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Abstract 

This thesis focuses on coordinated nonprehensile manipulation to  accomplish a parts 

transfer task. Parts transfer refers to  moving parts from a known initial configuration 

(position and orientation) to a goal configuration. This task is motivated by automatic 

manufacturing applications. The problem is studied under quasi-static and dynamic 

settings. By exploring the task mechanics and geometry, three nonprehensile (gras- 

pless) manipulation methods are developed. This thesis describes their mechanics, 

control and planning algorithms. 

The first part of the thesis investigates quasi-static cooperative nonprehensile ma- 

nipulation. Two methods are studied for the parts transfer task. The problems of 

controllability and planning are studied for these methods. The aim of controllability 

is to  determine whether the goal configuration of the part is reachable by cooperative 

nonprehensile manipulation, and the objective of planning is to  find a cooperative 

motion (or action) of the agents to  bring the part to  the goal configuration. The first 

system demonstrates that a fixed-radius rotational push and a linear normal push are 

sufficient to  manipulate an object in the plane. By using optimal control theory, a 

planner is developed to  find the optimal solution. In the second system, new manipu- 

lation primitives such as, equilibrium push and non-equilibrium push, are introduced 

for manipulating convex parts. We prove the configuration controllability of the ob- 

ject under these pushes. A fully analytical planner is developed to  solve the optimal 

sequence. Simulations and experiments are conducted to  demonstrate the proposed 

manipulation methods. 

The second part of the thesis investigates dynamic cooperative manipulation. The 

motion of the object under manipulation consists of two phases: acceleration by 

cooperative dynamic pushing, and free sliding with initial velocity. For the free sliding 



problem, a free boundary value problem formulation (FBVP) is developed t o  find the 

desired release velocity. After transforming the FBVP into a two-point boundary value 

problem, a set of algorithms is developed to  solve the planning problem. A degree 

of freedom mechanism is implemented to  demonstrate the planning method. For the 

cooperative dynamic pushing problem, a centralized planning method is developed by 

integration of the backstepping design and quadratic programming under the known 

pressure distribution assumption. A game theoretic approach is proposed to  solve the 

acceleration problem in the case of uncertain pressure distribution. 
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Chapter 1 

Introduction 

One of the basic tasks for a robot is to move an object from an initial configuration 

(position and orientation) to a goal configuration; this is referred to as a parts transfer 

task. A common solution is to  grasp the object rigidly with a gripper and move it, 

but his method does not work when the object is too heavy or too large to grasp. As 

an alternative, robotic manipulators can manipulate this class of objects using a non- 

prehensile manipulation technique: manipulation without grasping. Some examples 

of nonprehensile manipulation primitives are pushing, throwing, batting and striking. 

Compared with prehensile manipulation, two of the major advantages of nonprehen- 

sile manipulation are as follows: combinatioris of simple mechanisms, without using 

an advanced gripper, can accomplish a complex manipulation task, and the work 

space of a robotic manipulator can be enlarged. In nonprehensile manipulation, the 

object is not grasped by the robotic manipulator; thus, the manipulated object can 

exhibit a broad class of motion. The motion of the object will not only depend on the 

motion of the n~anipulator, but also depend on the state of the object, the contacts 

between the object, the manipulator, and the environment. Because of these com- 

plexities, an understanding of the mechanics and geometry is critical for performing a 
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successful nonprehensile manipulation task. A nonprehensile manipulation task can 

be performed either by a set of distributed physical manipulators, or by a single agent 

equipped with a set of simple manipulation primitives. In either case, coordination 

and planning is required. 

1 .  Overview 

This thesis focuses on the manipulation problem for the parts transfer task. The 

problem considered in this thesis are planar. The study of this problem is motivated 

by the development of assembly systems for automatic manufacturing applications. In 

order to assemble parts correctly, an automatjc assembly device requires the receipt of 

parts in a specified configuration. This assembly requirements lead to the study of the 

parts transfer and reorienting problem. In this thesis, we focus on developing novel 

coordinated nonprehensile manipulation methods for the parts transfer task. With 

this objective, we explore the task mechanics, and study the coordination between 

multiple manipulation agents or multiple manipulation primitives. The understanding 

of task mechanics and coordination helps to  increase the manipulation capabilities of 

a given robot or multiple robots, and it provides the following potential benefits: (1) 

Simpler robots and controller design; (2) Enlarged class of manipulable parts; (3) 

Improved planning algorithms; (4) Increased workspace. 

To demonstrate these ideas and advantages, three nonprehensile manipulation 

methods for the parts transfer task are studied in this thesis. 

1. Parts transfer task by an ability-1i:mited mobile robot 

Using an ability-limited robot for the parts transfer task is motiva,ted by the 

idea of minimalism in robotic manipulation introduced by Canny and Goldberg 
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[24]. The spirit of minimalism is to explore the capabilities of robots with simple 

actuators and sensors, which will result in a cheaper, more flexible system. An 

ability-limited mobile robot is illustrated in the following scenario: Consider a 

simple two-wheel mobile robot where each wheel is driven by an actuator. One 

actuator is always supplied with a constant voltage driving the associated wheel 

a t  constant speed, and the other actuator is controlled by supplying a, full or half 

voltage; thus, the wheel will run at  a full speed and half speed. As a result, the 

mobile robot works in two modes: In 0n.e mode, the two wheels run at  the same 

speed, and the mobile robot moves forward with a constant velocity. In the other 

mode, one wheel runs at  full speed, while the other wheel runs at  half speed, 

and the mobile robot moves around a fixed radius circle with constant angular 

velocity. Compared to a continuous differential drive vehicle, the controller 

design is simpler. Moreover, if the robot; is tele-controlled or wireless controlled, 

the usage of simple control signals may reduce the communication cost. 

The ability-limited mobile robot provides two manipulation primitives. One is 

pushing the object with a constant velocity; the other one is to rotate the object 

around a fixed-radius circle with constant angular velocity. We are interested 

in using these two manipulation primitives for the parts transfer task. For this 

purpose, we want to  answer the following two questions: 

(a) Controllability: Under these two manipulation primitives, is t:he configu- 

ration of the object controllable? In other words, given two configurations 

in the obstacle-free plane, will there always exist a sequence of pushing 

actions such that the object is transferred from one configuration to the 

other? 

(b) Coordination: If the configuration of the object is controllable, -what is the 
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optimal sequence of pushing actions, and the optimal trajector,~? 

2. Parts transfer by two-agent cooperative push 

The research of using two-agent cooperative push instead of a physical fence 

for the parts transfer task is motivateld by our desire to  expand the class of 

manipulable objects with pushing. Physical flat fence based pushing only works 

for objects having at  least one flat edge, such that the pushed object can align 

with the fence during the push as shown in Fig. 1.1. A one-point contact push is 

inherently unstable, and the configuration of the pushed object is unpredictable. 

Therefore, without having feedback, generally it can not be used to  perform a 

stable manipulation task. However, a:n object may exhibit a desired motion 

under a two-point contact push. The line connecting the two contact points can 

function just as a fence, namely, a virtual fence, pushing on the object. With the 

concept of virtual fence, two-agent cooperative push becomes a closed relative to  

physical fence based push. By coordina~ting two-point contact pushing actions, 

objects without a flat edge can also be manipulated by sequence of pushing 

actions. 

The two-agent cooperative push requires two spatially distributed manipula- 

tion agents. The agents can be two mobile robots, a two-fingered adjustable 

griper, or an array of adjustable pins over a conveyer belt. By setting the spa- 

tial relationship between the agents, the contact positions between the agents 

and the object, plus the direction of push, the object will be trapped by the 

agents. The trapped object will continue to slide and rotate under the geomet- 

rical constraints imposed by the agents, and finally attain a known equilibrium 

orientation. In this situation, the two-agent cooperative push is equivalent to  a 

push performed by a virtual fence that is formulated between the contact points 
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Fence Virtual fence 

Figure 1.1: Physical fence an.d virtual fence pushing 

(Fig. 1.1). To perform the parts transfer task, two manipulation primitives, 

equilibrium push and non-equilibrium push, are introduced. Equilibrium push 

only changes the position of the object, while non-equilibrium push changes the 

position and orientation of the object simultaneously. We are interested in an- 

swering the question of configuration controllability of the pushed object and 

finding a sequence of equilibrium and non-equilibrium pushes to  sransfer an 

object between two required configurations. 

3. Dynamic distributed manipulation. 

In the ability-limited mobile robot and tywo-agent cooperative push baaed manip- 

ulation, the object maintains contact with the manipulator during the pushing 

process. In contrast, a more complex manipulation method is a dynamic dis- 

tributed manipulation where the object can leave the manipulator and continue 

its motion until coming to  a stop. The workspace of the manipulator is enlarged 

and extends beyond the physical reach of the manipulators. 

A conceptual schematic of the dynamic distributed manipulation is 'depicted in 

Fig. 1.2. The manipulation system consists of two robotic manipulators, two ac- 

tuators and two adjacent platforms. The first platform is h e d  with two robotic 
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Robot 1 Robot 2 
/ 
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Actuator 1 

3sz 
& \ Actuator 2 

Figure 1.2: Dynamic distributed manipulation 

manipulators mounted at  one end, and. the work space of the manipulators is 

limited only to the first platform. The second platform is controlled by two ac- 

tuator agents, and the slope of the platform can be changed to manipulate the 

object sliding on it. The initial configuration is on the first platform, and the 

goal configuration is on the second platform. The objective of the manipulation 

is to  transfer an object from the initial configuration to the goal configuration. 

The goal configuration is outside the vvorkspace of the manipulators, and the 

manipulators cannot reach the goal configuration. The two manipulators, how- 

ever, can push and accelerate the object to  a certain release velocity. With this 

velocity, the object may slide to  the goal configuration without the help from 

the manipulators. This is one characteristic of dynamic manipulation. 

During the manipulation, the object undergoes three stages of motion: (1) ac- 

celeration by the manipulators; (2) free sliding on the first platform; and (3) 
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controlled sliding on the second platform. In the first stage, two robotic manip- 

ulators maintain contact with the object and accelerate the object to  a desired 

position with a required release velocity. In this stage, a cooperative acceleration 

problem needs to  be solved. Because of' their workspace limitation, the robotic 

manipulators will lose contact with the object when the second stage begins. In 

the second stage, the object slides freely due to its momentum gained during 

the acceleration phase. The free sliding, problem needs to  be solved to  find the 

desired release velocity. If the model of the sliding object is accurate, with the 

planned release velocity, the object will arrive at  the goal configuration. 

However, there always exists uncertainty in estimating friction betwfeen the ob- 

ject and the supporting surface. Therefore, the object may not slide to  the 

goal configuration as expected. This discrepancy leads to  the requirement of a 

third stage called feedback manipulation. In the third stage, two direct-driven 

actuators are controlled to change the slope of the second platform. By varying 

the slope, the trajectory of the object are controlled. 

In this thesis, the control and planning problems for the first two stages are 

considered. For the first stage, the o'bjective is to  coordinate the agents t o  

generate pushing forces such that the object is accelerated to  the desired velocity. 

For the second stage, the goal of planning is to  find the release velocity of a free 

sliding object for a given displacement. 

The first two methods are developed under the quasi-static assumption. The dis- 

tributed manipulation method is developed in dynamic setting. These two classes of 

manipulation methods have different mechanics models [67]: For quasi-static manip- 

ulation, kinetics, st at  ic forces, and quasi-st atic forces such as friction are considered. 

Inertial forces are negligible. For dynamic imanipulation, kinematics, static forces, 
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quasi-static forces, and dynamic forces are considered. 

The first two methods are open-loop method, no sensory feedback on the position 

and orientation of the object is required during the course of manipulation. On 

the other hand, in the dynamic distributed manipulation, the acceleration problem 

is solved as a closed-loop controller design problem where the position and velocity 

measurements are required. 

Related work 

1.2.1 Pushing 

Pushing is a common form of nonprehensile manipulation primitives and has been 

studied by many researchers. Mason [68] first studied the mechanics of pushing and 

used pushing as a manipulation primitive. Accordingly, he implemented a numerical 

routine to  find the motion of an  object with a known support distribution under 

a single point-contact push. Following this i:esult, Peshkin and Sanderson [82] and 

Goyal et al. [35, 361 studied the mechanics of a pushed object. Peshkin and Sanderson 

[82] studied the locus of centers of rotation of a pushed object for all possible pressure 

distributions. These centers of rotation provide bounds on the rate of rotakion for an 

object being pushed. By considering the slowest rotation, the minimum push distance 

guaranteed to  align the object with the fence can be estimated. Under a known 

support pressure distribution, Goyal et al. [35, 361 developed a limit surface description 

of the relation between the frictional forces (and object motion. These results have 

become the foundation for developing manipulation planners for pushing operations. 

Using the pushing rules developed in [68], Brost [20] developed a robust grasp planner 

for a parallel-jaw gripper which can accommodate the object orientation uncertainty. 
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The push stability diagram was developed to  d.escribe the possible motions of an object 

being pushed by a fence. Goldberg [34] developed a planner to  orient polygonal objects 

using the frictionless gripper and showed that it is possible to reorient any polygon in 

the plane from an unknown initial orientation t o  a unique final one by a fixed sequence 

of normal pushes with a straight fence. Each push is in a direction orthogonal to  the 

face of the fence, and the reorientation of the fence between pushes is independent of 

the orientation of the part. Mason [69] studied the problem of pushing a block along 

a wall. 

Many researchers have explored single-age:nt point-contact push. Agarwal et al. [I] 

explored the path planning problem for a robot pushing an object in the plane with 

obstacles. Nieuwenhuisen et al. [73] studied t:he single-robot disk pushing problem in 

an environment with obstacles, and exploited the boundaries of the environment to 

increase the possibilities of finding a push path. Okawa and Yokoyama [I761 studied 

the control problem for a mobile robot pushing a box to a goal position. Kurisu and 

Yoshikawa [47] constructed feedback control strategies to  push an object following a 

planned trajectory. 

In order to  deal with the instability of the point-contact pushing and generate 

stable open-loop pushing plans, single-agent line-contact push has been studied in 

[3, 651, several pushing primitives and open-loop pushing plans have been proposed 

to  manipulate objects in the plane. For example, Akella and Mason 131 studied linear 

normal pushing for posing parts in an obstacle-free plane. In a linear normal push, a 

moving fence pushes a part in a direction normal to the fence face. The orientation 

of the part due to such a push is predicted using the radius function 1341, and an 

open-loop planner is constructed as a linear programming problem that is solved by 

a commercial linear programming package. ,4s an extension, Akella and Mason [5] 
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implemented both sensor-based and sensorless planners for the entire variational class 

of part shapes given a nominal part shape and tolerance bounds. 

Lynch and Mason [65] introduced the concept of stable pushing to pose and ori- 

ent parts in the plane. By using the kinemakical constraints on object motion, the 

object is rigidly attached to the pusher during pushes. With a known pushing fric- 

tion coefficient, center of mass, and part geometry, a procedure named STABLE was 

developed to  find a set of pushing motions which keep the part fixed to the pusher as 

it moves. A pushing path planner was developed to transfer an object from an initial 

configuration to  a goal configuration in the presence of obstacles. This planner is a 

close relative to the nonholonomic motion planner of [12]. Lynch [64] studied locally 

controllable manipulation by stable pushing, and derived a necessary anld sufficient 

condition for a polygon to be small time locadly controllable. As an extension to the 

previous work of [64, 651, Bernheisel and Lynch [15] studied stable pushing of a stack 

of parts. The idea of controllability from nonlinear control theory was introduced by 

Lynch and Mason [65] to study the configuration controllability of an  object under a 

stable push. 

Instead of using line contact, two-agent point-contact pushing has also been stud- 

ied by many researchers. Brown and Jennings [22] introduced a pusher/steerer model 

to  coordinate the actions of two agents, and. developed a feedback strategy for the 

parts transfer task. Rezzoug and Gorce [86] studied two-fingered pushing with fixed 

contact points, proposed a trajectory tracking algorithm, and solved the optimal force 

distribution problem using a linear programm.ing method. Balorda and Ba.jd [ll] em- 

ployed two-fingered pushing to reduce positioning uncertainty. Following this result, 

a planning method was proposed to reorient an object to  a known final resting orien- 

tation by a single push [lo]. 
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Owing to  the industrial needs and the desire t o  understand human coopera- 

tive behavior, there has been much concern on multi-agent manipulation recently. 

Pushing by three or more agents has also been investigated by many researchers 

[29, 80, 97, 1041. By analyzing the information requirements of the task, Donald 

et al. [29] studied the furniture pushing by al team of mobiles and presen.ted several 

algorithms with varying amounts of global control, communication, and synchroniza- 

tion. Rus [89] developed a coordinated manipulation method for reorienting a polyg- 

onal object in a plane. Pereira et al. [80] addressed the problem of transporting a 

polygonal object from an initial position toward a goal position in R2 with multiple 

mobile agents. By integrating the paradigms of pushing and caging, a decentralized 

control algorithm was developed for this man.ipulation task. Sudsang et al. [97] stud- 

ied the problem of manipulating of a polygonal object by three disk-shaped robots, 

and proposed a feedback control method for these robots. The ideas of object closure 

[80, 1041 and inescapable configuration space [97] are closely related to  the concept of 

caging developed in [87]. Dynamic multi-agent cooperative pushing have been stud- 

ied in [50, 51, 521. Li and Payandeh [50] stuldied the dynamic model for multi-agent 

manipulation using nonlinear control theory. The local controllability is derived for 

different cooperation patterns. Li and Payandeh [51] and Li and Payandeh [52] stud- 

ied the planning problem for the cooperative dynamic manipulation. Feedback control 

schemes are designed to push the object tracking given trajectories, and optimal force 

distribution problems are solved using game theory. A detailed review on multi-agent 

distributed manipulation can be found in [56]. 

Particularly relevant to the work in Chapter 2 is path planning for car-like mobile 

robots. The main characteristic of wheeled robots is nonholonomic rolli-ng without 

a slipping constraint for the wheels on the floor, which forces the vehicle to move 
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tangentially to  its main axis. Controllabilit,y results and planners for this class of 

robots have been reported in [49]. The kinematic model of Dubins' car was first 

introduced by Dubins [30], who set the problem of characterizing the shortest paths 

for a particle moving forward in the plane with a constant linear velocity. Reeds 

and Shepp [85] considered the same problem and introduced the backwards motions. 

Pontryagin's Maximum Principle (PMP) has been used to  derive the opt,imal paths 

for Dubins' car and Reeds-Shepp's car. Balkcom and Mason [9] studied the optimal 

path planning problem for a bounded velocit,y differential drive vehicle, and derived 

the conditions required for an optimal trajectory. In the work reported in Chapter 2 

and also in [59], a simplified Dubins' car model with only two types of motion is used 

for the pushing task. Optimal control theory is employed to  derive the structure of 

the candidate optimal trajectories. 

1.2.2 Nonprehensile Manipulation 

Nonprehensile manipulation refers to as manipulation without grasping. This class 

of manipulation has different forms including pushing, throwing, striking, batting, 

rolling, and juggling. Most of the work on pushing reviewed above can be viewed ex- 

amples of nonprehensile manipulations. Nonprehensile manipulation has been studied 

for parts feeding and orienting tasks. Peshkin and Sanderson [81] used configuration 

maps to  find sequences of fences to  automatically orient a sliding part on a conveyor. 

It was showed that  two dimensional parts can be oriented as they move on a conveyor 

belt against a sequence of passive fences. 

Wiegley et al. [I051 proposed the first complete algorithm to  design such sequences 

for a given two dimensional convex polygonall part, and proposed a conjecture that a 

fence design exists t o  orient any 2D convex polygonal part defined by a sequence of 
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rational vertices. Berretty et al. [16] proved that any polygonal part can be oriented 

by a sequence of fences placed along a conveyor belt, thereby solving the conjecture 

of [105]. As a result, the authors proposed the first polynomial-time algorithm to 

compute the shortest sequence. 

Akella et al. [6] developed a planar parts feeding system named " lJOCn (one- 

joint-over-conveyor). By using a series of pushes, the 1JOC can orient a polygonal 

part from a random initial configuration on a conveyor to a desired configuration. 

Akella and Mason [4] described the use of partial information sensors along with a 

sequence of pushing operations to eliminate uncertainty in the orientation of parts. 

Rusaw et al. [go] used a force/torque sensor :For the parts orienting task. For certain 

part classes, the algorithm finds a shorter-len,gth worst-case plan than those returned 

by the algorithms of [4]. Berretty et al. [17] considered sensorless orientating of an 

asymmetric polyhedral part by a sequence of push actions. The method is a three- 

dimensional generalization of conveyor belts with fences consisting of a sequence of 

tilted plates with curved tips. Zhang et al. [107] studied parts orienting using a se- 

quence of fixed horizontal pins to  topple the parts as they move on a conveyor belt. 

Zhang and Goldberg [I061 Studied part alignment problem using Gripper Point Con- 

tacts, and showed that it is possible to  align parts during grasping using a standard 

parallel-jaw gripper. Erdmann and Mason [:32] studied the sensorless manipulation 

by tray-tilting. Aiyama et al. [2] used pivoting to manipulate objects. The manipu- 

lation was achieved by rotating the object around the contact point. Haxada et al. 

[38] studied rolling based manipulation method, and proposed a trajectory planning 

algorithm. Erdmann [3 11 explored the nonprehensile manipulation of planar convex 

objects using two flat palms, and based on a s-tatic analysis, the configuration space of 

the object is decomposed into regions of inva,riant dynamics, and plans are searched 
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in this simplified space. 

Lynch and Mason [66] explored dynamic nonprehensile manipulation, and demon- 

strated that low degree-of-freedom robots caa perform complex tasks through a se- 

quence of dynamic grasp, rolling, and free fllight. Srinivasa et al. [93] explored the 

control synthesis problem for a robot dynamically manipulating an object in the 

presence of multiple frictional contacts, and derived a constraint on the robot joint 

accelerations that need to  be satisfied to  obtain a desired contact mode an.d a desired 

dynamic motion of the object. Srinivasa et a,l. [93] studied the planning and control 

of dynamic contact manipulation. Blind et al. [19] designed a simple device consisting 

of a grid of retractable pins mounted on a vertical plate to manipulate polygonal ob- 

jects, and proposed a novel algorithm for part reorientation. Tabata and Aiyama [98] 

introduced tossing manipulation; a 1-DOF manipulator swings its arm to roll/slide an 

object on it, and then tosses it to  a goal position. Tossing manipulation is expanded 

in [99] to catch the tossed object without impact. Black and Lynch [18] studied the 

batting manipulation. Kriegman [45] studied part dropping, and defined the capture 

region for curved objects and polyhedra. [lo131 studied the part dropping for 3D ma- 

nipulation. Luntz et al. [63] explored distributed manipulation using a planar array 

of many small stationary elements; through cooperation, they were used. to manip- 

ulate larger objects. Murphey and Burdick [72] studied feedback contr,ol methods 

for distributed manipulation systems that  move objects via rolling and slipping point 

contacts. Moll et al. [71] studied the parts 'orienting problem for micro assemblies, 

and proposed a pair of manipulation primitives and a complete algorithm to uniquely 

orient any asymmetric part while maintaining contact without sensing. 

In one particular form of planar dynamic nonprehensile manipulation, the object 

does not always keep in contact with the manipulator. The motion of the object 
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consists of two phases: an  acceleration phase and a free sliding phase. [n the first 

phase, the object keeps contact with the mamipulator and it is accelerated. In the 

second phase, the object leaves the manipulaior, and slides freely on the supporting 

surface. Impact or impulse manipulation [3i', 411, releasing manipulation [log] and 

cooperative dynamic push [51, 54, 551 belong to this class. Huang and Mason [41] and 

Han and Park [37] studied the impulse planar manipulation problem. The problem 

was decomposed into impact and inverse sliding subproblems. Based on the impact 

model, Huang [40], and Han and Park [37] dleveloped the control strategies to accel- 

erate the object. Impact is a complex phenomenon which is challenging to  model 

and control. Routh [88] and Wang and Mason [I031 studied the dynamics of impact, 

where they considered the effects of friction in the Routh impact model. Partridge 

and Spong [77] applied this model to  predict the trajectory of an air hockey puck after 

impact with the table wall, and also presented a planner to  strike the puck and follow 

a desired trajectory. Spong [92] investigated the controllability of the air hockey puck 

subject to  impact from a mallet, and characterized the reachable subset of velocities 

achievable with a single impact. This result indicated that the object can not achieve 

an arbitrary velocity with a single impact. 

In order t o  generate a manipulation plan., Huang [40] proposed a multi-tap plan- 

ning method to  direct an object from an initial configuration t o  a goal configuration. 

Implicitly this approach also requires that the work space of the tapping device or 

robot can reach both the initial and final goal configurations. Zhu et al. [log] studied 

the releasing manipulation where objects are accelerated using one manipulator. Li 

and Payandeh [58] studied unconstrained dynamic manipulation for parts on a plane 

using a one joint robot. The object is accelerated by the swing motion of the one 

joint robot. 
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In the work reported in Chapter 5 and (Chapter 6, we explore the acceleration 

problem by using multi-agent cooperative pushing. By modeling the motion of the 

object under acceleration as a nonlinear system, the acceleration problem is solved as 

a nonlinear control problem. Nonlinear control theory and design has been an active 

research topic and has attracted a lot of attention [44, 461. Feedback linearization and 

the integrator backstepping design are two controller design techniques for nonlinear 

systems. The idea of feedback linearization is to  cancel the nonlinearities using the 

control input. The cancelation results in a linear system. On the other hand, back- 

stepping is a recursive procedure that interlaces the design of feedback control and 

the choice of Lyapunov function. It breaks the design problem of the full system into 

a sequence of design problems for lower order subsystems. 

These two methods both work for nonlinear systems that possess a certain struc- 

ture property with known nonlinearities. The concept of generalized force and back- 

stepping design technique has been used by Toussaint et al. [loo] t o  develop control 

laws for tracking of a nonlinear under-actuated surface vessel. Due t o  the pressure dis- 

tribution uncertainty, the friction force between the object and the supporting surface 

is not known exactly. As a result, Feedback linearization and integrator ba,ckstepping 

design techniques cannot be applied directly. Alternative methods are required to  

deal with the uncertainty. Robust control and sliding mode control are the candidate 

design methods for dealing with the uncertainty in a nonlinear system [44]. H" opti- 

mal control [14], a robust control design technique, is motivated by the development 

of zero-sum differential games. H" optimal control has been widely discussed for its 

robustness and capability of disturbance attenuation in linear and nonlinear control 

systems [13]. Motivated by this factor, the H" technique is used to  deal with the 

uncertainty of pressure distribution in the dynamic acceleration problem. Another 
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alternative is to estimate the uncertainty and cancel it. The approach proposed by 

Li and Payandeh [54] belongs to  this category. A neural network model is introduced 

to  model the nonlinearity associated with the pressure distribution uncertainty. With 

this model, a feedback controller is designed t o  cancel the effect of the uncertainty. 

1.2.3 Free Sliding Problem 

The free sliding problem is an essential part of impact or impulse manipulation, re- 

leasing manipulation and the cooperative dynamic push based manipulation. Solving 

the free sliding problem is to  determine the desired initial velocity for a sliding object. 

With this initial velocity, the object will achieve the required displacement. 

Voyenli and Eriksen [I021 first studied the dynamics of the sliding motion of disks 

and rings and investigated the properties of the motion such as stopping time of a slid- 

ing object. Owing to  the complex dynamics of free sliding objects, it is impossible to 

determine the desired initial velocity analytically to  achieve a specified displacement. 

Huang [40] mainly addressed the free sliding, problem for the classes of axisymmet- 

ric objects. Axisymmetric objects are those which have pressure distribution as a 

function of the radius of the objects only, and they always slide in a straight line. 

The planning problem is to  find the initial linear velocity along the line and the as- 

sociated rotational velocity. Huang [40] developed a numerical approach to  find the 

desired initial velocity. This method uses the monotonicity property of displacement 

with respect to initial velocity, and subdivides the 2-D initial velocity space in each 

iteration. However, the monotonicity property does not hold for non-axisymmetric 

objects, which limits the application of the impulse manipulation methods. Recently, 

the impulse manipulation has been extended t o  polygonal objects by [37]. Another 

set of qualitative dynamic characteristics of the motion were derived to relate the 
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initial velocities and the displacement of the polygonal object. Heuristic rules were 

developed to search for the desired initial velo'city in the 3-dimensional initial velocity 

space. 

In methods above, a qualitative relationship between the initial velocity and dis- 

placement were derived first, then a search algorithm was developed through bisection 

of the initial velocity space. Subsequently, si:mulation and experimental results were 

presented to verify their planning approaches. Zhu et al. [log] studied the charac- 

teristics of the free sliding problem for the releasing manipulation. As a result, a 

linear model was established to approximate the dynamics, and several learning con- 

trol schemes were implemented to  pose the object. Li and Payandeh [57] studied the 

free sliding problem for cooperative dynamic pushing, and proposed a new planning 

method. Instead of using only qualitative i:nformation and bisection-based search, 

quantitative information of the motion was used, and the optimization technique was 

employed to  find the desired initial velocities. This approach works for objects of 

arbitrary shapes and with more general pressure distributions. 

