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ABSTRACT 

The independent and combined effects of hypoxia and elevated esophageal 

temperature (T,,) were investigated for their effects on the level and lunetics of exercise 

ventilation (VE). In either a 'hyperthermic' T,, or a 'normothermic' Tes session, 11 

college-aged, healthy males were immersed to the shoulders and pedalled on an 

underwater cycle ergometer at a steady-state oxygen consumption (V02)  of 0.87 ~ . m i n - '  

(SD 0.07). Following a 30-min rest and 20-min warm-up, a 30-min steady-state cycling 

period was divided into three 10 min gas phases when participants inhaled: air (Euoxia 1 

(El)), hypoxic gas (12 % 0 2  and 88 % N2 (HI)), and air (Euoxia 2 (E2)). End-tidal C02 

(PETC02) was maintained at an isocapnic level of 5.19 kPa (SD 0.71) throughout the 

exercise. Venous blood samples were drawn at rest and 5 min into all gas phases. 

Results showed a significant increase in \jE during all hyperthermia conditions (0 .0kP c 

0.048), however, during hyperthermic hypoxia there was a disproportionate and 

significant (P = 0.017) increase in VE relative to normothermic hypoxia. This was the 

main explanation for a significant core temperature and gas type interaction (P = 0.012) 

for VE. A main effect of core temperature (P = 0.007) was evident on ventilation 

frequency (f,) with an increased rate of breathing in hyperthennic relative to the 

normothermic exercise. This gave evidence of a thermally-induced tachypnea which 

corresponded to significant decreases in inspiratory time (TI) (P = 0.035) and expiratory 



time (P = 0.014) and was independent of any changes in tidal volume (VT) (P = 0.801). 

As such inspiratory flow ( v T . ~ f l )  was significantly increased in hyperthermic- relative to 

normothermic (P = 0.003) exercise, an increase that was pronounced (P = 0.013) during 

hyperthermic hypoxia. A significant reduction of the time constants (z) for vE was 

evident (P = 0.032) during the onset of exercise under the hyperthermic as compared to 

the normothermic condition. This reduction in z was associated with an increase in T,, (R' 

=0.829, P = 0.01 1) but not in skin temperature. Between core temperature levels there 

were no significant changes in z for the V E  response from euoxic to hypoxic steady-state 

exercise. From normothermic to hyperthermic exercise increases of VE in E l  were 9.4 % 

(SD 9.7) and not significantly different than the 6.9 % (SD 10.7) increase in V02. 

However in HI, vE and V O ~  increased by 29.2 % (SD 25.5) and 13.5 % (SD 10. I), 

respectively, which bordered a significant difference (P = 0.056). No changes in lactate 

or potassium (K') levels were evident across all gas type and core temperature conditions. 

In conclusion, these results suggest the following: 1) During low intensity, steady-state 

exercise an elevated Tes caused an increased vE ,  which was mediated by an increased f,. 

2) The addition of hypoxia during hyperthermic exercise caused a multiplicative increase 

in VE which corresponded with a multiplicative increase in V ~ . T ~ - ' .  This would suggest 

the possibility of a core temperature mediated stimulation of the peripheral 

chemoreceptors. 3) An increased Tes during the onset of exercise but not during the 

transition from low intensity euoxic to hypoxic exercise shortened the time course of the 

VE response. 4) Oxygen consumption, K+ and lactate did not appear to be significant 

mediators of the augmented hyperthermic hypoxic VE response. Overall the results 



support the hypothesis that temperature plays a significant role in the control of 

ventilation, particularly during hypoxic exercise. 
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TERMS AND DEFINITIONS 

Active hyperthermia: An exercise-induced hyperthermia 

Aortic body: Group of chemoreceptor cells between the aorta and pulmonary artery 
sensing the arterial oxygen pressure, arterial carbon dioxide pressure and pH of arterial 
blood. 

Arterial baroreceptors: Stretch receptors in wall of carotid sinus and arch of aorta, 
sensing arterial blood pressure continuously. 

Arterial oxygen saturation: Concentration of oxygen in the arterial blood, mostly in red 
cells, dependent on hemoglobin concentration and partial pressure of oxygen. 

Blood brain barrier: Capillaries of cerebral circulation have a uniquely restricted 
permeability to larger non-lipid molecules. Not present in specific areas. Structurally 
made up of glial cells. 

Body temperature: The combined core and skin temperature 

Carotid body: Group of cells containing chemoreceptors close to internal carotid artery 
that constantly sense the levels of arterial oxygen pressure, arterial carbon dioxide 
pressure and pH of arterial blood. 

Central chemosensitive areas: The primary chemical control areas of regular breathing. 
They are located in the ventro-lateral medulla in close contact to cerebrospinal fluid and 
responds to increases in arterial carbon dioxide pressure 

Central respiratory control centre: The control centre is located in the brain stem and 
consist of the medullary respiratory centre, the apneustic centre and the pneumotaxic 
centre. 

Core temperature threshold for ventilation: A core temperature level past which 
ventilation increases with increasing core temperature. 

Core temperature: Mean temperature of the thermal core of the body 



Dorsal respiratory group: This group controls the basic rhythm of breathing and 
regulates inspiration 

Eccrine Sweating: A response of the eccrine sweat glands to a thermal stimulus. 

End-tidal carbon dioxide pressure: Alveolar carbon dioxide gas tension at the end of a 
normal expiration. 

Evaporative heat loss: Evaporative heat transfer from the body to the ambient air by 
evaporation of water from the skin and the surfaces of the respiratory tract. 

Expiratory time: The length of single expiration measured in seconds. 

Heart rate: The rate at which the heart beats in beats per min. 

Heat storage: The rate of gain or loss of heat associated with change in body 
temperature or body mass. 

Hyperpnea: Rapid and deep breathing associated with metabolic changes. 

Hyperthermia, induced: The state of hyperthermia produced purposefully by an 
increase in heat load andor inactivation of heat dissipation by physical andor 
pharmacological means. 

Hyperthermia: The condition of a temperature regulator when core temperature is 1•‹C 
above its set-range specified for the normal active state of the species. 

Hyperventilation: Excessive breathing; greater rate andor depth than required for 
metabolic needs. 

Hypoxia: A condition of low arterial oxygen pressure within the body 

Hypoxic ventilatory response: The hyperventilation response associated with 
decreasing levels of arterial oxygen pressure. 

Inspiratory flow: A measure of the total amount of air (tidal volume) inspired as a 
function of the time to inspire. 

Inspiratory time: The length of a single inspiration measured in seconds. 

Low intensity exercise: Exercise at - 20-40 % of an individuals VOZpeak 

Metabolic heat production: Rate of transformation of chemical energy into heat in an 
organism, usually expressed in terms of unit area of the total body surface 

Metabolic rate: The total energy production in an organism per unit surface area 

xvi 



Metabolism: The transformation of chemical energy into work and heat. 

Oxygen consumption: Volume of oxygen used by body in each minute expressed in 
STPD. Varies directly with the level of activity in which one is engaged. 

Passive hyperthermia: Rendering of the body to a hyperthermic state by passive means 
(i.e. heating in elevated water or air temperature) 

Peripheral chemoreceptors: Chemical receptors located at the bifurcation of the 
common carotid arteries. They respond to decreased arterial oxygen pressure, increased 
arterial carbon dioxide pressure, and decreased pH. 

Pneumotaxic centre: This centre is located in the upper pons and appears to be 
responsible for the cessation of inspiration thereby contributing to the control of 
ventilation frequency. 

Qlo effect: The ratio of the rate of a physiological process at a particular temperature to 
the rate at a temperature 10•‹C lower, when the logarithm of the rate is an approximate 
linear function of temperature. 

Respiratory alkalosis: Increase in plasma pH above 7.4 caused by reduced levels of 
carbon dioxide; usually induced by excessive ventilation of pulmonary alveoli, i.e. 
hyperventilation. 

Respiratory evaporative heat loss: Heat dissipated by exhalation of air saturated with 
water vapour. 

Respiratory exchange ratio: Defined as ratio of volume of C02 exhaled to volume of 
0 2  consumed. 

Selective brain cooling: Lowering of brain temperature, either locally or as a whole, 
below aortic temperature. 

Set-point: The value of a regulated variable which a healthy organism tends to stabilize 
by the process of regulation. 

Skin temperature: The temperature at the surface of the skin at a specific site 

Steady-state: Condition when variables are not changing with time. 

Temperature sensitive: Descriptive of thermoresponsive neural structures with the 
implication that the neural elements involved provide specific temperature signals. 

Thermal hyperpnea: An increase in tidal volume associated with an increase in 
alveolar ventilation occurring during severe heat stress which has caused a large rise in 

xvii 



core temperature. Deep breathing is also named second phase panting since it is usually 
preceded by a phase of typical panting (rapid shallow breathing). 

Thermal panting: Open-mouthed thermal tachypnea. 

Thermal tachypnea: A rapid ventilation frequency accompanied by an increase in 
ventilation minute volume and, sometimes, a decrease in tidal volume, in response to a 
thermoregulatory need to dissipate heat. Also known as a thermal polypnea. 

Thermoeffectors: An organ and its function, respectively, which affects heat balance in 
a controlled manner as part of the process of temperature regulation. 

Tidal volume: Volume of air entering and leaving the lungs with each breath. 

Time constant: The time in which an exponential process is 63% complete, represented 
by (z). 

Ventilation: A common measurement of pulmonary ventilation, it is the amount of air 
inspired or expired each minute, calculated as a product of tidal volume and frequency of 
respiration. 

Ventilation frequency: The number of breathes per minute. 

Ventilationlperfusion ratio: Relationship between alveolar ventilation and blood flow 
through alveolar capillaries. 

Ventilatory kinetics: Time dependent behaviour of ventilation responses to different 
stimuli. 

Ventral respiratory group: This area regulates expiration, but is inactive during normal 
breathing. 

V02PEAK: A measurement of peak oxygen uptake during physical activity which will 
fall between 66% and 86% of an individual's maximal value for oxygen uptake. 
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CHAPTER 1 THESIS OVERVIEW 

An anomaly in human physiology that has existed for over a century is how 

ventilation is controlled during exercise (1, 3). Both metabolic (4,6,7) and non- 

metabolic neural modulators (2, 5) have been implicated in the regulation of exercise 

ventilation. It is also apparent that there is no single hypothesis that can explain each of 

the phases (2) of exercise ventilation. Furthermore, there are many confounding factors 

that can influence ventilation during exercise and rest. Two of the known modulators 

influencing human ventilation are elevated body temperature and hypoxia. The 

independent and combined effects of hypoxia and hyperthermia on human exercise 

ventilation are the focus of this thesis. 

The content of this thesis is as follows. Initially a review of the mechanisms of 

the regulation of body temperature is given for homeotherms and how these relate to 

hyperthermia. Next, the phases of exercise ventilation are described, followed by a 

review of several hypotheses on the control of human exercise ventilation. A review of 

the control of ventilation during hyperthermia and hypoxia are subsequently given in 

addition to the effects of hypocapnia on ventilation. The literature review concludes with 

a section that illustrates that there are independent and combined effects of hypoxia and 

exercise on ventilation. The objectives of the thesis studies are then stated as an 



examination of the independent and combined effects of hypoxia and hypertherrnia on 

human exercise ventilation. At the conclusion of the literature review, research 

hypotheses based on the evidence available in the current literature are given together 

with testable questions that are specifically addressed in studies presented in Chapter 3 ,4  

and 5. 

Chapter 3 investigated the independent and combined effects of hypoxia and 

elevated core temperature on the level of exercise ventilation and its components. In 

addition Chapter 3 examined the effects of hypoxia and core temperature for their 

influence on the timing of ventilation and the inspiratory flow. Chapter 4 investigated the 

effects of core temperature on the kinetics of the ventilatory response from rest to low 

intensity exercise and from euoxic to hypoxic low intensity exercise. Finally, Chapter 5 

investigated the potential effects of changes in metabolic rate and blood borne 

metabolites on low intensity steady-state exercise ventilation during hypoxia and 

h yperthermia. 

The thesis is concluded with a final Chapter 6, which responds to the research 

hypotheses and testable questions, as stated in Chapter 2. 

Reference lists are given at the end of each chapter and an overall reference list is 

given in Chapter 7. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Temperature Regulation 

2.1.1 Thermoregulation in homeothems 

Temperature regulation is largely an autoregulatory system in the human body 

that functions to help maintain thermal homeostasis. Despite regional internal and 

external heat loss or heat gain, homeotherms maintain their body temperature within 

narrow limits. DuBois (33) in his early work proposed the human body functioned 

optimally in an oral or rectal temperature range of 36.2"C to 37.8"C. Subsequently, 

under adverse environmental or experimental conditions, the human body was shown to 

function in a greater range of internal core temperatures from -31•‹C to -41•‹C (93). Ted 

Hamrnel (45) at the John B. Pierce Foundation at Yale described the first set-point model 

of the thermoregulation by which a homeotherm's body temperature is regulated. 

2.1.2 The set-point model of thermoregulation 

In Hammel's (45) set-point model of thermoregulation the regulated variable is 

core temperature and the model includes three main components in a negative feedback 

loop. These components are temperature sensitive neurons, a proportional controller in 



the central nervous system (CNS), and a group of thermoregulatory effectors (45). On 

the afferent side of this reflex loop the temperature sensitive neurons feed information 

about peripheral (skin) temperature and the temperature in the CNS to the hypothalamus. 

In the model (45), the hypothalamus acts as a proportional controller that compares the 

signals from these temperature sensitive neurons to a set-point or a hypothetical reference 

signal. If there is a difference between these incoming signals and the hypothesized set- 

point, or reference temperature, efferent signals are sent to the appropriate thermo- 

effectors that help bring the body temperature back towards the set-point. The efferent 

signals are sent in proportion to the difference between the incoming afferent signals and 

the reference signal. In this negative feedback system, homeotherms are able to maintain 

a fairly consistent core temperature despite significant changes in ambient temperature. 

The primary autonomic thermoregulatory effectors that enable this temperature 

regulation include variations in peripheral vascular tone and consequent variations in skin 

blood flow, eccrine sweating, and shivering plus non-shivering thermogenesis (60). 

2.1.3 Relative influences of skin and core temperature on thennoregulatory 
responses 

Initially there were two general classes of temperature sensitive neurons described 

in humans and other mammals (49). One class of temperature sensitive neurons were 

thought to function as cold sensitive receptors which elicit maximal responses near 

-25"C, while the other class were thought to function as warm sensitive receptors which 

elicit maximal responses near -40•‹C (49). Later work suggests there is one group of 

temperature sensitive neurons with increased activities at low and high temperatures (12). 



To be consistent with the past literature these are described as cold and warm temperature 

sensitive neurons. 

Temperature sensitive neurons are practically grouped into peripheral and central 

temperature sensitive neurons. The peripheral temperature sensitive neuron activity is 

represented by skin temperature and central temperature sensitive neuron activity is 

represented by core temperature. As such, these groupings allow a study of the relative 

influences of these temperature sensitive neurons' activities on the magnitude of 

thermoregulatory responses. In this context, both dynamic and static activities of these 

temperature sensitive neurons are quantified to assess their proportion of the afferent 

input to the integrative centres in the CNS. Within the CNS, the hypothalamus and other 

lower level centres, integrate the afferent information about central and peripheral 

temperature levels. Subsequently efferent signals are sent to the thermoeffectors that are 

proportional to the deviation or offset from a hypothetical reference temperature level 

that is at -37OC. This reference core temperature level varies slightly in accordance with 

the bodies circadian rhythms with the lowest levels in the morning and the highest in the 

late afternoon (121). Within the framework of this temperature regulation model, core 

temperature thresholds exist where thermoregulatory responses are evident as the core 

temperature is increased or decreased from the reference level of -37•‹C. 

Core temperature thresholds for thermoregulatory responses can be influenced by 

both changes in skin and hypothalamic temperature (7, 10,45). Specifically, Benzinger 

et al. (7, 10) demonstrated that the thresholds for the onset of thermoregulatory effector 



responses such as eccrine sweating and metabolic heat production (i.e. shivering) were 

sensitive to the skin temperature level. For thermolytic heat loss responses a lower slun 

temperature delayed their onset and for thermogenic heat production responses a higher 

slun temperature delayed their onset (7, 10). The rationale for these observations was 

that reciprocal inhibition of warm and cold temperature sensitive neurons was evident 

(1 1). As core temperature increased warm sensitive central neurons were activated that 

promoted thermolytic responses, however, the onset of the thermolytic response or core 

threshold, was delayed to a higher core temperature if the skin temperature was held at a 

lower temperature level. This was reasoned to be due to higher activity of peripheral 

temperature sensitive neurons that acted to inhibit the thermolytic pathway with elevated 

body temperature. A full description of this model is given by Bligh (1 1). 

Benzinger (8) proposed that the skin and central (core) thermoreceptors both 

contributed to thermoregulation, but that core temperature had a more predominant role. 

One experiment Benzinger (8) employed was to have his subjects sit in a heated chamber 

at 45OC, and swallow ice continuously so the core temperature sensors would signal a 

drop in temperature. He observed an attenuation of the sweating rate despite the external 

air and slun temperature remaining constantly elevated. He concluded from this that the 

central thermosensors appeared to have dominance over the peripheral (skin) 

thermosensors in body temperature regulation for thermolytic responses. 

As Benzinger showed above (7, 10) skin temperature and core temperature in a 

case study on a single subject (7), indicated that when skin temperature was below 33OC, 



the onset and rate of sweating was delayed and diminished with increasing core 

temperature. This suggested a fall in skin temperature below 33•‹C shifted the core 

temperature threshold for sweating to a higher value. In this case, it appeared that skin 

temperature and core temperature had a dual role in controlling evaporative heat loss or 

sweating but it was not clear what their relative importance was in the control of this 

thermolytic response. Conversely, Benzinger (7) showed that skin temperatures in the 

warm-reception range of 33•‹C to 38•‹C had no direct influence on evaporative heat loss 

through eccrine sweating. Wyss et al. (140) performed a similar experiment in which 

they looked at the effect of skin temperature on sweating rates by increasing the skin 

temperature of their subjects at different rates from a thermoneutral skin temperature of 

-35•‹C to a maximum of -40•‹C. Similar to Benzinger (7), they found the sweating rate to 

be virtually independent of skin temperature, however they did not look at the effects of 

skin cooling below 33•‹C. It appeared that there is a critical skin temperature threshold 

for the modulation of eccrine sweating is 33•‹C. Slun temperatures above this threshold 

appear to have no direct influence on evaporative heat loss, however, when core 

temperature rises if skin temperature is lower than 33•‹C there seems to be a blunting of 

the onset of eccrine sweating (139). In addition to his finding in humans for eccrine 

sweating, Benzinger (7, 9) found that increasing slun while cooling core temperature 

delayed the onset of cold-induced shivering thermogenesis. A problem with this initial 

finding arose in that humans cannot maintain a constant high skin and low core 

temperature for even a short period of time, so the phenomena being observed here was 

probably a transient response. 



With the availability of new research techniques Jessen et al. (59) and Nagel et al. 

(88) were able to maintain changes in core temperature independently of changes in skin 

temperature. They did this by employing a large mechanical arteriole-venous shunt 

equipped with an extracorporeal heat exchanger that was connected to the aorta of a goat 

allowing for independent control of core and slun temperature. When core temperature 

was decreased there was a concomitant increase in shivering thermogenesis by more than 

300 % despite very high skin temperature exceeding 43•‹C. A similar study by Kuhnen 

and Jensen (69) looked at the relative effects of decreasing skin temperature on shivering 

thermogenesis while maintaining a constant core temperature. Core temperature was 

kept constant at 3 8 . 8 " ~ ~  in the goat while skin temperature was clamped at different 

temperatures ranging from 13 to 41•‹C. As skin temperature fell, heat production 

increased, although at a much lower rate than in the first series of experiments when core 

temperature was changed. It appears that at least in goats, core temperature seems to play 

a larger contribution to the control of heat production than slun temperature does. Jessen 

(59) quantified this relationship in terms of a ratio and found it to be 3: 1 in favour of core 

temperature over skin temperature in the control of shivering thermogenesis in goats in 

the cold. The role of skin temperature on overall temperature regulation in the body for 

heat exchange therefore appears not to be a primary one in initiating the thermoregulatory 

effectors, more so it appears to play a secondary role once changes in core temperature 

occur. As mentioned previously, when core temperature deviates in either direction, 

opposing changes in skin temperature can blunt the thermo-effector responses decreasing 

* -39•‹C is a resting core temperature for a goat (69). 
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heat loss or gain. In summary, significant changes in slun temperature can cause a 

change in the core temperature threshold for thermoregulation responses. 

2.1.4 Resetting of the thennoregulation set-point 

There are several examples which illustrate the core temperature set-point from 

this model of temperature regulation can be reset (45). These include sustained thermal 

stress (4-3, sleep (7, lo), fever (64), circadian rhythms (41, 117) and the ovarian cycle 

(50, 51). 

As illustrated during simple manipulations of skin temperature by Benzinger (7) 

and Hammel et a1 (45) the set-point of temperature regulation was suggested to be 

adjustable. In a study on the effects of manipulations in hypothalamic and slun 

temperatures in the rhesus monkey and resting dog, results indicated that increases or 

decreases in skin temperature as a result of changing environmental temperatures elicited 

thermoregulatory effector responses despite core temperature remaining fairly constant 

throughout these changes (45). It was also shown these effector responses were in 

proportion to the changes in skin temperature (45). Hammel et al. (45) proposed these 

mechanisms occurred as a result of changes in the steady state and phasic firing of cold 

and warm skin receptors located in the hypothalamus. This would cause the set-point of 

temperature regulation to shift (elevates in a cold environment and lowers in a warm 

environment) thereby driving the thermoregulatory effector responses while maintaining 

a fairly steady-state core temperature (45). 



Further evidence has been found to support Hammel et al.'s (45) adjustable set- 

point model in studies looking at the effects of fever. The onset of fever is marked by a 

pyrogen mediated elevation of the set-point above the core temperature. In mammals and 

birds a drop of core temperature below the elevated set-point during a fever results in a 

load error and a stimulation of the cold sensors, which causes paradoxical skin 

vasoconstriction and shivering (65). During normal thermoregulation, core temperature 

eventually rises in fever as a result of the shivering induced thermogenesis and eventually 

becomes equal to the elevated set-point. At this phase of fever the body ceases the 

paradoxical skin vasoconstriction and shivering but continues to protect the elevated set- 

point and core temperature (64). 

Another example of the adjustable set point is evident during the luteal phase of 

the ovarian cycle in human females. Hessemer and Bruck (50, 51) found that body 

temperature is regulated about OS•‹C higher in the luteal phase than in the follicular phase 

of the menstrual cycle. The cause of this increase in threshold temperature was not fully 

elucidated but they have suggested a possible role of progesterone in the CNS as a 

mediator in this mechanism, as it has a concomitant increase during the luteal phase (50, 

5 1). Progesterone has been found to cause an increase in body temperature in both 

females (58) and males (104). 



A final example of the adjustable set-point is evident during the circadian rhythms 

of a standard 24 hour day. Stephenson et al. (7, 10) showed that the threshold for 

sweating and forearm vasodilatation decreased upon entering and during sleep and 

increased on awakening. From this finding they proposed that the set-point for 

temperature regulation varies throughout the 24 hour day in humans, with a significant 

fall during the sleeping hours (7, 10). The cause of these circadian fluctuations in core 

temperature thresholds have been unclear, some researchers have proposed that this is 

caused by variations in activity throughout the day (66), however other studies (39, 121, 

133) have clearly shown that activity levels only play a minor role in these observed 

changes. It has been shown (54) that there appears to be a circadian rhythm in the 

sympathetic nervous system (SNS), which regulates sympathetic tone. Coincidentally the 

circadian rhythm of the SNS mirrors that of the core temperature thresholds for 

temperature regulation (i.e. sympathetic tone was lowest during sleep). This observation 

made by Stephenson et al. (1 17) was the basis for their proposal that the mechanism 

responsible for these observed differences may be the result of the relative inhibition of 

the sympathetic mediated noradrenergic outflow during sleep as compared with the 

waking hours. While there are several plausible explanations for the observed decrease 

in core temperature thresholds for temperature regulation during sleep there is still no 

finite explanation, it is clear however that the set-point for temperature regulation is 

adjustable. 

While the set-point theory still remains to be a widely accepted model in humans 

describing temperature regulation, there are other hypotheses that have been proposed 



that have modified some of the original postulates of this theory. The most notable 

alternate hypothesis is the null zone model of thermoregulation proposed by Mekjavic et 

al. (84), which is widely accepted as the temperature regulation model for other mammals 

(108). 

2.1.5 Null zone for themtoregulation 

Mekjavic et al. (84) presented evidence for the existence of a null zone of core 

temperatures in humans in which there is no eccrine sweating or shivering. Their 

findings are contrary to the traditional set-point model of temperature control that was 

developed almost half a century earlier (8,45). The null zone of core temperature can be 

demonstrated by expressing thermoregulatory effector responses of heat production and 

heat loss as function of core temperature with a clamped skin temperature of -28•‹C (84). 

More recently Lopez et al. (75) illustrated a range of core temperatures within which 

there is neither shivering nor eccrine sweating. It was suggested that within this null 

zone, temperature regulation depends only on variations in skin blood flow as function of 

variations in vasomotor tone (84). 

The null zone hypothesis has been well established for many species other than 

humans. For example, camels have a null zone of almost 4•‹C in which their core 

temperature can deviate without significant thermoregulatory responses other than slun 

blood flow (1 10). In humans this hypothesis is controversial as previous studies (45,60) 

have found that a set point exists in which rises or drops below this point will elicit a 



shivering or sweating response. Cabanac and Massonnet (16) found this set point to exist 

in humans at a core temperature of -37.3"C. Mekjavic et al. (84), however, replicating a 

similar experiment to that of Cabanac and Massonnet (16) observed a thermoneutrality 

zone of core temperature of about 0.6"C. They attributed this difference in their findings 

to the change in experiment protocol. Their subjects exercised to increase core 

temperature and then were cooled both in a constant temperature 28•‹C bath that allowed 

maintenance of a constant slun temperature. In Cabanac and Massonnet's (16) protocol 

the subjects were exposed to large changes in water temperature, which inevitably 

effected skin temperature and was suggested to confound their expression of 

thermoregulatory thresholds. Whether a core temperature null zone or point exists still 

remains an actively researched topic. In humans however, there does appear to be a 

significant range in which core temperature is regulated independent of increased 

shivering or eccrine sweating. 

