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ABSTRACT 

I tested the hypothesis that feinale peach twig borers, Anarsia lineatella, Zeller 

(Lepidotpera: Gelechiidae), use acoustic signals in addition to known pherornone signals 

during sexual communication. I employed a digital system to record and pla.yback sound. 

Males, flying on a tether, emitted signals of 12 dB above ambient sound intensity with 

wingbeats of 60 Hz and upper signal components at 2.5 and 10 kHz. Females produced 

sonic reply signals [50 Hz (wingbeat), 2 and 14 kHz) when exposed either to playback 

recordings of the males' signals or to signals fiom live males. The males' sonic signals 

provoked females to reduce pheromone emission. In field experiments, trap:; baited with 

sex pheromone and playback recordings of feinale sonic signals captured significantly 

more males than traps baited with sex pheromone alone. My data support the hypothesis 

that female and male A. lineatella use bioacoustic and pheromonal signals during sexual 

communication. 



QUOTATION 

You cannot acquire experience by nlaking experiments. You cannot create experience. 
You must undergo it. 

Albert Camus 
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GLOSSARY 

Acoustic: of or relating to the science of acoustics 

Acoustics: a science that deals with the production, control, transmis:;ion, 

reception and effects of sound 

Bioacoustic: of or relating to the science of acoustics in living organi:sms 

Pheromone: an intraspecific chemical signal that benefits both the emitter and 

receiver 

Scotophase: the dark phase in a 24-hour photoperiod 

Sonic: frequencies between 0-20 kHz. 

Sound: displacement of particles (typically in air) by pressure waves. 

Ultrasonic: frequencies > 20 kHz. 
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INTRODUCTION 

1.1 Sexual communication modalities in insects 

To attract or locate mates, insects use sex pheromones (Gillott, 1980; Mankin et 

al., 2000; Triplehorn & Johnson, 2005), sound (Spangler, 1988; Stephen & Hartley, 

1991), visual displays (Knuttel & Fiedler, 2001), and bioluminescence (Scoble, 1995; 

Gerhardt & Huber, 2002). Sex pheromones are typically emitted by females to attract 

males (Tamaki, 1985; Scoble, 1995; Phelan, 1997), and males usually orient 

anemotactically toward females (Kuenen & Baker, 1982; Willis & Baker, 1984; Justus & 

Cardk, 2002). Bioacoustic signals function similarly (Bailey, 2003), but males also 

utilize acoustic signal trains to broadcast their quality to potential mates (Hoikkala et al., 

1998). Bioacoustic signals are commonly produced by one sex (Bennet-Clark et al., 

1980; Crossley et al., 19959, but can be exchanged between prospective mates 

(Sanderford & Comer, 1990, 1995; Bailey, 2003). 

Unlike pheromones or sonic signals, bioluminescence as a means of sexual 

communication is rare in insects. It is well studied, however, in nocturnal fir~sflies 

(Lloyd, 197 1 ; Carlson & Copeland, 1985). For example, male and female American 

fireflies, Photinus pyralis (Coleoptera: Lampyridae), exchange single bioluminescent 

flashes that allow mates to find each other (Buck & Case, 2002). 

Insects also use combinations of sensory modalities, most commonly pheromones 

and sound (Heller & Krahe, 1994; C61d et al., 1999; Takacs et al., 2002,2003), during 

sexual communication. Male green stink bugs, Nezara viridula (Hemiptera: 



Pentatomidae), emit sex pheromones for long-range attraction of females, and both sexes 

use vibratory signals to locate each other on the plant (Miklas et al., 2003). Among 

moths, many species are already known to employ bioacoustics in addition t'o 

pheromones for mate-location (Table 1.1). For example, male webbing clothes moths, 

Tineola bisselliella (Lepidoptera: Pyralidae), emit pheromonal and acoustic signals that 

attract females (Takacs, 2002). The lesser wax moth, Achroia grisella (Lepidoptera: 

Pyralidae), has a system where males wingfan to attract females (Greenfield & Weber, 

2000; Jia et al., 2001), while the greater wax moth, Galleria mellonella (Lepidoptera: 

Pyralidae), has a more complex signaling system with wing-fanning males eliciting 

acoustic cues from females that, in turn, stimulate the males to emit pheromone that 

attracts females (Spangler, 1988). 

