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ABSTRACT 

Short-range pheromonal communication was investigated in congeneric 

GlyptapantelesJlavicoxis, G. indiensis and G. liparidis (Hyrnenoptera: Braconidae). In 

coupled gas chromatographic-electroantennographic detection (GC-EAD) analyses of 

female G. Jlavicoxis body extracts, four components elicited strong responses from 

conspecific male antennae. Monitored by GC-EAD, the components were separated by 

flash silica gel and high-performance liquid chromatography. Y-tube olfactometer 

experiments revealed that all four components are necessary to elicit close-range 

attraction and wing-fanning responses by males. 

In electrophysiological analyses of body extracts of female G. indiensis and G. 

liparidis conspecific male antennae responded to five and six components, respectively. 

Both species share four components with G. flavicoxis, but also have species-specific 

components. In Y-tube olfactometer experiments, body extracts of females elicited 

attraction and wing-fanning responses only by conspecific males, supporting the 

hypothesis of species-specific sex pheromone blends. 

Keywords: GlyptapantelesJlavicoxis, Glyptapanteles indiensis, Glyptapanteles liparidis, 

Lymantria dispar, Lymantria obfuscata, Hyrnenoptera, Braconidae, parasitoid, close- 

range sex pheromone, wing-fanning, species-specificity. 
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1 SEXUAL COMMUNICATION IN HYMNEOPTERAN 
PARASITOIDS 

1.1 Taxonomic relationships 

Insects of the order Hymenoptera are taxonomically, biologically, and 

ecologically very diverse. Ants, bees, wasps, and sawflies represent the main groups of 

Hymenoptera. Most species are solitary, but some bee, ant, and wasp species exhibit high 

degrees of social organization. Some are phytophagous, whereas others are predatory or 

parasitic. 

The Parasitica as a major division of the Hymenoptera comprises three 

superfamilies: Ichneumonoidea, Chalcidoidea, and Cynipoidea. The Ichneumonoidea are 

a dominant group divided in two families, the Ichneumonidae and Braconidae. At the 

family level, parasitoids exibit distinctive biological and behavioural characteristics. 

They attack host insects of all developmental stages (egg, larva, pupa, adult) from diverse 

orders (e.g., Homoptera, Coleoptera, Diptera, Lepidoptera, Hymenoptera). Adult 

parasitoids lay eggs on or within the host, and their developing larvae consume nutrients 

from the host, eventually killing it. Adult parasitoids are free-living, feeding on nectar, 

honeydew, or occasionally their host. 



1.2 Sexual communication 

Sexual communication is based on signal exchange between prospective mates 

(Matthews, 1975). Most conspicuous behavioural elements include orientation, attraction, 

recognition, wing-fanning, and antennation (Table 1.1). Females may attract males [e.g. 

Syndipnus rubiginosus (Ichneumonidae) (Eller et al., 1984)], or males may attract 

females [e.g. Melittobia digitata (Eulophidae) (Chsoli et al., 2002)l. Males may wing 

fan only after they have made contact with females (Van den Assem, 1974), or not at all 

[Diastrophus nebulosus (Cynipidae) (Matthews, 1975)l. 

In some species, like Aphytis melinus (Aphelinidae), males engage in 

postcopulatory mate-guarding and courtship behaviour, attempting to prevent further 

matings of that female with other males. Such behaviour significantly increased the 

proportion of offspring the guarding male produced, and decreased significantly the 

female's chance of mating with another male (Allen et al., 1994). Male Cephalonomia 

tarsalis (Bethylidae) engage in aggressive precopulatory behavior that prevents rivals 

from mounting, or separates them from potential mates (Cheng et al., 2003). 

1.3 Signals employed for sexual communication 

Attraction or location of mates is mediated by specific sexual communication 

signals that are visual, pheromonal, sonic or tactile in nature. Here I will focus on 

pheromonal communication signals. 
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1.3.1 Mate-attracting sex pheromones 

Mate-attracting sex pheromones are essential in the attraction and recognition of 

prospective mates, and have been reported in many species (Chapter 2; Table 1.2). They 

are typically released by females from various body parts (Table 1.3), and comprise 

components of different volatility that are effective at long- or short-range (Chapter 2; 

Table 1.4). Male-produced mate-attractant pheromones are rare among parasitic wasps. 

For instance, male Melittobia digitata (Eulophidae) develop, emerge, and mate within the 

cocoon of their host. They remain in the host cocoon, await the eclosion of their female 

siblings, and attract them with the pheromone a- and ptrans-bergamotene (C6nsoli et 

al., 2002). 

1.3.2 Aggregation pheromones 

Adults of Brachymeria intermedia and B. lasus (Chalcididae) overwinter in 

aggregations. While the aggregation pheromone has been identified as 3-hexanone in B. 

intermedia, the identity of the pheromone remains unknown in B. lasus. Such 

aggregations may increase the probability of mate location (Mohamed and Coppel, 

1987b) and/or attract females to sites of high host densities (Kainoh, 1999). 

1.3.3 Primer "aphrodisiac" pheromones 

Male-produced aphrodisiac-type or primer pheromones that apparently enhance 

the females' receptivity have been reported in many parasitic wasps. They seem to be 

deployed in the antennation phase during which prospective mates make physical contact. 

Antennae of male Leptomastix dactylopii, Rhopus meridionah, and Asitus phragmitis 

(all Encyrtidae) harbor pheromone glands. During complex courtship behaviour, 
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the males deposit secretions from these glands onto the females' antennae, which in turn, 

elicit the males' acceptance by females (Guerrieri et al., 2001). 

Similarly, antennae of Amitus spinifems (Platygastridae) have a paddle-shaped 

"sex-male" segment which secrets a mate-recognition and/or aphrodisiac pheromone onto 

the females' antennae during courtship (Isidoro and Bin, 1995). Such secretory glands 

with various pheromone-releasing structures on different antennomeres have also been 

reported in eulophid (Dahms, 1984), scelionid (Bin and Vinson, 1986)' and aphelinid 

(Pedata et al., 1995) parasitoids. 

Intermediate antennal segments of male Pimpla turionellae (Ichneumonidae) have 

a callous-type appearance (tyloid), which secret pheromone during the antennation phase 

of courtship. Intriguingly, the males' intensity of antennal stroking is dependent on the 

females' receptivity (Bin et al., 1999). 

1.4 Life history of Glyptapantelesflavicoxis, G. indiensis, and G. 
liparidis 

Information about the biology of G. flavicoxis (Braconidae) is scarce. 