2.1.6 Behavioural control of thermoregulation 

Behaviour is an important aspect that is often undervalued as a significant means 

of thermoregulation (108). Humans like other homeotherms prefer thermal conditions 

that allow for the maintenance of body temperature. Hensel (49) described this as the 

"thermal comfort zone" (49). The "thermal comfort zone" for humans would appear to 

exist at the thermoregulatory set-point or null zone (49). When humans are subjected to 

conditions which cause the body's temperature to deviate from this comfort region, 

temperature sensitive neural signals are relayed to the cerebral cortex causing conscious 



measures by the body to bring core temperature back toward resting levels (15,60, 107). 

Behavioural responses vary greatly depending on the type and severity of thermal stress, 

but the primary ones in both humans and animals include changes in locomotion (60), 

orientation (1 l6), posture (42, 81) and social behaviour (107). In animals wallowing and 

saliva spreading are also common active behavioural measures in heat stress 

environments (57). The body also uses behaviour as a means of reducing the costs of 

autonomic thermoregulation such as shivering and sweating thereby reducing strain on 

the body (60). 

Both autonomic and non-autonomic pathways can elicit behavioural responses to 

temperature changes in the body, although the majority of thermoregulation is under 

autonomic control by the hypothalamus and the CNS. It is evident that central 

temperature sensitive neurons have dominance over body temperature regulation (8, 59, 

69), however, there appears to be other avenues of temperature regulation that involve the 

skin temperature sensitive neurons. Benzinger (8) also proposed that the nerve endings in 

the slun could act as sensory organs for the conscious centres of the cerebral cortex, 

bypassing the autonomic (unconscious) control centres of the hypothalamus. The 

conscious centres of the CNS can act as a defence mechanism to prevent any deviations 

in core temperature by sensing initial changes in the temperature of the external 

environment (via the slun thermoreceptors) and guide behavioural patterns to counteract 

the change. 



Satinoff (108) reviewed the neuronal organization of complex thermoregulatory- 

guided behaviours. She has proposed that complex behavioural responses to thermal 

stresses are continually evolving. She presents that there are several competing patterns 

for homeostatic thermoregulation, not just a single-integrator model such as suggested by 

Hammel et al. (45) and Benzinger (9). Examples cited by Satinoff (108) amongst others, 

give evidence of this hierarchy of thermoregulation in cats and dogs which were shown 

to retain their ability to pant after body warming with spinal transection rostra1 to the 

midbrain (62). Also rabbits were able to maintain their body temperature by shivering 

despite a cervical section of their spinal cord (120). The hierarchy described in her model 

of behavioural temperature regulation suggests that the hypothalamus, the midbrain, the 

medulla and the spinal cord give a collective integration of afferent signals from body 

temperature sensitive tissues. 



2.2 Control of Exercise Ventilation 

2.2.1 Control of ventilation during exercise 

During high intensity exercise it has been shown that ventilation increases 

approximately 15 fold from resting ventilation (124). This exercise-induced hyperpnea is 

a result of an increase in the rate of ventilation to match the increase in metabolic rate 

during exercise. Modulators responsible for this hyperpnea appear to be different from 

those for resting ventilation, as the normal modulators of resting ventilation such as 

arterial carbon dioxide arterial pressure (PaC02), oxygen arterial pressure (P,02) and 

arterial pH (pH,) remain virtually unchanged during moderate intensity exercise (124). 

The cause of this hyperpnea associated with exercise has been examined in great detail, 

but to date, the mechanisms underlying human exercise ventilation remains to be clearly 

identified (32, 72, 124). Several hypotheses however have been suggested for this 

important form of respiratory stimulation, which possibly involve metabolic modulators 

andlor neurogenic inputs. The severity of the exercise-induced hyperpnea is also 

dependent on the intensity and duration of exercise (135). 

Dejours (3 1) proposed that the magnitude of the exercise-induced hyperpnea 

could be apportioned into two general intensity levels. Low-Moderate (LM) intensity 

exercise at -30-50 % of maximal work capacity described the first classification of 

exercise intensity. At this intensity the metabolic demand is mainly from skeletal muscle 



(135). The body compensates by increasing ventilation to reach this metabolic demand. 

Increases in ventilation during LM intensity exercise are in linear proportion to increases 

in V 0 2  (124). Moderate-High (MH) intensity exercise at - 60-75 % of the subjects 

maximal work capacity is the second of Dejours' (31) exercise intensity classifications. 

Similar to LM intensity exercise, MH intensity exercise is marked by an initial increase 

in ventilation. However, during MH intensity exercise, once the anaerobic or lactate 

threshold is reached (also known as the first ventilation threshold (VT1)) there is a 

subsequent isocapnic buffering period in which there is no discernable decrease in 

PETCO2 and P,C02 (125). A compensatory hyperventilation thus develops during this 

period causing ventilation to increase at a steeper rate than ~ 0 2  (125). This is 

subsequent to the isocapnic buffering period there is an even greater disproportionate 

increase in ventilation, which has been suggested to be the second ventilation threshold 

(VT2), and is described in further detail below (82, 125). 

Dejours (31) further divided the steady-state exercise session, at a given static 

exercise intensity, into three temporal ventilatory phases. "Phase represents the 

initial, usually rapid ventilatory increase with the onset of exercise. This initial increase 

is evident for approximately 10 to 20 s (3 1, 127) and is suggested to be neurally mediated 

with little influence from the peripheral chemoreceptors (135). This was inferred by 

studies showing that hypoxia, a known stimulator of the peripheral chemoreceptors and 

consequently ventilation (27,31, 87), and surgical resection of the carotid bodies (129) 

did not influence the magnitude or onset of this initial ventilatory response. "Phase 

II"(Q2) represents the slower, exponential increase in ventilation after approximately 20 



seconds of the onset of exercise and lasts about 2 to 3 minutes (137). It has been 

suggested to occur immediately following the change in mixed venous gas tensions due 

to the increased muscle metabolic rate after Q1 (18). The carotid bodies are suggested to 

serve an important role in modulating Q2 dynamics of the ventilatory response (129). A 

new steady state level of ventilation characterizes the final "phase 111" (Q3) as exercise 

continues at the same LM intensity level. At this stage there is a linear relationship 

between ventilation and ~ 0 2  (31, 135). This occurs with P,C02 being maintained at, or 

fairly close to resting levels (35, 126). 

There are only minor changes in ventilation during these temporal phases for LM 

intensity exercise (31, 136). However, for MH intensity exercise there is a gradual 

increase in ventilation during a prolonged Q2 as compared to LM intensity exercise. This 

phenomenon is known as a "ventilatory drift", which was initially postulated by Martin et 

al. (80) to be a result of the increase in core temperature evident during MH intensity 

exercise. This was based on the finding that the exercise-induced hyperthermia was in- 

part responsible for the elevated ventilation during MH intensity exercise (95). However, 

Martin et al.'s (80) study showed that despite the influence of core temperature on 

exercise hyperpnea, it appears to have no role in mediating the ventilatory drift evident in 

a prolonged bout of MH intensity exercise. The exact mechanism of this ventilatory drift 

still remains to be elucidated. 



Unlike steady-state LM exercise, if the exercise loads are progressively increased, 

during (9 of MH exercise there is a break in the linear relationship of vE VS. V02. AS 

described above this is where VT1 occurs and is generally at - 40-70 % of a persons 

maximal work capacity (82). A second ventilation threshold also exists, but unlike the 

first one is suggested to be mediated by neurogenic mechanisms (82, 11 1). The second 

ventilation threshold is characterized by an even steeper rise in the VE VS. V 0 2  

relationship and usually occurs at exercise intensities of approximately 70 % to 90 % of a 

persons maximal work capacity (82). Similar to VTI there are also several hypotheses 

that exist for VT2. 

2.2.1.1 Hypotheses for VTl 

There are several hypotheses for VT1, but the mechanism for the disproportionate 

increase in ventilation and either V 0 2  or carbon dioxide production ( ~ ~ 0 2 )  at VT1 has 

not yet been identified. Four of the most prominent hypotheses are the lactate hypothesis, 

the hydrogen ion hypothesis, the C02  flow hypothesis, and the carotid body stimulation 

hypothesis. Potassium (K+) and norepinephrine (NE) have also been implicated as 

possible modulators of the VT1. 

Briefly the lactate hypothesis is based on the accumulation of lactic acid in the 

extra cellular fluid of the body during heavy exercise (76). This is the point where lactate 

production by active tissues exceeds lactate removal in the plasma. Lactic acid at a 

physiological pH readily disassociates into lactate and hydrogen ions (r). According to 



the Henderson-Hasselbach equation (1) where the hydration of C02  is catalyzed by 

carbonic anhydrase (CA), 

C A C A 

C02 + H20 f H2CO3- f HC03- + H+ (Henderson-Hasselbach equation). . . . . . . . . . . . . (2.1) 

when there is an increase in H' the equilibrium shifts to the left producing more COz, 

Carbon dioxide can then act both directly on the peripheral chemoreceptors located in the 

aortic and carotid bodies and indirectly on the central chemosensitive areas in the brain 

by diffusing through the blood brain barrier. The central effect of increased C02 is 

mediated by the resultant decrements in pH of the cerebrospinal fluid. In each of these 

areas an increased level of C02  increases v,. 

Glass et al. (40) however found some inconsistencies with this hypothesis. They 

found that under normal levels of muscle glycogen the lactate threshold appeared to 

occur at a similar VO2 levels as the VT1. In subjects that were depleted of their glycogen 

stores prior to exercising they found however that the lactate threshold had shifted to a 

higher VO2 in relation to the VTI. From this finding they suggested that lactate 

accumulation was not a controlling mechanism of the VT1 during progressive exercise in 

humans. Similar findings were found by Heigenhauser et al. (48) whom also suggested 

that lactate accumulation while being a stimulus for VE may not be the cause of the VTI, 



Oelberg et al. (91) and Evans et al. (36) indicated declining levels of intracellular 

and extracellular muscular pH (pHi and p K )  may contribute to increases in exercise 

ventilation. Oelberg et al. (9 1) proposed that pHi is an independent stimulator of 

ventilation. In this experiment a bilateral lower extremity positive pressure cuff was used 

to isolate the effects of pHi from arterial pH (pH,) and it was shown that after applying 

the cuff the hyperventilatory response was not due to changes in pH, but was related to 

acid changes within the exercising muscle (91). Evans et al. (36) similarly looked at this 

concept but measured pH, as this is where the neural afferents are situated that would be 

the main stimulus for the postulated metaboreflex for ventilation. Their findings were 

also similar, and they concluded that muscle acidosis is necessary for the ventilatory 

metaboreflex and can occur independent of changes in pH, (36,91). Wasserman et al. 

(126) suggested that these two changes, the increase in non-metabolic C02  production 

and the fall in muscular pHi and pH, as a result of the dissociation of lactate acid, are the 

cause for VTI. It has been shown however that paraplegics show a ventilatory response 

similar to normal human subjects during electrically stimulated exercise (13), which 

would suggest that the exercise-induced hyperpnea is not critically dependent on spinal 

afferent pathways and thereby, the skeletal muscle chemoreflex. 

The C02  flow hypothesis is based on the premise that ventilation increases in 

proportion to C02  flow across the lungs (127) irrespective of any changes in P,C02 (129). 

This hypothesis suggested little involvement of the peripheral and central chemoreceptors 

in the ventilation response at VTI and possible involvement of a C02 flow receptor in the 

pulmonary circulation that has yet to be demonstrated (127). 



Wasserman et al. (129) suggested a possible role of the chemoreceptors in the 

carotid body as the modulators for the increase in exercise ventilation at intensities above 

VTI. In their study they found that humans with a resected carotid body (resections were 

done 3-9 years prior to the study) did not display the same exponential increase in 

ventilation as humans with intact carotid bodies when exercising at intensities above VTI. 

This finding was in contrary to previous studies that showed ventilation was not mediated 

by the carotid bodies (53, 76, 129). The previous studies, however, all examined the 

control of ventilation prior to reaching VTI making it difficult to compare the studies. 

In contrast to the findings above, Mitchell et al. (85, 86) in studies with goats 

showed the contrary. In their study they had 4 groups: control, carotid body intact with 

serotonin depletion, carotid body denervated, and carotid body denervated with serotonin 

depletion (86). The serotonin depletion was used to induce a hyperventilation. The 

results showed that the goats hyperventilated as a result of the serotonin depletion in both 

the carotid body intact and denervation groups (86). These results suggest a basic 

property of the ventilatory control system whereby enhanced ventilatory activity at rest is 

associated with an increased ventilatory response to exercise via a mechanism that does 

not require peripheral chemoreceptors (85). 

Potassium and norepinephrine have also been implicated as possible modulators 

of the VTI. Infusion of norepinephrine was shown to stimulate transient increases in 



ventilation regardless of changes in P,CO;! (6, 134). Cunningham (25),  however showed 

that the only consistent effect of norepinephrine on ventilation was during hypoxic 

exercise. He suggested norepinephrine played a role in increasing hypoxic sensitivity to 

changes in P,02 during exercise but had little effect on normoxic exercising subjects (25). 

Increasing (94) K+ levels during exercise has been shown to be positively 

correlated with increasing ventilation (94). In further studies it has also been shown that 

plasma K+ can double during muscular exercise and seems to increase in proportion to 

the intensity of exercise (83). Burger et al. (14) however found some confounding results 

when adding a hyperoxic and hypercapnic stimulus. They showed by infusing K'in the 

form of potassium chloride this caused an increase in chemoreceptor activity which was 

enhanced by hypoxia, but reduced or had no effect during hyperoxia and hypercapnia 

(14). It is apparent therefore that K+ is a possible mediator of ventilation during exercise 

but to what extent and under what conditions is still unclear. 

For each hypothesis presented above, there have been studies with conflicting 

results (14, 25,40,48, 85, 86). It is apparent that although there are several plausible 

hypotheses, there are still no clear mechanisms underlying changes in ventilation at or 

about VTI. 

2.2.1.2 Hypotheses for VT2 

As mentioned above, VT2 is thought to be a result neurogenic modulation in the 

respiratory centres (72, 138). There are several neurological factors that have been 



advocated to underlie VT2 that may influence the excitatory nerve impulses of the 

respiratory centre during exercise (72). Krogh and Lindhard (67) proposed that radiating 

motor nerve impulses into the respiratory centres occur during the onset of exercise, 

which stimulate the steep rise in ventilation evident at VT2. Since this hypothesis, there 

have been many attempts to link neurological factors to the exercise-induced hyperpnea, 

specifically in relation to stimulus reflexes from the limbs mediated by active or passive 

movements (21,28). However, there has been no conclusive evidence however that this 

proposed mechanism can solely account for the entire hyperpnea during exercise and 

therefore it's overall contribution still remains to be elucidated. 

The exact causes of the exercise-induced hyperpnea at VTI and VT2 are thus not 

fully elucidated. It appears that the exercised-induced hyperpnea is a result of a 

combined set of influences and interactions involving chemical and neurological stimuli 

rather than one single cause (72). The relative contribution of these factors is also further 

complicated by the degree and type of exercise as well as the physiological state of the 

subject and the environmental state of their surroundings. Yet another prominent 

mediator of ventilation is body temperature (17,79,95, 105, 138), which is also 

influenced by exercise. The next section describes how body temperature may be 

implicated in the control of ventilation during exercise. 



2.2.2 Control of ventilation during hyperthermia 

When core temperature rises by 1•‹C or more, this is known as hyperthermia. 

Hyperthermia can arise from external environmental conditions such as excessive heat 

exposure and humidity, or from internal conditions such as the body warming 

experienced during fever and exercise (60). When the body becomes hyperthermic the 

change in core temperature effects many other biological processes and in turn activates 

the thermoregulatory centres in the hypothalamus. As discussed above, the primary goal 

of the thermoregulatory system during heat stress is to dissipate heat from the body 

bringing the core temperature back to steady-state resting levels (in most humans this is - 

37.0•‹C). The most effective form of heat loss in hyperthermic humans is through eccrine 

sweating and subsequent surface evaporation (60, 115). Vasodilatation of the peripheral 

blood vessels increasing blood flow to the skin is also another prominent form of heat 

loss (60, 115). In mammals such as dogs however, the most effective form of heat loss 

through ventilation or panting because these animals have minimal surface sweating (5, 

68). 

In humans respiratory heat loss accounts for 10 to 15 % of total heat loss. 

However, it has been shown that a passive (17) or active (138) increase in core 

temperature of approximately OS•‹C to 1 .O•‹C above normothermic body temperature is 

coupled with a hyperpnea that directly influences cranial heat loss (79). The point where 

ventilation increases when expressed as a function of core temperature was proposed as 

the core temperature threshold for ventilation (17, 138). Furthermore both Cabanac and 



White (17, 138) demonstrated that when core temperature was elevated above this 

threshold, ventilation increased in direct proportion to further increases in core 

temperature. White et al. (138) have shown this threshold to be reproducible in humans 

during active (exercise-induced) hyperthermia. 

Although the respiratory heat loss is considerably smaller than the skin surface 

heat loss, it still has a significant influence on cranial heat loss (17, 100). This respiratory 

heat dissipation is suggested to resemble second phase panting (44) in animals that 

exhibit selective brain cooling (SBC). Previously panting animals were the only species 

believed to be able to demonstrate a SBC (38), however, recent studies with hyperthermic 

humans have shown a divergence of tympanic temperature and esophageal temperature 

(Tes) after they reached their core temperature threshold for ventilation. Tympanic 

temperature has been shown to be a reliable approximation of brain temperature (78) and 

T,, has been shown to be a reliable index of thoracic temperature (47). White et al. (138) 

found that tympanic temperature dropped significantly below esophageal temperature 

after the temperature threshold for ventilation was reached. This finding suggested an 

importance of ventilation in human cerebral thermoregulation and the possible existence 

of SBC in humans. 

The hyperpnea during an exercise-induced increase in core temperature was 

shown by Sancheti and White (106) to be a result of an initial increase in VT. They 

showed that VT increased proportionately with Tes and then reached a maximal level at 

which it reached a plateau despite further increases in core temperature (106). 



Furthermore, they showed at higher core temperatures that the frequency of respiration 

increased proportionately to core temperature. They suggested this was responsible for 

further increases in ventilation after the VT reached its plateau (106). The plateau point 

for VT and the core temperature threshold for the f, were also found to be repeatable 

(106). These results suggest evidence for a possible vestigial panting response with 

elevated core temperatures during exercise since a polypnea is observed at higher core 

temperatures (138). Nybo and Nielsen (90) in a recent study supported this hypothesis as 

they showed a significantly elevated ventilation during a hyperthermic exercise where 

core temperatures reached -40•‹C as opposed to non-hyperthermic exercise where core 

temperature reached -37.8"C 

The mechanism by which the hyperpnea occurs during exercise or hyperthermia 

still remains to be fully elucidated (72). A neurogenic hypothesis (72) has been proposed 

implicating core temperature as a central mediating stimulus in the control of ventilation 

during both actively and passively induced hyperthermia. It suggests that increases in 

core temperature could increase ventilation by several mechanisms. One potential 

mechanism is elevated core temperature is associated with an increase in C02  sensitivity 

(26, 109), where sensitivity is defined as an increase in ventilation for a given increase in 

PETC02. This increased sensitivity to C02  is evident during exercise (131) and post 

exercise hyperthermia (105). 

Another hypothesis exists suggesting a direct effect of an increase in temperature 

causing a change in the equilibrium constants of the C02  buffer system resulting in a 



diminished capacity to buffer C02  by body fluids (1 14). This would lead to an increased 

production of H' (Equation 2.1) and a resultant stimulation of ventilation. This decrease 

in pH leads to an increase in P,C02, which causes C02  to cross the blood brain barrier. 

Ventilation is then increased after Hf levels are increased in the regions of the central 

respiratory centres in the medulla oblongata. Cunningham et al. (26) proposed a more 

direct hypothesis, which suggests a physical effect of increased temperature on the cells 

of the respiratory centres andlor the peripheral chemoreceptors thereby enhancing the 

reactivity of these respiratory control mechanisms to their normal stimuli. 

In summary, there are several hypotheses for the observed hyperthermic-induced 

hyperpnea. There is strong evidence to support each hypothesis, however, the 

mechanism(s) underlying this hyperpnea may be from a combination of several factors. 

Two established peripheral modulators of ventilation are hypoxia and C02. 

Although the independent effects of hypoxia, C02  and core temperature on exercise 

ventilation are well established (72), the combined effects of hypoxia and core 

temperature on exercise ventilation in humans are not evident in the literature. The 

following sections describe how hypoxia and C02  influence ventilation independently 

and when combined together with exercise. 



2.2.3 Control of ventilation during hypoxia 

One of the main effects of hypoxia is a hyperventilation and this is known as the 

hypoxic ventilatory response (HVR). The carotid bodies include peripheral 

chemoreceptors, which help control breathing and are thought to be responsible for the 

HVR (30). This is evident for carotid body resected patients that did not show a normal 

HVR (52, 53,76). However, there still appears to be some residual ventilatory 

chemosensitivity in human subjects during hypoxia even after the resection (1 18). 

Swanson et al. (1 18) suggested that the aortic body must mediate the HVR with a non- 

functioning carotid body. Honda (53) suggested this residual chemosensitivity to 

account for 5-10 % of the total HVR. It appears that the peripheral chemoreceptors are 

the most significant modulators of the HVR but there are other confounding factors 

involved such as COz, which will be discussed in the following section. 

2.2.4 The effects of carbon dioxide on ventilation 

One of the consequences of the HVR is a fall in PaC02 or a hypocapnia. In the 

human body decreased C 0 2  can blunt the HVR, specifically hypocapnia during hypoxia 

will depress the peripheral chemoreceptor response that normally increases ventilation 

(55, 112). In goats this effect of hypocapnia was suggested to function by blunting the 

carotid body chemoreceptor sensitivity to a low Pa02 (29). Rapanos and Duffin (99) 

showed using a modified Read's rebreathing test (101) that a C 0 2  peripheral-chemoreflex 

threshold exists in humans at which below there is no acute ventilatory response to 

hypoxia. Above this threshold ventilation increased linearly with P&o2 but below this 



threshold ventilation did not significantly increase despite increasing severity of hypoxia 

to a mean end-tidal oxygen partial-pressure (PETO2) of 4.9 kPa (SD 0.5). Their findings 

both agree (1,22,74, 1 19) and disagree (102, 1 13, 130) with the literature. They argued 

that those studies in disagreement, which found a hypoxic ventilatory response during 

hypocapnia might not have actually reached a level of C02 in their subjects that was sub- 

threshold, thereby not eliciting a strong enough hypocapnic effect to have suppressed the 

response of ventilation to hypoxia. They suggested that the CO2 peripheral-chemoreflex 

threshold varies between each individual, and found a mean P E ~ C O ~  threshold for 

ventilation of 5.2 kPa (SD 0.4). 

A method (70,77) to eliminate the potential influence of hypocapnia during 

hypoxia is to titrate C02 into the inspirate so as to clamp PETC02 at steady state isocapnic 

values. This condition is known as isocapnic hypoxia and allows for the isolation of the 

hypoxic effect from the possible influences of a hyperventilation-induced hypocapnia. 

2.2.5 Control of ventilation during hypoxic exercise 

As discussed previously, moderate to high intensity exercise induces an increase 

in ventilation, however when combined with hypoxia the resultant hyperpnea is 

multiplicative (46,63, 71,98). Griffiths et al. (43) found that with hypoxia (12 % 02) in 

human exercise at a steady-state sub-maximal level, over 50 % of the resultant hyperpnea 

was attributed to peripheral chemoreceptor control. This was confirmed by assessing 

peripheral chemoreceptor activity with the Dejours 100 % 0 2  test (30) which is designed 



to eliminate the carotid body drive to breathe. Pure oxygen inhalation was demonstrated 

to suppress ventilation during exercise (3,4,73), with the degree of suppression being 

proportional to the degree of increasing work load (4,73). Weil et al. (130) had a similar 

finding that exercise enhanced the HVR and the effect becomes marked as the severity of 

exercise increases. They gave two suggestions for the cause of this phenomenon, one 

being the associated increased hypercapnic drive and the other being increased peripheral 

chemoreceptor sensitivity due to increased sympathetic activity (131). It is therefore 

quite probable that hypoxia combined with exercise has a significant interaction 

increasing the sensitivity of the peripheral chemoreceptors to oxygen that is greater than 

that of hypoxia alone. Exercise per se influencing hypoxic sensitivity does not however 

contribute to the explanation of the mechanisms underlying this interaction. This is since 

"exercise" denotes physiological changes at several levels from the cell to the tissue to 

the entire set of organ systems. It remains to be determined what changes brought on by 

exercise accounts for the enhanced sensitivity of ventilation during inhalation of hypoxic 

gas mixtures. 

2.2.6 Control of ventilation during water immersion 

During water immersion up to the neck, there have been several physiological 

responses observed that might influence gas exchange and ventilation. These responses 

are primarily due to the pressure exerted on the chest from the water, which can cause the 

diaphragm to shift upwards decreasing the functional residual capacity of the lungs and 

consequently changing the ventilation-to-perfusion ratio making gas exchange in the 



lungs more difficult (23, 97). Conversely, other studies have shown that water immersion 

is marked by a global increase in cardiac output, blood volume, and pulmonary artery 

pressure, which could enhance gas exchange (2,37). Prefaut et al. (97) found that age 

and body build had a significant effect on both these physiological responses. They 

found that in their subject pool, those of younger ages (-25 years) and normal body 

builds had more profound hemodynamic responses thereby improving gas exchange as 

compared to the older and heavier body builds. 

Another consequence of water immersion on ventilation is an increase C 0 2  

storage capacity that would enhance the accumulation of metabolically produced C 0 2  in 

the peripheral tissues (19). This mechanism was proposed to occur due to the increase in 

C 0 2  and tissue perfusion during whole body water immersion. The increased tissue 

perfusion would then mean C 0 2  would be redistributed throughout the body, particularly 

to low-perfused, low-metabolism, and high C 0 2  capacity tissues (20). This would cause 

an increase in resting PETCO2 which was shown in Chang and Lundgren's study (20) 

where subjects showed a significant 8.3 % higher resting PETCO2 during head-out water 

immersion as compared to normal conditions. The effect of this water immersion 

mediated increase in resting PETCO2 on ventilation during exercise and hypoxia has not 

yet been investigated. 