1.2 Peach twig borer distribution 

The first account of A. lineatella was published by Zeller in Germany in 1839 

(Duruz, 1923). A second account of the insect led to its synonym, Anarsia pruniella 

(Clemens) (Ulenberg, 1989). Anarsia lineatell'a is thought to have originated in Asia or 

Western Europe (Marlatt, 1898, Duruz, 1923). It is an introduced pest to North America, 

first found in the United States in 1860 (Marlatt, 1895; Duruz, 1923), and in Canada in 

1902 (Belton, 1988). It quickly became the primary lepidopteran pest of nectarines and 

peaches, and remained as such until the oriental fruit moth, Grapholita molesr+a 

(Lepidoptera: Tortricidae), was accidentally introduced (Daane et al., 1993). Along with 

the navel orangeworm, Ameylois transitella (Lepidoptera: Pyralidae), A. lineatella 

remains one of the main pests of almonds in California (Legner & Gordh, l9SQ). Today. 

A. lineatella is present in all the major growing areas of host trees in Asia, Europe and 



North America (Figure 1.1) (Marlatt, 1898; Jones, 1935; Bailey, 1948; Ahmad, 1988; 

Ponomarenko, 1990). When it was first discovered in North America, A. lineatella was 

erroneously believed to overwinter in the crowns of strawberry plants (Marlatt, 1898; 

Duruz, 1923). Although rectified later, this misunderstanding perpetuated by its 

appearance in Webster's dictionary under the definition of strawberry borer: "The root 

borer (Anarsia lineatella), a very small dark gray moth whose larv[ae] burrow both in the 

larger roots and crown, often doing great damage" (Webster's Revised Unabridged 

Dictionary, 19 13). 

1.2 Biology and crop damage 

The entire life cycle of A. lineatelia lasts from 3 1 to 44 days, except h r  the 

overwintering generation (Bailey, 1948). Adults live approximately two weeks after 

eclosion, feeding on juice exuding fiom damaged fruit and available water sources, and 

mating multiple times (Bailey, 1948). Adults are approximately 1 cm in length and silver 

grey in colour (Bailey, 1948). The forewings have alternating white and gray scales with 

two near-black spots at the costal margin of the wing: one in the middle and one close to 

the base (Ponomarenko, 1990). A gray stripe connects three short transverse streaks that 

extend fionl the costal margin toward the alar apex, while longitudinal, near-black streaks 

appear on the background of the wing (Ponorr~arenko, 1990). The wings are narrow and 

fringed with long hairs and have a wingspread of 13 - 14 mm (Bailey, 1948; 

Ponomarenko, 1990). The eyes and 'antennae are black. When resting, the moths 

position their wings and antennae along their back (Bailey, 1948). The palp:; differ 

morphologically between the sexes; females have a horn-like structure on their palps that 

is absent in males (Bailey, 1948; Park & Ponomarenko, 1996). 



Males and females are phototactic, anli-geotactic, and "hop" a lot, in addition to 

flying. How far adult moths can fly has not been recorded; however, from field work, it 

is believed that A. lineatella cannot, or does not, fly any long distances in the absence of 

foliage (Sziraki, 1984; Ahmad, 1989). The preoviposition period ranges from 1 - 4 days 

(Bailey, 1948). Once mated, females oviposit their eggs, normally the following night, 

but have been observed ovipositing during the day (Bailey, 1948); oviposition lasts up to 

2 weeks (Ponomarenko, 1990). A female can lay up to 100 eggs (Bailey, 1948). Eggs 

are laid in clusters of 2-5 eggs on terminal shoots, bark, the base of buds, fruits and in 

leaf axils (Bailey, 1948; Sarai, 1966; Ponomarenko, 1990). 

Freshly oviposited eggs are small, white, iridescent, ovoid structures (Marlatt, 

1898; Bailey, 1948). The eggs are approximalely 0.4 mm long and 0.2 mm wide, with 

reticulations covering their surface (Bailey, 1948; Marlatt, 1898). They are attached to 

the substrate by a glue-like substance, and become deep orange before the larva hatches 

(Marlatt, 1898; Bailey, 1948). 

Newly hatched larvae are 0.5-1 mm long (Marlatt, 1898; Bailey, 1948), and have 

a light yellow-to-brown body colour and black head (Marlatt, 1898; Sarai, 1966). Larvae 

develop through 4 - 5 instars (Bailey, 1948). Fully grown instars are about 13 rnm long 

and reddish-brown in colour, with cream-coloured intersegmental membrane:; (Bailey, 

1948; Sarai, 1966). 

