information and expression strategy (Ghabrial et al., 1995a; Ghabrial et 

al., 1995b; Hillman et al., 1995; Hillman et al., 2003). 

a Prepared as a manuscript submitted to Phytopathology. 



A number of previous studies have characterized the effects of dsRNA elements 

on the phenotype of the fungal host (Buck, 1984; Brasier, 1986; McCabe et al., 1999). In 

some cases, dsRNA presence resulted in dramatic changes to culture morphology and 

physiology of the fungal host (Anagnostakis and Day, 1979). In the chestnut blight 

fungus, Cryphonectria parasitica, dsRNA presence reduced growth rate and sporulation, 

enhanced yellow pigmentation, reduced laccase and cutinase production, and reduced 

virulence (induced hypovirulence) (Anagnostakis, 1982; Dawe and Nuss, 2000). In other 

cases, the dsRNA element was associated with enhanced virulence of the host fungus, as 

in Nectria radicicola ( A h  and Lee, 2001). Research has shown that the relationship 

between the presence of dsRNAs and host fungi is complex ( A h  and Lee, 2001; Chu et 

al., 2002; Ghabrial, 1980). In multi-fragmented dsRNA populations, only certain dsRNA 

fragments may induce symptoms in the fungal host (Jian et al., 1998; Soldevila and 

Ghabrial, 2001). In Rhizoctonia solani, the presence of a 6.4 kb dsRNA fragment was 

shown to enhance fungal virulence, while the addition of a 3.6 kb dsRNA fragment 

reduced the effects of the 6.4 kb fragment (Jim et al., 1998). Understanding the role of 

dsRNAs in fungal hosts is important not only for their potential use as biological agents 

to control fungal pathogens through hypovirulence, but also to enhance the fundamental 

understanding of dsRNA-fungal host interactions (McCabe et al., 1999; Tavantzis, 2001). 

Chalara elegans NagRaj and Kendrick (syn. Thielaviopsis basicola (Berk. & Br.) 

Ferr.), a filamentous fungus that causes black root rot disease on higher plants, is a soil- 

borne hyphomycete and a widespread facultative parasite on numerous plant species 

worldwide (Punja, 1995; Yarwood, 198 1). Bozarth and Goenaga (1 977) first reported the 

presence of dsRNAs in C. elegans and some studies have further characterized these 



dsRNA elements (Bottacin et al., 1994; Punja, 1995). Recently, Park et al. (2004) 

reported a high degree of genetic diversity among dsRNA elements in a number of C. 

elegans strains. However, a detailed molecular characterization of the dsRNA elements 

in C. elegans has not been achieved. 

The objectives of this study were to: 1) develop and characterize a full-length 

cDNA clone from a 2.8 kb dsRNA fragment in C. elegans and compare its sequence to 

known virus groups; 2) attempt to cure wild-type strains of this dsRNA element and 

compare the cultural characteristics, virulence, and enzymatic activities 

(polyphenoloxidase, laccase, esterase, and tyrosinase) between wild-type and cured 

strains. 

3.2. Materials and Methods 

3.2.1. Fungal growth and dsRNA extraction 

Strain BK18 of C. elegans was originally isolated from cotton soil in King's 

County, CA (provided by B. Holtz) and was used in this study. This strain harbored a 2.8 

kb dsRNA fragment (Bottacin et al., 1994). Growth conditions and extraction of total 

nucleic acids were as described in Chapter 2. 

3.2.2. cDNA development and sequence analysis 

The dsRNA was extracted through a CF-11 column as described by Morris and 

Dodds (1979), treated with RNase A (USB, Cleveland, OH) in 0.8 M NaCl at 37OC for 

10 min and RQl, RNase-free DNase (Promega, Madison, WI) at 37•‹C for 30 min and 

further purified using a low-melting agarose gel. Based on the sequence information 



from a partial cDNA clone (BK18C3), which was previously developed by using random 

primers (Park et al., 2003), several specific primers were designed and used in RT-PCR 

to develop a full-length cDNA. The gel-purified dsRNA fragment was denatured at 99OC 

for 10 min and reverse transcribed using 1 p1 of random primers (Invitrogen, Carlsbad, 

CA) with Superscript I1 reverse transcriptase (Gibco BRL, Grand Island, NY) according 

to the manufacturer's protocol. PCR was performed with the first-strand cDNA using 

Taq DNA polymerase (Invitrogen, Carlsbad, CA) and Taq extender (Stratagene, La Jolla, 

CA). PCR amplification was carried out using 35 cycles for 1 min at 94OC, 45 sec at 

55•‹C and 2 min at 72OC, and terminated by a 10 min elongation at 72OC. Amplified RT- 

PCR products were analyzed by running the samples in a 1% agarose gel, and 

purification of the specific fragments was done using the gel extraction kit from Qiagen 

(GmbH, Germany) according to their protocol. The cDNA fragments were ligated into 

the TOPO cloning vector, and transformed using the TOPO one-shot kit (Invitrogen, 

Carlsbad, CA). Several recombinants having an insert of the expected size were selected 

by EcoRI restriction enzyme analyses and purified with the QIAgen plasmid kit (GmbH, 

Germany). Sequencing was conducted at the University of British Columbia, NAPS unit. 

Nucleotide sequences of the insert in recombinant plasmids were determined using the 

MI 3 forward and -2 1 M 13 primers set. 

To obtain cDNA clones encompassing both ends of the 2.8 kb dsRNA fragment, 

the rapid amplification of cDNA ends (RACE) kit (Roche, Indianapolis, IN) was used 

according to the manufacturer's protocol. Several dsRNA specific primers for both 5 ' -  

and 3'- ends were designed and used for RT-PCR (Table 4). RT-PCR products of 5'13' 



TABLE 4. Primer sequences used to develop cDNA of 2.8 kb dsRNA in C. elegans 

Primer Sequence (5' to 3') Length'(nt) 
BKl8F1 CCAAAACAATGGCCTAGTGG 2 0 

BK18F2 TGCGTGAGAAGAGAATAAGGAA 22 
BK18R1 CTGGGAATCTATCAGTGGCTG 2 1 

BK18R2 CAGTTCTCTCCAAAACTAGGATCTG 2 5 

5'- 1 GTGCCCATAAGACAATGCCA 2 0 

5'-2 GGTCATAGGTTGGTTTCTCCA 

5'-3 TGGGTTTTAATCCACGAGGT 

3'-1 GCTCCGTTACTCATATGGATTG 

3 '-2 TGCTGGAAAAGTCTCAACCC 

3'-3 TCCAACAATTTACTCTACCTTCAGC 2 5 



RACE were electrophoresed through a 1% agarose gel, purified using a gel-extraction kit 

(Qiagen, Chatsworth, CA), ligated into TA vector and sequenced as described above. 

Based on their sequence information, the full-length sequence of the 2.8 kb dsRNA 

fragment was obtained by aligning partial cDNA clones using the computer programs of 

the BLAST and Bioedit. Multiple sequence alignments with known virus groups were 

also performed with CLUSTAL W (Thompson et al., 1994). 

3.2.3. Northern blot hybridization with strand-spec@ probes from the 2.8 kb dsRNA 

Total nucleic acids were extracted using Trizol according to the manufacturer's 

instructions (Gibco BRL, Gaithersburg, MD) and electrophoresed on a 1% agarose gel. 

The dsRNA was further purified using the CF-11 method as described above. DsRNA 

and total nucleic acids were electrophoresed on a 1% agarose gel. The gel was soaked in 

50 mM NaOHIl 50 mM NaCl for 15 min for denaturation and in 1 OX SSC (Sodium 

ChlorideISodium Citrate) for 10 min for neutralization. Total nucleic acids were 

transferred to a nylon membrane by capillary action in 1 OX SSC overnight. 

Prehybridization was performed in prehybridization buffer (5X SSC, 0.1 % sodium- 

lauroylsarcosine, 0.02% SDS and 1% blocking reagent) for 4-6 hr at 42OC according to 

the manufacturer's instructions (Boehringer Mannheim, Germany). 

Strand-specific DNA probes using Digoxigen (Roche Molecular Biochemicals) 

were prepared using the PCR procedure described by Finckh et al. (1 991). The primers, 

BK18-3F 1 (5'-CCAAAACAATGGCCTAGTGG-3') and BK18-3R2 (5'- 

CAGTTCTCTCCAAAACTAGGATCTG-3 '), were used for (+) and (-)-strand DNA 

probes, respectively. Hybridization was performed overnight at 42OC with 20 ng of each 



probelml hybridization buffer with gentle shaking. Blots were washed twice in 2X 

washing solution (2X SSC and 0.1% SDS) for 15 min each at room temperature, then 

twice in 0.5X washing solution (0.5X SSC and 0.1% SDS) at 68OC for 15 min. Detection 

was done according to the manufacturer's protocol (Boehringer Mannheim, Germany). 

3.2.4. Mitochondria1 association of the 2.8 kb dsRNA element 

Extraction of mitochondria was performed using the method described by Rogers 

et al. (1987). Briefly, mycelium were grown in 1 liter of PDB for 3 weeks, harvested, 

mixed with 15% sucrose in 20 ml TE buffer and homogenized with 20 g of glass beads 

(Sigma, St. Louis, MO) for 2 min. The homogenate was mixed with an equal volume of 

1 % (wlv) sucrose in TE buffer, centrifuged at 1,300 g for 10 min at 4OC, and the 

supernatant and pellet (fraction A) collected in separate tubes. The supernatant was 

centrifuged at 14,000 g for 30 min at 4OC and the supernatant (fraction B) and pellet were 

collected in separate tubes. The pellet was resuspended with 20% sucrose in 4 ml TE 

buffer and used for further purification of mitochondria. Both 35% and 60% sucrose in 

TE buffer were used for preparation of a sucrose gradient. One ml of mitochondrial 

fraction was loaded at the top of sucrose gradient and centrifuged at 64,000 g for 90 min 

at 4•‹C in a Beckman SW 60 rotor. Each fraction, 20% (fraction C), 35% (fraction D) and 

60% (fraction E), the band (fraction M) between 35% and 60%, and pellet (fraction F) in 

the bottom of 60% sucrose were collected in separate tubes and used for further 

purification of dsRNA using CF-11 column as described above. The presence of dsRNA 

in each sub-cellular fraction, including the mitochondrial fraction (fraction M), was 

examined on a 1% agarose gel. 



3.2.5. Transmission of dsRNA through conidia 

Colonies were grown on V8 agar plates (see Chapter 2) at 25•‹C for 5 days and 

conidia harvested by placing several drops of double distilled water onto the colony 

surface, collecting the suspension with a pipette, and transferring to a 1.7 ml 

microcentrifuge tube. The conidial suspension was diluted up to 1,000-fold with double- 

distilled water and used to inoculate a V8 agar plate. After 3-4 days of incubation at 

25"C, hyphal tip transfers from individual developing colonies were made onto 1.5% 

water agar plates and incubated at 25•‹C for 5 days. Each colony derived from 50 single 

conidia transfers was examined for the presence of dsRNA following the method 

described above. 

3.2.6. Curing of dsRNA 

Mycelial plugs of strain BK18 were placed on fresh V8 agar plates (1 00 x 15 mm) 

amended with concentrations of either cycloheximide (5 pg and 10 pglml) or ribavirin 

(10 mg or 20 mglml), and incubated at 25•‹C. Two replicate plates each were included for 

each treatment. After two-thirds of the plate was covered with fungal mycelium, agar 

plugs from the margin of each colony were transferred to fresh plates containing the same 

concentration of either cycloheximide or ribavirin. Consecutive transfers were repeated 

for up to four generations. Control cultures were serially transferred onto V8 agar 

without any chemicals. All cultures were subsequently transferred to fresh V8 agar plates 

and grown for 3-4 days, then hyphal-tipped and grown in 50 ml of potato dextrose broth 

(PDB) (Difco, MI) at 25•‹C for 2 weeks. Mycelium was used for further analysis of 

dsRNA presence as described above. 



In another trial to eliminate the 2.8 kb dsRNA fragment from strain BK18, high 

incubation temperatures were used. Colonies were grown on V8 agar plates at 

temperatures of 30•‹C, 35-37"C, or 45•‹C until two-thirds of the plate was covered with 

fungal mycelium. Two replicate plates were used at each temperature. Because of 

significant reduction of fungal growth above 35"C, all plates incubated above 35•‹C were 

kept in plastic bags to maintain moisture and enhance mycelial growth. Control colonies 

were maintained at 25•‹C with regular transfers. After several serial transfers on V8 agar 

plates at these incubation temperatures over 2 months, each colony was transferred to 50 

ml of PDB and incubated at 25•‹C for 2 weeks and used for analysis of dsRNA banding 

patterns as described above. Total nucleic acids were extracted from any potentially 

cured strains, the concentration was adjusted to 20 nglpl and 10 p1 of sample used for 

RT-PCR amplification. RT-PCR was performed with the 2.8 kb dsRNA specific primer 

set (BKl8Fl and BK18RZTable 4) and electrophoresed through a 1% agarose gel to 

confirm the presence of 2.8 kb fragment. 

3.2.7. Cultural characterization of a putatively dsRNA-cured strain 

One dsRNA-cured strain (BKl8C) was compared to its wild-type dsRNA- 

containing strain (BK18) for cultural characteristics including colony morphology and 

growth rate. Both strains were grown on V8 agar plates at room temperature for 2 weeks 

and examined for any visible morphological differences. To compare mycelial growth 

rates, an 8-rnm agar plug from the actively growing margin of each colony was placed on 

a V8 agar plate and incubated at 25•‹C. The diameter of the fungal colony was measured 



daily until the mycelium had covered the entire plate. Three replicate plates were used 

for each strain and the experiment was repeated. 

3.2.8. Virulence assessment 

The virulence of strains BK18C and BK18 strains on carrot roots (Daucus carota 

L.) was determined. Mature carrot roots were purchased from a retail store, cut into 10- 

cm long sections, surface-sterilized with 10% JavexCD (containing 4.5% of Sodium 

hypochlorite) for 5 min and rinsed with autoclaved double distilled water for 5 min. Each 

carrot segment was placed in a sterile plastic box lined with moistened filter paper. An 8- 

mm diameter mycelial plug from the actively growing margin of each strain was placed 

in the center of each carrot root. The boxes were sealed with parafilm and incubated at 

25•‹C for 5-8 days. Degree of colonization was determined by measuring both the widest 

and the longest length of the developing fungal colony and averaging the values. Three 

replicates were included for each strain and the experiment was repeated. 

3.2.9. Enzyme activity assays 

The activities of polyphenol oxidase, laccase, esterase and tyrosinase were 

compared between strains BK18 and BK18C. For each enzyme assay, three replicates 

were used for each strain and the experiment was repeated. The polyphenoloxidase 

activity was assessed on Bavendamm's medium containing either 0.5% tannic acid 

(Sigma, St. Louis, MO) or gallic acid (Sigma, St. Louis, MO) (Bavendamm, 1928). 

Actively growing agar plugs from each strain were inoculated onto both media and 

incubated at 25OC in the dark for 10 days. Development of dark brownish pigmentation 



on the media indicated the presence of phenoloxidase activity. The intensity and zone of 

pigmentation was compared visually for all strains. 

The laccase activity of each strain was measured using 2,6-dimethoxyphenol 

(DMOP) (Sigma, St. Louis, MO) as a substrate. An 8-mm agar plug from the margin of a 

colony grown on Bavendarnn's medium for 7 days was transferred to a 1.7 ml 

microcentrifuge tube. One ml of autoclaved double distilled water was added then 

incubated at 4OC for 30 min, vortexed briefly, and centrifuged at 14,000 rpm for 10 min. 

Two hundred p1 of supernatant were mixed with 800 p1 of 2.5 mM DMOP in 100 rnM 

sodium buffer at pH 6.0. The absorbance at 468 nm was measured at 25OC at 5 min 

interval using a spectrophotometer and the relative enzymatic activity was calculated 

from the changes in absorbance per 5 min. Tyrosinase activity of each strain was 

measured following the same procedure as for measuring laccase activity, except that 3,4- 

dihydroxy-L-phenylalanine (L-DOPA) (Sigma, St. Louis, MO) was used as a substrate 

and absorbance at 475 nm was mentioned. Esterase activity was measured using p- 

nitrophenyl butyrate as a substrate as described by Kunoh et al. (1 990). 