2.2.7 Kinetics and timing of ventilation at the onset of exercise and hypoxia 

In response to a step increase in work rate ~ 0 2  and VC02 abruptly increase due 

to an increase in metabolic demand at the exercising muscles and this causes a change in 

pulmonary gas exchange. With the start of exercise at a low to moderate intensity (5 -60 

% of V02peak), ventilation increases proportionately to m2 and a new steady state of 

ventilation is established at these exercise intensities. (128). The kinetics of this response 

is characterized by a mono-exponential function (56, 122, 137). There are several factors 

that can influence the kinetics of ventilation from rest to exercise and euoxic to hypoxic 

exercise, which include varying levels of exercise intensity (135), P,02 (122), and PaC02 

(123). 

During rest the lowering of arterial oxygen content (Sa02) to -80 % has been 

shown to stimulate a proportionate increase in ventilation (34,61). The increase is 

mediated primarily by the stimulation of the peripheral chemoreceptors due to low PaOz 

levels (31, 53). This initial increase in ventilation has been further shown to be 

proceeded by a gradual fall in ventilation, which is commonly evident in progressive 

hypoxia tests (34). However, during isocapnic hypoxia, ventilation remains consistently 

elevated for up to 15 min after the initial peak increase before a significant ventilatory 

depression is evident (34,61, 132). The ventilatory kinetic response to this acute 

isocapnic hypoxia has been shown to follow a pattern similar to that of a mono- 

exponential model (34,6 1). 



An exhaustive review of the literature did not uncover any studies of the 

influences of body temperature on the lunetics of ventilation and its parameters in 

humans. The effect of an increase in body temperature on the ventilation response to 

exercise and hypoxia in humans therefore remains to be elucidated. 

2.2.8 Manipulation of core temperature during exercise 

Previous studies attempting to provide thermal clamps during exercise were not 

able to maintain a steady-state normothermic or hyperthermic core temperature (24, 103). 

Two of the possible reasons for this result was that in these studies during normothermia 

the water temperature was set too low at 23•‹C (103) and 18•‹C (24) and the work rate was 

set too high at a V O ~  of -2 ~ . m i n - '  (24). The lower water temperatures of 18 and 23•‹C 

would have induced a metabolic response from skin (i.e. shivering) and/or core cooling. 

In a study by Park et al. (92) it was shown that a normothermic core temperature could be 

achieved during low intensity exercise by shoulder level immersion in thermoneutral 

water between 28•‹C to 32OC. For each participant a critical water temperature was 

determined empirically. The critical water temperature was defined as a water 

temperature at which the participants could tolerate without shivering for 3 h (92). Based 

on the critical water temperature values, a predicative equation was derived to estimate 

overall body insulation at the prescribed exercise level. The equation is as follows: 



where I is the overall body insulation, T,, is the rectal temperature, T, is the critical 

water temperature, 0.92 M is considered to be the metabolic heat production minus 

respiratory heat loss which is assumed to be 0.08 wm2, and is the loss or gain of body 

heat stores (92). The results of this study showed an effective normothennic exercise 

could be achieved at low intensity exercise in thermoneutral water 



2.3 Summary 

1. There appears to be a combination of chemical and neurogenic stimuli mediating 

ventilation. The effect of the interactions these stimuli have on the overall control 

of ventilation is dependent on the level of exercise intensity. Individually, 

hypoxia and elevated body temperature have both been implicated to stimulate the 

peripheral chemoreceptors and/or the central respiratory centres that each increase 

ventilation (72). 

In hypoxia approximately 90-95 % of the HVR is controlled by the peripheral 

chemoreceptors (53). The magnitude of the acute hypoxic hyperventilation is a 

result of the level of hypoxic stress, however, if the hypoxic stress remains 

constant the hypoxic-induced hyperventilation will gradually be reduced as the 

P,C02 falls. The resulting hypocapnia inhibits the increase of ventilation (55, 

112). Isocapnic hypoxia can act to prevent this fall and maintain ventilation at 

consistently elevated level for up to 15 min before a significant ventilatory 

depression is evident (34,61, 132) 

3. During exercise ventilation increases in proportion to V 0 2  up until VT1 and VT2 

are reached (135). After the ventilatory thresholds, ventilation rises at a greater 

rate than ~0~ or V C O ~  (82). 



4. Similarly, a ventilation threshold also exists for core temperature and it was found 

to be approximately l.O•‹C above normothermic core temperature. (17, 138). With 

an increase in core temperature past this threshold there is a proportional increase 

in ventilation and core temperature (17, 138). 

5. Independently the positive influences of h ypoxia and exercise intensity on 

ventilation are established, both causing marked increases in ventilation (72, 124, 

131, 135, 136). 

6. In humans the combined influence of hypoxia and exercise on ventilation causes 

an increase in ventilation that was greater than their combined individual 

influences (46, 63,71,98). Similarly, the effects of hypoxia and passive 

hyperthermia on ventilation is also suggested to be multiplicative since both have 

an independent influence on ventilation that gives a net increase that is less than 

when both stimuli are presented together (96). 

7. The potential interaction of hypoxia and core temperature during exercise has not 

yet been established. One of the main reasons is because increased core 

temperature is concomitant to exercise. This makes it difficult to determine how 

much of the resultant hyperpnea from exercise is due to body temperature or other 

metabolic or non-metabolic factors. 

8. From the findings of Park et al. (92) there is evidence that an effective 

normothermic exercise can be achieved at low intensity exercise in thermoneutral 

water of -28•‹C to 32•‹C. 



2.4 Objectives 

I .  To investigate the separate and combined influences of hypoxia and elevated 

body temperature during low intensity exercise on ventilation, 

2. To investigate the role of body temperature on the ventilatory kinetics from rest to 

exercise and from euoxic to hypoxic low intensity exercise. 

3. To investigate whether the changes in metabolic rate or blood borne metabolites 

during hyperthermia and hypoxia at low intensity exercise significantly influence 

ventilation. 



2.5 Research Hypotheses 

1. It is hypothesized that if both the combined influences of an exercise during hypoxia 

(46,63,71,98) and passive hyperthermia during hypoxia (89,96) would cause a 

multiplicative increase in ventilation (vE), then with the removal of the exercise- 

induced hyperthermia there will be a marked reduction in VE during hypoxic 

normothermic exercise. 

2. If a hyperthermia-induced hyperpnea is a vestigial panting response, then the 

elevations in ventilation during hyperthermic exercise would be due to increases in 

ventilation frequency. 

3. It is hypothesized that if core temperature influences steady-state ventilation during 

rest (17) and exercise (138), then it may influence the ventilatory lunetics for the 

onset of exercise. Furthermore, if core temperature influences the HVR (89,96) it 

can also be hypothesized that an enhancement of the kinetics of this response may be 

evident during an elevated core temperature. 



2.6 Testable Questions 

1. Is ventilation during low intensity exercise with an elevated hyperthermic Core 

Temperature different than ventilation during low intensity exercise with a 

normothermic Core Temperature? 

2. Is there an interaction of Core Temperature and Gas Type on ventilation during 

low intensity exercise? Is the effect additive or multiplicative? 

3. If there is an interaction between Core Temperature and Gas Type on ventilation, 

what components of ventilation, f, and/or VT, mediate this change during low 

intensity exercise? 

4. How do Core Temperature and Gas Type influence the inspiratory flow and 

timing components of ventilation during low intensity exercise? 

5. Is the lunetics of ventilation influenced by skin and/or core temperature during 

the onset of low intensity exercise and during the onset of hypoxia during steady- 

state low intensity exercise? 

6. Do associated increases in metabolic rate and blood borne metabolites as with 

exercise, hyperthermia, and hypoxia significantly influence ventilation? 



2.7 References 

Anderton JL, Harris EA, and Slawson KB. The Repeatability of Ventilatory 
Responses to Excess of Carbon Dioxide and Lack of Oxygen. Q J Exp Physiol 
Cogn Med Sci 49: 43-5 1, 1964. 

Arborelius M, Jr., Ballidin UI, Lilja B, and Lundgren CE. Hemodynamic 
changes in man during immersion with the head above water. Aerosp Med 43: 
592-598, 1972. 

Asmussen E and Nielsen M. Pulmonary ventilation and effect of oxygen 
breathing in heavy exercise. Acta Physiol Scand 43: 365, 1958. 

Asmussen E and Nielsen M. Studies on the regulation of respiration in heavy 
work. Acta Physiol Scand 12: 17 1, 1946. 

Baker MA, Hawkins MJ, and Rader RD. Thermoregulatory influences on 
common carotid blood flow in the dog. J Appl Physiol52: 1138-1 146, 1982. 

Barcroft H, Basnaykae V, Celander 0, Cobbold A, Cunningham DA, Jukes 
M, and Young I. The effect of carbon dioxide on the respiratory responses to 
noradrenalin in man. J Physiol (Lond) 137: 365, 1957. 

Benzinger TH. The diminution of thermoregulatory sweating during cold- 
reception at the skin. Proc Natl Acad Sci, edited by Bard P, Bethesda, MD, 1961, 
p. 1683-1688. 

Benzinger TH. The human thermostat. Sci Am January: 2-1 1, 1961. 

Benzinger TH. The Thermal Homeostasis of Man. In: Temperature, Part 11: 
Thermal Homeostasis. Stoudsburg: Dowden, Hutchinson & Ross, Inc., 1967, p. 
289-325. 

Benzinger TH, Pratt AW, and Kitzinger C. The thermostatic control of human 
metabolic heat production. Proceedings of the NAS 47: 730-738, 1961. 

Bligh J. Thermal Regulation: What is regulated and how? Proc Symp Therm Reg, 
edited by Houdas Y and Guieu JD, Lille, France. Masson, 1977, p. 1-9. 

Boulant JA. Thermoregulation. In: Fever basic Mechanisms and Management, 
edited by Mackowiak P. New Y ork: Raven Press, Ltd, 199 1, p. 1-22. 



Brice AG, Forster HV, Pan LG, Funahashi A, Hoffman MD, Murphy CL, 
and Lowry TF. Is the hyperpnea of muscular contractions critically dependent on 
spinal afferents? JAppl Physiol64: 226-233, 1988. 

Burger RE, Estavillo JA, Kumar P, Nye PC, and Paterson D J. Effects of 
potassium, oxygen and carbon dioxide on the steady-state discharge of cat carotid 
body chemoreceptors. J Physiol (Lond) 40 1:  5 19-53 1, 1988. 

Cabanac M. Heat Stress and Behaviour. In: Handbook of Physiology, sect 4: 
Environmental Physiology, edited by Fregly MJ and Blatteis CM. New York: 
Oxford University Press, 1996, p. 26 1-278. 

Cabanac M and Massonnet B. Thermoregulatory responses as a function of core 
temperature in humans. J Physiol (Lond) 265: 587-596, 1977. 

Cabanac M and White MD. Core temperature thresholds for hyperpnea during 
passive hyperthermia in humans. Eur JAppl Physiol71: 71-76, 1995. 

Casaburi R, Daly J, Hansen JE, and Effros RM. Abrupt changes in mixed 
venous blood gas composition after the onset of exercise. JAppl Physiol67: 
1106-1112, 1989. 

Chang LP and Lundgren CE. C02 chemosensitivity during immersion in 
humans. Chin J Physiol38: 7-12, 1995. 

Chang LP and Lundgren CE. Maximal breath-holding time and immediate 
tissue C02 storage capacity during head-out immersion in humans. Eur JAppl 
Physiol73: 210-218, 1996. 

Comroe JHJ and Schmidt CF. Reflexes from the limbs as a factor in the 
hyperpnea of muscular exercise. Am J Physiol 138: 536, 1943. 

Cormack RS, Cunningham D J, and Gee JB. The effect of carbon dioxide on 
the respiratory response to want of oxygen in man. Q J Exp Physiol Cogn Med Sci 
42: 303-319, 1957. 

Craig AB, Jr. and Dvorak M. Expiratory reserve volume and vital capacity of 
the lungs during immersion in water. JAppl Physiol38: 5-9, 1975. 

Cross MC, Radomski MW, VanHelder WP, Rhind SG, and Shephard RJ. 
Endurance exercise with and without a thermal clamp: effects on leukocytes and 
leukocyte subsets. J Appl Physiol8 1 : 822-829, 1996. 

Cunningham DJC. The effect of noradrenaline infusions on the relation between 
pulmonary ventilation and the alveolar PO2 and PC02 in man. Ann N Y Acad Sci: 
756-771, 1961. 



Cunningham DJC and O'Riordan JLH. The effect of a rise in temperature of 
the body on respiratory response to carbon dioxide at rest. QJ Exp Physiol42: 
329-345, 1957. 

Cunningham DJC, Spurr D, and Lloyd BB. Ventilatory drive in hypoxic 
exercise. In: Arterial Chemoreceptors, edited by Torrance RW. Blackwell: 
Oxford, 1968, p. 310-323. 

D' Angelo E and Torelli G. Neural stimuli increasing respiration during different 
types of exercise. J Appl Physiol30: 116-121, 1971. 

Daristotle L, Berssenbrugge AD, Engwall MJ, and Bisgard GE. The effects of 
carotid body hypocapnia on ventilation in goats. Respir Physiol79: 123-135, 
1990. 

Dejours P. Chemoreflexes in breathing. Physiol Rev 42: 335-358, 1962. 

Dejours P. Control of respiration in muscular exercise. In: Handbook of 
Physiology, edited by Society AP. Washington, DC: Williams & Wilkins, 1964, 
p. 63 1-648. 

Dempsey JA, Vidruk EH, and Mitchell GS. Pulmonary control systems in 
exercise: update. Fed Proc 44: 2260-2270, 1985. 

DuBois EF. Fever and the regulation of body temperature. Springfield, 11.: 
Charles C. Thomas, 1948. 

Easton PA, Slykerman LJ, and Anthonisen NR. Ventilatory response to 
sustained hypoxia in normal adults. JAppl Physiol61: 906-91 1, 1986. 

Eisele JH, Ritchie BC, and Severinghaus JW. Effect of stellate ganglion 
blockade on the hyperpnea of exercise. J Appl Physiol22: 966-969, 1967. 

Evans AB, Tsai LW, Oelberg DA, Kazemi H, and Systrom DM. Skeletal 
muscle ECF pH error signal for exercise ventilatory control. J Appl Physiol 84: 
90-96, 1998. 

Farhi LE and Linnarsson D. Cardiopulmonary readjustments during graded 
immersion in water at 35 degrees C. Respir Physiol30: 35-50, 1977. 

Fuller CA and Baker MA. Selective regulation of brain and body temperatures 
in the squirrel monkey. Am J Physiol245: R293-297, 1983. 

Gale CC. Neuroendocrine aspects of thermoregulation. Annu Rev Physiol35: 
391-430, 1973. 



Glass C, Knowlton RG, Sanjabi PB, and Sullivan J J. The effect of exercise 
induced glycogen depletion on the lactate, ventilatory and electromyographic 
thresholds. J Sports Med Phys Fitness 37: 32-40, 1997. 

Glotzbach SF and Heller HC. Central nervous regulation of body temperature 
during sleep. Science 194: 537-539, 1976. 

Gonzalez RR, Kluger MJ, and Hardy JD. Partitional calorimetry of the New 
Zealand white rabbit at temperatures 5-35 degrees C. JAppl Physiol31: 728-734, 
1971. 

Griffiths TL, Henson LC, and Whipp BJ. Influence of inspired oxygen 
concentration on the dynamics of the exercise hyperpnoea in man. J Physiol380: 
387-403, 1986. 

Hales J. Peripheral effector Mechanisms of Thermoregulation. Regulation of 
Panting. Satelite of 28 Znt. Congress of Physiol. Sci, edited by Szelenyi ZaS, M., 
Pecs, Hungary., 1980. 

Hammel HT, Jackson DC, Stolwijk JAJ, Hardy JD, and Stromme SB. 
Temperature regulation by hypothalamic proportional control with an adjustable 
set point. J Appl Physiol 18: 1 146- 1 154, 1963. 

Hansen JE, Stelter GP, and Vogel JA. Arterial pyruvate, lactate, pH, and PC02 
during work at sea level and high altitude. JAppl Physiol23: 523-530, 1967. 

Hayward JS, Eckerson JD, and Kemna D. Thermal and cardiovascular changes 
during three methods of resuscitation from mild hypothermia. Resuscitation 11 : 
21-33, 1984. 

Heigenhauser GJ, Sutton JR, and Jones NL. Effect of glycogen depletion on 
the ventilatory response to exercise. J Appl Physiol54: 470-474, 1983. 

Hensel H. Thermoreception and temperature regulation. London: Academic 
Press, 1982, p. 320-321. 

Hessemer V and Bruck K. Influence of menstrual cycle on shivering, skin blood 
flow, and sweating responses measured at night. J Appl Physiol59: 1902-1910, 
1985. 

Hessemer V and Bruck K. Influence of menstrual cycle on thermoregulatory, 
metabolic, and heart rate responses to exercise at night. JAppl Physiol59: 191 1- 
1917, 1985. 

Holton P and Wood JB. The effects of bilateral removal of the carotid bodies 
and denervation of the carotid sinuses in two human subjects. J Physiol 181: 365- 
378, 1965. 



Honda Y. Role of carotid chemoreceptors in control of breathing at rest and in 
exercise: studies on human subjects with bilateral carotid body resection. Jpn J 
Physiol35: 535-544, 1985. 

Hossman VG, Fitzgerald A, and Dollery CT. Circadian rhythm of baroreflex 
activity and andrenergic vascular response. Cardiovasc Res 14: 125-129, 1980. 

Huang SY, Alexander JK, Grover RF, Maher JT, McCullough RE, 
McCullough RG, Moore LG, Sampson JB, Weil JV, and Reeves JT. 
Hypocapnia and sustained hypoxia blunt ventilation on amval at high altitude. J 
Appl Physiol56: 602-606, 1984. 

Hughson RL and Morrissey M. Delayed lunetics of respiratory gas exchange in 
the transition from prior exercise. J Appl Physiol52: 921-929, 1982. 

Ingram DL. Evaporative cooling in the pig. Nature 207: 415-416, 1965. 

Israel SL and Schneller 0. The thermogenic property of progesterone. Fertil 
Steril 1: 53-64, 1950. 

Jessen C. Independent clamps of peripheral and central temperatures and their 
effects on heat production in the goat. J Physiol (Lond) 3 1 1 : 1 1-22, 198 1. 

Jessen C. Temperature Regulation in Humans and Other Mammals. Germany: 
Springer-Verlag Berlin Heidelberg, 2001, p. 193-194. 

Kagawa S, Stafford MJ, Waggener TB, and Severinghaus JW. No effect of 
naloxone on hypoxia-induced ventilatory depression in adults. JAppl Physiol52: 
1030-1034, 1982. 

Keller AD. Temperature: Its Measurement and Control in Science and 
Zndustry.Temperature regulation disturbances in dogs following hypothalamic 
ablations. In J. D. Hardy (Ed.),. New York: Reinhold, 1963. 

Klausen K, Robinson S, Micahel ED, and Myhre LG. Effect of high altitude on 
maximal working capacity. J Appl Physiol21: 1191-1 194, 1966. 

Kluger MJ. Fever. New Jersey: Princeton University Press, 1975, p. 195-196. 

Kluger MJ. Fever. Pediatrics 66: 720-724, 1980. 

Krieger DT. Food and water restriction shifts corticosterone, temperature, 
activity and brain amine periodicity. Endocrinology 95: 1 195- 120 1, 1974. 

Krogh A and Lindhard J. The regulation of respiration and circulation during 
the initial stages of muscular work. J Physiol (Lond) 47: 1 12, 1913. 



Kronert H and Pleschka K. Lingual blood flow and its hypothalamic control in 
the dog during panting. Pflugers Arch 367: 25-31, 1976. 

Kuhnen G and Jessen C. The metabolic response to skin temperature. Pflugers 
Arch 412: 402-408, 1988. 

Lagneaux D and Lecomte J. [Effects of the addition of carbon dioxide on 
manifestations of acute hypoxia in rats]. C R Seances Soc Biol Fil 18 1 : 6 16-62 1, 
1987. 

Lahiri S. Physiological responses and adaptations to high altitude. Int Rev 
Physiol 15: 217-25 1, 1977. 

Lambertsen CJ. Physical, chemical, and nervous interactions in respiratory 
control. In: Medical Physiology (14 ed.), edited by Mountcastle VB, 1980, p. 
1873-1900. 

Lambertsen C J. Respiratory and cerebral circulatory control during exercise at 
0.21 and 2.0 atmospheres of inspired PO2. Journal of Applied Physiology 14: 966, 
1959. 

Lloyd BB. The chemical stimulus to breathing. Br Med Bull 19: 10-14, 1963. 

Lopez M, Sessler DI, Walter K, Emerick T, and Ayyalapu A. Reduced 
sweating threshold during exercise-induced hyperthermia. PjZugers Arch 430: 
606-6 1 1, 1995. 

Lugliani R, Whipp BJ, and Wasserman K. A role for the carotid body in 
cardiovascular control in man. Chest 63: 744-750, 1973. 

Maher JT, Cymerman A, Reeves JT, Cruz JC, Denniston JC, and Grover 
RF. Acute mountain sickness: increased severity in eucapnic hypoxia. Aviat 
Space Environ Med 46: 826-829, 1975. 

Mariak Z, Lewko J, Luczaj J, Polocki B, and White MD. The Relationship 
between directly measured human cerebral and tympanic temperatures during 
changes in brain temperatures. Eur J Appl Physiol69: 545-549, 1994. 

Mariak Z, White MD, Lewko J, Lyson T, and Piekarski P. Direct cooling of 
the human brain by heat loss from the upper respiratory tract. J Appl Physiol87: 
1609-1613, 1999. 

Martin BJ, Morgan EJ, Zwillich CW, and Weil JV. Control of breathing 
during prolonged exercise. J Appl Physiol50: 27-3 1, 198 1. 

McEwen GN, Jr. and Heath JE. Resting metabolism and thermoregulation in 
the unrestrained rabbit. J Appl Physiol35 : 884-886, 1973. 



McLellan TM. Ventilatory and plasma lactate response with different exercise 
protocols: a comparison of methods. Znt JSports Med 6: 30-35, 1985. 

Medbo JI and Sejersted OM. Plasma K+ changes during intense exercise in 
endurance-trained and sprint-trained subjects. Acta Physiol Scand 15 1 : 363-37 1, 
1994. 

Mekjavic IB, Sunderberg C J, and Linnarsson D. Core temperature "null zone". 
J Appl Physiol7 1 : 1289- 1295, 1991. 

Mitchell GS, Smith CA, and Dempsey JA. Changes in the VI-VC02 
relationship during exercise in goats: role of carotid bodies. J Appl Physiol57: 
1894-1900, 1984. 

Mitchell GS, Smith CA, Vidruk EH, Jameson LC, and Dempsey JA. Effects 
of p-chlorophenylalanine on ventilatory control in goats. J Appl Physiol54: 277- 
283, 1983. 

Miyamura M, Ishida K, Kobayashi T, Ohkuwa T, and Itoh H. Effects of acute 
hypoxia on ventilatory response at the onset of cycle exercise in man. Jpn J 
Physiol42: 823-829, 1992. 

Nagel A, Herold W, Roos U, and Jessen C. Slun and core temperatures as 
determinants of heat production and heat loss in the goat. Pflugers Arch 406: 600- 
607,1986. 

Natalino MR, Zwillich CW, and Weil JV. Effects of hyperthermia on hypoxic 
ventilatory response in normal man. J Lab Clin Med 89: 564-572, 1977. 

Nybo L, Moller K, Volianitis S, Nielsen B, and Secher NH. Effects of 
hyperthermia on cerebral blood flow and metabolism during prolonged exercise in 
humans. J Appl Physiol93: 58-64,2002. 

Oelberg DA, Evans AB, Hrovat MI, Pappagianopoulos PP, Patz S, and 
Systrom DM. Skeletal muscle chemoreflex and pHi in exercise ventilatory 
control. JAppl Physiol84: 676-682, 1998. 

Park YS, Pendergast DR, and Rennie DW. Decrease in body insulation with 
exercise in cool water. Undersea Biomed Res 1 1: 159-168, 1984. 

Parsons KC. Human thermal environments. London: Taylor and Francis, 2003. 

Paterson D J, Robbins PA, and Conway J. Changes in artedal plasma potassium 
and ventilation during exercise in man. Respir Physiol78: 323-330, 1989. 

Petersen ES and Vejby-Christensen H. Effect of Body Temperature on Steady 
State Ventilation and Metabolism in Exercise. Acta Physiol Scand 89: 342-351, 
1973. 



Petersen ES and Vejby-Christensen H. Effects of body temperature on 
ventilatory response to hypoxia and breathing pattern in man. JAppl Physiol42: 
492-500, 1977. 

Prefaut C, Ramonatxo M, Boyer R, and Chardon G. Human gas exchange 
during water immersion. Respir Physiol34: 307-3 18, 1978. 

Pugh LG. Man at high altitude: studies carried out in the Himalaya. Sci Basis 
Med Annu Rev: 32-54, 1964. 

Rapanos T and Duffin J. The ventilatory response to hypoxia below the carbon 
dioxide threshold. Can JAppl Physiol22: 23-36, 1997. 

Rasch W and Cabanac M. Selective brain cooling is affected by wearing 
headgear during exercise. J Appl Physiol74: 1229- 1233, 1993. 

Read DJ. A clinical method for assessing the ventilatory response to carbon 
dioxide. Australas Ann Med 16: 20-32, 1967. 

Rebuck AS and Woodley WE. Ventilatory effects of hypoxia and their 
dependence on PC02. J Appl Physiol38: 16-19, 1975. 

Rhind SG, Gannon GA, Shek PN, Brenner IK, Severs Y, Zamecnik J, Buguet 
A, Natale VM, Shephard RJ, and Radomski MW. Contribution of exertional 
hyperthermia to sympathoadrenal-mediated lymphocyte subset redistribution. J 
Appl Physiol87: 1 178-1 185, 1999. 