Overwintering 1" and 2nd instars larvae feed to some extent and moult at least 

once before they emerge in the spring, typically at the balloon stage (first flowers with 

petals forming) of peach flower development (Treherne, 1923; Proverbs, 1954). When 

overwintering larvae emerge from their hibernacula, they feed on buds and developing 



twigs, causing wilt or, in extreme cases, death of young trees (Duruz, 1923; Treherne, 

1923; Bailey, 1948; Summers & Price, 1959). First and second instars spin a small white 

web to cover themselves (Marlatt, 1898; Ponomarenko, 1990). While many larvae 

attempt to enter the green fruit, few are able to penetrate the fruit successfully at this 

stage (Dumz, 1923; Treherne, 1923; Bailey, 1948; Summers, 1955). Summer generation 

larvae also feed on shoots, but more so on developing fruit and their kernels (Treherne, 

1923; Ponomarenko, 1990; McElfresh & Millar, 1993). Most damage and highest trap 

captures of adult moths have been found in the upper levels of trees (Rice & Jones, 1975; 

Ahmad & Khadhurn, 1986; Weakley et al., 1990). Burrowing by A. lineatella larvae 

allows weaker borers, such as A. transitella, to penetrate developing fruit (Curtis, 1983). 

The presence of feeding A. lineatella larvae within fruit can be detected by frass and sting 

marks on the fruit surface (Duruz, 1923; Treherne, 1923; Ponomarenko, 1990). Anarsia 

lineatella consume stony fruits of the Prunus genus (Family Rosaceae), including: peach, 

prune, almond, nectarine, plum, sweet cherry, and sour cherry (Bailey, 1948; Summers, 

1955; Ponomarenko, 1990). Larvae of the summer generations may construct a 

hibernaculum from which they later leave to forage before constructing and entering 

another hibernaculum to pupate (Marlatt, 1898; Price & Summers, 1961 ; Ponornarenko, 

1990). Larvae that hatch later in the summer and feed on fruit develop into adults, 

whereas those that feed on bark begin building hibernacula (Sarai, 1966). 

Fully grown larvae pupate in small cracks in the tree bark, folded leaves, and 

sometimes within fruit (Marlatt, 1898; Treherne, 1923; Ponomarenko, 1990). When they 

pupate in wood, they create "chimneys" which are small reddish-brown tubes, consisting 



of bark pieces fastened together with silk that protrudes from the bark surface (Duruz, 

1923; Treherne, 1923). The purpose of this structure is unknown (Duruz, 1923). 

The pupa is approximately 5 mm long and has a light tan colour (Duruz, 1923; 

Sarai, 1966; Ponomarenko, 1990) which tuns  from dark reddish brown to dark black- 

brown as it ages. The pupal stage lasts approximately 14 days for first generation insects 

and 2 - 4 days for summer generations, depending on temperature (Duruz, 1023). 

In the course of the year, 3 - 4 generations have been observed in California (Price 

& Summers, 196 I), and 2 - 3 in British Columbia (Sarai, 1966). Generatiom are not 

always distinct, because oviposition times often overlap, giving the impression that A. 

lineatella flight is continuous throughout the summer (Bailey, 1948; Brunnei: & Rice, 

1984). 

1.3 Control measures for peach twig borers 

Organophosphate insecticides and dormant season oils for overwintering larvae 

are the recommended controls for A. lineatellu (Zalom et al., 1992), and further 

applications of insecticides are used against subsequent generations (Summers, 1955; 

Rice et al., 1972). For almonds, DipelTM at bloom and LorsbanTM at hull split provide 

good control (Cline, 2004). Due to the residual nature of insecticides, sprays cannot be 

applied safely at the ripening fruit stage, when much damage takes place (Summers, 

1955). Moreover, insecticide resistance has occurred (Summers et al., 1959), and 

targeting the exact time for applications of chemical sprays can be very difficult (Rice & 

Jones, 1975). Because neonate larvae of summer generations immediately bore into 

shoots or fruit, they rarely ingest a lethal dose of insecticide, but overwintered larvae can 

be targeted as they will feed on several shoots before maturation (Barnett et ,al., 1993). 



Unfortunately, organophosphate pesticides kill natural enemies of other pest insects 

(Pickel et al., 2002), such as green peach aphids (Tamaki, 1973), which can 'lead to other 

pest problems. 

Bacillus thuringiensis Berliner is used against larvae emerging from 

overwintering hibemacula (Bamett et al., 199:3), with 2 - 3 sprays at bloom appearing 

effective (Diver & Mumma, 2003). Dorn~ant season applications of nematodes decrease 

population levels of A. lineatella, but not to a commercially acceptable level (Agudelo- 

Silva et al., 1995). Anarsia lineatella has numerous natural enemies (Bailey., 1948; 

Thompson, 1966; Diver & Mumma, 2003; Trandafirescu et al., 2004). The encyrtid wasp 

Copidosoma pyralidis, also known as Paralitvmastix pyralidis, is a substantial parasitoid, 

infecting from 60 - 90% of developing larvae (Velimirovic, 1974; Trandafirescu et al., 

2004). Both C. pyralidis' and Gonizuspnkm~znus2, were introduced into the United 

States as control measures against A. lineatelltr. However, despite the presence of these 

and multiple other predators, A. lineatella populations still cause extensive damage. 

