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Abstract 

In this thesis. we calculate the Galois groups of extensions generated by torsion points 

of low order on elliptic curves and Drinfeld modules through their corresponding divi- 

sion polynomials. We investigate division po1:ynomials of degree up to and including 

four, which correspond to 2-torsion and 3-torsj.on points on elliptic curves and (T+a)- 

torsion and (T2 + a T  + b)-torsion points on Drinfeld modules of rank 1 .and 2. These 

calculations depend on the invariants that classify elliptic curves and Drinfeld modules 

up to an isomorphism. 
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Chapter 1 

Introduction 

The primary motivation of this thesis is t,o ca,lculate the Galois groups of extensions 

generated by torsion points of low order on elliptic curves and Drinfeld modules. In 

particular, we calculate the Galois groups of splitting fields of division polynomials of 

low degree on elliptic curves and Drinfeld modules. The determination of these Galois 

groups depend on the invariants that classify the elliptic curves or Drinfeld modules 

up to isomorphism. 

The field extensions generated by torsion points on elliptic curves and on Drinfeld 

modules have recently played an important role in the study of the arithmetic of 

number fields and function fields. They play a central role for instance in the proof 

of the Modularity Conjecture for elliptic curves over Q [BCDTOl] and Fer~nat's Last 

Theorem [Wi195]. 

The study of torsion points on elliptic curves or Drinfeld modules is equivalent to 

the study of rational points on modular curves and on Drinfeld modular curves. In 

essence, we are giving parametrizations of these modular curves for torsion points of 

low order by directly using field theory. Such paramet.rizations have been determined 

in the literature, by primarily using complex function theory (cf. [Bir72] for instance). 

This introductory chapter contains background information that is used through- 

out this thesis. This includes methods for determining the Galois groups of cubic and 

quartic polynomials, and an introduction to elliptic curves and Drinfeld modules; their 



CHAPTER 1. INTRODUCTION 2 

structure and isomorphism classes. Following .this background information, Chapter 3 

gives pertinent information on torsion points on elliptic curves and on Drinfeld mod- 

ules, and gives methods used t o  determine their respective Galois groups. Chapter 4 

studies the Galois groups of cubic and quartic: division polynomials of elliptic curves, 

while Chapter 5 studies the Galois groups of division polynomials both of rank 1 and 

2 Drinfeld modules that give rise to cubic and quartic division polynomialrj. 

1.1 Usage of Magma and Maple 

We use Magma [BCP97] and Maple [GGC81.] throughout this thesis for simple al- 

gebraic calculations. Magma is used to determine the factorization of a polynomial 

over a given field. Maple is used to aid the process of solving a system of equations 

by substitution and is used t o  calculate the d:iscriminant of a polynomial over a field 

of characteristic p # 2. We also use Maple to find Mobius transformations of one 

variable so that a given expression is of a particular form, which is illustrated by the 

following example. 

Example 1.1 Let k be a field and consider u E k given by 

t2  
" = (2t  + l ) ( t  + 1) ' 

for some t E k .  Suppose we would like u to be of the form 

for some s E k .  Then we proceed as follows. Using Maple, substitute I: = ( a s  + 
b) / (cs  + d ) ,  where a,  b, c,  d E k!  into (1.1) to yet 

U = 
( a s  + b)2 

( ~ s + d ) ~ ( 2 s  f l ) ( s  + 1) '  

By  equating (1.2) with (1.3) and using Maple to cross multiply and collect terms! we 

get 
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Setting the coeficient of s equal to 0 gives the solution 

Therefore, if we set t = s / ( - s  + 1) then u in terms of s is of the desired form, namely 

To recapitulate, in example 1.1, we use Maple for substitution, cross multiplication, 

and collecting like terms. Throughout this thesis, we assume that Magma or Maple is 

being used when factoring, substituting, and finding a Mobius transformation to get 

a an expression in a particular form. 



Chapter 2 

Background 

This chapter contains background informatio:n on Galois theory, elliptic curves, and 

Drinfeld modules. 

2.1 Field theory 

Let k be a field and consider a polynomial f E k [ x ] .  We say that f splits over k if f 

has only linear factors over k .  Let K  be a fie1.d such that k is a subfield of' K .  Then 

we say K  is a field ex tens ion  of k ,  denoted by Klk. If f does not split over k ,  we can 

then construct such an extension K  of k so that f splits over K .  

Definition 2.1 Let  f be a polynomial over a field k .  T h e  extension Klk i s  called a 

splitt ing field extension for  f over k i f f  splits over K  and there i s  n o  proper subfield 

L of K  containing k such  that  f splits over L. 

Any two splitting field extensions for a given polynomial f over k  are isomorphic. We 

say f has distinct roots if the roots of f are distinct in a splitting field extension of k ,  

which is indeed independent of t,he splitting field. We would like to have criteria to 

determine whether the irreducible factors of f over k have repeat,ed roots in a splitting 

field extension for f .  It turns out if char k == 0 then the irreducible factors of any 

polynomial over k have distinct roots. 
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Definition 2.2 Let f be a n  irreducible polynomial of degree n over a field k and let 

K be a splitting field extension for f over k. W e  say  that  f is  separable over k if 

f has n distinct roots in K .  A polynomial j' over a field k is  separable if all of its 

irreducible factors are separable over k. 

Lemma 2.3 ([Gar86], p.86) Let f be a n  irreducible polynomial over a field k. Then  

f is  not  separable if and only if char k = p > 0 and f has the form 

f = a0 + alxp + a2x2P + . - . + anxnp, for some ai E k. 