3.2.10. Electron microscopy 

Transmission electron microscopy was used to compare mitochondria1 

ultrastructure between strains BK18 and BK18C. Both strains were grown on V8 agar 

plates for 10 days and then processed at the Bio-Imaging lab at the University of British 

Columbia (Vancouver, Canada). Briefly, mycelial fragments of both strains (BK18 and 

BK18C) were scraped from the margin of the colony, fixed using glutaraldehyde and 

frozen in a Baltec HPMlO high pressure freezing machine for 5 days. Samples were 



further processed for resin infiltration and embedding following a standard protocol 

(http://www.emlab.ubc.ca~protocol.hltm) with transfer baskets. Each sample was 

sectioned, stained with 2% uranyl acetate (1 2 min.), followed by lead citrate (6 min.) and 

viewed at 80 kV with a Hitach H7600 TEM. Approximately 200 sections were viewed to 

identify representative images of each strain. 

3.3. Results 

3.3.1. cDNA development and sequence analysis 

RT-PCR reactions with dsRNA specific primers generated four fragments ranging 

in size from 800 bp to 1.2 kb; these were aligned with each other based on their 

overlapping sequence (Fig. 6A). For 5'- and 3'-ends, single RT-PCR products were 

generated using a combination of oligo(dT) primers and dsRNA-specific terminal 

primers. These RT-PCR terminal products were cloned, sequenced and used to obtain 

the full-length sequence for the 2.8 kb dsRNA in C. elegans (Fig. 6). 

Sequence analysis of the complete cDNA showed that the dsRNA was 2,896 

nucleotides long. The nucleotide composition was 32.4% A, 16.8% C, 15.7% G and 

35.0% U. No long open reading frame (OW) was identified on either strand when the 

standard cytoplasmic genetic code was applied. However, a large putative ORF, 

designated ORF I, was identified when the mitochondrial genetic code of fungi was used 

(Fig. 6B). The mitochondrial genetic codes uses UGA as a codon to encode tryptophan 

rather than as a translation terminator. Translation of the ORF may be initiated at the 

AUG codon at nucleotide position 427 and terminated at the UAG stop codon at 
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Fig. 6. Schematic representation of alignment of partial cDNA clones derived from the 

2.8 kb dsRNA in the BK18 strain (A) and its putative genomic organization (B). (A) 

Eight partial cDNA clones were obtained from the 2.8 kb dsRNA fragment and aligned 

with each other to obtain the full-length sequence. (B) Putative diagrammatic 

representation of the genome organization of the 2.8 kb dsRNA. One large potential 

open reading frame ( O W  I) was found and predicted to encode a putative RNA- 

dependent RNA polymerase (RdRp). The region containing the conserved motifs 

associated with RdRps is represented in the gray box. 



nucleotide position 2,544 (Fig. 6B). The putative O W  I is predicted to encode 705 

amino acids with a molecular weight of 8 1.45 kDa. ORF I showed a codon preference of 

either A or U in the third position, which is a characteristic of mitochondrial codons. 

Analysis of this protein revealed the typical amino acid sequence motifs (I-VI) of RdRp 

including the highly conserved GDD motif (Fig. 7) (Poch et al., 1989). No other O W  of 

significant length was observed in the negative strand. 

Using a BLAST search, the O W  I in the 2.8 kb dsRNA showed homology at the 

amino acid level to the RdRp regions of other mitoviruses, such as 0. novo-ulmi 

OnuMV3a-Ld, OnuMV4-Ld, OnuMV5-Ld and OnuMV6-Ld, Cryphonectria mitovirus 1 

(Hong et al., 1999), mitovirus-like dsRNA from R. solani (Lakshrnan et al., 1998), and L- 

dsRNA from S. homoeocarpa (Deng et al., 2003) (Table 5). The highest amino acid 

sequence homology of the putative ORF I region in the 2.8 kb dsRNA was to the RdRp 

of OnuMV4-Ld, with 34% identity when the mitochondrial genetic code was used. 

Comparative sequence analysis revealed that the 2.8 kb dsRNA was related to other 

mitochondrial dsRNAs, with sequence identities in the range of 44-53% (Table 6). 

Sequence comparisons at the amino acid level among known mitoviruses revealed 

homologies of 20% to 34% for the entire RdRp-like proteins and 46% to 71% for only 

the RdRp I-VI motifs only (Table 5). The 2.8 kb dsRNA in C. elegans has been 

designated as Chalara elegans 18 virus (Ce l8V) and its complete sequence has been 

deposited in Genbank under accession no. AY563138. 

The 5'- and 3'-UTR of Cel8V are 426 nt and 352 nt long, respectively (Fig. 6). 

Both terminal sequences were examined for their potential secondary structures using the 



Fig. 7. Comparison of conserved motifs (I-VI) of the RdRp of C. elegans Cel8V to that 

of other Mitoviruses. * indicates identical amino acids residues; : and . indicate higher 

and lower number of chemically similar residues, as defined in the CLUSTAL W 

program. Ce l8V=Chalara elegans 1 8 Virus; CpMV 1 -NB63 I =Cryphonectria parasitica 

mitovirus 1 -NB63 1 ; GaMV-S I=Gremmeniella abietina mitochondrail RNA virus; L- 

dsRNA=Sclerotinia homoeocarpa mitovirus; OnuMV3a-Ld=Ophiostoma novo-ulmi 

mitovirus 3a-Ld; OnuMV4-Ld=Ophiostoma novo-ulmi mitovirus 4; OnuMV5-Ld= 

Ophiostoma novo-ulmi mitovirus 5; OnuMV6-Ld= Ophiostoma novo-ulmi mitovirus 6; 

RsM2- 1 A 1 =Rhizoctonia solani 1 A 1 M2 dsRNA. 



Cel8V -SGKLGIVKDPEGKRRIIAMVDYHSQLVLRSIHDGLLNKLRNLPQDRTYNQDP 
CpMV1-NB631 MGKLSVVYDQAGKARIVAITNSWIQTAFYSLHLHVFKLLKNIDQDGTFDQER 
GaMV-S 1 --SLSLIYDPECKVRIVAMLDYTTQLFLRPIHNDLFKLLKKLPQDRTFTQNP 
L-dsRNA LGKLAIKEEAAGKARVFAMADSITQSVMAPLNSWVFSKLKGLPMDGTFNQQA 
OnuMV3a-Ld LGKLAIKEEAAGKARVFAMADSITQSVMAPLNSWVFSKLKDLPMDGTFNQQA 
OnuMV4-Ld -LGKLSIVHDPELKERVIAMVDYTTQFALRPIHNILLNNLSKLPCDRTFTQDP 
OnuMV5-Ld FGKISIVKDPELKMRVIAMVDYHSQFVLKKIHNSLFNKLKLIKSDRTFTQDP 
OnuMV6-Ld IRRLSIVHDPECKERVIAIFDYGSQMVLKPIADVLFDLLRNIPSDRTFTQSP 
RsM2-1A1 LSQFALKEEAAGKIRLFALMDSITQSVMSPLHDYMFAILRNIPNDGTFDQEA . .  . . . . . .  . * * : . * :  : * . :  : . .  * : * * :  * .  . . 

LNEP---TQKFYGFDLTAATDRLPIDLQVDILNIIFKN-SPGSSWRSLLRIK 
LNDWEDNEHSFWSIDLTAATDRFPISLQRRLLLYIYSDPEIANSWQNLLVHR 
YKEGLLHDVEFYSYDLSSATDRLPMAFQKQIISVLFGS-DFADDWATLLVGR 
YQDGLLHDVEFYSYDLSSATDRLPMAFQKQIISVLFGS-KFAKDWATLLVGR 
HKWNDDHKERYHSLDLSAATDRFPIFLQQKLISLIFNDYEFGKNWRNLLVDR 
IFTTPTMGHRFWSMDLSAATDRFPIDLQERLLSYLYGS-EISSAWKQLLIDR 
THTDLDNKSKFWSIDLSSATDRFPIVFQKRVLQKILGK-QMTDSWERIMIGS 
SQEKAVTAGKAFSYDLTAATDRLPVILTAFILSTIVGIRTFGGLWRSILVKR 

* * : : * * * * : * :  : . .  . . .  . * . .  . . 

EEGLSGERLRYAVGQPMGAYSSWAAFTLSHHLvvAWCTYKsK-KvIRssQYII 
YKSPQG-FLTYAVGQPMGAYSSFAMLALTHHVIVQVAALNSG-FTTRFTDYCI 
-NGLN--PIKYSVGQPMGAYSSWPAFTLSHHLVVHWCAHLCN-INKFK-DYII 
WYLKDI-PYRYSVGQPMGALSSWAMLALSHHVIVQIAAMRVG--KLSFTNYAL 
WYLKDI-PYRYSVGQPMGALSSWAMLALSHHVIVQIAAMRVG--KLPFTNYAL 
NYDYQGISYRYSVGQPMGAYTSWAAFTLTHHLVVHWAAELAG--LKNFKDYII 
YKTPEGDELHYKVGQPMGAYSSWAAFTLTHHLVVFYSARMAG--IKDFTNYIL 
FLAPDGDTVSYNCGQPMGAQSSWPMFTLAHHVIVRVAANRCG--LSNFDKYII 
LKVSDG-PYFYEVGQPMGALSSWPGLALTHHWIVQVAAFRVTNSKSWNTEYEI 

* * * * * * *  : * : *  : : * : * *  : *  . *  : 

LGDDIVIKDNDIARKYIGQMSKLG-VAISMQKTHVSKD--TYEFAKRWMHKG 
LGDDIVIAHDTVASEYLKLMETLG-LSISSGKSVISSEFTEFAKKLKGRNNF 
LGDDIVIHNDNIAKKYIEIMG-KLGVGLSNSKTHVSKF-TYEFAKRWIHKG 
LGDDIVIADKAVATSYHMIMTQILGVEINLSKSLVSSN--SFELAKRLVTMD 
LGDDIVIADKAVATSYHMIMTQILGVEINLSKSLVSNN--SFEFAKRLVTMD 
LGDDIVIKNNKVAQIYINLMTKWG-VDISLSKTHVSYD--TYEFAKRWIKNK 
LGDDIVINNDKVAKYYIRTMKRLG-VELSMNKTHVSKN--TYEFAKRWFKNK 
LGDDIVINNDNVALKYMEIMNDFK-VEISRNKTHVSND--TYEFAKRWIKNK 
LGDDIVIFNELIAQEYLNIMAVIG-CEINLNKSISSRCRPVFEFAKRTCWGF 
* * * * * * *  . . . . *  * * . . * :  * 
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MFOLD program (Mathews et al., 1999; Zuker et al., 1999). Both 5'-UTR (nucleotides 

1-27) and 3'-UTR regions (nucleotide 2,868-2,896) could be potentially folded into the 

stable stem-loop structure (Fig. 8). Also, a potential panhandle structure between the 5'- 

and 3'-UTR regions has been predicted in Cel8V (data not shown). 

3.3.2. Detection of viral ssRNA form of Cel8V 

Hybridization with both (+) and (-) strand probes resulted in the detection of a 

strong signal with the dsRNA band, confirming that it was double-stranded in nature 

(Fig. 9). However, another additional smeared band, which migrated faster than the full- 

length dsRNA, was detected only when the (+) strand probe was used (Fig. 9). With the 

negative strand probe, there was no additional signal produced, except with the dsRNA 

band (Fig. 9). 

3.3.3. Mitochondria1 association of Cel8V 

Each cellular fraction obtained from the mitochondria extraction was retained, 

purified using a CF-11 column for dsRNA and electrophoresed on a 1 % agarose gel to 

determine whether Cel8V was present. A sharp dsRNA band of approximately 2.8 kb in 

size was observed in cellular fractions A, B and mitochondria1 fraction M, but not any 

other fractions, confirming the association between Cel8V and mitochondria (Fig. 10). 



Fig. 8. Potential secondary structures of the 5'- and 3'- ends of the (+) strand of Cel8V. 

in strain BK18 of C. elegans. Both ends [l-27 (5'-end) and 2,861-2,896 (3'-end)] were 

folded using the MFOLD program (Zuker et al., 1999). 



Fig. 9. Northern blot hybridization using a strand-specific probe of Cel8V. Total 

nucleic acids from C. elegans were extracted and probed with either (-) or (+) strand 

specific probes of Ce18V. The positions of dsRNA and ssRNA species are indicated. 



Fig. 10. Mitochondria1 purification from strain BK18. The presence of Cel8V was 

observed in the purified mitochondria fraction (lane M), as well as in fractions A (the 

pellet after centrifugation at 1,300 g for 10 min) and B (the supernatant after 

centrifugation at 14,000 g for 30 min). 



3.3.4. Phylogenetic relationships 

Genetic relatedness was analyzed by comparing amino acid sequences of the 

conserved motifs of RdRp of Ce 18V to known viruses (Fig. 1 1). Based on multiple 

alignments of RdRp regions, a phylogenetic tree was drawn (Fig. 1 1). There was a close 

relationship between Cel8V and viruses belonging to the genus Mitovirus, including 

OnuMV3a-Ld, OnuMV4-Ld, and OnuMV5-Ld, and OnuMV6-Ld (Fig. 1 1). 

3.3.5. Transmission of dsRNA through conidia 

All of the progeny (total of 50) obtained by transferring hyphal tips from single 

conidial colonies of strain BK18 showed the presence of dsRNA. There was no change 

in dsRNA banding patterns in any of the progeny when compared to the parental strain 

(Fig. 12). 

3.3.6. Curing of dsRNA 

When grown on V8 agar plates amended with various concentrations of either 

cycloheximide or ribavirin, all colonies showed significant growth retardation. However, 

following extended periods of growth and repeated transfers, colonies were recovered 

from plates treated with these two chemicals. The dsRNA banding pattern in all colonies 

was found to be identical to that of the wild-type dsRNA-containing strain (data not 

shown). Also, hyphal-tipping was attempted either combined with chemical treatments 

or without any treatments. No dsRNA-cured strains were obtained, indicating that the 

hyphal-tipping and chemical treatments had not eliminated the 2.8 kb dsRNA from strain 

BK18 of C. elegans. 
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Fig. 11. Phylogenetic relationships among the conserved motifs of RdRps of Cel8V and 

other known Mitoviruses. Analysis was done using Clustal X program (Thompson et al., 

1997) and the tree was drawn with TREEVIEW program. Bootstrap values are shown on 

the branches of the tree. Virus notations are as in Fig. 7. ScNV-20s (Saccharomyces 

cerevisiae 20s narnavirus), ScNV-23s (Saccharomyces cerevisiae 23s namavirus), Q 

beta (Qbeta Bacteriophage), MS2 (MS2 Bacteriophage), and YFV (Yellow fever virus) 

were used as outgroups. 
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1 2 3 4 5 6 7 ladder 

Fig. 12. Agarose gel electrophoresis of dsRNA derived from colonies obtained from 

single conidia of strain BK18. All progenies (lane 1 to 6) showed the same dsRNA- 

banding pattern compared to that of parental strain (lane 7), indicating the 2.8 kb dsRNA 

fragment was transmitted through all conidia. 
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Fig. 13. Change in dsRNA banding pattern in strain BK18 after high temperature (35-37 

C) incubation. (A)  Ethidium bromide stained agarose gel of dsRNA extracted from 

BK18 (lane 1) and BK18C (lane 2). Lane 3 contains the 1 kb DNA ladder. (B) 

Autoradiograph of Northern blot of dsRNA shown in (A) probed with BK18C3. 



During subculturing at 35-37OC incubation temperatures over an extended period 

(about 2 months), loss of the 2.8 kb dsRNA fragment was observed in one colony and 

resulted in the recovery of a putatively-cured strain, referred as BKl8C (Fig. 13A). 

Northern blot hybridization with a partial cDNA probe (BK18C3) from the 2.8 kb 

dsRNA fragment did not reveal a signal in this strain (Fig. 13B). 