Glyptapantelesflavicoxis is a gregarious, koinobiont endoparasitoid of larval Indian 

gypsy moth, Lymantria obfuscata (Lepidoptera: Lymantriidae) (Marsh, 1979). In 1981, it 

was imported from India and released into North America as a potential biological 

control agent for larvae of the European gypsy moth, Lymantria dispar (Lepidoptera: 

Lymantriidae) (Krause et al., 1990, 1991). Single G. flavicoxis cocoons are found on 

early instar L. obfuscata larvae, whereas clusters of cocoons are found on late instar host 

larvae. Adult G. flavicoxis are active fi-om April through July. There are possibly four 

generations per year, each requiring 17-35 days for completion (Krause, 1987). 



Laboratory experiments have demonstrated that G. flavicoxis develop in all L. 

th th dispar instars, but females attack significantly more early (2nd & 3'd) than late (4 -6 ) 

instars (Fuester et al., 1987). Pro-ovigenic females carrying 200-250 eggs commonly 

oviposit more than one egg into a host larva (Krause et al., 199 1). Parasitoid larvae 

develop inside the larval host, allowing it to continue to live until they exit it. After about 

2-3 weeks of development, few to several hundred parasitoid larvae emerge from, and 

pupate around, the host in characteristic clusters of whitish cocoons. During the 1" week 

of the pupal period cocoons become hard and black. Females generally are larger and 

develop more slowly than males (Krause, 1 987). 

Similar to other arrhenotokous parasitoids, G. flavicoxis has a haplo-diploid 

mechanism of sex determination; fertilized eggs give rise to female progeny, whereas 

unfertilized eggs give rise exclusively to male progeny. The sex ratio is male-biased (4: 1) 

(Krause, 1987). 

Syrnpatric G. indiensis is a solitary parasitoid of 1" instar L. obfuscata, which 

occurs in northern parts of India, Pakistan and Afghanistan. A single parasitoid larva 

develops inside a host larva and pupates in a whitish cocoon away from the host. 

Allopatric G. liparidis occurs in Japan, Korea, the Kurile Islands, Russia, North 

Afhca, and Europe (Marsh, 1979). It is a multivoltine braconid with 4 generations per 

year, attacking 2nd and 3rd instars of L. dispar, and alternate host species, including 

Dendrolirnus spp. (Lepidoptera: Lasiocampidae), its primary overwintering host. As a 

gregarious endoparasitoid, female G. liparidis may lay up to 100 eggs in a single host. 

Parasitoid larvae spin their whitish cocoons in an irregular cluster mostly away from the 

host. The developmental time for the egg-larval and pupal stage is 25-35 days, and 6-8 



days, respectively. Adult females live about 14 days, and males 10 days (Houping and 

Jingjun, 1993). 

1.5 Current knowledge about pheromonal communication in G. 
jlavicoxis, G. indiensis, and G. liparidis 

Female G. flavicoxis press their abdominal tip to the substrate, apparently 

depositing pheromone that elicits wing-fanning by males (~ues t ' ,  personal 

communication). This interpretation of the females' behaviour is supported by reports of 

abdominal pheromone glands in other braconid females, including Ap. glorneratus 

(Tagawa, 1 977), Ap. melanoscelus (Weseloh, 1976, 1980), Ap. plutellae, Ap. liparidis, 

Ap. baoris, Ap. ruficrus, and Ap. kariyai (Tagawa, 1983). Female G. flavicoxis also 

employ an airborne component (ethyl dodecanoate) which by itself is not effective in 

attracting conspecific males (Fuest, personal communication). 

Pheromonal communication of G. liparidis and G. indiensis has not yet been 

investigated, but one might speculate that it is similar to that of G. flavicoxis. As 

congeners, they may share pheromone components, while using species-specific 

components to enhance reproductive isolation, particularly when they occur in sympatry. 

I Jamie Fuest, former undergraduate research assistant in Gries-laboratory, unpublished observation. 
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1.6 Research objectives 

My research objectives were: 

1. to investigate whether female G. flavicoxis use sex pheromone components, and, if so, 

to isolate them and determine their behavioural role; and 

2. to test the hypothesis that G. flavicoxis, G. indiensis, and G. liparidis use species- 

specific sex pheromone components to confer specificity to their sexual communication 

systems. 



2 EVIDENCE FOR 4-COMPONENT CLOSE-RANGE SEX 
PHEROMONE IN G flavicoxis 

2.1 Introduction 

Sex pheromones in hymenopteran parasitic wasps are typically produced by 

females. They have been reported in seven families [Aphelinidae, Chalcididae, 

Cynipidae, Pteromalidae, Scelionidae, Braconidae and Ichneumonidae (Kainoh, 1999)], 

but have been identified only in a few species, including Itoplectis conquisitor 

(Ichneumonidae) (Robacker and Hendry, 1977), Syndipnus rubiginosus (Ichneumonidae) 

(Eller et al., l984), Macrocentrus grandii (Braconidae) (Swedenborg and Jones, l992a,b, 

1993), Ascogaster reticulatus (Braconidae) (Kainoh et al., 1991), Cardiochiles nigriceps 

(Braconidae) (Syvertsen et al., 1995), and As, quadridentata (Braconidae) (DeLury et al., 

1999). 

In the Braconidae, sex pheromones have been reported, but not identified, in 

Opius alloeus (Boush and Baerwald, 1967), Apanteles medicaginis (Cole, 1970), Ap. 

glomeratus (Obara and Kitano, 1974), Ap. melanoscelus (Weseloh, 1976, 1980), Cotesia 

rubecula (Field and Keller, 1994), C. flavipes (Kimani and Overholt, 1999,  Praon 

volucre (Nazzi et al., 1996), and Fopius arisanus (Quimio and Walter, 2000). Most are 

long-range attractants. 

Substrate-borne sex pheromones in parasitoids are rare. Female Aphelinus asychis 

(Aphelinidae) appear to have a trail pheromone, but do not exhibit specific trail marking 

behaviour (Fauvergue et al., 1995). In Trichogramma brassicae (Trichogrammatidae), a 



substrate-borne pheromone induces male searching in an area previously explored by 

females, and attracts males from short-distance (Pompanon et al., 1997). Female As. 

reticulates, egg-larval parasitoids of the smaller tea tortrix, Adoxophyes sp., employ 

short-range pheromones that activate searching by males and increase the probability of 

mating (Kamano et al., 1989). 

Some parasitic wasps have multiple-component pheromones. For example, male 

M. grandii are attracted to the female-produced components (2)-4-tridecenal and (Z,Z)- 

9,13-heptacosadiene (Swedenborg and Jones, 1992a,b). The behavioural activity of both 

compounds is enhanced by (3R,5S,6R)-3,5-dimethyl-6-(methylethyl)-3,4,5,6- 

tetrahydropyran-2-one as a third component that is biosynthesized in mandibular glands 

of both males and females (Swedenborg et al., 1993). In the ichneumonid Eriborus 

terebrans, the nonpolar pheromone component by itself is inactive, but when added to the 

polar component provokes the male's behavioural response (Shu and Jones, 1993). 