Let Klk be an extension of fields, then th.e set of automorphisms of Ii: which fix 

k is 

r (Klk)  = {a E A u t  K I a(~1) = g for all g E k) 

The group r (Klk)  is a subgroup of A u t  K called the Galois group of K over k. If 

Kl k is a splitting field extension for f E k[x], then r ( K l  k) is called the Gelois group 

of f over k. 

Theorem 2.4 ([Gar86], p.95) Let f be a polqyzomial over a field k and suppose that 

Klk is  a splitting field extension for f over k.. Let S denote the set of roots of f i n  
- K .  T h e n  each a E r (Klk)  defines a permutation of S ,  so that we have c: mapping, 

denoted by @, from r (Klk)  to the group Cs of permutations of S. Moreooer, @ is a 

group monornorphism. 

Proof: ([Gar86], p.95) Let G = r ( K l  k). An element of G acts on f by acting on 

each of its coefficients. Hence, a(f)  = f as f has its coefficients in k. For tr E S, 

hence a maps S into S. Since a is injective and S is finite, als is a permutation. 

Therefore we have a mapping, denoted by @, from G into the group Cs of' permuta- 

tions of S. If a, T E G then by definition (a.~)(cu) = a(~(cu)) whence @ :is a group 

homomorphism. Furthermore, if a(cu) = ~ ( c u j )  for all cu E S, then T-'a(a.) = cu for 

all cu E S. It follows that T-'a fixes K ,  giving T = a. Consequently @ is a group 

monomorphism. 
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Lemma 2.5 ([Gar86], p.66) Suppose f E k[x] is irreducible and that Kl k is a splitting 

field extension for f .  If cr and ,Ll are roots off in K, then there is an automorphism 

o : K + K such that o(cr) = ,Ll and o jixes k. 

Let f be a polynomial over k of degree n with distinct roots and with Galois group 

G and let Sn denote the group of permutations of (1, 2, ..., n). From Theorem 2.4, 

G is isomorphic to  a subgroup of Sn. Furthermore, if f is an irreducible polynomial 

over k, then G is transitive. 

2.2 Projective Varieties 

Let k be a field with algebraic closure i and let the projective n-space over i be 

denoted by Pn (i) (or simply Pn) . If f is a homogeneous polynomial in S = i[xo, .. ., x,] , 
then the zeros of f are given by Z ( f )  = {P E Pn : f (P) = 0). Furthermore, if T is a 

set of homogeneous polynomials in S, we define the zero set of T to be 

Z(T)  = {P E P n :  f(P) = = O  for all f E T). 

A subset V of Pn is called a projective algebraic set if there exists a set 2" of homo- 

geneous elements of S such that Z(T)  = V. Furthermore, the ideal of V, denoted by 

I (V),  is the ideal in S generated by 

{ f E S : f is homogeneous and f (P) = 0 for al lP E V) . 

We can now define the Zariski topology on Pn by taking open sets to be the 

compliments of projective algebraic sets. A nonempty subset Y of a topological space 

is irreducible if it cannot be expressed as the union of two proper subsets, each one 

of which is closed in Y ([Har77], p.3). A projective variety is then an kreducible 

algebraic set in Pn ([Har77], p.10). A projective variety defined over k is an kreducible 

projective algebraic set V such that there exists a set T of homogeneous polynomials 

in k[xo, ..., x,] and Z(T)  = V. 
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The  function field of  Pn is the subfield o f  X(Xo, . . - , X,) consisting o f  all rational 

functions F ( X )  = f ( X ) / g ( X )  for which f and g have the same degree. Then the 

function field o f  a projective variety V ,  denoted by &(v),  is the field o f  rational 

functions F ( X )  = f ( X ) / g ( X )  E K(Xo, . . . , X n )  such that: 

(i) f and g are homogeneous of  the same degree; 

(iii) two functions f / g  and f ' /g l  are identified (or equal) i f  f g' - f'g E I(\/) ([Si186], 

p.15). 

The  function field k ( V )  is then the field o f  rational functions F ( X )  E k ( X o ,  . . . , X,) 

satisfying ( i ) ,  (ii): and (iii) given above. 

Definition 2.6 ([Si186], p.15) Let k be a field with algebraic closure &. S,uppose V l ,  

V2 C Pn are projective varieties. A rational map 6 : Vl + V2 is a map oaf the form 

6 = [ f O ,  ..., f n ] ,  where fo ,  . . . , f n  E &(&) have the property that for every po,int P E Vl 

at which f o ,  . . . , f ,  are all defined, 

Furthermore, we say that 6 is defined over k if there is some X E X* so that ASo,.  . . , X fn  E 

V l ) .  

Definition 2.7 ([Si186], p.16) Let k be a field with algebraic closure X .  S-lppose V I ,  

V2 C Pn are projective varieties. A rational map 

is called regular (or defined) at P E Vl if th.ere is a function g E i ( V l )  such that 

g f o ,  . . . , g fn  are all regular at P ,  and (g f i ) ( P )  # 0 for some i .  A rational map is 

called a morphism if it is regular for every P E Vl(K).  

Example 2.8 Let k be a field of characteristic p + 2 and let V be a projective variety 

in P2 given bly 

v : x2 + y2 = z2. 
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Consider the map B1 given b y  

: V +. IP1 

e,([x, Y, Z]) 1-Y-/(x + Z) : 11. 