1.3 Thesis Contributions 

This thesis focuses on nonprehensile manipulation for the parts transfer task. The 

problem is studied under quasi-static and dynamic settings, and three nonprehen- 

sile manipulation methods are proposed. Control theory and numerical optimization 

techniques are used as tools for these developments. The novel contributions and 

significant findings of the thesis are summarized below. 

1. Parts transfer by an ability-limited mobile robot 
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a Introduce two stable push primitives, and prove the configuration control- 

lability of the object. 

a Using optimal control theory, prove that the optimal trajectories consist of 

at most, two switchings between t:hese two stable push primitives. 

a Implement an analytical planning :method t o  find the optimal solution and 

demonstrate the parts transfer method using a mobile robot. 

2. Parts t ransfer  v ia  two-agent cooperat ive  push  

Introduce two manipulation primitives, equilibrium push and non-equilibrium 

push for the parts transfer task; prove the configuration controllability of 

the object under the two-agent cooperative push. 

a Formulate the pushing process as a switched system, and develop a lin- 

ear programming formulation t o  generate a manipulation plan. A fully- 

analytical expression is derived to solve the planning problem. 

Implement and experimentally demonstrate the parts transfer :method us- 

ing a two-fingered gripper mounted on a MOTOMAN robot. 

3. Plann ing  of the initial velocities for free sliding objects  

a Develop a free boundary-value problem formulation for the :Free sliding 

problem. No motion characteristics is required in this formulation. 

a Transform the free boundary-value problem into a two-point boundary- 

value problem, and present three numerical algorithms to solve the plan- 

ning problem. 

a Implement a one-joint robotic system, and experimentally demo'nstrate the 

proposed planning met hod. 
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4. Cooperative dynamic push to accelerate the object 

Develop a dynamic model describing the motion of the object under a 

cooperative dynamic push. Two hierarchical methods are developed to  

solve the acceleration problem. 

In the case of known pressure distribution, a centralized planning method 

is developed by integration of the backstepping design technique and 

quadratic programming. 

0 In the case of the uncertain pressure distribution, a game theoretic ap- 

proach is proposed to  solve the acceleration problem. In the generalized 

force controller design level, a minimax controller is designed to achieve 

the tracking performance. In the coordination level, a cooperative game is 

solved to minimize the worst case interaction force between the agents and 

the object. 

Thesis Outline 

The remainder of this thesis is organized as follows: Chapter 2 dem~nstrat~es that the 

parts transfer task can be accomplished by an ability-limited mobile robot. Chapter 

3 introduces the concept of virtual fence and identifies the equilibrium and non- 

equilibrium push primitives. A fully analytilcal algorithm is then developed for the 

parts transfer task. Chapter 4 studies the free sliding planning problem. The free slid- 

ing problem is posed as a free boundary-value problem (FBVP). After transforming 

the FBVP into a two-point boundary-value [(TPBV) problem, three shooting meth- 

ods are developed to solve the planning problem. Chapter 5 is concerned with the 

cooperative acceleration problem under a known friction between the object and the 
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supporting surface, and presents a centralized planning method based on backstepping 

design technique and quadratic programming. Chapter 6 presents a game-theoretic 

approach to deal with the uncertainties in the acceleration problem studied in Chapter 

5. Finally, conclusions and a discussion of future work is given in Chapter 7. 

1.5 Publication Notes 

Several of the main ideas in this thesis have been published or submitted for publi- 

cation during the course of this research. The treatment of the parts transfer task 

by an ability-limited mobile robot appears in Chapter 2 is submitted in [59]. The 

concept of the virtual fence and two-agent lcooperative push method in Chapter 3 

were introduced in [60], and a complete description of the work is submitted in [61]. 

The planning method for the free sliding problem reported in Chapter 4: was given 

in part in [53] and [58], and in full in [57]. The material in Chapter 5 was reported 

in [51]. The game-theoretic planning method for the acceleration problem appears in 

Chapter 6 was reported in part in [55] and in full in [52]. 



Chapter 2 

Parts Transfer by an 

Ability-Limited Mobile 

Robot Push 

In this chapter, we consider an  ability-limited mobile robot for the parts transfer task, 

and study the planning problem. The mobile robot can only perform two push actions 

on the object that act as the manipulation primitives. We first study the configuration 

controllability of the object, and the purpose of the controllability analysis is to  verify 

whether these two manipulation primitives are sufficient for a manipulation task. 

With optimal control theory, we find the optimal sequence of these two push actions 

to  transfer an object from an initial configuration to  a goal configuration. 

The remainder of chapter is organized as follows. Section 2.1 presentas the push 

system, the controllability analysis, and the planning problem. Section 2.2 derives the 

structure for candidate optimal trajectories using optimal control theory. In Section 

2.3, a computational method is given for the optimal trajectory. Simulation and ex- 

perimental results are presented in Section 2.4 to  demonstrate the proposed planning 
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method. Section 2.5 discusses the results. 

2.1 The Push System and the Optimal Planning 

Problem 

(a) Rotation (b) Linear Normal Push 

Figure 2.1: Two push primitives 

Considering an object pushed by a mobile robot, the configuration q == (x,, yo, 8) 

describes the position and orientation of the object in the world frame. In order to  

predict the motion of the object, we use a stable push for the manipulation task. The 

concept of stable pushing was first introduced by Lynch and Mason [65]. Under a 

stable push, the object remains fixed to the manipulator. As a result, the object will 

have the same motion as the pushing robot. 

The motion of the pushed object is modeled as a nonlinear system [65] 
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where c = (C,, Cy, ij)T is the velocity of the pushed object in the object frame xoy, 

and it is the input to  the system. Under the stable push, the velocity of the pushed 

object is the same as the manipulator; therefore, the motion of the object can be 

controlled by varying the velocity of the manipulator. 

We consider the use of an ability-limited :mobile robot as the manipulator, which 

has two modes of motion for pushing an object. In one mode, the robot pushes the 

object moving along a fixed-radius circle wi-th a constant angular velocity, and we 

call this type of motion, R motion. In the other mode, the robot pushes the object 

forward with constant velocity, and we call this type of motion, P motion. These two 

manipulation primitives are illustrated in Fig. 2.1. 

For R motion, we choose the push velocity direction as c l  = (0,1, l)T in the 

object frame. Under R motion, the object rotates in a Counterclockwise (CCW) 

manner. By setting the magnitude of the an-gular velocity, this R motion will push 

an object along a unit-radius circle with angular velocity w = lrad/s. The push 

velocity direction of the R motion can also be represented by the center of rotation 

(COR) as COR(cl)  = ( - 1 , O )  in the object fi-ame. The COR can be represented in 

the world frame by a simple transformation. At a known configuration q = (x,, yo, Q), 

the position of the COR is computed as 

cos 19 - sin 0 

coRw(cl) = [;:]+[.i,, cos, ] [:I 
in the world frame. 

For P motion, the pushing velocity direction is chosen in the object frame as 

c:! = (0,1, O)T. This velocity direction defines a push along the y-axis in the object 

frame. The direction of the P motion is always tangential to  the R motion circle, and 
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we choose the speed of the P motion as one unit/s. Here, we assume that the selected 

pushing velocity directions c l  and c2 are inside the region found by the procedure 

STABLE [65]. The procedure STABLE returns a set of pushing motions which is 

guaranteed to  keep the part fixed to  the pusher as it moves. 

Therefore, these pushes belong to  the stab1.e push family. By increasing the friction 

coefficient between the agent and the object, this region can be enlarged t o  assure 

that the stable push always happens. Since th.e object will stick with the mobile robot 

during the stable push, push planning is equivalent to motion planning of the mobile 

robot. 

When applying the inputs cl and c2 to  :Eq. (2.1), we obtain the following two 

vector fields associated with R motion and P motion respectively: 

cos 6' - sine 0 0 - sin 6' 

XI = [si;e C Y ~  ; 1 [;I = [ C O ; ~  ] 
I cos 0 - sine 0 

X2 = sine cose 0 1 
With these two vector fields, the motion of the object in the world frame is governed 

by 
X I  for an R motion 

4 = {  X 2  for a P motion. 

These two types of motion are used for the parts transfer task. 

The manipulation process could be formulated as a switched system. The ab- 

stracted switched system consists of a continuous-time subsystem (2.5) and a rule that 

controls the switching between them. By introducing a switching control signal in a 

vector form as u = (ul,  u2), which takes v a h s  from a discrete set U = {(I, O) ,  (0, I)), 
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the switched system is written as 

- sin Q 

Q =  [ CO;Q ] u l +  I - sin Q 

cos Q 

0 

The object will undergo an R motion with u = (1, O ) ,  and a P motion with 

u = (0, I ) .  Since the pushed object tales either R motion or P motion, we have 

ul + u2 = 1. By using this fact, the system (2.6) is rewritten as 

- sin Q . (ul + u2) - sin 6' 

Q =  [ c o s Q - ~ + u 2 )  ] = [ CZQ ] 
Now the system has only one control input ul which takes scalar values of ul  = 0 

or u l  = 1. u l  controls the switching between these two sub-systems. Ebr a given 

switching sequence of ul ,  the trajectory of thle object is calculated by integrating the 

system equation (2.7). An example trajectory is shown in Fig. 2.2. The sequence of 

ul (type of motion) and its switching time instants entirely determine the trajectory of 

the object. For a given manipulation task, the role of planning is to find the sequence 

and the switching time instants between R and P motions. 

Before we study the planning problem, we need to  know whether these two manip- 

ulation primitives are sufficient for transferring an object between two configurations. 

In other words, the controllability of the stable pushing system (2.7) with ul  takes 

values as 0 or 1. We first present some notations for a pushing trajectory. A pushing 

trajectory is divided into adjacent segments of P and R motions. As an example, a 

rotate-push-rotate (RPR) trajectory is illustrated in Fig. 2.3. The initial position of 

the object is located at  0, and the goal positio'n is located a t  C with the orientation as 

shown in the figure. In this case, there are three segments of R and P motio~w, namely, 
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0 2 4 6 8 10 
time .t 

time t 

time t 

Figure 2.2: An example of a pushing trajectory with a known sequence of control 
signal ul.  ul takes {1,0,1,0}, and switchings occurs at  t = 2 sec., 5 sec., 8 sec.. The 
sequence is R P R P .  The position and orientaftion of the object are plotted. 

R(OA), P(AB),  and R(BC).  R (0A)  represents the R motion on the arc OA, P(AB)  

represents the P motion on the line AB, and R(BC) represents the R motion on the 

arc BC, The CORs of the R motions are COR1 = (xol, yol) and COR2 := (xO2, yo2) 

respectively. 

A mobile robot equipped with R motion and P motion has the ability to transfer 

an object between any pair of configurations i:n an obstacle-free plane. In other words, 

the stable pushing system (2.7) with inputs c l  or c2 is controllable. The cor~trollability 

result is summarized in the following theorem. 

Theorem 2.1 (Controllability for the stable push system) The control system 

(2.7) with input ul E (0, I} is controllable, i.e., for any given pair of initzal and goal 
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configurations i n  an  obstacle-free plane, there always exists a sequence of R and P 

motion to transfer the object between them. 

Figure 2.3: Trajectory of rotate-push-rotate(RPR). 

Proof: We claim that an object can be pushed to any goal configuration qf from any 

initial configuration qo by a sequence of RPR motions. For given initial configuration 

and goal configurations qo and q f ,  we can fi:nd two R motion circles with the COR 

located a t  CORl and COR2. The circle defined by CORl gives all con-figurations 

that can be reached from qo by an R motilon, and similarly the circle defined by 

COR2 gives all configurations from which q f  can be reached. If CORl and COR2 

are not identical, there will exist common lines tangential to  these two circles. With 

the following RPR sequence, the object will reach the goal configuration q f .  First, 

the object takes a R motion on the CORl circle; then, a P motion on the common 

tangential line to  the circle COR2. Finally, another R motion is required to  attain 

the goal configuration q f .  If the CORl and COR2 are identical, a single R motion on 

the CORl circle will be sufficient for transferring the object to the goal. Therefore, 

with a sequence of RPR motion, the mobile robot can push an object between any 

two configurations in an obstacle-free plane, tie., the system (2.7) is controllable. 
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We have proven the controllability of the proposed pushing system (2.7) with 

inputs as cl or cz using the methodology proposed in 1651. In [65], a condition was 

proposed to select velocity directions for cont~rollability. 

The controllability result of the system l(2.7) guarantees that an object can be 

transferred between any two configurations in an obstacle-free plane. On the other 

hand, the controllability means that multiple paths exist between any two configura- 

tions. For example, pushing an object between two configurations qo and lqj can also 

be accomplished by a push from qo + q, + qj. Where q, is another configuration 

that is not on the original path qo + qj. Due to  the simplicity of these push primi- 

tives, for given two configurations, it is possible to  find a sequence of pushing actions 

and trajectory geometrically, and the RPR sequence used in the controllability proof 

gives such an example. However, it is difficult; to  verify whether this trajectory is op- 

timal or not since multiple paths exist between any two configurations. Finding the 

optimal trajectory from the candidate trajectories is an interesting and challenging 

problem, which is the main objective of this chapter. Here, we define the optimal 

trajectory as the one that minimizes the time used for pushing the object to  the goal 

configuration. Optimal control theory is used as a tool for deriving the structure of 

candidate optimal trajectories. 

For the switched system (2.7), the optim(a1 planning is equivalent to  :finding the 

optimal switching sequence of ul E { O , l )  and switching time instants such that the 

states of the system (2.7) is controlled from a, given initial configuration q.0 to  a goal 

configuration qj with minimum time. The objective function is 

where tj is the ending time of the push. 
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Next we rewrite the optimal control problem in a more general form 1391. Con- 

sider the system equation (2.7) with the initial state q(0) = q o ,  and the end point 

constraints on the final goal configuration is (defined as a vector-valued fu:nction 

The performance index J is defined as an integral of a function M[q(t), ul (t),  t] 

and the objective is to minimize the manipula~tion time, and we set M[q(t), ul(t), t] = 

1. 

Solving the optimal control problem requires finding the number, order and time 

instants of the switching between the P and R motions. Instead of solving the opti- 

mal control problem explicitly by a numericad method, we seek to solve the problem 

analytically in two steps. For this purpose, optimal control theory is first used to 

determine the number of switchings and the candidate optimal trajectories, then an 

analytical method is developed to compute the switching time instants for the optimal 

trajectory. 

2.2 Analysis of the Optha1 Trajectory 

Considering the optimal control problern of' system (2.7) with performance index 

(2.10), we introduce the Lagrange multipliers X(t) to the performance index as follows 

where q = f (q ,  ul, t) is the state equation (2.'7), X(t) = (A1, Xz ,  X3)T are the Lagrange 

multipliers, and the associated Hamiltonian is defined as 
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For the system (2.7), the Hamiltonian is 

From optimal control theory [39], the Llagrange multipliers satisfy the adjoint 

equation 

Substituting Eq. (2.13) into the adjoint equation (2.14), we obtain 

Integrating Eq. (2.15) and solving for A, yields, 

By using the fact in Eq. (2.7) that x, = - sir1 9 and yo = cos 9, we get 

where (x,, yo) are the position of the object in the world frame, and el, c2, and CQ are 

integration constants which need to  be determined. 

After substituting Eq. (2.16) and Eq. (2.17) into the Hamiltonian equation (2.12), 

the Hamiltonian becomes 

H = 1 - cl sin 8 + c2 cos 9 -t- (el yo - czx, + c3)u1. (2.18) 

At a given configuration q = (x,, yo, 9) , th.e value of H is uniquely determined by 

the constants el, c2, CQ and the control ul.  



C h a ~ t e r  2. Parts Transfer bv an Abilitv-Limited Mobile Robot Push 

The derivative of the Hamiltonian H is computed as 

The Pontryagin's Maximum Principle tells us that the Hamiltonian H is constant 

along the optimal trajectory if the Harniltonian is not an explicit function of time 

[83]. Combined with the transversality condition H( t f )  = 0, we have 

on any optimal trajectories. 

From Eq. (2.7), we know that the object will undergo an R motion when ul = 1. 

The COR for this R motion is computed according to  Eq. (2.2) 

where (x, y, 0) is a configuration on the R moltion trajectory. 

By considering Eq. (2.21), the Hamiltonian (2.18) associated with the R motion 

has the form 

H = 1 + cljj - c2Z + CS. (2.22) 

For a P motion, ul = 0, and the Hamiltonian (2.18) is 

where 0 is the orientation of the object when P motion starts. 

The Hamiltonian has three constant para,meters cl, ca, and cg. In order to keep 

H = 0 along the optimal trajectories from t = 0 to  t f ,  the number of motio:n segments 

(the number of switchings between R motion and P motion) must be finite. The result 

on the maximum number of motion segments is summarized in the following theorem. 
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Theorem 2.2 (Maximum number of segments): Any trajectory containing more 

than three segments is not optimal. 

Proof: We use the fact that the Hamiltoniain H = 0 on any optimal trajectory, and 

prove the theorem by contradiction. 

Assume there exists an optimal trajectory with four segments. There are two 

possible 4-segment sequences, PRPR or RPRP, and each case is evaluated separately. 

We will prove that the constants cl, c2, and c3 do not exist for H = 0. 

(1) PRPR trajectory. 

Assume there is an optimal PRPR sequence described as: a P motion between 

the initial configuration (xo, yo, 00) and (xl ,  yl, Qo), an R motion between (xl ,  yl, 60) 

and (x2, y2, 01), another P motion between (x2, y2, 6,) and (x3, y3, el), and another R 

motion between (x3, y3, el) and the goal configuration (x f ,  yf , Qf ). None of the motion 

segments have zero length, otherwise, the se'quence will degrade to a sequence with 

less than four segments. 

From the analysis, we know that the Hami:ltonian H is equal to  zero for the optimal 

sequence. Depending on the type of motion, the Hamiltonian is computed according 

to  Eq. (2.22) or Eq. (2.23). The Hamiltonian associated with the first P motion is 

where 60 is the initial orientation of the object. The Hamiltonian associated with the 

first R motion is 

H = 1 + clyl - c;Q1 + ~3 = 0 (2.25) 

where (21, yl) is the COR 

21 = XI - C O S Q ~  

Y1 = y1 - s'in Qo 
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Similarly, the Hamiltonian associated with the second P motion is 

where O1 is the orientation of the object after the first R motion. The Ramiltonian 

associated with the second R motion is 

H = 1 + cly2 - c2Z2 + ~3 = 0 

where ( 3 2 ,  g2) is the COR 

In order to have the proposed trajectory PRPR be optimal, there has to  exist 

parameters cl, c2, and c3 such that Eqs. (2.24)-(2.28) are satisfied. The equations are 

rearranged in a matrix form as 

- sin00 cos 00 0 

- - 

By considering Eqs. (2.26) and (2.29),  the matrix on the right hand side of Eq. (2.30) 

is written as 
- sin Oo cos Oo 1 

yl - sin Oo -:cl + cos Oo 1 0 1 .  (2.31) 
- sin O1 cos O1 

y3 - sin O1 -x3 + cos O1 1 

Equation (2.30) has a solution for cl, c2, and c3 only if the row rank of A is equal or 

less than three. This requirement on A leads to the following relationship 

sin 01 - sin Oo - yl - 39 + sin O1 - sin Oo 
- -- 

cos 00 - cos o1 x3 - 21 + COS OO - COS 0, ' 
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After simplification, this relationship leads to  the following conditions 

The first part of this condition indicates th.at the rotation angle of the object in the 

first R motion is a multiple of 27r. It implies that the push directions for the P motions 

Pl and P2 are identical. The PRPR sequence cannot be optimal. The reason is that if 

we eliminate the first R motion, the object can reach the goal configuration with less 

time. This sequence of PRPR motion is illustrated in Fig. 2.4(a). The first R motion 

is redundant since with the sequence of P1P2R2, the object will reach the goal qf with 

less time. The second part of the condition (2.33) means that these two R motions 

share the same COR; this implies that the P motion does not exist between these two 

R motions. This class of sequence is illustrate'd in Fig. 2.4(b). Two R motions R1 and 

R2 are connected with each other, and the P motion P2 has zero length. Both cases 

require one segment having zero length. Thus, we can conclude that cl, c2, and cg do 

not exist to  satisfy Eq. (2.30), this contradicts the assumption that the Hamiltonian 

equals zero on the PRPR trajectory. Thus, any PRPR trajectory is not optimal. 

The same result can be proven for the RF'RP trajectory. 

The proof indicates that only trajectories with less than four segments can be 

candidates of the optimal trajectory. When a sequence consists of three segments, 

the matrix A becomes 

A = 

- sin& cos Qo 0 

-zl 1 

- sinQ1 cosQ1 0 
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Figure 2.4: Trajectory of PRPR with H = 0 

for PRP, or 

for RPR. By replacing A with Eq. (2.34) or Eq. (2.35), Eq. (2.30) will have a solution. 

In other words, there will exist cl, c2, and c3 to make the Hamiltonian (2.30) equal 

to zero. So we can conclude that trajectories with three or less segments could be 

candidates for the optimal trajectory. In the next section, a procedure is developed 

to  find the optimal trajectory from three-segment candidates. 

2.3 Computation of the Olptimal Trajectory 

We have proven that an optimal trajectory consists of a t  most three segments, and 

the three-segment optimal trajectory candidates are PRP, RPR or a sequence with 

less than three segments. In this section, we first explore some properties of RPR and 

PRP trajectories, then we propose a procedure to compute the optimal trajectory. 

Possible extensions to more general P and R motions are discussed in Section 2.3.4. 
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2.3.1 The Properties of an RPIt Trajectory 

Without loss of generality, we choose the initial configuration of the object as q o  = 

(0,0, O ) ,  and an RPR trajectory is described as follows: when 0 5 t 5 t l ,  the object 

starts with R motion, and switches to  P motion a t  t = t l ;  it continues as P motion until 

t = t2, then switches to R motion at  time t2; the object attains the goal configuration 

at  time t = t3. Corresponding t o  Fig. 2.3, three segments of the RPR trajectory 

are OA, AB, and BC. By integrating Eq. (:2.5), we get the following equation that 

describes the RPR motion: 

- 
cos (t) - 1 

sin (t) 

t I 
cos(tl) - 1 - sin(t l)( t  - t l )  

sin ( t l )  + cos ( t l ) ( t  - t l )  

t 1 

t - t2 + t l  

I 
-1 - sin (tl)(t2 - t l )  + C ~ S  (t  - t2) 

cos (tl)(t2 - t l )  + sin (t - t2) 

for 0 5 t 5 t l  

for tl  5 t 5 t2 (2.36) 

for t2 5 t 5 t3. 

Based on Eq. (2.36), we study the property of an RPR sequence. We begin by first 

presenting a proposition for an R motion. 

Proposition 2.3 If the rotation angle re of an R motion satisfies re 2 %7r, the pro- 

posed trajectory is not optimal. 

Proof: Assume there exists a R motion on the optimal trajectory with rotation angle 

re 2 27r. Considering the 27r periodicity of a circle, we can always find an alternative 

R motion with rotation angle re = re - 27r, such that the object attains the same goal 
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configuration with less time, which contradicts the proposed R motion that re 2 27r 

is optimal. 

Next we prove the uniqueness theorem of the RPR trajectory. 

Theorem 2.4 (Uniqueness of the RPR -trajectory) : For given initial and goal 

configurations, there exists a unique RPR trajectory satisfying the proposition 2.3. 

Proof: For the R motion starting from the initial configuration qo = (0,0, O) ,  the 

COR is located at  CORl = (- 1 , O ) .  For the F1 motion reaching the goal configuration 

(x f ,  yf , O f ) ,  the COR is located a t  COR2 = (:x - cos (Qf ), yf - sin (Qf )). Associated 

with each R motion, a unit-radius circle exists with its center a t  the COR; these circles 

describe the R motion. These circles are call.ed the initial circle and the goal circle. 

Under an R motion, the object moves along these circles in a CCW mann-er. 

Under a P motion, the object is pushed in the direction defined by the vector field 

X2,  which is tangential to  the initial circle. From Eq. (2.36), we know that the P 

motion of the object is parameterized as 

cos (t - 1. - sin ( t l )  (t  - t 1) 

sin ( t l )  + cos ( t l )  (t  - t l )  I (2.37) 

t 1 

where t l  is the starting time of the P motion. 

Since the angular velocity of the R motion. is set as w = 1 rad/s, the P motion will 

start at  the angle Q = tl  on the initial circle, and the push direction 

- sin (t l )  

defines the tangential line of the initial circle. 
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Because the orientation of the object does not change during the P motion, the 

departure angle from the initial circle and the arrival angle to  the goal circle are 

identical. The push direction is tangential to  the goal circle too. From analytical 

geometry, we know that for any two circles wjth the same radius and distinct centers, 

there exist two external common tangent lines. If we consider the direction of P motion 

as defined in Eq. (2.38), only one tangential line gives a valid P motion direction from 

the initial circle to  the goal circle (The other tangential line is from the goal circle 

to  the initial circle). This means that there exists only one P motion with the push 

direction defined as Eq. (2.38) that connects these two circles. Combining the result 

of Proposition 2.3, we know that the RPR trajectory is unique. 

In some cases, an RPR trajectory may be reduced to  RP  or R trajectory. When 

the initial configuration and goal configuration are all located on the initial circle, an 

R motion is sufficient to  transfer the object to the goal configuration. When the goal 

configuration is located on the push line of the P motion, the trajectory is an RP  

type. 

2.3.2 The Properties of a PRP Trajectory 

Since the R motion is always in a CCW manner, a PRP trajectory can not access all 

configurations in the configuration space, we are going to  study the reachable region 

for a PRP trajectory. 

Consider a PRP trajectory as follows: the object takes a P motion from t = 0 to  

t = t l ,  and an R motion from t = t l  to  t =: t2 ;  then another P motion from t2 to  

t = t3. Two example PRP trajectories with different goal orientations are shown in 
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Fig. 2.5. By integrating Eq. (2.5) for the F' motion and the R motion, we get the 

following equation describing the PRP trajectory 

for 0 5 t 5 tl, 

for tl 5 t 5 t2 (2.39) 

1 

cos (t2 - tl) - 1 - sin (t2 -. tl)(t - t2) 

tl + sin (t2 - tl) + cos (t2 -- t l ) ( t  - t2) for t 2  5 t L tg. 

t 2  - tl I 
The reachable position depends on the goal orientation. In the analysis, the goal 

orientation space is divided into two regions as 0 <_ Qf < a and T 5 Qf < 2a. The 

PRP trajectory in Fig. 2.5(a) represents the case of the final orientation Qf E (0, T),  

and the PRP trajectory in Fig. 2.5(b) represents the case of the final orientation 

Of E (a, 2a). Vectors od, and are the directions of P motions, and Vector 3 
is the arc for the R motion. The initial configuration of the object is qo = (0,0,0) , 

and the goal configuration is qf = (x f ,  yf, 6' f ) .  For the PRP trajectory, if the first 

P motion direction vector od and the second P motion direction vector .s are not 

parallel to  each other, there will exist an intersection point D on the Y axis. The 

Y-axis coordinate of D is computed as 

cos (6'f ) 
YD = Y f  + -- sill ( H ~ )  xf .  

For these two intersected lines od and z, there will exist four unit circles, 

tangential to  these lines which describe the R motion. Since the CCW R motions 

are used on the PRP  trajectory, only the circles on the left hand side of the Y-axis 
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are used to describe the R motion on the PRP trajectory. As seen from Fig. 2.5, 

one circle is above the second P motion line i%?', and we call it the upper  circle. The 

other one is below the line of z, and we call it the lower circle. ( x , ,  y,,) is the 

center of the upper circle, and (xcl,  ycl) is the center of the lower circle. It is clear 

that xcl = x,, = -1. y,l and y,, are computed separately for the cases of O f  < 7r and 

7r < O f  < 27r. The results are 

Y C L  = Y D  - tan ( 8  1 2 )  
for 0 < Q f  < 7r 

Y C ,  = Y D  + tan (7r/2 - 0 f / 2 )  

and 

Y C L  = Y D  - tan ( Q f / 2  - 7r/2) 
for 7r < O f  < 27r. 

YCU = Y D  + tan (T - Q f  1 2 )  

The position of these circles depends on the goal configuration of the o-bject. The 

Y-axis coordinate of the circles ycl, y,, are used to  characterize the reachable configu- 

rations by a PRP sequence. The following theorem gives the conditions of a reachable 

configuration. 

(a). 0 < Bf < s 

Figure 2.5: A 

(b). s < Bf < 27i 

sequence of PRP 
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Theo rem 2.5 (Reachable region for a PRP sequence): Starting from the initial 

configuration q = (0,0,0), there exists a unique optimal PRP trajectory that transfers 

the object to the goal configuration qf = (xf ,  yf, Q f )  if either of the following conditions 

are satisfied: 

a. If Qf E (O,T), the center of the lower circle (xcl, ycl) satisfies y,. > 0 and 

Xf 5 -1 + cos ( O f ) .  

b. If Of E (T, 2 ~ ) ,  the center of upper circle (x,,, y,,) satisfies y,, 2 0, and 

Xf 2 -1 + cos ( O f ) .  

c. If Qf = 0, Xf = 0, yf 2 0. 

d. If Of = T, Xf = -2. 