My objective was to investigate whether female G. flavicoxis use sex pheromone 

components, and, if so, to isolate them and determine their behavioural role. 

2.2 Methods and materials 

2.2.1 Experimental insects 

The rearing colonies of experimental insects in the Global Forest Quarantine 

Facility at Simon Fraser University (SFU) were started and augmented with specimens 

obtained fkom the Beneficial Insects Introduction Research Laboratory, United States 

Department of Agriculture, Agricultural Research Service, Newark, Delaware. To 

facilitate mating in G. flavicoxis, 10 females and 30 males were placed in plastic mesh 



cages (1 0 x 10 x 6 cm) (Hu et al., l986), and provisioned with cotton wicks (1 x 10 cm; 

Richmond Dental, Charlotte, North Carolina) soaked in sugar water solution. Oviposition 

cages (1 8 x 1 8 x 12 cm) contained 10- 1 5 mated females, five L. dispar larvae (3-4 instar) 

(Fuester et al., l987), and artificial diet for the larvae (Bell et al., 198 1). After 1-2 days, 

parasitized host larvae were removed and placed on artificial diet in plastic cups (192 ml) 

with tight-fitting paper lids (Sweetheart Plastics, Wilmington, Massachusetts). Every 

second day, larval fiass was removed, diet replenished if needed, and parasitoid cocoons 

with insects to be used in bioassays were transferred individually to capped plastic cups 

(30 ml) provisioned with sugar water-soaked cotton wicks. Cocoons of insects to be used 

for mass rearing were placed in plastic Petri dishes (14 cm diam.) and food-provisioned 

as described above. Rearing took place under a 16L:8D photoregime at 22-25 "C and 

50-70% RH. 

2.2.2 Acquisition of volatiles 

Unrnated, 1 - to 2-day-old females (5- 10) were placed into vertical cylindrical 

Pyrex glass chambers (6 x 10 cm ID), and were provisioned with a sugar water-soaked 

cotton wick. Control chambers contained the same food source, but no parasitoids. A 

water aspirator drew humidified, charcoal-filtered air at a rate of 1.5-2 Llmin for 2 days 

through the chambers and a glass column (1 4 x 1.3 cm OD) filled with 150 mg of 

Porapak Q (50-80 mesh, Waters Associates Inc., Milford, Massachusetts, USA). Volatiles 

were eluted fiom the Porapak Q volatile traps with redistilled pentane (2 ml). The extract 

was concentrated under a stream of nitrogen such that 10 p1 of extract contained one 

female hour equivalent (FHE) of volatile acquisition (= amount of volatiles released by 1 

female during 1 hour). 



2.2.3 Acquisition of pheromone extracts 

Females (1 -3 days old) were macerated in vials containing hexane (ca. 10 pl per 

female) placed on dry ice. Then the extract was kept at room temperature for - 15 min. 

The supernatant was withdrawn, filtered through a small amount of glass wool in a 

pipette, and quantified to determine the volume representing one female body extract 

equivalent (FBE). 

2.2.4 Video-recording of trail-following behaviour by males 

To test the hypothesis that males follow a pheromone trail, their behavioural 

response was video-recorded (Sony Digital Video Camera Recorder, DCR-VX 1000). In 

each of 10 Pyrex glass dishes (9 x 2 cm high), 1 FBE was pipetted in trail-like pattern 

(Figure 2.1). Additional 10 Pyrex glass dishes served as a control stimulus, with solvent 

applied in the same way as the treatment stimulus. After the solvent had evaporated (-1 0 

sec), a virgin 1- to 3-day-old male was released and video-recorded for 5 min. Recordings 

were analyzed for the time a male had spent on the trail and for other characteristic 

behavioural responses, such as wing-fanning. 

2.2.5 Y-tube olfactometer bioassays 

All experiments were conducted during hours 2 to 6 of the insects' photophase 

(1 6L:8D). Anemotactic responses of males to odour sources were tested in vertical Pyrex 

glass Y-shaped olfactometers (stem: 20 x 2.5 cm ID; side arms at 120': 18 cm long) 

positioned vertically 15 cm below a light source, consisting of one tube of fluorescent 

"daylight" (F40DX, H118; Osram Sylvania Ltd., Ontario, Canada) and one tube of "wide 

spectrum grow light" (F40GRO/WS, H658; Osram Sylvania Ltd., Ontario, Canada). 



Treatment or control (solvent) stimuli were pipetted on white strips of paper (1 5 x 

1 cm) placed in side arms of the Y-tube (Experiments 1 -28), or on filter paper discs (4.3 

cm diam., Whatman No. 1, Whatman International Ltd. Maidstone, England) placed near 

the orifice of side arms (Experiments 29,30). 

In experiment 3 1, two live 2- to 3-day-old females served as a test stimulus. They 

were transferred 10-1 5 min before experimental replicates into mesh-covered glass tubes 

(6 x 2 cm ID), and provisioned with a sugar water-soaked cotton wick. Treatment and 

control tubes (lacking females) were placed at the orifice of side arms of the Y-tube 

olfactometers. 

In all experiments, a water aspirator drew air at - 1 Llmin through the Y-tube to 

test anemotactic responses of parasitoids released individually into the stem of the Y- 

tube. An insect was classed a responder when it traversed the entire paper strip up to the 

orifice of the side arm (Experiments 1-28), or contacted the filter paper discs 

(Experiments 29, 30), or glass tube housing two females (Experiment 31) within 10 min. 

All others were classified as non-responders. For each replicate, a new insect, paper strip, 

filter paper disc, and clean (Sparkleen-washed and oven-dried) Y-tube, or glass tube, 

were used, with test stimuli randomly assigned to side arms. 

To compare the attractiveness of test stimuli most rigorously, two to four 

experiments were often run in parallel over 2-4 days, alternating between replicates for 

each experiment. To gauge the relative attractiveness of two or more test stimuli, parallel 

experiments proved to be more effective than head-to-head comparisons of stimuli in the 

same Y-tube olfactometer. The number of parasitoids responding to stimuli were 

analysed with the X2 goodness-of-fit test using Yates' correction for continuity (a = 



0.05), testing the null hypothesis that insects did not prefer either treatment or control 

stimuli (Zar, 1996). 

Experiment 1 tested the "trail-following" response by males. Experiments 2 and 3 

determined whether the females' body extract in combination with the females' effluvia, 

or synthetic effluvium component ethyl dodecanoate, were similarly effective in 

attracting males. Experiments 4 and 5 determined whether males or females respond to 

the pheromone. Experiments 6-8 explored the relative attractiveness of body extract, 

ethyl dodecanoate, or both. 