Then B1 is regular at every point in ~ ( i ) .  This is clear, except possibly cl:t the point 

P = [l , 0, - 11. Let f = -Y/ ( X  + 2 ) .  We must then find a g E X ( V )  such that g f 

and g are regular at P and one of g(P)  f (P) org(P)  is nonzero. Let g = Y/(X - Z), 

then g(P)  f (P) = 1 and g(P)  = 0 are regular at P = [I, 0, -11. Hence, B L  is in fact 

regular at every point of V. Therefore, 0, is a morphism defined over k. 

One can define the notion of the dimension of a projective variety ([Hm77], p.10). 

A curve is then a projective variety of dimension 1. Another invariant is the genus of 

a curve ([Har77], p.294). Curves of genus 0 defined over k with a k-rationad point are 

isomorphic to P1, whereas curves of genus 1 with a k-rational point are iso:morphic to 

an elliptic curve. 

2.2.1 Curves of Genus 0 

Theorem 2.9 ([HSgl], p.75) Let C be a smooth projective curve of genus 0 defined 

over a field k. Then the curve C is ismorphic over k to IP1 if and only if it has a 

k-rational point. 

Proof: The outline of this proof is as follows. Using the Riemann-Roch theorem, C 

can be embedded into P2 as a smooth conic .X defined over k. Suppose X does not 

posses a k-rational point, then clearly X is not parametrizable. Conversely, suppose 

X possesses a k-rational point Po. Then use the identification of IP1 with the space of 

lines in IP2 that go through Po to define the following two rational maps; 

line through P and Po if P # Po, el : x + PI, 
tangent line to X at Po if P = PO. 

e2 : IP1 + X, L H the point P such that L f7 X = {P, Po). 

The composition of these maps is the identity. Furthermore, a rational map from 

a smooth curve to a projective variety extends to a morphism defined on the whole 

curve ([HS91], p.69). Therefore, B1 and B2 are isomorphisms. 
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Example 2.10 Let k ,  V ,  and be as given in Example 2.8. Then V is a smooth 

projective curve of genus 0 and possesses the k-rational point [- 1,0,1].  Fro'm Theorem 

2.9, V is isomorphic to I P 1 .  We use this exa.mple to illustrate the proof of Theorem 

2.9. Let Po = [- 1,0, 11. Since a line in IP2 is given b y  sX + tY + rZ = 0, it is clear 

that the set of all lines passing through Po is given b y  

Furthennore, we identify the point [s: t ]  E IP1 with the line in IP2 given by (2.1). Now 

consider a point P = [a, b, c] + Po on V .  Then the line passing through Jb and P is 

given by 
b -- b 

X + Y - - - z = o ,  
a+c  a + c 

which is identified with the point [ - b / ( a  + c) ,  11 on IP1. Therefore, 

0, ( P )  = [- b/ (6: + c) , 11. 

Furthennore, the line tangent to V at Po is given b y  

which is identified with the point [ l ,  0] on IP1 and O1(Po) = [ l ,  01. Conversely, let 

[s, t ]  E P1. The point [s,  t ]  is identified with thee line 

through Po. Then L n V = {Po, P )  where P == [t2 - s2, -2st, s2 + t 2 ] .  The,refore, 

02([s, t ] )  = [t2 - s2, --2st, s2 + t2] .  

Hence, 02 is a morphism defined over k that maps the point [s, t ]  (identified with the 

line sX + tY + sZ = 0 on P2) to the point P E IP2 such that the line sX + tE'+ sZ = 0 

intersects V at [- 1: 0,1] and P.  



CHAPTER 2. BACKGROUND 

2.2.2 Elliptic Curves 

An elliptic curve defined over k is a pair (E ,  OE), where E is a curve of genus 1 defined 

over k with a rational point OE E E(k),  called the basepoint of E .  

Lemma 2.11 ([Si186], p.63) Let E be a n  elliptic curve defined over k. T h e n  E is 

isomorphic over k to  a curve in P2 given by (1  Weierstrass equation 

with coefficients a l ,  ... , a6 E k: and such that C)E gets mapped to [0, 1, 0] . Furthermore, 

any two Weierstrass equations for E are related by a linear change of variables of the 

form 
X = u2x1  -I- rZ1 

with u, r, s, t E k, u # 0. 

We call the change of variables given in Lemma 2.11 an admissible change of 

variables, because this is the only change of variables that will preserve the Weierstrass 

model. Let E be an elliptic curve given by a 'Weierstrass equation and comider E in 

affine space by making the substitutions y = Y/Z and x = X/Z. Then E is given by 

with an additional point [0, 1 , O ]  at infinity. If char k # 2 we can simplify (2.2) by 

completing the square and replacing y with y + (alx + a3)/2, yielding 

Also, define the quantities 
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The quantity A(E) given above is called the discriminant of the Weierstrass equa- 

tion and j(E) is called the j-invariant of the e:lliptic curve. It is noted that the change 

of variables given in Lemma 2.11 leave the j-invariant invariant (hence its name). 

If char Ic + 2,3 then we can eliminate the x2 term by completing the cube and 

replacing x with x - b2/12 yielding 

where 

c4 = b i  - 24b4 and c6 = -bi  + 36b2b4 - 216b6. 

Lemma 2.12 ([Si186], p.50) A curve E given by a Weierstrass equation is non- 

singular if and only if A(E) + 0. 

We can simplify the Weierstrass equation of an elliptic curve depending on its 

j-invariant and on the characteristic of Ic. 