Synthetic sex pheromone (Roelofs et al., 1975), has been tested for monitoring 

population densities, and for controlling populations by means of pheromone:-based 

mating disruption (see Chapter 2); however mating disruption proved commercially 

ineffective against A. lineatella (Ahrnad & Khadhum, 1986; Nicolli et al., 1990; Mayer & 

Lunden, 1996; Cravedi, 2000; Pickel et al., 2002). 

1 Released into California, from France, in 193 1 (Bailey, 1948). 
' Released into the United States in 1985 (USDA, 1985). 
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Figure 1.1. Worldwide distribution of Anarsia lineatella. Shading indicates 
countries in which host trees are attacked by A. lineatella. 



Table 1.1 Moth species utilizing sound as part of their sexual communication 

system. 

FAMILY GENUS AND SPECIES ss= 
Arctiidae 
Arctiidae 
Arctiidae 
Arctiidae 

Cycnia teneru 
Euchaetes bolter 

Arctiidae 
Noctuidae 

l r ~ o c t s d a e  1 ~el io th i s  arminera I Xue et al., 1996 

Comer, 1999 
~immons & Comer. 1996 

Euchaetes egle 
Lvcomoruha ~ h o l u s  

Noctuidae 
Noctuidae 

Simmons & Conner, 1996 
Mumma & Fullard. 200.1 

Syntomeida epilais 
Amuhiuvra uerflua 

Sanderford & Comer, 1990 
La~hsin & Vorontsov. 2000 

Autographs gamma 
Hecatesia exultans 

Noctuidae 
Noctuidae 

Skals et al., 2003 
Alcock & Bailev. 1995- 

Nolidae 
Nolidae 

Mythimna separata 
Rilevana fovea 

Pyralidae 
Pvralidae 

Xue et al., 1996 
Surlvkke & Gorrola, 1 9 8 6  

Bena bicolorana 
Psudoi~s ~rasinana 

Pyralidae 
Pvralidae 

11 Pyralidae I Tineola bissiella Takacs et al., 2003 - - 

Skals & Surlykke, 1994 
Skals & Surlvkke. 1999- 

Achroia grisella 
Corcvra ceuhalonica 

Pyralidae 
Pvralidae 

Spangler et al., 1984 - 
S~analer. 1987 

Ephestia cautella 
Euhestia kuehniella 

Trematerra & Pavan, 1993 - 
Trematerra & Pavan, 1993 

Galleria mellonella 
Svmmoracma minoralis 

Spangler, 1988 
Heller & Krahe, 1994 - 



MALE AND FEMALE SONIC SIGNALS: EVIDENCE, 
CHARACTERIZATION AND BEHAVIOURAL ACTIVITY 

2.1 Introduction 

The sex pheromone of female A. Iineatella is a 2-component blend, consisting of 

(E)-5-decenyl acetate (E5- 10:OAc) and (E)-5-decenol (E5- 10:OH) in a 7: 1 ratio (Roelofs 

et al., 1975). No other sex pheromone component has been elucidated (Millix & Rice, 

1992; 1996). Pheromone derived from scales of females elicit contact by males (Schlamp 

et al, 2005), but does not enhance long-range attractiveness of the sex pheromone. Traps 

baited with live female A. lineatella captured significantly more males than traps baited 

with synthetic sex pheromone (Schlamp, 2005), suggesting that females use additional 

means of communication. Moreover, reduced pheromone emission by females in the 

presence of males (Schlamp, 2005) suggests that males communicate their presence to 

females. If true, the males' communication signals are unlikely to be pheromones. When 

males fly upwind toward calling females, any potential male pheromone, or body odour, 

would not be perceived readily by females. Moreover, large quantities of pheromone 

may increase the distance over which potential mates are recruited (Schlyter, 1992), but 

at short range may hinder rather than help mate-foraging insects to pinpoint the micro- 

location of signallers. Instead, visual displays or bioacoustic signals could allow males to 

announce their arrival prompting females to lower pheromone emission, or respond in 

another way. Considering that A. Iineatella is a darkly coloured, nocturnal moth, 

signalling through visual displays would be rather difficult. However, bioacoustic signals 

would be useful because their perception by females would not be as dependent on wind 

2 0 



direction as pheromones, and they might readily reveal the micro-location of the 

signaller. In this chapter, I will test the hypothesis that male and female A. fineatella use 

bioacoustic signals, in addition to pheromone, during sexual communication. 

2.2 Materials and Methods 

2.2.1 Experimental insects 

Adult A. lineatella were obtained from a colony started in 2000 with moths from 

the southern interior of BC, Canada. The moths were kept in mesh-lidded 1 -L glass jars 

in environmental chambers at 18-22 "C, 70-80% RH, and a 16L:SD photoperiod. Larvae 

were reared on diet (Sidney, 2005) adapted from McElfresh (McElfresh & Millar, 1993). 