Experiments 9-1 2 tested whether silica fraction 4 (containing candidate close- 

range pheromone components) and female body extract (containing candidate close- 

range pheromone components plus traces of ethyl dodecanoate and possibly other 

components) were equally attractive, at a low dose (1 FHE plus 1 FBE) or medium dose 

(5 FHE plus 5 FBE). Taking into account that silica fraction 4, at the medium dose, was 

very effective in attracting males, experiments 13 and 14 re-tested whether ethyl 

dodecanoate enhances the attractiveness of silica fraction 4. Although ethyl dodecanoate 

did not seem critical for attraction of males, it was retained in subsequent experiments 

(1 5-27, 30) to ensure the best possible response of males to all test stimuli, and to allow 

the best comparison of results in all experiments. 

Experiments 15 and 16 tested silica fraction 4 at the medium dose versus the 

combination of all HPLC fractions that contained candidate close-range pheromone 

components (= effective blend). Considering the strong attractiveness of the effective 

blend, follow-up experiments 17, 19,2 1 and 23 explored whether one or more of the 

candidate close-range pheromone components 1 (HPLC fractions 25-28), 2 and 4 (HPLC 



fractions 21 -24), or 3 (HPLC fractions 16-20) could be deleted from the effective blend 

without affecting the males' attraction or wing-fanning response. Experiments 25-27 

tested the males' attraction and wing-fanning responses to ethyl dodecanoate alone 

(Experiment 27), or in combination with either the effective blend (Experiment 25) or 

most EAD-active pheromone component 3 (Experiment 26). 

Placement of test stimuli near (-1 cm) the junction of Y-tubes in experiments 1- 

28 was appropriate to test close-range anemotactic and wing-fanning responses of males, 

but not very suitable to determine whether ethyl dodecanoate, or other female-produced 

components, might enhance the active space (mate-recruiting distance) of the entire 

pheromone blend. Thus, final experiments 29-3 1 tested the response of males to stimuli 

[silica fraction 4 on filter paper disc (Experiment 29); silica fraction 4 plus ethyl 

dodecanoate on filter paper disc (Experiment 30); 2 caged live females (Experiment 3 I)] 

that were placed at the orifice of side arms >10 cm apart from the junction of the Y-tube. 

2.2.6 Analyses of pheromone extracts 

Aliquots of 1 FHE or 1 FBE were analyzed by coupled gas chromatographic- 

electroantennographic detection (GC-EAD) (Am et al., 1975; Gries et al., 2002a), 

employing a Hewlett Packard (HP) 5890A gas chromatograph equipped with a GC 

column (30 m x 0.25 or 0.32 mm ID) coated with DB-5, DB-17, DB-210, DB-23 or 

FFAP (J & W Scientific, Folsom, California 95630). For GC-EAD recordings, a male's 

head was severed and placed into the opening of a glass capillary electrode filled with 

saline solution (Staddon and Everton, 1980). One antenna with its tip removed by spring 

microscissors (Fine Science Tools lnc., North Vancouver, British Columbia, Canada) was 

placed into the opening of a second (indifferent) electrode. 



EAD-active compounds were analyzed by (1) full-scan electron-impact and 

chemical ionization (CI, acetonitrile) mass spectrometry (MS) with a Varian Saturn 2000 

Ion Trap GC-MS fitted with the DB-5 column referred to above; (2) retention index 

calculations (Van den Do01 and Kratz, 1963); and (3) microanalytical treatments 

(hydrogenation, oxidation, reduction, acetylation, deacetylation) followed by renewed 

GC-EAD and GC-MS of the extract. 

Aliquots of 100 FBEs with EAD-active components were fractionated through 

silica gel (0.5 g) in a glass column (14 x 0.5 cm ID). After the silica was pre-rinsed with 

pentane, the extract was applied, allowed to impregnate the silica gel, and then eluted 

with six consecutive rinses (1 ml each) of pentanelether, with increasing proportion of 

ether, as follows: (1) 100:O; (2) 100:O; (3) 90:lO; (4) 75:25; (5) 50:50 and (6) 0:lOO. This 

procedure generated fractions containing analytes of increasing polarity. 

To determine silica fractions with candidate pheromone components, fractions 

were concentrated to the corresponding number of female equivalents processed in the 

initial extract, and analysed by GC-EAD, co-injecting as an internal standard ethyl 

dodecanoate (1 ng), which eluted 4-8 min earlier on the different GC columns than any of 

the four components. Fractions with more than one EAD-active compound (= candidate 

pheromone component) were fractionated further into 40 fractions (1 fraction 1 25 sec) by 

high-performance liquid chromatography (HPLC), followed by renewed GC-EAD 

analyses of all HPLC fractions. HPLC fractionation employed a Waters LC 626 HPLC 

equipped with a Waters 486 variable wavelength UV visible detector set to 210 nm, HP 

Chemstation software (Rev. A.07.01), and a reverse-phase Nova-Pak C18 column (60 A, 

4 pm; 3.9 x 300 mm) eluted with 1 mllmin of 100% acetonitrile. 



2.3 Results 

In experiment 1, 1 FBE induced wing-fanning and "trail-following behaviour" by 

males (Figure 2.1). Males also spent significantly more time on trails of body extract of 

females than on solvent control trails (Figure 2.1). 

Effluvium (1 FHE) and body extract (1 FBE) of females in combination attracted 

significantly more males than did the solvent control (Figure 2.2, Experiment 2). 

Similarly, ethyl dodecanoate plus female body extract significantly attracted males 

(Figure 2.2, Experiments 3, 5 and 8), but not females (Figure 2.2, Experiment 4). Unlike 

female body extract, ethyl dodecanoate by itself failed to significantly attract males or to 

provoke wing-fanning (Figure 2.2, Experiments 6, 7). 

GC-EAD analyses of female body extracts revealed four components that elicited 

antenna1 responses from males (Figure 2.3; Table 2.1). Although these components 

appeared to be abundant in the corresponding FID trace, their mass spectra suggested that 

they were not pheromone components, but superimposed on them. GC-EAD analyses of 

all six silica fractions of female body extract revealed that fraction 4 contained the four 

EAD-active components, and that they indeed occurred below FID detection threshold 

(Figure 2.3). In Y-tube olfactometers, female body extract (at 1 FBE) combined with 

ethyl dodecanoate was attractive, whereas silica fraction 4 (at 1 FBE) with ethyl 

dodecanoate was not (Figure 2.4, Experiments 9, 1 O), suggesting that some active 

material had been lost during fractionation. However, silica fraction 4 at 5 FBE together 

with ethyl dodecanoate, significantly attracted males (Figure 2.4, Experiment 1 I), 

indicating that all essential components of the close-range pheromone were present in 

silica fraction 4. 