Rothchild I and Barnes C. The effects of dosage, and or estrogen, androgen or 
salicylate administration on the degree of body temperature elevation induced by 
progesterone. Enocrinology 50: 485-496, 1952. 

Sancheti A and White MD. Human minute ventilation responses to carbon 
dioxide levels prior to and following an exercise induced hyperthermia. 
International Union of Physiological Sciences Thermal Physiology Symposium, 
Wollongong, Australia. Australian Physiological and Pharmacological Society, 
2001, p. 134P. 

Sancheti A and White MD. Tidal volume and frequency of respiration: 
Relationships to esophageal temperature during exercise induced hyperthermia. 
9th Int. Con$ Environ Ergonom IX, edited by J W and M H, Dortmund, Germany. 
Shaker Verlag, 2000, p. 89-92. 

Satinoff E. Behavioural thermoregulation in the cold. In: Handbook of 
Physiology, sect 4: Environmental Physiology, edited by Fregly MJ and Blatteis 
CM. New York: Oxford University Press, 1996, p. 481-505. 



Satinoff E. A reevaluation of the concept of the homeostatic organization of 
temperature regulation. In: Handbook of Behavioral Neurobiology, edited by 
Teitelbaum P. New York: Plenum Press, 1983, p. 443-472. 

Saxton C. Effects of severe heat stress on respiration and metabolic rate in resting 
man. Aviat Space Environ Med 52: 281-286, 1981. 

Schmidt-Nielsen K, Schmidt-Nielsen B, Jarnum SA, and Houpt TR. Body 
temperature of the camel and its relation to water economy. Am J Physiol 188: 
103-1 12, 1957. 

Skinner JS and McLellan TH. The transition from aerobic to anaerobic 
metabolism. Res Q Exerc Sport 51: 234-248, 1980. 

Somers VK, Mark AL, Zavala DC, and Abboud FM. Influence of ventilation 
and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. J 
Appl Physiol67: 2095-2100, 1989. 

Sorensen SC and Severinghaus JW. Respiratory sensitivity to acute hypoxia in 
man born at sea level living at high altitude. JAppl Physiol25: 21 1-216, 1968. 

Stadie WC, Austin JH, and Robinson HW. The effect of temperature on the 
acid-base protein equilibrium and its influence on the C02 absorption curve of 
whole blood, true and separated serum. J Biol Chem 66: 901, 1925. 

Stanier MW, Mount LE, and Bligh J. Body Temperature and its regulation. In: 
Energy Balance and Temperature Regulation. Cambridge: Cambridge University 
Press, 1985, p. 54-72. 

Stelzner JK and Hausfater G. Posture, microclimate, and thermoregulation in 
yellow baboons. Primates 27: 449-463, 1986. 

Stephenson LA, Wenger CB, OIDonovan BH, and Nadel ER. Circadian 
rhythm in sweating and cutaneous blood flow. Am J Physiol246: R321-324, 
1984. 

Swanson GD, Whipp B J, Kaufman RD, Aqleh KA, Winter B, and Bellville 
JW. Effect of hypercapnia on hypoxic ventilatory drive in carotid body-resected 
man. J Appl Physiol45: 87 1-877, 1978. 

Tenney SM, Remmers JE, and Mithoefer JC. Interaction of C02 and hypoxic 
stimuli on ventilation at high altitude. Q J Exp Physiol Cogn Med Sci 48: 192- 
201, 1963. 

Thauer R. Warm regularization and fieberfahigkeit after operational intervened 
at the nervous system of homiothermic sucking animals. Pflugers Archivfur die 
Gesamte Physiologie 236: 102-147, 1935. 



Timbal J, Colin J, and Boutelier C. Circadian variations in the sweating 
mechanism. JAppl Physiol39: 226-230, 1975. 

Ward SA, Blesovsky L, Russak S, Ashjian A, and Whipp B J. Chemoreflex 
modulation of ventilatory dynamics during exercise in humans. J Appl Physiol63: 
2001-2007. 1987. 

Ward SA, Whipp BJ, Koyal S, and Wasserman K. Influence of body C02  
stores on ventilatory dynamics during exercise. JAppl Physiol 55: 742-749, 1983. 

Wasserman K. Breathing during exercise. N Engl J Med 298: 780-785, 1978. 

Wasserman K. Determinants and detection of anaerobic threshold and 
consequences of exercise above it. Circulation 76: VI29-39, 1987. 

Wasserman K, Van Kessel AL, and Burton GG. Interaction of physiological 
mechanisms during exercise. J Appl Physiol22: 7 1-85, 1967. 

Wasserman K, Whipp BJ, Casaburi R, and Beaver WL. Carbon dioxide flow 
and exercise hyperpnea. Cause and effect. Am Rev Respir Dis 115: 225-237, 1977. 

Wasserman K, Whipp BJ, and Davis JA. Respiratory physiology of exercise: 
metabolism, gas exchange, and ventilatory control. Int Rev Physiol23: 149-21 1, 
1981. 

Wasserman K, Whipp BJ, Koyal SN, and Cleary MG. Effect of carotid body 
resection on ventilatory and acid-base control during exercise. JAppl Physiol39: 
354-358. 1975. 

Weil JV, Byrne-Quinn E, Sodal IE, Friesen WO, Underhill B, Filley GF, and 
Grover RF. Hypoxic ventilatory drive in normal man. J Clin Invest 49: 1061- 
1072, 1970. 

Weil JV, Byrne-Quinn E, Sodal IE, Kline JS, McCullough RE, and Filley 
GF. Augmentation of chemosensitivity during mild exercise in normal man. J 
Appl Physiol33: 813-819, 1972. 

Weil JV and Zwillich CW. Assessment of ventilatory response to hypoxia: 
methods and interpretation. Chest 70: 124-128, 1976. 

Wenger CB, Roberts MF, Stolwijk JA, and Nadel ER. Nocturnal lowering of 
thresholds for sweating and vasodilation. JAppl Physiol41: 15-19, 1976. 

Whelan RF and Young IM. Effect of adrenaline and noradrenaline infusions on 
respiration in man. Brit J Phannacol8: 98-102, 1953. 

Whipp B J. Peripheral chemoreceptor control of exercise hyperpnea in humans. 
Med Sci Sports Exerc 26: 337-347, 1994. 



136. Whipp BJ. Ventilatory control during exercise in humans. Annu Rev Physiol45: 
393-413, 1983. 

137. Whipp BJ, Ward SA, Lamarra N, Davis JA, and Wasserman K. Parameters 
of ventilatory and gas exchange dynamics during exercise. JAppl Physiol52: 
1506-1513, 1982. 

138. White MD and Cabanac M. Exercise hyperpnea and hyperthermia in humans. J 
Appl Physiol81: 1249-1254, 1996. 

139. Wyndham CH and Atkins AR. A physiological scheme and mathematical 
model of temperature regulation in man. Pflugers Arch 303: 14-30, 1968. 

140. Wyss CR, Brengelmann GL, Johnson JM, Rowel1 LB, and Niederberger M. 
Control of skin blood flow, sweating, and heart rate: role of skin vs. core 
temperature. JAppl Physiol36: 726-733, 1974. 



CHAPTER 3 STUDY 1 

The effects of hypertherrnia and hypoxia on ventilation during low 

intensity steady-state exercise 

Aaron L. Chu and Matthew D. White 

Running Head: "Core Temperature, Hypoxia and Ventilation" 

Address for correspondence: 

Dr. Matthew D. White, 

Laboratory for Exercise and Environmental Physiology, 

8888 University Drive, 

School of Kinesiology, Simon Fraser University, 

Burnaby, British Columbia, CANADA, V5A 1S6. 

Email: matt @sfu.ca 

Tel no.: +1-604-291-3344 

Fax no: + 1-604-29 1-3040 

Please send correspondence to Matthew D. White at his Simon Fraser University address 

as indicated above. 



3.1 Abstract 

The independent and combined effects of hypoxia and elevated esophageal 

temperature (T,,) were investigated for their effects on the level of exercise ventilation 

( VE). In either a 'hyperthermic' T,, or a 'normothermic' Tes session, 11 college-aged, 

healthy male volunteers were immersed to the shoulders and pedalled on an underwater 

cycle ergometer at a steady-state oxygen consumption ( ~ 0 2 )  of 0.87 ~ m i n - '  (SD 0.07). 

Following a 30-min rest and 20-min warm-up, a 30-min steady-state cycling period was 

divided into three 10-min gas phases when participants inhaled: air (Euoxia 1 (El)), 

hypoxic gas (12 % 0 2  and 88 % N2 (HI)), and air (Euoxia 2 (E2)). End-tidal C02  

(PETC02) was maintained at an isocapnic level of 5.19 kPa (SD 0.7 1) throughout the 

exercise. Results showed a significant increase in VE during all hyperthermia conditions 

(0.014' c 0.048), however, during hyperthermic hypoxia there was a disproportionate 

and significant (P = 0.017) increase in VE relative to normothermic hypoxia. This was 

the main explanation for a significant core temperature and gas type interaction (P  = 

0.012) for v E .  A main effect of core temperature ( P  = 0.007) was evident on ventilation 

frequency (f,) with an increased rate of breathing in hyperthermic relative to the 

normothermic exercise. This gave evidence of a thermally-induced tachypnea which 

corresponded to significant decreases in inspiratory time (TI) ( P  = 0.035) and expiratory 

time (P = 0.014) and was independent of any changes in tidal volume (VT) (P = 0.801). 

As such inspiratory flow ( v T . ~ i l )  was significantly increased in hyperthermic- relative to 



normothermic ( P  = 0.003) exercise, an increase that was pronounced ( P  = 0.013) during 

hyperthermic hypoxia. In conclusion, these results suggest the following: 1) During low 

intensity, steady-state exercise an elevated T,, caused an increase VE, which was 

mediated by an increase in f,. 2) The addition of hypoxia during hyperthermic exercise 

caused a multiplicative increase in VE, which corresponds with a multiplicative increase 

in v ~ . T ] - I .  This would suggest the possibility of a core temperature mediated stimulation 

of the peripheral chemoreceptors. 



3.2 Introduction 

There have been several proposed mechanisms for the hyperpnea that occurs 

during exercise (12, 22,40). A neurogenic hypothesis (12) implicates core temperature 

as a central mediating stimulus in the control of ventilation during both actively and 

passively induced hyperthermia (2,40). It suggests that increases in core temperature 

could increase ventilation by several mechanisms. One proposed mechanism suggests an 

increase in core temperature is associated with an increase in carbon dioxide sensitivity 

(31), while another suggests a direct physical effect of increased temperature in the 

respiratory control centre and the peripheral chemoreceptors thereby enhancing the 

reactivity to their normal stimuli (5). This increased sensitivity to C02  appears to be 

evident during exercise (38) and during post exercise hyperthermia (28). Another 

hypothesis suggests a direct effect of an increase in core temperature causing a change in 

the equilibrium constants of the C02  buffer system resulting in a diminished capacity to 

buffer C02  by body fluids (33). Ventilation is then increased after hydrogen ion (w) 
levels are increased in the regions of the central respiratory centres in the medulla 

oblongata. 

Hypoxia is another well-established mediator of ventilation. Low inspired 0 2  

levels are detected by the peripheral chemoreceptors stimulating ventilation (7). Exercise 

enhances the hypoxic ventilatory response (HVR) and the effect becomes marked as the 

severity of exercise increases (38). The response to hypoxia has also been shown to 



depend on the level of PETCOZ (25). What has not been examined is if the concomitant 

increase in core temperature evident with exercise has an influence on the ventilatory 

response to hypoxia. To this end we have implemented an underwater exercise method 

by Park and colleagues (21) to prevent increases in core temperature during exercise. As 

such, this allowed an assessment for an interaction between hyperthermia and hypoxia 

during exercise VE. This study also investigated changes in VT, fv and the timing 

components of vE to determine the HVR response characteristics in these conditions. 

We hypothesized that the sensitivity of the peripheral chemoreceptors to hypoxia would 

be increased during a low intensity 'hyperthermic' exercise relative to a low intensity 

'normothermic' exercise when core temperature was clamped at resting levels. That is, 

during the hyperthermic exercise, with an increase in core temperature, there would be a 

greater hypoxic sensitivity as evidenced by a greater ventilatory response to hypoxia 

relative to the normothermic exercise condition. 



3.3 Methods 

3.3.1 Participants 

Eleven healthy male university participants, age 19-34 years old volunteered to 

participate in the study. Their individual characteristics are given in Table 3.1. Power 

calculation results for sample size justification are given in Appendix C. All participants 

were non-smokers, non-asthmatics and refrained from caffeine for 12 h prior to each test. 

Prior to the experimentation the participants were informed of the potential risk 

associated with the protocol and after a 24 h reflection period gave their written, 

informed consent to participate in the experiment. The participants all attended a 

preliminary testing period where they were familiarized with the experimental protocol 

and instrumentation. During the preliminary testing period the participants performed a 

sub-maximal exercise protocol on an underwater cycle ergometer to determine their level 

of fitness and ensure they would be able to undergo the experimental protocol (Appendix 

B). Ethics approval for the study was received from the S.F.U. Office of Research Ethics 

prior to experimentation. 

All experimental sessions were within + 60 min of each other and started at 

between 10 am or 1 pm. Participants were also required to fast, exercise and refrain from 

drinking any warm beverages for a minimum of 5 h prior each experimental session. 



Participants were clad in shorts and kayak boots during the experiments. A medical 

emergency lut including a defibrillator was available at all times. 

3.3.2 Instrumentation 

Pulmonary function variables and ventilatory excursions were measured using a 

breath-by-breath Sensormedics V,,, 229c metabolic cart (Sensormedics, Yorba Linda, 

CA, USA). Participants wore a nose clip and were fitted with a mouthpiece connected to 

a Mass Flow Sensor. The mouthpiece was connected to a two-way flow sensor housing, 

which was connected to a 2-way non-rebreathing valve (NRB 2700, Hans Rudolph Inc, 

Kansas Cit, MO, USA) that was connected with 3.8 cm diameter corrugated Collins 

tubing to a 350 L Tissot spirometer. Breath-by-breath gas samples were drawn from the 

inspired and expired air to the metabolic cart at a rate of 500 mlemin-'. Carbon dioxide 

partial pressure was measured using non-dispersive infrared Spectroscopy and oxygen 

concentration was measured using a paramagnetic sensor. A premixed hypoxic gas of 12 

% O2 and balanced nitrogen (N2) from a compressed gas bottle was used to fill the Tissot 

spirometer for the hypoxic condition. A fan mounted on the Tissot spirometer was used 

to mixed gas within its bell during the hypoxic condition. In addition, between conditions 

the Tissot was flushed with room air to remove any residual gases from the hypoxic 

trials. 



Arterial oxygen saturation (Sa02) was continuously measured with a pulse 

oximeter (Masimo Radical, Irvine, CA, USA) positioned on the participants' left ear lobe. 

Esophageal temperature was measured by placing a paediatric size temperature 

thermocouple probe of approximately 2 mm in diameter through the participants' nostril, 

while they were asked to sip water through a straw. The location of the tip of the probe 

in the oesophagus was past the nares, at the T8/T9 level, a position bounded by the left 

ventricle and aorta. This position is based on the equation of Mekjavic and Rempel (18) 

for standing height: L (cm) = 0.228 x (standing height) - 0.194. The participant was then 

immersed to the level of the shoulders in a water-filled tub and sat on a hydraulically 

braked, underwater cycle ergometer. Water temperature was maintained at a specific 

temperature (Table 3.1) so as to maintain Tes at either a normothermic or hyperthermic 

level. The determination of these water temperature (T,) levels is described below in 

'Water Temperature calculations'. 

An analog signal for f, from the V,,, cart was used to trigger data collection for 

body temperatures, heart rate and hemoglobin saturation on acquired a National 

Instruments data acquisition system SCXI-1000 (Austin, USA) that was controlled by 

LabVIEW software program (National Instruments, Austin, USA, version 5.1). 



3.3.3 Water temperature calculations 

During the preliminary testing session skinfold measurements were taken at 10 

different sites as described by Veicsteinas and Rennie (35) with the Harpenden slunfold 

calliper (British Indicators, St. Albans, UK). The skinfold values (Table 3.1) were used 

to determine the participant's weighted mean subcutaneous fat thickness (MFT,) (35). 

The MFT, values for each participant were used to predict their overall body insulation 

at rest (I,,,,) by a regression equation derived from Park and colleagues study (21). The 

I,,,, values were used to calculate the water temperature (Tw) for both the hyperthermic 

and normothermic sessions by using a re-arrangement of Park et al.'s (21) body 

insulation equation: 

. . 
T, = T,, - (Iex*(0.92 M + S )). . . . . . . . . . . . . . . . . . . . .Equation 3.1 

In Equation 3.1 Tw is the desired water temperature for the exercise session, T,, is 

the desired core temperature measured by an esophageal probe, I,, is the overall body 

insulation during exercise (for healthy male participants, BSA - 1.9 rn2, exercising at a 

rate that produces a constant metabolic heat production of 145 ~ . m - ~ ,  I,, was found to be 

. 
-40 % of I,,,, (21)), M is the metabolic heat production, S is the rate of heat storage. For 

. 
the normothermic condition S is negligible and 0.92 is a weighting factor determined by 

the prediction of respiratory heat loss at rest and during exercise to be -8 % (21). For the 

. 
hyperthermic condition at a core temperature of - 38S•‹C the S was empirically 

determined during pilot testing to be -140 ~ . m - ~ .  This value was used as an estimated 



standard for the participant pool that was of similar physique to the pilot participant. The 

calculated water temperatures for each participant are given in Table 3.1. 

3.3.4 Protocol 

All participants volunteered for 2 separate exercise-testing sessions, with each 

session separated by at least one week. Half of the participants were randomly chosen to 

start with the hyperthermic session and the other half started with the normothermic 

session. After instrumentation each protocol began with a 30-min rest period in room air 

to establish a stable resting T,,. The exercise began with a 5-min rest period with the 

participant seated on a stationary underwater bicycle ergometer in water up to their 

shoulder level and instrumented with a weight belt to avoid floatation. A metronome was 

used to maintain the pedalling cadence and the participant was monitored continuously to 

assure adherence. 

The work rate was determined based on the equation derived from Park et al.'s 

(21) study as the ideal level amongst the participant population that would produce a 

V 0 2  of approximately 0.8 to 1.0 ~ . m i n - '  while cycling in a 30•‹C water-filled tub. A 

\jo2 of 0.8 - 1.0 ~ .min - '  was shown by Park et al. (21) to correspond with a metabolic 

heat production of -145 w-mS2 in a healthy male participant with a body surface area 

(BSA) of -1.9 m2 (where 1 kcal = 0.207 L of 02). This metabolic heat production rate 

was chosen as the exercise intensity level to produce a steady-state normothermic core 



temperature in thermoneutral water as shown in Park et al.'s (21) study. The same work 

rate was used for the hyperthermic condition. 

Each exercise session was performed at a constant work rate and consisted of a 

20-min warm-up period where a steady state V E  and T,, were achieved and a 30-min 

testing period. Both the warm-up and testing period were completed at the same work 

rate and cadence and there were no rest phases between each period. The 30-min testing 

period was divided into 3 continuous 10-min steady state exercise phases: a 10-min 

euoxic exercise period (El) where the participant breathed room air, a 10-min hypoxic 

exercise period (HI) where the participant breath the hypoxic gas mixture (12 % 02, 

balanced N2), and a 10-min euoxic recovery exercise period (E2) when the participant 

again breathed room air. All participants followed this protocol in the same order for all 

sessions. If the PETC02 fell below resting water-immersed values, 100 % C 0 2  was 

manually titrated into the inspirate via a non-re-breathing demand valve apparatus as 

described by Sommer et a]. (32) to bring the PETCO2 back to resting, water-immersed 

levels. The purpose for clamping of PETCO2 was to maintain an isocapnic hypoxia, which 

would alleviate the possibly confounding effects of a hyperventilation-induced 

hypocapnia that is often associated with hypoxia and was suggested to diminish the HVR 

(25). The resting water-immersed PETCO2 levels (3) were determined during the 5-min 

rest session immediately prior to commencing the exercise session. 



3.3.5 Calibrations and Analysis 

Calibrations of esophageal thermocouple probes were completed in regulated 

temperature hot water baths. Gas analyzers were calibrated against two gases of known 

concentrations (4 % C02, 16 % 02, balanced N2 and 26 % 02, balanced N2, and air) and 

the mass flow sensor was calibrated manually by the use of a 3 litre syringe prior to each 

experiment. 

Ventilatory parameters, T,,, and S,02 for the steady-state exercise phases were 

analyzed using a two-way ANOVA for repeated measures. The factors were Core 

Temperature (Levels: normothermic and hyperthermic) and Gas Type (Levels: euoxia 

(El), hypoxia (HI), and euoxic recovery (E2)). Dependent t-tests with the Bonferroni 

correction for multiple comparisons of were used to compare the means so as to explain 

the interactions of Core Temperature and Gas Type. A paired samples t-test was used to 

compare ventilatory variables between the both the in and out of water rest periods. A P 

value of c 0.05 was considered significant. For comparisons values are expressed as the 

mean +the Standard Deviation (SD) and 95 % Confidence Intervals [CI] of the difference 

between means are given in square brackets following each P value stated. SPSS 12.0 

(SPSS Inc., Chicago, Ill., USA) was used for all the statistical analyses. 



3.4 Results 

All participants completed the full exercise protocol including 10 min of hypoxic 

exposure with only mild signs or symptoms of hypoxia including hyperventilation, 

lethargy, and slight nausea. The mean water temperature for the normothermic condition 

was 3 1 S•‹C (SD 1.3) and for the hyperthermic condition was 38.2"C (SD 0.1) (Table 

3.1). Figure 3.1 indicates the Gas Type phases used for analysis and shows the typical 

time course responses of VE, V O  2, PETC02, Sa02 and T,, for a single participant during 

the normothermic condition. 

Upon immersion in water, resting values for VE (P = 0.001, CI [1.0,2.6]), VT(P 

= 0.386, CI [-0.1,0.3]), PETCO2 (P = 0.386, CI [-0.1,0.3]) increased significantly whilef, 

(P = 0.386, CI [-0.1,0.3]) showed an increasing trend, which was non-significant (Table 

3.2). 

During the 30-min rest period prior to the commencement of the normothermic 

exercise sessions the mean resting T,, (Fig. 3.2) was 37.20•‹C (SD 0.37) and prior to the 

hyperthermic exercise sessions the mean resting Tes was 37.28"C (SD 0.24), a non- 

significant difference of 0.08"C at (P = 0.386, CI [-0.1,0.3]). For the normothermic 

exercise condition participants' T,, was maintained relatively constant at 37.17OC (SD 



0.34), 37.09"C (SD 0.34), and 37.0Z•‹C (SD 0.33) during El,  HI and E2 respectively. 

For the hyperthermic exercise condition Tes increased steadily from rest and gradually 

approached a plateau at -38.5OC after the completion of the warm-up exercise period. 

The mean T,, during all steady-state exercise phases of the hyperthermic condition were 

also significantly increased above the normothermic levels by 1.2S•‹C (SD 0.30) (P = 

0.001, CI [1.1, 1.41) to 38.44OC (SD 0.15) at El ,  by 1.52"C (SD 0.36) (P = 0.001, CI [1.3, 

1.81) to 38.6"C (SD 0.1) at HI, and by 1.71•‹C (SD 0.37) (P = 0.001, CI [1.5, 2.01) to 

38.7"C (SD 0.1) at E2. 

The ventilatory responses (Fig. 3.3A) obtained from the three steady-state 

exercise phases (El, H1, E2) during the normothermic condition indicated VE increased 

from 22.8  ami in-' (SD 2.7) at El to 34.5 L-min-' (SD 4.1) at HI, a significant increase of 

11.7 L-min-' (SD 4.4) (P = 0.001, CI [8.7, 14.71) and returned to steady-state levels 

during E2 at 22.7 L.min-' (SD 2.8), a non-significant change from El (P = 1.000). 

During the hyperthermic condition VE also increased from El at 24.9 L-min-' (SD 2.8) to 

H1 at 44.6 L-min" (SD 10.6) a significant increase of 19.8 L-min-' (SD 9.1) (P = 0.001, 

CI [13.6,25.9]) and returned to steady-state levels at 27.9 L-min" (SD 9.3) during E2, a 

non-significant change from El (P = 0.691). For the hyperthermic condition VE was 

significantly elevated in all steady-state exercise phases as compared to the normothermic 

condition. For El ,  HI and E2 VE increased by 2.0 L-min-' (SD 2.1) (P = 0.010, CI [0.6, 

3.5]), 10.2 L-min-' (SD 9.0) (P = 0.004, CI r4.1, 16.21) and 5.2 L-min-' (SD 7.7) (P = 

0.048, CI [O.1, 10.41) respectively. 



Across the steady-state exercise phase during the normothemic condition VT 

(Fig. 3.3B) increased from El  at 1.1 1 L (SD 0.21) to H1 at 1.64 L (SD 0.20), a significant 

increase of 0.52 L (SD 0.21) (P = 0.001, CI [0.38,0.66]) and returned to steady-state 

levels during E2 at 1 .O9 L (SD 0. 18), a non-significant change from E l  (P = 0.159). 

During the hyperthermic condition VT increased from El  at 1.12 L (SD 0.20) to H1 at 

1.70 L (SD 0.17), a significant increase of 0.58 L (SD 0.20) (P = 0.00 1, CI [O.4 1, 0.751). 

Tidal volume also showed a trend to decrease below the previous steady-state E l  levels at 

1.06 L (SD 0.19) during E2, with a reduction of 0.06 L (SD 0.06) (P = 0.026, CI [-0.11, - 

0.011). There was no significant main effect of Core Temperature on VT (P = 0.801). 

Across the steady-state exercise phase during the normothermic condition fv (Fig. 