Pupae were transferred to 9-cm Petri dishes. Adults were collected daily, separated by 

sex, and kept in separate Petri dishes until they were bioassayed (3 - 4 days old), after 

which time they were transferred to the environmental chambers described above. 

2.2.2 Equipment for sound recording and playback 

Sound recordings employed: a) a high-performance ultrasonic microphone (BT 

1759; sensitivity 40 mV/Pa; frequency response: 100 Hz to 10 kHz; Knowles Acoustics, 

Itasca, Illinois, USA); b) AKG CK 61 -ULS condenser microphones [sensitivity: 20.0 

mV/Pa; flat frequency response: 20 Hz to 20 kHz +I- 1 dB (flat frequency response: 200 

to 16,000 Hz +I- 0 dB)]; AKG Acoustics, Nashville, Tennessee, USA); c) signal 

amplification of 800 times with a National Instruments (NI) SC 2040 differential 

amplifier (National Instruments Corporation, Austin, TX, USA 78759-3504); and d) a 

sampling frequency of 43.2 kHz. Recordings were saved to the hard disk of a Panasonic 

CF-47 Toughbook equipped with an NI data acquisition board (DAQcard-6062E; 12 bit, 



500 kHz maximum sampling rate). Intensities of sound signals were measured with a 

155 1-C sound-level decibel meter (General Rddio Company, Massachusetts, USA) that 

was placed -1 cm from the recorded insect. Sound intensity measurements were based 

on the wingbeat frequency as the loudest signal component and found to be 12 dB above 

ambient noise of 50 dB. The same sound intensity was used in playback reclordings in all 

laboratory and field experiments. Signals were played back through Sennheiser 70 

headphone speakers (Sennheiser Electronic Corporation, Old Lyme, CT, USA; matched 

+I- 1 dB flat frequency response: 10 to 39,500 Hz, 0.05% THD) connected to laptop 

computers with software programs developed in LabVIEW P I ) .  

2.2.3 Acquisition of acoustic signals 

Sounds were recorded under red light 2 h before and until the end of the 

scotophase, the period of sexual communication (Rice & Jones, 1975; Schlamp, 2005). 

A sitting, pheromone-emitting female (Figure 2. I), or a flying male, were tethered near 

(1 -2 cm) a microphone using a strand of human hair tied directly behind the head so as 

not to impede movements of antennae or wings. The female's behaviour was videotaped 

with a Sony digital handycam (Model DCR-VX1000) acquiring 22 pictures per second to 

an Intel Pentium 2.54 GHz computer equipped with an IMAQ PCI-1411 programmed 

with Labview P I ) .  Concurrent acquisition of audio and picture files allowed me to 

correlate sound and behaviour. Females were first exposed to silence, then either to 

sound from live males or to 8-s recordings of male-produced sound, replayed repeatedly 

after 1 s of silence. To investigate whether males and females might exchange signals, 

and whether any exchange is triggered by specific characteristics of a signal, I analyzed 



paired audio files for a) time of signal occurrence, and b) frequency components of the 

signal. 

2.2.4 Capture of airborne pheromone 

One day prior to conducting experimental replicates, 8- 14 virgin females were 

placed in each of two Pyrex glass chambers ( I  5.5 ID x 20 cm). An hour before the end 

of the 8-h scotophase, the headphone speaker and airflow in each chamber were turned 

on, exposing the females to playback of male-produced sound signals or silence 

(Experiment l), or to white noise (sound uniformly distributed over all sonic frequencies) 

or silence (Experiment 2) (Figure 2.2). 

Exposure to white noise in Experiment 2 determined whether potential changes in 

pheromone emission by females could be in response to random noise. To simulate 

dawn, when sexual communication takes place, a custom-designed computes program 

(Ray Holland, Electronic Supervisor, Science Technical Centre, Simon Fraser University, 

unpublished) increased the intensity of a 60-watt Philips light bulb from 0 to 600 lux over 

30 min. in the last half of the experimental time. During the 60-min experimental period, 

a water aspirator drew air at 2 Llmin through the chamber, and then through a glass 

column (140 x 10.1 mm ID) filled with Porapak Q (0.5 g, 50-80 mesh, Waters, Milford, 

Mass., USA). Volatiles were eluted with 1 mL of redistilled pentane to which an internal 

standard, (Ej-8-undecenyl acetate (100 ng), was added. The eluent was concentrated to 

100 pL under a stream of nitrogen, and aliquots were analyzed by gas chromatography- 

mass spectrometry (GC-MS) employing a Varian Saturn 2000 Ion Trap equipped with a 

GC column (30 m x 0.25 mm ID) coated with DB-5 (J&W Scientific, Folsom, California, 

USA). Results were analyzed using a Wilcoxon paired t-test (JMP 5.1). 