RT-PCR amplification using a specific primer set (BKl8F1 and BK18R2) was 

performed with total nucleic acids extracted from several C. elegans strains, including the 

2.8 kb dsRNA-containing strains BK18 and WASH, putatively dsRNA-cured strain 

BK18C, and a dsRNA-free wild type strain AK208. The RT-PCR of strain BK18 

generated one expected band near 300 bp in size (Fig. 14). However, RT-PCR 

amplification of strains BK18C and AK208 also generated a band identical in size to that 

of the RT-PCR amplification product of strain BK18 (Fig. 14). These RT-PCR products 

were gel-purified, cloned and sequenced to confirm that they were derived from the 2.8 

kb dsRNA fragment. The clones shared high sequence identities (up to 98%) at the 

nucleotide level (Fig. 15), suggesting a latent infection with the 2.8 kb dsRNA fragment 

in both putatively dsRNA-cured (BK18C) and dsRNA-free wild type (AK208) strains. 

This latent-infected strain (BKl8C) was subjected to further studies of culture 

morphology, pathogenicity, various enzyme assays and electron microscopy. 

3.3.7. Characterization of a putatively-cured strain 

3.3.7.1. Culture morphology and virulence 

The colony morphology of strain BK18C resembled that of its wild-type strain 

(Fig. 16A). The growth rate of BK18C was slightly greater compared to that of BK18 



Fig. 14. Gel electrophoresis of RT-PCR amplification products with Cel8V specific 

primer sets. All trials with several strains, including BK18 (lane I), BK18C (lane 2) 

WASH (lane 3) and AK208 (lane 4), successfully generated one RT-PCR fragment near 

300 bp, indicating the Cel8V was present in these strains. AK208 is a wild-type strain 

with no detectable dsRNAs on polyacrylamide gels. Control RT-PCR products using 

water (lane 5). 



BK18 CCAAAACAATGGCCTAGTGGTAAATTAGGTATTGTTAAAGATCCGGAAGGTA 
WASH CCAAAACAATGGCCTAGTGGTAAATTAGGTATTATTAAAGGTCCGGAAGGTA 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * * *  * * * * * * * * * * *  - 
BK18 AAAGAAGAATAATTGCAATGGTAGATTACCATTCACAATTAGTTCTTCGTTC 
WASH AAAGAAGAATAATTGCAATGGTAGATTACCATTCACAATTAGTTCTTCGTTC 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

BK18 AATCCATGATGGGCTTCTTAATAAATTAAGAAACCTACCACAGGATAGAACA 
WASH AATTCATGATGGGCTTCTTAATAAATTAAGAAACCTACCACAGGACAGAACA 

* * *  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * * *  

BK18 TACAATCAAGATCCTAACAATGCGTGAGAAGAGGTGTTTCCATT 
WASH TACAATCAAGATCCTAATAATGCGTGAGAAGAGGTGTTTCCATT 

* * * * * * * * * * * * * * * * *  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

BK18 CCTTAGATTTATCATCAGCCACTGATAGATTCCCAGTAAATCTAG 
WASH CCTTAGATTTATCATCAGCCACTGATAGATTCCCAGTAAATCTAG 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

BK18 ACTGCTTACAGAGATGTATTCAGATCCTAGTTTTGGAGAGAACTG 
WASH ACTGCTTACAGAGATGTATTCAGATCCTAGTTTTGGAGAGAACTG 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4 

Fig. 15. Comparison of nucleotide sequences of two cDNA clones (BK18B3 and 

WASH-3) derived from the 2.8 kb dsRNA fragment of BK18 and WASH strain, 

respectively. * indicates identical nucleotides and arrows represent the locations of 

primers used for RT-PCR (BK18F1 and BK18R2). 



Fig. 16. Comparison of phenotypic characteristics of dsRNA-containing (BK18) and 

latently-infected (BK18C) strains. (A) Similar colony morphologies on V8 agar plates. 

(B) Virulence test on carrot roots. Carrot roots inoculated with strain BK18C showed 

greater colonization compared to its original dsRNA-containing (BK18) strain. (C) 

Bavendamm's reactions after 10 days incubation at 25OC in the dark, showing 

phenoloxidase color. 



(Fig. 17A), and the virulence on carrot roots was slightly enhanced in BKl8C compared 

to BK18 (Fig. 16B,17B). 

3.3.7.2. Enzyme activity assays 

Several enzyme activities were compared between BKI 8C and BK18. All 

colonies growing on Bavendamm's media containing either 0.5% tannic acid or 0.5% 

gallic acid produced a dark brown color reaction, indicating the presence of 

polyphenoloxidase in each culture (Fig. 16C). Similar enzyme activities, including 

laccase, esterase and tyrosinase, were observed between two strains (Table 7). 

3.3.8. TEMpictures 

Comparison of mitochondrial ultrastructure in strains BK18 and BK18C using 

TEM showed differences in size of mitochondria between the strains (Fig. 18), with 

strain BK18 containing smaller mitochondria compared to strain BKl8C. 

3.4. Discussion 

The fill-length cDNA clone from the 2.8 kb dsRNA fragment (Cel8V) in C. 

elegans strain BK18 was obtained by RT-PCR using a combination of random and 

dsRNA-specific primers and was characterized as a Mitovirus belonging to the family 

Narnaviridae. The sequence was 2,896 bp in length and using the mitochondrial genetic 

code contained a large open reading frame (OW) that shown sequence similarity with 

several motifs, which are conserved among viral RdRps. The putative Cel8V RdRps 

showed the greatest similarity (34%) to that of an Ophiostoma mitovirus (OnuMV4-Ld). 



1 3  5  7  9 1 1 1 3 1 5 1 7  
Incubation time (days) 

17. (A) Comparison of growth rates on V8 agar between dsRNA-containing 

(BK18) and latently-infected (BK18C) strains. Strain BK18C grew better than strain 

BK18. Vertical bars represent standard errors of the mean. (B) Virulence test using 

carrot roots inoculated with latently-infected (BK18C) and dsRNA-containing (BK18) 

strains. Letters denote significant differences according to the difference of least squares 

means (P<0.05). 



Table 7. Comparison of various enzymatic activities between BK 1 8 and BK 1 8C strains. 

Strain Trial Enzyme Activity (absorbance changeh min) 



Fig. 18. Comparison of mitochondria1 structures of dsRNA-containing (BK18) (A) and 

latently-infected (BK18C) strains (B) using transmission electron microscopy (TEM). 

Locations of mitochondria in the cell of each strain are indicated by arrows. Note smaller 

mitochondria in strain BK18. Bar is representing 500 nm. 



In general, it has been suggested that two viruses are different when the sequence identity 

at the protein level is lower than 50% (Shukla et al., 1994). In this regard, Cel8V is 

likely to be a new member of the mitovirus group, since its highest sequence identity at 

the protein level to all previously described mitoviruses was 39% to OnuMV4-Ld. 

Both nucleotide and amino acid sequences of Ce 18V further supported the close 

relationships between Cel8V and other mitoviruses. Cel8V showed an A-U rich nature 

(67.4%), which is considered to be characteristic of mitoviruses as well as fungal and 

plant mitochondrial genomes (Paquin et al., 1997). The codon preference of either A or 

U in the third position, which is characteristic of mitochondrial codons (Cummings et al., 

1990; Paquin et al., 1997; Unseld et al., 1997), was also observed in the ORF of Cel8V. 

In addition to the similar genome size to mitoviruses (2.3 kb to 3.2 kb), the predicted 

molecular mass (8 1.45 kDa) of the putative RdRp protein of Cel8V is within the size 

range of RdRp proteins of other mitoviruses (92.2 kDa in OnuMV4-Ld, 86.1 kDa in 

OnuMV5-Ld, 80.0 kDa in OnuMV6-Ld of 0. novo-ulmi). Analysis of the amino acid 

sequence of Ce 18V showed the typical RdRp motifs (11-VI) including conserved GDD 

motifs found in other RNA virus genomes (Bruenn, 1993; Poch et al., 1989). For the 

mitochondrial dsRNAs only, Hong et al. (1 998) proposed an additional conserved motif 

among RdRp proteins and designated this region as motif I. Within motif I of RdRps in 

mitoviruses, there are nine positions showing identical amino acids and an additional 17 

positions having chemically similar amino acids. The presence of motif I in Cel8V was 

found to be similar, confirming that the Cel8V is closely related to previously described 

mitoviruses. 



It has been suggested that the presence of stem-loop structures at both 5'- and 3'- 

ends may be a characteristic of mitoviruses. Hong et al. (1 998) showed that both the 5 ' -  

and 3'- end terminal sequences of 0 .  novo-ulmi mitoviruses (OnuMV3a-Ld, OnuMV4- 

Ld, OnuMV5-Ld and OnuMV6-Ld) could be folded into stem-loop structures. Also, they 

suggested that the 5'-ends of both R. solani M2 RNA and C. parasitica mitochondrial 

RNA could form the possible stem-loop structure. Recently, similar structures were 

found at both 5'- and 3'-ends of L and S-dsRNA in S. homoeocarpa (Deng et al., 2003). 

The predictions of secondary structure for both 5'- and 3'-ends of Cel8V using the 

MFOLD program resulted in the possible formation of stem-loop structure. Both 5'- 

(nucleotides 1-27) and 3'- (nucleotide 2,868-2'896) ends can be folded into potentially 

stable stem-loop structure, providing additional evidence that Cel8V is closely related to 

other mitoviruses. Also, the presence of panhandle structure was predicted in Cel8V. It 

has been suggested that the presence of panhandle structures in some mitoviruses, such as 

OnuMV4 and OnuMV6, may play an important role in replication and transcription 

(Hong et al., 1998; Hong et al., 1999). Therefore, these secondary structures predicted in 

Cel8V may play similar functions that have been suggested for other mitoviruses. 

Compared to other fungal RNA viruses, mitoviruses are unusual not only because 

of their rarity in fungi but also because of their association with mitochondria. Most 

mitoviruses, including Ophiostoma mitoviruses (Hong et al., 1999), C. parasitica 

mitovirus 1 -NB63 1 (Polashock and Hillman, 1994) and S. homoeocarpa L-dsRNA 

(Deng et al., 2003)' are known to have several UGA codons, which have been speculated 

to follow the mitochondrial genetic code to encode tryptophan rather than using a stop 

codon in the universal code (Paquin et al., 1997). Several reports have shown that 



mitoviruses can be co-purified with mitochondria1 extraction, indicating their presence in 

mitochondria for at least part of their life cycle (Polashock and Hillman, 1994; Deng et 

al., 2003). Cole et al. (2000) also reported that RdRp protein activity could be detected in 

mitochondria for mitovirus OnuMV6-Ld in Ophiostoma strain, but not from uninfected 

strains, suggesting that mitovirus RNA could be translated in the mitochondria. In this 

regard, our results showing the presence of UGA codons in the ORF of Ce 18V and the 

co-purification of dsRNA with mitochondria are consistent with the results for other 

mitoviruses. However, in our study, the relative amounts of dsFWA observed in the 

mitochondria and in other subcellular fractions were similar. In contrast, in Ophiostoma 

and Sclerotinia, a strong mitovirus band was observed in the mitochondria fraction 

compared to other sub-cellular fractions, indicating that most mitoviruses were present in 

the mitochondria rather than the cytoplasm (Deng et al., 2003; Hong et al., 1998). While 

it is possible that Cel8V is present in both mitochondria and cytoplasm, this needs to be 

resolved through more experimentation, since sub-cellular extracts can be contaminated 

with mitochondria during purification and this may have occurred in our study. 

Mycoviruses can be spread between strains either by vertical transmission through 

conidia or horizontal transmission via hyphal anastomosis (Ihrmark et al., 2002; McCabe 

et al., 1999). A high transmission rate of Ce18V through conidia of C. elegans was 

observed in this study. In contrast, horizontal transmission of dsRNA via hyphal 

anastomosis was not demonstrated in C. elegans (author unpublished data). The 

efficiency of virus transmission through either conidia or hyphal anastomosis differs 

depending on the fungal species (Tavantzis, 2001). Although the transmission rate of 

dsFWA through conidia is usually close to 100% in most fungal species, there are a few 



reports which show variable transmission rates, ranging from 0 to 100% (Chen et al., 

1996; Rogers et al., 1986; Shain and Miller, 1992; Tavantzis, 200 1). The horizontal 

transmission rate between fungal strains via hyphal anastomosis is much more variable 

and is generally lower due to vegetative incompatibility (Nuss and Koltin, 1990; 

Milgroom and Cortesi, 1999). In 0. ulmi, horizontal transmission of dsRNA was 

restricted by vegetative incompatibility (Brasier, 1984). There are no previous studies on 

vegetative incompatibility groups in C. elegans. The high degree of genetic diversity 

among dsRNA elements reported by Park et al. (2003), suggests that movement of 

dsRNA elements between strains is likely to be rare and that hyphal anastomosis may be 

infrequent. 

To elucidate the role of dsRNAs in C. elegans, we attempted to eliminate Ce l8V 

from strain BK18 using different methods, including treatment with cycloheximide or 

ribavirin, hyphal tip transfer, and high incubation temperatures. These treatments have 

been reported in other studies for elimination of dsRNAs (Fink and Styles, 1972; James, 

2001; Vazguez, 1978). Most of the experiments were unsuccessful, indicating a high 

degree of stability of the dsRNA. In a previous study, Bottacin et al. (1 994) reported that 

dsRNA-cured cultures of C. elegans were obtained from spontaneous sectors displaying 

altered colony morphology. In the present study, a change in dsRNA banding patterns 

was not observed in fungal sectors with unusual colony morphology during long-term 

subculturing, suggesting that spontaneous changes in dsRNA banding patterns may be 

infrequent in C. elegans. 

During subsequent serial transfers at 35-37OC, a colony was obtained in which 

Cel8V was not seen in agarose gels and this strain was designated BK18C. Northern 



blot hybridization confirmed the absence of Ce18V in BKl8C. However, RT-PCR with 

total nucleic acids from putatively dsRNA-cured BK18C and a dsRNA-free wild type 

strain of C. elegans amplified one band, which was the same size as that in dsRNA- 

containing strain BK18, indicating a possible latent infection with the 2.8 kb dsRNA 

fragment. Sequencing of these RT-PCR products showed that these fragments were 

derived from the dsRNA and shared high sequence identities (up to 98%). 

Numerous reports have demonstrated that the presence of dsRNA in fungi can 

affect specific biochemical and physiological pathways in the fungal host (Liu et al., 

2003a; Liu et al., 2003b; Dawe and Nuss, 2000; Jian et al., 1997). In Diaporthe ambigua, 

the causal agent of Diaporthe canker disease, dsRNA-containing strains showed lower 

activities of phenoloxidase, gallic acid oxidation and oxalic acid accumulation (Smit et al., 

1996). The transfer of dsRNA from a dsRNA-containing strain to a dsRNA-free strain 

through hyphal anastomosis resulted in changes in all enzymatic activities, indicating that 

the dsRNA altered physiological processes in the fungal host (Smit et al., 1996). 

However, it has also been reported that the presence of dsRNA in some fungi could not 

be correlated to any specific symptoms and such viruses have been called latent viruses 

(Ghabrial, 1998). In some cases, the presence of latent infection with certain virus could 

only be detected by RT-PCR. For example, mitovirus OnuMV3a dsRNA in S. 

homoeocarpa was detected by RT-PCR but not by other methods, such as agarose gel 

electrophoresis and Northern blot analysis (Deng et al., 2003). A similar observation was 

made for one of the dsRNAs present in R. solani (Lakshman and Tavantzis, 1994). These 

results are consistent with our observation regarding the concentration of dsRNA present 

in C. elegans BKI 8C. However, the effects of latently-infected dsRNA on host fungi are 



quite different. In S. homoeocarpa, a change of OnuMV3a concentration in some isolates 

was observed after storage at 4 O C  and resulted in the development of hypovirulence traits 

such as reduced growth and virulence (Deng, 2003). The development of latent infection 

of Ce 18V in C. elegans affected mitochondria size, fungal mycelium growth and 

virulence only slightly. It is noteworthy that the presence of Cel8V in C. elegans does 

not appear to induce remarkable hypovirulence as has been reported for other mitoviruses 

in fungi (Deng et al., 2003; Rogers et al., 1988). For example, mitovirus OnuMV-4Ld, 

which shared the highest amino acid sequence identity to Ce l8V, caused hypovirulence 

in 0. novo-ulmi (Hong et al., 1999). Reports of dsRNA in fungi are biased towards 

viruses that display a distinct phenotype, such as hypovirulence, and as a result, these 

dsRNAs have gained interest as biological control agents for plant pathogenic fungi 

(Anagnostakis and Day, 1979; Nuss and Koltin, 1990). However, latent infections can 

play an important role in mycovirus evolution because lower selection pressure compared 

to that of the highly expressive fungal viruses may give more advantages for survival and 

spread of latent viruses among host fungal populations (Ghabrial, 1998). The Ce18 virus 

in C. elegans is widely distributed in many geographic regions, which could be indirect 

evidence showing the successful adaptation of this virus in the host fungus, C. elegans, 

while causing minimally disruptive effects on its host. 