3.3C) showed no significant change from E l  at 21.3 breaths-min-' (SD 3.2) to H1 at 21 S 

breathsemin-' (SD 2.6) (P = 1.000) and from E l  to E2 at 21.9 breaths-min-' (SD 2.3) (P = 

0.979). During the hyperthermic condition f, also showed no significant changes from El  

at 23.5 breaths-min-' (SD 3.0) to H1 at 27.3 breaths-min-' (SD 7.9) (P = 0.337) and 

bordered a significant change in E2 at 27.7 breaths-min-' (SD 6.0) an increase of 4.2 

breaths-min-' (SD 5.5) (P = 0.089, CI [-0.6, 8.91). Ventilation frequency was 

significantly elevated in all hyperthemic steady-state exercise phases as compared to the 

normotherrnic condition. For El ,  H1 and E2 fv increased by 2.2 breathsmin-' (SD 3.1) 

(P = 0.043, CI [0.9,4.2]), 5.8 breaths-min-' (SD 6.7) (P = 0.017, CI [1.3, 10.31) and 5.7 

breaths-min-' (SD 5.8) (P = 0.008, CI [1.8,9.6]) respectively. 



Across the steady-state exercises phases during the normothermic condition there 

were no significant changes in TI or TE (Fig 3.4A&B) from El  at 1.48 s (SD 0.25) and 

1.48 s (SD 0.21) to HI at 1.32 s (SD 0.17) (P = 0.355) and 1.50 (SD 0.16) (P = 1.000) 

and E2 at 1.44 s (SD 0.14) (P = 1.000) and 1.44 (SD 0.18) (P = 0.835) respectively. For 

the hyperthermic condition during steady-state exercise there were also no significant 

changes indicated for TE from E l  at 1.39 s (SD 0.16) to HI at 1.24 s (SD 0.33) (P = 

0.457) and E2 at 1.22 s (SD 0.27) (P = 0.113). Inspiratory time however showed a 

decrease during the hyperthermic condition from El  at 1.32 s (SD 0.23) to HI at 1.13 s 

(SD 0.27) which bordered a significant reduction of 0.20s (SD 0.23) (P = 0.057, CI [- 

0.40,0.01]) but showed no significant change during E2 at 1.1 8 s (SD 0.33) (P = 0.146). 

Inspiratory time and TE were both shortened during the hyperthermic condition as 

compared to the normothermic condition for HI by 0.19 s (SD 0.24) (P = 0.023, CI [0.03, 

0.351) and 0.25 s (SD 0.32) (P = 0.023, CI [0.04,0.46]) and for E2 by 0.26 s (SD 0.36) (P 

= 0.034, CI [0.02,0.50]) and 0.22 s (SD 0.29) (P = 0.030, CI [0.03,0.42]) respectively. 

For the hyperthermic relative to the normothermic condition at El  there was only a trend 

for a reduction observed in TE of 0.09 s (SD 0.16) (P = 0.081). 

Across the steady-state exercise phases VT.T~-' (Fig. 3.4 C) for the normothermic 

condition increased from 0.76 L-s" (SD 0.10) at E l  to 1.26 L.S-' (SD 0.19) at HI, a 

significant increase of 0.50 L.S-' (SD 0.21) (P = 0.001, CI [0.36,0.64]) and returned to 

steady-state levels during E2 at 0.75 L-s-' (SD 0.10), a non-significant change from El  (P 

= 1.000). During the hyperthermic condition VT.T~'  also increased from 0.85 L-s-' (SD 

0.1 1) at E l  to 1.57 L-s-' (SD 0.33) at HI, a significant increase of 0.72 LS-' (SD 0.21) (P 



= 0.001, CI [0.50,0.94]) and returned to steady-state levels during E2 at 0.95 L-s-' (SD 

0.32), a non-significant change from El  (P = 0.708). Inspiratory drive was elevated 

during the hyperthermic condition in all steady-state exercises phases (P = 0.003) as 

compared to the normothermic condition. For El ,  H1 and E2 VT.TI" increased by 0.10 

L-s-' (SD 0.13) (P = 0.031, CI [0.01,0.18]), 0.32 L.s-' (SD 0.01) (P = 0.002, CI r0.15, 

0.481) and 0.20 L.min" (SD 0.26) (P = 0.030, CI [0.02,0.38]) respectively. 

A significant Core Temperature and Gas Type interaction was evident for \jE (F 

= 5.8, P = 0.012) and v T . T ~ '  (F = 5.2, P = 0.023), while a trend for a Core Temperature 

and Gas Type interaction was evident for fv (F = 3.4, P = 0.076) (Fig. 3.5). On 

comparison of the increases in VE from the normothermic to hyperthermic condition, the 

elevation in H1 was significantly greater than that at El  (F = 8.2, P = 0.017), while there 

was no difference between the elevations from the normothermic to the hyperthermic 

condition between El  and E2 (P = 0.226) (Fig. 3.5A). For f, a trend for a greater increase 

of fv was evident from the normothermic to hyperthermic condition at both H1 (P = 

0.099) and E2 (P = 0.062) as compared to El  (Fig. 3.5B). For VT.TI-' the elevation in H1 

was significantly greater than that at El  (F = 9.2, P = 0.013), while there was no 

difference between the elevations from the normothermic to the hyperthermic condition 

evident between E l  and E2 (P = 0.235) (Fig. 3.5C). 



Oxygen saturation (Fig 3.6A) decreased during H1 to 85.6 % (SD 5.7) (P = 0.001, 

[-19.2, -9.41) in the normothermic condition and to 83.5 % (SD 5.7) (P = 0.001, [-18.9, - 

10.11) in the hyperthermic condition, both significant reductions of 14.3 % (SD 5.6) (P = 

0.001, [-10.5, -18.11) and 14.5 % (SD 5.1) (P = 0.001, [-11.1, -17.91) as compared to El  

at 99.9 % (SD 0.6) and 98.0 % (SD 1.0) respectively. A Core Temperature effect was 

also indicated as Sa02 values decreased significantly from the normothermic levels 

during euoxic conditions (El and E2) by 2.0 % (SD 0.8) (P = 0.001, [1.4, 2.51) and 2.5 % 

(SD 1 .l) (P = 0.001, [1.8,3.3]) respectively during the hyperthermic condition. During 

HI, there was no significant difference (P = 0.368) for Sa02 levels between the 

hyperthermic and normothermic condition. 

For PETCO2 (Fig 3.6B) the main effect of Gas Type bordered significant (F = 4.7, 

P = 0.051) and there was no significant main effect of Core Temperature (F = 0.3, P = 

0.623). An effective isocapnic hypoxia was achieved, as PESO2  levels remained 

relatively constant across both the normothermic and hyperthermic conditions during HI 

as compared to El  



3.5 Discussion 

3.5.1 Hypoxic ventilation and core temperature 

The main finding of the present study was that the increase in VE observed during 

hypoxic was significantly greater during steady-state hyperthermic exercise as compared 

to steady-state normothermic exercise (Fig 3.3A). The increase in V E  appears to be 

related to a significant increase in f, (Fig 3.3C) since VT (Fig 3.3B) was not significantly 

influenced by the elevation of T,,. A hyperthermic-induced hyperpnea was also observed 

independent of changes to inspired gas composition (Fig 3.3A) and a hypoxic 

hyperventilation was evident (Fig 3.3A) during hypoxic exposure independent of core 

temperature changes. Together these results support the workmg research hypothesis that 

the sensitivity to blood borne metabolites by the peripheral chemoreceptors in the carotid 

and aortic bodies is elevated in hyperthermia. Since in humans, lower arterial oxygen 

tension is only sensed by these peripheral chemoreceptors, it suggests part of the 

elevation in VE during exercise could be a result of increased firing from warmed 

peripheral chemoreceptors relative to the firing rate of normothermic peripheral 

chemoreceptors. 

The hyperthermic-induced hyperpnea observed in this current study was in 

agreement with results from previous studies (2,23). This was observed by comparing 



the normothermic and hyperthermic temperature conditions in the two euoxic phases (El 

and E2) of the study (Fig. 3.3A). Petersen and Vejby-Christensen (22) suggested that a 

core temperature threshold for ventilation existed around 38•‹C above which a significant 

hyperpnea was evident. Cabanac and White (2) further defined this core temperature 

threshold for ventilation to exist at a T,, of -38.0 to 38.5OC during passive warming. In a 

following study, White and Cabanac (40) illustrated that this core temperature threshold 

appeared to be also evident during an active hyperthermia but at a lower level of -37.3 to 

-37.8"C depending on the site of core temperature measurement. They also indicated 

that above this threshold, with passive or active passive warming, ventilation increased at 

a proportional rate to core temperature (2,40). We reasoned this proportionality between 

Tes and ventilation accounts for the higher VE in the hyperthermic exercise during E l  and 

E2 relative to that during normotherrnia (Fig. 3.2A). 

The HVR observed in this present study during low intensity exercise was also in 

agreement with a previous study by Weil and colleagues (38). Mean V E  increased 

significantly during both hypoxic conditions, however the hyperthermic hypoxia-induced 

increase in V E  was almost twice that of the normothermic hypoxia-induced increase in 

VE. There was no significant difference in steady-state VE during the normothermic 

condition between E l  and E2, which supported there was no order effect of hypoxia 

between the three phases of exercise (El, H1 and E2). The HVR during normothermic 

exercise was mediated completely by VT (Fig 3.3B) with no significant influence from f, 

(Fig 3.3C). This result differed slightly from those of Savourey et al. (30) who showed 

that only at rest was the HVR a result of an increased VT and during moderate exercise it 



was a result of a both an increased VT and f,. The difference presently from Savourey et 

al.'s study (30), however, was that Tes was clamped at resting levels throughout the 

hypoxic exercise and not allowed to increase. During the hyperthermic hypoxic exercise 

condition VT increased in a relatively equal magnitude as during the normothermic 

hypoxic condition, yet the HVR was enhanced. This can be attributed primarily to the 

elevated f, as a result of the increased core temperature, which has been described as a 

thermal tachypnea (2,20). This would lead to the suggestion that an elevated core 

temperature may influence the sensitivity of the peripheral chemoreceptors helping to 

explain the elevated HVR during hyperthermia (Fig 3.3A). 

Previous studies have shown the existence of a thermal tachypnea during an 

active hyperthermia (22,40). The need for this thermal tachypnea remains unknown but 

there have been several plausible explanations. Petersen and Vejby-Christensen (22) 

have proposed that the thermal tachypnea could be part of a vestigial panting response 

that is still present in humans suggested to be needed for heat loss. White and Cabanac 

(40) have extended this theory to suggest that the panting mechanism observed may be a 

significant avenue of respiratory heat loss contributing to selective brain cooling in 

humans. It can be argued that in exercising humans eccrine sweating and skin 

vasodilatation would be the main source of heat loss, however, Rasch et al. (26) 

demonstrated that respiratory heat loss stills provides a significant portion of total 

cephalic heat loss during hyperthermia. Mariak et al. (14) showed directly for the first 

time an existence of ventilation-induced intracranial cooling in hyperthermic humans 

directly supporting existence of this heat loss response. 



The most probable explanation for the observed thermal tachypnea in the current 

study would be a direct temperature effect on the peripheral chemoreceptors increasing 

their sensitivity to arterial 02 ,  CO2 and pH. The peripheral chemoreceptors are located in 

the carotid body and aortic bodies, which is a highly perfussed tissue with a high 

metabolic rate. It would be plausible to suggest significant increases in core temperature 

would cause blood warming around the carotid or aortic bodies that could increase their 

sensitivity to arterial 02. This would explain why the HVR was significantly increased 

during hyperthermia as compared to normothermia (Fig 3.2). Furthermore, the increase 

in VE during hyperthermic hypoxia relative to hyperthermic euoxia was greater than the 

increase from normotherrnic euoxia to normothermic hypoxia, which would support that 

the observed vE enhancement during hyperthermic hypoxia was a peripheral response. 

Cunningham and O'Riordan ( 5 )  and Petersen and Vejby-Christensen (23) have 

previously suggested a similar hypothesis in studies on passive hyperthermia and 

hypoxia. Present results may also help explain the results of Weil et al. (38) that showed 

the HVR becomes enhanced with increasing exercise intensity. It is well known that 

higher levels of exercise are associated with increasing core temperature (12, 19). On 

this basis it could be suggested the enhancement of the HVR due to increasing exercise 

intensity is in part a function of the concomitant increasing core temperature. 

Furthermore, during the hypoxic hyperthermic phase it would be expected that pH may 

increase in response to the hypoxic hyperventilation, however, during the current study 

PE~c02  was clamped at isocapnic levels which should have prevented any increases in 

pH (22). 



Independent of hypoxia the mechanism of thermal-induced tachypnea in panting 

animals has been shown to be mediated by the hypothalamus (1 I). It has recently been 

indicated in mice through surgical isolation of the brain stem that heating directly 

modifies the respiratory neural activity generated in the ventral respiratory group causing 

an increase in f, (34). This would agree with previous studies in humans, which have 

suggested that the thermal tachypnea observed during exercise may be a direct effect of 

temperature on the cells of the respiratory control centres in the medulla (5, 15). 

MacDougall et al. (13) suggested another possible explanation for the thermal tachypnea. 

They indicated increasing H+ stimulus as a possible mediator acting at the peripheral or 

central chemoreceptors. This hypothesis however would seem unlikely for the present 

study, as it has been shown by Petersen and Vejby-Christensen (22) that there is no 

change in arterial pH observed at hyperthennic states. Furthermore during low intensity 

euoxic exercise, as in this present study, arterial and cerebrospinal fluid pH are not 

thought to change (39). As such, the mechanism of the thermal tachypnea remains to be 

established in humans. 

A consideration during hyperthermic hypoxia is that an increase in body 

temperature shifts the oxy-hemoglobin dissociation curve to the right causing a reduction 

in the 0 2  affinity for hemoglobin. This was evident to a small degree in the present study 

as S,02 was slightly reduced during the hyperthermic condition by -2 % in El and E2 

(Fig 3.6). This would have little effect during the euoxic conditions as the S,02 was still 

at -98 % for both E l  and E2, which should not be low enough to influence vE 



significantly. During the hypoxic phase between the normothermic and hyperthermic 

condition S,02 was not significantly different and would appear not to have had a 

significant influence on VE. 

3.5.2 The Pattern of Breathing 

Inspiratory time was significantly shortened from rest to exercise with a further 

reduction evident during hyperthermic exercise (Fig 3.4A). These findings are in 

agreement with previous studies showing that exercise-induced hyperthermia (15) and 

passive hyperthermia (23) are both associated with a lowering of the ventilatory timing 

components. It has been suggested for anaesthetized cats that an increase core 

temperature stimulates the dorsal respiratory "pacemaker" and vagal neurons of the 

central respiratory control centre decreasing TI and consequently increasing fv (9). 

Similar suggestions have been made in humans (15,23). Petersen and Vejby-Christensen 

(23) proposed the existence of an inspiratory "off-switch" pool of neurons that are 

influenced by temperature and are the main mediators of the shortened fv evident during 

hyperthermia. These neurons were further investigated in animal studies and during 

expiration the pneumotaxic centre of the upper pons showed increased neural activity and 

was suggested to be responsible for the termination of inspiration (37). 

Expiratory time followed a very similar pattern to TI during the present study (Fig 

3.4B). This occurred despite any significant changes in VT between temperature 



conditions and would suggest the involvement of the ventral respiratory neurons in 

increasing the TE during hyperthermia (34). The absence of any significant changes in 

VT between temperature conditions however was in contrast to results of previous studies 

which showed a reduced VT with passive (23) and active hyperthermia (15). In the 

present study however, a much lower level of exercise was used than in the previous 

study (15) suggesting that the variability in these results may be related in part to 

different levels of exercise intensity. It was also shown in this study that during the 

hyperthermic condition VT decreased significantly from E l  to E2 (Fig 3.3B), which was 

accompanied by a small but significant rise in Tes from E l  to E2. This would advocate 

the possible existence of a temperature effect at higher levels of Tes on VT, similar to that 

evident in previous studies (15,23) and may suggest possible evidence of a vestigial 

panting response at higher core temperatures. 

An increase in VT.TI~ was also evident during the hyperthermic condition (Fig 

3.4C) and was further enhanced during hyperthermic hypoxia (Fig 332) .  The increased 

VT.T~-' during hyperthermic euoxic and hypoxic exercise can be attributed mainly to the 

shortened TI in each gas condition as VT showed no significant change between 

temperature conditions. This finding was in agreement with a study by Mekjavic et al. 

(17) who showed that the inspiratory flow component increases with exercise intensity 

and was further amplified during hypoxic exposure. Although core temperature was not 

measured in Mekjavic et al.'s study (17), the inspiratory flow during hypoxia was only 

augmented at higher intensity levels of exercise, which are generally concomitant with an 

increase in body temperature (19). This would suggest that there might have been a small 



core temperature effect on the ventilatory drive during hypoxia in Mekjavic et al.'s (17) 

study, which would be similar to that seen in the present study. In the present study two 

possible explanations are suggested by which an increase in core temperature influences 

the inspiratory flow. The first explanation would be a direct temperature effect on the 

central respiratory centre, particularly the dorsal respiratory neurons and/or the 

pneumotaxic respiratory centre. The second would be a direct warming effect on the 

peripheral chemoreceptors increasing their sensitivity and firing rate to a low arterial 

oxygen tension. The later explanation would be the most plausible cause of the 

augmented inspiratory flow during hyperthennic hypoxia as it has been shown that over 

50 % of the HVR is under peripheral chemoreceptor control (8). 

3.5.3 Variability in the hyperthermic and hypoxic ventilatory response 

There was considerable inter-participant variation evident in the present study in 

regards to the magnitude of the ventilatory response to temperature and/or hypoxia. For 

hypoxia this inter-individual variability in vE response characteristics has been well 

documented (29,36). There are several considerations that can account for the variation 

evident in the HVR among individuals, which include the type of hypoxic stimulus, the 

duration and previous exposure. These were all controlled for in the present experiment; 

however inter-individual variability in chemoreceptor sensitivity has been shown to exist 

(36). Furthermore exercise has been shown to amplify the variability of this 

chemoreceptor sensitivity to hypoxia (29), which can help explain the significant inter- 

participant variation in the HVR evident in the present study. 



There was also variability evident in the magnitude of the temperature response to 

VE. Particularly it was noted that several participants increased their fv significantly 

during euoxic hyperthermia while others showed little change in fv from the 

normotherrnic condition. This observation was similar to that made by Petersen and 

Vejby-Christensen et al. (23) who showed that during passive hyperthermia they also had 

variability in the f, response between participants for which they further classified into 

low and high "Jv-responders" to elevations in core temperature. Further variability was 

evident in the participant's fv response to hyperthermic hypoxia with several participants 

showing an exaggerated increase as compared to others. This response can be attributed 

to both the vE variability in the HVR and thermal tachypnea. 

In the present study we have controlled for this inter-participant variability by 

using a repeated measures design but there were still apparent hypoxic and temperature 

"responders" and non-responders" during the study. The intra-participant variability 

cannot be completely controlled for and therefore must be taken into account when 

interpreting the results. Randomizing the order of the temperature conditions for each 

participant however, helped control for the possible learning effect of repeated hypoxic 

exposure from one temperature condition to the other. The cause of the hypoxic and 

thermal-induced variability in VE among individuals remains unknown and requires 

further investigation. 



3.5.4 Core temperature regulation 

In this study, we used shoulder level water immersion as a method to regulate 

core temperature during sub-maximal exercise at a normothermic and hyperthermic level. 

Esophageal temperature was used to estimate core temperature as it has been shown to 

closely follow cardiac temperature (10) while rectal temperature has been shown to 

respond sluggishly to changes in core temperature (14). A key finding of this study was 

the ability to maintain a steady-state core temperature during sub-maximal exercise for 

each temperature condition. This allowed the observation of the interaction of hypoxia 

and T,,. Previous studies attempting to provide thermal clamps during exercise were not 

able to maintain a steady-state normothermic or hyperthermic core temperature (4,27). 

Two of the possible reasons for this result was that in these studies during normothermia 

the water temperature was set to low at 23•‹C (27) and 18•‹C (4) and the work rate was set 

to high at a V O ~  of -2 ~ . m i n - '  (4). The lower water temperatures of 18 and 23•‹C would 

have induced a metabolic response from slun (i.e. shivering) and or core cooling. In 

preliminary testing for our experiment, when performing exercise at water temperatures 

between 18•‹C and 25"C, we observed a thermogenic shivering response in several of our 

participants after about 10 rnin of immersion. To prevent shivering thermogenesis we 

used a predictive equation as described by Park et al. (21) to determine a thermoneutral 

water temperature based on the exercise work rate and our participants body composition. 

The water temperatures we employed were between 28-32•‹C (Table 3.1) for the 

normothermic conditions, which were much higher than previously reported (4,27). Our 

observations did not indicate any visual signs of perspiration or shivering throughout the 



protocol and this result was confirmed by the participant's comments. For the 

hyperthermic condition we used a similar water temperature to the two previous studies 

(4, 27) but we lowered the work rate in both core temperature conditions to a mean level 

V 0 2  of - 0.87  ami in-'. This allowed our participant's T,, to rise steadily and reach a 

relative plateau after a 25-rnin warm-up period. As such our study was unlike the 

previous studies where core temperature rose at linear rate over time after the onset of 

exercise (4, 27). 

3.5.5 Clamping end-tidal carbon dioxide 

One of the consequences of the HVR is a fall in PaC02. Hypocapnia can be a 

confounding factor to the HVR as it can depress the peripheral chemoreceptor response 

that is responsible for the hypoxic-induced increase in ventilation. As such a hypocapnic 

hypoxia allows PaC02 levels to return towards normal values during sustained hypoxia 

(25). In goats this effect of hypocapnia was suggested to function by blunting the carotid 

body chemoreceptor sensitivity to a low P,02 (6). In the present study the possibility of a 

hypocapnic response during hypoxia was eliminated by clamping PETCOZ during the 

hypoxic phases at resting immersion levels for each participant. The results indicated 

that P E S O 2  levels for the hypoxic phase were maintained close to resting immersion 

values indicating that an isocapnic hypoxia was achieved. 



3.5.6 The effects of water immersion on ventilation 

Water immersion was used in this study to regulate Tes. There are several 

considerations of water immersion on ventilation that should be noted. It has been 

suggested that due to the pressure exerted on the chest from the water, the diaphragm 

may shift upwards decreasing the functional residual capacity (FRC) of the lungs and 

consequently changing the ventilation-to-perfusion ratio possibly making gas exchange in 

the lungs more difficult (24). Conversely, other studies have shown that water immersion 

is marked by a global increase in cardiac output, blood volume, and pulmonary artery 

pressure, which could enhance gas exchange (1). 

Another possible consequence of water immersion on ventilation is an increase 

C02 storage capacity that could enhance the accumulation of metabolically produced 

C02 in the peripheral tissues. This mechanism was proposed by Chang and Lundgren (3) 

to occur due to the increase in CO2 and tissue perfusion evident during whole body water 

immersion. They suggested that the increased tissue perfusion would cause C02 to be 

redistributed throughout the body causing an overall increase in resting PETCO2 (3). In 

the present study a similar finding was made as PETCO2 was significantly increased 

during water immersion along with VE and VT (Table 3.2). Oxygen consumption was 

also slightly increased, which has been suggested to be due to the increased hydrostatic 

pressure of water immersion causing a shift of venous blood towards the thoracic region 

and a transient increase in the uptake of oxygen into the blood (16). 



In order to account for the possible effects of water immersion on \iE and 

perfusion of the lungs in the present study we employed a repeated measures design so 

the hydrostatic effect of immersion was constant across the two exercise conditions and 

would not appear to confound the expression of these results. 

3.5.7 Conclusion 

In conclusion, VE was significantly increased by a hyperthermic core 

temperature as compared to a normothermic core temperature during low intensity 

euoxic exercise. The hyperthermic-induced hyperpnea appears to be mediated solely 

by an increase in f, suggesting the existence of a thermal-induced tachypnea. This 

was also associated with a decrease in T1 which implicates the possibility of a 

temperature effect on the pneumotaxic centre of the central respiratory control centre 

which regulates inspiration. During hyperthermic hypoxic exercise an enhancement 

of the HVR was indicated. The augmentation of the HVR in hyperthermic hypoxia 

appears to be mediated primarily by f, as no significant changes were evident in VT 

from the normothermic to hyperthermic hypoxic levels. This response is also 

associated with an increased v T . ~ f l  during hyperthermic hypoxia which would 

support the hypothesis that increased core temperature increases peripheral 

chemoreceptor sensitivity to hypoxia. Overall the results support the hypothesis that 

temperature plays a significant role in the control of ventilation, particularly during 

hypoxic exercise. 
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3.9 Tables 

Table 3.1 Participant physical characteristics and water temperature (T,) calculated for 
each exercise condition. 

Participant Age Weight Height BSA SS I ,,,, Tw (OC) Tw ("C) 

( ~ r )  (kg) (m) (m2) (mm) Normothermic Hyperthermic 

1 27 97.2 1.84 2.19 157.2 0.197 28.2 38.1 

Mean 23.7 74.1 1.77 1.9 88.1 0.126 31.5 38.2 

SD 4.4 9.0 0.06 0.1 28.5 0.031 1.4 0.1 

Body surface area (BSA); Sum of skinfolds (SS); Overall body insulation at rest (I,,,,). 



Table 3.2 Mean resting ventilatory values for pre-immersion and immersion in the water 
filled tub. 
The mean for the pre-immersion rest period was taken over a 30 min steady-state 
period. The mean for the immersion rest period was taken over a 5 min steady-state 
period. 

Immersion 5.19 (0.44) 11.5 (1.6) 0.75 (.14) 16.4 (2.5) 0.32 (.06) 

A 
+0.42* + 1.8* +0.09* +0.8 +O. 1 * 

(Immersion - pre- 
immersion) 
P (2-tailed) 0.002 0.001 0.004 0.089 0.001 

95 % [CI] [0.2,0.65] [ I  .O, 2.61 [0.04,0.15] [-0.1, 1.71 [0.06, 0.131 

Values are mean values (SD) for normotherrnic immersion sessions (* = significant at P < 0.05). 