Proof:  

1. For I3 E (0, T),  under the condition y,. 2 0, we know that the center of the lower 

circle is above the X-axis, and JOAl 2: 0; therefore, there exists a P motion. 

From the condition xf 5 - 1 + cos (Qf ), we know that  1 BCl 2 0, therefore, there 

exists another P motion. Since Of > 0, there is an R motion; therefore, there is 

a PRP trajectory under condition (a). The uniqueness of this PRP trajectory 

comes from the uniqueness of the lower circle. 

2. For Of E (T, 2 ~ ) ,  under the condition y,, 2 0, the center of the upper circle is 

above the X-axis, and IOAJ 2 0; therefore, there exists a P motion. F'rom xf 2 

- 1 + cos ( O f ) ,  and 1 BCI > 0; therefore, there exists a P motion. Since Qf > 0, 

there is an R motion; therefore, there is a PRP  trajectory under condition (b). 

The uniqueness of the PRP trajectory comes from the uniqueness of the upper 

circle. 

3. For Qf = 0, the conditions in (c) gives a, unique P motion with 1 OAl = yf. 
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4. For Of = 7r and xf = -2 unit, there are three different type of majectories 

depending on the sign of yf. 

In the case of yf > 0, there is a PR  tra,jectory with P motion with lOAl = yf,  

then an R motion with the length 1 ABl = 7r unit. There also exists an infinite 

number of PRP trajectories to attain the goal configuration. For the PRP 

trajectory, the object will first have a P motion with length lOAl > yf,  then an 

R motion with length 1 ABl = 7r unit, and finally another P motion with length 

1 BCl > 0. However, these classes of PR,P trajectories need more time to  attain 

the goal. PR  motion gives the unique o,ptimal trajectory. 

In the case of yf < 0, PR  gives the unique optimal trajectory. On this trajectory, 

the R motion has the length of 1 ABl = 7r, the length of P motion is 1 BCl = - yf. 

There also exist PRP trajectories with lOAl > 0, this class of PRP trajectories 

are not optimal since it takes a longer time to  attain the goal. 

In the case of yf = 0, there is a unique R trajectory and it is optimal. There 

are also PR trajectories with lOAl > 0, and they are not optimal. 

2.3.3 Computational Procedure of the Optimal Trajectory 

For given initial and goal configurations, there will always exist a RPR trajectory. 

If one of the conditions in Theorem 2.5 is satisfied, a PRP trajectory will also exist. 

These two classes of trajectories will be the candidates for the optimal trajectory, and 

the one with the shortest travel time is the optimal trajectory. The RPR and PRP 

trajectories are computed as follows. 
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RPR trajectory 

Theorem 2.4 tells us that for given initial and goal configurations, there exists only one 

push direction such that the object is pushed from the initial circle to the goal circle. 

The direction is defined by the common external tangent line between these two circles. 

Since the radii of these two circles are identical, the push direction line is parallel to 

the line connected CORl = ( - 1 , O )  and COR2 = (xf - cos(Of),yf - sin(Of)). By 

considering this push direction, the departure angle a for the P motion satisfies the 

following conditions 

Xf - COS ( O f )  + 1 
sin (6) = - 

J(x - cos (Of) )2  + (yf - sin (Bf) )2  

yf -. sin (Of)  
cos (a) = 

J(xf - cos (Of) )?  + (yf - sin 

The length for the P motion equals the distance between these two CORs. After 

finding the departure angle 6, by using the fact that the angular velocity w = 1 

rad/s, the switching time instants are computed as 

where tl is the switching time between the first R motion and the first P motion, t2 is 

the switching time between the P motion and the second R motion, and t3 is the time 

that the object attains the goal configuration. The corresponding RPR t:raj ectory is 

found from Eq. (2.36). 

PRP trajectory 

For a given goal configuration qf = (xf ,  yf, O f ) ,  if one of the conditions in Theorem 

2.5 is satisfied, there is a PRP trajectory. The switching time instants for the PRP 
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motion are computed differently for the cases (a)-(d) in Theorem 2.5. In all cases, 

t l ,  t2 and t3 are defined as: tl is the switching time between the first P rnotion and 

the first R motion, t2 is the switching time b'etween the R motion and the second P 

motion, and tg is the time that the object attains the goal configuration. 

1. Case (a)-PRP trajectory with Qf E (O ,7 r )  

t l  = Ycl 

t2 = t l  + Qf 

t3 = t2 + (xf - cosQf + + (yf - t l  - ~ i n Q f ) ~ .  

2. Case (b)-PRP trajectory with Qf E (7r, 27r) 

3. Case (c)-P trajectory with Qf = 0 

4. Case (d)-PR/R/RP trajectory with Qf := 7r 

For PR trajectory 

For R trajectory 
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For RP trajectory 

tl = 0 

t2 = 77' (2.49) 

t3 = 77'-  Yf .  

The overall planning procedure is as follows: For given initial and goal config- 

urations, we first compute the RPR and PR'P trajectories. The candidate optimal 

RPR trajectory is computed according to Eq. (2.36), and the candidate optimal PRP 

trajectory is computed according to Eq. (2.:39). The optimal trajectory is then se- 

lected from the candidate PRP and RPR trajectories with the minimal time t3. Any 

segments may have zero length. 

2.3.4 Extensions to General R and P Motions 

We have studied a special class of stable push. manipulation planning problems. Dur- 

ing the manipulation process, the radius of th.e R motion is set as r = 1 unit, and the 

angular velocity is w = 1 rad/s. Moreover, the push speed for the P motion equals to 

one unit/s. The computation procedure of the optimal trajectory is developed based 

on these assumptions. The proposed proced.ure can be used to plan a stable push 

with more general R motion and P motion segments. As a generalization, the vector 

fields associated with R motion and P motion can take the following values, 

where r > 0 is a constant radius for the R motion, w > 0 is the angular velocity used 

for the R motion, and vl > 0 is the pushing velocity for the P motion. 
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The corresponding switched system is written as 

-r sin 6' - sin 13 

(2.52) 

When ul = I, the object undergoes an R motion with a fixed radius r with the angular 

velocity w ;  when ul = 0, the object takes a P' motion with the velocity ul. 

For the system (2.52), the same procedure presented in Section 2.2 can be used to  

derive the structure of the optimal trajectory. It will arrive at  the same conclusion 

as H = 0 on the optimal trajectory, and the candidate optimal trajectories have 

at  most three motion segments. A similar procedure can be developed to  compute 

the optimal trajectory. However,the resulting optimal trajectory will be different for 

different parameters r , w and vl. 

Manipulation Examples and 

Experimental Results 

In this section, we demonstrate and verify the proposed method by performing the 

parts transfer task on a triangular object. The task is performed by an ability-limited 

mobile robot, and we assume that the part does not slide with respect to  the robot. 

The initial configuration is chosen as q o  = (0,0,0) .  During the manipulation, the 

radius of the P motion is set to one unit, and the angular velocity is w = 1 rad/s, the 

pushing velocity for P motion is set to one unit/s. Optimal trajectory candidates are 

computed using the method proposed in the previous section. 

In the first example, the goal configuration is chosen as qf = (5,0, F). The 

condition (b) of Theorem 2.5 is satisfied, and both PRP and RPR trajectories exist 

as the candidates for the optimal trajectory. The computed RPR and P l iP  optimal 
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RPR trajectory 
I I I 

Figure 2.6: Optimal RPR trajectory. The g:rey triangular block located at (0,O) is 
the initial configuration. The grey triangular block located at (5,O) is the goal config- 
uration. Starting from the initial configuration, the triangles illustrate the sequence 
of object positions during RPR pushes. 

trajectories are shown in Fig. 2.6-2.7. For tthe RPR candidate trajector,~, the total 

manipulation time is t3 = 17.05 sec.; For t.he candidate PRP trajectory, the total 

manipulation time is tg = 11.71 sec., the length of R motion is n/2, so we know that 

the PRP sequence is the optimal trajectory. 

In the second example, the goal configuration is located at qf = (5,5, :). Neither 

condition in Theorem 2.5 holds; a PRP trajectory does not exist. There exists only 

an RPR trajectory as the optimal candidate. The planned optimal RPR trajectory 

is shown in Fig. 2.8. 

For the experiment, we used a mobile robot developed in the Experimental 
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PRP trajectory 
I I I I , I 

Figure 2.7: Optimal PRP trajectory. The grey triangular block located at (0,O) is 
the initial configuration. The grey triangular block located at (5,O) is the goal config- 
uration. Starting from the initial configuratilon, the triangles illustrate the sequence 
of object positions during PRP pushes. 
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RPR trajectory 

Figure 2.8: Optimal RPR trajectory. The grey triangular block located at  (0,O) is 
the initial configuration. The grey triangular block located a t  (5,5) is the goal config- 
uration. Starting from the initial configuration, the triangles illustrate the sequence 
of object position during RPR pushes. 
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Figure 2.9: Mobile robot for experiments. 
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Simulated optimal RPR trajectory 

Figure 2.10: Planned optimal RPR trajectory. The grey triangular block located at 
(0,O) is the initial configuration. The grey triangular block located at  (-2.3, -2.7) is 
the goal configuration. Starting from the initial configuration, the triang1,es illustrate 
the sequence of object positions during RPR pushes. 
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Figure 2.11: Optimal trajectory executed by i2 mobile robot. (a) depicts the snapshot 
that the robot starts the first R motion, (b) depicts the snapshot that the robot starts 
the P motion, (c) depicts the sna,pshot that the robot sta,rts the second R motion, (d) 
depicts the snapshot that the robot z,ttains the goal. 



Chapter 2. Parts Transfer by an Ability-Limited Mobile Robot Push 

Robotics Laboratory at  Simon F'raser University, and a picture of the mobile robot is 

shown in Fig. 2.9. This robot adapts the bj-wheel configuration for robotic hockey 

applications. This mobile robot uses two DC geared motors to control its two wheels. 

The mobile robot receives control signals from a station through a receiver. An on- 

board controller decodes the signals and assigns various voltage levels t o  the motors. 

For verification purposes, simple signals between the station and the mobile robot are 

used to  turn the motors on and off. The two motors are given the same voltage for a 

P motion, and given different voltages for an R motion. With these two modes, the 

robot pushes a triangular object t o  track the planned optimal trajectory. In order to  

have a stable push, we stick a piece of sand paper on the contact edge in order to  

increase the friction between the object and the mobile robot. 

In the experiment, the final goal configuration of the object is chosen as qf = 

(-2.3, -2 .7 ,7~ /4) .  By using the planning method proposed in the previous section, 

we discovered that there is no PRP trajectory; thus, the RPR sequence gives the 

optimal trajectory, and the planned optimal trajectory is shown in Fig. 2.10. By 

varying the speed of the motors, the mobile robot performs an R motion with a 

radius r = 15 cm. We consider r = 15 cm as one unit, and scaled the planned optimal 

trajectory by a factor of 15 as well. The optimal trajectory is painted as a black 

line. Snapshots of the optimal trajectory performed by the robot are shown in Fig. 

2.11. The mobile robot closely tracks the optimal trajectory, and demonstrates that a 

mobile robot equipped with only simple actions is capable of the parts transfer task. 

2.5 Discussion 

In this chapter, we explored the parts transfer task by an ability-limited mobile robot. 

We discovered that by coordinating the simple manipulation primitives, a mobile robot 
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can transfer an object between any two configurations in an obstacle-free plane. The 

time optimal trajectory consists of less than four segments of P motion and R motion. 

In this study, the parts transfer task is performed by a robot with an R and a 

P motion primitives. Actually, an ability-limited mobile robot equipped with two R 

motion primitives can also perform the parts transfer task. 

As a limitation, the ability-limited mobile robot cannot push the object track- 

ing an arbitrary trajectory. Therefore, the proposed manipulation method may fail 

in an environment with obstacles. In an environment with obstacles, if a push se- 

quence exists, the optimal trajectory may consist of more than three segments. In 

the obstacle-free plane, the dimension and geometric shape of the pushing robot have 

no effect on the manipulation process since the robot can move in the plane freely. 

However, in the environment with obstacles,, the mobile robot may collide with the 

obstacles. 

The ability-limited assumption on the mobile robot may not be realistic. However, 

it provides an elegant example to  illustrate the spirit of the minimalism in robotic 

manipulation. The result confirms that, by using the task mechanics and planning, 

a simple set of manipulation primitives can fulfill a manipulation task generally per- 

formed by a complex robot. 



Chapter 3 

Parts Transfer by Two-agent 

Cooperative Push 

In this chapter, we introduce the concept of virtual fence for two-agent cooperative 

push, and we study the parts transfer problenn for convex objects. This parts transfer 

problem has been studied by Akella and Mason [3] for polygonal objects. A linear 

normal push by a physical fence was used as a manipulation primitive. By using the 

knowledge of the mechanics for a single push action, a planner has been developed 

using a linear programming technique. Fence based pushing requires the object to 

have at  least one flat edge in order to align with the fence. Moreover, a single normal 

push can eliminate only the orientation uncertainty, but not the position uncertainty. 

In order to  address these inherent shortcomings of fence based manipulation, and 

expand the domain of push based manipulation, this chapter explores the possibility 

of using two-agent cooperative push with two point contacts. 

By adjusting the spatial relationship between two pushing agents, the object can 

be pushed to an equilibrium configuration and sustain at  this configuration. This is 

like the reorient push used in [3], where the object is aligned with the fence with a 
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known configuration after a push. The catching behavior has also been investigated in 

[21] by developing a numerical procedure to  find linear pushing motions of a polygon 

such that the polygon attains an equilibrium configuration. By using a two-agent 

cooperative push, non-polygonal parts can also be manipulated. The position and 

orientation uncertainties can be simultaneous:ly reduced by the push actions. The two- 

agent cooperative push can be performed by two mobile robots [78], a two-fingered 

adjustable griper, or an array of adjustable pins over a conveyer belt [75]. 

In this chapter, we study the following three issues: 

1. Finding virtual edges for a given convex object and spatial relationship between 

agents. 

2. Proving that the configuration of an object is controllable with 21, two-agent 

cooperative push. That is, there always exists a sequence of pushing actions to  

transfer the object between any two configurations. 

3. Planning sequences of pushes for simulltaneously positioning and orienting ob- 

jects in an obstacle free plane. 

The remainder of this chapter is organized as follows. Section 3.1 proposes the 

manipulation problem of two-agent cooperative push, and introduces equilibrium and 

non-equilibrium push primitives. Section 3.2 describes a method for finding the virtual 

edges of a convex object. Section 3.3 characterizes the net motion of the object 

under these two classes of pushes. Section 3.4 formulates the planning problem in 

the framework of a switched system and studies the controllability of the system. 

Section 3.5 describes a planning method for two-agent cooperative push, and provides 

a fully analytical solution. Section 3.6 provides some manipulation examples and 

experimental results. Section 3.7 gives a discussion. 
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Problem Definition 

In this section, we introduce the method of two-agent cooperative push, and identify 

push primitives for the parts transfer task. 

3.1.1 Two-agent Cooperative Push 

In a two-agent cooperative push, the agents make point contacts with the object. A 

two-agent cooperative push is specified by the spatial relationship between agents, 

the push direction related to  the object, and the push distance. During a single 

push, the agents are coordinated t o  move parallel to  each other a t  an identical speed. 

The spatial relationship does not change during the pushing action. By carefully 

selecting the spatial relationship between agents, position and direction of push, the 

object will be trapped by the agents. The trapped object will continue to  slide and 

rotate under the constraint of these two agents. Finally, the object will rest at  a 

known equilibrium orientation. Equilibrium push and non-equilibrium push are used 

as manipulation primitives for the manipulation task. Equilibrium push only changes 

the position of the object, while non-equilibrium push changes position and orientation 

simultaneously. A manipulation example by two-agent cooperative push is shown in 

Fig. 3.1. In this example, the configurations are numbered in sequence; the zeroth 

and the third configurations are the initial anld goal configurations respectively. Three 

pushes are used in this manipulation task. The first two configurations a,re achieved 

by non-equilibrium pushes, while the last one is achieved by an equilibrium push. For 

each pushing action, the positions of agents, the direction and distance of push are 

controlled. 

The following assumptions are made for the analysis: 

1. The objects are convex, polygons or objects with a general curved boundary. 
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Goal 

Figure 3.1: A sequence of a two-agent coopera,tive push to  transfer a triangular object 
from an initial configuration to  a goal configuration in the world coordinate XwOYw. 
XOY defines the agent frame, and xoy is the object frame. 
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2. The geometry and the center of mass (COM) of the object are known. 

3. Manipulations are carried out in an obstacle-free horizontal plane. The motion 

is quasi-static. 

4. The point contacts between the agents and the object are frictionless, and the 

object will slide and rotate between these two agents as far as possible, and it 

arrives a t  an orientation with the lowest COM in the agent frame, and remains 

at  this orientation, which we call this orientation as the equilibrium orientation. 

5 .  Agents are position controlled and the motion of the agents can be synchronized. 

6. Supporting friction between the surface and the object is uniform, and described 

by Coulomb's law of friction. 

Some of these assumptions have been used in [3] to analyze single fence pushing 

actions. Assumption (4) has been used in [lo] to plan the two-fingered pushing action 

for reducing the orient at  ion uncertainty. 

3.1.2 TypesofPushes 

The motion of agents and the contact conditions between the agents and. the object 

determine the motion of the pushed object. When two agents both make contact 

with the object, these contact points, direction of push along with the COM in the 

agent frame will determine the motion of the :pushed object. We identify the following 

classes of pushes. 

I. complete push: Two agents move parallel to push the object with point contact 

along a specified direction for a certain distance, the object remain:; in contact 
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with these two agents. The net relative motion between the object and the 

agents is known before and after the push. (Fig. 3.2) 

2. Incomplete push: The object loses contact with one agent during the push, the 

final configuration of the object is unknown. (Fig. 3.3) 

Figure 3.2: Complete pushes. (a) Equilibrium push. (b). Non-equilibrium push. The 
dot indicates the center of mass. 

Figure 3.3: Incomplete pushes. (a) COM outside agents. (b). Pushing a8t the same 
edge. The dot indicates the center of mass. 

In order to avoid uncertainty in the object's configuration after a push, we use 

only complete push for the parts transfer task. Based on the spatial relationship 
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between the agents, position and direction of a complete push, the complete pushes 

are classified into two categories(Fig. 3.2): 

1. equilibrium push: If a push is performed at  an equilibrium orientation, and it 

does not affect the orientation of the object, this push is called as an equilibrium 

push. In this situation, the two-agent operative push is equivalent to  a push 

performed at  an edge created by the 1i:ne between two contact points. We call 

this edge a virtual stable edge, and a virtual fence is formulated between these 

two agents. The relationship between a two-agent cooperative push a2d a virtual 

fence push is shown in Fig. 3.4. The motion of an  ellipsoid object pushed by 

agents with point contacts is the same as that of a cut ellipsoid object pushed 

by a fence. 

2. non-equilibrium push: If a complete push begins at  a non-equilibrium orien- 

tation, the object will rotate to  an eq-uilibrium orientation by the end of the 

push. This class of pushes changes the orientation and position of the object 

simultaneously. 

Similar push primitives named translation push and reorient push have been in- 

troduced in physical fence based manipulation [3]. 

Figure 3.4: Virtual fence. (a) Two-agent cooperative push. (b). Virtual fence push. 



Chapter 3. Parts Transfer b.y Two-agen t Cooperative Push 

3.2 Locating the Virtual Edges 

In this section, we are going t o  study the fcrmation of a virtual fence, and identify 

equilibrium push and non-equilibrium push for a convex object with known geometry 

under a two-agent cooperative push. For this purpose, we first present a parametric 

representation of a convex object. Then vie find the equilibrium orientation and 

virtual stable edge of the object in the agent frame. Finally, we identify equilibrium 

push and non-equilibrium push. 

3.2.1 Parametric Representatio~n of a Convex Object 

The boundary of a convex object in a plane will be represented by a set of parametric 

equations. The boundary of a 2-D object can be described by parametric equations 

as follows 

where (x(t),  y(t)) gives the coordinate of the boundary curve at  the parameter t, 

f (.), g( . )  are functions representing the shape of the object. 

As an example, let us assume the manipulated object is a convex polygon with 

N+1 vertices as Vo, Vl, . - , VN (Fig. 3.5). The coordinates of these vertices are given 

by (xO, yo), (xl, yl), . - . , (xi, yi), . . - , (xN, yN) in the local object frame xoy attached at  

the COM. Each edge can be represented by a line segment between two vertices 

and the edges are labeled as El, E2, . . . , where the edge Ei (1 < i 5 N) is 

parameterized as 

and the edge ENS1 between the vertices VN (and Vo is represented as 
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Figure 3.5: Two agents push a polygonal object 
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where (x, y )  gives the position of a point on the edge i of the polygon. 

The length of edge Ei is calculated as 

and the perimeter of the polygon is the summation of the length for all edges as 

Now we can represent the polygon in parametric form. This parametrization can 

be interpreted as a particle traveling along thle boundary of the polygon with a period 

of one unit, and it travels at  a constant speed p = Lls.  When t = 0, the particle is 

located a t  vertex Vo, and it travels back to ITo a t  time t = 1. The traveling velocity 

on an edge depends on the geometry of the edge, and the velocity is giver1 by 

The position of the particle on the boundary of the object is uniquely determined by 

the parameter t .  Denote the total traveling time on edge Ei as TEi 

Assign TK as the time that the particle arrives a t  vertex V,, and TK is the total time 

required for the particle to  travel from Vo to  V,, and it is computed as 

and considering the start point, we get Th = 0. 

By comparing the parameter t with TK,  we can determine the edge on. which the 

particle is located at  the instant of parameter t .  For example, if t E [TKPl TK] for 
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a given i, the particle is on edge Em. The polygon can be represented by piecewise 

parametric equations as, 

where ( x ( t ) ,  y ( t ) )  gives the position of a point on edge Ei at  parameter t ,  and 

(x iPl ,  yi-1) is the position of vertex x-l in the object frame xoy. 

Convex objects with a more general boundary can also be represented by the 

parametric equations. 

3.2.2 Finding the Equilibrium Orient at ions 

In this section, we are going to  use the para:metric formulation to study the contact 

condition between the agents and the object. We first find the equilibrium orientations 

of the object in the agent frame. Then we identify the equilibrium and non-equilibrium 

pushes. As shown in Fig. 3.5, two agents push, the object with their tips All  A2. Assign 

the agent frame XOY at  the tip Al. Two agents move along the positive direction of 

the Y-axis of the agent frame with an identilcal speed. Since the spatial relationship 

between these agents does not change during one pushing action, the position (xa2,  yu2) 

of A2 is sufficient to  specify the geometrical relationship of these two agents. A2 is 

located at  the right hand side of Al which requires xu2 > 0. Assume the tip Al 

makes contact with the object at  point P represented by (x,, y,) in the object frame 

xoy, A2 makes contact a t  Q with coordinate (x,, y,). These contact points can be 

represented in parametric form as stated in Eq. (3.6) with parameter:; t ,  and t,. 

If we know the position of contact point P ,  the position of contact point Q can be 

uniquely determined by using the spatial relationship and the parametric equation 

(3.6). The distance for these two contact points ( xp ( tp ) ,  yp(tp)) and (x,(t,), y,(t,)) 
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can be computed as 

If we know one contact point P, the coordinates of the other contact point must 

satisfy the following equation 

By convexity of the boundary, we know that d(t,, t,) is a monotonic increasing function 

in the region close to  t,. Therefore, a one-di~mensional search algorithm can be used 

to  determine the parameter t, such that Eq. (3.8) is satisfied. Substitu-ting t, into 

Eq. (3.6), we can find the contact point (z,, g,). 

After locating the contact points P and Q,  the object orientation 8, in the agent 

frame X O Y  can be uniquely determined. 

where the angle p is the angle between P Q  and the x-axis of the object frame zoy, 

and a specifies the angle between the line AlA2 and the X-axis of the X O Y  frame. 

The position of the object (z,, yo) in the ;agent frame X O Y  is computed as 

cos Q, - sin 8, 

sin 8, cos 8, 

The configuration of the object is specified b;y (z,, yo, 8,) in the agent frame XOY. 

In parametric formulation, for a given contact point with parameter t, E [0 11, 

the parameter t, of the other contact point can be computed using Eq. (3.8). The 

associated configuration of the object in contact is computed by Eq. (3.1.0) and Eq. 

(3.9). 
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The position of COM in the frame XOY is used to  determine whether the current 

push is a complete push or an incomplete push. For this purpose, we introduce 

depth and width functions for a given pair of contact points t, and t,. The depth 

function r d ( t p )  is defined as the perpendicular distance from the COMI to  the X- 

axis, and r d ( t p )  = yo. The width function r w ( t p )  is defined as the perpendicular 

distance from the COM to  the Y-axis, and r w ( t p )  = z,. The width function is used 

to determine whether a push is stable or not. A complete push happens under the 

following conditions 

The first condition stipulates that the COM lies between two pushing agents. The 

second condition indicates that the slopes for the two contact edges have different 

signs. The convexity of the object implies that the object will be trapped by the 

agents. This conditions rule out the cases of the incomplete pushes thar; the COM 

lies outside the range of the agent and the push on a single edge. These two cases of 

incomplete pushes are illustrated in Fig. 3.3. When the conditions in Eq. (3.11) are 

satisfied, and by using the assumption 4, we known a complete push will happen. In 

the case of a complete push, the depth function r d ( t p )  determines whether the current 

orientation is an equilibrium orientation or not. If a local minimum of the depth 

function r d ( t p )  occurs at  the contact points t,,, with tip Al, and t,, with tip A2, the 

current orientation will be an equilibrium oritentation. 

The line between these two contact points defines a virtual stable edge, and AlA2 

forms the virtual fence for this equilibrium orientation. The virtual fence along with 

the direction of push specify the equilibrium push. The orientation of the object will 

not change during an equilibrium push. As a result, the position and orientation of 

the agent frame will uniquely determine the configuration of the object. 
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3.3 Characterizing the Pushes 

For the virtual edge found in Section 3.2.2, the agents can only perform an equilibrium 

or a non-equilibrium push a t  certain contact positions and pushing directions. In 

order to perform a desired push at  a chosen virtual edge, we need to determine 

and set up the position and orientation of the agent frame X O Y  respect to  the 

object. For this purpose, we introduce the world frame XwOwYw as shown in Fig. 

3.1. The configuration of the object is given by (x, y, 0) in the world frame, and the 

configuration of the agents is defined by the position and orientation of agent frame 

XOY, denoted as (X, Y, 0,). In this section, we first determine the configuration of 

the agent frame required for performing the equilibrium and non-equilibrium pushes, 

then we derive separate equations that govern the motion of the object under the 

equilibrium push and the non-equilibrium push. 

3.3.1 Performing the Equi1ibriu.m Push 

For a given spatial relationship, the agents can only perform an equilibrium push a t  

a configuration where the virtual fence is formed. For a given object configuration 

(x, y, 0) and a known virtual fence formation, the configuration of the agent frame 

X O Y  will be uniquely determined. 

Assume that the configuration of the pushed object is (x(k), y(k) , O(k)) before the 

k-th push, and a virtual edge is formulated between two contact points (x,,, y,,) and 

(x,,, y,,) on the boundary of the object. The agent frame XOY is placed at  point 

(x,,, y,,) when the agents make contact at  these two points. In the world frame, the 

position of the XOY frame for the k-th push is computed as 

x ( k >  cos 8 1: k) - sin 8 (k) [ w ]  = [ tr:; I + [ sin $(Ic) cos e(k) 
(3.12) 
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The X O Y  frame's orientation Q,(k) is computed as 

e,(q = e ( q  - e,. (3.13) 

The direction of push $,(k) is along the Y-axis of the X O Y  frame, ie., 

If we position the frame X O Y  at  position (X (k), Y(k)) with the orientation as 6,(k), 

and push the object along the direction specified as Eq. (3.14), the push. performed 

by the agents will be an equilibrium push. 

Under the equilibrium push, the motion of the object is governed by the following 

equation 

- sin 19, (k) 

cos 19, (k) 

where (x(k + 1), y(k + 1)' Q(k + 1)) is the configuration of the object after the k-th 

push, and me(k) 2 0 is the distance of the k-th equilibrium push along the direction 

specified as Eq. (3.14). The push distance me(k) 2 0 is the control parameter we 

need to  design. 

From Eq. (3. 15)' we specify the unit push direction vector vk of the k-th equilib- 

rium push as - 
- sin 6, (k) 

cos t3, (k) 

and the push direction vector will be used in Section 3.4.2 to  analyze the configuration 

controllability of an object under the two-agent cooperative push. 