CHAPTER 4 

COINFECTION OF TWO DISTINCT TOTIVIRUS-LIKE DOUBLE- 

STRANDED (DS) RNA ELEMENTS IN CHALARA ELEGANS 

(THIELA WOPSIS BASICOLA)" 

4.1. Introduction 

Double-stranded (ds) RNA elements have been reported in a large number of 

fungi (Ghabrial, 1998). Although many of these dsRNAs occur in plant pathogenic fungi, 

their effects on the host fungi are not always clearly understood (Ghabrial, 1980; Nuss 

and Koltin, 1990). Some dsRNAs, such as in the chestnut blight fungus Cryphonectria 

parasitica, can induce severely debilitating phenotypes, resulting in hypovirulence 

(Anagnostakis, 1982) and the dsRNAs associated with hypovirulence in C. parasitica 

have been extensively studied. The transmission of dsRNAs through hyphal anastomosis 

from dsRNA-containing to dsRNA-free strains resulted in the development of 

hypovirulence traits in the dsRNA-recipient strains (Anagnostakis and Day, 1979). 

The genetic information contained in dsRNA fragments can be ascertained by 

developing complementary DNA (cDNA). Based on this sequence information, dsRNAs 

in fungi have been classified into various virus groups, including the hypoviruses in C. 

parasitica (Hillman et al., 1995), totiviruses in Helminthosporium victoriae (Ghabrial et 

a Prepared as a manuscript submitted to Virus Research. 



al., 1995), mitoviruses in Ophiostoma novo-ulmi (Wickner et al., 1995), partitiviruses in 

Discula destructiva (Rong et al., 2001), and unclassified viruses in Diaporthe ambigua 

(Presig et al., 2000). Furthermore, the development of cDNA clones from specific 

dsRNA fragments has been used to study genetic diversity to better understand the 

population structures of both dsRNAs and host fungi (Peever et al., 1997; Bharathan and 

Tavantzis, 1990). The development of full-length cDNAs from dsRNA fragments can 

also result in the construction of infectious cDNA clones, such as CHVl in C. parasitica, 

which has great potential to be used for biological control studies (Moleleki et al., 2003; 

Dawe and Nuss, 200 1). 

Chalara elegans is a soil-borne plant pathogen that causes black root rot disease 

on more than 100 plant species worldwide, including a wide range of vegetables, field 

crops and ornamental plants (Punja et al., 1992; Yanvood, 1981). Natural populations of 

C. elegans contain multiple dsRNA fragments, which vary in size from 2.5 kb to 12 kb 

(Bottacin et al., 1994). Partial cDNA clones from these dsRNAs, including from a 2.8 kb, 

5.3 kb and 12 kb fragment, were developed and shown to have some sequence homology 

to viruses in the Narnaviridae and Totiviridae (Park and Punja, 2003; Park et al., 2003). 

This suggests that at least two or three virus groups occur in C. elegans. Genetic 

diversity studies have also been conducted using these partial cDNA clones (Park et al., 

2004). The genetic relatedness among the 5.3 kb dsRNA fragment, the most common 

size of dsRNA fragment present in C. elegans, revealed a high degree of genetic diversity 

compared to the 2.8 kb and 12 kb dsRNA fragments (Park et al., 2004). 

In this study, we constructed a full-length cDNA clone from the 5.3 kb dsRNA 

fragment in C. elegans. Sequence analysis revealed three putative open reading frames 



(ORFs), which encoded either a coat protein or RdRp, and these ORFs showed some 

homology to that of viruses belonging to Totiviridae. Partial cDNA clones were 

coincidentally obtained from an additional dsRNA fragment in strain CKP and sequence 

analysis of these also showed some homology to the RdRp region of viruses in the family 

Totiviridae. The two fragments (Ce-dsRNAl and Ce-dsRNA2) had 56% and 50% 

sequence identities at the level of nucleotide and amino acid sequences, respectively, in 

conserved motifs of the RdRp regions. This implies coinfection by two distinctive 

totivirus-like dsRNA fragments occurring in one strain of C. elegans. Sequence data 

from both dsRNA fragments were analyzed for phylogenetic relationships to other known 

viruses. The presence of virus-like particles in the mycelium of strain CKP of C. elegans 

was also observed using transmission electron microscopy (TEM). 

4.2. Materials and Methods 

4.2.1. Fungal strain 

A dsRNA-containing strain (CKP) of C. elegans, originally isolated from 

chickpea (Cicer arietinum) near Pullman, Washington, U. S. A. in 1993 by W. Kaiser, 

was used in this study. It contained multiple dsRNA fragments ranging from 2.5 kb to 

6.8 kb in size (Bottacin et al., 1994). This isolate was maintained on V8 agar [V8A; V8 

juice, 150 ml; Bacto agar, 15 g; distilled water, 850 ml; ampicillin, 100 mg) either at 

room temperature (21 -23•‹C) or at 4OC for long term storage. Actively growing cultures 

were obtained by transferring fungal mycelium onto fresh V8A dishes or into 100 ml of 

potato dextrose broth (PDB, Difco, Detroit, MI). 



4.2.2. dsRNA isolation andpurlJication 

Extraction and purification of dsRNA was conducted as previously described 

(Park and Punja, 2003). Briefly, fungal mycelium of strain CKP grown in PDB for 2 wk 

was harvested through MiraclothB using vacuum filtration and homogenized with a 

mortar and pestle in 2X STE buffer. After extraction with phenol, dsRNA was further 

purified by chromatography on CFl 1 (Morris and Dodds, 1979) and low-melting agarose 

gel electrophoresis. The purified dsRNA was dissolved in DEPC-treated water and used 

for the production of cDNA clones. 

4.2.3 Development of full-length cDNA 

A partial cDNA clone from a 5.3 kb dsRNA fragment in strain CKP was obtained 

previously by RT-PCR using random primers (Park et al., 2003). Several dsRNA- 

specific primers were designed based on the sequence of the partial cDNA clone and used 

for RT-PCR with random primers to extend the partial cDNA fragment. The primers 

used for this study are listed in Table 8. RT-PCR was performed according to the method 

previously described by Park et al. (2004). RT-PCR products of high molecular mass 

were purified from a 1% agarose gel using the Qiagen gel-extraction kit (Qiagen, 

Chatsworth, CA), and cloned into pCR2.1 -TOP0 vector using the TA cloning kit 

(Invitrogen) according to the manufacturer's protocol. To obtain cDNA clones for the 

terminal regions of the 5.3 kb dsRNA fragment, the rapid amplification of cDNA ends 

(RACE) kit (Roche, Indianapolis, IN) was used according to the manufacturer's protocol. 



TABLE 8. Primer sequences used to develop cDNA clones from a 5.3 kb dsRNA in strain CKP of C. elegans 

Primer Sequence (5' to 3') Length (nt) 

6A1-F TTCAGTGTCCATTTGTGGGA 20 

6A1-R GAGGTGCCGTAGACAGCGTA 20 
C2D-GapF 1 TTATCACCGGGCTGAGTTTT 20 

C2D-GapR1 GCGTGCAGCTTCTTCATAAAC 2 1 

CV1-F1 GCATTCATACGTTAGGCCGT 20 
CV1-R1 GCACTGACGTTAGAGCACCA 2 0 

5'-1 TACCTGCGGAAAGCAGAGTC 20 

5'-2 GCGATGACACCAGACAAAAA 20 

5'-3 CCGTCGAGAACAGAATGTGA 20 

3'-1 TCACCCGTAGAGGTTATGGC 20 

3'-2 CAACGGAGAGCTCATGACAA 20 

3'-3 GACAAACTGAAAAGGGCGTC 20 



RT-PCR products for both 5' and 3' terminal ends were run on a 1% agarose gel, gel- 

purified and cloned into TOP0 vector as described above. 

4.2.4. Northern blotting 

Northern blot hybridization analysis was performed as described by Park et al. 

(2004). The dsRNA fragments in a 1% agarose gel were treated with 0.2 N HC1 for 

depurination, denatured with 50 mM NaOH and 1.5 M NaCl, and neutralized with 1 M 

Tris, pH 7.4, and 1.5 M NaC1. DsRNA was transferred to a nylon membrane by 

overnight capillary action in 10X SSC and the DIG DNA labeling kit (Boehringer 

Manheim, Germany) was used for detection following the manufacturer's protocol. 

4.2.5. Sequence analysis 

Twelve dsRNA-derived cDNA clones were sent to the sequencing lab NAPS unit 

at the University of British Columbia, Vancouver, BC and sequenced with either M13 or 

dsRNA-derived primer sets. Based on their sequences, the partial cDNA clones were 

aligned using the Bioedit program to generate a full-length sequence of the 5.3 kb dsRNA 

fragment. Sequence comparison were performed with the BLAST program 

(htt~://www3.ncbi.nlm.g;o~/BLAST). In addition, multiple sequence alignments and 

phylogenetic analysis were performed using CLUSTAL W (Thompson et al., 1997) and 

dendogram were drawn with the TREE View program. 



4.2.6. Transmission electron microscopy (TEM) 

Strain CKP was inoculated onto V8A and incubated at room temperature for 5 

days. Several samples of agar blocks, that included the actively growing margin of 

colonies, were selected and prepared for transmission electron microscopy in the Bio- 

imaging lab at the University of British Columbia (Vancouver, Canada). Briefly, each 

sample was fixed using glutaraldehyde and frozen in a Baltec HPM 10 high pressure 

freezing machine for 5 days. High pressure frozen samples were further processed for 

infiltration and embedding with resin using transfer baskets. Each sample was ultra thin- 

sectioned with a Leica Ultracut ultramicrotome, stained with 2% uranyl acetate (12 min.) 

followed by lead citrate (6 min.) and viewed with a Hitachi H7600 TEM at 80 kV. 

4.3. Results 

4.3.1. Development and sequence analysis of cDNA from 5.3 kb dsRNA 

RT-PCR with random primers amplified several cDNA clones, ranging in size 

from 500 bp to 1.2 kb of the 5.3 kb dsRNA fragment in strain CKP. These cDNA clones 

(1 2 in total) were initially characterized by Northern blot hybridization analysis to 

confirm that they were derived from dsRNA in strain CKP (Fig. 19). Based on the 

sequence information from the 12 clones which hybridized to the 5.3 kb dsRNA fragment, 

several dsRNA-derived primers were designed (Table 8). These primers were used to 

amplify additional regions which were not amplified by RT-PCR using random primers. 

Up to five cDNA clones (lA, 6A, CIC, C2D, C7) were obtained to cover most of 

the region of the 5.3 kb dsRNA fragment in strain CKP and were aligned with each other 

based on their sequence overlap (Fig. 20A). RT-PCR following the manufacturer's 



Fig. 19. Gel electrophoresis and Northern blot analysis of the 5.3 kb dsRNA in strain 

CKP of C. elegans. The dsRNAs were electrophoresed on a 1% agarose gel (lane 2) and 

used for Northern blot analysis with either C2D (lane 3) or C4B (lane 4) probes, derived 

from two dsRNA fragments, Ce-dsRNAl and Ce-dsRNA2, respectively, in strain CKP. 



A Ce-dsFWAl (5,310 bp) 

CIA (2.8 kb) 
C2D (800 bp) - 

5' - - 3' 

C6A (2.8 kb) C-7 (650 bp) 

C4B (500 bp) 

GAP2 (640 bp) 

Fig. 20. Schematic representation of alignments of partial cDNA clones (A) derived 

from two dsRNA fragments (Ce-dsRNA1 and Ce-dsRNA2) in strain CKP of C. elegans 

and potential genomic organization of Ce-dsRNAl (B). CP=coat protein and 

RDRP=RNA-dependent RNA polymerase. 



Fig. 21. The complete cDNA sequence of Ce-dsRNAl. The shaded sequences show the 

conserved motifs (I-VIII) of RNA-dependent RNA polymerases (RdRp) of dsRNA 

viruses. 

CGAAAAACAAGCGATGAACAGAACGTGCCCCAGCTCTTACCGTCCCTGTTTTTCTGGGTTGCGCACCTCCATCCG 
GGTGCGTGCTTCCGTAGACATCTAATTTTAACCGAATTAGGCAAGTCCGGTCCACGTGGAAGTGGGAAATGTTATGCTAC 
TCTGTGTCTTCCAAACACTAGGTTGTCCGCGGCTCCGAAAGAAGCTACTCGGGACCGAAAAGGCGTTAGCAGTATGTGGT 
AGGAGGGAGGCGGGAGACCGCTCCGTTGATCATCACATTCTGTTCTCGACGGCATAACTTTACACTTTTAAAACACTTTA 
AACCGCTGCTTCCSA GAGGCTACTTCTCTTAACCATTTTTTGTCTGGTGTCATCGCCGCCCCTAAAGGTGGACGTTTGG 

M E A T S L N H F L S G V I A A P K G G R L  
++ o w 1  

CCGAAGACTCTGCTTTCCGCAGGTACCGTGCCCACGTCCGcAccAccGccAcTATTGGcGGTAAcAcGGAcGcccGTAA 
A E D S A F R R Y R A H V R T T A T I G G N T D A R N  

CGCGTTCATCCGCTACGAGGTTGGACGCTCTAGCGGTAAACGCGGCCAGCTACTTGCTGCCCCCCCGGACGACTCTCGT 
A F I R Y E V G R S S G K R G Q L L A A P P D D S R  

CGTATTGAGGCGTCCTACCCGACCAATGCCGTGCTGGCCGAGGACTTTCTGGGACTCGCAAAGAAGTATTCGAACTTCT 
R I E A S Y P T N A V L A E D F L G L A K K Y S N F  

CTGCCCAGTTCCAGTTTTCGTCTCTGGCCGCAGTCGCTGAGCGTCTAGCTAAAGGCCTCGCTGTCCATGCAACCGTTGC 
S A Q F Q F S S L A A V A E R L A K G L A V H A T V A  

CGACGTGGATTCTGTTGCGCTGCGTGGTGGTGCCCCCCTGATTGTGGcAGGTcTTGGcAcTTAcGAcGGAccGATcmT 
D V D S V A L R G G A P L I V A G L G T Y D G P I N  

AGCTTGATCAGTTCGGTTTTTATCCCCAGACTGGTCAACACGTGTTGACTGGTGATGTCTTTTCCGTGCTAGCCAACG 
S L I S S V F I P R L V N N V L T G D V F S V L A N  

CGATTGCCGGGGAAGGTGCCTCCATTGCAACCGACATTGCCGAGATCGACCCCTCCACCCGCCAGCCTGTCATACCTGA 
A I A G E G A S I A T D I A E I D P S T R Q P V I P E  

GGTTGATGGAGACGGTTTCGCTAAGGCGGCTACTGAGGCACTCCGCATCGTTGGAGCTAACATGGCTCAGAGTGACCAA 
V D G D G F A K A A T E A L R I V G A N M A Q S D Q  

GGTTTGCTGTTCTCGCTCGCTGTAACCCGTGGCATCCACTCGGTTGTGTCGTGGTTGCCCACAGCGATGAAGGCGGCAT 
G L L F S L A V T R G I H S V V S W L P T A M K A A  