3.10 Figures 

Fig. 3.1 Time course of ventilation (VE), oxygen consumption (V02), end-tidal C 0 2  
(PETC02), arterial oxygen saturation (S,Oz), and esophageal temperature (T,,) for 
a typical participant (participant 5) during the normothermic condition. 
R1 represents rest out of water; R2 represents rest in-water; Warm-up represents the 
warm-up exercise period; El represents the first steady-state euoxic exercise period; 
H1 represents the steady-state hypoxic exercise period; E2 represents the second 
steady-state euoxic exercise period. . , normothermic condition; , hyperthermic 
condition. 
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Fig. 3.2 Esophageal temperature (T,,) for pre-immersion rest and each exercise phase. 
Values are means for 11 participants. Rest period represents the 30-min pre- 
immersion period, E l  represents the 1st 10-min euoxic exercise period, H1 represents 
the 10-min hypoxic period, and E2 represents the 2nd 10-min euoxic period. 
normothermic condition; w ,  hyperthermic condition. Error bars represent the SD 
(**significant at P c 0.01. NS non-significant at P > 0.1). 
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Fig. 3.3 Time course of mean ventilation (VE), tidal volume (VT) and ventilation 
frequency (f,,) for each exercise phase. 
El .  euoxic exercise phase; H1, hypoxic exercise phase; E2, recovery euoxic exercise 
phase. n , normothermic condition; m ,  hyperthermic condition. Error bars represent 
the SD ("significant at P < 0.05. ""significant at P < 0.01, t significant from E l  at P 
< 0.05, $ significant from E l  at P < 0.01, NS non-significant at P > 0.1). 
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Fig. 3.4 Time course of mean inspiratory time (TI), expiratory time (TE) and inspiratory 
flow or  "drive" (V~OTI') for each exercise phase. 
El,  euoxic exercise phase; HI, hypoxic exercise phase; E2, recovery euoxic exercise 
phase. , normothermic condition; , hyperthermic condition. Error bars represent 
the SD (*significant at P < 0.05, **significant at P < 0.01,$ significant from El at P < 
0.01, NS non-significant at P > 0.1, P = 0.06 bordered significance from El) 
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Fig. 3.5 Interaction effects of Core Temperature and Gas Type for ventilation (VE), 
ventilation frequency (f,), and mean inspiratory flow (VT-~i'). 
Values represent the mean increase from the normothermic to hypertherrnic condition 
in VE, fv, and v ~ . T ~ - '  for each exercise phase. El, euoxic exercise phase; HI, hypoxic 
exercise phase; E2, recovery euoxic exercise phase. Error bars represent the SD 
(*significant at P < 0.05, **significant at P < 0.01, NS non-significant at P > 0.1) 



Fig 3.6 Time course of mean arterial oxygen content (S,02) and end-tidal C 0 2  (PETC02) 
for each exercise phase. 
P&O2 was clamped for the hypoxic (Hl )  condition by the titration of 100 % C02 to 
the inspirate. E l ,  euoxic exercise phase; H1, hypoxic exercise phase; E2, recovery 
euoxic exercise phase. m ,  normothermic condition; m ,  hyperthermic condition. 
Rest* represents the mean of the 5 min in-water resting period. Error bars represent 
the SD (**significant at P < 0.01, NS non-significant at P > 0.1,$ significant from El 
at P < 0.01). 
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4.1 Abstract 

The effects of elevated esophageal temperature (Tes) and skin temperature (Tsk) 

were investigated for their potential influence on the ventilation (VE) response during 

both the transition from rest to low intensity exercise and from low intensity exercise 

with air to that with hypoxia. In either a 'hyperthermic7 core temperature or a 

'normothermic' core temperature session, 1 1 college-aged, healthy male volunteers were 

immersed to the shoulders and pedalled on an underwater cycle ergometer at a steady- 

state oxygen consumption ( ~ 0 2 )  of 0.87 ~arnin-' (SD 0.07). Following a 30-min rest and 

20-min warm-up, a 20-min steady-state cycling period was divided into two 10-rnin gas 

phases when participants inhaled: air (Euoxia 1 (El)) or hypoxic gas (12 % O2 and 88 % 

N2 (HI)). End-tidal C02  (P&O2) was maintained at an isocapnic level of 5.19 kPa (SD 

0.71) throughout the exercise. A mono-exponential model was fitted to the \jE response 

to the onsets of exercise and of hypoxia. For the VE response from rest to exercise, 

results indicated a significantly shortened time constant (T) of 49.3 s (SD 20.3) (P = 

0.032) for the hyperthermic condition as compared to the T of 109.6 s (SD 84.4) for the 

normothermic condition. Between the two temperature conditions for the \jE response 

from rest to exercise the difference in T was also found to negatively correlate with the 

difference in T,, ( R ~  = 0.829, P = 0.01 1). In contrast, between the temperature 

conditions there was no significant difference for the T values of the \jE kinetic response 

to the onset of hypoxia during low intensity exercise. The responses of tidal volume (VT) 



and ventilation frequency (f,) during both transition from rest to exercise and euoxic to 

hypoxic exercise showed no core temperature-induced difference suggesting they do not 

independently influence the VE response. In conclusion, results supported an elevated 

T,, but not Tsk influenced theVE response during the onset of exercise. As well, T,, and 

Tsk both had no influence on the VE response during the transition from low intensity 

euoxic to low intensity hypoxic exercise. 



4.2 Introduction 

In response to a step increase in work rate both \jo2 and carbon dioxide 

production ( ~ ~ 0 2 )  abruptly increase due to an increase in metabolic demand at the 

exercising muscles and this is followed by an increase in pulmonary gas exchange. With 

the start of exercise at a fixed low to moderate intensity (5 -60 % of \jo2pak), ventilation 

increases proportionately to V 0 2  and a new steady state of ventilation is established at 

these exercise intensities. (30). The kinetics of this response is characterized by a mono- 

exponential function (13,27,34). 

During rest the lowering of arterial oxygen content (Sa02) to -80 % has been 

shown to stimulate an acute proportionate increase in ventilation (9, 14). The increase is 

mediated primarily by the stimulation of the peripheral chemoreceptors due to low Pa02 

levels (7, 12). This initial increase in ventilation has been further shown to be proceeded 

by a gradual fall in ventilation which is commonly evident in progressive hypoxia tests 

(9). However, during isocapnic hypoxia ventilation remains consistently elevated for up 

to 15 minutes after the initial peak increase before a significant ventilatory depression is 

evident (9, 14,32). The ventilation response to acute isocapnic hypoxia can then also be 

described by a mono-exponential function as a new steady-state elevated ventilation is 

established (9, 14). 



There are several established factors that can influence the increase of ventilation 

from rest to exercise and euoxic to hypoxic exercise. These factors include varying 

levels of exercise intensity (33), P,02 (27), and P,C02 (28). A less established mediator 

of the ventilation response to exercise is body temperature. In a study by Vejby- 

Christensen and Petersen (23) an elevated body temperature was shown to increase 

ventilation during the first 2 breaths immediately following the onset of exercise. They 

suggested this response may be due to an interaction of temperature on the respiratory 

control centres increasing their sensitivity to neural stimuli from exercise (23). In this 

study however the effects of skin temperature were not separated from core temperature. 

For resting humans it is well established that increasing core temperature causes a 

hyperpnea (2, 16, 19) and it is has been suggested that core temperature influences 

hypoxic ventilation by possible stimulation of the peripheral chemoreceptors (20). 

Whether elevations in core andor skin temperature cause the enhancement of ventilation 

from rest to exercise andor the elevation of ventilation evident in the hypoxic ventilatory 

response (HVR) during steady-state moderate exercise is unknown and is the focus of 

this study. 

The specific questions asked in this study were: 1) Do skin and core temperature 

influence the increase in VE during the transition from rest to exercise and 2) Does an 

elevation in skin and core temperature influence the increase in VE during the transition 

from euoxic to hypoxic exercise. As described in Chapter 3, the ability to study the effect 

of core temperature on the VE response to the onset of exercise and to hypoxia was 



possible by implementing an innovative approach (18) that allows a clamping of core 

temperature at normothennic levels during exercise. 



4.3 Methods 

4.3.1 Participants 

Eleven healthy male university participants, age 19-34 years old (height 1.77 m 

(SD 0.06), weight 74.1 kg (SD 9.0) and body surface area 1.9 m2 (0.1)) volunteered to 

participate in the study. Power calculation results for sample size justification are given 

in Appendix C. All participants were non-smokers, non-asthmatics and refrained from 

caffeine for 12 h prior to each test. Prior to the experimentation the participants were 

informed of the potential risk associated with the protocol and after a 24 h reflection 

period gave their written, informed consent to participate in the experiment. The 

participants all attended a preliminary testing period where they were familiarized with 

the experimental protocol and instrumentation. During the preliminary testing period 

the participants performed a sub-maximal exercise protocol on an underwater cycle 

ergometer to determine their level of fitness and ensure they would be able to undergo the 

experimental protocol (Appendix B). Ethics approval for the study was received from the 

S.F.U. Office of Research Ethics prior to experimentation. 

All experimental sessions were within + 60 min of each other and started at 

between loam or lpm. Participants were also required to fast, exercise and refrain from 

drinking any warm beverages for a minimum of 5 hours prior each experimental session. 



Participants were clad in shorts and kayak boots during the experiments. A medical 

emergency kit including a defibrillator was available at all times. 

4.3.2 Instrumentation 

Pulmonary function variables and ventilatory excursions were measured using a 

breath-by-breath Sensormedics V,,, 229c metabolic cart (Sensormedics, Yorba Linda, 

CA, USA). Participants wore a nose clip and were fitted with a mouthpiece connected to 

a Mass Flow Sensor. The mouthpiece was connected to a two-way flow sensor housing, 

which was connected to a 2-way non-rebreathing valve (NRB 2700, Hans Rudolph Inc, 

Kansas Cit, MO, USA) that was connected with 3.8 cm diameter corrugated Collins 

tubing to a 350 L Tissot spirometer. Breath-by-breath gas samples were drawn from the 

inspired and expired air to the metabolic cart at a rate of 500 ml.min-'. Carbon dioxide 

partial pressure was measured using non-dispersive infrared Spectroscopy and oxygen 

concentration was measured using a paramagnetic sensor. A premixed hypoxic gas of 12 

% 0 2  and balanced nitrogen (N2) from a compressed gas bottle was used to fill the Tissot 

spirometer for the hypoxic condition. A fan mounted on the Tissot spirometer was used 

to mixed gas within its bell during the hypoxic condition. In addition, between conditions 

the Tissot was flushed with room air to remove any residual gases from the hypoxic 

trials. 



Arterial oxygen saturation (S,02) was continuously measured with a pulse 

oximeter (Masimo Radical, Irvine, CA, USA) positioned on the participants' left ear lobe. 

Esophageal temperature was measured by placing a paediatric size temperature 

thermocouple probe of approximately 2 mm in diameter through the participants7 nostril, 

while they were asked to sip water through a straw. The location of the tip of the probe 

in the oesophagus was past the nares, at the T8/T9 level, a position bounded by the left 

ventricle and aorta. This position is based on the equation of Mekjavic and Rempel (17) 

for standing height: L (cm) = 0.228 x (standing height) - 0.194. The participant was then 

immersed to the level of the shoulders in a water-filled tub and sat on a hydraulically 

braked, underwater cycle ergometer. Water temperature was maintained at a specific 

temperature so as to maintain T,, at either a normothermic or hyperthermic level. The 

determination of these water temperature (T,) levels and their values for each participant 

is described in Chapter 3 under the subheading 'Water Temperature calculations7. 

An analog signal for f, from the V,,, cart was used to trigger data collection for 

body temperatures, heart rate and hemoglobin saturation on acquired a National 

Instruments data acquisition system SCXI-1000 (Austin, USA) that was controlled by 

LabVIEW program (National Instruments, Austin, USA, version 5.1). 

4.3.3 Protocol 

All participants volunteered for 2 separate exercise-testing sessions, with each 

session separated by at least one week. Half of the participants were randomly chosen to 



start with the hyperthermic session and the other half started with the normothermic 

session. After instrumentation each protocol began with a 30-min rest period in room air 

to establish a stable resting T,,. For the exercise session, the participants were seated on a 

stationary underwater bicycle ergometer in water up to their shoulder level and 

instrumented with a weight belt to avoid floatation. A metronome was used to maintain 

the pedalling cadence and the participant was monitored continuously to assure 

adherence. The determination for the prescribed work rate for the participants is given in 

Chapter 3 under the subheading 'Protocol'. 

Each exercise session was performed at a constant work rate and was preceded by 

a 5-min in-water rest period. This was followed by a 20-min warm-up cycle period 

where a steady state \jE and core temperature were achieved and a 20-min testing cycle 

period. For the normothermic condition T,, was held at 37.09OC (SD 0.33) and for the 

hyperthermic condition Tes was held at 38.60•‹C (SD 0.14) for the 20-min testing cycle 

(Chapter 3, Fig 3.2). Both the warm-up and testing period were completed at the same 

work rate and cadence and there were no rest phases between each period. The 20-min 

testing period was divided into two continuous 10-min steady state exercise phases: a 10- 

min euoxic exercise period where the participant breathed room air and a 10-min hypoxic 

exercise period where the participant breathed the hypoxic gas mixture (12 % 02, 

balanced N2). All participants followed this protocol in the same order for all sessions. 

Arterial oxygen content (S,02) was lowered to 85.6 % (SD 5.7) (Chapter 3, Fig 3.6A) in 

the normothermic condition and 83.5 % (SD 5.7) in the hyperthermic condition during 

the hypoxic exercise phase. If the PETCOZ fell below resting water-immersed values, 100 



% C02 was manually titrated into the inspirate via a non-re-breathing demand valve 

apparatus as described by Sommer et al. (22) to bring the PESO2  back to resting, water- 

immersed levels. The purpose for clamping of PETC02 was to maintain an isocapnic 

hypoxia, which would alleviate the possibly confounding effects of a hyperventilation- 

induced hypocapnia, which is often associated with hypoxia, and was suggested to 

diminish the HVR (21). The resting water-immersed PESO2 levels (3) were determined 

during the 5-min rest session immediately prior to commencing the exercise session. 

End-tidal Co2 (PETCO2) was maintained at an isocapnic level of 5.19 kPa (SD 0.71) 

during all exercise conditions (Chapter 3, Fig 3.6B). 

4.3.4 Calibrations and Analysis 

Calibrations of esophageal thermocouple probes were completed in regulated 

temperature hot water baths (Appendix A). Gas analyzers were calibrated against two 

gases of known concentrations (4 % C02, 16 % 02, balanced N2 and 26 % 02, balanced 

N2, and air) and the mass flow sensor was calibrated manually by the use of a 3 litre 

syringe prior to each experiment. 

To mathematically evaluate the ventilatory response during transition from rest to 

moderate exercise and euoxic to hypoxic exercise the following mono-exponential 

function was employed (27): 



Where \jE(t) is the increase in the VE above the previous steady state value at any 

given time (t); VE(ss) is the difference between the first steady state and the second 

steady state level; and T is the time to reach 63 % of VE(~) .  This equation was also used 

to evaluate the lunetics of the ventilatory components: VT and f,. 

In order to investigate the whether the difference in time constants (z) of the V E  

response between the temperature conditions can be better explained by the difference in 

AT,, or ATskr a univariate correlation analysis was employed. A step-wise multiple 

regression was then employed using a general linear model (GLM) to determine the 

contributions of ATes andor ATsk to the explanation of the variance in AT. The GLM 

incorporated the parameters of ATes and ATsk in both normothermic and hyperthermic 

conditions and subsequently analyzed the variance of AT for the effects of ATes and ATsk. 

The exclusion criterion for the stepwise model was a non-significant contribution to the 

explanation of the variance of Az (i.e. P > 0.05). To detect for possible outliers in the 

regression analysis, Cook's distance D values were determined for the values of each 

participant. A case with a D value greater than 1.0 has been shown to have unusual 

leverage on the model and is the suggested exclusion criterion for outliers (15). In the 

current study cases with D values > 1.0 were excluded from the regression model. 

A paired-samples t-test was used to compare the parameters of the mono- 

exponential function for the V E  response during both the normothermic and 



hyperthermic condition. A P value of < 0.05 was considered significant. All values are 

expressed as the mean +_the Standard Deviation (SD) and 95 % Confidence Intervals [CI] 

of the difference between means are given in square brackets following each P value 

stated. Sigma Plot 8.0 (Systat Inc., Evanston, Ill., USA) was used to derive the mono- 

exponential equation. SPSS 12.0 (SPSS Inc., Chicago, Ill., USA) was used for all the 

statistical analyses. 



4.4 Results 

All participants were able to complete the full exercise protocol including 10 min 

of hypoxic exposure with only mild signs or symptoms of hypoxia including 

hyperventilation, lethargy, and slight nausea. The mean water temperature for the 

normothermic condition was 3 1.5"C (SD 1.3) and for the hyperthermic condition was 

38.2"C (SD 0.1) 

During the 30-min rest period prior to the commencement of the normothermic 

exercise sessions, resting Tes was 37.20•‹C (SD 0.37) and prior to the hyperthermic 

exercise sessions resting Tes was not significantly different at 37.2g•‹C (SD 0.24) (P = 

0.386, CI [-0.1,0.3]). After immersion in water for a 5-min period Tes was maintained at 

a thermoneutral level of 37.13"C (SD 0.41) for the normothermic condition and was 

elevated to 37.53"C (SD 0.16) in the hyperthermic condition; this gave a significant 

difference of 0.40•‹C (P = 0.002, CI [0.19,0.62]) between temperature conditions. The 

chest Tsk after 5 min of immersion was 31.97"C (SD 0.85) in the normothermic condition 

and was elevated to 37.44"C (SD 0.32) in the hyperthermic condition, a significant 

difference between temperature conditions by 5.47"C (P = 0.000, CI [4.78,6.16]) (Table 

4.1). 



For both the normothemic and hyperthermic conditions a typical sample 

participant's ventilatory response for the transition from rest to exercise is given in Figure 

4.1. The increase in vE followed the pattern of a mono-exponential function attaining a 

new steady state within -5 min from the onset of exercise. The time constants (z) for this 

transition phase in the normothermic and hyperthermic conditions are given Table 4.2. 

The mean z for the normothermic condition was 109.6 s (SD 84.4) and for the 

hyperthermic condition was 49.3 s (SD 20.3) producing a mean significant difference of 

60.4 s (SD 80.5) (P = 0.032, CI [6.3, 114.51). There was no significant difference 

between temperature conditions for the amplitude or baseline of the VE response to 

exercise. 

Results from the stepwise multiple regression indicated that the variance in AT 

was significantly explained by ATes (R2 = -0.829, P = 0.001) and ATsk did not 

significantly contribute to the explanation of variance of z (R2 = 0.123, P = 0.196) (Fig. 

4.2). Participant 4 was excluded from the regression model as their Cook's distance, D 

value of 1.13 was greater than the outlier exclusion value of 1 .O. 

For both the normothermic and hyperthermic conditions a typical sample 

participant's vE response to the transition from the euoxic steady state to hypoxic steady 

state exercise is given in Figure 4.3. The increase in V E  followed the pattern of a mono- 

exponential function attaining a new steady state within -5 min from the transition from 

steady state euoxic to steady state hypoxic exercise. The z for this transition phase in the 



normothermic and hyperthermic conditions is given Table 4.4. The time course to reach 

the steady-state level was variable between both temperature conditions and the mean z 

for the normothermic and hyperthermic condition was not significantly different at 83.2 s 

(SD 44.4) and 80.7 s (SD 25.8) respectively (P = 0.880). 

The components of VE (i.e. fv and VT) were also analyzed for their changes from 

rest to exercise and euoxic to hypoxic exercise for both the normothermic and 

hyperthennic condition. For the VT response, 10 of the 1 1  participants from rest to 

exercise, and 9 out of 1 1  participants from euoxic to hypoxic exercise fit the mono- 

exponential model. One of the participants showed no evident step change in VT during 

the transition periods from rest to exercise and two participants similarly showed no 

evident step change in VT during the step change from euoxic to hypoxic exercise. Since 

their responses did not follow a mono-exponential pattern the z value and amplitude was 

not calculated. For the participants that fit the model, the results indicated that there was 

no significant temperature effect on the kinetic of responses by VT for both the transition 

from rest to exercise (Table 4.3) or for the transition from euoxic to hypoxic exercise 

(Table 4.5). For fv there was no consistent change indicated from rest to exercise or 

euoxic to hypoxic exercise and therefore fv cannot be characterized under the mono- 

exponential model. For both the VT and fv a typical sample participant's response to the 

transition from the rest to exercise in Figure 4.4 and from euoxic steady state to hypoxic 

steady state exercise is given in Figure 4.5. 



4.5 Discussion 

4.5.1 Body temperature modulation of ventilatory dynamics during exercise 

The first main finding of the present study was that the time constants for VE 

during the transition from rest to exercise were significantly less in the hyperthermic 

relative to the normothermic condition (Table 4.2). This was in agreement with a 

previous study by Vejby-Christensen and Petersen who showed a hyperthermic 

enhancement of the ventilation response to exercise. However in Vejby-Christensen and 

Petersen's study (23) only 3 subjects were investigated and only the first two breaths 

were analyzed. In the current study VE response for both temperature conditions to 

exercise followed the pattern of a mono-exponential function, which was in agreement 

with previous studies (27, 30) and thus we were able to look at the full dynamic response 

of the change in VE from resting levels to steady-state exercise levels. 

The ventilation response from rest to low intensity exercise has been proposed to 

increase in two distinct temporal phases (7). Phase I (Q1) represents the initial, usually 

rapid ventilatory increase evident with the onset of exercise. This initial increase is 

maintained on average for approximately 10 to 20 seconds (7, 29), and was suggested to 

be neurally mediated with little influence from the peripheral chemoreceptors (33). This 

was inferred by studies showing that hypoxia (7,27) and surgical resection of the carotid 

bodies (12,31) did not influence the magnitude or onset of this initial ventilatory 



response. Phase I1 (02) represents the slower, exponential increase in ventilation which 

begins approximately 20 seconds after the onset of exercise and lasts about 2 to 3 minutes 

(34). The increase in ventilation at this phase was shown to be mediated by the carotid 

bodies (27, 31, 35). Following Q2 ventilation begins to plateau, reaching steady-state 

which characterizes the third phase (34). 

In the present study a significant shortening of the z value for VE was evident 

while the participants began exercising in hot water at -38.2OC (hypertherrnic condition) 

relative to that in thermoneutral water of -31S0C. Both Tsk and Tes were significantly 

increased during the hyperthermic condition when exercise was initiated (Table 4.1). To 

determine which variable could better explain the changes in z a multiple regression 

model was employed. The variance in z showed a significant negative association with 

the variance in Tes (Fig. 4.2A), while the variance in Tsk showed no significant 

association with the variance in z and was excluded from the regression model (Fig. 

4.2B). This would indicate that Tes can explain the variance in z better than Tsk and 

suggests that it may be a significant mediator of the change in z evident between 

temperature conditions. The mechanism by which increasing core temperature might 

shorten the kinetics of the ventilatory response to exercise has not yet to our knowledge 

been investigated. However, it has been shown previously that the sensitivity to the 

carotid bodies increases during warming (lo), which would suggest the possible 

involvement of the peripheral chemoreceptors in mediating this enhanced ventilatory 

kinetic response. 



It has been previously suggested by Cunningham et al. (5) that there may be a 

direct physical effect of increased temperature on the cells of the central respiratory 

centres in the medulla oblongata and/or on the peripheral chemoreceptors thereby 

enhancing the reactivity of these respiratory control mechanisms to their normal stimuli. 

This hypothesis has been further supported in studies on passive body core warming that 

indicated an increased peripheral chemoreceptor sensitivity during hyperthermic states 

suggesting this to be a proponent of the increased core temperature (20). The dorsal 

respiratory "pacemaker" and vagal neurons of the central respiratory control centre have 

also been implicated in mediating an increase in ventilation during hyperthermia in cats 

(1 1). In humans a similar association has been made (16, 20) and the pneumotaxic centre 

of the upper pons has been suggested to be the area influenced by an increase in core 

temperature (25). This would be in agreement with the findings of the present study and 

support the possibility that the small increase in T,, may have influenced the sensitivity of 

both the peripheral chemoreceptors and the central respiratory control centre and 

enhanced the dynamics of the %JE response to the onset of exercise. 

For kinetics of the transition from rest to exercise, a consideration of the present 

results is that the T,, was only slightly elevated in the warming condition and a true 

hyperthermia was not achieved. All previous studies (5,20) suggesting a core 

temperature effect on the peripheral chemoreceptors were done under true hyperthermic 

states (a minimum of 1•‹C increase). However, despite being only a minor increase, the 

change in T,, was still significantly different from the normothermic condition when T,, 



was effectively clamped and prevented from rising. This suggests even a small increase 

in core temperature of -0.4"C (Table 4.2) may have a significant effect on the peripheral 

chemoreceptor andlor central control of the ventilatory dynamics to exercise. It would be 

beneficial in a future study to look at varied degrees of body warming and its effect on 

ventilatory kinetics during the onset of moderate exercise. This may help establish if 

there is a graded influence of temperature for the kinetics of the change in VE from rest 

to exercise. A challenge in a potential future study will be to separate the central and 

peripheral effects of temperature on vE kinetics from rest to low intensity exercise. 

Another consideration is that Tes rose gradually during the onset of exercise in the 

hyperthermic condition, as the participants had not yet reached a steady-state core 

temperature. It has been demonstrated by Cunningham (5) that the respiratory response 

to warming was greater while the core temperature was rising than it was to a constant 

elevated temperature. The mechanism that may account for this hypothesis is unknown 

however it does not preclude the possibility that an increasing core temperature could 

influence peripheral chemoreceptor control in a similar fashion as that of a constant 

elevated core temperature. 

4.5.2 Body temperature modulation of the ventilatory dynamic response to hypoxia 
during low intensity exercise 

The second main finding of the present study was that the ventilatory 'on- 

kinetics' of hypoxia were not significantly influenced by a steady-state elevation in Tes 



and Tsk. The VE response for both temperature conditions to hypoxia appeared to follow 

the pattern of a mono-exponential function, but the .r: values for the responses were 

variable (Table 4.4) with no significant difference between core temperature conditions. 

A significant temperature effect however was evident for the amplitude of the VE 

response to hypoxia (Table 4.4). It is well known that the HVR is primarily under 

peripheral chemoreceptor control (6, 12). It has further been proposed that the enhanced 

HVR during hyperthermia is due to an increased peripheral chemoreceptor sensitivity 

(20) and this is reasoned to be mediated by a direct temperature effect on the carotid 

bodies (10). This hypothesis would suggest the involvement of an elevated body 

temperature stimulating the peripheral chemoreceptors and possibly having an effect on 

the lunetics of the HVR. Our results however showed while there was an evident 

increase in amplitude of the HVR the time course was uninfluenced by an elevated body 

temperature. There are several possibilities why the kinetics of the hypoxic response may 

not have been affected by changes in body temperature during steady state exercise. 