Lemma 2.13 ([Si186], p.324) Let E be an elliptic curve in P2 given by a Weierstrass 

equation. Then in each of the following cases, there is a substitution of the form 

x = u2x' + r and y = + u2sx' -- t, with u, r, S, t E i, and u + 0 

such that E has a simplified Weierstrass fom.. 
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( I )  char k # 2 , 3  

y2 = x3 + a4x + (26, A(E)  = --16(4a: + 27ai) ,  j ( E )  = 1 7 2 8 6 ,  

(11) char k = 3 and j ( E )  # 0 

y2 = x3 + a2x2 + (26, A (E)  = --aia6, j ( E )  = -ai/a6, 

(111) char k = 3 and j ( E )  = 0 

Y 2  = x3 + a4x + a6, A ( E )  = --a:, 

( I V )  char k = 2 and j ( E )  # 0 

y 2 + x y  = x3 +a2x2+a6,  A ( E )  = a6, 

( V )  char k = 2 and j ( E )  = 0 

y2+a3y  = x3 + a 4 x + a 6 ,  A ( E )  = 0.43. 

Proof: The approach is to consider a general Weierstrass equation 

and use an admissible change of variables as given in Lemma 2.11 to transform the 

general equation into the desired form. We refer the reader to  ([Sil86], p.324) for 

more details. 

An elliptic curve E is isomorphic over il- t'o a simplified curve as given in Lemma 

2.13. We call this simplified curve the short W'eierstrass form of E .  

A natural progression to our study of elliptic curves is to  determine their is@ 

morphism classes. Let E and El be elliptic curves with base points O1? and OE/ 

respectively. An isomorphism over il- from E into El is precisely a change of variables 

of the form 
2 1 x = u  x - t r ,  
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y = u3y' + u2sx' + t, 
where u # 0, r, s, t E E ,  precisely as in Lemma 2.13. 

Lemma 2.14 ([Si186], p.50) Let k be a field :with algebraic closure E .  

(a) Two elliptic curves defined over k are isomorphic over k if and only if they have 

the same j-invariant. 

(b) Let u E E .  Then there exists an elliptic curve defined over k(u) with j-invariant 

equal to u. 

Proof: 

(a) If two elliptic curves are isomorphic, then the isomorphism is given by an ad- 

missible change of variables, which leave the j-invariant fixed. The converse is 

shown by considering two elliptic curveis in Weierstrass form having the same 

j-invariant, and finding an explicit isomorphism between the two curves of the 

desired form. We refer the reader to ([S;il86], p.50) for the details of this proof. 

(b) Let u E i and let E be the elliptic curve defined over k with Weiertrass equation 

y2 + y = x3 if u = 0, 

y2 = x3 + x if u = 1728, 
2 y +XY=~~-L!L  if u E k \ (0,1728). u , ~ - 1 7 2 8 ~  -- 210-1728 

Then j (E )  = u. 

Let E and El be elliptic curves given in short Weierstrass form. If E E E' over k,  
then the isomorphism from E to E' is given in the following list. 

o Case char k # 2,3. Let E and El be given by 

E : y2 = x3 + Ax + B and E' : (y')2 = ( x ' ) ~  + A'x' + B', 
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for some A, A', B ,  B' E k .  An isomorphism from E to E' is of the form 

( x ,  y )  = (u2x', u3y') where u E k is given by 

o Case char k = 2. If j ( E )  # 0, then let E and E' be given by 

E :  y2+xy=x3+a2x2+a6 and E ' :  (y')2+x'y'=(x')3+a;(x')2+ak. 

An isomorphism from E to E' is of the form ( x ,  y )  = (x', y' + sx') where 

If j (E)  = 0 then E and E' are of the form 

An isomorphism from E to E' is of the form ( x ,  y )  = (u2x' + s2, u3y' -t u2x' + t ) ,  

where u, s,  t  E k satisfy the equations 

0 Case char k = 3. If j ( E )  # 0, then E and E' are of the form 

2 y = x3 + a2x2 + ag. 

An isomorphism from E to E' is of the form ( x ,  y )  = (u2x', u 3 ~ ' ) ,  where u E k 
satisfies the equation u2 = a2/aL. 

If j (E)  = 0 then E and E' are of the form 

An isomorphism from E to E' is of the form (x ,  y )  = (u2x' + r, u3 ,~ ' ) ,  where 

u,  r E k satisfy the equations 

4 
u = a&/a4 and r" + a4r + a6 - u6ak = 0. 
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The set of all points in Pn on an elliptic curve form an abelian group under the 

composition law, with identity element OE. I?urthermore, there is an algorithm that 

calculates the negation and addition of points on E. 

Composition Law 2.15 ([Si186], p.55) Let 23 be an  elliptic curve defined over a field 

k with basepoint OE. Let P and Q be points on E ,  L be the straight line connecting 

P and Q (tangent line to E i f  P = Q), and R be the third point of intersection of 

L with E .  Let L' be the straight line connecting R and O E .  Then the third point of 

intersection of L' with E is defined to be P + Q. 

Addition Law 2.16 ([Si186], p.58) Let k be a field with algebraic closure k and let E 

be an elliptic curve defined over k with basepoint OE given by  a Weierstrass equation 

If P = (x, y) E ~ ( k )  then -P = (x, -y - a : ~ x  - a3). . Let P3 = Pl + P2 with P, = 

(xi, ~ i )  E E(k) .  

Otherwise, let 

- y2-Vl - y 1 x 2 - - y 2 x 1  
1 2  - 2 1  ' X2--X1 

i f  XI # x2; 

Then P3 = (x3, y3) is given by 

2.3 Drinfeld modules 

We begin with the motivation behind the definition of a Drinfeld module. Let k be a 

field and suppose f ( r c )  E k[x]. The polynomial f is additive if f (x + y) = f (x) + f (y) 
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inside the polynomial ring of two variables k[x, y] .  The following proposition gives 

the form of a,dditive polynomials depending on the characteristic of k. 