TACTAGGGATCTGTTGCGTGTGGACGTTTCAGTGTCCATTTGTGGGATTCATTACTGGCTCGAAGTTACACGGGCCTCC 
L L G I C C V W T F Q C P F V G F I T G S K L H G P P  

GAGTCTCTTGTCCACAGTATCCCGCAGTGTGCTGCTTTGTAGATGCCATTGCACCGACCCCGCTGCCGCAGTTGCTCCT 
S L L S T V S R S V L L C R C H C T D P A A A V A P  

TCTGACCCGGGTGAAAACTACAACGGTGAATGGTTCCCCACCTTCTACTCTGGTACGAAGGGCGGTGATCCTACTGTGC 
S D P G E N Y N G E W F P T F Y S G T K G G D P T V  

GTCCGGGTGGGGATTGTCCTGGGAACTCCGAGACTTCTGGCCGGATTCGCTCTCAGCTACTTGCTGATTGCGAGAAGTT 
R P G G D C P G N S E T S G R I R S Q L L A D C E K F  

CTTTAGGAACTATATTCCAGCCCTCGGTCGTATCTTTGGACTGACTGGTTCGCCCAACCTGGCAGTCACTGTCGCTGTT 
F R N Y I P A L G R I F G L T G S P N L A V T V A V  

GGAATGAGTCGGTTTCTTCACGCCGATCCGAGACACCTCCGCTACGCTTCCGTAGCTCCTTGGTACTGGATAGAGCCAA 
G M S R F L H A D P R H L R Y A S V A P W Y W I E P  

CTTCTTTGCTGCCGTCTGATTTTCTTGGATCTGTGGCCGAGATGAATGGCTCTGGTAGTTTTGGTGGTAAGGATAGTAC 
T S L L P S D F L G S V A E M N G S G S F G G K D S T  

CAAGACGAAGTTAGCCTGGGAGGATATAGAGTTGGCGGGTGACCGTGACACTACTTTCTCCGCCTACAGGGCCAAGTTT 
K T K L A W E D I E L A G D R D T T F S A Y R A K F  

CTGTCGCCGCGCCGTGCTTGGTTCATGGCTCATTGGAATGCGGCCTTGGTTGCATCCGCCTCCGTC 
L S P R R A W F M A H W N G H P D N G L G C I R L R  



AAGCTGATCCTAACGGATTTATTCATCCGGGGCGTGGCACGAGTGGCGCTGATTTGCGCGACCGCTTGGAGGATGACGC 
Q A D P N G F I H P G R G T S G A D L R D R L E D D A  

TCCTATCTCCGACTATCTGTGGGATCGTGGTCAGAGTCCGTTTTGCGCTCCTGGTGAGCTGCTAAATCTCGGCTCGACT 
P I S D Y L W D R G Q S P F C A P G E L L N L G S T  

ATTGGTTTCCTCGTCCGTCATGTAACTTTTTGATGATGATGGGATTCCCACTACTGAGCATGTCCCAACGTCCCGCGAGT 
I G F L V R H V T F D D D G I P T T E H V P T S R E  

TCCTGGACACTACTGTTACGATTGAGGTTGGCAGACCTTTGTCCATTTCAATCGGCAAGAGTAACTGTCCAGACTCAAA 
F L D T T V T I E V G R P L S I S I G K S N C P D S K  

GGCCAGGCGCGCTAGAACTCGCGCCACGATCGAGTTGGGCGCTGCGTCGCGCCGTGCTAGGGCTTTTGGTTCGGCCGCT 
A R R A R T R A T I E L G A A S R R A R A F G S A A  

GTTGCCGAGATGCCTACGCTGTCTACGGCACCTCGCGCATTGACTTTTGCTCCGTCGCGTCTGATGGTCAAAGACACTG 
V A E M P T L S T A P R A L T F A P S R L M V K D T  

GCGGCGGTGCTGGTAGCTCCAGACATGGCGCTGATTCTGGCGGCAGTGGGGCCGATGATGCTGCTAGGAAAGCAGATGG 
G G G A G S S R H G A D S G G S G A D D A A R K A D G  

AGTGCCGGTTCGGGCAACAGCGCACAACCAACCTGTACGCTTCCCGACACTCGCCAAccccAcTGGcccTAcGcGTTcc 
V P V R A T A H N Q P V R F P T L A N P T G P T R S  

TCGGCTGCGCCTGCTGCTGCCGCCCGCGACCAGTCGGCTGGTGGTCCGTCTGTCGATATTGTGCGCAGTGGTGGTGATG 
S A A P A A A A R D Q S A G G P S V D I V R S G G D  

CCGCGTCTGAAGTCGGCAGTGATGTCGCCCCGGCGCCCGCCCCTGGTGTAGAGTCTGGTGTAGTATCTTCTTCTGTGGC 
A A S E V G S D V A P A P A P G V E S G V V S S S V A  + 
TGCCCCCACT~~AGGGCCGAAACGATGTCTAGATACGAGGAATTCGGCCATCTTGGCAAGTACTTGAGCGACTTGCT 
A P T N E G R N D V *  

M R A E T M S R Y E E F G H L G K Y L S D L L  

GACTGAATTC Pw2 TGAATGCTTGCCCCCCCTACCTGGTACTGACTTAATGGAACACCTCTCTGCCCTGACTTGGGCTGCG 
T E F N E C L P P L P G T D L M E H L S A L T W A A  

CCTGCTCTAATGGATAGACATGTGGCTTTGCCCGCCGCCGTGTCACTACTTCTGTTAGAGTTCCCATTGCAGATGGACT 
P A L M D R H V A L P A A V S L L L L E F P L Q M D  

ACAAACCTGAATTTGCTGTCCACCTTGCTTTACACTCTTTTGATTTTTCTTTCGTTGGGCAACCTTTTGATTTTAATGT 
Y K P E F A V H L A L H S F D F S F V G Q P F D F N V  

TTTTAATAATGATTGTCGGCGTTGCTCGCAAAATGCACCAGCGTCTTGCAAAGGCAACAAGGATCCTGCTAAGGGATGT 
F N N D C R R C S Q N A P A S C K G N K D P A K G C  

GAGCATAGACGGACTGCGGCCTATCGTAGTAAGAGGAAACTAGGCCTCCAAAGCAAGGGTTACTACTCTTGGCTGGGGC 
E H R R T A A Y R S K R K L G L Q S K G Y Y S W L G  

ACCGTGCTGCGTCTGACTCGATTTTTAGGGATACCCTGTTCCCCAAGAANAACTTCGGCGCCGCCAGTGTAAAGGTTAA 
H R A A S D S I F R D T L F P K K N F G A A S V K V N  

C G T A C A C C T G G G C C C C T T A C T C C G C G C G G T T A T G T T T G A A T T A T T G T C T T T G T T A  
V H L G P L L R A V M F E L G S A R L G E L L S L L  

GAAGCCGGGATGTATGCAGACGTTGTATGTTCTTACATACTATACGCACTGACGTTAGAGCACCACATCGGTAGTCGTG 
E A G M Y A D V V C S Y I L Y A L T L E H H I G S R  

GAGTTCATATAGCCGCCGCTATGGTCAGACAACCTGCCAATGCAAAGGGTTTAAGTAACGCCTGTAAGGCTCTGGGCCT 
G V H I A A A M V R Q P A N A K G L S N A C K A L G L  

TAATGCTACTTTTCCTGGCGCGATGTTGGTAGAAGGCATATCCTTACAAGGACGTGGCTGTAAAccAGTTGAccTGGcA 
N A T F P G A M L V E G I S  C K P V D L A  

I 
GATGAGCTATACAAGCGGACTGATCCAGTGGGTGTTCAGGAGCAAGTGCTCCCGTTGAGTGATGATTTGCGGCGAGCGA 
D E L Y K R T D P V G V Q E Q V L P L S D D L R R A  

TTGATGCGACGATAGAGCATGAACTGCCTGTGGGCGAGTTGCCTGATATGGAGGAGTGGTGGTCATCGAGGTGGTTGTG 
I D A T I E H E L P V G E L P D M E E W W S S R W L ~  



GTGTGTTAATGGTAGCCAGAACAGGTCCAGTGATGCTGCATTAGGACTTGATCACGTCCCCAGTGATTTGCTTGGTTCT 
S S D A A L G L D H V P S D L L G S  

I  I 
CAGAGATACCGGCGAATGGCTGCTGAAGAGGTCAGTCTTAATCCTATTTACGCCTGGGATGGATACACCGAGGTTTCGT 
Q R Y R R M A A E E V S L N P I Y A W D G Y T E V S  

TCAGTGAGAAACTCGAGTGTGGGAAGAATCGTGCTATTTTTGCTTGTGATACGCGTTCGTATTTTGGTTTTTCGTATTT 
F  S  A C D T R S Y F G F S Y L  

GCTAGGGGAGGTACAGAAGAGATGGAGAAACTCTCGAGTTTTGTTGGATCCAGGGAAAAGTGGTTACCTCGGTTTGGCA 
L G E V Q K R W R N S R V L L D P G K S G Y L G L A  

AGGCGTCTGTTGCGCGGTTCGGTACGTGGGGGTGTTAACTTAATGTTGGACTATGATGATTTCAACTCTCATCACTCTA 
R R L L R G S V R G G V N L M L  

---i IV 
TAGAGACGATGAAGTATGTTTTTCTGAAGACGGCCTAACGTA~AATGCCCCTTCCTGGTATACGGAGAAAATTGTTAG 
I E T M K Y V F L K T A *  M N A P S W Y T E K I V S  

OW3- 
TTCTTTTGACAAGATGTGGATCGTCAGAGGTAGTGAAAGGTTACACGTCCTCGGCACTTTGATGAGTGGGCATCGCGGT 

S F D K M W I V R G S E R L H V L  
v 

ACTACACACATTAATTCAGTACTGAATGCTGCTTACATAAGGATGGCCTTGGGTAACGCGTATTACGACAAAATACTAT 
IT T . H  Y ' N  S V L W A ' A " " ' A . Y .  tl R  M  A  L G N  A  Y Y D  K I L 

CACTCCACACAGGTGATGACGTTTACATGCGCCTTGACACTTTAGGTGACTGTGTCCGTGTGTTGCGTGCTTGTCATGG 
S  L  R L D T L G D C V R V L R A C H G  

v I  
CGCTGGCTGCAGGATGAATCCATCTAAGCAATCAATCGGTTATCACCGGGCTGAGTTTTTAAGAATGGGTGTCAACTCT 

A G C R M N P S K Q S I G Y H R A p ~ q G V N S  
VI I  

CAGTATGCTGTGGGATACTTGTGCCGTGCGCTGCCGTCACTCGTTTGTGGTAATTGGGTTGGAGCGGGGAGTGACGATC 
Q Y A V G  L P S L V C G N W V G A G S D D  

VIII 
AGCTGGAACTGGCGAGGTCACTGGTTGGTTCTGTGCGGGGTGTGATTAACCGTGGTATTCCACGTATATGTGTTCGTTT 
Q L E L A R S L V G S V R G V I N R G I P R I C V R L  

GCTTGCACGCTCTTTAAGCGCTTTCCATCGCTTTAAACTGGGACTCGCGATCGACCTCTTGGAGGGATCTGTATCCATA 
L A R S L S A F H R F K L G L A I D L L E G S V S I  

GAGGGATCACCATGTTGGGCGCGTGATAATAAGATCCGTAATGTCTGTCCGAGACTTATAGAACCACCTGATAAAATAG 
E G S P C W A R D N K I R N V C P R L I E P P D K I  

GTATCGGAATAGATTGGGGTAGGTACGCTACGCGTGACTTCTTGACCAACCACCTCTCACCCGTAGAGGTTATGGCGAT 
G I G I D W G R Y A T R D F L T N H L S P V E V M A I  

CAAGGCGTCTGGAGTTAACCCTGAGTTGATCATGTTGCAGTCTAGTTATTCTAAAGGCGTGCAACGGAGAGCTCATGAC 
P E L I M L Q S S Y S K G V Q R R A H D K N V S L G  

AAAAACGTCAGTTTGGGAACACTACTGGATACTAAGAACGTCAAAACTAGGGTTGTTCACGGGGTTGCGCTTGCTGGAG 
T K A S G V N L L D T K N V K T R V V H G V A L A G  

ACTTGGTGTCTAGACAAACTGAAAAGGGCGTCTTTTCAATGCACCCTGTTCTCCACCTGCTTmAAATGCCTTGAGTGA 
D L V S R Q T E K G V F S M H P V L H L L K N A L S D  

CAGCGACTTACGCTCGCTCCTGGCTTCTGTGGGAATCGATGCTGGTCGTCGTGACCCCCGAGTCGTCTGCTTCGGTCCG 
S D L R S L L A S V G I D A G R R D P R V V C F G P  

GATAGCAAATCTGTCAATATTGTTGGTACTTTGCCTTACTCGGATGCTGCTTCGCTCGCTAAGAGGACAAACAGTGATA 
D S K S V N I V G T L P Y S D A A S L A K R T N S D  

CTATAGGAGTGTCGCTGCCAGTGTATCTTTAGATACTGCCTCTAAAATACCACCCTTAATTGGGTGCGACTTATTGGTC 
T I G V S L P V Y L *  

CCCTCGGGGACCCATGC 



protocol using RACE kits with several dsRNA-derived primers generated four clones to 

cover the 5'- and 3'- end sequences. These additional clones were sequenced and used to 

construct the full-length cDNA sequence of the 5.3 kb dsRNA. The alignments of partial 

cDNA clones are represented in Fig. 20 and the full-length clone is designated as 

Chalara elegans dsRNA 1 (Ce-dsRNA 1 ). 

The complete nucleotide sequence of Ce-dsRNA1 was 5,3 10 bp long and is 

deposited in GenBank under accession number AY561500. The nucleotide composition 

of Ce-dsRNAl was 20.2% A, 25.0% C, 27.5% G, and 27.1% U. Sequence analysis 

revealed the presence of three large putative open reading frames (ORFs) on the full- 

length positive sense strand of Ce-dsRNAl (Fig. 20,21). The putative ORF 1 was 

initiated at the W G  codon at nucleotide position 329 (underlined) and was terminated at 

the UAG codon at nucleotide position 2,641. ORFl can encode a protein of 770 amino 

acids with a predicted molecular weight of 80.71 kDa. Homology search with the amino 

acid sequence revealed that the putative protein encoded by ORF 1 has significant 

homology to the coat protein region of other mycoviruses belonging to the family 

Totiviridae (Fig. 22). The highest homology of OW1 was to the coat protein of 

Spharopsis sapinea RiVA virus 1 (SsRVl), with 45% identity. Amino acid identities 

between ORFl of Ce-dsRNAl and other selected viruses in the family Totiviridae were 

compared and are listed in Table 9. Amino acid identities ranged from 33% to 45%, 

indicating that Ce-dsRNAl in C. elegans is related to viruses in the Totiviridae. 

The overlapping region between OW1 and the putative ORF 2 was 22 

nucleotides long and O W  2 was in the +1 frame relative to ORFl (Fig. 20,21). O W  2 

started at the AUG codon at nucleotide position 2,619 and terminated at the UAA 



TABLE 9. Sequence identity comparison (%) of the entire coat protein 

and RNA-dependent RNA polymerase of Ce-dsRNAl to other dsRNAs in Totiviridae . 

Capsid protein RdRp 

CmRV 33 3 1 

GaRVLl 

Hv l9OSV 

SsRVl 

CmRV=Coniothyrium minitans RNA virus ; GaRVL1 =Grernrneniella abietina RNA virus L1; 

Hv l90SV=Helminthosporium victoriae 190s virus ; SsRV 1 =Sphaeropsis sapinea RNA virus 1 ; 

SsRV2=Sphaeropsis sapinea RNA virus 2. 