One possibility why the kinetics of the hypoxia onset was not affected is that 

elevated body temperatures may only influence certain components of the time course of 

the HVR. The time course of the HVR in cats is mediated by three components, two 

peripheral stimulatory components and one central depressant component (1). The 

peripheral components have been shown to develop faster in most cases and cause a 

consequent stimulation of ventilation (9, 14,24). The peripheral components can be 

divided further into a fast and slow acting component in the peripheral chemoreceptors, 

which counter the slow acting central depressing component in the central nervous 



system (1). The fast acting component of the peripheral chemoreceptors seems to be 

responsible for the initial increase in ventilation evident in the HVR (1). The central 

depressant component in cats has been shown to have a time course of up to 10 minutes 

(24, 26), which is a similar duration to the slow component of the peripheral 

chemoreceptors (1) and both have a time course too long to be account for the ventilation 

kinetics during transition from euoxic to hypoxic exercise. The overall magnitude of the 

effects of the peripheral and central components determines the magnitude of the HVR 

(1). In the present study we found an effect of temperature on the amplitude of the HVR 

(Table 4.4), which we suggest is mediated in part by increased peripheral chemoreceptor 

sensitivity. This would indicate the possibility that the sensitivity of the slow component 

of the peripheral chemoreceptors may have been increased during hyperthemia (i.e. an 

increase in amplitude of the vE response), while the fast component of the peripheral 

chemoreceptors may have not been significantly influenced by temperature. 

Another possibility is that the mono-exponential model may not be able to fully 

describe the hypoxic ventilatory dynamics. In a study by Clement and Robbins (4) they 

showed the lunetics of the HVR were highly variable between and within participants. 

They suggested that a single set of dynamic parameters could not describe all the 

responses and that a first order model could not fully describe the hypoxic ventilatory 

dynamics. An alternative model has been suggested by Berkenbosch et al.(l), which 

takes into account the individual variation in hypoxic sensitivity, the level of hypoxia and 

shape parameter of the hypoxic response. Yet another model has been described by 

Dutton et al. (8) who suggest a fourth-order function to describe the ventilatory response 



to hypoxia. It appears there is no current standardized model to accurately explain the 

kinetics of the HVR. Thus, although all the participants' responses to hypoxia in the 

present study appeared to fit the mono-exponential model, a more comprehensive model 

that involves pre-determined inter-participant hypoxic sensitivities may be necessary to 

detect for smaller changes in the kinetics that may be brought about by influencing 

factors such as core and skin temperatures. 

4.5.3 The response of the components of ventilation and their influence on 
ventilation kinetics 

Analysis of the VT and f ,  during the vE kinetic response from rest to exercise and 

from euoxic to hypoxic exercise showed similar results. Between temperature conditions 

VT showed no significant changes in z values for the kmetics of the response, while fv 

didn't follow a mono-exponential model. This would provide further evidence that the 

changes in ventilatory kinetics from euoxia to hypoxia are not mediated solely by VT or fv 

but are more likely mediated by a combination of changes in both components. 

4.5.4 Conclusion 

In conclusion, as evidenced by an enhancement of the ventilatory dynamics from 

rest to exercise during body warming, there is a strong support for the hypothesis that 

increased core but not skin temperature influences the kinetics of VE during the transition 

from resting to exercise vE. The results also suggest that only a small change in T,, 

(-0.4"C) is needed to demonstrate this effect. It is also concluded during low to 



moderate steady exercise, that the overall time course for the change in VE from euoxic 

to hypoxic breathing can be described by a mono-exponential model but appears to be 

uninfluenced by increased core or skin temperature. Finally the initial increase in VE 

during the transition from rest to exercise and from euoxic to hypoxic exercise appears to 

be mediated primarily by VT with little influence from f,. 
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4.9 Tables 

Table 4.1 Esophageal and skin temperatures during the normothermic and hyperthermic 
condition for the mean of the last 30 s of in-water rest prior to the onset of low 
intensity exercise in each condition. 
Participants performed a steady state, head-out exercise on an underwater ergometer 
at a low exercise intensity ( ~ 0 ~  - 0.8 to 1.0 L min-1) in the normothermic and 
hyperthermic conditions. 

norm0 hyper norm0 hyper 
1 37.46 37.53 0.07 30.12 37.73 7.6 1 

Mean 37.13 37.53 0.41 31.97 37.44 5.47 

Te, represents the esophageal temperature, TSk represents the chest skin temperature 
expressed, 'hormo" and "hyper" represent the normothermic and hyperthermic condition 
respectively ( ** = significant at P < 0.01). 



Table 4.2 The parameters of the mono-exponential model fitted to the ventilation (VE) 
data for a step change in work rate from rest to a low intensity exercise level. 
Participants performed a steady state, head-out exercise on an underwater ergometer 
at a low exercise intensity ( V O ~  - 0.8 to 1.0 L min-1) in the normothennic and 
hyperthermic conditions. 

norm0 hyper norm0 hyper norm0 hyper 
1 79.8 79.1 -0.7 8.1 9.8 9.8 11.4 

Mean 109.6 49.3 -60.3 10.4 11.0 11.5 11.7 
I * I I NS I I NS I 

T is the time constant for the ventilatory kinetic response, T,, represents the esophageal 
temperature, TSk represents the chest skin temperature expressed, "normo" and "hyper" 
represent the normothermic and hyperthermic condition respectively (* = significant P < 
0.05, NS non significant at P > 0.1). 



Table 4.3 The parameters of the mono-exponential model fitted to the tidal volume (VT) 
data for a step change in work rate from rest to a low intensity exercise level. 
Participants performed a steady state, head-out exercise on an underwater ergometer 

at a low exercise intensity ( ~ 0 ~  - 0.8 to 1.0 L min-1) in the normothermic or 
hyperthermic conditions. 

norm0 hyper norm0 hyper norm0 hyper 
1 23.7 72.8 49.1 0.36 0.55 0.81 0.73 

Mean 67.5 Ns 68.6 1.2 0.44 Ns 0.49 0.69 Ns 0.68 
I I 

t is the time constant for the VT kinetic response, Amp is the amplitude of the step change in 
VT expressed, Baseline is the steady-state VT level prior to the hypoxic stimulus, bbnormo" 
and "hyper" represent the normothermic and hyperthermic condition respectively (NS non 
significant at P > 0.1). 



Table 4.4 The parameters of the mono-exponential model fitted to the ventilation ( v ~ )  
data for a step change from euoxic (El) exercise (FIOz = 0.2093) to a hypoxic 
(HI) exercise (FIOz = 0.12) 
Participants performed a steady state, head-out exercise on an underwater ergometer 
at a low exercise intensity (VOz - 0.8 to 1.0 L min-1) in the normothermic or 
hyperthermic conditions. 

Subject T T AT Amp Amp Baseline Baseline 
(s) (s) (s) (L-mid1) (L-mid1) (Lmin-') (L-mid1) 

norm0 hyper norm0 hyper norm0 hyper 
1 93.5 103.7 10.2 13.6 14.4 19.1 23.3 

Mean 83.2 80.7 40.5 13.0 
I ** 20.1 22.4 25.1 

NS ** I 

T is the time constant for the ventilatory kinetic response, T,, represents the esophageal 
temperature, TSk represents the chest skin temperature expressed, "normo" and "hyper" 
represent the normothermic and hyperthermic condition respectively (** = significantly 
different from the normothermic condition at P < 0.01, NS non significant at P > 0.1). 



Table 4.5 The parameters of the mono-exponential model fitted to the tidal volume (VT) 
data for a step change from euoxic (El) exercise (FI02 = 0.2093) to a hypoxic 
(HI) exercise (FI02 = 0.12). 
Participants performed a steady state, head-out exercise on an underwater ergometer 
at a low exercise intensity ( V 0 2  - 0.8 to 1.0 L min-1) in the normotherrnic or 
hyperthennic conditions. 

Subject T T AT Amp Amp Baseline Baseline 
( 4  ( 4  ( 4  (L) (L) (L) (L) 

norm0 hyper norm0 hyper norm0 hyper 
1 48.2 70.8 22.6 0.69 0.7 1 1 .05 1.11 

Mean 44.2 42.7 6.0 0.62 0.66 
I I NS 

1.04 Ns 1.02 
NS I I 

z is the time constant for the VT kinetic response, Amp is the amplitude of the step change in 
VT expressed, Baseline is the steady-state VT level prior to the hypoxic stimulus, "normo" 
and "hyper" represent the normothermic and hyperthermic condition respectively (NS non 
significant at P > 0.1). 



4.10 Figures 

Fig. 4.1 A sample participant's (Participant 5) ventilation (VE) response to the onset of 
low intensity exercise in the normothermic and hyperthermic condition. 
The smooth curve running between points is the model fit for the mono-exponential 
function. The z values are the time constant for each curve, T,, represents esophageal 
temperature and TSk represents chest skin temperature. 
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Fig 4.2 Simple correlation plots of the regression analysis for the ventilation response 
from rest to low intensity exercise. 
The difference in time constants (AT) between the normothermic and hyperthermic 
condition are plotted against the difference in esophageal temperature (AT,,) in (A), 
and skin temperature (ATsk) in (B). (Regression analysis was done with 10 
participants. Participant 4 showed a Cook's distance, D value of 1.13 which was 
above the outlier cut-off of 1.0 and was thereby excluded from the regression model.) 



Fig. 4.3 A sample participant's (Participant 5) ventilation (vE) response from euoxia 
(El) to hypoxia (HI) during low intensity exercise for the normothermic and 
hyperthermic conditions. 
The smooth curve running between points is the model fit for the mono-exponential 
function. The z values are the time constants for each curve, T,, represents esophageal 
temperature. 
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Fig. 4.4 A sample participant's (Participant 10) ventilation frequency (f,) and tidal 
volume (VT) response to the step change from rest to low intensity exercise for 
the hyperthermic condition. 
The smooth curve running between points is the model fit for the mono-exponential 
function. The z values are the time constants for each curve, T,, represents esophageal 
temperature. 

T,, = 37.83"C (SD 0.12) 
T,, = 37.49"C (SD 0.01) 

a 

T,, = 37.83"C (SD 0.12) a 
T,, = 37.49"C (SD 0.01) . 

1.2 a@ 

Time (s) 



Fig. 4.5 A sample participant's (Participant 10) ventilation frequency Vv) and tidal 
volume (VT) response to the step change from euoxic (El) to hypoxic (HI) low 
intensity exercise for the hyperthermic condition. 
The smooth curve running between points is the model fit for the mono-exponential 
function. The z values are the time constants for each curve, T,, represents esophageal 
temperature. 
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5.1 Abstract 

The levels of metabolic rate, plasma lactate and potassium (K+) were investigated 

for their potential effects on body temperature- or hypoxia-induced changes in ventilation 

(VE). In either a 'hyperthermic' Tes or a 'normothermic' T,, session, 11 college-aged, 

healthy male volunteers were immersed to the shoulders and pedalled on an underwater 

cycle ergometer at a steady-state oxygen consumption (VOz) of 0.87 ~nmin-'  (SD 0.07). 

Following a 30-min rest and 20-min warm-up, a 30-min steady-state cycling period was 

divided into three 10 min gas phases when participants inhaled: air (Euoxia 1 (El)), 

hypoxic gas (12 % 0 2  and 88 % N2 (HI)), and air (Euoxia 2 (E2)). End-tidal C02  

(PETCO2) was maintained at an isocapnic level of 5.19 kPa (SD 0.71) throughout the 

exercise. Blood samples were drawn at rest, and 5 min into all gas phases. For euoxic 

exercise (El) results indicated the 9.4 % (SD 9.7) increase in vE was not different than 

the 6.9 % (SD 10.7) increase evident in V O ~  during the hyperthermic condition relative 

to the normothermic condition. Similarly, for euoxic recovery exercise results indicated 

the 22.0 % (SD 28.8) increase in VE was not different than the 13.2 % (SD 18.1) increase 

evident in ~ 0 2  during the hyperthermic condition relative to the normothermic 

condition. However, for hypoxic exercise VE and VO2increased by 29.2 % (SD 25.5) 

and 13.5 % (SD 10.1) respectively, which bordered a significant difference (P = 0.056). 

For heart rate (HR) there was a significant main effect of Core Temperature (P = 0.001) 

and Gas Type (P = 0.001). Hyperthermic HR relative to normothemic HR was 

significantly elevated (P = 0.001) at all levels of Gas Type. There were no significant 



main effects of Gas Type or Core Temperature on blood lactate or potassium (K+) levels. 

In conclusion, during low intensity exercise, V O ~ ,  K+ and lactate do not appear to 

significantly contribute to the augmented hypoxic ventilatory response (HVR) during the 

hyperthermic condition as compared to the normothermic condition. 



5.2 Introduction 

The onset of low to moderate intensity exercise is marked by an increase in 

metabolic rate, which is mediated mainly by the increased metabolic demand of the 

skeletal muscle (33). A by-product of elevated metabolism during exercise with 

progressively greater intensity, is a proportionate increase in body core temperature (2). 

This concomitant increase in core temperature during exercise has been suggested to be a 

possible mediator of ventilation (25, 35), as it has been established that a passive increase 

in core temperature increases ventilation (9, 12). In Chapters 3 and 4 of this thesis we 

have hypothesized that the enhanced HVR during exercise with hyperthermia, are due to 

either an increased sensitivity of peripheral chemoreceptors to low arterial oxygen 

saturation (S,02), and/or a central effect of elevated core temperature on the respiratory 

control centre's pneumotaxic area. As such, presently we examined if changes in VE 

evident during elevations in core temperature and during hypoxia are due to a direct 

temperature effect on ~ 0 2  (i.e. a Qlo effect) or due to possible elevations of lactate (1 1, 

30) or Kf (15,26) that may be evident with exercise and/or hyperthermia. Another 

factor that was considered in this study is the possible influence of HR on ventilation 

during hyperthermia. Increased pulmonary perfusion in hyperthermia or exercise 

increases C02 flow across the lungs and is hypothesized to increase ventilation by the 

C02  flow hypothesis (3 1). 



To investigate the potential effects of VOz, HR and blood borne metabolites on 

ventilation, we studied participants at a low level of exercise ( ~ 0 ~  0.87 ~mmin-' (SD 

0.07)) with a superimposed passive hyperthermia. Changes in the blood borne 

metabolites that were analyzed included plasma lactate and K', which have each been 

associated with changes in core temperature (8, 1 I), hypoxia (4, 26) and are suggested 

modulators of exercise ventilation (18,34). The specific questions we asked in these 

exercise conditions were if: 1) increases in V O ~  or HR and/or 2) increases in plasma 

levels of plasma lactate or potassium can explain the elevations evident in \jEduring low 

intensity hypoxic exercise and hyperthermia. 



5.3 Methods 

5.3.1 Participants 

Eleven healthy male university participants, age 19-34 years old (height 1.77 m 

(SD 0.06), weight 74.1 kg (SD 9.0) and body surface area 1.9 m2 (0.1)) volunteered to 

participate in the study. Power calculation results for sample size justification are given 

in Appendix C. All participants were non-smokers, non-asthmatics and refrained from 

caffeine for 12 h prior to each test. Prior to the experimentation the participants were 

informed of the potential risk associated with the protocol and after a 24 h reflection 

period gave their written, informed consent to participate in the experiment. The 

participants all attended a preliminary testing period where they were familiarized with 

the experimental protocol and instrumentation. During the preliminary testing period 

the participants performed a sub-maximal exercise protocol on an underwater cycle 

ergometer to determine their level of fitness and ensure they would be able to undergo the 

experimental protocol (Appendix B). Ethics approval for the study was received from the 

S.F.U. Office of Research Ethics prior to experimentation. 

All experimental sessions were within & 60 min of each other and started at 

between loam or lpm. Participants were also required to fast, exercise and refrain from 

drinking any warm beverages for a minimum of 5 hours prior each experimental session. 



Participants were clad in shorts and kayak boots during the experiments. A medical 

emergency kit including a defibrillator was available at all times. 

5.3.2 Instrumentation 

Pulmonary function variables and ventilatory excursions were measured using a 

breath-by-breath Sensormedics V,,, 229c metabolic cart (Sensomedics, Yorba Linda, 

CA, USA). Participants wore a nose clip and were fitted with a mouthpiece connected to 

a Mass Flow Sensor. The mouthpiece was connected to a two-way flow sensor housing, 

which was connected to a 2-way non-rebreathing valve (NRB 2700, Hans Rudolph Inc, 

Kansas Cit, MO, USA) that was connected with 3.8 cm diameter corrugated Collins 

tubing to a 350 L Tissot spirometer. Breath-by-breath gas samples were drawn from the 

inspired and expired air to the metabolic cart at a rate of 500 mlernin-'. Carbon dioxide 

partial pressure was measured using non-dispersive infrared Spectroscopy and oxygen 

concentration was measured using a paramagnetic sensor. A premixed hypoxic gas of 12 

% 0 2  and balanced nitrogen (N2) from a compressed gas bottle was used to fill the Tissot 

spirometer for the hypoxic condition. A fan mounted on the Tissot spirometer was used 

to mixed gas within its bell during the hypoxic condition. In addition, between conditions 

the Tissot was flushed with room air to remove any residual gases from the hypoxic 

trials. 

Heart rate and arterial oxygen saturation were continuously measured with a pulse 

oximeter (Masimo Radical, Irvine, CA, USA) positioned on the participants' left ear lobe. 



Esophageal temperature was measured by placing a paediatric size temperature 

thermocouple probe of approximately 2 mm in diameter through the participants' nostril, 

while they were asked to sip water through a straw. The location of the tip of the probe 

in the oesophagus was past the nares, at the T81T9 level, a position bounded by the left 

ventricle and aorta. This position is based on the equation of Mekjavic and Rempel (17) 

for standing height: L (cm) = 0.228 x (standing height) - 0.194. The participant was then 

immersed to the level of the shoulders in a water-filled tub and sat on a hydraulically 

braked, underwater cycle ergometer. Water temperature was maintained at a specific 

temperature so as to maintain Tes at either a normothermic or hyperthermic level. The 

determination of these water temperature (T,) levels is described in Chapter 3 under the 

subheading 'Water Temperature calculations'. 

An analog signal for f, from the V,,, cart was used to trigger data collection for 

body temperatures, HR and hemoglobin saturation on acquired a National Instruments 

data acquisition system SCXI-1000 (Austin, Texas, USA) that was controlled by 

LabVIEW program (National Instruments, Austin, USA, version 5.1). 

Blood samples were drawn via an indwelling venous catheter (BD Insyte, 18 

gauge) inserted in the antecubital vein of the left arm. Each sample consisted of 

approximately 4 ml of blood. The participants were instrumented with the catheter prior 

to each exercise protocol. 



5.3.3 Protocol 

All participants volunteered for 2 separate exercise-testing sessions, with each 

session separated by at least one week. Half of the participants were randomly chosen to 

start with the hyperthermic session and the other half started with the normothermic 

session. After instrumentation each protocol began with a 30-min rest period in room air 

to establish a stable resting T,,. The exercise began with a 5-min rest period with the 

participant seated on a stationary underwater bicycle ergometer in water up to their 

shoulder level and instrumented with a weight belt to avoid floatation. A metronome was 

used to maintain the pedalling cadence and the participant was monitored continuously to 

assure adherence. The determination for the prescribed work rate for the participants is 

given in Chapter 3 under the subheading 'Protocol'. 

Each exercise session was performed at a constant work rate and consisted of a 

20-min warm-up period where a steady state VE and T,, were achieved and a 30-min 

testing period. Both the warm-up and testing period were completed at the same work 

rate and cadence and there were no rest phases between each period. The 30-min testing 

period was divided into three continuous 10-min steady state exercise phases: a 10-min 

euoxic exercise period (El) where the participant breathed room air, a 10-min hypoxic 

exercise period (HI) where the participant breathed the hypoxic gas mixture (12 % 02, 

balanced N2), and a 10-min euoxic recovery exercise period (E2) when the participant 

again breathed room air. All participants followed this protocol in the same order for all 

sessions. Arterial oxygen content (S,02) was lowered to 85.6 % (SD 5.7) in the 



normothermic condition and 83.5 % (SD 5.7) (Chapter 3, Fig 3.6A) in the hyperthermic 

condition during the hypoxic exercise phase. If the PETCO2 fell below resting water- 

immersed values, 100 % C02  was manually titrated into the inspirate via a non-re- 

breathing demand valve apparatus as described by Sommer et al. (29) to bring the 

PETC02 back to resting, water-immersed PETCO2 levels. The purpose for clamping of 

PETCO2 was to maintain an isocapnic hypoxia, which would alleviate the possibly 

confounding effects of a hyperventilation-induced hypocapnia, which is often associated 

with hypoxia and was suggested to diminish the HVR (27). The resting water-immersed 

PETCO2 levels (7) were determined during the 5-min rest session immediately prior to 

commencing the exercise session. End-tidal C02  (PETCO2) was maintained at an 

isocapnic level of 5.19 kPa (SD 0.71) during all exercise conditions (Chapter 3, Fig 

3.6B). 

Blood samples were drawn in 4 ml increments at rest, and at 5 min of the E l ,  HI 

and E2 steady-state exercise phases. The catheter was flushed with saline between each 

sample to assure heterogeneity of samples. Blood was collected into collection tubes 

containing the anti-coagulant lithium heparin (BD Vacutainers, Franklin Lakes, NJ, 

USA). Samples were immediately placed on ice and centrifuged within 30 minutes of 

being drawn at 4OC and a speed of 3500 rpm. Plasma was removed after centrifugation 

and allocated into in 1.5 ml eppendorf tubes. There were 2 alloquots from each sample, 

for 2 different analyses (Lactate and K'). The eppendorf tubes were stored at -80•‹C until 

the analyses, which was carried out within 3 months of the sampling date. 



5.3.4 Blood analysis 

Plasma K+ concentrations were determined using an ion-selective electrode (Cole 

Parmer, Vernon Hills, Ill., USA). Samples of 100 pL plasma were diluted (100 x) to 10 

ml with distilled water and the electrode was submerged in the 21•‹C solution. Electrode 

potential readings (mV) correspond to the concentration of K+ in the sample (mM). 

Lactate concentration in plasma samples was determined using a colorimetric, enzymatic 

diagnostic kit (Pointe Scientific, Lincoln Park, Michigan) as previously described by Lin 

et al. (16). A volume of lOpL of plasma was used for each determination of lactate. 

5.3.5 Calibrations and Analysis 

Calibrations of esophageal thermocouple probes were completed in regulated 

temperature hot water baths (Appendix A). Gas analyzers were calibrated against two 

gases of known concentrations (4 % C02, 16 % 02, balanced N2 and 26 % 0 2 ,  balanced 

N2, and air) and the mass flow sensor was calibrated manually by the use of a 3 litre 

syringe prior to each experiment. 

Oxygen consumption, HR, respiratory exchange ratio (RER), PETC02, Tes, K+ and 

lactate for the steady-state exercise phases were analyzed using a two-way ANOVA for 

repeated measures. The factors were Core Temperature (Levels: normotherrnic and 

hyperthermic) and Gas Type (Levels: euoxia (El), hypoxia (Hl), and euoxic recovery 

(E2)). Dependent t-tests with the Bonferroni correction for multiple comparisons of were 



used to compare the means so as to explain the interactions of Core Temperature and Gas 

Type. A paired samples t-test was used to compare the percent change in VE and V 0 2  

from the normothermic to hyperthermic at both E l  and HI. A P value of < 0.05 was 

considered significant. For comparisons values are expressed as the mean &the Standard 

Deviation (SD) and 95 % Confidence Intervals [CI] of the difference between means are 

given in square brackets following each P value stated. SPSS 12.0 (SPSS Inc., Chicago, 

Ill., USA) was used for all the statistical analyses. 



5.4 Results 

All participants were able to complete the full exercise protocol including 10 min 

of hypoxic exposure with only mild signs or symptoms of hypoxia including 

hyperventilation, lethargy, and slight nausea. The mean water temperature for the 

normothermic condition was 31S•‹C (SD 1.3) and for the hyperthermic condition was 

38.2"C (SD 0.1) 

During the 30-min rest period prior to the commencement of the normothermic 

exercise sessions the mean resting Tes was 37.2OC (SD 0.4) and prior to the hyperthermic 

exercise sessions the mean resting Tes was not significantly different at 37.3OC (SD 0.2) 

(P = 0.386, CI [-0.1, 0.31). As shown in Chapter 3, Tes was maintained relatively 

constant during the normothermic condition at 37.2OC (SD 0.3), 37.1•‹C (SD 0.3), and 

37.0•‹C (SD 0.3) during E l ,  HI and E2 respectively. For the hyperthemic exercise 

condition Tes increased steadily from rest and approached a gradual plateau after the 

completion of the warm-up exercise period at 38.4OC (SD 0.1), 38.6"C (SD 0.1), and 

38.7"C (SD 0.1) during. See Fig 3.2 for a more detailed description of the Tes results. 

Comparisons of the elevations in vO2 in and the elevations in VE evident during 

the hyperthennic condition relative to the normothermic condition are given in Figure 

5.1. During El ,  V O ~  increased by 0.05 ~ -min - '  (SD 0.08) an elevation of 6.9 % (SD 



10.7) from the normothermic to hyperthermic condition. Ventilation in El  from the 

normothermic to the hyperthermic condition increased by 2.1 L.min-' (SD 2.1) an 

elevation of 9.4 % (SD 9.7), which was not a significantly different increase than that for 

\j02 (P = 0.303). During H1 results indicated VOz increased by 0.12 Lemin-' (SD 0.09) 

an elevation of 13.5 % (SD 10.1) from the normothermic to hyperthermic condition. 

Ventilation increased by 10.2 Lamin-' (SD 9.0) an elevation of 29.2 % (SD 25.5) from the 

normothermic to hyperthermic condition, which bordered on a significantly greater 

increase than that for V02 (P = 0.056, CI [-0.5,31.9]). During E2 results indicated ~ 0 2  

increased by 0.10 L-min-' (SD 0.13) an elevation of 13.2 % (SD 18.1) from the 

normothermic to hyperthermic condition. Ventilation increased by 5.2 L.min-' (SD 7.7) 

an elevation of 22.0 % (SD 28.8) from the normothermic to hyperthermic condition, 

which was not a significantly different increase than that for V O ~  (P = 0.274). 