Proposition 2.17 ([Ros02], p.197) Let k be a field and f (x) E k[x] be cm additive 

polynomial. If  char k = 0; t hen  f (x) = ax for some  a E k. If char k = 1; > 0; then 

f (x) = aox + alxP + . . . + aTxPr for  some  ao, . . . , a, E k. 

For the remainder of this section we assume k is a field extension of I?,, a finite 

field with q = pn elements where p is a prime. Let A(k) denote the set of additive 

polynomials in k[x]. Then A(k) is a ring with the standard addition of polynomials 

and multiplication given by composition. Kote that the identity element of A(k) 

is x. Let T(X) = xp and let k ( ~ )  be a non-commutative ring with addition and 

multiplication as in a polynomial ring except when multiplying an element; of k by a 

power of T, we follow the rule 

7-a = UP>-. (2.3) 

Then the identity element of k ( ~ )  is TO = 1. 13y construction of k ( ~ ) ,  there is a ring 

isomorphism 8 : A(k) + k ( ~ )  defined by 

Therefore, the endomorphism ring of the additive group of k over IF, can be considered 

either as the non-commutative polynomial ring k ( ~ )  with the relation ?-a = a p ~ :  or as 

the ring of additive polynomials over k with multiplication being given by composition 

([RosO2], p.199). 

We want the IF,-algebra structure to be preserved by the endomorphism ~ i n g  A(k). 

So we assume k is a field extension of IF, and only consider additive polynomials which 

commute with the elements of IF,. That is, if f = Cai-ri we require that ap' = cu for 

every cr E IF, where ai # 0. This condition holds if and only if nli for all i such that 

ai # 0. In other words, f E ( F ) .  Therefore, we will replace the rule given in (2.3) by 

for every a E k ([RosO2], p.200). 
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Definition 2.18 ([Ros02], p.220) Let A = IFq[T] and k a field extension of IF,. A 

Drinfeld A-module over k consists of an IFq-algebra homomorphism S from A to k, 

together with an IFq-algebra homomorphism p : A --t k( r )  such that D(pa) = &(a) for 

all a E A, where pa denotes p(a) and D : k ( r )  --t k is given by 

Moreover, we require that k does not contain the image of p. We denote b:q DrinA(k) 

the set of all Drinfeld A-modules over k, the structural map S being assumed fied. 

Consider a k-algebra SZ and an IFq-algebra homomorphism S from A .to k. The 

homomorphism S makes SZ into an A-module with the relation 

a .  u = S(a)u, for all a E A, u E R, 

referred to as the standard action of A on SZ. The idea of a Drinfeld module is that 

it makes SZ into an A-module in a new way, namely, 

We denote this new A-module structure on R by 0,. The condition that k does 

not contain the image of p implies that pa(u) # S(a)u for at least one a c: A. This 

condition guarantees that the action of A on !2 is in fact different from the standard 

action of A on SZ ([Ros02], 220). 

Often S is taken to be a algebra homomorphism into a field k, however, one can 

also consider reduction modulo a prime ideal. For example, if A = IF2[T] then we 

could take k = IF2(T) and S to be the inclusion map from A into k, or take k = A/(f)  

where f = T2 + T + 1, with ( f )  being a prime ideal in A, and S the reduction map 

modulo f .  

Definition 2.19 The Carlitz module the a Drinfeld A-module given by 
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Consider the Carlitz module under the two possibilities for Ic. We have 

Unless otherwise stated, S is taken to be the map into the field Ic. 

Definition 2.20 ([Ros02], p.200) The rank of a Drinfeld A-module p over k is defined 

to be the unique positive integer r such that deg,(p,) = r degT (a) for all a E A, where 

deg,B is the highest occurring exponent of x :in B. 

We continue with the definition of a morphism between two Drinfeld modules and 

give criteria so that these modules are in fact isomorphic. 

Definition 2.21 ([Ros02], p.226) Let p, p' E DrinA(Ic). A morphism over Ic from p 

to p' is an element f of Ic(r) with the property that fp, = p: f for all a E .4. The set 

of all such morphisms is denoted by Homk(p, p'). 

Proposition 2.22 ([RosOZ], p.227) Let p, p' E DrinA(Ic). Then p and p' are iso- 

morphic over Ic if and only if there is a nonzero c E Ic such that cp, = pLc for all 

a E A. 

Proof: Suppose that f is a morphism between p and p'. By definition, f E IIomk(p, p') 

is an isomorphism if and only if g f = r0 = fg for some g E Homk(p, p'). In k(r )  this 

can only happen if f = crO and g = c-'rO for some nonzero element c E k. 

Let A = IFq[T] and Ic a field extension of IFq(T). There is only one isomorphism 

class of rank 1 Drinfeld A-modules over i .  To1 see this, we will show that ,a Drinfeld 

module p of rank 1 over Ic given in the most general form 

where u E Ic, is isomorphic over Ic to the Carlitz module CT = T + r. An isomorphism 

exists if and only if there is a c E such that c p ~  = CTc But C ~ T  = CTc if: and only 

if u = cq-'. Since c E i, p~ 2 CT. 
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Definition 2.23 Let k be a field extension cfIF,(T). Let p E DrinA(k) be a rank 2 

Drinfeld A-module given by 

where el, cp E k. Define the j-invariant of pT to be 

Proposition 2.24 ([Dorgl], 239) Let k be a ,field extension of Fq(T).  Let p and p be 

rank 2 Drinfeld A-modules given by 

with el, cp, dl: d2 E k. Then p and p are isomorphic over Ic if and only if 

Proof: By Proposition 2.22, p and p are isomorphic over Ic if and only if bp = pb for 

some b E k. But this occurs if and only if 

bel = dl bq and bcp = d2 bq2, 

whence upon solving for bq2-l in each equation yields 

As in the elliptic curves case, two Drinfeld modules of rank 2 are isomorphic if 

and only if they have the same j-invariant. Fu.rthermore, given a u E k \ (0) there is 

a Drinfeld module with j-invariant equal to u. 