Fig. 22. Comparison of deduced amino acid sequences of the coat protein region of Ce- 

dsRNAl to known dsRNA viruses in Totiviridae. CmRV=Coniothyrium minitans RNA 

virus, Hvl90SV=Helminthosporium victoriae 190s virus, SsRV 1 =Sphaeropsis sapinia 

RNA virus1 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV19OSV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

MEATSLNHFL SGVIAAPKGG RLAEDSAFRR YRAHVRTTAT ---------- --IGGNTDAR 
RFLASAASPL TGTVAGISAG TIGQDNQYRR YRAGLTIGVH ---------- --EHGSYTQA 
MSHTTITNFL AGVIARPQEE TLLAT---KR SDVIGQLCAP ---------Q PLSAGNEDSR 
MEHALRNAFL AAVIASPRGG TLLTAPTKKG KEKKAPLATY RRYRANIRTE STIAGNVDAR 

* : . . : *  . 
NAFIRYEVGR SSGKRGQLLA APPDDSRRIE ASYPTNAVLA EDFLGLAKKY SNFSAQFQFS 
RRSIFYEVGR RYGRLTDALG PHGAEAVPID ASVRINAAEA ANFEGFARKF SNFSPQWLTM 
TTSIFHEIGR AVNTKGKALA VAGMEAPLVE ASYPTNAVLV EDFIGLAKKY TNFSATFEYS 
VAGIQYEIGA RYERVGEAFA PVPEEQVLFE AAYPSSAALA EDFVGFARKY SNFSATFAHS 

* : * : *  . . .  . :  * :  . * .  . . *  . * : * : * .  . . * * * .  . : 

SLAAVAERLA KGLAVHATVA D--VDSVALR GGAPLIVAGL GTYDGPINSL ISSVFIPRLV 
DLCGIAERLA KGVAAQSVYG G--VNIVNLR GHLPVRVVAL GTLDSPQTAS NNSVFIPRTV 
SLAGVVERLA RGLALVASLK TSRVP--1CW GNNPLAVHAL ATYDGPVNSL TSAVFIPRLV 
SLAGLVERVA RTLGALTVFP SGTFDQDAIR GGRPLMIAAL GTLDGPVNSL AGSVFIPRLV 
. * . * : . * * : *  . . . .  . . * * :  : . *  . *  * . *  . :  . . * * * * *  . * 

NNVLTGDVFS VLANAIAGEG ASIATDIAEI DPSTRQPVIP EVDGDGFAKA ATEALRIVGA 
DTVGNDHVFA VLAAAANGEG AAVSTDVLRL DANTNEPVIP AVSGPSLASA CIEALRIVGA 
NNALTGDVFA VLCNCVAGEG GTVVTDTIEL DANTRQPIVP EVGPLGVPGA IVDALRLLGS 
DSVISPDVFT ILINAAAGEG SRVITDVLEL DATTRRPIVP TLRDSSMLLP CVEALRILGA 
. . .  . . * * :  : *  * * *  . : * *  . :  * . . * . . * : : *  . . .  . . * * * :  : * :  

NMAQSDQGLL FSLAVTRGIH SVVSWLPTAM KAALLG-ICC VWTFQCPFVG FITGSKLHG- 
NMEASGAGDL FAYAVTRGIH AVVSVVAHTD EGGYMRALLR HGRFRVPYGG INQALRDYPA 
NMIASDQGPL FALALTRGIH RVLSVVGHTD EGGIVRDLLR CGGFGLPFGG IHYGLEEYSG 
NMAACDQGPL FAFALVRGLN AVLSLVGHTD EAGVTRDIFR VSGFDIPFGG IHFGLEPYAG 
* *  . .  * * * :  * : . * * : :  * : *  : : : . .  * * : * :  . . :  

-PPSLLSTVS RSVLLCRCHC TDPAAAVAPS DPGENYNGEW FPTFYSGTKG GDPTVRPGGD 
LPAAGALATH VISSWVDAIA LKTAAVVAHS DPCVIASGGL YPTVFTSSQG DITPPGTDEG 
LPALQFNSAA ATAAYVDGIA LVTAAVVAHA DPGERYNGEW FPTFFDGTTH ADTMRRSGDS 
LPAVASNAGA DACCYVDALL MTSGALVAHC DPGQEYGGRW FPTVLQGTGP DTAEVRPGQS 
* .  . . * * *  . * *  . *  : * * .  . :  . .  . 

CPGNSETSGR IRSQLLADCE KFFRNYIPAL GRIFGLTGSP NLAVTVAVGM SRFLHAD--P 
DSPTDADARA IGRQIAGDLG RFAPTFMAGL LRIFGLQTSS QVAEAHFCTV GGMYLSENVD 
TEGTAAMADR NRATVACPQQ LFWRPYITAL GACFSTAGDI SVAERFQCAA SHSLGAD--P 
QEGTADMANR NRGLLASSMP RFAEHYARGL GRLFAIEGDA RIVVNILSAS ARLLPDN--C 

* : . *  * .  . . 

RHLRYASVAP WYWIEPTSLL PSDFLGSVAE MNGSGSFGGK DSTKTKLAWE DIELAG-DRD 
RHLRHKTVAP YEWVEPTSLI EVGFLGSTAE TAGFGSLVTP GDQAMIPTFE RVREMDRGRN 
RHLRLPSVAP YEWIEPTGLI PHDFLGSVAE EEGFASYCWR DTTRTRPAWD SIVLSG-PRD 
RHLRYPSVSP YFWVEPTSLL PPDFLGTAAE LNGCGSLAMR GTSRTRQAWE DIERVG-DED 
* * * *  : * : *  . . * . * * * . * :  . .  . * * * :  . * *  * . *  . . .  . . . .  0 . .  . 



Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HV190SV 
SsRVl 

Ce-dsRNAl 
c m v  
HVl90SV 
SsRVl 

Ce-dsRNAl 
CmRV 
HVl90SV 
SsRVl 

TTFSAYRAKF LSPRRAWFMA HWNGHPDNGL GCIRLRQADP NGFIHPG-RG TSGADLRDRL 
ANFSTIAFKM RTARTSGLVC AHAAAPTP-L AGLKLYQFDQ DSLILAGDQG PTNGDVPTKH 
TTFSAYHIRM KGARTAWFLA HWLGHPENGL GATRVRQLDP NAVLHPG-PC EGNEQVRDRV 
VTFTGYNVAM PFARSSWFLI HWLNHPANGL GALRVRQLDP NGVIHPG-PC ADNPDVRDRV 

. . .  . . * :  . *  : : :  * * . . .  . . . .  . .  * * : . . :  . *  

EDDAPISDYL WDRGQSPFCA PGELLNLGST IGFLVRHVTF DDDGIPTTEH VPTSREFLDT 
VAADPLSSYL WVRGQSAIPA PAEMINTQAS YAAKYKNITW DDDFEGTVSD LPKAWELEHD 
EADLPLTDYL WLRGQSPFPA AGELLNLTSE WGILFRHVTF TDDGDLNPEH LPAAHEMADT 
EASLPITDYL WVRGQSPFPA PGEFLNLTGT LGLLARHLTM DDDGIPTEEH LPTGREFRDT 

* : : * * *  * * * * * . :  * . . * : : *  . . . . . . . . . .  . . .  : *  . * :  . 

TVTIEVGRPL SISIGKSNCP DSKARRARTR ATIELGAASR RARAFGSAAV AEMPTLSTAP 
TMWRVTVPTA FSVTGPSNYL DREARRARSR AAISLAQAAL RARAYGEANS PVIDVSNVPP 
TVTMTVGRPI GIAPGRYNAG DNQARRARTR ASVELSAASR RARVFGRPDV GEMPTLTSAP 
AVTVVAGRPV GLPNGAHNAY DSQARRARTR ATRELAASAA RARLYGRATV AEMPILTSAP . . * . . . . * * * : * * * * * : *  * :  . * .  : :  * * *  : *  . . . 
RALTFAPSRL MVKDT-GGGA GSSRHGADSG GSGADDAARK ADGVPVRATA HNQPVRFPTL 
TWDDERAPVV VFSDEIHTSD PGTAQGR--G IGNPPDVTAP VTGAPLVPIP HHQPLRGPPF 
APIPASPAYD GNRGGEAGGV TGRGNNRSAA PGHASWSERQ ADGVPVNVTP HHNALRAPPF 
VLRAAPPRPE AVNPMEGGGP GHDLARHSGM GRHTYPPDRE QRGDPAVPVP QHQALRAPQM . . . . . .  . . . . . .  * * : 

ANPTGPTRSS AAPAAAARDQ SAGGPSVDIV RSGGDAASEV GSDVAPAPAP GVESGVVSSS 
PRGAGVMGGG VAPPPPAGPG GPPAGPGPNP PPPPPPGGDG GDDAAAAAAV AGGDVHGAAG 
PRQQGAL-GG GGNVPLPPAP GAAPPPPPGP PNGPPAGPPP SDDGSSNPAA PVPTAIHAPP 
PRPG------ ----PNPQGG GVIPPPPPLP PSGGGDGSGP SSGGSCAQED TNPAPPVAP- 

VAAPTNEGRN DV 
ALPAPQV--- -- 
AAAQADRAEG Q- 
GPAQPDGPAN E- 



codon at nucleotide position 4,067. No overlapping nucleotides were observed between 

O W  2 and the O W  3. Only three nucleotides after the termination of OW2,  O W  3 was 

initiated at an N G  codon at nucleotide position 4,07 1 and was terminated at the UAG 

codon at nucleotide position 5,246. O W 2  and O W  3 encoded two putative proteins, one 

of which was 482 amino acids in length with a molecular weight of 53.66 kDa, and the 

other was 391 amino acids in length with a molecular weight of 42.7 kDa, respectively. 

Homology search of these two proteins revealed that both O W 2  and 0RF3 had 

significant homology to the RdRp of other viruses belonging to the family Totiviridae. 

The highest homology of both O W 2  and O W 3  was to the RdRp of SsR Vl with 4 1 % 

amino acid identity. Amino acid sequence analysis of both O W 2  and O W 3  revealed 

conserved motifs, which are found in RdRps in other dsRNA viruses of simple 

eukaryotes (Fig. 23). Both nucleotide and amino acid identities of O W 2  and O W  3 of 

Ce-dsRNAl were compared to RdRps of selected totiviruses and are shown in Table 9. 

The 5' UTR and 3' UTR regions were 329 bp and 66 bp long, respectively (Fig. 

20, 2 1). One short O W  was found upstream of O W  1 and potentially encoded for a 

polypeptide with 47 amino acid residues. However, analysis of secondary structure for 

this region revealed that it was highly structured (data not shown). By comparison of the 

optimal consensus sequence found in eukaryotic start codons of GCC*/&CAUGG, the 

context near AUG codon in O W  1 (UCCAUGG) was slightly better than that of 

upstream O W  in 5'-UTR (GUUAUGC) (Fig. 21) (Kozak, 1991). Therefore, the small 

ORF in 5'-UTR of Ce-dsRNAl may not be translated. For both 5'- and 3'-UTR regions, 

secondary structure analysis predicted the presence of a stem-loop structure, which has 

been observed in several other Totiviruses (Fig. 24). 



Ce-dsRNAl 
Ce-dsRNA2 
CmRV 
EbRVl 
GaRVLl 
GLV 
Hv190SV 
LRV1-1 
LRV2 - 1 
scv-L1 
ScV-La 
SsRVl 
SsRV2 
TVV 
TVVI I 

Ce-dsRNAl 
Ce-dsRNA2 
CmRV 
EbRVl 
GaRVLl 
GLV 
Hv190SV 
LRV1- 1 
LRV2 - 1 
scv-L1 
ScV-La 
SsRVl 
SsRV2 
TVV 
TVVI I 

I 
LQGRG 
LQGRA 
LLGRD 
LQGRG 
LLGRA 
LLGKV 
LQGRY 
LLGRG 
L RG RG 
LMNRG 
LENGV 
LLGRA 
LQGRA 
LLGRG 
LQGRG 

I1 
WCVNGSQNR 
WCVNGSHTP 
WAVNGAH SG 
WCVGGAHNL 
WAVNGAHSG 
WGTTGSGY I 
WCVNGSQNA 
WAANGSHSR 
WAANGGHSR 
WVPGGSVHS 
IMPGGSVHS 
WCVNGSQND 
WAVNGSQSG 
WSRSGSHYY 
WVKKGAHHH 

v 
TLMSGHRGTTHINSVLNAAYI 
TLMSGHRGITFVNSVLNAAYL 
TLMSGHRLTTYINSVCNEAYL 
SLMSGHRATTYWNSVLNAAYV 
TLMSGHRGTTFINSVLNKAYL 
GLPSGWKWTALLGALINVTQL 
TLMSGHRATTFTNSVLNAAYI 
TLMSGHRATSFINSVLNRAYI 
TLMSGHRATTFINTILNTAYL 
TLLSGWRLTTFMNTVLNWAYM 
TLFSGWRLTTFFNTALNYCYL 
TLPSGHRGTTIVNSVLNAAYI 
TLMSGRRGTTYISSVLNEVYL 
TLPSGHRATTFINTVLNWCYT 
TLPSGHRATTFINSVLNRAYL 
* * *  : : * 

I11 
EKLECGKNRAIF 
LKLEHGKSRAI F 
PKLEHGKTRAI F 
EKVEQGKGRAI Y 
PKLEAGKTRAI F 
EKPELTKVRAVI 
VKLENGKDRAIF 
AKLEHGKTRLLL 
QKLEHGKSRLLL 
TKYEWGKQRAIY 
TKYEWGKVRALY 
PKLEHGKTRAIF 
PKLEHGKTRAIF 
RKLEHGKERFIY 
PKLEHGKTRFIY 

VI 
HTGDDVYM 
HTGDDVY I 
HVGDDVY L 
HVGDDVLI 
HVGDDVYF 
VQGDDIAL 
HAGDDVY L 
HVGDDILM 
HVGDDVI F 
HNGDDVMI 
HNGDDVFA 
HTGDDVY I 
HVGDDVYL 
CAGDDVIL 
HTGDDVLL 

* * * :  

IV 
DYDDFNSHHS 
DYDDFNSHHS 
DYDDFNSHHT 
DYSDFNSQHS 
DYDDFNSHHS 
DQSNFDRQPD 
DYDNFNSQHS 
DYDDFNSQHT 
DFEDFNSQHS 
DYDDFNSQHS 
DFDDFNSQHS 
DFDDFNSHHS 
DYDDFNSHHS 
DYTDFNSQHT 
DYTDFNSQHS 
* : * :  : 

VII VIII 
EFLRM YLCRA 
EFLRM YLPRA 
EFLRV YLARA 
EFLRV YVARS 
EFLRN YFARA 
EFLRR YPARM 
EFLRL YLCRA 
EFLRV YLARV 
EFLRV YVARA 
EFLRV YLSRS 
EFLRV YLTRG 
EFLRM YLARS 
EFLRL YLARA 
EFLRK YPCRA 
EFLRL YPARA 
* *  * * * 

Fig. 23. Alignment o f  the deduced amino acids o f  the eight conserved motifs o f  RdRp o f  

both Ce-dsRNAl and -dsRNA2 to known totiviruses. CmRV=Coniothyrium minitans 

RNA virus, EbRV 1 =Eimeria brunetti RNA virus 1, GaRVL 1 = Gremmeniella abietina 

RNA virus L l ,  GLV=Giardia lamblia virus, Hvl90SV=Helminthosporium victoriae 190s 

virus, LRV 1 - 1 =Leishmania RNA virus 1-1, LRV2- 1 =Leishmania RNA virus 2-1, ScV- 

L1 =Saccharomyces cerevisiae virus L l ,  ScV-La=Saccharomyces cerevisiae virus La, 

SsRV l=Sphaeropsis sapinea RNA virus 1, SsRV2= Sphaeropsis sapinea RNA virus 2, 

TVV=Trichomonas vaginalis virus, TVVII= Trichomonas vaginalis virus II. 



Fig. 24. Potential secondary structures of both 5'- and 3'- ends of (+) strand of the Ce- 

dsRNAl in strain CKP of C. elegans. The putative folded structures of the 5'- and 3'- 

ends were obtained from the MFOLD program (Zuker et al., 1999). 