Figure 2.1 (Top) Time spent by male GlyptapantelesJlavicoxis (n = 10) on line drawings 

of a trail treated with one female body extract equivalent (1 FBE) or a solvent 

control. Single-factor analysis of variance, P < 0.05; (Bottom) Representative 

example of "trail-following behaviour" by a male (depicted as arrow head), 

with the position recorded every 2 sec. 
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Figure 2.2 Number of male or female Glyptapantelesflavicoxis that were attracted, or 

wing-fanned, in response to test stimuli tested in Y-tube olfactometer 

experiments 2-8. 1 FHE = one female hour equivalent = pheromone 

component(s) released by one female during one hr; 1 FBE = one female 

body extract equivalent = pheromone component(s) contained in extract of 

one macerated female body. In each experiment, bars with asterisks indicate a 

significant response to a particular treatment; X 2  test (Experiments 2 and 3), 

heterogeneity X2 test with Yates' correction for continuity, treatment versus 

control; *P < 0.05; **P < 0.01; ***P < 0.001. Note: (1) Experiments grouped 

by brackets were run in parallel; (2) only after completion of experiment 3 

did I realize that I should have recorded wing-fanning as a response criterion. 
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Figure 2.3 Flame ionization detector (FID) and electroantennographic detector (EAD: 

male Glyptapantelesflavicoxis antenna) responses to aliquots of female body 

extract (top), silica fraction 4 (middle), and HPLC fractions 16-20,21-24 and 

25-28 (bottom). Chromatography: Hewlett Packard 5890A equipped with a 

DB-23 coated column (30 m x 0.25 mm ID); linear flow velocity of carrier 

gas: 35 cmlsec; injector and FID detector temperature: 220•‹C; temperature 

program: 1 min at 1 OO•‹C, 1 O•‹C/min to 220•‹C. 
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Table 2.1 Retention indices (relative to alkane standards) (Van den Do01 and Kratz, 

1963) of pheromone components 1-4 in body extracts of female 

Glyptapantelesflavicoxis (Figure 2.3), and ability of microanalytical 

treatments of silica or HPLC fractions of body extracts to alter the molecular 

structure of components 1-4, as determined by the presence or absence of 

respective antenna1 responses in GC-EAD recordings of such fractions. 

Retention indices of: 
GC column 

DB- 17 12314 1 2358 1 2381 1 2393 

I Component 1 

FFAP 1 2529 1 2608 1 2657 1 2657 

Microanalytical 
treatments of body 
extract1'* 

Component 2 

Oxidation (PCC) 

Component 3 

Hydrogenation 

Acetylation 

Component 4 

' ~ e t a i l s  of these standard treatments are described elsewhere (Huwyler, 1972; Corey and 
Suggs, 1975; Stanley, 1979; Bjostad et al., 1996; Millar and Haynes, 1998); 

2 ~ a c h  treatment was repeated at least 2 times with different extracts; 

3 ~ a c h  microtreated extract was tested with at least 3 male G. flavicoxis antennae in 
GC-EAD recordings. 

Antenna1 response in GC-EAD recordings to:3 

Reduction (NaBH4) 

Reduction (LiAlH4) 

Deacetylation 

Component 1 

absent 

present 

present 

absent 

present 

Component 2 

absent 

present 

present 

absent 

present 

Component 3 

absent 

present 

Component 4 

absent 

present 

present 

absent 

absent 

present 

absent 

present 



Figure 2.4 Number of male Glyptapantelesflavicoxis that were attracted, or wing- 

fanned, in response to test stimuli in Y-tube olfactometer experiments 9-16. 

Abbreviations as in caption of figure 2.2; effective blend = combined HPLC 

fractions 16-20,21-24, and 25-28 (see Figure 2.3). In each experiment, bars 

with asterisks (*) indicate a significant response to a particular treatment; 

heterogeneity X2 test with Yates' correction for continuity, treatment versus 

control; *P < 0.05; **P < 0.01 ; ***P < 0.001. Note: (1) Experiments grouped 

by brackets were run in parallel; (2) one male in experiment 12 did 

notrespond to test stimuli. 
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Female body extract at 5 FBE plus ethyl dodecanoate was not attractive (Figure 2.4, 

Experiment 12), suggesting that this dose might have exceeded a biologically relevant 

threshold. In experiments 13 and 14, silica fraction 4 with or without ethyl dodecanoate 

appeared equally attractive to males. 

In GC-EAD analyses of HPLC fractions of silica fraction 4, component 3 was 

present in fractions 16-20 (elution time: 4-5 min), components 2 and 4 (not separable) 

were present in fractions 21 -24 (elution time: 5-6 min), and component 1 was present in 

fractions 25-28 (elution time: 6-7 min) (Figure 2.3). In Y-tube olfactometers, all fractions 

with one or more EAD-active components recombined at 5 FBE, together with ethyl 

dodecanoate, significantly attracted males (Figure 2.4, Experiment 15; Figure 2.6, 

Experiment 25). This effective blend was no longer attractive to males, when fractions 

16-20 (containing component 3), 21 -24 (containing components 2 and 4), or fractions 25- 

28 (containing component I) were lacking (Figure 2.5; Experiments 17-22). Ethyl 

dodecanoate by itself, or in combination with HPLC fractions 16-20, failed to 

consistently attract males or to elicit wing-fanning responses (Figure 2.2, Experiment 7; 

Figure 2.5, Experiments 23,24; Figure 2.6, Experiments 26,27). 

In experiment 28 (Figure 2.6), silica fraction 4 applied on a paper strip (1 5 x 1 

cm) in a Y-tube's side arm prompted strong anemotactic and wing-fanning responses by 

males (see also Experiment 14), but failed to do so, with or without ethyl dodecanoate, 

when pipetted on a filter paper disc (4.3 cm diam.) at a side arm's orifice in parallel 

experiments 29 and 30. In contrast, 2 live females caged at a side arm's orifice were 

significantly attractive to males (Experiment 3 1). 



Figure 2.5 Number of male Glyptapantelesflavicoxis that were attracted, or wing- 

fanned, in response to test stimuli in Y-tube olfactometer experiments 17-24. 

Abbreviations as in caption of figures 2.2 and 2.4. In each experiment, bars 

with asterisks (*) indicate a significant response to a particular treatment; 

heterogeneity X2 test with Yates' correction for continuity, treatment versus 

control; *P < 0.05; **P < 0.01 ; ***P < 0.001. Note: (1) Experiments grouped 

by brackets were run in parallel; (2) one male in experiment 17 did not 

respond to test stimuli. 
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Figure 2.6 Number of male Glyptapantelesflavicoxis that were attracted, or wing- 

fanned, in response to test stimuli in Y-tube olfactometer experiments 25-3 1. 