3.3.2 Performing the Non-equillibrium Push 

For a given spatial relationship between the agents, a non-equilibrium push on a 

virtual edge is specified by the location of t:he first contact point, the direction and 
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distance of the push. In this section, we first discuss the method of estimating clock- 

wise (CW) and counterclockwise (CCW) m,aximum reorientation angles for a non- 

equilibrium push, and the associated direction and contact point for the push action. 

Then, we estimate the minimum push distance for a desired reorientation angle. With 

these parameters, we derive the equation thak describes the net motion of the object 

under a non-equilibrium push. 

Finding t h e  M a x i m u m  Reorienta t ion ALngles 

For each virtual edge, we need to find the C!W and CCW maximum reorient angles 

such that the virtual fence can be formed by a non-equilibrium push. During a stable 

non-equilibrium push, one agent first pushes the object to  rotate, then the other 

agent makes contact with the object. fin all.^, the object arrives at  the equilibrium 

orientation, and the virtual edge is generated. By using Mason's voting theorem [68], 

the sense of rotation of the object can be identified. If the agent on the left makes 

contact first, in order to  catch the object, the object must rotate CW. If the agent 

on the right makes contact first, for it t o  catch the object, the object must rotate 

CCW. The voting theorem has been used in [lo] to  develop the pushing space. The 

pushing space is introduced t o  construct the bounded regions such that the contact 

points inside these regions guarantee the ob'ject will be caught between the fingers 

as the pushing operation proceeds. This result can be used to identify the maximum 

CW reorientation angle 8- and CCW angle 19+. We can pick any of angles less than 

the maximum reorientation angle, as well as -the direction of push and location of the 

first contact point. 
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Determining the Minimum Distance of Push 

In a non-equilibrium push, the agents must push the object for a minimum distance 

Mn in order to  guarantee that the object arrives a t  the equilibrium orientation. The 

minimum distance Mn depends on the magnitude of reorient angle A0 in current 

non-equilibrium push; denote this relationship as a function Mn(lAQl). This distance 

can be estimated by using the results in [82]. By using minimum power mechanics, a 

method has been developed to  compute the minimum push distance of an object for 

a reorienting task. The estimate gives an upper bound of the minimum push distance 

which occurs in the worst case. The estimate has been used in [3] for developing the 

pose planner. 

In the following development, we assume that the maximum reorientation angles 

8-, Q+ and the minimum push distance Mn ase known. 

Net Motion of the Object Under a Non-equilibrium Push 

In this section, we are going to  determine the net motion of the object under a known 

non-equilibrium push. The non-equilibrium push is performed on the virtual edge 

formulated between two contact points (xpe,  ype) and (x,,, Y,,) with the (equilibrium 

orientation 8,. ( x ( k ) ,  y ( k )  , Q ( k ) )  is the config-uration of the object before the push. 

The reorientation angle for a non-equilibrium push can be chosen as Qn(k)  E 

[Q- Q+],  which determines the direction of push as well as the orientation of the 

agent frame X O Y .  The X O Y  frame's orientation Qa(k )  are computed as 

Qa ( k )  = Q ( k )  - t?, + Qn ( k )  

Assume that ( xp l ,  ypl) gives the position of the agent frame X O Y  in the object 

frame before the k-th push. In the world frame, the position of the X O Y  frame is 
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computed as 

cos t ) ( k )  - sin Q ( k )  
(3.18) 

sin 8 ( k )  cos Q ( k )  

If the frame X O Y  is placed at  ( X ( k ) ,  Y ( k ) )  with the orientation Q,(k), the agents 

can perform a non-equilibrium push in the push direction specified as Eq. (3.14). 

During a non-equilibrium push, the object will translate and rotate between the 

agents. The net change of the object position in the world frame consists of two 

parts. The first part is associated with the translation of the agents. The other 

part is generated by the rotation motion of the object during the push. In order to  

complete the non-equilibrium push, the agent,s need to push the object for a minimum 

distance Mn(On(k)).  In the world frame XwO,,Yw, the net position change of the object 

associated with this displacement Mn(& ( k ) )  is computed as 

cos 0, ( k )  - sin 9, ( k )  [ 2:; ] = [ sin 9, ( k )  cos 9, ( k )  ] [ Mn(:n(k)) ] 
In order to  find the net change of object position associated with the rotation 

motion, we need to  compute the positions (of the object in the agent frame X O Y  

before and after the push. Before the push, the orientation Q,(k) of the object in the 

X O Y  frame is 

19,(k) = 19,(k) - 19,. (3.20) 

The position of the object ( x , ( k ) ,  y,(k)) in the agent frame X O Y  is computed ac- 

cording to  Eq. (3.10) as 

cos 9, ( k )  - slin I9, ( k )  

sin 9, ( k )  cols I9, ( k )  

After the object being pushed along the direction specified in Eq. (3.14),  the object 

attains the equilibrium orientation 19, in the agent frame X O Y ,  and the position of 
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the object (x,(k + I ) ,  y,(k + 1)) in the agent frame X O Y  is computed as 

cos 8, - sin@, 

sin8, cos 8, 

In the agent frame XOY, the net change of the object's position associated with 

the rotation is 

In the world frame XwOwYw, the net change of object position associated with the 

rotation is computed as 

cos 8, (k) - sin 8, (k) 
(3.24) 

sin 8, (k) cos 8, (k) 

In the world frame XwOwYw, the total position change of the object in the k-th 

non-equilibrium push is the summation of position changes in Eq. (3.19) and Eq. 

(3.24), and it is computed as 

The motion of the object under the non-equilibrium push is governed by the equa- 

tion 
x(k + 1) 

(3.26) 

where (x(k + I ) ,  y(k + I ) ,  8(k + 1)) is the configuration of the object after the k-th 

non-equilibrium push, and 8,(k) is the control input for the non-equilibrium push 

we need to  specify. At a known configuration (x(k) , y (k) , 8(k)), the position change 

(Ax( / ) ,  Ay(k)) is a nonlinear function of the control input Bn(k), and it is uniquely 
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determined by & ( l c ) .  This indicates that a non-equilibrium push is totally determined 

by the reorientation angle. 

3.4 Formulation of Planning Problem and 

Controllability Analysis 

In the previous section, we have identified two manipulation primitives, equilibrium 

push and non-equilibrium push, for transferring an object from an initial configuration 

to  a goal configuration in an obstacle-free plane. In this section, we first model the 

two-agent cooperative cooperative as a switched system, and formulate the planning 

problem as a control problem, then we propose the controllability analysis. 

3.4.1 Switched System Formulation of Two-agent 

Cooperative Push 

A parts transfer task usually requires agents performing a sequence of equilibrium 

and non-equilibrium pushes. These two classes of pushes will switch from one to  the 

other, and each individual push will become a segment of the manipulation process. 

The motion of the object under two-agent cooperative push can be modeled as a 

switched system. The motion is governed by Eq. (3.15) for an equilibrium push, 

and Eq. (3.26) for a non-equilibrium push. The switching structure is shown in Fig. 

3.6. Because of the upper limit of maximum reorientation angle associated with each 

non-equilibrium push, there may exist cases where a non-equilibrium push is followed 

by another non-equilibrium push. 

The motion of the object under two-agent cooperative push is described by a 
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Equilibrium ,-, ~ ~ ~ - ~ ~ ~ i l i ~ i ~ ~  0-0 
Figure 3.6: Switching structure between equilibrium and non-equilibrium pushes 

discrete control system 

I x(k + 1) 

Y @  + 1) 

0(k + 1) 

:c (k) 

Y(k> + u(k) 

W) I 
where (x(k), y(k), O ( I C ) ) ~  is the current state of the system, which gives the config- 

uration of the object before the push. (x(k -t l), y(k + I ) ,  O(k + is the state of 

the system after the push, u(k) is the control to  the system, and the form of u(k) 

depends on the type of push performed at  the current step. For clarity, we use ue(k) 

as the control input for the equilibrium push, and un(k) as the control input for the 

non-equilibrium push. 

From Eq. (3.15), we know that for an equilibrium push, u(k) will have the follow- 

ing form 

- sin 8, (k) 

(3.28) 

If the current push is a non-equilibrium p-ush, u(k) will take the following form 
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The position change (Ax(k), Ay(k)) is computed according to Eq. (3.25). &(k) is 

the reorienting angle for the current non-equilibrium push, and the angle is less than 

the CW and CCW maximum reorientation angles, i. e., &(k) E (8-, 8+). 

The motion of the object under two-agent cooperative push is controlled by the 

inputs u,(k) and un(k). The planning problem for two-agent cooperative push can 

be studied as the following control problem: 

For a given initial configuration Ci = (xi, :yi, Oi), the objective is to plan a sequence 

of equilibrium and non-equilibrium pushes (17.15) and (3.26), and design the corre- 

sponding inputs m,(k) for equilibrium pushes and &(k) for non-equilibrium pushes 

such that the state of the system (3.27) is transferred to C, = (x,, y,, Q,), that is, 

where I, is the total number of equilibrium pushes, Jn is the total number of non- 

equilibrium pushes. 

Any sequence of inputs u, and un that satisfy Eq. (3.30) provides a solution 

to  the two-agent cooperative push problem. Existence and uniqueness of solutions 

are questions need to  be answered before the study of the planning problem. These 

questions lead to  the controllability analysis. 

3.4.2 Controllability Analysis 

In this section, we study the controllability fbr the switched system (3.2'7) with the 

inputs (3.28) and (3.29). In the sense of manipulation, controllability means that an 

object can be pushed from any configuration (position and orientation) to  any other 

configuration in an obstacle-free plane by using a sequence of equilibrium pushes and 

non-equilibrium pushes. Here we are going to -use the theory of positive bases to study 
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the controllability for the switched system (:3.27). The theory of positive bases was 

first introduced by Davis [27] to  study the properties of nonnegative combination of 

vectors. The theory of positive bases has been used in [3] t o  study the completeness 

of the pose planner. Some definitions and properties of positive bases are outlined as 

follows: 

1. A positive combination of a set of vectors {vi E Rn : i = 1, . - . , r )  is a linear 

combination 

alvl + . . . + a,v, 

with a j  2 0; if all a j  > 0, it is a strictly positive combination. 

2. A set of vectors {vi E Rn : i = I , .  . , r )  is positively dependent if one of 

them is a positive combination of the (others. Otherwise, the set is positively 

independent. 

3. A positive basis for Rn is that every vector in Rn can be written as a positive 

combination of the positive basis vectors and no member of the positive basis 

can be represented as a positive combination of the remaining members of the 

basis. 

Equilibrium and non-equilibrium pushes require the magnitudes m, (k )  2 0 and 

m,(k)  = Mn(On(k))  2 0, these conditions imply that the object can only be pushed 

forward along the direction of push. Only positive combinations of equilibrium and 

non-equilibrium pushes are valid for manipu:lation tasks. By considering this prop- 

erty, the concept of positive bases is ideal for analyzing the position controllability. 

The controllability result on the switched control system (3.27) is summarized in the 

following theorem. 
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T h e o r e m  3.1 (Configuration controllability for two-agent cooperative push):  

The configuration of an object is controllable in an obstacle-free plane under two-agent 

cooperative push. That is, there always exists a sequence of equilibrium (3.15) and 

non-equilibrium pushes (3.26) that guarantees to transfer the object between any two 

conjigurations. 

Proof. Owing to the different motion of the object under these two classes of pushes, 

we study the controllability of orientation arid position separately. We fi:rst consider 

the controllability of the orientation, then we study the controllability of the position 

without affecting the orientation controllability. 

From Eq. (3.26), we know that the orientation of an object can be controlled CW 

and CCW by the control input Qn(k) E (0-, O+). Without considering the position of 

the object, the orientation 0 can reach any angle by using a sequence of Qn(k) as inputs 

to  the system (3.27). This indicates that the orientation of the object is controllable. 

The sequence of non-equilibrium pushes will also change the position of the object, 

and the change associated with each non-equi:librium push can be computed according 

to  Eq. (3.25). 

Now we use the concept of positive bases to  demonstrate that the object can 

be transferred between any two given positi'ons by using a sequence of equilibrium 

pushes. The sequence of equilibrium pushes will not affect the controllability of the 

orientation. An equilibrium push can be performed after each non-equilibrium push 

along the direction specified as Eq. (3.14), and the push direction vector vk is defined 

by Eq. (3.16). If we can find a set of vectors vk(k = 0 , .  . . ,I) such that any vector 

in R2 can be written as a positive combination of them. Then we can claim that the 

object can reach any position in the R2 space by a sequence of equilibrium pushes. 

From Eq. (3.15), we know that the equilibrium pushing vectors vk are determined by 
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the orientation of the XOY frame before the k-th push. The orientation of the XOY 

frame is changed after each non-equilibrium push according to  the fol1owi:ng equation 

Considering the 2n periodicity of the orientation, we can always find a sequence 

with r non-equilibrium pushes such that the orientation of the object reaches the goal 

orientation, and ea(l),  . . , ea(r) covers over angle n as shown in Fig. 3.7. I:n this case, 

the associated set of pushing vectors {vl, . ,, , v,) will positively span thse R2 space. 

Therefore, any position in the R2 space can be reached by the sequence of equilibrium 

pushes defined as Eq. (3.15), ie., the position of the object is controllable. Since 

the controllability of the position is proved under the condition that the orientation 

attains its goal, we conclude that the configuration of the object is controllable. 

I 

Figure 3.7: Equilibrium push vectors span R2 space 

The property of controllability implies that,  for any two given configurations, 

there exist sequences of equilibrium and non-equilibrium pushes to transfer the object 

between them. Controllability guarantees the existence of a solution; On the other 

hand, controllability leads to the non-uniqueness of the solution. In other words, there 

may exist multiple sequences for a parts transfer task. For a specified performance 
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index, it is possible to find an optimal solution to the two-agent cooperative push 

planning problem. 

3.5 Planning Two-agent Cooperative Push 

In this section, we are going to find an optimal plan for two-agent cooperative push by 

solving the control problem. An optimal plan is a plan that solves the control problem 

(3.30) and minimizes a predefined performance index. The control problem can be 

solved hierarchically in two steps. We first (design a controller for the orientation 8 

according to Eq. (3.26) without considering the position change. In this step, the 

objective is to find a sequence of non-equilibrium pushes such that the object attains 

the goal orientation 8,. In general, the object can not achieve the goal position (x,, y,) 

by the sequence of non-equilibrium pushes. This implies that a sequence of equilibrium 

pushes is generally required for transferring i;he object to  the goal position. For this 

purpose, we need to  design a controller for equilibrium pushes (3.15) to  transfer the 

object to  the goal position (x,, y,). The controllability indicates that there will exist 

multiple push sequences for two given configurations. The purpose of control design 

is to find an optimal push strategy for a chosen performance criterion. 

3.5.1 The Controller for Non-equilibrium Pushes 

In order to  reorient an object to the goal orientation, it requires a sequence of non- 

equilibrium pushes. To specify the sequence, we need to  find the total number of 

non-equilibrium pushes and the reorienting angle associated with each push. For each 

non-equilibrium push, the agents require a period of preparation time to  set up the 

position and push direction in order to  achieve the desired reorienting angle. The 

total preparation time will be proportional to the number of non-equilibrium pushes. 
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Here, we consider the total preparation time as a criterion for determining the total 

number of non-equilibrium pushes, and we try to minimize the total preparation time. 

The orientation 0 is only controlled by On ~(k) in Eq. (3.26). For a required orienta- 

tion change A0 = 0, - Qi, if a CCW sequence is used to orient the part, the reorienting 

angle will be 

AQ,. = Ae. (3.32) 

If a CW sequence is used, the reorienting angle will be 

A& = 27r - AQ. (3.33) 

For a successful manipulation, the summation of Qn(lc) must satisfy 

Jn 

x ~ n ~ k )  = { AQ+ for CCW sequence 

k AO- for CW sequence 

where Jn is the total number of non-equilibrium pushes. 

Equation (3.34) indicates that the total number of non-equilibrium pushes is de- 

termined by the individual reorientation angle Q,(k) for each non-equilibrium push 

in a given pushing sequence. The reorienting angle Qn(k) for each non-equilibrium 

push can be chosen as any value in the range of [Q- Q+]. The minimum number 

of non-equilibrium pushes Jm is computed differently for CW or CCW sequences as 

follows 
1 CCW sequence 

2.rr-At9 C a _ l  CW sequence 

where [a] denotes the ceiling for a number a, i e . ,  the smallest number that is greater 

than or equal to a. 

The minimum number Jm occurs when t:he non-equilibrium push use:; the maxi- 

mum reorienting angle for the first Jm - 1 non-equilibrium pushes as 

Q+ for CCW sequence 
en(k) = 

0- for CW sequence 
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and for the final non-equilibrium push, the rleorienting angle is 

Ae - (J, - 1) - e +  for CCW sequence 
Qn(Jm) = (3.37) 

2~ - AQ - (J, - 1) 0- for CW sequence. 

In summary, for a part transfer task wit8h net orientation change A0, the num- 

ber of non-equilibrium pushes J is determi:ned by Eq. (3.35), and the associated 

reorientation angles (3.36) or (3.37) are the optimal control inputs to Eq. (3.26) for 

minimizing the number of non-equilibrium pushes. After performing a sequence of 

non-equilibrium pushes, the orientation of the object will reach the goal orientation. 

The position of the object will also be variied by the sequence of non-equilibrium 

pushes. The total position change of the objlect is computed as the following 

where (Ax(k), Ay(k)) is the position change of the k-th non-equilibrium push, and it 

is computed according to Eq. (3.25). 

In the next section, after discussing the reachable region for a given push sequence 

of non-equilibrium pushes, a strategy for selecting the non-equilibrium push sequence 

will be proposed. With the selected sequence of non-equilibrium pushes, the equilib- 

rium pushes are able to push the object to the goal. 

3.5.2 The Reachable Region foir Equilibrium Pushes 

The Controllability Theorem 3.1 indicates that the configuration of an object is 

controllable under the condition that the reorienting angle of the sequence of non- 

equilibrium pushes is larger than T. In this case, the equilibrium push vectors span 

R2 space. As illustrated in Eq. (3.34), at most one reorienting angle (CVV or CCW) 

will be larger than T. As a result, the sequence of equilibrium push vectors with a 
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reorienting angle less than n will not span R2 space. In this case, the object can 

only reach a subset of the R2 space. In this section, we will find the reachable set for 

a selected CW or CCW sequence with reorienting angle less than n, and determine 

whether the given goal position (x,, y,) is reachable or not. 

From Eq. (3.15), we know that the pu,sh direction for an equilibrium push is 

determined by the current orientation of the object 8(k). For a given sequence of 

non-equilibrium pushes (3.26), the reachable position (x, , y,) of equilibrium pushes is 

specified as follows: 

-- sin 8, (k) 
+ C:E~ me (k) 

The first term on the right hand gives the initial configuration, and the second term 

on the right hand side is the total position change produced by the sequence of non- 

equilibrium pushes, and it is computed acclording to  Eq. (3.38). The third term 

describes the equilibrium pushes, where 8,(k:) is the orientation of the X O Y  frame 

before the k-th equilibrium push, 8,(0) = Qk. - 8, specifies the initial orientation of 

the X O Y  frame for the first equilibrium push, m,(k) > 0 is the pushing distance 

for the k-th equilibrium push that we need to  specify. For a specified k, the pushing 

distance me(k) may have zero length, which implies that a non-equilibrium push is 

immediately followed by another non-equilibrium push. 

We rewrite the push direction for the k-th equilibrium push as 

- sin 0, (k) 
v k = [  cos 8a(k) 1 .  

Geometrically, the reachable region is spanned by vectors vk (k = 0, . . . , J,) with 
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its origin (x, (0) , y, (0)) located at 

where (xi, yi) is the initial position of the object, and (xr(0), y,(O)) specifies the total 

position change of the object caused by the sequence of non-equilibrium pushes. 

By using the results of Eq. (3.40) and Eq. (3.41), the reachable region for the 

position (x,, y,) is represented as 

- sin 0, (k) 

where me(k) > 0 is the push distance of the k-th equilibrium push. 

When the reorientation angle A0 5 T, the vectors vk(k = 0,. . . , J,) will form a 

conic hull, which is a cone 

In this case, there will exist sequences of equilibrium pushes to  attain the goal if 

the goal position (x,, y,) is inside the conic Ihull. The result on reachable region for 

equilibrium pushes is summarized in the following theorem. 

Theorem 3.2 (Reachable region for equilibrium pushes): For a give initial 

configuration (xi, yi, Oi), and the conic hull formed by  vectors vk(k = 0, . a ,  J,) with 

its origin at (xr(0), y,(O)), if the position (x:,, y,) of the configuration is inside the 

conic hull, then the goal can be reached by  a .sequence of equilibrium pushes. 

Proof. The proof follows directly from the definition of convex cone. A conic combi- 

nation of vk(k = 0, , J,) is defined as 
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with ak 2 0. 

A conic hull is defined by the set that contains all conic  combination.^ of points 

in this set. From this definition, we know that if (x,, y,) is a point of this set, this 

point can be represented as a conic combination of the vectors vk, which :means that 

a sequence of equilibrium pushes exists with ak as the pushing distance of the k-th 

equilibrium pushes. I 

Now we need to  check whether a given goal position (x,, y,) is inside the conic 

hull spanned by the vectors vk(k = 0 , .  . . , J,). For this purpose, we introduce a new 

vector vg as 

If the following conditions are satisfied, then the goal position (x,, y,) is inside the 

conic hull. 

These two inequalities stipulate that vector v, is inside the cone formed by vectors 

vo and V J ~ .  An example reachable conic hull for a sequence of CCW equilibrium 

pushes is illustrated in Fig. 3.8. In this figure, the initial position of the object 

is given by (xi, yi), and the orientation of t'he object is specified by the xoy frame 

located at  o. In this sequence, the number o-€ non-equilibrium pushes is .Im = 3, and 

the maximum number of equilibrium pushes is I, = 4. IoAl, (ABI, and 113CI are the 

minimum distances required for the non-equilibrium pushes. The reachable conic hull 

D C E  is formed between lines C D  and CE, the origin of the conic hull is located at  

C. Basis vectors vo,  . , , vg are specified by the directions of equilibrium pushes. The 

cone is spanned by vectors v l  and v3. Every point inside this cone can be reached by 

using a sequence of equilibrium pushes along directions specified by the basis vectors 
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vo, . . a ,  v3. For the goal position GI ,  the associated position vector b satisfies the 

condition in Eq. (3.45), and it is inside the convex hull. For the goal position G2, the 

vector b2 does not satisfy Eq. (3.45). It is outside the reachable cone. 

Reachable ,I 
I Cone ; , 

Figure 3.8: Reachable cone for equilibrium pushes. The push direction vectors are 
given by vo, . , v3, and cone ECD gives the reachable goal position. 

Theorem 3.1 and Theorem 3.2 indicate that with the increase of reorientation 

angles A0 = 0, - Oi, the reachable region for equilibrium pushes will be enlarged. As 

long as A0 # T, there will always exist a CCW or CW sequence that spans the R2 

space. However, when the required orientation change is A0 = T, neither the CCW 

nor the CW sequence covers the R2 space. 12s a result, there will exist a dead zone 

of the goal positions that can not be reached by either CW or CCW sequences of 

equilibrium pushes. 

One example of dead zone is shown in Fig. 3.9. The region inside the solid lines 

is the dead zone. If the goal position is located in this region, and the required 

orientation change is T, neither CW or CCIV sequences of equilibrium pushes can 

push the object to the goal position. 

In the case of the reorientation angle AO+ 5 T or AO- < T, the reachable region 
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CCW 
Reachabl 
Zone 

,'j. 
I' 

Unreachable goal position 

CW 
Reachable 
Zone 

.-. 
3 '., 

Figure 3.9: Dead zone of the goal position for the CW and CCW sequences of equi- 
librium pushes when A0 = T .  The initial configuration of the object is labeled with 
0. It requires four non-equilibrium pushes to  achieve A0 = T .  The associated push 
direction vectors vo, . . . , vq positively span the CW and CCW reachable zone. The 
goal position inside the dead zone can not be reached by the sequence of equilibrium 
pushes. 



Chapter 3. Parts Transfer by Two-agent Cooperative Push 89 

can be enlarged by modifying the sequence of non-equilibrium pushes. A modified 

sequence will consist of a usual sequence of n-on-equilibrium pushes preceded by non- 

equilibrium pushes in the opposite direction. By adding additional CW or CCW non- 

equilibrium pushes to  original CCW or CW sequence, the CCW sequence becomes 

a CW-CCW sequence, and the CW sequence becomes a CCW-CW sequence. Using 

one additional non-equilibrium push will increase the total number of non-equilibrium 

pushes by two. The associated reorientation angles AB+ or Ae- will become bigger. 

This process will introduce new equilibrium pushing vectors into the associated basis 

vectors vk. Consequently, the reachable region for the sequence of equilibrium pushes 

will be enlarged. When the associated reorie:ntation angles with CW-CCW or CCW- 

CW sequences are larger than n ,  the equilibrium push vectors will span the entire R2 

space. 

An example of the modified CW-CCW sequence is shown in Fig. 3.10. E O F  

indicates the enlarged cone, and v- is the .additional equilibrium push vector. By 

adding a CW non-equilibrium push to the original CCW sequence (Fig. 3.8), the 

reachable cone is enlarged. If the goal position is inside the enlarged cone E O F ,  the 

goal position is reachable by a sequence of equilibrium pushes. 

The required net configuration change C,, - Ci determines the type of all feasible 

sequences of non-equilibrium pushes. The caindidates are CW, CCW, CW-CCW, and 

CCW-CW sequences. These sequences can be organized according to  the reorientation 

angle AB. The classification of feasible non-equilibrium push sequences is depicted in 

Fig. 3.11. When 0 < AB < T, a CW sequence always exists since the reorienting angle 

Ae- > n. There will also exist a CW-CCW sequence. CCW sequence is a special 

case of CW-CCW sequence with no CW segment. In this case, the goal position of 

the object is inside the conic hull generated by the equilibrium push vectors in the 
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CW push 

Y 

Figure 3.10: Enlarged reachable region by a modified CW-CCW sequence. After 
introducing a CW non-equilibrium push, an additional pushing direction vector v- 
can be used by an equilibrium push. compared with Fig. 3.8, Cone DCF is the 
enlarged portion of the reachable region. 
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CC W sequence. 

When T < AQ < 27r, a CCW sequence always exists since the reorienting angle 

AQ+ > T. There will also exist a CCW-CW sequence. A CW sequence may exist if 

the goal position of the object is inside the conic hull generated by the equilibrium 

push vectors in the CW sequence. 

If AQ = 0 and the goal position can not be reached by an equilibrium push, CW- 

CCW and CCW-CW sequences are required for the task. When A8 = n-, there will 

be CW-CCW and CCW-CW sequences. 

A procedure for constructing CW-CCW or CCW-CW sequence is shown in Fig. 

3.12. The first step of the procedure is to compute the CW and CCW reorienting 

angles AQ+ and AQ- for a given AQ. If AQ+ :> T, there exist both CW and CW-CCW 

non-equilibrium push sequences, and a CW sequence can be generated according to 

Section 3.5.1. For the CW-CCW sequence, by adding a CW push, we first generate 

the CW-CCW sequence, then check if the goid configuration is inside the cone. CCW 

and CCW-CW sequences are generated in the same manner as the CW and CW-CCW 

sequences. 

Figure 3.11 : Classification of non-equilibrium push sequences 
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CW-CCW - CCW-CW 
I I 

CW-CCW 
Seauence 

Output 
CW-CCW 
sequence 

-27 sequence 

add a CCW +T 
Figure 3.12: Construction of CW-CCW and CCW-CW sequences 
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3.5.3 The Optimal Controller for  Equilibrium Pushes 

After obtaining a sequence of non-equilibrium pushes that guarantees the goal position 

inside the reachable cone, we are going to  find an optimal sequence of equilibrium 

pushes such that the position of the object achieves the goal position (x,? y,). 

Since the basis vectors v k ( k  = 0 , .  . a ,  J,) are usually positively dependent, the 

sequence of equilibrium pushes will not be unique for specified initia,l and goal 

configurations. This property implies that there always exists multiple choices of 

m e ( k ) ( k  = 0 , .  . . , J,) such that Eq. (3.39) is satisfied. This gives us freedom to find 

an optimal sequence of equilibrium pushes from all feasible sequences. If the objec- 

tive is to minimize the total push distance ~ l ~ ~ r n , ( k ) ,  the design problem for the 

controller m e ( k )  can be formulated as a linea,r programming problem: 

Minimize >- me ( k )  
2 

subject to 

J~ - sin 0, ( k )  

The constraint equation (3.47) can be rewritten as 

J~ -- sin 0, ( k )  
b = x m e ( k )  

k=O 

where b = ( x ,  - x,(O), yg - ~ ' ( 0 ) ) ~ .  

Rewrite the linear programming problem into the primal form [62] as 

Minimize c T m ,  
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subject to 

where 

Am, =: b 

me > 01 

Before we solve the linear programming problem analytically, we first present some 

definitions and the fundamental theorem for linear programming ([62], p.17-19). 