4.3.2. Partial cDNA clones of an additional dsRNA fragment in strain CKP 

During the initial RT-PCR with random primers, one additional cDNA clone 

(C4B), which was 500 bp in size, was coincidentally obtained during cDNA development 

from the dsRNA in strain CKP. Sequence analysis of the C4B clone revealed that it 

could not align with any part of Ce-dsRNA1, suggesting that this clone was not derived 

from Ce-dsRNAl. Northern blot hybridization analysis showed that the C4B clone could 

hybridize to the 5.3 kb dsRNA fragment, but not to any other dsRNA fragments present 

in strain CKP (Fig. 19). This suggested that this partial cDNA clone could have been 

derived from an additional dsRNA fragment which was very close in size to Ce-dsRNAl 

(Fig. 19). Based on the sequence information of the C4B clone, several dsRNA-specific 

primers were designed and used to extend this partial cDNA in both directions (Table 8). 

Four more cDNA clones (C IF, GAPI, GAP2 and 1.5F) were obtained, aligned with each 

other according to their sequences, and this clone was designated as Chalara elegans 

dsRNA 2 (Ce-dsRNA2) (Fig. 20). 

The partial nucleotide sequence of Ce-dsRNA2 was 2,336 bp long and is 

deposited in GenBank under accession number AY556461. Homology search with the 

deduced amino acid sequence showed a significant homology to the RdRp regions of 

Totiviruses. The highest sequence homology was to the RdRp region of SsRV 1, with 

45% amino acid identity. All conserved motifs which are present in the RdRp regions of 

other RNA viruses were also found in the deduced amino acid sequence of Ce-dsRNA2 

(Fig. 23). Both nucleotide and amino acid sequences of conserved motifs in the RdRp 

regions between Ce-dsRNAl and Ce-dsRNA2 revealed an identity of 56% and 50%, 

respectively (Fig. 25). 



Fig. 25. Comparison of the nucleotide (A) and deduced amino acid sequences (B) of 

conserved motifs of RdRp regions of Ce-dsRNA 1 and Ce-dsRNA2. 

-TACAAGGACGTGGCTGTAAACCAGTTGAccTGGcAGATGAGcTATAcAAGcGGAcTGAT 
TTACAAGGCCGCGCTACTGCATCTGTCGATCTCAAAGAGGAGATTCGATATCGTTGTGAC 

* * * * * * *  * *  * * * * * *  * *  * *  * * *  * * *  * * * *  * * *  

CCAGTGGGTGTTCAGGAGCAAGTGCT-CCCGTTGA--GTGATGATTTGCGGCGAGCGATT 
GCTGAGTCCGTCTCTAAACAGGTTCTGAATGTTGATCCTGAATCATTGAGACCTCATGTT 

* * * * *  * * *  * *  * *  * * * * *  * * *  * * *  * * * * 

GATGCGACGATAGAGCATGAACTGCCTGTGGGCGAGTTGCCTGATATGGAGGAGTGGTGG 
CGCGCGATTATTGAGTCTGAGGTCCAGTCTTGCAGCCTACCCCCTCTGGATAGTTTCTGG 

* * * *  * *  * * *  * * *  * * * * * * *  * * * * *  * * * *  

TCATCGAGGTGGTTGTGGTGTGTTAATGGTAGCCAGAACAGGTCCAGTGATGCTGCATTA 
TCTTCTCGCTGGTTATGGTGTGTTAACGGTTCGCATACCCCCGCTGCTTCGCAAGGTcTA 
* *  * *  * * * * * *  * * * * * * * * * * *  * * *  * *  * * * * * * *  

GGACTTGATCACGTCCCCAGTGATTTGCTTGGTTCTCAGAGATACCGGCGAATGGCTGCT 
GGCATTGATCACGATGTGTTTTCTTCAACACACACTCGTGTGTATcGccGcATGGcTGcA 
* *  * * * * * * * * *  * * *  * * *  * *  * *  * *  * * * * * * * *  

GAAG-AGGTCAGTCTTAATCCTATTTACGCCTGGGA-TGG-ATACACCGAGGTTTCGTTC 
GAAGTAAGGGAGTCAGAA-CCATTGTCTGATTGGAATTGTCGTGTCTCTGTGTCTCCTTC 
* * * *  * * * * * *  * *  * *  * * * * * *  * * *  * * * *  * *  * * *  

AGTGAGAAACTCGAGTGTGGGAAGAATCGTGCTATTTTTGCTTGTGATACGCGTTCGTAT 
-GCT-CAAGTTGGAGCATGGTAAGTCTCGCGCCATTTTcTcTTGTGATAcGcGATcTTAT 

* * *  * * * *  * * *  * * *  * * *  * *  * * * * *  * * * * * * * * * * * * *  * *  * * *  

TTTGGTTTTTCGTATTTGCTAGGGGAGGTACAGAAGAGATGGAGAAACTCTCGAGTTTTG 
TTTGCCTTTGAATGGTTACTGGGTACTCTCCAGAAAAATTGGGCCAATCGCCGCGTGCTT 
* * * *  * * *  * * *  * *  * *  * * * * * *  * * * *  * *  * *  * *  * 

TTGGATCCAGGGAAAAGTGGTTACCTCGGTTTGGCAAGGCGTCTGTTGCGCGGTTCGGTA 
TTGGATCCAGGTTTTGGTGGACACACAGGGATCATAGGTAGGAT-TAGGTCGTTCTCTm 
* * * * * * * * * * *  * * * *  * *  * *  * * * * * * * * *  * * 

ACGGAGAAAATTGTTAGTTCTTTTGACAAGATGTGGATCGTCAGAGGTAGTGMGGTTA 
G T T G A T A A A C T C G T T G C T T C G G T T T A T T C T T C T T T T A T T A C G A  

* *  * * *  * * * *  * * *  * *  * * * *  * * * *  * * * 

CACGTCCTCGGCACTTTGATGAGTGGGCATCGCGGTACTACACACATTAATTCAGTACTG 
C G C G T A T T A G G T A C T C T A A T G A G C G G T C A C C G C G G T A T A A C T C C G T T C T C  
* * * *  * * *  * * *  * * * * * *  * *  * *  * * * * * * *  * *  * * *  * *  * *  * *  



AATGCTGCTTACATAAGGATGGCCTTGGGTAACGCGTATTACGACAAAATACTATCACTC 
AATGCGGCTTATCTCCGGCATTCCCTCGGTCCCTCGTTATTCGACTCGCTTTCGTCACTT 
* * * * *  * * * * *  * * *  * *  * * * *  * * * *  * * * * *  * * * * * *  

CACACAGGTGATGACGTTTACATGCGCCTTGACACTTTAGGTGACTG-TGTCCGTGTGTT 
CATACAGGTGATGATGTCTATATTAACGCTGGTACACTTGATGAGTGCGGTTCGATTCTT 
* *  * * * * * * * * * * *  * *  * *  * *  * * *  * *  * * * * *  * *  * *  * *  * * *  

GCGTGCTTGTCATGGCGCTGGCTGCAGGATGAATCCATCTAAGCAATCAATCGGTTATCA 
G-ACGCTGCTCGTTCTTACGGGTGTCGGATGAATCCTACCAFlACAATCGATCGGTTATGT 
* * * *  * *  * * *  * *  * * * * * * * * * *  * * *  * * * * *  * * * * * * * * *  

CCGGGCTGAGTTTTTAAGAATGGGTGTCAACTCTCAGTATGCTGTGGGATACTTGTGCCG 
CGGTGCTGAGTTTTTGAGGATGGGTGTCTCTACAAAGTGTGTGCCTACGGATATTTACCTCG 
* * * * * * * * * * * * *  * *  * * * * * * * * *  * * * *  * * *  * * * * *  * *  * * 

TGCG 
AGCT 

* * 

LQGRGCKPVDLADELYKRTDPVGVQEQVLPLS-DDLRRAIDATIEHELPVGELPDMEEWW 
LQGRATASVDLKEEIRYRCDAESVSKQVLNVDPESLRPHVRAIIESEVQSCSLPPLDSFW 
* * * * .  . * * *  : * :  * * .  . * . : * * *  : .  : . * *  : * * *  * :  * *  . .  . *  . . . .  
SSRWLWCVNGSQNRSSDAALGLDHVPSDLLGSQRYRRMAAEEVSLNPIYAWDGYTEVSFS 
SSRWLWCVNGSHTPAASQGLGIDHDVFSSTHTRVYRRMAAEVRESEPLSDWNCRVSVSPS 
* * * * * * * * * * * : .  : : .  . * * : * *  . . .  * * * * * * *  . * * :  . .  . . * *  * 

EKLECGKNRAIFACDTRSYFGFSYLLGEVQKRWRNSRVLLDPGKSGYLGLARRLLRGSVR 
LKLEHGKSRAIFSCDTRSYFAFEWLLGTLQKNWANRRVLLDPGFGGHTGIIGRIRSFSKR 

* * *  . . . . . . . . . . . . . . . . . . . . . .  : * * . *  * * * * * * * *  . * :  * :  * :  * * 

GGVNLMLDYDDFNSHHSIETMKYVFLKTAMN--APSWYTEKIVSSFDKMWIVRGSERLHV 
GGVNLMLDYDDFNSHHSLPVMAMVYEEAAKGTDAPKWYVDKLVASVYSSFIKDGNRQRRV 
* * * * * * * * * * * * * * * * * :  . *  * :  : : *  * * * . * * . : * : * : * .  . . . *  * . . :  : *  

LGTLMSGHRGTTHINSVLNAAYIRMALGNAYYDKILSLHTGDDVYMRLDTLGDCVRVLRA 
LGTLMSGHRGITFVNSVLNAAYLRHSLGPSLFDSLSSLHTGDDVYINAGTLDECGSILDA 
* * * * * * * * * *  * . : * * * * * * * * : *  : * *  . . *  . * * * * * * * * * : .  . * * . : *  : *  * . . . .  
CHGAGCRMNPSKQSIGYHRAEFLRMGVNSQYAVGYLCRALPSLVCGNWVGAGSDD 
ARSYGCRMNPTKQSIGYVGAEFLRMGVSTKCAYGYLPRA---------------- 
. * * * * * * : * * * * * *  * * * * * * * * . : :  * * * *  * *  . . . 



4.3.3.  TEM analysis 

Putative virus particles were observed in strain CKP of C. elegans, which were 

not seen in mycelial tissue of another strain BK18, which does not contain Ce-dsRNAl 

or Ce-dsRNA2 (Fig. 26). Clusters of isometric particles were observed in the cytoplasm 

of actively growing hyphae of strain CKP (Fig. 26). The approximate size range of each 

particle was 35-45 nm in diameter, which fits into the size range of known Totivirus 

particles (Caston et al., 1997; Ghabrial, 1994). 

4.3.4. Phylogenetic relationships of Ce-dsRNA1 and dsRNA2 using the conserved regions 

of RdRp 

Genetic relatedness was analyzed by comparison of amino acid sequences of the 

conserved motifs in the RdRp regions of both dsRNA fragments in C. elegans (Ce- 

dsRNAl and Ce-dsRNA2) with other Totiviruses (Fig. 23,27). High amino acid 

sequence similarities among these viruses, including the two dsRNA fragments in C. 

elegans, were found in the conserved regions (Fig. 23). A phylogenetic tree was 

produced based on multiple alignments of conserved motifs of RdRps. This showed that 

both dsRNA fragments (Ce-dsRNAl and Ce-dsRNA2) in C. elegans were more closely 

related to those Totiviruses which can infect filamentous fungi, such as SsRVl, SsRV2, 

and Hv190SV, than to other Totiviruses, such as ScV-Ll, UmVHl and GLV, which are 

present in yeast, the smut fungi and protozoa (Fig. 27). 



Fig. 26. The presence of virus-like particles in strain CKP using transmission electron 

microscope (TEM). (A) Location of virus-like particles (arrow) in the cytoplasm of 

mycelium of strain CKP. (B) An enlarged view of virus-like particles. Each scale bar 

represents 500 nrn in (A) and 100 nrn in (B), respectively. 
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Fig. 27. Phylogenetic relationships among the conserved motifs of RdRps of both Ce- 

dsRNAs (dsRNAl and dsRNA2) and other known totiviruses. Values for bootstrap 

replicates (out of 1000) are indicated. CmRV=Coniothyrium minitans RNA virus, 

EbRV 1 =Eimeria brunetti RNA virus 1, GaRVL 1 = Gremmeniella abietina RNA virus L1, 

GLV=Giardia lamblia virus, Hvl90SV=Helminthosporium victoriae 190s virus, LRV 1 - 

1 =Leishmania RNA virus 1-1, LRV2- 1 =Leishmania RNA virus 2-1, ScV- 

L 1 =Saccharomyces cerevisiae virus L1, ScV-La=Saccharomyces cerevisiae virus La, 

SsRV 1 =Sphaeropsis sapinea RNA virus 1, SsRV2= Sphaeropsis sapinea RNA virus 2, 

TVV=Trichomonas vaginalis virus, TVVII= Trichomonas vaginalis virus II. 



4.4. Discussion 

Isometric dsRNA mycoviruses (35-45 nrn in size) are currently classified into two 

families, Totiviridae and Partitiviridae (Ghabrial et al., 1995). Partitiviridae viruses 

have two genome segments, ranging in size from 1.4 to 3.0 kb, and a single coat protein 

subunit, ranging from 42 to 73 kDa in size. Totiviridae viruses have a single genome 

segment ranging in size from 4.6 to 6.7 kb, and a single coat protein subunit ranging from 

73 to 88 kDa in size. In this regard, both the genome fragment size (5.3 kb) and 

molecular weight of the coat protein (80.71 kDa) of Ce-dsRNAl in C. elegans are similar 

to those of Totiviridae, indicating that Ce-dsRNAl may belong to this group. 

The size of the overlapping region between OW1 and O W 2  in Totivirus can be 

quite variable. Some Totiviruses, such as ScV-L-A (1 30 nt), LRV 1 - 1 and LRV 1-4 (71 

nt each) and GLV (1 22 nt) have relatively long overlapping regions; while other 

Totiviruses such as SsRVl, SsRV2 (2 nt), CmRV (4 nt) and Hv190SV (overlap directly), 

have short or direct overlapping regions, (Cheng et al., 2003; Huang and Ghabrial, 1996; 

Icho and Wickner, 1989; Preisig et al., 1998; Wang et al., 1993). Genome analysis of Ce- 

dsRNAl revealed that the overlapping region was relatively short (22 nt), which is 

similar to that found in SsRVl and Hv190SV, implying a close relationship to these 

viruses. Interestingly, at 40 codons upstream to the proposed start codon of OW2 in Ce- 

dsRNAl, the presence of a stop codon was observed in the same reading frame, which is 

similar to that found in both SsRVl (8 codons upstream) and SsRV2 (12 codons 

upstream) (Preisig et al., 1998). The genome organization is considered to be important 

for the translation mechanism because this stop codon may severely restrict the region for 

any frameshift event (Kozak, 199 1). 



Two different strategies for the expression of O W 2  have been suggested in 

Totiviridae (Huang and Ghabrial, 1996; Wang et al., 1993). One could be a fusion 

protein between the coat protein and the RdRp regions by ribosomal frameshifting, which 

has been suggested in ScV-L-A and GLV. It is known that -1 or +1 ribosomal 

frameshifting can successfully occur when both the slippery site and pseudoknot structure 

are found either within the overlapping region of ORFl and 0RF2 or near that region, 

especially for the pseudoknot structure (Icho and Wickner, 1989; Wang et al., 1993). 

Although a stem-loop structure within the overlapping region between OW1 and OW2 

of Ce-dsRNAl was predicted (data not shown), neither a pseudoknot nor a slippery site 

was observed, indicating that the expression strategy of O W 2  in Ce-dsRNAl could be 

different. Another strategy which has been proposed to translate O W 2  in Totiviridae is 

through internal initiation (Huang and Ghabrial, 1996; Preisig et al., 1998). It has been 

suggested that Hv190SV can express the RdRp as a separate non-fused polypeptide via a 

coupled termination-reinitiation mechanism (Huang and Ghabrial, 1996). Recently, 

Soldevila and Ghabrial(2000) demonstrated that the RdRp in Hv190SV could be 

expressed independent of a coat protein as a non-fused polypeptide. A similar 

mechanism has been proposed for the Totiviruses, including SsRVs and CmRV, which 

are considered to be more closely related to Ce-dsRNAl (Cheng et al., 2003; Preisig et al., 

1998). Therefore, it is possible that the expression of O W 2  in Ce-dsRNA1 could employ 

the internal initiation strategy. 