Abbreviations as in caption of figures 2.2 and 2.4. In each experiment, bars 

with asterisks (*) indicate a significant response to a particular treatment; 

heterogeneity X2 test with Yates' correction for continuity, treatment versus 

control; *P < 0.05; **P < 0.01 ; ***P < 0.001. Note: (1) Experiments grouped 

by brackets were run in parallel; (2) one male in each of experiments 30 and 

3 1 did not respond to test stimuli. ' ~ e s t  stimuli placed at the orifice of the Y- 

tube's side arms. 
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2.4 Discussion 

Our data support the conclusion that female G. flavicoxis use a four-component 

pheromone blend that provokes strong close-range anemotactic attraction and wing- 

fanning responses by conspecific males (Figure 2.4, Experiment 14; Figure 2.6, 

Experiment 28). Response of males but not females to the pheromone (Figure 2.2, 

Experiment 4, 5) indicates that it is a sex pheromone rather than an aggregation 

pheromone. Failure of these four components to attract males over a distance of 10 cm 

(Figure 2.6, Experiment 29), coupled with attraction of males to live females over the 

same distance (Figure 2.6, Experiment 3 I), suggests that females use one or more 

additional pheromone components for long-range attraction of males. Similarly complex 

sexual communication has been reported for the parasitic wasp Aphidius nigripes 

(Aphididae) (McNeil and Brodeur, 1995; Marchand and McNeil, 2000). Body extracts of 

females provoked wing-fanning but not upwind flight by males, suggesting that female A. 

nigripes use both short- and long-range pheromone components. 

Ethyl dodecanoate in the effluvia of female G. flavicoxis was a potential long- 

range pheromone component, but it did not affect the males' behavioural response in our 

experiments (Figure 2.4, Experiments 13, 14; Figure 2.6, Experiments 29,30), and thus 

cannot be considered a pheromone component. 

Video footage (graphical illustration not shown) revealed that females deposit, 

and males respond to pheromone on substrate. It is, however, not likely that females 

deposit a continuous trail, as bioassayed in experiment 1. Males of the braconid As. 

reticulates respond sporadically to substrate that females have frequented before, 



suggesting that females deposit traces rather than trails of pheromone (Karnano et al., 

1989). Similarly, in G. flavicoxis, substrate-borne pheromone may signal the presence of, 

rather than provide long-range directional cues toward, females (Figure 2.6; Experiments 

29'30). 

Intriguingly, the close-range pheromone blend of G. flavicoxis is bifunctional, 

also eliciting wing-fanning responses by males. The males' strong wing-fanning 

response, however, was dependent upon their close distance to the pheromone source 

(e.g. Figure 2.4, Experiment 14; Figure 2.6, Experiment 28). Even caged live females 

(and their potential pheromone depositions on substrate) that remained inaccessible to 

males hardly elicited wing-fanning responses (Figure 2.6, Experiment 3 1). A strong 

wing-fanning response was also dependent upon the composition of the pheromone 

blend. It required the presence of component 3 and component(s) 1, or 2 and 4 (Figure 

2.5). 

Wing-fanning has been interpreted as a behaviour that facilitates the males' 

orientation toward females. As demonstrated with fine chalk dust in the ichneumonid 

Campoletis sonorensis, wing-fanning pulls air from front to rear, allowing directional 

orientation of males toward females (Vinson, 1972). This interpretation, however, does 

not explain completely why male G. flavicoxis were so discerning in their wing-fanning 

response to test stimuli (Figure 2.5). Males wing-fanned mostly in the presence of the 

complete pheromone blend, suggesting that they were motivated more by the quality of 

the female-produced signal, than prospects of improved anemotactic orientation toward 

females. If true, the males' wing-fanning could produce sound, possibly so specific that 



the female could use it to recognize conspecific males and discern between prospective 

mates (Sivinski and Webb, 1989). 

Identification of the close-range sex pheromone components was attempted but 

failed despite the large sample size (4,500 FE) that was analysed. Nonetheless, numerous 

micro-analytical treatments of, and electrophysiological recording with, pheromone 

extract (Table 2.1) suggested that all close-range sex pheromone components are 

unsaturated molecules of medium polarity, most likely esters. That these compounds 

remained below detection threshold of the mass spectrometer (- 10 pg), even when 4,500 

FE were analysed in a single injection, attests to the potency of the pheromone and the 

insects' sensitivity to it. Alternatively, the components are heat-labile, and defy 

identification by techniques involving gas chromatography. 



3 SPECIES-SPECIFIC SEXUAL COMMUNICATION 
SYSTEMS PREVENT CROSS-ATTRACTION IN 
G flavicoxis, G indiensis, AND G liparidis 

3.1 Introduction 

Sexual communication in parasitoids is mediated mainly by pheromones that are 

emitted by females and induce searching, courtship and mating behavior by males 

(Quicke, 1997). 

Specificity of the pheromone blend might serve as a reproductive isolating 

mechanism. Male sawfly parasitoids Syndipnus gaspesianus (Ichneumonidae) are not 

attracted to sympatric heterospecific female S. rubiginosus or their pheromone (Z)-9- 

hexadecenoate (Eller et al., 1984). Similarly, males of Brachymeria intermedia and B. 

lasus (Chalcididae) exhibit courtship behavior when exposed to pheromone extract of 

con- but not heterospecific females, suggesting that they use species-specific sex 

pheromones (Mohamed and Coppel, 1987a). Intriguingly, male Melittobia digitata 

(Eulophidae) emit sex pheromone that attracts conspecific females, but also cross-attracts 

female M. femorata and M. australica, suggesting that all three species use similar if not 

identical long-range pheromones. However, following antenna1 contact of prospective 

mates, heterospecifics are rejected, likely due to species-specific contact pheromones 

(CBnsoli et al., 2002). 

Bioacoustic signals constitute alternative reproductive isolating mechanisms. Both 

Diachasmimorpha longicaudata and D. kraussii (Braconidae) use pheromonal, visual and 



bioacoustic signals. Males are attracted to the female's cuticular pheromone, and respond 

with wing vibrational bioacoustic signals, which in turn increase the female's activity. 

The female's cuticular chemicals are similar across species, but acoustic signals of males 

appear to differ across the species (Rungrojwanich and Walter, 2000). 

Congeners in the Lepidoptera often share pheromone components. Allopatric 

congeners may use the very same pheromone (Gries et al., 2002b), whereas sympatric 

congeners typically employ one or more additional pheromone components to maintain 

reproductive isolation (Gries et al., 1996). Similarly, the tortricid moths Archips 

argyrospilus and A. rnortuanus share pheromone components in species-specific ratios 

(Carde et al., 1977a). 

Sexual communication in G. Jlavicoxis is mediated, in part, by a four-component 

close-range pheromone (Chapter 2). Pheromonal communications in G. liparidis and G. 

indiensis may be similarly complex but have not yet been investigated. 

My objective was to determine whether G. Jlavicoxis, G. indiensis, and G. 

liparidis use species-specific components to confer specificity to their sexual 

communication systems. 