Proposition 2.25 Let k be a field extension (of IFq(T) and let u E k \ (0). A rank 2 

Drinfeld module with j-invariant u is isomorphic to p~ = T + u r  + uqr2 E DrinA(k) 

over Ic. 

It is noted that the definition for the j-invariant of a rank 2 Drinfeld module can 

be generalized to a Drinfeld module of rank r [Ham03]. 



Chapter 3 

Torsion submodules and their 

Galois groups 

This chapter contains information on torsion points and division polynomials of el- 

liptic curves and Drinfeld modules. In particular, we will give the structure of field 

extensions generated by torsion points on elliptic curves and Drinfeld mod.ules. 

3.1 Elliptic Curves 

Let k be a field with algebraic closure z. Let E be an elliptic curve over a field k with 

basepoint OE. For each m E Z and P E ~ ( i ) . ,  let 

[na] : E -+ E 

be the multiplication by m homomorphis~n given by { P +.  - - + P (m terms) if m > 0, 

[m](P) = -P - P - . . . - I' (m terms) if m < 0, 

if m = 0, 

We say that a point P E E(E) is an m-torsion point if [m](P) = OE. The the set of 

m-torsion points on E is precisely the kernel of [m], and hence forms a subgroup of 

~ ( i ) ,  denoted by E[m]. 
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Now suppose that k has characteristic p. If p = 0 or if gcd(p, m) = 1 then 

Form = p e , e  E Z>l,  one has - 

E[p"] g Z/peZ for all e = 1,2,3,  . . . ([Sil86], p.89) 

Hence, if m is prime t o p  then Aut(E[m]) GL2(Z/mZ) with respect to a chosen basis 

for E[m]. It is also noted that if gcd(m, n) = 1 then using the fundamental theorem of 

finitely generated abelian groups and p-primary decomposition, E [mn] g E [m] x E[n] . 

Let E be an elliptic curve over a field k with a Weierstrass model over k and let 

be the field extension generated by the x, y-coordinates of the nontrivial m-torsion 

points in ~ ( k )  and denote its Galois group over k by GE,rn It is noted that kE,, 

and GE,rn are invariant under isomorphisms over k (hence, invariant when choosing a 

Weierstrass model). Then GE,rn acts on an m--torsion point P = (x, y) E E(E) by the 

rule 
u P = ("x," y). 

Furthermore, GE,rn acts linearly on E[m] since "(P + Q) =" P +" Q. This follows as 

the coefficients in the formulae for P + Q are in k as E is defined over k. Therefore, 

if P E E(E) is an m-torsion point then 

and a is indeed an automorphism of E[m.]. Thus, the action of GE,, on 17[m] gives 

rise to a homomorphism 

Consider a nontrivial automorphism a E GETn2. Since a acts nontrivially on at least 

one coordinate of an m-torsion point in E(&), it must be the case that p~ ,(a) acts 
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nontrivially on at least one m-torsion point in E(E). Therefore, the kernel of ( P E , ~  is 

trivial and ( P E . ~  is injective. We conclude thak ( P E , ~  identifies GE,m with a subgroup 

of GL2(Z/mZ) for m prime to char k .  

We can now make precise the notion of the Galois group of the field generated by 

the x-coordinates of torsion points on an elliptic curve. 

Definition 3.1 Let E be a n  elliptic curve over a field k .  T h e n  we define 

to  be the field extension generated by the x-coordinates of the nontrivial m- tors ion 

points of E and we denote its Galois group over k by GL.,. 

We have seen that for m prime to char k ,  GE,m is isomorphic to a subgroup of 

GL2(Z/mZ). Using this information, we can give the structure of GL.,. 

Lemma 3.2 Let E be a n  elliptic curve over a field k .  Then,  x ( P )  = x(S) if and only 

i f  P = kS for every P, S E ~ ( i ) .  

Proof: Let E be given by the Weierstrass equation 

and suppose that P, S E ~ ( i )  and x (P )  = x(S) = a .  Suppose that P = ( a ,  b) and 

S = ( a ,  c), then 

b2 + slab + a3b = a3 + a2a" + a4a + a6 and (3.1) 

c2 + a lac  + a3c = a3 + a2a2 + a4a + a6. 

Subtracting (3.2) from (3.1) gives 

Hence, b = c or b = -c - a l a  - a3 and P = &S by Lemma 2.16. 
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Lemma 3.3 Let E be a n  elliptic curve over a field k with characteristic p. If m 
is  prime to p ,  t h e n  the homomorphism +E,m : GE,, -' GL2(Z/mZ) factors t o  a 

homomorphism 

+k., : Gk,, -' GL2(.2E/mZ)/ {* I ) .  

I n  particular, $ ~ , m  identifies G',., with a sub!youp of  G L 2 ( Z / m Z ) / { f  1 ) .  

Proof: Suppose that g E GE,, and qjE,,(g) = *1,  then g(P)  = *P for all P E 

~ [ m ]  (i). From Lemma 3.2, g(P) = f P if and only if x ( P )  = x(g(P)) .  Hence g fixes 

k;,,. Therefore, +E,m(g)  = *1 if and only if g fixes k;,,. The result then follows 

from the first isomorphism theorem. 