Sequence analysis of Ce-dsRNAl in C. elegans revealed the presence of a third 

open reading frame (OW3), which has not been observed previously in other Totiviruses. 

However, a homology search of both OW2 and 0RF3 revealed a significant homology 



to known RdRps of Totiviruses. Also, the eight conserved motifs of RdRp domains were 

equally distributed in both ORFs (with 4 conserved motifs present in each OW), 

indicating that these ORFs may produce a fusion protein. Many RNA viruses are 

considered to use the ribosomal readthrough strategy during translation to make a fusion 

protein (Herr et al., 2000). A readthrough of UAA at the 4,055 position of O W 2  could 

be supported by the fact that both O W 2  and O W 3  are in the same frame, which is 

essential for a readthrough translation. Also, the predicted molecular mass of this fusion 

protein was 96.36 kDa, which is similar to the size of other RdRps in Totiviruses. For 

example, the RdRps encoded by SsRVl and SsRV2 were predicted to be 92.2 kDa and 

90.8 kDa, respectively (Preisig et al., 1998). Therefore, it is possible that starting 

translation at AUG in 2,619 position (OW2) may extend until the U_AA at 5,244 position 

(the end of ORF3) to produce a hsion RdRp protein. However, this needs to be further 

clarified experimentally. 

Transmission electron microscopy revealed the presence of virus-like particles 

(VLPs) in the cytoplasm of fungal mycelium of strain CKP of C. elegans. These VLPs 

were -35-45 nm in size and isometric in shape, similar to VLPs found in the Totiviridae 

group, further supporting the close relationship of these two dsRNAs (Ce-dsRNAl and - 

dsRNA2) to the totivirus group (Caston et al., 1997; Ghabrial, 1994). Viruses in the 

family Totiviridae are unique because the host ranges of these viruses are limited to 

fungal and protozoan cells (Ghabrial, 1998). Three genera, including Totivirus, 

Giardiavirus and Leishmaniavirus have been placed in the family Totiviridae (Ghabrial 

et al., 1995). The Totivirus genus is different from other genera because, to date, it has 

been found only in fungi, rather than in parasitic protozoa that are the host of viruses 



belonging to the genera Giardiavirus and Leishmaniavirus (Ghabrial, 1998). Based on 

the information derived from additional virus genomes in the genus Totivirus, it has been 

suggested that a new genus is needed (Huang and Ghabrial, 1996; Ghabrial, 1998; Preisig 

et al., 1998; Cheng et al., 2003). Totiviruses such as SsRVs, Hv190SV and CmRV infect 

filamentous fungi, while other Totiviruses infect yeast and smut fungi. The viruses 

infecting filamentous fungi are more closely related in several ways, by having a similar 

genomic organization, internal initiation translation mode (rather than frameshift 

mechanism), a proline-rich region near the C-terminus of coat protein, and a relatively 

high level of amino acid identity (Cheng et al., 2003; Ghabrial, 1998). Similar features 

were found in Ce-dsRNAl, suggesting that this virus is more closely related to the 

viruses infecting filamentous fungi. Phylogenetic analysis also confirmed these close 

relationships. However, the taxonomic classification of Ce-dsRNAl is unclear because 

of the difference in the number of putative ORFs in Ce-dsRNA1 (three instead of two). 

Partial cDNA clones of an additional dsRNA fragment (Ce-dsRNA2) present in 

strain CKP of C. elegans were coincidentally obtained during the development of the 

full-length cDNA clones of Ce-dsRNAl. Although a full-length cDNA clone was not 

developed for this dsRNA fragment, Northern blot hybridization suggested that the size 

of the full-length of Ce-dsRNA2 may be similar to that of Ce-dsRNA1, since the dsRNA 

fragments, which could hybridize to cDNA probes derived from either Ce-dsRNAl or 

Ce-dsRNA2 fragment, were indistinguishable. In addition to the size similarity, the 

amino acid sequence homology to known virus groups using the partial sequence of Ce- 

dsRNA2 revealed a close relationship to the totivirus group, which is the same group to 

which Ce-dsRNA1 was assigned, suggesting that these two dsRNAs in strain CKP of C. 



elegans are genetically related to one other. However, attempts to align the partial cDNA 

clones derived from Ce-dsRNA2 with Ce-dsRNA 1 failed, suggesting the nucleotide 

sequences of these two dsRNA fragments are indeed distinct. 

Coinfection by two distinct Totiviruses has been observed in one filamentous 

fungus, S. sapinea (Preisig et al., 1998). Sequence and genomic organization analysis 

showed that these two viruses were similar in size and both were classified as Totiviruses. 

In addition to the report of coinfection by two viruses in both C. elegans and S. sapinea, 

it was interesting that the closest phylogenetic relationship of both C. elegans dsRNAs 

(Ce-dsRNAl and -dsRNA2) was to SsRV1, which is one of the dsRNA fragments 

present in S. sapinea. It has been proposed that dsRNA viruses in the family Totiviridae 

may have been present in a single ancient cell before divergence between fungi and 

protozoa (Bruenn, 1993; Ghabrial, 1998). Therefore, it is possible that certain dsRNA 

fragments could have infected one fungal cell before divergence of C. elegans and S. 

sapinea, and then coevolved with its respective host, resulting in two distinct viruses with 

some degree of homology, such as that observed between Ce-dsRNAl and SsRV 1. 

Another possible explanation for the origin of these viruses could be the transmission of 

dsRNA between those two fungal species. The latter is unlikely since the most prevalent 

dsRNA fragment in C. elegans is the 5-6 kb dsRNA fragment, which has some homology 

to Totiviridae with various ranges (23%-44%) (Park et al., 2003; Park et al., 2004). 

Northern blot analysis indicated that genetic diversity between these fragments in C. 

elegans was high (Park et al., 2004), implying that this 5.3 kb dsRNA fragment must 

have been present in C. elegans for a long time. Therefore, if dsRNA transmission 



occurred from other fungi, that event must have occurred even earlier to generate the 

genetic diversity seen among the 5.3 kb dsRNA fragments in C. elegans. 

The transmission of dsRNAs through conidia in strain CKP is close to 100% (data 

not shown) and most wild-type isolates of C. elegans contain dsRNA elements (Bottacin 

et al., 1994). Therefore, these dsRNAs have been well maintained in the fungal 

populations. Most dsRNAs in the family Totiviridae do not seem to have any obvious 

phenotypic effects on their host (Ghabrial, 1998). However, multiple dsRNA fragments 

can be found in any given strain of a fungal species and complex interactions between 

these fragments have been reported. Two different virus groups, namely the totivirus 

HV l9OSV and chrysovirus-like virus Hv 145 SV, were present in H. victoriae (Ghabrial, 

1998). It has been reported that the lyticldiseased phenotype observed in virus-infected H 

victoriae isolates was due to the over expression of Hv-p68 which is associated with 

chrysovirus-like virus Hv145SV, rather than totivirus Hv190SV (Soldevila et al., 2000). 

Similarly, three additional dsRNA fragments about 3-4 kb in size are also present in 

strain CKP containing both Ce-dsRNAl and Ce-dsRNA2 (Park et al., 2003; Park et al., 

2004). Additional studies are required to elucidate the potential interactions among these 

dsRNA fragments and their physiological effects on C. elegans. 



CHAPTER 5 

GENERAL DISCUSSION 

5.1. General discussion 

It has been previously demonstrated that a large number of field isolates of C. 

elegans contain a range of dsRNA elements, which were different in size and intensity on 

1% agarose gels (Bottacin et al., 1994). Because of the widespread occurrence of 

dsRNAs C. elegans, it has been suggested that these dsRNAs could have some effects on 

the host fungus; however, sequence information to elucidate relationships among these 

dsRNAs C. elegans and to viruses in other fungi were lacking. 

In this study, attempts to develop cDNA clones from the dsRNA elements in C. 

elegans were successful. Although cDNA clones for dsRNAs that were faint in intensity 

on agarose gel were not obtained, cloning of intensely staining dsRNA fragments was 

successful, suggesting this procedure could be used to generate more cDNA clones from 

other dsRNA fragments in the future. Several partial cDNA clones were derived from 

three different-sized dsRNA elements (2.8 kb, 5.3 kb and 12 kb) in six different C. 

elegans strains (AK89-2, BK18, CKP, OR1, NC 1527 and WASH). These strains were 

selected because they originated from diverse geographic regions and showed a range of 

dsRNA banding patterns, which represented the major dsRNA banding patterns found 

previously in C. elegans strains (Bottacin et al., 1994). 



It is common that multiple bands of dsRNA in fungi are evident when viewed on 

agarose gels (Ghabrial et al., 1998; Nuss and Koltin, 1990). The genetic relationships 

between dsRNA fragments in one isolate are variable, depending on the isolates and host 

fungi (Bharathan and Tavantzis, 199 1 ; Enebak et al., 1994a). In C. parasitica, four 

different-sized dsRNA fragments were observed in one isolate (CHV3-GH2) and cross- 

hybridization occurred only between dsRNAl and dsRNA2, but not with other dsRNA 

fragments (Hillman et al., 2000; Yuan and Hillman, 2001). Similar results were observed 

in other fungi, such as R. solani (Bharathan and Tavantzis, 1990; Bharathan and 

Tavantzis, 1991). In this regard, our data are different from that found in other fungi, 

since none of the cDNA clones cross-hybridized to other dsRNA fragments present in the 

same strain of C. elegans, suggesting that genetically distinct dsRNA fragments could be 

present in one strain. However, it could be an indication of the detection limit of 

Northern blot analysis using partial cDNA clones. Further work is needed to understand 

the genetic relationships between dsRNA fragments within a strain of C. elegans. 

Mixed infections, with more than one dsRNA virus group, are common in fungi 

(Ghabrial, 1998). The presence of three dsRNA virus groups, such as Hypoviridae, 

Narnaviridae and Partitiviridae, has been observed in C. parastica (Hillman et al., 2003; 

Nuss and Koltin, 1990; Polashock and Hillman, 1994). Based on Northern blot and 

sequence analysis of cDNA clones, we revealed that at least three dsRNA groups, 

including Narnaviridae, Totiviridae, and Potyviridae, could be present in C. elegans. It 

was not surprising to find the presence of totivirus-like dsRNAs in C. elegans because 

Totiviridae is the one of the major virus families infecting fungi (Ghabrial, 1998). The 

presence of dsRNA belonging to Narnaviridae in C. elegans was not expected because of 



its rare presence in fungi. Also, it would be interesting to demonstrate if the 12 kb dsRNA 

fragment in C. elegans is genetically related to the best known C. parasitica hypovirus, 

which shared some sequence homology with viruses belong to Potyviridae. Sequence 

analysis using the information derived from partial cDNA clones of the 12 kb dsRNA 

fragment in strain NC 1527 showed a relatively low amino acids sequence identity to 

Potyvir idae. 

The genetic relatedness study using Northern blot and sequence analysis showed 

how many different dsRNA groups are present in C. elegans, and also indicated how 

these dsRNA elements could be transferred among C. elegans populations. Mycoviruses 

lack on extracellular route of infection and can only be transferred by using horizontal 

transmission through hyphal anastomosis between fungal strains, or vertical transmission 

via asexual or sexual spores (Ghabrial, 1998; Nuss and Koltin, 1990). All progenies 

derived from single conidia of strains BK18 and CKP contained the parental dsRNAs, 

indicating that vertical dsRNA transmission via conidia is highly efficient in C. elegans. 

However, an attempt to demonstrate efficiency horizontal transmission of dsRNAs using 

RAPD markers was unsuccessful. No dsRNA-containing progenies, which showed the 

RAPD patterns of dsRNA-free parental strain, were obtained, indicating the possible 

presence of blockage mechanisms for horizontal dsRNA transmission among C. elegans 

populations. However, it has also been suggested that horizontal dsRNA transfer should 

occur between C. elegans strains, since similar dsRNA banding patterns were observed in 

strains derived from close geographic regions (Bottacin et al., 1994). In this regard, 

Northern blot and sequence analysis using cDNA clones revealed that similar-sized 

dsRNA elements could be genetically related, supporting horizontal dsRNA transmission 



among C. elegans strains or spread of specific strains over a specific geographic region. 

The role of vegetative compatibility groups, which are considered to be the one of the 

important factors to limit horizontal dsRNA transmission in fungi, needs to be studied in 

C. elegans. 

The development of full-length cDNA clones of both the 2.8 kb and 5.3 kb 

dsRNA fragments in C. elegans suggests that if a transformation protocol is established, 

the development of genetically engineered C. elegans strains using various genetic 

sources derived from dsRNA fragments could lead to interesting studies to understand the 

interaction between dsRNA and host fungi. It has been suggested that dsRNA infection 

could alter expression of many fungal genes (Dawe and Nuss, 2000; Liu et al., 2003a). In 

C. parasitica, cDNA differential display experiments revealed a surprisingly large 

number of differences in PCR amplicons between dsRNA-free and dsRNA-containing 

strains (Chen et al., 1996). Transformation studies with specific fungal genes such as 

CPG- 1 confirmed that virus infection could perturb CPG- 1 signaling pathways in C. 

parasitica (Zhang et al., 1998; Gao and Nuss, 1996). Fungal genetic studies using 

transformation techniques and cDNA differential display experiments could give 

interesting information related to the interactions between the dsRNA and the biology of 

C. elegans. 

Various attempts have been tried to eliminate the dsRNA in C. elegans, however, 

most trials failed, suggesting that the presence of dsRNA is quite stable in the fungal 

hosts. Only two strains (BK18 and CKP), which were incubated at high temperature 

(35•‹C) for more than 2 months, revealed the change of dsRNA banding patterns on 

agarose gel analysis. However, RT-PCR with the 2.8 kb dsRNA specific primer sets in 



BK18 successfully amplified the partial cDNA indicating the high incubation temperature 

could lead to the repression of dsRNA quantity, rather than complete elimination. The 

change of 2.8 kb dsRNA quantity in BK18 strain appeared to have no detectable effects 

on C. elegans suggesting that BK18 strain could be latently infected with 2.8 kb dsRNA. 

Latent infection of viruses is widespread phenomenon in fungi (Buck 1986, Ghabrial 

1980). For the plant pathologist view, the latent infection could lead to little interest 

because these infections have no overt effects on host fungi. However, this latency has 

been considered to be one of the important strategies for virus spread among host 

population. It has been suggested that selection pressure against to latent viruses could 

be relatively lower compared to those virulent viruses. In addition to the importance for 

understanding the virus transmission among host fungal populations, more precise studies 

related to latent infections are required because there are some possibilities that the latent 

infections could convert to overt infections, which can develop various effects on host 

fungi. The isolates of S. homoeocarpa latently infected by OnuMV3a displayed 

conversion to the hypovirulent phenotype after lower temperature incubation (Deng 

2003). The lower temperature incubation treatment has been attempted to lead the 

conversion to hypovirulent isolate of C. elegans, however, no conversion was observed 

(data not shown). It could be a interesting study to find out 1) if the latent infections 

could convert to overt infections and 2) what kinds of environmental factors could cause 

the conversion to overt infection of dsRNA in C. elegans. 

Finally, many studies related to dsRNA fragments in plant pathogenic fungi have 

been focused on the development of biological control agents, because dsRNAs could 

cause the hypovirulence phenotype in host fungi (Anagnostakis, 1980). In this study, 



attempts to elucidate the relationship between the specific dsRNA fragments and 

pathogenicity of C. elegans were unsuccessful. However, the loss of a small dsRNA 

fragment in strain CKP of C. elegans showed some changes in culture morphology, 

growth rate, and virulence on carrots roots suggesting that dsRNA fragments could affect 

the host fungus C. elegans. It would be interesting to study how different relationships, 

such as hypoviruence, hypervirulence or no overt effects, are present between specific 

dsRNA fragments and C. elegans, and what the major factors are to determine these 

various interactions and how they could be used to control black root rot diseases caused 

by C. elegans. 
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