3.2 Materials and methods 

3.2.1 Experimental insects 

Glyptapantelesjlavicoxis and its host L. dispar were reared in the Global Forest 

Quarantine Facility at Simon Fraser University (SFU), as described in Chapter 2.2.1. 

Cocoons of G. indiensis and G. liparidis were provided by the Beneficial Insects 

Introduction Research Laboratory (see above), and the Institute of Forest Entomology, 

Forest Pathology and Forest Protection, BOKU - University of Natural Resources and 

Applied Life Sciences, Vienna, Austria. Parasitoid cocoons with insects to be used in 

bioassays were transferred individually to capped plastic cups (30 ml) provisioned with 

sugar water-soaked cotton wicks. Rearing took place under a 16L:SD photoregime at 

22-25 "C and 50-70% RH. 

3.2.2 Acquisition of volatiles 

Unmated 1 - to 2-day-old female G. jlavicoxis, G. indiensis, and G. liparidis were 

placed into vertical cylindrical Pyrex glass chambers (10 ID x 6 cm), and were 

provisioned with a sugar water-soaked cotton wick. Control chambers contained the same 

food source, but no parasitoids. A water aspirator drew humidified, charcoal-filtered air 

at a rate of 1.5-2 Llmin for two days through the chamber and a glass column (14 x 1.3 

cm OD) filled with 150 mg of Porapak Q (50-80 mesh, Waters Associates Inc., Milford, 

Massachusetts, USA). Volatiles were eluted from Porapak Q volatile traps with re- 

distilled pentane (2 ml). The extracts were concentrated under a stream of nitrogen such 

that 10 pl of extract contained one female hour equivalent (FHE) of volatile acquisition 

(= amount of volatiles released by 1 female during 1 hour). 



3.2.3 Acquisition of pheromone extracts 

Groups of 1 - to 3-day-old female G. jlavicoxis, G. indiensis, and G. liparidis were 

macerated in three separate vials that contained hexane (ca. 10 pl per female) placed on 

dry ice. Then the extracts were kept at room temperature for - 15 min. The supernatant 

was withdrawn, filtered through a small amount of glass wool in a pipette, and quantified 

to determine the volume representing one female body extract equivalent (FBE). 

3.2.4 Y-tube olfactometer bioassays 

Olfactometers and the general bioassay design are described in Chapter 2.2.5. 

Experiments 1 and 2 tested behavioral responses by male G. indiensis and G. 

liparidis to effluvia and body extracts of conspecific females. Experiments 3-14 then 

tested body extract of female G. flavicoxis, G. indiensis, and G. liparidis for their 

potential cross-attractiveness to heterospecific males. Expecting consistent strong 

attraction of males to conspecific female pheromone, I tested the response of con- and 

heterospecific males in parallel experiments with alternating replicates. Thus, on any 

given bioassay day the males' lack of response to heterospecific female pheromone 

would likely be due to the non-attractiveness of the stimulus rather than the males' non- 

responsiveness, if males were responding strongly to conspecific female extracts. 

The number of parasitoids responding to stimuli were analysed with the X 2  

goodness-of-fit test using Yates' correction for continuity (a = 0.05), testing the null 

hypothesis that insects did not prefer treatment or control stimuli (Zar, 1996). 



3.2.5 Analyses of G. flavicoxis, G. indiensis, and G. liparidis pheromone extracts 

Aliquots of 1 FBE were analyzed by coupled gas chromatographic- 

electroantennographic detection (GC-EAD) (Am et al., 1975; Gries et al., 2002a), 

employing a Hewlett Packard (HP) 5890A gas chromatograph equipped with a GC 

column (30 m x 0.25 or 0.32 mm ID) coated with DB-5, DB-17, DB-210, DB-23 or 

FFAP (J & W Scientific, Folsom, California 95630). For GC-EAD recordings, a male's 

head was severed and placed into the opening of a glass capillary electrode filled with 

saline solution (Staddon and Everton, 1980). One antenna with its tip removed by spring 

microscissors (Fine Science Tools Inc., North Vancouver, British Columbia Canada) was 

placed into the opening of a second (indifferent) electrode. 

3.3 Results 

In GC-EAD analyses of female G. indiensis pheromone extracts, male G. 

indiensis antennae responded to five components, one of which specific to G. indiensis 

(Gi-spec), and four shared with G. flavicoxis (Figure 3.1). Similarly, in GC-EAD 

analyses of female G, liparidis pheromone extract, male G. liparidis antennae responded 

to six components, two of which (Gl-spec1 and G1-spec2) specific to G. liparidis, and 

four in common with G. flavicoxis (Figure 3.1). 

In Y-tube olfactometer experiments, female G. indiensis body extract at 1 FBE in 

combination with effluvium (1 FHE) elicited significant attraction and wing-fanning 

responses by conspecific males (Figure 3.2, Experiment 1). Similarly, female G. liparidis 

body extract (1 FBE) plus effluvium (1 FHE) elicited significant attraction and wing- 

fanning responses by conspecific males (Figure 3.2, Experiment 2). In experiments 3- 14 

(Figure 3.3), which were designed to test potential pheromonal cross-attraction 



Figure 3.1 Electroantennographic detector (EAD: conspecific male antenna) responses 

to aliquots of female Glyptapantelesflavicoxis body extract (top), female G. 

indiensis body extract (middle), and female G. liparidis body extract 

(bottom). Chromatography: Hewlett Packard 5890A equipped with a DB-23 

coated GC column (30 m x 0.25 mm ID); linear flow velocity of carrier gas: 

35 cdsec ;  injector and FID detector temperature: 220" C; temperature 

program: 1 min at 1 OO•‹C, 1 O•‹C/min to 220•‹C. Note: Corresponding flame 

ionization detector (FID) traces of the gas chromatograph are omitted 

because all antennal-stimulatory compounds occurred below FID detection 

threshold. 
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Figure 3.2 Number of male Glyptapanteles indiensis and G. liparidis that were attracted, 

or wing-fanned, in response to test stimuli tested in Y-tube olfactometer 

experiments 1 and 2. 1 FHE = one female hour equivalent = pheromone 

component(s) released by one female during one hour; 1 FBE = one female 

body extract equivalent = pheromone component(s) contained in the extract 

of one macerated female body. In each experiment, bars with an asterisk (*) 

indicate a significant response to a particular treatment; X2 test with Yates' 

correction for continuity, treatment versus control; *P < 0.05; **P < 0.01; 