1. Basic solution: Given the set of m sirnultaneous linear equations with n un- 

knowns 

Ax = b. (3.51) 

Let B be any nonsingular m x m submatrix made up of columns of A. Then, 

if all n - m components of x not associated with columns of B are set equal to 

zero, the solution to the resulting set of equations is said to be a basic solution 

to  Eq. (3.51) with respect to the basis 13. The components of x associated with 

columns of B are called basic variables. 

2. Basic feasible solution: A vector x satisfying 

is said to be feasible for the constraints. A feasible solution to the constraints 

that is also basic is said to  be a feasible. basic solution. 

3. Optimal basic feasible solution: Corresponding to  a linear program in standard 
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form 
minimize cTx 

A x = b  
subject to  

x 2 0. 

A feasible solution to  the constraints tihat achieves the minimum value of the 

objective function subject to the constraints is said to  be an optirmal feasible 

solution. If this solution is basic, it is am optimal basic feasible solution. 

The fundamental theorem of linear pr~gra~mming indicates the importance of basic 

feasible solutions for solving a linear programming problem. 

Theorem 3.3 (Fundamental theorem of linear programming 1621 .p.19) : 

Given a linear program in standard form (3.53), where A i s  a n  m x 72 matr ix  of 

rank m, 

I .  if there is  a feasible solution, there is  a. basic feasible solution. 

2. if there i s  a n  optimal feasible solution, there is  a n  optimal basic feasible solution. 

This theorem indicates that solving a linear programming problem can be achieved 

by searching over basic feasible solutions. The fundamental theorem of linear program- 

ming will be used to  design the optimal controller for equilibrium pushes. The result 

is summarized in the following theorem. 

Theorem 3.4 (Properties of the op tha1  sequence of equilibrium pushes) 

For the  optimal equilibrium push problem described by Eq. (3.46) and Eq. (3.47), 

there exists a n  optimal solution that satisfies: 

I .  The  m a x i m u m  number of equilibrium pushes will be up  to  two. I n  other words, 

at most  two components of me(.) have non-zero values. 
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2. These  two  push  components  are adjacent t o  each other. T h i s  means  there ex- 

i s t s  only o n e  non-equilibrium push between these two  equilibrium pushes. T h e  

opt imal  pushing directions vj,  v j + ~  genlerate a cone that  encompasses t h e  vector 

b. 

Proof. 

(1). For linear program (3.49) and (3.50), A is a 2 x J, matrix, the basic solution 

consists of two basic variables. By Theorem 3.2, there will always exist a feasible 

solution to  the problem. Since me(.) 2 0, the lower bound on the objective (3.49) 

will be zero. This means there will always exist an optimal feasible solution. By the 

fundamental theorem of linear programming, we induce that there is an optimal basic 

feasible solution. For the optimal basic feasible solution, at  most two connponents of 

me(.) have non-zero values, i.e., an optimal sequence of two-agent cooperative push 

will consist of at  most two equilibrium pushes. If there exists an equilibrium pushing 

direction vector along the same direction as vector b, the number of equilibrium 

pushes will degenerate to  one. If b = 0, no equilibrium push is required. 

(2). The task of solving linear program (3.49) and (3.50) is reduced to  the search 

over the basic feasible solutions. Any set of two vectors that positively spans b become 

a basic solution; setting the indices of the solution vectors to  i ,  j ,  then the problem 

can be written as 

Minimize m.,i + mej (3.54) 

subject to  

where mei and mej are the basic variables. 
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Now, we need to show that for an optimal solution, these two vectors vi and vj 

are adjacent to each other. Let a be the angle between vi and b,  and P be the angle 

between vj and b,  In order to guarantee mei and mej feasible, the equilibrium pushing 

vectors vi and vj have to be chosen such that b lies inside the cone generated by these 

two vectors. As a result, the angles a, P E (0,7r/2), and the constraint equation (3.55) 

can be represented as 

[ a  0 ] [ mei ] = [ I:I ] 
sin a - sin p mej 

where I bl gives the length of the vector b. 

By solving this constraint equation, we get the pushing distances associated with 

the i-th and j-th push as functions of the angles a and P, 

Furthermore, the objective function f (a, ,O) is 

sin a + sin p 
f (a, p) = mei + rn . =: eJ sin (a + p) IbL 

An example plot of objective function with lbl = 1 is shown in Fig. 3.13. It is easy 

to verify that the function f (a, p) is a monotonic increasing function with respect to 

a E (O,7r/2) and p E (0,7r/2), in order to achieve minimum value for the objective 

function, we need to choose two vectors vi and vj with a and p as small as possible. 

Combining with the requirement of b is inside the convex cone spanned by vi and vj, 

we can induce that one vector vi is the first vector to the right hand side of Vector b ,  

the other vector vj is the first vector to the left hand side of Vector b. This proves 

that these two push vectors are adjacent to each other. 

I 
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Figure 3.13: Plot of objective function f (a, ,B) with Ibl = 1. f (a, ,f3) is a monotonic 
increase function of parameters a and p. 

Instead of using a numerical linear programming package solving the optimal plan- 

ning problem, Theorem 3.4 provides an analytical way to find the optimal equilibrium 

pushes for given initial and goal configurations. This solution technique can also be 

applied to  [3] for finding the pose planner. The analytical procedure is summarized as 

follows: First, compute the vector b; Then, find the two pushing direction vectors vj 

and vj+l using the result of Theorem 3.4, and calculate the angles a and P;  Finally, 

compute the optimal distances for the equilibrium pushes according to Eq. (3.57). 

3.5.4 Implement at ion of the Planner 

For a manipulation task to  transfer an object from an initial configuration (xi, yz, Bi) 

to the goal configuration (x,, y,, B,), the planner for two-agent cooperative push is 

implemented as follows. 
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1. Adjust the spatial relationship ~aramet~ers  xa2 and yaa such that the object can 

be captured at  least at  one equilibrium orientation. 

2. Determine virtual stable edges using thle depth function and width function, and 

calculate the equilibrium orientations (z,, ye, 8,) of the object in the agent frame 

XOY. 

3. For each virtual edge, find the maximum CW/CCW reorientation angles 8- and 

Q+ for a non-equilibrium push, then determine the minimum distance of push 

Mn(Q-) and M,(B+), and pick the first contact point (xpl, ypl). 

4. Formulate the equations that govern th'e motion of the object under equilibrium 

and non-equilibrium pushes as Eq. (3.1.5) and Eq. (3.26). 

5. Find sequences of C W-CC W and C W-'CC W non-equilibrium pushes. 

6. Check if there exists a sequence of equilibrium pushes using the result of Sec- 

tion 3.5.2, then find the optimal sequence of equilibrium pushes using linear 

programming method. 

3.6 Manipulation Examples and Experimental 

Results 

A triangular object as shown in Fig. 3.15 is used to  demonstrate the proposed ma- 

nipulation method. For this triangle, A B  = 0.1 m, BC = 0.05 m. The object frame 

xoy is located at  COM of the object. The agent frame XOY is assigned to  one agent, 

and the coordinate of the second agent (xa2, ya2) are chosen as xa2 = 0.06 m, ya2 = 0 
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m, which defines the spatial relationship of these agents. During the manipulation, 

edges A B  and BC are pushed by the agents. 

The depth function of the object is depicted in Fig. 3.14. A minimum of the 

depth function occurs at  0, = 53' with x, = 0.021 m and ye = 0.003 m. When the 

object is pushed a t  this orientation, the push will be an equilibrium push. A CCW 

non-equilibrium push is shown in Fig. 3.15. In Fig. 3.15(a), one agent first makes 

contact with the object at  point D on the edge BC, and C D  = 0.01 m. The direction 

of push is indicated by the Y-axis of the agent frame XOY. After the minimum push 

distance Mn = 0.15 m, the object reaches the equilibrium orientation as shown in 

3.15(b). The CCW reorienting angle is 19, = 53'. Assume that the configuration of 

the object is (x(k), y (k), Q(k)) before the k-th non-equilibrium push, the XOY frame's 

orientation e,(k) is computed according to Eq. (3.17) as 

The net change of the object's position in the frame XOY associated with the 

rotation is 

and the corresponding position change due to  the translation is 

In the world frame, the total position change in the k-th non-equilibrium push is 

computed according to  Eq. (3.25) as 

[ ; ;  ] = [ cos 19, (k) - sin 0, (k) 

sin 19, (Ic) cos 19, (k) ] [ t i 4 ]  
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30 40 50 60 70 80 
orientation O(deg.) 

Figure 3.14: The depth function for the triangular object. The equilibrium orientation 
occurs at 0 = 57deg in the agent frame. 

The motion of the object under the CCW non-equilibrium push is governed by 

the following equation 

where (x(k + I ) ,  y(k + 1),6(k + 1)) is the cclnfiguration of the object after the k-th 

non-equilibrium push, 6, (k) = 6+ . 

A CW non-equilibrium push is shown in Fig. 3.16. In Fig. 3.16(a), one agent 

first makes contact with the object a t  point E on the edge B, and BE = 0.05 m. 

The direction of push is indicated by the Y-axis of the agent frame XOY. After 

the minimum distance of pushing Mn = 0.12 m, the object reaches the equilibrium 

orientation as shown in 3.16(b). The CW reorienting angle is 6- = -37". Assume 

that the configuration of the object is (x(k), y (k), O(k)) before the k-th non-equilibrium 
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Figure 3.15: CCW non-equilibrium push. (a). One agent makes contact with the 
object at  the edge BC. (b). After a CCW rotation, the object reaches its equilibrium 
orientation. 
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push, the X O Y  frame's orientation Ba(k) is computed according to Eq. (3.17) 

Under the CW non-equilibrium push, the net change of the object's position in the 

frame X O Y  associated with the rotation is 

and the corresponding position change due to the translation is 

In the world frame, the total position change in the k-th non-equilibrium push is 

computed according to  Eq. (3.25) 

cos 0, (k) -- sin 0, (k) 

sin 0, (k) cos 0, (k) ] [ Kg 
The motion of the object under the CCW non-equilibrium push is governed by 

the following equation 

where (x(k + I ) ,  y(k + I ) ,  B(k + 1)) is the configuration of the object after the k-th 

non-equilibrium push, B,(k) = B-. 

For the equilibrium push, the X O Y  fram.els orientation Ba(k) is computed as 
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Under the equilibrium push, the motion of the object is governed by the following 

equation - 
- sin 8, (k) 

cos Qa (k) me (k) I (3.70) 

0 

where (x(k + 1), y(k + l), Q(k + 1)) is the configuration of the object after the k-th 

equilibrium push, and me(k) > 0 is the distance of the k-th equilibrium push. 

Figure 3.16: CW non-equilibrium push. (a). One agent makes contact with the 
object a t  the edge AB. (b). After a CW rotation, the object reaches its equilibrium 
orientation. 

The motion of the object is governed by the equation (3.63) or (3.70) de- 

pending on the type of push being used. Assume that the initial configuration 

Ci = (xi? yi, Qi) = (0,0,0). Here we consider two goal configurations as Cgl = 

(xg, yg, Qg) = (-0.2,0.25, 171•‹), and Cg2 = (,zg, yg, Qg) = (-0.15,0,171•‹). It requires 

three CCW non-equilibrium pushes to orient, the object to the goal orientation. The 
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Figure 3.17: CCW non-equilibrium push sequence and the reachable region. Two goal 
positions are labeled as Goal 1 and Goal 2. The push direction vectors of equilibrium 
pushes are given by vo, - .  - , vs. Vector bl is positively spanned by the push direction 
vectors, and vector b2 is not positively spanned by the push direction vectors. 
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push 

Equilibrium 
push 

Figure 3.18: Optimal CCW push sequence for goal one. The optimal sequence consists 
of three non-equilibrium pushes and two equilibrium pushes. These two equilibrium 
pushes are adjacent to each other. 
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Figure 3.19: CW-CCW non-equilibrium push sequence and the reachable region. By 
introducing a CW non-equilibrium push to  the CCW sequence, A new push direction 
vector v- helps enlarge the reachable region of the equilibrium push sequence. The 
push direction vectors v-, . , vg span R2 space. With these pushing directions, any 
position in the plane can be reached by a sequence of equilibrium pushes. 
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Figure 3.20: Optimal CW-CCW push sequence for goal 2. The optimal sequence 
consists of one CW non-equilibrium push, four CCW non-equilibrium pushes and two 
equilibrium pushes. These two equilibrium pushes are adjacent to each other. There 
only exists a CW non-equilibrium push between them. 
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Figure 3.21: CW non-equilibrium push sequence and the reachable region. The CW 
push direction vectors are given by VO, - - , VG. These vectors span R2 space. The 
position vectors bl and b2 are positively sp,anned by the vectors; thus, Goal 1 and 
Goal 2 can be reached by a sequence of equil.ibriun1 pushes. 
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Figure 3.22: Optimal CW push sequence for goal 1. This sequence consists of six 
non-equilibrium pushes and two equilibrium pushes. The first and the final pushes 
are equilibrium pushes. 
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Figure 3.23: Optimal CW push sequence for goal 2 .  This sequence consists of six 
non-equilibrium pushes and two equilibrium pushes. The first and the final pushes 
are equilibrium pushes. 
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sequence of CCW non-equilibrium pushes arid the reachable region is shown in Fig. 

3.17. The reachable cone is spanned by vectors vo, vl, v2, and v 3  If the goal position 

is inside the cone, a CCW sequence is sufficient for the manipulation task. Otherwise, 

a modified sequence is needed for the task. The goal Cgl is inside the cone, and the 

goal Cg2 is outside the cone. 

For the first goal Cgl, it requires a CCW pushing sequence with two equilibrium 

pushes and three non-equilibrium pushes. The equilibrium pushes along the directions 

indicated by vo and vl gives the optimal CCW sequence, and the optimal sequence 

is shown in Fig. 3.18. The pushing distance for individual equilibrium pushes are 

m e ( 0 )  = 0.0371 m, and me(l)  = 0.094 m. 

Since the second goal position is not inside the cone, it requires an. additional 

CW non-equilibrium push to  the original CCW non-equilibrium push sequence. The 

CW-CCW sequence and the reachable regio:n is shown in Fig. 3.19. By adding the 

pushing vector v-, the total reorienting angle is larger than T .  Therefore, the set of 

vectors v-, vo, vl, v2, and v3 span the entire R2 space. The position vector b2 is inside 

the cone formed by vectors v- and v3. The CW-CCW sequence with equilibrium 

pushes along the direction v- and u3 gives the optimal CW-CCW sequence. The 

corresponding distances for the sequence of equilibrium pushes are me(--) = 0.6366 

m, and m e ( 3 )  = 0.7634 m. The resulting CW-CCW sequence is shown in Fig. 3.20. 

The CW push sequence and the reachable region is shown in Fig. 3.21. For the CW 

sequence, the total reorienting angle is larger than T .  The set of pushing vectors span 

the entire R2 space. The optimal push sequence for goal one and two are shown in 

Fig. 3.22 and Fig. 3.23. 

In order to  validate the feasibility of these two manipulation primit:ives, exper- 

iments have been conducted by using a tw'o-fingered gripper pushing a triangular 
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Figure 3.24: Experimental setup. Two motors are controlled to  adjust the spatial 
relationship of the agents. The MOTOMAN robot drives the two-fingered gripper to  
push the object. 

block. The two-fingered gripper is mounted on a MOTOMAN robot where each fin- 

ger is driven by a motorm, and the motors are controlled by a computer. through a 

motion control card. The experimental setup is shown in Fig. 3.24. The block has 

the same dimension as the triangle used in the simulations. 

In the experiment, after moving the fingers to  satisfying a certain spatial relation- 

ship, we control the motion of the MOTOMAN robot, and it performs the equilibrium 

or non-equilibrium push. Sequences of CCW and CW non-equilibrium pushes are 

shown in Fig. 3.25-3.26. These sequence show the object before and after the CW 

and CW non-equilibrium pushes. Experiments indicate that objects can be manipu- 

lated by using CCW and CW sequences of equilibrium and non-equilibrium pushes. 
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Figure 3.25: Object under s CCW non-equilibrium push. (a).  Before contact, (b) 
one a.gent makes contact, (c). the object rotates between the agents, (d) the object 
reaches its equilibrium orientation. 
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Figure 3.26: Object under a CW non-equilibrium push. (a). Before c~mtact ,  (b) 
one agent makes contact, (c), the object rotates bet8~veen the agents, (d) the object 
reaches its equilibrium orientation. 
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3.7 Discussion 

In this chapter, we introduced the concept of a virtual fence for the parts transfer task. 

This method extends the work in [3] and it is capable of manipulating non-polygonal 

convex objects. We identified two push primitives, namely, equilibrium push and non- 

equilibrium push. Through the concept of virtual fence, a close relation between fence 

and point contact based pushing was discoveired. After formulating the manipulation 

process into a switched system, the plaaning problem becomes a switc:hed control 

problem. We prove that, in an optimal plan, only two equilibrium push actions are 

required. A fully analytical planner has been developed for the manipulation task. 

In the proposed method, a fixed spatial relationship between agents is considered, 

and only a single virtual edge is used t o  perform the pushes. Because equilibrium 

and non-equilibrium controllers are designed separately, the best plan found is not 

guaranteed to  be globally optimal. Selecting variable spatial relation between agents 

and designing the equilibrium and non-equilibrium controllers simultaneously may 

provide more efficient planners. 

If we want to  deal with toleranced parts, we need to  define a proper tolerance 

model [6], and study the effect on the equilibrium and non-equilibrium push primi- 

tives. Alternatively, sensory information and feedback may be used to deal with shape 

uncertainty. 
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Planning the Velocity of Free 

Sliding Objects 

This chapter focuses on solving the planning problem to  find the initial velocity of 

a free sliding object for the given initial and final configurations. In the free sliding 

problem, the initial and final configurations of the object are known and, if the travel 

time of the object is also known, the problem can be solved as a two-point boundary 

value (TPBV) problem. However, the travel time of the object is unspecified. We only 

know that,  at  the final goal configuration, the velocity of the object becomes zero. 

Since we do not know the travel time, the free sliding problem can only be formulated 

as a free boundary value problem (FBVP), and the assumed zero velocity at the final 

goal configuration provides another boundary condition for finding the travel time of 

the object. In order to  use well known existing techniques to  solve the FBVP [8], 

the problem is first reduced to  a standard TPBV problem, and solved by shooting 

methods. A recent summary of numerical shooting methods can be found in [7]. 

Shooting method is one of the standard techniques for solving a TPBV problem, and 

it is implemented by integrating the initial value solver with an optimization routine. 
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The quasi-Newton method is used as the optj.mization routine in this application. To 

improve the global convergence, a line search strategy is incorporated with the quasi- 

Newton method [28]. In general shooting methods, the computation of the Jacobian 

matrix is always time consuming because several initial value problems have to  be 

solved. In order to  reduce the cost associated with the computation of the Jacobian 

matrix, we modify the quasi-Newton method. with the Broyden update [74]. In each 

iteration, the Jacobian matrix is updated iteratively without solving the initial value 

problem. 

The remainder of this chapter is organized as follows. In Section 4.1, we first derive 

the model for the sliding object, then we formulate the velocity planning problem as a 

free boundary value problem. In Section 4.2, we present the planning algorithms and 

implementation. In Section 4.3, we present the simulation and experiment results. 

Finally, we conclude in Section 4.4 with a discussion. 

4.1 Problem Formulation 

4.1.1 The Model of a Sliding Object 

The motion of a free sliding object on a horizontal plane is governed by the friction 

force between the object and the plane. With known friction coefficient and pressure 

distribution, the friction force and torque are calculated by integrating through each 

infinitesimal element of the object. Consider an object sliding on the plane as shown 

in Fig. 4.1. X O Y  is the world frame, and xoy is the local coordinate frame associated 

with the object with o located at  COM. The configuration of the object is defined as 

(X,, Y,, O),  where (X,, Y,) gives the position of COM, and 8 is the orientation of the 

object. 
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0 X 

Figure 4.1: Motion of a planar object 

The linear velocity of o is defined as v == (x,, x),  and we assume that on each 

infinitesimal element of the object, there exists a friction force. Denote A as an 

infinitesimal element of the object located at (x, y) in the local frame, and r is the 

position vector from o to A. dm = p(x, y)dxdy is the mass of element A, where 

p(x, y) is the mass distribution function of the object at  position (x, y). p(x, y)g 

is the pressure distribution function, where g is the acceleration of gravity. w = 6 

is the angular velocity of the object. p is the Coulomb friction coefficient. Under 

the Coulomb friction assumption, the magnitude of the friction force acting on the 

element A is independent of the magnitude of the velocity, and it is calculated as 

dF = pg dm. (4.1) 

The direction of friction force is always opposite to  the direction of the unit velocity 

vector GA.  The unit velocity vector G A  for the element A is 
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Let X, Y be the linear velocity components of the element A in the world frame, 

and they are calculated as 

where 

cos 8 - sin8 

[ s i n ,  C O S ~  ] 
is the rotation matrix associated with the oblject. 

Substituting Eq. (4.4) into Eq. (4.3), we get 

In the world frame XOY, the friction force d F  = (dFx, dFy)T is calculated as 

Substituting Eq. (4.5) into Eqs. (4.6)and. (4.7), we get 

The associated frictional torque with respect to  the COM o is 

dT = r x dF = -pg  r - dm. 
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To calculate the torque dT generated by th~e friction force of the element A about 

the COM, we first transfer the friction force components dFx and dFy into the local 

frame as dF1 = ( d F i  dF&)T,  and they are (computed as 

Using the friction force in the local frame, th~e torque d T  is calculated as 

= dF& ( - y )  + dF& . x (4.12) 
- ( X 0 x + k y )  sin O - ( X O ~ - I ; , X )  cos B+w.y2+w.x2 

= -P s . P ( X ,  Y )  \/ 
(Xo-cosB~w~y-sin~~w~x)2+(~-sin~~w~y+cos~~w~x)2 ' 

After obtaining the friction force and torque associated with the element A, the 

net friction force and torque acting on the object are calculated by integrating dF 

and dT over the entire contact area barA, i. e., 

By integrating Eqs. (4 .8) ,  (4 .9) ,  and (4.12) over the contact area A, we get the 

friction force components and torque on the object 

FY = - P * S J J P ( X , Y )  
Yo-sin B.w.y+cos 0.w.x (4.16) 

dxdy 
.\/(x0-cos ~ w . ~ - s i n  B .wx )2+(~~- s inB .w .~+cos  B.w.x)2 

T =  - P . g J J P ( x , y )  
. - ( X , X + Y ~ ~ )  s i n B - ( ~ ~ ~ - i ~ ~ x )  cos B+w.y2+w.x2 dxdy.  

(4.17) 
\ / (x0-cos  8u .y-s in  B . w . ~ ) ~ + ~ : ~ i , - s i n B . w . ~ + c o s  $ . w . x ) ~  
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The resulting formulations for the forces and torque are in the same form as those 

in [37], in which they were derived by using the principle of virtual work. Numerical 

computation procedures on friction forces f i ,  Fy and torque T for general shaped 

objects can be found in Appendix A. 

With known friction forces and torque, the motion of the sliding object is governed 

by 
X,  = F x / m  

= F y / m  (4.18) 

# = T/IO 

where m is the mass of the object, and I. is the mass moment of inertia 

about the COM. By introducing the state variable X = (xl, ~ 2 ~ x 3 ,  x4, x5, x6) = 

(x,, x,, El Y,, 8, o), ~ q .  (4.18) is rewritten in state space form as 

This set of differential equations will be used t o  find the initial velocity of the free 

sliding object. 

Before studying the planning problem, vie first present some existing results on 

the characteristics of the final motion of a sliding object. For an axis-symmetric 

object with even mass distribution, it was shown that the translational and rotational 

velocities will come to  a simultaneous stop after sliding [42, 1021. 011 the other 

hand, for an  object with a general geometrical boundary and mass distribution, it is 

difficult to  predict the exact characteristics of the final motion. Through analyzing the 

relationship between mass distribution and eigen-direction, Goyal et al. [36] concluded 
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that the final motion will be a pure translation if the mass is sufficiently central, and 

the final motion would be a pure rotation if the mass is sufficiently distributed over 

the contact area. Ishlinskii et al. 1421 studied the motion of a two-mass system over 

a plane with two point masses connected by a weightless bar. Simulation results 

indicate that the final motion is a pure rotation about one mass point. 

In general, it is difficult to  predict the exact pattern of the final motion. Instead, 

we will use the condition 

as one boundary condition to determine the travel time Tf of the object. Because of 

the discontinuities of the friction forces (4. I s ) ,  (4.16), and torque (4.17) at  the point 

x0 = Y, = B = 0, it is hard to  check the condition vf (Tf) = 0 in practice. For this 

reason, we will specify a small scalar threshold E., and consider the object stops when 

which enables us t o  determine the total travel time of the object. 

4.1.2 Formulation of the Planning Problem 

Consider an object with known geometry, mass distribution, and friction properties 

sliding on a supporting plane. At the beginning, the object sits at  a known initial 

configuration (Xi, Y,, Bi). After being acceleraked to  an initial velocity, it starts sliding. 

It will slow down due to  the friction, and eventually come to  a stop at  the final 

configuration (Xf ,  Yf, O f ) .  The objective of the planning is to  determine the initial 

release velocity (xi, El 4). 
The motion of the sliding object on a plane is governed by Eq. (4.19), which is a 

system of six first-order differential equations. Due to  the nonlinearities of the friction 
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force and torque, there does not exist an analytical solution of the initial velocity for a 

given displacement of the configuration. Numerical procedures need t o  be developed 

to  find the desired initial velocity. 

The solution of system (4.19) depends on. its initial conditions. If the initial con- 

figuration (Xi, Y,, Qi), and velocity (%, c, 8,) are known, the trajectory of the motion 

will be uniquely determined, and it can be found by numerical integraltion of the 

system (4.19). This is known as the initial vizlue problem. 

If, on the other hand, the initial configuration (Xi, x, Qi) and the final goal con- 

figuration (Xf , Yf , Q f )  are known, plus the travel time for Eq. (4.19) is specified, i. e., 

Tf is known, the problem becomes a standard TPBV problem. However, for the free 

sliding planning problem, the travel time Tf j.s unknown. Thus, the planning problem 

is not a TPBV problem. As a result, we need to  determine the travel time Tf using 

the condition on the velocity (4.21). By introducing this condition as a boundary 

condition, the system (4.19) will have a solution satisfying the following boundary 

conditions 
( Xo(0) = xi Xo (Tf ) = Xj 

( vf (Tf) = r (r > 0 is a small number). 

Solving the system (4.19) with boundary conditions (4.22) is referred to as a free 

boundary value problem. 

To solve the FBVP, we first transfer the FBVP into a TPBV problem by intro- 

ducing a new independent variable [7]. Here, in place of time t ,  we introduce a new 

independent variable 7, such that 
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In Eq. (4.23),  we know that when the variable T varies from T = 0 to T = 1, the 

system (4.19) will travel from t = 0 to  t = T f .  From Eq. (4.24),  we know that Tf  is 

independent of T .  

After substituting Eq. (4.23) into Eq. (4.19),  and augmenting Eq. (4.24) to  

Eq. (4.19),  the motion of the sliding object is governed by the following system of 

differential equations 

The system of differential equations (4.25) is in standard TPBV form with T 

varying between known limits of 0 and 1. The associated boundary conditions are 

The planning problem is to  determine the initial velocity (&(o), %((I), 8 ( 0 ) )  and 

the travel time T f ,  such that the solution of system (4.25) satisfies the boundary 

conditions (4.26). 

Numerical methods for solving TPBV piroblems fall into four categories [7]: ( 1 )  

the shooting method, ( 2 )  the finite difference method, ( 3 )  the variational method and 

( 4 )  collocation method [95].  The shooting method is a direct extension of the solution 

techniques for initial value problems with integration of optimization techniques. It is 

conceptually simple, and allows the usage of available solvers for ordinary. differential 

equations. Moreover, the shooting method only stores the initial velocity during the 



Chapter 4. Planning Velocity 

computation. For this reason, we choose the shooting method to solve the planning 

problem. 

4.2 Planning Methods and Implementation 

In this section, we describe the shooting method for the TPBV formulation of Eqs. 

(4.25) and (4.26). Three quasi-Newton based planning algorithms are developed. In 

Subsection 4.2.1, a basic quasi-Newton based shooting algorithm is first proposed to  

solve the TPBV problem. In order to reduce the computation cost on the Jacobian 

matrix in Newton method, a quasi-Newton based algorithms with the Broyden update 

is proposed in Subsection 4.2.2, where the Jacobian matrix is updated iteratively. 

Finally, a line search strategy based algorithm is proposed in Subsection 4.2.3. 