Suppose that char k # 2,3 and consider an elliptic curve E over k. Fro:m Lemma 

2.13, E has a short Weierstrass form given by 

where A, B E k. Define division polynomials $, E k[x,  y] of E inductively as follows: 

2 2 
4Ywm = $rn+~.ri)m,-l -- $m-2$,+1- 

Then $, (for m odd) and (2y)- '$,  (for m even) are polynomials in k[x].  Furthermore, 
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for every point P E E(L) ([Si186], p.105). Therefore, the m-torsion points in ~ ( k )  
are precisely the roots of the division polynomial $,(x). We then get that GL,, is 

equal to the Galois group of $, over k .  Since we are interested in cubic and quartic 

polynomials, we must check for which values of m does $, have a cubic or quartic 

factor over k .  

If n ,  m E iZ and n divides m then it must be the case that $, divides $, since 

n-torsion points are also m-torsion points. For this reason, we introduce the concept 

of new torsion points. 

Definition 3.4 Let E be an elliptic curve defined over k and let m E Z .  Ti'2en denote 

the set of points of order exactly m by E[m]*. 

Lemma 3.5 Let E be an elliptic curve defined over a field k ,  and let m E Z,o, with 

m prime to char k ,  have prime factomzation pi1 pFr . Then 

Proof: Let f : iZ + iZ be a function defined by 

We prove the result by considering three cases. 

(i) Let m = pr, where p is prime. The only proper divisors of pr are pr-l, . . . , p, 1. 

Futherrnore, E p ]  c E[p'-'] for all 2 < r. Therefore, 

which completes this case. 

(ii) Let m = p1 . - . p,, where pl,  . . . , p, are distinct primes. Then using the inclusion- 

exclusion principle, we have 
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which completes this case. 

(iii) Let m = ptl - - -pFr, where pl, . . . ,pT are distinct primes. We note that if m = 

pTs, where p is a prime such that p j s, then 

Therefore, we have 

2(ei-l)  - .,,:(er-l) f (m> = PI  f (PI - . PT).  

The result then follows from the previous case. 

Suppose m > 3, then by Lemma 3.5 there are at least 12 new points of order m. 

Therefore, there are at least 6 new x-coordinates that correspond to the new points 

of order m. This implies that upon dividing TI, by $,, for all n dividing m, we are 

left with a polynomial of degree at least 6. Since we are investigating polynomials of 

degree at most 4, we restrict the torsion points of interest to be of order 2 and 3. 

We would like to limit our study to isomorphism classes of elliptic curves. However, 

to do so, we must check that the field extension generated by the x-coordinates of 

the m-torsion points on an elliptic curve is invariant under isomorphisms. In the case 

where the j-invariant is not 0 or 1728, we can say more. 

Corollary 3.6 Let k be a field with algebraic closure k and let El, E2 be two elliptic 

curves over k given i n  short Weierstrass form with j-invariants not equal to 0 or 

1728. Suppose 9 : El + E2 is  an  isomorphism over k. Then x($(P)) = crx(P) for 

all P E E,(E), where a E k \ (0). 
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Proof: If char k = 2,3 then the result follows directly from the proof of Lemma 

2.14(a). Suppose char k + 2,3. Then using the same notation as in the proof of 

Lemma 2.14(a), El and E2 are given by 

El : y2 = x3 + Ax + B and E2 : ( Y ' ) ~  = ( x ' ) ~  + A'x' + 5'' 

for some A, A', B, B' E k. An isomorphism from E to E' that preserves the short 

Weierstrass form is given by (x, y) = (u2x', u3.9') where u E i satisfies u6 = BIB' and 

u4 = AIA'. Clearly u2 E k! which completes t.he proof. 

By Corollary 3.6, if two elliptic curves E and E" are isomorphic over with j-invariants 

not equal to 0 or 1728, then Gk,m Gk,,m, as desired. We refer the rea,der to the 

appendix for the cases where the j-invariant is 0 or 1728. 

Let E be an elliptic curve over k with j-invariant u. Then the x-coordinates of 

the non-trivial 2 and 3-torsion points on E are precisely the respective roots of 

144 4 
$2(x) = 4x3 + x2 - -x - and 

U-1728 U-1728' 

3.2 Drinfeld modules 

Let A = IF,[T] and let k be an extension of F,. If p E DrinA(k), then we say that a 

point A E i is an a-torsion point of p if p,(A;l = 0, where a E A. The set of torsion 

points of p is a A-submodule of l, given by 

A, = {A E I p,(A) = 0 for some nonzero a E A). 

By fixing an a E A, we define the submodule .A,[a] of A, to be 

The field extension of k generated by the points in A,[a] is denoted by k,,,, and its 

Galois group over k is denoted by G,,,. 
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Proposition 3.7 ([Ros02], p.221) Let p E DrinA(k) be a Dn'nfeld A-module of rank 

r over k. Then 

Ap[a] E (A/aA)' 

for all a $ ker 6. 

The action of GP,, on A,[a] gives rise to a homomorphism 

Consider a nontrivial automorphism a E G,,,,. Since a acts nontrivially on at least 

one a-torsion point in A,[a], it must be the case that p,,,(a) acts nontrivially on at 

least one a-torsion point in A,[a]. Therefore, the kernel of q,,, is trivial and p,,, is 

injective. We conclude that p,,, identifies G,,, with a subgroup of GL,(A/aA) for 

a $ ker 6. 

In the elliptic curve case, we considered the field extensions generated by the x- 

coordinates of torsion points. For Drinfeld nnodules, the analogue to x-coordinates 

are the q - 1 power of torsion points. 