***P < 0.001. 
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Figure 3.3 Number of male GlyptapantelesJlavicoxis, G. indiensis, and G. liparidis that 

were attracted, or wing-fanned, in response to test stimuli tested in Y-tube 

olfactometer experiments 3-14. 1 FBE = one female body extract equivalent 

= pheromone component(s) contained in the extract of one macerated female 

body. In each experiment, bars with an asterisk (*) indicate a significant 

response to a particular treatment; heterogeneity X2 test with Yates' correction 

for continuity, treatment versus control; *P  < 0.05; **P < 0.01; ***P < 

0.001. Note: (1) Experiments grouped by brackets were run in parallel; (2) 

one male in each of experiments 4 ,9  and 14, and 2 males in experiment 8 did 

not respond to test stimuli. 
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among species, body extract of female G. jlavicoxis elicited attraction andlor wing- 

fanning responses by conspecific males (Experiments 3, s), but not by heterospecific 

male G, indiensis (Experiment 4) or G, liparidis (Experiment 6). Furthermore, body 

extract of female G. indiensis elicited attraction and wing-fanning responses by 

conspecific males (Experiments 7,9), but not by heterospecific male G. jlavicoxis 

(Experiment 8) or G. liparidis (Experiment 10). Finally, body extract of female G. 

liparidis elicited attraction andlor wing-fanning responses by conspecific males 

(Experiments 1 1, 13), but not by heterospecific male G. jlavicoxis (Experiment 12) or G. 

indiensis (Experiment 14). 

3.4 Discussion 

My data support the hypothesis that G. indiensis, G, liparidis, and G. jlavicoxis 

share (candidate) pheromone components but use additional components to confer 

specificity to their sexual communication. The same four pheromone components that are 

present in body extracts of female G. jlavicoxis, and elicit antenna1 and behavioural 

responses Erom conspecific males (Figure 3.1; Danci et al., 2006), are also present in 

body extracts of female G. indiensis and G. liparidis (Figure 3.1). However, whether all 

of them are pheromone components in G. indiensis and G. liparidis, as in G. jlavicoxis, is 

yet to be determined. 

The presence of the same four components in all three species is indicative of 

phylogenetic relatedness, and supports taxonomic placement of the three species as 

congeners. Comparable volatile or pheromone blends of syrnpatric G. jlavicoxis and G. 

indiensis were expected, but the very similar volatile blend of allopatric G. liparidis is 

surprising. It is suggestive of a common ancestor that has given rise to all three species. 

5 3 



Analogously, Elatophilus hebraicus (Hemiptera: Anthocoridae), a hemipteran predator of 

Matsucoccus scales (Homoptera: Matsucoccidae), not only respond to the pheromone of 

the sympatric prey species Matsucoccus josephi, but also to the pheromone of two 

allopatric Matsucoccus prey species, suggesting the kairomonal response of E. hebraicus 

has evolved during sympatric speciation of the genus Matsucoccus (Dunkelblum et al., 

1996).The complete lack of pheromonal cross-attraction among the three Glyptapanteles 

species (Figure 3.3) is likely due to the species-specific components in G, indiensis (Gi- 

spec) and G. liparidis (GI-spec1 andlor GI-spec2). Should these compounds be part of the 

respective pheromone blends, they would be synomones that enhance attraction of 

conspecifics while simultaneously inhibiting the response of heterospecifics. Synomonal 

activity of pheromone components has been well documented in the Coleoptera and 

Lepidoptera. The heliothine moths Heliothis zea, H. virescens and H. subjlexa 

(Lepidoptera: Noctuidae) share (2)-1 1 -hexadecenal as a common pheromone component, 

whereas (2)-9-hexadecenal in H. zea, (2)-9-hexadecenal and (2)- 1 1 -hexadecen- 1-01 in H. 

subflexa, and (Z)-9-tetradecenal in H. virescens enhance attractiveness and species- 

specificity of the respective pheromone blends (Vetter and Baker, 1983, 1984; Vickers, 

2002). Similarly, bark beetle aggregation pheromones contain components that interrupt 

the pheromonal response of competing species. Sympatric Ips paraconfusus and Ips pini 

(Coleoptera: Scolytidae), for example, infest the same host, but components of their 

respective pheromones inhibit cross-attraction (Birch and Haynes, 1982). 

It is also conceivable that Gi-spec in G. indiensis, and G1-spec1 and G1-spec2 in 

G. liparidis, are non-pheromonal constituents in their respective communication systems, 

serving the single role of reducing cross-attraction of heterospecifics. Such a concept has 



been proposed for nun moth, Lymantria monacha (Lepidoptera: Lymantriidae), and its 

sympatric congener L. dispar, both using (+)-disparlure as a pheromone component. 

Attraction of male L. dispar to (+)-disparlure is inhibited in the presence of (-)-disparlure 

(Klimetzek et al., 1976; Card6 et al., 1977b; Plimmer et al., 1977), which is likely 

produced as a non-pheromonal constituent by female L. monacha to enhance the 

specificity of sexual communication (Hansen, 1984). 

To assign non-pheromonal or synomonal roles to Gi-spec in G. indiensis, and to 

GI-spec1 or GI-spec2 in G. liparidis, will require their isolation and bioassay testing. 

Although they occur well below GC or GC-mass spectrometric detection thresholds, they 

can be separated from other candidate pheromone components by high performance 

liquid chromatography (HPLC), carefully monitoring HPLC fractions by GC-EAD (see 

Danci et al., 2006; Chapter 2). 

Reproductive isolating mechanisms in insects operate at multiple levels (Birtch 

and Haynes, 1982). At the behavioural and physiological level, species-specific sexual 

communication systems contribute to prezygotic reproductive isolation of G. Jlavicoxis, 

G, indiensis, and G, liparidis, irrespective of their allopatric or sympatric occurrence. 



4 CONCLUSIONS 

Hymenopteran parasitoids employ short and/or long-range sex pheromones, 

which attract potential mates and play a role during courtship behaviour. In my thesis, I 

have investigated pheromonal comunication in three braconid congeners: G. flavicoxis, 

G. indiensis and G. liparidis. 

Based on my data, the following conclusions can be drawn: 

Female G, flavicoxis, G. indiensis, and G. liparidis deposit pheromone by pressing 

sporadically their abdominal tip on the substrate. These "deposits," or body extracts 

of females, provoke substrate-antennation, wing-fanning and short-range 

anemotactic attraction responses by conspecific males. 

Female G. flavicoxis, G. indiensis, and G. liparidis all deploy species-specific short- 

range sex pheromones that attract con- but not heterospecific males. 

The short-range sex pheromone of female G. flavicoxis comprises four components, 

which are all necessary to elicit short-range attraction and wing-fanning responses 

by conspecific males. 

Pheromone extracts of G, indiensis and G, liparidis contained the four G. j7avicoxis 

pheromone components, but also contained additional components that likely 

contributed to species-specific blends. 

Wing-fanning as the most conspicuous element of male courtship behaviour occurs 

only in the presence of live females, pheromonal deposits from live females, or body 

extracts of females. Wing-fanning by males might produce sound that provides 

females with species and mate recognition cues. 
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