4.2.1 Basic Shooting Method 

In order t o  use the shooting method, we need to  have the formulation of the initial 

value problem. The associated initial value problem for the TPBV for~mulation of 

Eqs. (4.25) and (4.26) is defined as 

with the initial conditions at  T = 0, 
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We know from the boundary conditions (4.26) that,  when the initial condition 

(X,(O) , Y,(O), 0,(0)) is known, the solution for the configuration (Xo(l), Yo(l), @,(I)) 

and vf( l )  a t  T = 1 are functions of initial velocity and travel time of the object in the 

initial value problem. Define a vector s as 

Solving the TPBV problem of Eqs. (4.25) and (4.26) is equivalent to  finding a suit- 

able vector s = (x,(o), )i,(0), 8(0), Tf (0))T for the initial value problem of Eqs. (4.27) 

and (4.28), such that the solution of the initial value problem satisfies the boundary 

conditions (4.26) at  r = 1 as 

X0(1, s) == Xf 

y,(l, s) == Yf 

0,(l, s) == 0, 

vf (1, s) - f. = 0. 

We define Eq. (4.30) as a vector-valued function G( . ) ,  

Now, solving the TPBV problem is equivalent to  finding a solution of s as s = 

(?TI, a2, ?T3, Q) such that 

G(s )  = 0. (4.32) 

The nonlinear equation (4.32) is solved by the Newton method 

where i indicates the i-th iteration. 

In each iteration step, one has to  compute G(s( ')),  and the Jacobian matrix 
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and the solution d(i) = s ( ~ )  - s(~+') of the linear system of equations 

In order to  compute G(d i ) ) ,  one must solve the initial value problem of Eqs. 

( (i) 11i) (4.27) and (4.28) with s = s(') = (o:), 0, , o o f ) .  Generally, the Jacobian matrix 

DG(s(") cannot be calculated analytically, it needs to  be approximated numerically 

by the finite difference matrix AG(di))  as 

where the j t h  entity of AG(S(')) is a column. vector with four components, and it is 

computed as 

where ~ o j " )  is a small number. 

The computation procedure for ~ ( o j ' ) ,  . . , oji)+Aoj"), . . , of)) in E q  (4.37) is the 

same as the computation of G(d i ) ) ,  and it requires solving the corresponding initial 

(4 value problems of Eqs. (4.27)and (4.28) wit'h initial conditions s = (o j"), . . , oj + 
A ,  , o f ) .  By introducing the approximated Jacobian matrix AG(di))  into Eq. 

(4.33), we obtain the following quasi-Newton. method, 

The quasi-Newton method based planning algorithm is summarized as follows. 

Choose a small number E, and starting vector do). 

For i = 0,1,2,  
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Determine Xo(l, s (~ ) ) ,  K(1, s (~) ) ,  Q0(1, s(',)), vf (1, s(')) by solving the initial value 

problem of Eqs. (4.27) and (4.28), then compute G(s(~)) according to Eq. 

(4 - 31). 

Choose small numbers Aaj, j = 1, . . . ,4:, and determine 

Xo(l, s ( ~ )  + Aajej), K(1, di) + Aajej), dO( l ,  s ( ~ )  + Aajej), vf (1, s ( ~ )  + Aajej) by 

solving four initial value problems of Eqs. (4.27)and (4.28) with 

where ej is a four-dimensional column vector with elements having the 

following form 

First compute AG(S(~)) by means of Eq.s. (4.36) and (4.37), then compute the 

solution d(i) of the following system of linear equations 

Update 

end (for) 

Algorithm 1: Basic shooting method 

In each iteration of the algorithm, five initial value problems and a four- 

dimensional system of linear equations needs to be solved. 
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4.2.2 Shooting with the Broyden Update 

In each iteration of the basic shooting metho'd, four initial value problems are solved 

to  compute the Jacobian matrix. The computation of initial value problems is al- 

ways time consuming. To reduce the computational cost, we consider the use of the 

Broyden method [28] to approximate the Jacobian matrix. The local convergence of 

the Broyden method has been shown in [28]. In the Broyden method, the Jacobian 

matrix is updated iteratively in each iteration instead of being computed numerically 

using Eqs. (4.36) and (4.37). The planning algorithm with the Broyden update is as 

follows. 

Choose a small number E, and starting vector d o ) .  

Determine Xo(1,  s(O)), x ( 1 ,  s(O)), & ( I ,  s(')), ~ ~ ( 1 ,  s(O)) by solving the initial value 

problem, then compute G(dO))  according to Eq. (4.31). 

Choose Loj, j = 1, . . , 4 ,  and determine 

~ ~ ( 1 ,  S ( O )  + aojej) ,  ~ ~ ( 1 ,  do) + b j e j ) ,  O o ( l ,  s(O) + Aojej), v S ( l ,  do) + Lqiej) by 

solving four initial value problems with 

where ej is a four-dimensional column vector with elements having the following 

Compute LG(s(')) by means of Eqs. (4.36) (2nd (4.37). 

For i = 1 , 2 , - . . ,  

Compute the solution d(i) of the following system of linear equations 
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Determine Xo(l, s(~+')), Yo(l, s(i+l) ), eo(l, s(~+')), vf (1, s('+')) by solving the 

initial value problem of Eqs. (4.27) and (4.28). 

Compute G(s(;+')) according to  Eq. (4.. 31). 

Compute 

where y(i) is  the difference of the vector function value G(.) between iterations 

i + 1 and i, which provides the information for the Jacobian update. 

Update the Jacobian matrix as 

end (for) 

Algorithm 2: Shooting methold with the Broyden update 

By using the Broyden method t o  update the Jacobian matrix, the planning algo- 

rithm only needs to  solve one initial value problem in each iteration. As a result, the 

computation cost will be reduced dramatically. 

4.2.3 Implementation with a Line Search Strategy 

As known from literature [74], neither the quasi-Newton method nor t.he Broyden 

method guarantee the convergence t o  a solution unless the initial guess is close to the 



Chapter 4. Planning Velocity 

solution. The quasi-Newton and the Broyden methods could be made rnore robust 

by using global strategies like line search or trust region techniques. Here, we choose 

a line search as the global strategy [28]. 

To implement a line search strategy, we define a merit function, which is a scalar- 

valued function of s ( ~ )  whose value indicates whether a new candidate iterate is better 

or worse than the current iterate, in the sense of making progress toward the solution 

of S.  Here, we choose the sum of squares as the merit function, defined by 

where 1 1 . 1 1  represents the norm. 

The gradient of Eq. (4.49) is computed as 

where DG(di) )  is the Jacobian matrix defined by Eq. (4.34). 

In the quasi-Newton algorithm, the Jacob-ian matrix is approximated and updated 

at  each iteration according to  Eq. (4.36). Before developing the global strategy, we 

define the Hessian matrix as 

In each iteration, a line search method computes a search direction pi, and then 

decides how far to  move along that direction. The iteration is given by 

where the positive scalar ai is called the step length. The success of a line search 

method depends on the effective choices of both the direction pi and the step length 
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ai .  In Newton method, the descent direction. is chosen as 

When it is well defined, the Newton step satisfies 

-p:vfm(s(q > 6, for some 6 E (0, I )  and all i sufficiently large. (4.54) 
IIP:II l l ~ f m ( ~ ( ~ ) ) l l  - 

To ensure that the condition (4.54) holds, we may need to  modify the Newton descent 

direction (4.53). One possibility is to  add some multiple y i I  of the identity matrix to  

H(S(~)),  and define a new descent direction pi to  be 

For each iteration, we choose yi such that t:he condition (4.54) is satisfied for some 

given value of 6 E (0 , l ) .  The Choleskey factorization of the matrix (H(s(~)) + yiI) is 

used to  find the yi [74]. 

After we have identified the search direct:ion pi for Eq. (4.55), we need to  choose 

the step length ail which is chosen such that the following Wolfe condition is satisfied, 

This condition stipulates that ai should give sufficient decrease of the objective func- 

tion f,. In other words, the reduction in jh should be proportional to  both step 

I (i) T length ai and the directional derivative vf,~,s ) pi. 

The shooting method with a line search is summarized as follows. 

Given 6 E ( 0 , l )  and cl ,  c2 with 0 < c2 < c2 < 1, choose a starting vector do). 

Determine Xo(l, s(O)), %(I, s(O)), QO(l, s(O)), vf (1, s(O)) by solving the initial .ualue 

problem, then compute G(s(')) according to Eq. (4.31). 
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where ej  is a four-dimensional column vector with elements having the following 

form 

1 i = j  
ej  ( i )  = 1 = 1 , . . . , 4  . 

0 i # j  

Compute the approximated Jacobian matrix ,! l~(s(O)) b y  means of Eqs. (4.36) and 

(4.37). 

for i = 1 , 2 , .  - 0 ,  

Compute the Newton step pi according to Eq. (4.53). 

if Newton step (4.53) satisfies condition (4.54) 

Set pi to the Newton step. 

else 

Obtain pi from Eq. (4.55), choosing yi to ensure that Eq. (4.54) holds. 

end ( i f )  

if a = 1 satisfies the Wolfe condition (4.56) 

set ai = 1 

else 

Perform a line search to find ai > 0 that satisfies condition (4.56). 
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end (if)  

Determine Xo(l, s ( ~ ) ) ,  Yo(l, di+')), &(:I, s(~+')),  v f ( l ,  s(~+')) b y  solving the 

initial value problem of Eqs. (4.27) and (4.28), then compute G(s(~.+ '1) 

according to Eq. (4.31). 

where y(i) is the diflerence of the function value G(. )  between iterations i + 1 

and i, which provides the information jFor the Jacobian update. 

Update the Jacobian matrix 

end (for) 

Algorithm 3: Practical algorithm with line search 

The optimization procedures used in the planning algorithms belong to  the class 

of local optimization methods, which exhibit a local convergence. The choice of initial 

guesses for do) will affect the convergence of the algorithms. 

It has been shown that with the same initial velocity, the travel time of an object in 

a composite motion is larger than that in the cases of pure translation or rotation [102]. 
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The displacement also satisfies this relationship. As a result, for a given displacement, 

the object in a composite motion needs a smaller initial velocity. 

If the object starts with a pure translation, for given displacements Xf, Yf , the 

required initial linear velocities xt (0) , %(o) are calculated as 

If the object undergoes a pure rotation, for a given O f ,  the initial rotational velocity 

8,(0) is calculated as 

These velocities give the bounds of the initial release velocity for a free sliding 

object. Using these bounds, the initial guesses xOg (0), ?&(o), ~ ~ ( 0 )  :for velocity 

& (0) , I$(o), O(O) are chosen as 

The initial guess for Tf is obtained by solving the initial value problem (4.19) with 

initial conditions xOg (0) , yOg(0), 8, (0). 

Concerning the existence and uniqueness of the solution, there have been some 

results on the solution uniqueness of TPBV problems [43]. Since the friction forces 

Fx, Fy and torque T depend on the geometry of the contact area and pressure dis- 

tribution, they cannot be integrated explicitly in general. Therefore, we could not 

apply the results in [43] to  verify the uniqueness of the solution. The uniqueness as- 

sociated with the free boundary value problem itself is a very interesting problem to  

investigate. In practice, the uniqueness of th.e solution could be verified by applying 
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different initial guesses to  the planning algorithms and, if all of the planned initial 

velocities converge, it indicates the solution is a unique one. Moreover, as pointed out 

in [37], if we consider the periodicity of the orientation of the object, the solution will 

not be unique. For example, the following set of boundary conditions with orienta- 

tion O,(Tf) = Of f 2i7r (i = l, 2 , .  .) will define the same orientation of the object. 

Therefore, a set of initial velocities could be obtained by using the proposed plan- 

ning algorithms. This property actually provides us with more flexibility to  choose a 

feasible solution suitable for a specific manipulation device. 

Numerical and Experiment a1 Results 

In this section, we present numerical and experimental results that demonstrate the 

performance of the proposed planning methods. 

4.3.1 Numerical Simulations 

For simulation purposes, six different parts as illustrated in Fig. 4.2 are sel.ected. The 

first three parts are polygons with different numbers of vertices (labeled as triangle, 

rectangle, and pentagon), all having uniform pressure distributions. The fourth part 

is a curved object (labeled as curved) that is considered in order to  verify the applica- 

bility of the planning method for non-polygonal objects. The other two parts (labeled 

as step and slope) are workpieces with nonuniform pressure distributions. The geo- 

metric dimensions of the six parts are listed in Fig. 4.2. Later on, in the experimental 

phase of this study, aluminum parts are utilized with the same geometries. Thus, for 

consistency, in the simulation, the part properties are calculated using the density of 

aluminum. The mass density of aluminum is 2 7 0 0 ~ ~ / m ~ ,  and the mass distribution 

function p(x, y) = 2700 . z ,  where z is the thickness of the part at  position (x, y). 
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Figure 4.2: Geometries of parts (unit: cm) 

In this study, we choose the initial configuration as (O,0, O ) ,  and we use the practi- 

cal algorithm with a line search to find the dlesired release velocity. The performance 

of the proposed planning schemes are summarized in Table 4.1. In this table, we 

show the initial guesses for &(o), Y,(O), 8(0), the planned initial velocities, the goal 

displacements, and the achieved displace men^;^ of the objects with the planned initial 

velocities. The number of iterations required to  find the desired velocities are also 

listed in the table. The results indicate that with suitable initial guesses, t:he planning 

method will find the desired initial velocities for the free sliding objects. 

As an example, to  show the convergence of the algorithm, the velocities and final 

configurations of a uniform rectangular object are shown in Fig. 4.3. The initial 

configuration and the goal configuration are the same as those listed in Table 4.1. 

In Fig. 4.3(a), the number on each block indicates the position of the object after 

the number of iterations, and G on the block indicates the goal configuration. It is 

clear that,  after seven iterations, the planned configuration converges to  the desired 

goal configuration. In addition, the corresponding initial velocities &(o), %(a), 8(0) 

for each iteration found by the planning algorithm are also shown in Fig. 4.3(b)-(d) 

respectively. 

To investigate the influence of initial guesses on the convergence of the plan- 

ning method, we supply the planning algorithm with different initial guesses 
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Table 4.1: Numerical results for objects with different geometries. The rows ~narked with 
G are the initial guess for the velocities. The rows marked with P are the planned ve- 
locities. The displacements marked with Go are the desired goal displacements, and the 
displacements marked with A are the achieved displacements with planned velocities 

Parts 
Geometry 

Triangle 

Rectangle 

Pentagon 

Curved 

Step 

Slope 

Displacements 

Yf Of 

No. of 
Iterations 

19 

7 

4 

5 

36 

31 
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1 2 3 4 5 6 7  

iteration iteration 

Figure 4.3: Iteration results for the rectangular object: (a) shows the final configuration 
after each iteration for a uniform rectangular object; (b)-(d) show the planned initial velocity 

x0(0) ,  (0), 4 (0) after each iteration. 
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xOg(0), yOg(0), 9,(0) to  the curved part (Fig. 4.2). Since the integration scheme pro- 

posed in Appendix A is developed for polygonal objects, it cannot be applied to  the 

curved object directly. In order to use the integration method, we introduce middle 

points on the arc to  approximate the curved part by a polygon. The accuracy of the 

approximation depends on the number of points used. For simplicity, only one point 

is assigned in the middle of the arc and the object is represented as a pentagon. By 

using the integration schemes proposed in a,ppendix A, we get m = 0.111 Kg, and 

Io = 8.271e - 5 Kg-m2, the friction coefficient p = 0.11, and g = 9.8 m/s2. The 

goal configuration is assigned as [Xf Yf O f l T  = 10.16 0.057 1.65721~. From Eq. 

(4.65), we know that the initial guesses of x,,,(o), yOg(0), 9,(0) should be chosen as 

0 < xOg(0) 5; 0.5873 

0 < yOg(0) 5 0.3506 (4.66) 

0 < 9,(0) 5 10.885. 

The convergence results for this curved part are listed in Table 4.2 with different initial 

guesses, planned velocities, and the resulting displacements. The results indicate that 

the initial guesses will affect the convergenc:e speed of the algorithm. In all cases, 

the planning algorithm converges and obtains the desired initial velocity for the free 

sliding object. However, the number of iterakions vary from 3 to  184, depending on 

the initial conditions. Although cases where the planning methods do not converge 

may exist, no scenario was found in this exploration. 

4.3.2 Experimental Setup 

To verify the planning results of the proposed algorithm using a physical setup, we 

integrated a manipulation setup consisting of a fence connected to  a direct drive 

actuator which creates 1-DoF controlled rotational motion. Similar manipulators 
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Table 4.2: Convergence results under different initial guess for curved part 

No. 

have been used to perform parts feeding over a conveyor [6, 911, where the fences were 

used to manipulate parts over a conveyer belt for quasi-static manipulation purpose. 

Guess 

(m/s) 
0 9  E',9(0) 8,(0) 

(m/s) (rad/s) 

A picture of our experimental setup is shown in Fig. 4.4, where a fence of 50 

Cm in length is driven by an actuator. The fence is used to  accelerate the object to 

desired velocities, which can then be used to  verify the proposed planning methods. A 

PD controller is implemented for the position and speed control of the actuator, and 

an encoder with resolution of 2000 counts per revolution is attached to  the actuator 

for measuring the position of the actuator. A Galio DMC - 18 x 2 series motion 

control card is used to  interface between the encoder and the PC as well as between 

the output control signal and the motor amplifier. 

The schematic of the 1-DoF dynamic manipulation of an object is shown in Fig. 

4.5. The actuator is placed at  0, which is the center of a fixed reference frame, and 

the fence is fixed to  this point and rotates about it. We also introduce a movable 

stopper, which is a V-shaped block that can be placed anywhere on the fence similar 

t o  the fixed stopper used in [6]. The stopper is clipped onto the fence at position 

Velocities 
x o  Y,  
(m/s) m m 



Figure 4.4: Experiment setup 

L. There are two purposes for using the stopper. First, the stopper can oppose the 

centrifugal force acting on the objects during rotation. Thus, it constrains the motion 

of the object along the fence. Second, by varying the position of the stopper, the 

linear velocity of the object could be changed independently of the angular velocity. 

At the beginning of each experiment, the object is placed against the fence and 

the stopper. The center of mass of the object is represented by o. The motor drives 

the fence rotating with constant speed from some initial position. After rotating a 

predefined angle &, the fence will stop, and the object will be thrown out. 

In order to  validate the proposed planning method, we need to accelerate the object 

to the desired velocity [x0 ]i, BjT using the rotational motion of the fence. Since 

we can regulate the rotation angle and velocity 9 separately, we can also implicitly 

control the linear velocity using the following relation, 
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Figure 

0 x 

4.5: Description of experiment parameters 

where I is the distance from the center of mass of the object o to  the origin of the 

world reference frame XOY. 

This relationship (4.67) suggests that the linear release velocity can be controlled 

by varying the position of the stopper relative to the origin 0, namely, the variable 

L, and it is computed as 

where oA is the distance between o and the :fence, oB is the distance between o and 

the stopper. 

The components of the linear velocity can then be calculated as 

where O2 is the release angle. 

The purpose of the experiment is to  verify the simulation results in the previous 

section. For a given velocity (&(o), E(o), b(0)) found by the planner, in order to  
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achieve the same release velocity for the object, the parameters for the experiment 

are set up according t o  the following steps. (refer to  Fig. 4.5) 

I .  Set the speed w of the actuator to  9(0) 

2. Calculate the linear velocity u = Jx2(0)  + y2(0) ,  then compute 1 from the 

relation (4.67); finally, determine L based on Eq. (4.68). 

3. Find the final angle between the fence and the x-axis Q2 as d2 = a rc s in (~ (0 ) lv )  

from Eq. (4.69). 

4. Choose a suitable rotation angle Q1 for accelerating the object. 

4.3.3 Experimental Results 

In the experiments, a high-density fiberboard with uniform grids of 2cm is used as 

the supporting plane. The motion of the object is captured by a digital video camera. 

The experiments are carried out on a1uminu.m parts with geometries as depicted in 

Fig. 4.2. In the experiments, the initial velocities for the manipulation are the same 

as those listed in Table 4.1. The parameter w is set to  e(0), L is calculated according 

to  the procedure provided in Subsection 4.3.2, and el = 7r/2 is the rotation angle of 

the fence from start t o  stop. 

Figure 4.6 shows a qualitative comparison of numerical and experimental results 

for a triangular object. The positions of the moving object are obtained by extracting 

frames from the captured video. Repeated trials are performed on different parts, and 

the quantitative experimental results are listed in Table 4.3. These resu.lts indicate 

the effectiveness of the planning and manipulation method. 

The experiments using the 1-DoF manipulator give us some reasonable results to  

verify the proposed planning algorithms. The difference between the numerical and 
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X 
(a) S~rnulahod Result 

(b) Experimerltal Result 

Figure 4.6: Results of qualitative comparison 

Table 4.3: Experimental results (The objects gain the initial velocities x0, c,, 9, and the 
resulting displacen~ents Xj, Yf, O f ,  which a.re close to the goal displacements.) 

Triangle 
Rectangle 
Pentagon 
Curved 
Step 
Slope 
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experimental results mainly comes from the following two sources, namely, modeling 

and experimental setup. In the modeling phase, we assume that the object makes a 

uniform contact with the supporting surface. In the experiments, the surface of the 

object and the supporting plane may not be flat enough to satisfy this assumption. 

The object may contact the supporting surface through a number of concentrated 

points [70]. The other possible reason associated with the model is the Coulomb 

friction assumption, which makes no distinct.ion between static and dynamic friction 

coefficients. The friction coefficient used in the model is independent of the part's 

velocity. In the experiments, the friction coefficient between the sliding object and 

the supporting surface may depend on the velocity of the object and the temperature. 

In the experimental setup, a stopper has been used to  cancel the effect of the 

centrifugal force on the object. However, w:hen the object starts to slip off the tip 

of the stopper, the centrifugal force will act on the object. As a result, an angular 

acceleration on the object opposite t o  the direction of rotation is generated. This 

negative angular acceleration will reduce the release angular velocity of the object 

and consequently, the angular displacement olf the object. This is one possible reason 

that,  in the experiments, the angular displacements are always smaller than those 

expected in numerical simulations. Another source of discrepancy is associated with 

the resulting position overshoot of the fence.. The overshoot leads t o  the variation 

of the linear velocity distribution in the X and Y axes. As a result, it affects the 

corresponding displacements. 

4.4 Discussion 

In this chapter, we studied the planning problem for free sliding objects and proposed 

an optimization based method to solve the initial velocity for a given displacement. 
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Quantitative information is used to  develop the planning algorithms. Compared to 

the work of [37] and [41], no motion characteristics, such as monotonicity of force and 

torque, are required. Thus, this method is suitable for objects with general geomet- 

rical shapes and mass distributions. The experiments provide reasonable results to  

demonstrate the correctness of the model and the planning algorithm. If there exist 

uncertainties in the friction model and part shape, the planned velocities will not 

generate the required displacement. The discrepancy between simulation and experi- 

mental results inspires us to develop feedback and closed-loop manipulation, which is 

the third stage of the dynamic cooperative manipulation system depicted in Fig. 1.2. 
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Acceleration of the Object by 

Cooperative Dynamic Pushing 

The previous chapter studied the free sliding problem to  find the initial release ve- 

locity for a required displacement. This chapter studies the acceleration problem to  

achieve the planed release velocity. Cooperative dynamic pushing is used for this 

task. During the acceleration process, the robotic agents push the object to  follow 

a predefined trajectory. We are interested in coordinating the pushing actions and 

force distribution between agents such that t:he pushed object follows the trajectory. 

In the model of cooperative dynamic pushing, the forces exerted by agents need 

to  obey some constraints. First, in order t o  avoid sliding between the agents and the 

object, the pushing force vector must lie inside the friction cone of the contact surface. 

Second, for a pushing action, the pushing force vector can only be directed toward 

the object. Because of these constraints, it becomes difficult to  solve the planning 

problem directly using nonlinear control design techniques. Instead, by introducing 

the generalized force(wrench) into the model, we break the overall planning problem 
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hierarchically into a control design subproblem and a multi-agent coordiiiation sub- 

problem. The concept of generalized force have been used by Toussaint et al. [loo] t o  

study the trajectory tracking of a nonlinear under-actuated surface vessel. 

For the control design problem, the objective is t o  find the generalized 

force(wrench) applied to  the object. With the generalized force acting on it, the 

object will follow the given trajectory, and attain the desired velocity. The gener- 

alized force characterizes the required force and torque for a certain motion of the 

object. It is used for the design purpose. Since the model of the proposed pushing 

system possesses exactly the structure required for the integrator backstepping de- 

sign [46], we consider using the backstepping technique to  solve the controller design 

problem and to find the generalized force inputs to  the object. 

For the multi-agent coordination problem, the objective is t o  distribute the gen- 

eralized forces between agents to  optimize a predefined performance index. This 

problem is closely related t o  the force optimization problem in grasp anal-ysis, where 

the objective is to solve for optimal contact forces yielding a stable grasp [23]. The 

formulation of the coordination problem depends on the choice of the performance 

index. By choosing a quadratic function of the force vectors as the performance index, 

the coordination between the agents is formulated as a quadratic programming (QP) 

problem. Through solving the Q P  problem, the optimal pushing forces applied on the 

object are found. 

The remainder of the chapter is organized as follows: Section 5.1 presents the 

model of the cooperative dynamic pushing process, and outlines the planning prob- 

lem. Section 5.2 studies the coordination and planning for the cooperative dynamic 

pushing. Section 5.3 presents the simulation results. Section 5.4 concludes this chap- 

ter with a discussion. 
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0 X 

Figure 5.1 : Cooperative dynamic pushing 

5.1 Problem Formulation 

5.1.1 Model of Cooperative Dynamic Pushing 

Through the analysis of the motion of the object under pushing, the cooperative 

dynamic pushing process is formulated as a, nonlinear system. Consider an object 

under cooperative dynamic pushing as shown in Fig. 5.1. Assign XOY as the world 

frame, xoy is the local coordinate frame associated with the object, and o is located at  

the center of mass (COM). The configuration of the object is described as (X,, Y,, 8), 

where (X,, Yo) is the position of the local coordinate frame, and 8 is the orientation 

of the object. For each contact point, we introduce a contact frame with its n-axis 

aligned with the contact normal (points inward with respect to the object), and its 

t-axis aligned with the contact tangent such that the cross product of ni and ti points 

out of the plane. The directional vectors ni and ti are defined in the local coordinate 

frame. We introduce vectors q, = (X,, Yo, B)T, and q a  = (X,, K . o ) ~  that describe 

the configuration and velocity of the object. The state of the system are defined as 
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q = (qT, qT)T. The cooperative dynamic pushing is modeled as a nonlinear system 

where f (q) = (Fx/m, Fy/m, T/Io)T, where Fx, Fy are the friction forces i:n the world 

frame, and T is the torque with respect to  the COM generated by the friction force. 

They are computed in the same manner as that in Chapter 4. m is mass of the object, 

and I. is the mass moment of inertia about the COM. 

and the rotational transformation matrix is 

cos 8 -- sin Q 0 
R = [ sin a cos a 

0 0 0 1 .  1 

F,", F:(i = 1, , N )  are the normal and tangential components of the pushing 

force applied by agent i in the contact frame, and N is the total number of agents. 

Wi is the wrench matrix for agent i, which is used to  transform the contact force 

F,", F: to forces and torque in the local coordinate frame xoy. The wrench. matrix Wi 

is computed as [loll 

where Li is the position vector of the i-th contact point in the local coordinate frame, 

and x is the cross product between two vectors. 

In order to  prevent the slippage between the agents and the object, the applied 

pushing forces to the object must be constrained t o  lie inside the friction cones. These 

constraints are written as 
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where pi is the friction coefficient between .the agent i and the object at  the i-th 

contact point. 

Since we consider pushing instead of pulling of the object, the contact normal force 

needs t o  be nonnegative, i. e. 

5.1.2 The Cooperative Push Planning Problem 

With the system (5.1), the cooperative dynamic pushing problem is described as 

follows: Given an object on a plane at  a known initial configuration, find the input 

forces applied by the agents, such that the object follows a given trajectory to  the 

goal configuration with the specified velocity. The two-level planning problem is 

formulated as: 

Given a desired trajectory qd (t) = (XoT (t) , Y, (t) ,8, (t)) , the corresponding velocity 

Qd(t) = (XT (t), YOT(t), eT (t)) ,  and acceleration Gd(t) = (xoT (t), E T ( t )  , & ( t j) ,  

design the state feedback control input u(t) = (F;", Ff, F,", F;, . . , Fg, F,&)T such 

that the state of the system (5.1) follows the desired trajectory, and minimize the 

quadratic objective function M(u)  

1 
M(u)  (t) = -dr(t)&u(t)  

2 

where Q > 0 is a positive definite weight matrix. 

In order to  minimize the objective function M(u) ,  the pushing agents need t o  

coordinate with each other, and a two-level centralized planner is developed for this 

purpose. 
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5.2 The Two-level Planning Method 

In this section, we will solve the coordination problem and compute the contact forces 

Fin and Fit generated by each agent such that the object follows an arbitrary trajectory 

and obtains the desired velocity. 

The object under pushing has three degrees of freedom, and generally it requires 

three independent control inputs to  fully control the object t o  follow any given tra- 

jectory. By introducing the generalized force: control inputs ti = (Ti l ,  ii2, i23)T to Eq. 

(5.1), the system is written as 

and with these control inputs u, the system js fully actuated. 