2.2.5 Field experiments 

Field experiments were conducted in a commercial almond orchard near Willows, 

California (N 39" 52', W 122" 20') and a commercial apricot orchard near Cawston, 

British Columbia (N 49" 18', W 1 19" 5'). Experiments employed paired traps in each of 

three trees with 1 m between paired traps. and 20 m between trap pairs. Traps were made 

of 2-L milk cartons (Gray et al.,' 1984) coated on the inside with adhesive (T;he 

Tanglefoot Co., Michigan, USA). Traps were suspended 1-1.5 m above ground in a 

straight line, with a single "guard" trap at the beginning and end of the line, separated by 

20 m from trap pairs. By random assignment, one of the two paired traps wals baited with 

a rubber septum (The West Company, Pennsylvania, USA) impregnated with E5-10:OAc 

(1,000 pg) and E5-10:OH (100 pg) (stimulus I), and the other with stimulus 1 plus sound 

previously recorded from female A. lineatella and played back at biologically relevant 

levels (see 2.2.2). The speakers for playback sound were connected to one of three laptop 

computers and amplifier systems, supplied wiih electricity from line-powered AC current 

(120 volts) (Cawston) or battery (MotoMaster Eliminator, Canadian Tire Corporation 

Ltd., Toronto, Canada) (Willows). Experiments were run from dusk until dawn 

(Cawston) and from midnight until dawn (Willows). Traps and functioning of sound 

equipment were checked at dusk (Cawston), and at 24:00,03:00 and dawn (Cawston and 

Willows). Six and 12 trap-pair replicates were run in Willows and Cawston, respectively. 

Trap captures of moths were analyzed using ANOVA (a = 0.05) (JMP 5.1). 



2.3 Results 

Tethered flying males produced sound signals at 60 +I- 10 Hz (wingbeat), 1 14 +/- 

10 Hz, 2.5 +I- 3 kHz, and 10 +I- 5 kHz (Figures 2.3,2.5). Tethered females exposed to 

playback of male signals, or live males, produced sound signals at 50 +/-I 0 Hz 

(wingbeat), 2 +I- 5 kHz, and 14 +I- 5 kHz (Figures 2.4, 2.5). These reply signals were 

interspersed with signals from males, up to 15 times per second (Figure 2.6). There was 

neither a pattern of signal exchange, nor evidence for specific signal components 

triggering such exchange in plots depicting the time of signal occurrence and the 

frequency components of a signal (Figure 2.7). Pheromone emission by females 

significantly decreased in the presence of played-back male signal recording:; (Figure 

2.8), but was not affected by white noise or silence (Figure 2.9). 

In the presence of silence, females remained motionless. However, after exposure 

to the male sound (live or played-back), females fanned their wings, jumped, and 

engaged in short, looped flights, as depicted in Figure 2.10. 

In Willows (Figure 2.1 1, Experiment 3) and Cawston (Figure 2.1 1, Experiment 

4), traps baited with synthetic sex pheromone and played-back recordings of female- 

produced sonic signals captured two to three times as many males as traps baited with 

pheromone alone. 

2.4 Discussion 

My data show that A. lineatella use bioacoustic signals as part of their sexual 

communication system. This conclusion is based on the findings: 1) that male sonic 

signals provoke sonic reply signals from females (Figure 2.4) and lower the females' 



pheromone emission (Figure 2.8), and 2) that playback recordings of the females' reply 

signals plus pheromone are more effective in attracting males than pheromone alone 

(Figure 2.1 I). These results might explain the stronger attraction of males to live females 

than to synthetic sex pheromone (Schlarnp, 2005). 

When both female and male insects produce sound, males commonly initiate the 

exchange of signals (Robinson, 1990). This applies to A. lineatella. Females remain 

silent until they receive a male's signal. This tactic may help them minimize attraction of 

predators that eavesdrop on bioacoustic communication of potential prey (Ca~de, 1976; 

Burk, 1982: Acharya, 1995; Skals et al., 2003). Females also gain the oppomnity to 

judge a male's fitness based on his acoustic signals (Wagner et al., 1995; Jang & 

Greenfield, 1996; Tuckerman et al., 1993; Jia et al., 200 1). 