For ~ 0 2  there was a significant main effect of Gas Type (F = 107.1, P = 0.001) 

and a significant main effect of Core Temperature (F = 10.3, P = 0.009) observed (Fig. 

5.2A). The normothermic condition the metabolic responses obtained from the three 

steady-state exercise phases indicated V O ~  during El  was 0.79 Lemin-' (SD 0.1 1) and 

significantly increased during H1 to 0.91 Lmmin-' (SD 0.10) (P = 0.001, CI [0.08,0.15]), 

which was followed by a return to steady-state euoxic levels during E2 at 0.80 Lemin-' 

(SD 0.10). For the hyperthermic condition V 0 2  during El  was 0.83 L-min-I (SD 0.07) 

and increased significantly during H1 to 1.02 Lamin-' (SD 0.05) (P = 0.001, CI [0.56, 

0.66]), which was followed by a return to steady-state euoxic levels during E2 at 0.89 

  em in-' (SD 0.1 1). During hyperthermic relative to normothermic exercise \io2 was not 



different in E l  (P  = 0.079, CI [-0.10,0.01]) and significantly elevated in both HI by 0.12 

~ . m i n - '  (SD 0.09) (P = 0.001, CI [0.06,0.17]) and in E2 by 0.09   ern in-' (SD 0.13) (P = 

0.034, CI [0.01,0.18]) (Fig. 5.2A). A significant Core Temperature by Gas Type 

interaction was also observed for V 0 2  (F = 4.2, P = 0.030), as the increase in V 0 2  from 

the normothermic to hyperthermic condition was greater during H1 as compared to E l  (F 

= 9.5, P = 0.012) but not E2 (P = 0.137) 

For RER there was a significant main effect of Gas Type (F = 91.6, P = 0.001) 

and no significant main effect of Core Temperature observed (F = 2.8, P = 0.123) (Fig. 

5.2 B). The pooled mean RER values between Core Temperature conditions increased 

significantly by 0.28 (SD 0.11) (P = 0.001, CI [0.18,0.37]) from E l  at 0.83 (SD 0.05) to 

H1 at 1 . l  1 (SD 0.1 1) and decreased below E l  levels by 0.05 (SD 0.03) (P = 0.001, CI [- 

0.07, -0.031) on return to euoxic levels during E2 at 0.78 (SD 0.05). 

For HR there was a significant main effect of Gas Type (F = 130.0, P = 0.001) 

and a significant main effect of Core Temperature (F = 51.9, P = 0.001) observed (Fig. 

5.2C). For the normothermic condition HR increased significantly by 12.9 beatsmmin-' 

(SD 6.1) (P = 0.001, CI [8.8, 17.01) from E l  at 87.4 beats-min'l (SD 11.5) to HI at 100.3 

beats.min-' (SD 15.9), and returned close to E l  levels during E2 at 87.6 beats.minw' (SD 

14.5). For the hyperthermic condition HR during E l  was 109.9 beats-min" (SD 9.5) and 

increased to 126.9 beats-min-' (SD 10.7) during HI, a significant increase of 17.0 

beatsmin-' (SD 4.3) (P = 0.001, CI [l4.l, 19.91). During E2, HR at 116.3 beatsamin-' 

(SD 9.4) remained significantly elevated (P = 0.001, CI [3.3, 9.51) relative to E l  values. 



During the hyperthermic condition relative to the normothermic condition HR was 

significantly elevated (P = 0.001, CI [15.8,29.3]) in E l  by 22.6 beats.min-' (SD 10.0), in 

H1 by 26.7 beats-min-' (SD 14.6) (P = 0.001, CI [16.9, 36.51) and in E2 by 28.7 

beatsamin-' (SD 12.7) (P = 0.001, CI [20.2, 37.31). 

Analysis of blood borne metabolites indicated there was no significant main effect 

of Gas Type for lactate (F = 2.3, P = 0.121) and Kf (F = 2.1, P = 0.1 19) (Fig. 5.3 A&B). 

Similarly there was no significant main effect of Core Temperature for lactate (F = 0.8, P 

= 0.395) and K+ (F = 1.0, P = 0.352). 



5.5 Discussion 

5.5.1 The effect of hyperthermia on oxygen consumption during euoxic and hypoxic 
exercise 

The main finding of the current study was during hypoxic hyperthermia ~ 0 2  

increased significantly from the normothermic hypoxic condition (Fig. 5.2A), however, 

in comparison to the change in VE under the same conditions there was a trend observed 

for a disproportionate increase in vE as compared to the increase in ~ 0 2  (Fig 5.1). This 

disproportionate increase in vE was also in lieu of any significant changes in blood 

lactate or K+ levels between temperature conditions and would therefore suggest that the 

augmentation of the HVR during hyperthermia is influenced to a greater extent by 

temperature rather than metabolic rate or by blood borne metabolites (Fig 5.3). 

The influence of an increased metabolic rate during hyperthermia hypoxia 

however cannot be completely discounted. Previous studies have shown an enhancement 

of ventilation during hypoxia that was concomitant with an increase in exercise intensity 

(32) and with ingestion of a meal (36), each that gave an increase in body temperature. 

In a study by Natalino et al. (22) with passive hyperthermia, they also showed a 

hypertherrnic enhancement of ventilation during hypoxia which was associated with an 

increase in ~ 0 2 .  It appears therefore to be a significant association between body 

temperature and V 0 2 ,  however, whether V 0 2  is the cause or the effect of the enhanced 



HVR during body warming has not been established. We suggest that there are several 

possibilities for which an increase in V 0 2  could be coupled with an increased ventilation 

which include an increased energy cost associated with an increase in RER, a Qlo effect 

during body warming, thermoregulatory effector responses during body warming and an 

increase in HR associated with hyperthermia and hypoxia. 

In the current study there was a significant increase in RER observed during 

hypoxia for both temperature conditions indicating a significant hypoxic-induced 

hyperventilation. Furthermore, as shown in Chapter 3, there was also an enhancement of 

the inspiratory flow during hypoxic hyperthermia. This would suggest that the 

significant increase in V 0 2  during hyperthermic hypoxia might be due in part to the 

combined metabolic cost of the enhanced hypoxic-induced hyperventilation (i.e. an 

increase in tidal volume) and the enhanced thermal tachypnea (i.e. an increase in 

ventilation frequency). 

There is also a well-known Qlo effect of an increase in metabolic rate of -13 % 

associated with an increase in core temperature of -1•‹C (28). This Qlo effect appears 

evident in our results where V 0 2  was elevated in the hyperthermic condition by 12 % 

during H1 and 11 % during E2 (Fig. 5.2A). The absence of hyperthemic-induced 

increase in V O ~  in E l  appears to be explained by a lower Tes in E l  as compared to H1 

and E2 (Chapter 3, Fig. 3.2). 



There also remains the possibility that the increased VOz in the hyperthermic 

relative to the normothermic condition was due to the energy requirement for heat 

dissipation through peripheral circulation, an elevated HR and eccrine sweat gland 

activity (17). This energy cost would increase with increasing core temperature. What 

portion of the increase in V 0 2  during hypoxic hyperthermia is due to the Qlo effect or 

due to the metabolic cost of the thermal- andor hypoxic-induced increase in VE is 

unknown. However, it remains in the current study during hyperthermic hypoxic low 

intensity exercise a trend for a disproportionate increase in VE is observed that would 

support a direct effect of temperature on the peripheral chemoreceptors. It would appear 

then that V 0 2  plays a lesser role in the control of VE during hyperthermic hypoxia and 

the associated increases may be due in part to the metabolic cost of breathing and 

thermoregulation at higher body temperatures and lower P,02 levels. 

5.5.2 The effect of hyperthermia and hypoxia on heart rate and its possible influences 
on ventilation 

Heart rate increased from rest during low intensity steady-state exercise, however 

the increase was significantly greater during the hyperthermic condition across all gas 

phases as compared to the normothermic condition (Fig. 5.2C). The increased HR during 

hyperthermia can be primarily attributed to the increased peripheral blood flow 

requirement during body warming for heat dissipation (21). 

During hypoxia in both temperature conditions HR was significantly elevated 

compared to the euoxic conditions despite maintaining a steady-state exercise and Tes 

(Fig. 5.2C). This is in agreement with previous studies (3, 13) that showed an increased 



HR during isocapnic hypoxia. It has been suggested by Halliwill et al. (13) that the 

augmented HR response during isocapnic hypoxia is due to the activation of the 

peripheral chemoreceptors indirectly mediating a resetting of the arterial baroreflex 

control for both HR and sympathetic nerve activity to higher pressures. 

In the current study there appears to be a strong association then between changes 

in HR and changes in VE. Particularly in hypoxia the changes in HR appear to occur by 

similar mechanisms to the changes in VE, which could help explain this association. 

Whether an increase in HR has any direct influence on VE is unknown, but the C02 flow 

hypothesis suggested by Wasserman et a1 (3 1) may indirectly implicate changes in HR as 

a possibly mediator of ventilation. The C02 flow hypothesis is based on the premise that 

ventilation increases in proportion to C02  flow across the lungs and is irrespective of any 

changes in P,C02 (31). This suggests little involvement of the peripheral and central 

chemoreceptors and possible involvement of a COz flow receptor in the pulmonary 

circulation (31). According to this hypothesis an increase in cardiac output, which can be 

coupled with an increase in HR, could stimulate these C02 flow receptors by increasing 

pulmonary perfusion and thereby increasing ventilation. At present a C02 flow receptor 

still has not been identified and this hypothesis remains unsubstantiated. 



5.5.3 The influence of blood lactate and potassium on ventilation during 
hyperthermia and hypoxia 

There are several metabolic by-products that can influence ventilation, one of the 

more prominent modulators has been suggested to be lactate (18, 30). Lactate has been 

thought to modulate ventilation at higher exercise intensity levels at or above the 

anaerobic threshold (19). The current study was therefore designed to be well below the 

anaerobic threshold to prevent any confounding effects on vE due to increased lactate 

concentrations. Consequently in the current study results indicated that there were no 

significant changes in lactate from rest to exercise (Fig. 5.3) under all conditions and as 

such lactate does not appear to be implicated in the changes of VE during low intensity 

exercise. 

In response to increases in body temperature, there have been associations made 

between hyperthermia and lactic acid production. In a study by Gaudio et al. (1 1) lactic 

acid was shown to increase in small proportions of -0.4 mM after a passively-induced 

hyperthermia. They suggested the slight increase in lactate to be a result of the 

respiratory alkalosis created by the hyperthermic-induced hyperpnea (1 1). Drum1 et al. 

(10) who had their participants perform a controlled hyperventilation to induce a 

respiratory alkalosis further supported this finding. They observed a similar overall 

increase in the basal concentration of plasma lactate after the hyperventilation suggesting 

this to be a consequence of the fall in P,C02 (10). There appears then to be an association 

between a respiratory alkalosis and increased lactic acid production, however the extent 

of lactic acid production is minimal as shown by Gaudio and colleagues (1 1). 



In the present study an isocapnic clamp was used preventing any significant falls 

in P,C02, thereby preventing a possible respiratory alkalosis in the participants. This 

may account for the lack of change in lactate concentration evident during hyperthermia 

and would also explain why no change in lactate was evident during the isocapnic 

hypoxic periods. 

Another possible modulator of ventilation is blood borne K+. There is a 

significant increase in plasma K+ concentration evident during heavy exercise that has 

been suggested to be a result of an increased muscle cell depolarization (23). Patterson et 

al. indicated this increase in plasma K+ was correlated with an increase in ventilation 

during exercise and suggested it to be a possible mediator of this ventilatory response, 

particularly at higher intensity levels (24). Studies by Band et al. (1) and Burger et al. (5) 

have shown that K+ stimulates ventilation via peripheral chemoreceptors, as cats with 

denervated carotid bodies showed no increase in ventilation. In the present study there 

were no significant changes evident in plasma K+ levels from rest to exercise, however 

again this can be primarily attributed to the low level of exercise. In previous studies the 

associations made between plasma K+ and exercise ventilation were done at moderate to 

high intensity exercise levels (23,24). Furthermore, in a previous study by Qayyum et al. 

(26) they showed that the addition of K+ orally in the form of potassium chloride did not 

affect ventilation during light exercise, suggesting that K' does not influence ventilation 

at low exercise intensities. 



The levels of plasma K' were also not significantly influenced by temperature or 

hypoxia in the current study (Fig. 5.3). Previous studies on the effects of temperature and 

hypoxia on K+ concentrations in the blood are conflicting. Kozlowski and Saltin (15) 

reported a rise in plasma Kf with combined exercise and heat exposure, but no increase 

with heat exposure alone. In contrast, Coburn et al. (8) showed a significant increase in 

plasma K+ following passive heat exposure, however, this study was only done with four 

participants who were heated over a five hour period. During hypoxia several studies 

have suggested that K+ may help mediate the HVR by stimulation of the peripheral 

chemoreceptors (23,26). Conversely, a study by Khan et al. (14) found in humans that 

plasma K+ does not increase at high altitudes (4424 m). In the current study there were 

no changes indicated in plasma Ki during hypoxia which would support the later study 

and suggest that the HVR was not mediated by plasma K+. 

5.5.4 Conclusion 

In conclusion, as evidenced by a trend for a greater ventilatory response to 

hyperthermic hypoxia than the associated metabolic responses (Figure 5.1), there is a 

support for the hypothesis that the augmentation of hypoxic V E  during hyperthermia is 

mediated primarily by body temperature. The evidence that no significant changes in 

plasma lactate and Kf were observed during hyperthemia or hypoxia further supports 

this hypothesis. Finally, the increase in HR observed during the hyperthemia and 

hypoxia possibly influences vE and could help explain the enhanced VE by an increase 

in lung perfusion if the C 0 2  flow hypothesis is accepted as valid (31). 
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5.9 Figures 

Fig, 5.1 Percent change from the normothermic to hyperthermic condition for oxygen 
consumption ( V 0 2 )  and ventilation ( \jE) during euoxic exercise (El) ,  hypoxic 
exercise (HI) and recovery euoxic exercise (E2). 
Participants performed a steady state, head-out exercise on underwater ergometer at a 
low-level exercise intensity ( ~ 0 2  - 0.8 to 1.0 L*min-1) in the normothermic and 
hypertherrnic conditions. Error bars represent the SD (NS non significant at P > 0.1) 
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Fig. 5.2 Course of mean oxygen consumption ( ~ 0 3 ,  respiratory exchange ratio (RER), 
heart rate (HR) for rest, euoxic exercise (El), hypoxic exercise (HI) and recovery 
euoxic exercise (E2). 
. , normothermic condition; m, hyperthermic condition. Error bars represent the SD 
(**significant between temperature conditions at P < 0.01, 8 significant from El at P 
< 0.01, NS non-significant at P > 1.0). 
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Fig. 5.3 Course of mean serum lactate and potassium (K') concentration for rest, euoxic 
exercise (El), hypoxic exercise (HI), and recovery euoxic exercise (E2). 

, normothermic condition; m ,  hyperthermic condition. No significant differences 
(NS) found between Gas phases or Core Temperature conditions. Error bars represent 
the SD (NS non-significant at P > 0.1) 

Rest 

Rest 



CHAPTER 6 THESIS SUMMARY 

6.1 Testable Questions 

1. Is ventilation during low intensity exercise with an elevated hyperthermic Core 

Temperature different than ventilation during low intensity exercise with a 

normothermic Core Temperature? 

Ventilation was significantly increased by a hyperthermic core temperature as 

compared to a normothermic core temperature during low intensity exercise. The 

hyperthermic-induced hyperpnea appears to be mediated solely by an increase in f, 

suggesting the existence of a thermal-induced tachypnea. 

2. Is there an interaction of body Core Temperature and Gas Type on ventilation 

during low intensity exercise? Is the effect additive or multiplicative? 

There was a significant interaction for VE observed between core 

temperature and hypoxia during low intensity exercise. During the hyperthermic 

hypoxia \jE increased disproportionately as compared to the normothermic hypoxia, 

suggesting the effect of an elevated core temperature on hypoxic \iE is 

multiplicative. 



3. If there is an interaction between Core Temperature and Gas Type on 

ventilation, what components of ventilation, f, andlor VT, mediate this change 

during low intensity exercise? 

The HVR at normothermic body temperatures appears to be mediated solely 

by an increase in VT. However, during hyperthermic hypoxia there is an 

augmentation of the HVR which appears to be due to increases in f, as no significant 

changes were evident in VT from the normothermic to hyperthermic conditions. 

Ventilation frequency was elevated significantly during euoxic hyperthermia relative 

to euoxic normothermia and showed a trend for an even greater elevation during 

hypoxic hyperthermia relative to hypoxic normothermia suggesting a trend for an 

interaction of core temperature and hypoxia on&. 

4. How do Core Temperature and Gas Type influence the inspiratory flow and 

timing components of ventilation during low intensity exercise? 

An increase in core temperature elevates VT.T~' during euoxic exercise. This 

elevated vT.Tfl is further enhanced during hypoxic hyperthermic exercise. A 

shortening of the TI and TE was also associated with increases in vT.Tfl during the 

hyperthermic condition. This was in absence of any significant changes in VT which 

would suggest the enhanced VT.T;' during euoxic and hypoxic hyperthermic 

exercise are due primarily to decreases in TI. 

5. Is the kinetics of ventilation influenced by temperature during the onset of low 

intensity exercise and during the onset of hypoxia during steady-state exercise? 



The ventilatory kinetics appears to be influenced by increasing core 

temperature during the onset of exercise, which appears to be independent of 

changes in skin temperature. Particularly increasing core temperature appears to 

shorten the time course of the ventilatory lunetic response to the onset of exercise. A 

hyperthermic body temperature appears mediate the amplitude of the ventilatory 

lunetic response to hypoxia during low intensity steady-state exercise, however it 

does not appear to influence the time course of this response. 

6. Do associated increases in metabolic rate and blood borne metabolites as evident 

with exercise, hyperthermia, and hypoxia significantly influence ventilation? 

There was evidence of a significant metabolic response to both hyperthermia 

and hypoxia. These increases occurred despite any changes in blood lactate and K+ 

levels. The resultant increase in VE however, was significantly greater during 

hyperthermic hypoxia than the increase in V O ~  which would suggest that the 

associated increase in metabolic rate during hyperthermic hypoxia was not the 

primary mediator of the V response. 



6.2 Research Hypotheses 

1. It was hypothesized that if both the combined influences of exercise during 

hypoxia (2-4,7) and passive hyperthermia during hypoxia (5,6) would cause a 

multiplicative increase in VE, then with the removal of the exercise-induced 

hyperthermia there would be a marked reduction in V E  during hypoxic 

normothermic exercise. 

The first hypothesis was validated as a marked reduction in VE was evident 

during normothermic hypoxia as compared to hyperthermic hypoxia. 

2. If a hyperthermia-induced hyperpnea is a vestigial panting response, then the 

elevations in \jE during hyperthermic exercise would be due to increases in 

ventilation frequency. 

The second hypothesis is validated as there was an evident thermal tachypnea 

evident during all hyperthermic exercise conditions which were independent of any 

changes in VT. 

3. It was hypothesized that if core temperature influences steady-state VE during 

rest (1) and exercise (8), then it may influence the ventilatory kinetics for the 

onset of exercise. Furthermore, if core temperature influences the HVR (5,6) it 



was also hypothesized that an enhancement of the kinetics of this response may 

have been evident during an elevated core temperature. 

The third hypothesis was validated in part as the results suggest an elevated 

core temperature influences the dynamics of vE response shortening it in 

comparison to a normothermic core temperature during the onset of exercise. 

However the second part of the hypothesis was not validated as it appeared core 

temperature had no significant influence on the dynamics of the vE response during 

the transition from low intensity euoxic to low intensity hypoxic exercise. 



6.3 Thesis Summary and Future Directions 

The main findings of the thesis are that an increase in body core temperature 

appears to enhance exercise ventilation, particularly during hypoxia. This response 

appears to be mediated through an increase in ventilation frequency and mean inspiratory 

flow without a metabolic influence. This would appear to support the concept of a 

possible direct temperature effect on the peripheral chemoreceptors and/or the central 

respiratory centres in the medulla and provide evidence for increasing body temperature 

as a possible mediator of ventilation during exercise. 

In future studies it would be beneficial to look at higher levels of exercise and 

produce an active hyperthermia and normothermia to look at the effects of an increased 

metabolism on the ventilation response. The challenge would be to clamp body 

temperature at higher exercise intensities. Another possible avenue of study would be to 

look at individual variation in hypoxic sensitivity during a progressive hypoxia test and 

compare this to the responses of a protocol similar to the current study. This would allow 

for the investigation of hypoxic "responders" and "non-responders" and see how they are 

influenced by perturbations in body temperature. 
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APPENDIX A 

Esophageal Probe Calibration Data 

Each participant's esophageal thermocouple probe was calibrated in a regulated 

temperature hot water bath with a mercury thermometer (Cenco Instruments, Chicago, 

Ill., USA). Water temperature was increased to approximately 30,34, 38 and 42•‹C and 

allowed to stabilize for at least 10 min before measurements were recorded. Each probe 

was immersed for 5 min at each temperature and values were then recorded over a 60 s 

period. Individual calibration curves were constructed for each esophageal probe versus 

the mercury thermometer. A linear regression was developed across the four calibration 

temperatures of -30, 34,38,42"C. Table A.l lists the mean temperature values over a 60 

s period at each temperature condition for both the esophageal probe and the mercury 

thermometer. Table A.2 lists the calibration factor for each participant's esophageal 

thermocouple probe. Figure A. 1 shows the esophageal probe values plotted against the 

mercury thermometer values for a typical participant. The correlation coefficient is given 

along with the regression equation. 



Table A.1 Calibration values for esophageal thermocouple probes for each participant 
compared against a mercury thermometer at 30,34,38 and 42•‹C. 
T,, represents esophageal probes, THg represents mercury thermometer 

Subject 30 30 34 34 38 38 42 42 

11 30.1 30.1 33.7 33.8 37.8 37.8 41.8 41.8 

Mean 30.1 30.2 33.7 33.9 37.8 37.9 41.8 41.8 



Fig A.2 Calibration factors for values for esophageal thermocouple probes for each 
participant compared against a mercury thermometer at 30,34,38 and 42•‹C. 

Subject Correlation Calibration equation for esophageal thermocouple probes 
coefficient 

1 R' = 0.9998 y = 0 .992~  + 0.2754 



Fig A.l Esophageal thermocouple probe (T,) values plotted against a mercury 
thermometer (THg) values at 30,34,38 and 42•‹C for a typical esophageal probe 
(Esophageal probe for Participant 1). 
Data points are the means for a 60 s period of a typical probe. 
The correlation coefficient is given along with the regression equation. 



APPENDIX B 

Preliminary Sub-maximal exercise test 

This session served to acquaint the participants with the laboratory equipment and 

procedures to be used during the study as well as to establish their physical profile. Peak 

oxygen consumption (VO2peak) for underwater cycling on a recumbent hydraulic powered 

bicycle was estimated by a ramp cycle ergometer test while the subjects are immersed in 

thermally neutral water (-33OC). After a 2-minute warm-up period with no load, 

resistance was increased gradually to produce 4 steady-state heart rates (HR) between 60- 

140 beatsamin-'. Each work load was held for a minimum of 2 min or until the subjects 

HR did not vary by more than 5 beats.min" over a 30 s period. The participants v 0 2 p e a k  

was estimated by plotting a regression line to their ~ 0 2  against HR scatter plot for the 

sub-maximal exercise session. The age predicted maximum HR was used in the linear 

regression equation to give a predicted v 0 2 p e a k  for each participant. 

This experiment required the participants to exercise on a head-out underwater 

recumbent cycle ergometer. The load on the ergometer was provided by a hydraulic 

motor, which was used to apply backpressure to the flywheel as the participant pedalled 



in a forward circular motion. Increasing or decreasing the hydraulic pump speed, which 

is measured in hertz, varied the resistance. 

An important consideration when measuring ventilatory excursions on a 

recumbent cycle ergometer as opposed to a seated cycle ergometer is that recumbent 

ergometers have been shown to elicit much lower maximal power outputs due to the limb 

position and gravitational effects (2). Furthermore in a study by Diaz et al. (1) it has been 

shown that recumbent ergometers are found to produce lower V02peak by - 7.4 %. This 

would explain why the estimated VoZPeak values for the participants in the current study 

appeared to be slightly lower then the relative norm for their age group and fitness level. 



Table B.l Sub-maximal exercise test values for age-predicted VOtpeak on an underwater 
recumbent hydraulic powered cycle ergometer. 
Age-predicted max HR is determined by the equation: 220-age. Age-predicted 
~ 0 2 ~ e a k *  represents the predicted ~ 0 2 ~ e a k  for cycling on an underwater 
recumbent hydraulic cycle ergometer 

Subject Age Age-predicted max HR Age-predicted 
(Y r) (beats-mid') V O2peak* (L-min' 

193 
l) 

1 27 3.15 

Mean 23.7 196.3 3.32 



Fig B.l Oxygen consumption (vo,) plotted against heart rate (HR) for a typical 
participant's (Participant 3) Sub-maximal exercise test. 
The equation for the regression line is used to estimate the participants ~ 0 2 ~ e a k  on a 
underwater recumbent hydraulic powered cycle ergometer. 
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APPENDIX C 

Power calculations to determine sample size 

A power analysis of comparisons for a detectable difference of ventilation at a 

similar level of hyperthermia as proposed in this study was done to justify sample size 

selection. Data from Cabanac and White's (I) study, during rest and passive 

hyperthermia (increase of Tes by -2•‹C) was used for this calculation. The mean 

ventilation for subjects while at rest and a steady-state Tes of 36.6"C (SD 0.1) was 10.0 

L-min-' (SD 2.4). At the end of the hyperthermic period the mean Tes was 39.0•‹C (SD 

0.2) and the ventilation was increased to 19.3 L-min-' (SD 7.9). The effect size of 9.3 

L-min-' was then used for the power calculation. Using a sample size of q = 10, and an a 

= 0.05, the power of replicating this finding would be 0.99. 
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