From Eq. (5.1), we know that  the generalized force control inputs Ti and original 

force inputs satisfy the following relationship 

By introducing Ti, the planning problem is solved hierarchically in two levels. 

First, the generalized force control inputs for system (5.6) are designed using the 

backstepping design technique. Second, the coordination is performed between the 

agents to distribute the generalized force Ti. Quadratic programming is used as a tool 

to solve the distribution problem. 

5.2.1 Backstepping Design for the Generalized Force Con- 

troller 

We consider using the backstepping design technique to  design the generalized force 

controller. We define the tracking error variable ql as the difference between the 
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actual and the desired configuration vectors 

and we take the derivative of ql to  get 

We use error variable ql to define a candidate Lyapunov function Vl as 

We want the time derivative of Vl to  be nega,tive, so we examine Vl 

Equation (5.6) indicates that the control input ii does not appear in the expression ql , 

and it only appears in the expression q l .  To control the system (5.6) , we introduce 

another error variable which consists of ql, and iterate the backstepping procedure. 

To make Vl negative, it is convenient to introduce a new error variable as 

where XI is a design parameter to  be specified. 

Substituting Eq. (5.12) into Eq. (5. ll), we get 

Introducing a new Lyapunov function as 
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and the corresponding time derivative is 

Computing the time derivative of q2 from Eq. (5.12), we get 

By substituting Eq. (5.16) into Eq. (5.15), we rewrite Eq. (5.15) as 

In order to  make V2 < 0, we choose the generalized force control law u as 

with X1 > 0, and X2 > 0 as the design parameters. 

Submitting Eq. (5.18) into Eq. (5.17)) we get 

If we apply the generalized forces ii as Eq. (5.18) to  the system (5.6), the error 

variables q1 and q2 will approach zero asymptotically. With the generalized force 

pushing on the object, the object will follow the given trajectory, and attain the 

desired velocity. 
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5.2.2 Coordination as a Quadratic Programming Problem 

After we obtain the generalized force control law (wrench) (5.18) through the back- 

stepping design, the next task is to  distribute the required generalized force between 

the agents. The distribution of the generalized force between agents is the objective 

of the multi-agent coordination. The coordination between agents is form-ulated as a 

quadratic programming problem. 

By considering the quadratic performance index (5.5), the inequality constraints 

(5.7) and (5.3) and the equality constraint (5.4), the coordination problem of cooper- 

ative dynamic pushing is formulated as a quadratic programming problem 

1 T min 5 u (t) Qu(t)  
Subject to 

Quadratic programs can always be solved in a finite number of iterations, but 

the effort required to  find a solution depends strongly on the characteristics of the 

objective function and the number of inequality constraints. If the Hessian matrix Q is 

positive semi-definite, the problem will be a convex QP. For the coordination problem, 

the matrix Q is positive definite, and the problem is a convex QP. Here we use the 

routine quadprog  in the MATLAB optimization toolbox to  solve the QP problem. 

quadprog  uses an active set method, detailed description and implementation of this 

method can be found in [33]. 

5.3 Simulation Results 

In the previous section, we proposed a planning method for the cooperative dynamic 

manipulation. Simulations will be conducted on a triangular object under two-agent 

or three-agent pushing. The object is shown in Fig. 5.2 (where a = 0.2 in, b = 0.17 
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m,and the angle LA = 7r/6). We assume uniform distribution of the mass with the 
2 mass density p = 200kg/m . Using the approach proposed in [57], we get the mass of 

the object m = 1.7 Kg, and the mass moment; of inertia is I. = 0.0037Kg.m2. Assume 

the friction coefficient between the object and the surface is p = 0.5, and the friction 

coefficient between the agents and the object; is pi = 0.8. The local coordinate frame 

is located a t  the COM and fixed on the object. We also assign the world frame at  

the same location, and it is fixed on the supporting plane. As shown in Fig. 5.2, the 

first agent is pushing a t  edge AC, the second agent is pushing at BC, and the third 

agent is pushing at  AB. If we assign a contact coordinate frame to  each agent, the 

associated contact normal and tangential vectors are 

The coordinates of the contact points in the object frame are 

and the wrench matrices are computed according to  Eq. (5.2) as 

5.3.1 Coordination under Two-agent Manipulation 

In this simulation, the desired trajectory is a linear translation, without rotation. The 

desired trajectory is 
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The required velocity and acceleration trajectories are 

A t 3  

1 "' 1 &,(t) = -,t Xor( t )  = -5 
2 " 2 Yor ( t )  = -,t Y J t )  = -, 

eor( t )=o  e , , ( t ) = o .  

I M C  B 

Since we consider only translation, the object will have two degrees of freedom, and 

Figure 5.2: Manipulation of triangular object 

two agents are enough to control the object to track the given trajectory. The agents 

located on edges AC, BC perform the manipulation task. We solve the planning 

problem in two stages. The generalized force control law ii was designed according 

to Eq. (5.18).  The coordination is solved as a quadratic programming problem 

(5.20).  The optimal distribution of forces are shown in Fig. 5.3. It is clear that 

at  the beginning, the forces oscillate, and then approach stable and constant values. 

With the input forces, the object will follow the designed trajectory and obtain the 

predefined velocity. 
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Figure 5.3: Force coordination under two-agent manipulation 
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Figure 5.4: Force coordination under three-agent manipulation 
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Figure 5.5: Force coordination under three-agent manipulation 

5.3.2 Coordination under Three-agent Manipulation 

If we consider both translation and rotation of the object, three agents are required 

to  manipulate the object to  follow a predefined trajectory. In this example, the 

trajectories are given as 

We proceed with the proposed coordination method, and the results of force distri- 

bution are shown in Fig. 5.4-Fig. 5.5. With these force inputs, the object can track 

the given trajectory and obtain the desired velocity, and the forces generated by each 

agent satisfy the constraints and achieve the predefined performance index. 
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5.4 Discussion 

This chapter studies the planning problem for cooperative dynamic pushing for object 

acceleration and proposes a centralized p1an:ner for the pushing forces. The hierar- 

chical structure of the planner will increase the flexibility of the system. When more 

agents join the manipulation, redesign of the lower level generalized force control law 

is not needed. Here, the integrator backstepping design technique is used to  find the 

generalized force applied to  the object. Wh.ereas other nonlinear controller design 

methods such as feedback linearization can also be used for this purpose. With the 

planned force inputs, force and position control schemes can be used to  achieve the 

interaction force and the tracking trajectory [79]. 

In the proposed planner, we assume that there exists a trajectory such that the 

object can achieve a desired releasing velocity, and this trajectory is generated by 

geometric motion planners [48]. The other assumption is that the friction between 

the object and the supporting surface is known. The planning problem for cooperative 

dynamic pushing with uncertainty in friction will be addressed in Chapter 6. 



Chapter 6 

Cooperative Dynamic Pushing 

under Uncertainty 

In the previous chapter, the planning problem for cooperative dynamic pushing has 

been investigated under the assumption of known pressure distribution. In other 

words, the friction force and torque are known. In practice, the pressure distribu- 

tion of the pushed object is not known exactly, which introduces uncertainties into 

the cooperative dynamic pushing model. As a result, we cannot apply the backstep- 

ping design technique directly to this model and solve the planning problem. This 

chapter presents a novel planning method for the cooperative dynamic pushing un- 

der uncertainty. The main novelty of the proposed approach is the integration of 

noncooperative game and cooperative game between agents in a hierarchical manner. 

Based on the dynamic motion model of the pushed object, the coordination problem 

is solved in two levels. 

In the control level, a generalized force control law is designed by using the H" 

design technique to achieve the minimax tracking performance. The design proce- 

dure for the generalized force control law is divided into two steps. First, a linear 
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nominal control design is obtained via full-state linearization with desired eigenvalue 

assignment; then, a minimax control scheme is introduced to  optimally attenuate the 

worst-case effect of the uncertainty. 

In the coordination level, a game is formulated between agents to  distribute the 

generalized force. The objective of the game is to  minimize the worst-case interaction 

force between the agents and the object. On one hand, each agent makes its own 

decision and has an intention to  minimize its own objective; on the other hand, the 

agents have a common goal of finishing the manipulation task. By considering these 

two factors, the coordination problem is forrnulated as a cooperative game between 

the pushing agents. 

Compared with minimizing a quadratic fiinction of the interaction forces used in 

Chapter 5, the minimization of the worst-case interaction force ia a more realistic 

measure on the performance of a manipulation method, especially useful in the case 

of fragile and delicate object manipulation. 

The remainder of the chapter is organized as follows: Section 6.1 presents the 

model of cooperative dynamic pushing with uncertainty, and formulates the problem. 

Section 6.2 presents the planning and coordination method. Section 6.3 provides the 

numerical simulations. Section 6.4 concludes this chapter with a discussion. 

Problem Formulation 

6.1.1 Model of Cooperative Dynamic Pushing with 

Uncertainty 

Consider an object under cooperative dynamic pushing as shown in Fig. 6.1. Assign 

XOY as the world frame, xoy is the local coordinate frame associated with the object, 
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and o is located at  the center of mass (COM). The configuration of the object is 

described as (X,, Yo, 0) , where (X,, Yo) is the position of the local coordinate frame, 

and 0 is the orientation of the object. For each contact point, we introduce a contact 

frame with its n-axis aligned with the contact normal (points inward with respect 

to  the object), and its t-axis aligned with the contact tangent such that the cross 

product of ni and ti points out of the plane. The directional vectors ni and ti are 

defined in the local coordinate frame. We introduce vectors ql = (X,, Yo, O)T,  and 

q 2  = (K, K . o ) ~  that describe the configuration and velocity of the object. The state 

of the system are defined as q = (q:, qT)T. The cooperative dynamic pushing under 

uncertainty is modeled as a nonlinear system 

tll = q 2  

t l ~ = f ( q ) + d + ~ t ~ E ~ ~ . ~ i [ s ]  

where f (q) = (Fx/m, Fy/m, Fx, Fy are the friction forces in the world frame, 

and T is the torque with respect to the COM generated by the friction force. They 

are computed in the same manner as that in Chapter 4. m is mass of the object, and 

I. is the mass moment of inertia about the COM. 

and the rotational transformation matrix is 

[c;O s i n 0  0 
R = sin 0 cos 0 

0 o 1 I 
F,", F:(i = 1, . , N)  are the normal and tangential components of the pushing 

force applied by agent i in the contact frame, and N is the total number of agents. 

Wi is the wrench matrix for agent i, which is used to  transform the contact force 

F,", F: to  forces and torque in the local coordinate frame xoy. The wrench matrix Wi 
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is computed as [loll 

where Li is the position vector of the i-th contact point in the local coordinate frame, 

and x is the cross product between two vectors. 

In order to  prevent the slippage between the agents and the object, the applied 

pushing forces to  the object must be constrained to  lie inside the friction cones. These 

constraints are written as 

where pi is the friction coefficient between the agent i and the object at  the i-th 

contact point. 

Since we consider pushing instead of pulling of the object, the contact normal force 

needs to be nonnegative, i.e. 

d = (SFx/m, 6Fy/m, 6T/Io)T E L2[0, t f ]  is the disturbance to  the system intro- 

duced by the uncertainty of the contact friction between the object and the supporting 

surface. In detail, 6Fx, 6Fy are the uncertainties on the friction forces owing to  un- 

certain pressure distribution. ST is the uncertainty associated with the torque T.  

The major difference between the system (6.1) and the system (5.1) of Chapter 

5 is that, in the model (6.1), the uncertainty d( t )  is considered. Because of this 

uncertainty, the backstepping design method presented in Chapter 5 cannot be applied 

directly. 
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0 X 

Figure 6.1: Dynamic cooperative pushing under uncertainty 

6.1.2 The Cooperative Push Planning Problem 

The cooperative dynamic manipulation planning problem is described as: Given an 

object on a plane with a known initial configuration, find the forces applied by each 

agent, such that the object moves t o  a specified goa,l configuration with the desired 

velocity. The inertial forces are not negligible compared to  quasi-static manipulation. 

Thus, the planning method must be developed based on the dynamic model of motion 

described by Eq. (6.1). We assume that we have the collision free path for the object 

to follow, and we also assume that  the states of pushing system are available for 

measurement. The objective of the planning is to find the forces such that the object 

follows a given trajectory, and obtains the desired velocity. At the same time, we 

want t o  minimize the worst-case interaction force between the agents and the object. 

The cooperative manipulation planning prob:lem is stated as follows: 

Given a continuously differentiable and uniformly bounded trajectory qd(t) = 

(Xor (t) , Yo, (t) , O r  ( t ) )  , the corresponding velocity qd (t) = (x, (t) , E, (t) , 8, (t)) and the 

acceleration Gd(t) = ( X r  (t) , yo, (t), & (t)), design the state feedback control inputs 



Chapter 6. Cooperative Dynamic Pushing under Uncertainty 169 

~ ( t )  = (F;", Fj, F,", Fi,. . . , FE, F&)T such that the state of system (6.1) follows the 

desired trajectory, the objective function M(u( t ) )  is defined as 

M(u( t ) )  = minmax{Ein, i = 1, - .  . , N ) .  
u i (6.5) 

With this objective function, the worst-case normal interaction force between the 

agents and the object will be minimized. 

The problem will be addressed hierarchically in the next section. 

6.2 Planning the Cooperative Pushing 

In this section, we will solve the coordination problem and compute the forces Fin 

and Fit generated by each agent such that the object follows the given trajectory and 

obtains the desired velocity. 

The object under pushing has three degrees of freedom; generally it will require 

three independent control inputs to  fully control the object to  follow any given tra- 

jectory. By introducing generalized force control inputs ti = (ul, ?i2, E ~ ) "  to  system 

(6.1), the system is rewritten as 

From Eqs. (6.1) and (6.6), we know th.at the generalized force control law Ti 

satisfies the following equation 

Based on Eqs. (6.7) and (6.6), the overall planning problem is solved hierarchically 

in two levels. Namely, design a generalized force control law and the coordination 

between the agents. 
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6.2.1 Hm Design for the Generalized Force Controller 

First, let us define 

q l  = ql  -- q d  

as the tracking error. Since the nonlinearities d(t)  appear together with the control 
- u in Eq. (6.6) and, if the nonlinearities are known, state feedback linearization or 

backstepping technique could be used to  design a control law to cancel the nonlinear- 

ities. Whereas, in this application, the nonlinearities are only partially known, these 

methods cannot be applied directly. For this reason, we break the controller design 

into two steps: the design of the state feedback controller and the auxiliary minimax 

controller. 

Based on the available information on nonlinearities in system (6.6), we can design 

the state feedback control law as 

where qd denotes the second order time derivative of qd, and K1, K2 are 3 >( 3 matrices 

to be designed and uo is an auxiliary control signal yet t o  be specified. Substituting 

Eq. (6.9) and Eq. (6.8) into Eq. (6.6), yields, 

Let 

be the state error vector. From the Eqs. (6.8), (6.10), and (6.11), we obtain 
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The system (6.12) represents the dynamics of the tracking error, and it is a nominal 

linear uncertain system. In this equation, the nonlinear uncertainty is rnodeled by 

d ( t ) .  A more convenient form of Eq. (6.12) could be 

where 

The control parameters K1, K2  are selected such that A is Hurwitz and :has desired 

eigenvalues such that the tracking dynamic equation (6.13) has a desired response if 

the system is free of uncertainty. However, in the case of uncertainty, the tracking 

performance will deteriorate, and the system may even be unstable. In order to 

eliminate the effect of uncertainty, a robust controller must be employed. The H" 

control technique, as one of the most efficient approaches to  attenuate the worst-case 

effect of uncertainties, is used to  design the auxiliary minimax control input uo. The 

control signal uo(t) should be specified such that the worst-case effect of ~ d ( t )  on the 

tracking error e(t )  must be attenuated below a prescribed level y. The H" tracking 

performance index is defined as [96] 

min max J?[lle(t)llZQ + ll~ollkl y2 L2[0, 
uo d 

(6.15) 
J,tf I ldW 1 1 2  dt 

where 

where Q = QT > 0 and Rc = RT > 0 are the weighting matrices. 

The minimax performance index (6.15) can be viewed as a non-cooperative game 

between two players, namely, the auxiliary control law uo(t) and the disturbance d ( t ) .  

The goal of the auxiliary control law is to  attenuate the effect of the disturbance on 
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the tracking error. On the other hand, the objective of the disturbance is try to  

maximize the tracking error. 

In the case e ( 0 )  # 0 ,  the performance index is transformed as 

minu,(t) maxd(t) So"' (eT ( t )  @(t) 
+uT(t) Rcuo ( t )  - y2dT ( t )  d ( t )  )dt I eT ( 0 )  P e ( 0 )  

where P = PT > 0 is a positive definite weighting matrix to  be specified. 

Let us define the cost function Jc(e ,  uo, d )  as 

After some rearrangements, we obtain, 

J , (e ,uo ,d)  = eT(0)Pe(O)  - e T ( t f ) P e ( t f )  + Jif [eT( t )Qe( t )  
+uT(t) Rcuo ( t )  - y2dT ( t ) d ( t )  + 2 (eT ( t )  ~ e ( t ) ) ]  dt 

= eT(0)Pe(O)  - e T ( t f ) P e ( t f )  +Jz [ e T ( t ) Q e ( t )  (6.18) 
+uT (t)RCuo ( t )  - y2dT ( t ) d ( t )  
+eT ( t )  P e ( t )  + eT(t)  ~ e ( t ) ]  dt. 

Substituting Eq. (6.13) into Eq. (6.18), yields, 

J c ( e , u o , d )  = eT(0)pe(O)-eT(tf)Pe(t , j)  + J t f [ e T ( t ) ( ~ T ~ +  P A  
+QJe(t) + u;(t) Rcuo ( t )  -- y2d*( t )d ( t )  + uT(t) ~ ~ ~ e ( t )  (6.19) 
+e ( t ) P B u o ( t )  + e T ( t ) P B d ( t )  + d T ( t ) B T P e ( t ) ] d t .  

The result on the generalized force control law design is summarized in the follow- 

ing theorem. 

T h e o r e m  6.1 For the system (6.6), let the state feedback control law ii(t) be chosen 

as 
- 
u = M; ' (~?)  - K I Q l  - K& + uo - f (q) )  (6.20) 

with the auxiliary control law uo as 
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where R, = RT > 0 is a weighting matrix and P = PT > 0 is the solu,tion of the 

following algebraic Riccati-like equation 

Then, the minimax tracking in Eq. (6.16) is guaranteed for a prescribed y and the 

corresponding worst-case disturbance d*(t)  is of the form 

Proof: Substituting Eq. (6.22) to  Eq. (6.19), we get 

J,(e,uo,d) = eT(0)Pe(O) - e T ( t f ) p e ( t f )  +S , " [eT( t ) (~A+ATP+Q 
-PB(Ril  - $I)BTP)e( t )  + u:(t)Rcuo(t) + ub(t)BTPe(t) 
+eT(t)PBuo(t) + eT(t)PBR;'BTPe(t) - y2dT(t)d(%) 
+dT(t) BTPe(t) + eT(t)  PBd(t)  - f eT ( t )  PBBTPe(t)]dt. 

(6.24) 

From Eq. (6.22) and using the technique of completion of the squares, we get 

From dynamic game theory [13], we know that the control uo(t) tries to  minimize 

Jc(eo, uo, d ) ,  and the disturbance d( t )  wants to maximize the performance index 

Jc(eo, uo, d ) .  From Eq. (6.25), we know that when the optimal control is chosen 

as Eq. (6.21), and the worst-case disturbance d* ( t )  takes the value as Eq. (6.23), the 

second and third terms in Eq. (6.25) become zero. As a result, the following equation 

is satisfied 
minmax J,(e,uo,d) = eT(0)pe(O) - e T ( t f ) p e ( t f )  
uo(t) d(t) 

eT(0)Pe(O). 

The above inequality holds when P = PT > 0, and R, = RT > 0. 
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Remark: 

In general, we choose y > 0 to attenuate d ( t )  in order to achieve robust minimax 

tracking performance. In the case y -+ co, the H" design is reduced to a .Hz optimal 

tracking control, where no attenuation of d ( t )  is considered. 

In order to guarantee the positive definite solution of P, the Riccati-like equation 

(6 .22)  must satisfy the following condition [96] 

y21  2 R,. 

This tells us there is a tradeoff between the attenuation level y and the control input 

uo(t), i. e., with the smaller y, a larger uo(t) is required. 

From the above analysis, a design procedure for the generalized force control law 

is summarized as follows. 

1. Specify the matrices K1, K2, and determine A with desired eigenvalues. 

2.  Choose a desired attenuation level y ,  and select positive-definite matrices Q and 

R, with R, _< y21. 

3. Solve the positive-definite matrix P from the Riccati-like equation (6 .22) .  

4. Compute the H" auxiliary minimax control law (6.21) and the state feedback 

control law Ti as Eq. (6 .20) .  

Until now, we have designed the generalized force control law for the minimax 

tracking performance, our next task is to distribute the generalized force to  the agents 

optimally and satisfy the condition (6 .7 ) .  



Chapter 6. Cooperative Dynamic Pushing under Uncertainty 

6.2.2 Coordination as a Cooperative Game 

The objective of the multi-agent coordination is to distribute the generalized force 

obtained in Eq. (6.20) between the pushing agents. The goal is t o  minimize the 

maximal interaction force between the agents and the object. Define a vector-valued 

objective function as 

where F .  is the objective for agent i to minimize. 

For agent i, the goal is to minimize F .  through choosing the interaction forces ui = 

(F., F:). By considering the equality constraint (6.7) and the inequality constraints 

(6.3) and (6.4), the multi-agent coordination is studied as a cooperative game between 

agents, and it is formulated as 

min {F) 
u 

subject to  p i c  2 JF:;tl, i = I , .  . . , N 
F.20, z = l , . . . , N  
- N 
U = Ci=1 Re Wiui. 

Since all the constraints in problem (6.29) are linear and convex and, if the problem 

is strictly feasible, there will be a Pareto solution to the game 1841. 

The definition of Pareto optimality is as follows: for an objective function f = 

[ f i  ( x ) ,  f 2  ( x )  , . , f ,  ( x )]  , a design variable vector x* E R is Pareto optimal if and only 

if there is no vector x E 0, with the characteristics 

f i (x)  5 fi(x*) for all i = l , . . . , m  
and fi(x) < f i  (x*)  for at  least one i, 1 5 i 5 m .  

From the definition, there may exist a set of Pareto optimal points for the coordi- 

nation problem (6.29). In order to  obtain a single best compromised Pareto solution 

to  the game, we consider the worst-case interaction force between the agents and the 

object. The cooperative game is transferred into a minimax optimization problem 
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minmax {F(i)) 
U Z 

Subject to  p i F r z  (F:l, ' i , = l , . . .  N 
q 2 0, i =  1 , 2 , . . - , ~  
- N F? 
U =  c i .=1~ .wi  [ F: ] * 

To solve the minimax problem, we introduce a slack variable g 

The minimax problem (6.30) becomes a linear programming problem 

min g 
11 

The linear programming problem is solved. with the standard Simplex method. By 

solving this problem, we obtain the set of optimal pushing forces. 

Simulation Results 

In this section, simulations are performed on a triangular object under two-agent and 

three-agent pushing. The object is shown in Fig. 6.2. (where a = 0.2 m, 13 = 0.17 m, 

and LA = 7r/6). We assume the uniform distribution of mass with the mass density 

2 p = 200Kg/m . The mass of the object is m = 1.7 Kg. The mass moment of inertia 

is I. = 0.0037Kg - m2. Assume the friction coefficient between the object and the 

surface is p = 0.5, and the friction coefficient between the agents and the object is 

pi = 0.8. The local coordinate frame is located at  the COM and fixed on the object. 

Assign the world frame at  the same location and it is fixed on the supporting plane. 

The agents push on the edges AC, BC, and AB respectively. We assign a contact 

frame to  each agent, and the associated contact normal and tangential vectors are 
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A t z  B 

Figure 6.2: Manipulation of triangular object 

computed as 

The coon he contact points between the agents an( 

Computing the wrench matrices (6.2) as 

6.3.1 Coordination under Three-agent Pushing 

the object are 

(6.34) 

When we consider the translation and rotation of the object, three agents manipulate 

the object to  follow a predefined trajectory. The desired trajectories on configuration, 
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velocity, and acceleration are 

Xor (t) = sin(t) xOr( t )  = cos(t) x, (t) = - sin(t) 
Yo, (t) = cos(t) yo, (t) = - sin(t) g, (t) = - cos(t) (6.38) 
Oor(t)=$sin(t) Bo,(t)= $cos(t) BOr(t) = -$sin(t). 

We consider the uncertainties SF,, SF,, ST associated with pressure distribution 

entering the system (6.1) randomly, and the magnitudes are chosen as ten percent of 

the friction forces and torque. The initial conditions are Xo(0) = 1, x0 = 0, Yo(0) = 

0 . 5 , ~ ~  = O,Oo(0) = 0.2,0, = 0. 

Following the procedure in Section 6.2.1, the generalized force control law is de- 

signed according to  the following steps. 

1. Specify 
3 0 0 '  

0 0 8 

such that the eigenvalues of the matrix A for the nominal system are 

-0.3467, -8.6533, -2.5 + 2.7839i, -2.5 - 2.78392, -6.7016, -0.2984. 

2. Select two different attenuation levels y = 0.1 and y = 0.05, respectively. Then, 

choose the weighting matrices Q = diag[10013, 10013], and R, = y21. 

3. Solve the Riccati-like equation (6.22) using MATLAB function "are", and we 
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4. Compute the generalized force control law as Eqs. (6.20) and (6.21). 

Fig. 6.3-6.8 present the simulation results of tracking. In Fig. 6.3-6.4 and Fig. 6.6- 

6.7, simulation results demonstrate the minimax tracking performance for attenuation 

levels of y = 0.05 and y = 0.1, respectively. Fig. 6.5 and Fig. 6.8 show the generalized 

force under different attenuation levels. According to  the simulation results, it is clear 

that a smaller attenuation level y yields a better tracking performance than a larger 

attenuation level y. 

After obtaining the generalized force, a minimax optimization problem is set up 

as Eq. (6.30) with the wrench matrix as Eq. (6.37). After solving the the optimiza- 

tion problem, we obtain the normal and tangential forces applied to  the object by 

the agents. The results are plotted in Fig. 6.9 and Fig. 6.10 with different atten- 

uation levels of y = 0.05 and y = 0.1, respectively. The resulting forces satisfy the 

performance index (6.5).  

6.3.2 Coordination under Two-agent Pushing 

In this simulation, the motion of the object consists of only a linear translation, 

without rotation. The desired trajectory is: 

1 2  X,,(t) = --lot 
1 2  Y,,(t) = -,t 

% o r ( t )  = 0 

and the corresponding velocities and accelerations are 

1 'i 
X o r ( t )  = -$ X,,(t) = -I 5 

2 " ~, , ( t )  =-s t  Y,,(t) = -2 5 

e,, ( t )  = 0 e,, ( t )  = 0.  

Since we consider only translation, the object has two degrees of freedom, hence two 

agents are enough to control the motion of the object. Two agents push the object 
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Figure 6.3: H w  tracking results of positions (y = 0.1) 

on edges A C  and BC,  respectively. In the lower control level, the generalized force 

control law ii is designed in exactly the same way as that in the three-agent, case. This 

is an important feature of hierarchical planning: after the generalized force inputs 

are designed using Hm control, the number of agents and the positions of pushing is 

rescheduled without redesign of the lower level control law. The coordination is solved 

using the Simplex method on the linear programming problem (6.32). The tracking 

and optimal distribution of forces are shown in Fig. 6.11-6.13. It is clear that a t  the 

beginning, the forces oscillate, and then become stable and close to constant values. 

This happens because the object is moving along a straight line with a constant 

acceleration. 
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Figure 6.4: H" tracking results of velocities (y = 0.1) 

6.4 Discussion 

This chapter studies the planning problem for the cooperative dynamic pushing with 

uncertain pressure distribution. The H" control technique has been applied to design 

the generalized force control law and achieve the tracking performance. A cooperative 

game is solved to distribute the generalized force between the pushing agents. One 

major assumption used in this chapter and in Chapter 5 is that  the contact positions 

and the contact friction coefficient between agents and the object are known. Opti- 

mally determining the number of agents and locating the contact points dynamically 

during the manipulation process will improve the performance of the manipulation 

system. 
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Figure 6.5: Generalized forces Ti(t)(y = 0.1) 

In the hierarchical design, redesign of the generalized controller is not required 

when more pushing agents are introduce to  the manipulation process. Because the 

optimal force distribution problem is solved by static optimization methods perform- 

ing on each individual set of the generalized force a t  a fixed time instant, the resulted 

pushing force may exhibit discontinuities, which may hinder the force/position control 

implementation. Additionally, because of the usage of the two level planning method, 

the obtained pushing forces may not be globally optimal. As an alternative, an op- 

timal control approach could be used to  solve the tracking problem and coordination 

problem simultaneously. 
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Figure 6.9: Force distribution under three-agent manipulation (y = 0.1) 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

This thesis has focused on the coordinated nonprehensile manipulation for a planar 

parts transfer task, and has presented the mechanics, control, and planning problems 

in quasi-static and dynamic settings. Three manipulation methods are proposed, and 

some of the key results are: 

An pushing agent equipped with two stable pushing primitives can push an 

object between any two configurations in the :plane. The optimal trajectories 

consist of, at  most, two switchings between these two push actions. 