The signal reply latency [sensu Bailey & Hammond (2003)l in A. lineatella 

appears exceptionally quick, with up to 15 "signal exchanges" per second between a male 

and a female. This would surpass the fastest known reply latency (1 5 ms) be tween 

"conversing" bush crickets, Ancistrura nigrovittata (Orthoptera: Phaeneropteridae) 

(Dobler et al., 1994). However, with many of the male- and female-produced signals 

overlapping in A. lineatella (Figures 2.6, 2.7), the entire signal train may be a means of 

exchange, rather than individual signals. Insects that exchange signals typically use 

established signal trains (Surlykke & Gogala, 1986; Trematerra & Pavan, 1945; Jang & 

Greenfield, 1996; Jones et al., 2002). The signal repertoire may vary but the set nature of 

the signals and replies remains the same (Sanderford & Comer, 1995; McBrien et al., 

2002). None of the recordings from female and male A. lineatella revealed characteristic 

sets of signals, or patterns of signal exchange in terms of time of, or between signals 



(Figures 2.6,2.7). Similarly, there was no evidence for specific signal components 

triggering reply signals (Figure 2.7). The signals in both analyses (Figures 2.6,2.7) were 

so short that they are unlikely to contain detailed information (Bailey, 2003; Bailey & 

Harnmond, 2003; Dobler et al., 1994). Rather, they may be used by the signaller to brief 

the receiver about its respective location, much like remote-control car keys that allow 

owners to locate their car in a parking lot through brief bursts from the car horn. As such, 

female-produced signals would facilitate the male's orientation toward her, whereas 

male-produced signals would keep the female informed about his progress. This rapid 

exchange of signals may fall under the category of dialogue (Greenfield, 1994; Buck & 

Case, 2002), with loosely structured signal exchanges instead of the category of duet 

(Bailey, 2003), with predictable temporal associations between caller and replier. 

Analyses of paired audio files from males and females (Figures 2.6,2.7) did not reveal a 

duet type temporal pattern. However, there are several factors, including the intensity of 

signal components, the males' flight progress (or lack thereof), and the females' mate 

choice, that could mask a potential temporal pattern and may have complicated the 

interpretation of results. 

Unlike the loud signals emitted by relatively large insects such as crickets and 

cicadas, sounds produced by small insects are relatively quiet (Bennet-Clark, 1971). 

Anarsia lineatella falls into this latter category. Because the wingbeat is louder than the 

upper signals, it can be difficult to reveal all upper signal components. Even after 

filtering out the wingbeat signals, there is ihe possibility that a signal will not be visible. 

The detection of these upper signals may also be influenced by the male's orientation in 

flight. Although the male was tethered to stay within 1-2 cm of the microphone, he was 



still able to fly in any direction. Thus, it is likely that some directional orientations were 

more conducive than others to signal recording. This may be comparable to a 

conversation between humans where the speaker is difficult to hear when not facing the 

listener. Another possible problem with the flight of a tethered male is that he does not 

progress toward the female. Thus, the female may choose not to reply to otherwise good 

signals. 

The female's mate choice may also affect her signalling. Assuming that a female 

may assess signal characteristics of an approaching male, she may choose not to respond 

to a signal that appears to be of low quality, as reported in the katydid Conocephalus 

nigropleurum (Morris and Fullard, 1983). Conversely, a female that is anxious to mate 

may respond to even low-quality male signals. All these aspects may explain the lack of 

a pattern in the audio recordings of male and female pairs. 

That female A. lineatella lowered pheromone emission in response to sonic 

signals from conspecific males (Figure 2.8) appears counterintuitive. However, high 

concentrations of pheromone hinder rather than help anemotactic orientation of foraging 

insects (Willis & Baker, 1984). With large amounts (1 00 ng) of pheromone in 

pheromone glands (Schlamp, 2005), it is likely that female A. lineatella emit significant 

quantities of pheromone during sexual communication. Finally, because female 

pheromone and sonic signals are synergistic, females can probably afford to reduce 

pheromone emission (Schlamp, 2005) while engaging in bioacoustic communication with 

approaching males. 

Production of bioacoustic comnlunication signals in A. lineatella appears 

associated with wing movement. Low frequency (< 60 Hz) components of the males' 



signals were present continuously and can be attributed to the movements of' wings. 

Upper frequency (> 2 kHz) components, in contrast, occurred intermittently (Figures 2.3, 

2.7), and thus are likely decoupled from the mechanics of moving wings. Nonetheless, 

these signal components were recorded only fiom females and males that moved their 

wings, suggesting that the sound-producing organs are associated with or near the wings. 

The type and location of sound-producing and receiving organs in moths is diverse 

(Scoble, 1995; Comer, 1999). As examples, bollworms, Heliothis zea (Lepidoptera: 

Noctuidae), produce sound whereby their forewings strike each other during flight (Agee, 

1971), whereas males of the noctuid Thecophora fovea rub a tarsal segment against a 

stridulatory swelling on the hindwing (Surlykke & Gogala, 1986). Sound is received by 

air-filled tympana1 organs at the base of wings (Minet, 1988), on the thorax (Spangler, 

1 988), or abdomen (Scoble & Edwards, 1987; Cook & Scoble, 1992). How male or 

female A. lineatella perceive sound, and where the receptors are located, remains 

unknown. 