A virtual fence can be formulated during a two-agent distributed push. A 

virtual fence performs a similar function t o  a physical fence. A virtual fence 

can push a convex object between two configurations in the plane, and there 

exists a fully analytical optimal planner. 

0 Planning the initial velocities for free sliding objects can be formulated as a 

free boundary problem. The free boundary value problem can be transformed 
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into a two point boundary value problem, and solved using nonlinear optimiza- 

tion techniques. This formulation works for objects with general geometrical 

boundaries. 

Cooperative dynamic pushing can be modeled as a control system. The con- 

trol problems can be solved by a two-level approach to achieve the tracking 

performance and minimize the cost. 

The results demonstrate that coordination and distribution can increase the flexi- 

bility of the nonprehensile manipulation system. By exploring the model of task me- 

chanics, a manipulation task can be achieved by simple robots through cooperation 

or coordination of simple manipulation primitives. Control theory and optimization 

play an important role in the study of the planning problem. 

Future Work 

This thesis is a first step toward the control and optimization approach for coordinated 

nonprehensile planar manipulation. The following are some challenging extensions to  

the problems studied in this thesis. 

Nonprehensile manipulation in the environment with obstacles: One 

straight forward solution is to  coordina'te agents to perform a manipulation in 

the free space, and an approach might be: To use boundaries of the environment 

as passive agents. With the help of passive agents, the class of manipulatable 

objects increases. Fig. 7.1 illustrates two pushing agents using a wall as a 

passive agent to  orient an object. Recently, Nieuwenhuisen et al. [73] studied 

the single-robot disc pushing problem in an environment with obstacles. The 
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<? Agent 2 

Agent I 

Figure 7.1: Coordinated manipulation between agents and environment 

result illustrates that by using the boundaries of the environment, the possibility 

for the robot to  find a push path increases. 

Incorporate agent dynamics in the acceleration model: For the accel- 

eration task, instead of considering object dynamics only, a dynamic model of 

manipulation agents such as robotic hands [26] could be incorporated. The 

object trajectory planning and control of the manipulator could be achieved 

simultaneously. Uncertainties on interaction forces between the agents and the 

object can also be treated in this model. Recently, results on dynamic con- 

tact manipulation [93, 941 provide techniques to  model the dynamic interaction 

between the object and the robot, and the object and the environment. 

Manipulation with more than two primitives: In Chapter 2, we stud- 

ied nonprehensile manipulation by an agent equipped with two simple pushing 

primitives. Exploring the manipulation with more than two primitives (Fig.7.21, 

and studying the structure of the optimal trajectory would be interesting. It is 

also possible to study the fault tolerance aspects of the manipulation system. 

When one or more pushing primitives are disabled, what is the performance of 

the manipulation system? 
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Figure 7.2: Coordinated manipulation with four push primitive:; 

Dynamic manipulation by surface tilting: One challenging problem is 

whether the configuration of the object is controllable by tilting the surface. 

For two given configurations, does a sequence of tilting actions exist to connect 

them? The manipulation process is illustrated in Fig. 7.3. Fig. 7.3(a) shows 

that an object will land on the tilting surface with a known orientation and 

velocities; (b) shows the sequence of tilting actions; (c) indicates that the object 

arrives at  the goal configuration after the sequence of tilting. The tilting of 

the surface can be achieved by a Stewart platform or by using two actuators. 

Christiansen and Goldberg [25] have considered the surface tilting problem, and 

consider the case of finite state and action spaces where actions can be modelled 

as Markov transitions. 
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(a) Initial state (b) Tilting action 

(c). Tilting action (d) Goal state 

Figure 7.3: Manipulation by dynamic tilting 



Appendix A 

Computation Methods for 

Polygonal Objects 

A.1 Computation of Mass, Moment of Inertia and 

Friction 

In general, there is no analytical formulation for calculating the mass, maas moment 

of inertia, friction forces and torque for an object with an arbitrary boundary. One 

possible solution is to  partition the object into a number of simple areas, such as 
I 

triangles, and compute these quantities over these simple areas first, then add them 

together. In the next two sections, computation methods are discussed for convex 

polygonal objects. 

A. 1.1 Triangular Part it ion of a Polygonal Object 

Consider a convex polygon as shown in Fig. A.1. The vertices are labeled by 

Vl, V2, V3, . . . , V,, and the coordinates of V,  are given. by (Xi, Y,) in the global frame 
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Figure A.l: Geometry of a polygonal object 

XOY. The convex polygon is divided into n - 2 triangles as 

which are labeled as TI, T2, . - - , Tn-2. 

To plan the velocities for a free sliding object, it requires the mass m,  mass moment 

of inertia Io, and center of mass. All these quantities are computed by integrating 

over the triangular areas of TI, T2, . . , Tn-2 indi~idua~lly. 

The mass of the object is calculated as 

where the mass pressure distribution function is represented by pl (X,  Y). 

The center of mass (X,, Yo) is computed as 
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with m, and m, as 

m, = J JA Xpl (X, Y)dXd Y 
= C:L~ J ST, X P ~  (X, Y)dXdY 

m, = J JA Yp,(X, Y)dXdY 

= c::;' J JTi Y d X ,  Y ) ~ X ~ Y  (A.4) 

After assigning the local frame xoy at  the center of mass as (Xo, Yo), the coordi- 

nates of vertices for the polygon are represented in the local frame as 

and the mass distribution function becomes p(x, y) := pl(x + Xo, y + Yo) in the xoy 

frame. The mass moment of inertia I. with :respect to  the center of mass are computed 

as 

I 0  = I,: + I, 
where 

In order to compute the mass, center of mass, and mass moment of inertia for a 

polygonal object, double integration of Eqs. (A.l),  (A.3), (A.4), (A.7), and (A.8) are 

required. A similar partition strategy also works for curved parts. 

The next section will discuss a numerical integration procedure for partitioned 

objects. 

A. 1.2 Numerical Double Integration Over Triangular Region 

For a known partition as shown in the previous section, integration over the contact 

area is carried out by integration over each individual triangular area. Almost all 
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existing double integration routines work only for objects with rectangular boundaries. 

For objects with non-rectangular boundaries, transformations need to  be performed 

before the integration. 

Consider a triangular object with vertices at  (xl ,  gl) ,  (x2, y2), (x3, y3), We perform 

the first transformation as follows 

This transformation maps a triangle with vertices (xi, yi) into a standard triangle with 

vertices located at  (- 1, -I) ,  (1, -I) ,  (- 1 , l )  in the Jq plane. The Jacobian associated 

with the transformation is calculated as 

(A. 10) 

In order to  illustrate the transformation, we apply it to  the force and torque 

equations (4.15), (4.16), and (4.17). After substituting Eqs. (A.9) and (A. 10) into 

the integrands become fx (J, q) ,  fy('$, q) ,  t(J, q) , and we get the following integration 

In this way, integrations over an arbitrary triangular area are transformed into 

integrations over a standard triangular area. The next step is to  transfer the inte- 

gration over a triangular area into the integration over a rectangular area. For this 

purpose, we perform another transformation described by the following: 

(A. 12) 
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when z = 1, q = -J and when z = 0, rl = -1 as required in Eq. ( A l l ) .  By 

differentiating Eq. (A. 12), we obtain 

dq = (-J + 1)dz. (A. 13) 

Substituting Eq. (A. 12) into integrands of ,fx(J, q) ,  fy(c, q), and t(c, q) in Eq. (A.l I ) ,  

we will get a new set of integrands fxl  (J, z) ,  fy l  (c, z),  and t l  (c, z). By considering the 

Jacobian (A. 13), the integration formulas (A. 11) become 

After these two transformations, the integrations of Fx, Fy, and T over a triangular 

area are transformed into integrations over a rectangular area, and existing double 

integral routines such as Gaussian quadrature methods could be used to  compute this 

integration. Fig. A.2. illustrates the schematic of the transformations described by 

Eq. (A.9) and Eq. (A.12). 

After we integrate the frictions and torque over each individual triangular area, the 

overall friction forces and torque acting on the general polygonal object are computed 

by summation. The integrations of Eqs. (A. I ) ,  (A.3), (A.4), (A.7)) and (A.8) are 

performed in the same manner as discussed above. 
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Transformation 2 k2 

Figure A.2: Schematic of the transformation 



Bibliography 

[I] P. Agarwal, J .  Latombe, R. Motwani, and P. Raghavan. Nonholonomic path 

planning for pushing a disk among obstacles. In Proc. 1997 IEEE Intl. Conf. 

on Robotics and Automation, pages 3124 - 3129, April 1997. 

[2] Y. Aiyama, M. Inaba, and H. Inoue. Pivoting: A new method of graspless 

manipulation of object by robot fingers. In Proc. 1993 IEEE/RSJ Intl. Conf. 

on Intelligent Robots and Systems, pages 136-143, July 1993. 

[3] S. Akella and M.T. Mason. Posing polygonal objects in the plane by pushing. 

Intl. J. of Robotics Research, 17(1):70-88, 1998. 

[4] S. Akella and M.T. Mason. Using partial sensor information to orient parts. 

Intl. J. of Robotics Research, 18(10):963-997, 1999. 

[5] S. Akella and M.T. Mason. Orienting toleranced polygonal parts. Intl. J. of 

Robotics Research, lg(l2): 1147-1 170, 2000. 

[6] S. Akella, W. Huang, K.M. Lynch, and M.T. Mason. Parts feeding on a conveyor 

with a one-joint robot. Algorithmica, 26(3/4):313-314, 2000. 

[7] U.M. Ascher and L.R. Petzold. Computer m,ethods for ordinary difleerential 

equations and differential-algebraic equations. SIAM, Philadelphia, 1998. 



BIBLIOGRAPHY 203 

[8] U.M. Ascher, R.D. Russell, and R.M.M Mattheij. Numerical solution of bound- 

ary value problems for ordinary differential equations. Prentice-Hall, Englewood 

Cliffs, N.J., 1988. 

[9] D.J. Balkcom and M.T. Mason. Time optimal trajectories for bounded velocity 

differential drive vehicles. Intl. J. of .Robotics Research, 21 (3): 199-217, 2002. 

[lo] Z. Balorda. Automatic planning of robot pushing operations. In Proc. 1993 

IEEE Intl. Conf. on Robotics and Automation, pages 732-737, May 1993. 

[Ill Z. Balorda and T .  Bajd. Reducing positioning uncertainty of objects by robot 

pushing. IEEE Trans. on Robotics and Automation, 10(4):535-541, 1994. 

[12] J .  Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: 

Controllability and moyion planning in the presence of obstacles. Algorithmica, 

10:121-155, 1993. 

[13] T .  Basar and P. Bernhard. Hm-optimal control and related minimax design 

problems-a dynamic game approach. Birkhauser, Boston, second edition, 1995. 

[14] T. Basar and G.J. Olsder. Dynamic noncooperative game theory. Academic 

Press, New York, 1995. 

[I 51 J.D. Bernheisel and K.M. Lynch. Stable tramsport of assemblies: pushing 

stacked parts. IEEE Transactions on Automation Science and Engineering, 

l(2): 163-168, 2004. 

[16] RP  Berretty, K. Goldberg, MH Overmars, and AF van der Stappen. Com- 

puting fence designs for orienting parts. Computational geometry-theory and 

applications, 10(4):249-262, 1998. 



BIBLIOGRAPHY 204 

[17] R P  Berretty, MH Overmars, and AF van der Stappen. Orienting polyhedral 

parts by pushing. Computational geometry-theory and applications, 21(1-2): 

21-38, 2002. 

[18] C. Black and K. Lynch. Planning and control for planar batting an.d hopping. 

In Proceedings of the 36th Annual Allerton Conference on Communications, 

Control, and Computing, pages 724-733, Sept. 1998. 

[19] S.J. Blind, C.C. McCullough, S. Akella, and J .  Ponce. Manipulating parts with 

an array of pins: A method and a machine. Intl. J. of Robotics Research, 20 

(10):808-816, 2001. 

[20] R. C. Brost. Automatic grasp planning in the presence of uncertainty. Intl. J. 

of Robotics Research, 2(1):3-17, 1988. 

[21] R.C. Brost. Dynamic analysis of planar manipulation tasks. In Proc. 1992 IEEE 

h t l .  Conf. on Robotics and Automation, pages 2247-2254, 1992. 

[22] R.G. Brown and J.S. Jennings. A pusherlsteerer model for strongly cooperative 

mobile robot manipulation. In Proc. 1995 IEEE/RSJ Intl. Conf. on Intelligent 

Robots and Systems, pages 562-568, 1995. 

[23] M. Buss, H. Hashimoto, and J.B. Moore. Dexterous hand grasping force opti- 

mization. IEEE Trans. on RO botics and Automation, 12 (3) :406-418, 1996. 

[24] J.F. Canny and K.Y. Goldberg. Risc industrial robotics: recent results and 

open problems. In Proc. 1994 IEEE Intl. Conf. on Robotics and Automation, 

pages 1951--1958, April 1994. 



BIBLIOGRAPHY 205 

[25] A.D. Christiansen and K.Y. Goldberg. Comparing 2 algorithms for automatic 

planning by robots in stochastic environments. ROB0 TICA, U(6)  :565-573, 

1995. 

[26] A.A. Cole, P. Hsu, and S.S. Sastry. Dynamic control of sliding by robot hands 

for regrasping. IEEE Trans. on Robotics and Automation, 8(1):42-52, 1992. 

[27] C. Davis. Theory of positive linear dependence. Am. J. Mathematics, 76:733- 

746, 1954. 

[28] J.E. Dennis and JR.R.B. Schnabel. Numerical methods for unconstrained opti- 

mization and nonlinear equations. Prentice-Hal, Inc., Englewood Cliffs, N. J. ,  

1983. 

[29] D.R. Donald, J .  Jennings, and D. Rus. Information invariant for distributed 

manipulation. Intl. J. of Robotics Research, 16(5):673-702, 1997. 

[30] L. E. Dubins. On curves of minimal length with a constraint on average curva- 

ture and with prescribed initial and terminal positions and tangents. American 

Journal of Mathematics, 79:497-516, 1957. 

[31] M.A. Erdmann. An exploration of nonprehensile two-palm manipulation. Intl. 

J. of Robotics Research, 17:485-503, 1998. 

[32] M. A. Erdmann and M.T. Mason. An exploration of sensorless manipulation. 

IEEE Trans. on Robotics and Automation, 4:369-379, 1988. 

[33] P. E. GI11, W. Murray, and M.H. Wright. Practical Optimization. Academic 

Press, London, UK, 1981. 



BIBLIOGRAPHY 206 

[34] K.Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10 

(3):201-225, Aug. 1993. 

[35] S. Goyal, A. Ruina, and J.P. Papadopoulos. Planar sliding with dry friction. 

part 1. limit surface and moment function. Wear, 143:307-330, 1991. 

[36] S. Goyal, A. Ruina, and J.P. Papadopoulos. Planar sliding with dry friction. 

part 2. dynamics of motion. Wear, 143:352-3311, 1991. 

[37] I. Han and S. Park. Impulsive motion planning for posing and orienting a 

polygonal part. Intl. J. of Robotics Besearch, 20(3):249-262, 2001. 

[38] K. Harada, T. Kawashima, and M. Kaneko. Rolling based manipulation under 

neighborhood equilibrium. Intl. J. of Robotics Research, 21(5):463-474, 2002. 

[39] Y.C. Ho and A.E. Bryson Jr. Applied optimal control. Hemisphere-wiley, New 

York, 1975. 

[40] W.H. Huang. Impulsive manipulation. PhD thesis, Robotics Institute, Carnegie 

Mellon University, Pittsburgh, PA, 1997. 

[41] W.H. Huang and M.T. Mason. Mechanics, planning, and control for tapping. 

Intl. J. of Robotics Research, lg(l0)  :883-894, 2000. 

[42] A.Yu. Ishlinskii, B.N. Sokolov, and F.L. Chernousko. Motion of plane bodies 

with dry friction. Izv. An SSSR. Mekhanika Tuerdogo Tela, 16(4):17-28, 1981. 

[43] H.B. Keller. Numerical methods for two-point boundary-value problems. Blaisdell 

Publishing Company, London, 1968. 

[44] H.K. Khalil. Nonlinear systems, 3rd ed. Prentice Hall, NJ, Saddle River, N. J., 

2002. 



BIBLIOGRAPHY 207 

[45] D.J. Kriegman. Let them fall where they may: Capture regions of curved objects 

and polyhedra. Intl. J. of Robotics Research, 16(4):448-472, 1997. 

[46] M. Kristic, I. Kanellakopoulos, and P. Kokotovic. Nonlinear and adaptive control 

design. John Wiley & Sons, Inc., New York, 1995. 

[47] M. Kurisu and T. Yoshikawa. Tracking control for an object in pushing opera- 

tion. Journal of Robotic Systems, 14(10):729-739, 1997. 

[48] J. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 

1991. 

[49] J.P. Laumond(Editor). Robot Motion Planning and Control. Springer, Berlin, 

1998. 

[50] Q. Li and S. Payandeh. Modeling and analysis of dynamic planar multi-agent 

manipulation. In IEEE International Symposium on Computational Intelligence 

in Robotics and Automation, pages 200-205, July 2001. 

[51] Q. Li and S. Payandeh. Centralized cooperative planning for dyna,mic multi- 

agent planar manipulation. In Proc. 2002 IEEE Intl. Conf. on Decision and 

Control, pages 2836-2841, Dec 2002. 

[52] Q. Li and S. Payandeh. Planning for dynamic multi-agent planar manipulation 

with uncertainty: A game theoretic approach. IEEE Trans. on Systems, Man, 

and Cybernetics, Special Issue on Collective Intelligence, 33 (5) :620-626, 2003. 

[53] Q. Li and S. Payandeh. Planning velocities of free sliding objects for dynamic 

manipulation. In Proc. 2003 IEEE Intl. C o n j b n  Robotics and Automation, 

pages 3594-3599, September 2003. 



BIBLIOGRAPHY 208 

[54] Q.  Li and S. Payandeh. Multi-agent cooperative manipulation with uncertainty: 

A neural net-based game theoretic approach. In Proc. 2003 IEEE Intl. Conf. 

on Robotics and Automation, pages 3607-3612, September 2003. 

[55] Q.  Li and S. Payandeh. Planning for dynamic multi-agent planar manipulation 

with uncertainty: A game theoretic approach. In the 2003 American Control 

Conference, pages 2193-2198, June 2003. 

[56] Q.  Li and S. Payandeh. Distributed manipulation systems: A review from 

multi-agent systems. In The 11th International Conference on Advanced 

Robotics(ICAR2003), pages 846-851, June 2003. 

[57] Q.  Li and S. Payandeh. Planning velocities of free sliding objects as free bound- 

ary value problem. International Journal of Robotic Research, 23(1):69-88, 

2004. 

[58] Q. Li and S. Payandeh. Unconstrained dynamic planar manipulation with one 

joint manipulator. In Proc. 2005 IEEE/RSJ Intl. Conf. on Intelligent Robots 

and Systems, pages 132-137, Aug. 2005. 

1591 Q. Li and S. Payandeh. Optimal control approach t o  stable push planning for 

a class of ability-limited robots. Robotics and A.utonomous Systems(submitted), 

2005. 

[60] Q.  Li and S. Payandeh. An approach for object manipulation using cooperative 

agents. In Proc. 2006 IEEE Intl. Conf. on Robotics and Automation, May 2006. 

[61] Q.  Li and S. Payandeh. Manipulation of convex objects via cooperative push. 

International Journal of Robotic Research(submitted), 2006. 



BIBLIOGRAPHY 209 

[62] D.G. Luenberger. Linear and nonlinear programming. Addison-Wesley Publish- 

ing Co., Reading, MA, 1984. 

1631 J.E. Luntz, W. Messner, and H. Choset. Distributed manipulation using discrete 

actuator arrays. Intl. J. of Robotics Research, 20(7):553-583, 2001. 

[64] K.M. Lynch. Locally controllable manipulation by stable pushing. IEEE Trans. 

on Robotics and Automation, 15(2):318-327, 1999. 

[65] K.M. Lynch and M.T. Mason. Stable pushing: Mechanics, controllability, and 

planning. Intl. J. of Robotics Research, 15(6):533-556, 1996. 

[66] K.M. Lynch and M.T. Mason. Dynamic nonprehensile manipulation: Control- 

lability, planning, and experiments. Intl. J. of Robotics Reseurch, 18(1):64-92, 

1999. 

[67] M. T. Mason. Dynamic manipulation.. In Proc. 1993 IEEE/RSJ Intl. Conf. on 

Intelligent Robots and Systems, pages 152-159, 1993. 

[68] M.T. Mason. Mechanics and planning of manipulator pushing operations. Intl. 

J. of Robotics Research, 5(3):53-71, 1986. 

1691 M.T. Mason. How to push a block along a wall. In NASA Conference on Space 

Telerobotics, Jan 1989. 

[70] M.T. Mason. Mechanics of robotic manipulation. MIT press, Camb:ridge, MA, 

2001. 

[71] M. Moll, K. Goldberg, M. Erdmann, and R. Fearing. Aligning parts for micro 

assemblies. Assembly Automation, 22(1):46-54, 2002. 



BIBLIOGRAPHY 210 

[72] TD Murphey and JW. Burdick. Feedback control methods for distributed ma- 

nipulation systems that involve mechanical contacts. Intl. J. of Robotics Re- 

search, 23((7-8)):763-781, 2004. 

[73] D. Nieuwenhuisen, A.F. van der Stappen, and M.H. Overmars. Path planning 

for pushing a disk using compliance. In Proc. 2005 IEEE/RSJ Intb. Conf. on 

Intelligent Robots and Systems, pages 714-720, 2005. 

[74] J. Nocedal and S. J. Wright. Numerical optimization. Springer-Verlag, New 

York, 1999. 

[75] H. Noriega, S. Payandeh, and K. Gupta. Distributed overhead hybrid pins for 

part orienting: An exploratory studly. In Proceedings of IEEE International 

Conference on Advanced Robotics, pages 1819-l825, July 2003. 

[76] Y. Okawa and K. Yokoyama. Control of a mobile robot for the push-a-box 

operation. In Proc. 1992 IEEE Intl. Conf. on Robotics and Automation, pages 

761-766, May 1992. 

[77] C.B. Partridge and M.W. Spong. Control of planar rigid body sliding with 

impacts and friction. Intl. J. of Robotics Research, 19(4):336-348, 2000. 

[78] S. Payandeh. On kinematic geometry for multi-agent contacting system. In Pro- 

ceedings of IEEE International Conference on .Advanced Robotics, pages 1831- 

1837, July 2003. 

[79] S. Payandeh and M. Saif. Force and fine-position control of multiple planar 

robotics mechanism. In Proceedings of the COMCON 3, pages 565-575, October 

1991. 



BIBLIOGRAPHY 21 1 

[80] G.A.S. Pereira, M.F.M. Campos, and V. Kumsr. Decentralized algorithms for 

multi-robot manipulation via caging. Intl. J. of Robotics Research, 23(7-8): 

783-795, 2004. 

[81] M.A. Peshkin and A.C. Sanderson. Planning robotic manipulation strategies for 

workpieces that slide. IEEE Trans. on Robotics and Automation, 4(5):524-531, 

1988. 

[82] M.A. Peshkin and A.C. Sanderson. The motion of a pushed, sliding workpiece. 

IEEE Trans. on Robotics and Automation, 4(6):569-598, 1988. 

[83] E. R. Pinch. Optimal Control and the Calculus of Variations. Oxford University 

Press, Oxford, New York, 1993. 

[84] E. Rasmusen. Games and information : an int7-oduction to game theory. Black- 

well Inc., Malden, Mass., 3rd ed. edition, 2001. 

[85] A. Reeds and R.A. Shepp. Optimal paths for a car that goes both forwards and 

backwards. Pacific Journal of Mathematics, 145(2):367-393, 1990. 

[86] N. Rezzoug and P. Gorce. Dynamic control of pushing operations. Robotica, 17: 

613-620, 1999. 

[87] E. Rimon and A. Blake. Caging 2d bodies by 1--parameter two-fingered gripping 

systems. In Proc. 1996 IEEE Intl. Conf. on Robotics and Automation, pages 

1458-1464, April 1996. 

[88] E.J. Routh. Dynamics of a system of rigid bodies. Dover Publications, Inc., 

New York: Dover, 7th ed. edition, 1960. 



BIBLIOGRAPHY 212 

[89] D. Rus. Coordinated manipulation of objects. Algorithmica, 19(1):129-147, 

1997. 

[go] S. Rusaw, K. Gupta, and S. Payande'h. Flexible part orienting using rotational 

direction and force measurements. Intl. J .  of Robotics Research, 20(6):484-505, 

2001. 

[91] A. Salvarinov and S. Payandeh. Flexible part feeder: Manipulating parts on 

conveyer belt by active fence. In Proc. 1998 IEEE Intl. Conf. on Robotics and 

Automation, pages 544-549, May 1998. 

[92] M.W. Spong. Impact controllability of an air hockey puck. Systems and control 

letters, 42(5):333-345, 2001. 

[93] S. S. Srinivasa, M.A. Erdmann, and M.T. Mason. Control synthesis for dy- 

namic contact manipulation. In Proc. 2005 IEEE Intl. Conf. on Robotics and 

Automation, pages 2523-2528, April 2005. 

[94] S. S. Srinivasa, M.A. Erdmann, and M.T. Mason. Using projected dynamics to  

plan dynamic contact manipulation. In Proc. 2005 IEEE/RSJ Intl. Conf. on 

Intelligent Robots and Systems, pages 3618- 3623, Aug. 2005. 

[95] J. Stoer and R. Bulirsch. Introduction to numerical analysis, Translated by R. 

Bartels, W. Gautschi, and C. Witzgall. Springer, Berlin, 1993. 

[96] A. Stoorvogel. The H" control problem: A State Space Approach. Prentice-Hall, 

Upper Saddle River, NJ, 1992. 

[97] A. Sudsang, F. Rothganger, and J .  Ponce. Motion planning for disc-shaped 



BIBLIOGRAPHY 213 

robots pushing a polygonal object in the plane. IEEE Trans. on  Robotics and 

Automation, 18(4):550-562, 2002. 

1981 T. Tabata and Y. Aiyama. Tossing manipulation by 1 degree-of-freedom manip- 

ulator. In Proc. 2001 IEEE/RSJ  Intl.. Conf. on  Intelligent Robots and Systems, 

pages 132-137, Nov. 2001. 

[99] T.  Tabata and Y. Aiyama. Passing manipulation by 1 degree-of-freedom ma- 

nipulator - catching manipulation of' tossed object without impact. In Proc. 

2003 IEEE International Symposium on  Assembly and Task Planning, pages 

181-186, July 2003. 

[loo] G. J. Toussaint, T. Basar, and F. Bullo. Tracking for nonlinear underactuated 

surface vessels with generalized forces. In IEEE International Conference on  

Control Applications, pages 181-186, Sept. 2000. 

[101] J.C. Trinkle and D.C. Zeng. Prediction of the quasistatic planar motion of a 

contacted rigid body. IEEE Trans. on  Robotics and Automation, 1 1 (2):229-246, 

1995. 

[102] K. Voyenli and E. Eriksen. On the motion of an ice hockey puck. American 

Journal of Physics, 53(12):1149-1153, 1985. 

11031 Y .  Wang and M.T. Mason. Two dimensional rigid-body collisions with friction. 

Journal of applied mechanics, 59(3)  : 635.-642, 1992. 

[I041 Z. Wang and V. Kumar. Object closure and manipulation by multiple cooperat- 

ing mobile robots. In Proc. 2002 IEEE Intl. Conf.  o n  Robotics and Automation, 

pages 394-399, May 2002. 



BIBLIOGRAPHY 214 

[I051 J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete algorithm 

for designing passive fences to  orient parts. In Proc. 1996 IEEE In2-l. Conf. on 

Robotics and Automation, pages 1133-1139, May 1996. 

[I061 M.T. Zhang and K. Goldberg. Gripper point contacts for part alignment. IEEE 

Trans. on Robotics and Automation, 18(6):902--910, 2002. 

[I071 M.T. Zhang, K. Goldberg, G. Smith, R.P. Berretty, and M. Overmars. Pin 

design for part feeding. Ro botica, lg(6) :695-702, 2001. 

[I081 R. Zhang and K. Gupta. Automatic o:rienting of polyhedra through step devices. 

In Proc. 1998 IEEE Intl. Conf. on Robotics and Automation, pages 550-556, 

May 1998. 

[log] C. Zhu, Y. Aiyama, and T. Arai. Releasing manipulation with learning control. 

In Proc. 1999 IEEE Intl. Conf. on Robotics and Automation, pages 2793-2798, 

May 1999. 