Mate attraction and location in A. lineatella is unusually complex and appears to 

proceed in a sequence, as follows: 1) females einit long-range sex pheromone that attracts 

males (Roelofs et al., 1975); 2) approaching males emit sound "announcing" their arrival; 

3) females lower pheromone emission, and emit sonic reply signals that help rnales orient 

toward them; 4) males alight near females and emit pheromone from hairpencils during 

courtship behaviour (unpublished); and 6) close-range scale-derived pheromone 

components from females induce contacts by males (Schlamp et al., 2005). Similarly 

complex sexual communication and elaborate exchange of pheromonal and sonic signals 

are known only from the greater wax moth, Galleria mellonella (Lepidoptera, Pyralidae) 



(Spangler, 1987). Male G. mellonellcr produce sonic signals that cause conspecific 

females to emit a wingfanning signal which, in turn, provokes males to release 

pheromone that attracts females (Flint & Merlde, 1983; Spangler, 1987). 

Control of A. lineu~ella populations in commercial orchards by means of 

pheromone-based mating disruption has not been very effective (McElfresh & Millar, 

1993, Millar & Rice, 1992). I propose that a combination of pheromonal and bioacoustic 

signals could be developed for more effective control. 
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Figure 2.1. Graphical illustration of the experimental set-up for recording acoustic 
signals from female Anarsin lineatella. 



aeration chamber 

Figure 2.2. Graphical illustration of the experimental set-up for the capture of 
pheromone from female Anarsia lineatella exposed to male-produced sound or 
silence (Experiment I), or to white noise or silence (Experiment 2). 
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Figure 2.3. Analyses of waveform (A), frequency (B), and time-frequency sound 
intensity (sonogram) (C) of bioacoustic signals produced by one representative male 
Anarsia lineatella during flight. 
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Figure 2.4. Analyses of waveform (A), frequency (B), and time-frequency sound 
intensity (sonogram) (C) of bioacoustic signals produced by one representative 
female Anarsia lineatella in response to male-produced sound. 
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Figure 2.5. Frequency distributions of sonic signal components produced by male 
(left) and female (right) Anarsia lineatellrz. For male- but not for female-produced 
signals, two separate frequency distributions cover frequencies > 1 kHz (top) and < 
lkHz (bottom). 
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Figure 2.6. Synchronized.recordings of sonic signals produced by a live tethered 
female Annrsia lineatella in response to a tethered flying conspecific male ('Pairs 1,2) 
or in response to playback of male sonic signal recordings (Pairs 3,4). Vertical lines 
represent a sonic signal comprising frequency components > 2.5 kHz. 
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Figure 2.7. Synchronized recordings of sonic signals produced by a live tethered 
female Anarsia lineatella in response to a tethered flying conspecific male. Dots 
represent the dominant frequency component of the signal a t  that time. Horizontal 
black bars above the x-axis in the males' recordings depict time during which the 
male was flying. Note: all frequency components, except the wingbeat, are depicted. 
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Figure 2.8. Amounts (pg)of (IT)-5-decen-11-yl acetate (ES-10:OAc) emitted by female 
Anarsia lineatella in response to playback of male sonic signals recordings or silence. 
In each of six replicates, less ES-10:OAc was emitted by females exposed to playback 
of male sonic signals than by females exposed to silence; Wilcoxsin paired t-test, P < 
0.05 
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Figure 2.9. Amounts (pg) of (E)-5-decen-l-yl acetate (ES-10:OAc) emitted by female 
Annrsin lineatella in response to playback of white noise or silence. Emission of E5- 
1O:OAc in response to white noise was not significantly reduced; Wilcoxsin paired t- 
test, P > 0.05 



Figure 2.10. Graphical illustration of a behavioural sequence exhibited by a female 
Anarsia lineatella in response to a male-produced sonic signal. The asterik (*) 
demarcates the behaviour that is associated with the female's emission of a sonic 
reply signal. Drawings produced from synchronized video and audio recordings. 
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Figure 2.11. Mean number (+ SE) of male Anarsin linentella captured in Exp. 3 
(Willows, California; Jude 21-30,2004; 6 replicates) and in Exp. 4 (Cawston, British 
Columbia; July 15-22,2004; 12 replicates) in traps baited with synthetic pheromone 
[(Q-5-decen-l-yl acetate (1000 pg) and (0-5-decen-l-ol(100 pg)] alone o r  in 
combination with playback of female sonic signal recordings. In each experiment, 
bars with different letter superscripts are significantly different; ANOVA., P < 0.05. 