Definition 3.8 Let p E DrinA(k) and denote the algebraic closure of k by i .  Define 

the set A,[a]' to be 

A,[a]' = {Aq-I E E I pa(A) = 0). 

We call the points in A,[a]' x-coordinates of A,[a]. 

We denote the field extensions of k generated by the points in A,[a.]' by k;,,. 

Furthermore, we denote the Galois group of k;,, over k by Gb,,. What then is the 

structure of Gb,,? 

Lemma 3.9 Let p be a Drinfeld A-module of rank r over k and let a E A. Then the 

homomorphism #,, : G , ,  + GL,(A/aA) factors to a homomorphism #b,,, : Gb,, + 

GL,(A/aA)/pq-l PGL,(A/aA), where pq-]. is the group of q - 1 roots of unity in 

A. In particular, #,, identifies G;,, with a subgroup of PGL,(A/aA). 
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Proof: Suppose that g E G,,, and 4,,(g:1 = ,L? E ,uq-l, then g(b) = ,L?b for all 

b E A,[a]. However, g(b) = ,L?b if and only if g(bq-l) = bq-l. Hence g fixes li,,,. 
Therefore, 4 , , ( g )  = ,L? if and only if g fixes k;,,. The result then follows from the first 

isomorphism theorem. 

Definition 3.10 Let a E A and p E DrinA(k) be given by 

where c l ,  . . . , cn E k .  Define the a-division polynomial of p to be 

Remark 3.11 Since p is an IF,-algebra homomorphism taking 1 to  rO, we have pa = 

 TO for all a E IF,. Also, pa, = papa = ap, for all a E I F ,  and a E A so that 

A,[aa] = &[a].  Therefore, A,[a] is invariant when a is replaced by non-zero scalar 
multiples of itself. 

Since q - 1 divides every exponent of x in $,, we can consider $, as a polynomial in 

xQ-I. We denote ?.+ha considered as a polynomial in x Q - I  by $h. Using Definition 2.20, 

$, has degree q' (a) - 1 and $: has degree q' + qr ( a ) - 2  + . - + q + go. 

Given p E DrinA(k) and a E A, we are interested in calculating G,,,, and Gb., 

using the division polynomials $, and $; respectively. As we are equipped to deal 

with cubic and quartic polynomials, we will investigate Drinfeld modules p E: DrinA(k) 

and elements a E A that give rise to cubic and quartic division polynomials. That is, 

we consider a,ll values for q, r: and degT ( a )  such that 

Suppose q' (a)  - 1 5 4. If q = 2 then the possible values for r are 1 and 2 .  If r = 1 

then the value of degT(a) can be 1 or 2, otherwise the value of degT(a) must be 1. 
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If q  = 3,5 then T = degT(a) = 1. If q  > 5 t:hen the inequality does not hold. Now 

suppose 
q ' d e g ~  (a)-1 + q' d e g ~  (a)-2 .+ . . + q + q O  5 4. 

First note that if T = degT(a) = 1 then the inequality holds for any value of q. 

Suppose TdegT(a) > 1. If q  = 2 then the possible values of T are 1 and 2. If T = 1 

then the value of degT(a) must be 2. If T = 2 then degT(a) = 1. If q  = 3 then T = 1 

and degT(a) = 2, or T = 2 and degT(a) = 1. If q  > 4, the inequality does not hold. 

In addition to studying division polynomials of degree less than 5, we can study the 

(T + a)-division polynomial for a rank 1 Drinfeld module due to its sptxial form, 

namely, $T+o: = xQ-' + (T + a) /u ,  where P T + ~  = UT + T + a .  The values for q, T, and 

degT (a) given above are shown in Table 3.1. 

Table 3.1: Drinfeld modules that 

Rank of the 
Drinfeld module 

; give rise tlo polynomials of degree at most four r-' T7 a E A = F,[T] 
al, a 2  E: IF, 

As seen in the proof of Proposition 3.7, a Drinfeld module p E DmnA(k) acting on 

a E A is of the form 
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where cl, . . . , cn E k and deg,(pa) = n. Applying pa to x gives the following polyne 

mial in k[x] 

Therefore, A,[a] = {A E I; I $,(A) = 0} u {0} and GP,, is equal to the Galois group of 

$,(x) over k. Similarly, A,[a]' = {A'-' E I +,(A) = 0) U {O} and G b ,  is equal to the 

Galois group of $; over k. 

We would like to limit our study to isomorphism classes of Drinfeld modules. As 

seen in Table 3.1, we are only studying Gb,,. However, to do so, we must check that 

the field extension generated by the x-coordinates of the a-torsion points on, a Drinfeld 

module is invariant under isomorphisms. 

Lemma 3.12 Let k be a field with an algebraic closure Ic and let p, 8 be two Drinfeld 

A-modules over k. Suppose p 2 8 over h. Then = k;,,. 

Proof: Let pa = ~ , r "+c , -~ r " -~  +. . -+c l r+a  and 8, = dnrn+dn-lrn-l +- ,  .+dlr+a. 

Since p E 8, there exists a b E Ic such that bp = 8b. Equating the c0efficien.t~ of r, we 

get 
c. 2 -  - d.bqz-l 2 for 1 5  i 5 n. 

Let f (x) be the a-division polynomial for p and g(x) be the a-division polynomial for 

8. Then it is easily checked that g(x) = bqn-l f (xlb). Therefore, if Aq-I E .4,[a]' then 

f (A)  = 0 and g(bA) = 0. So bq-lA9-l E AO[a]'. It remains to show that bq-I E k. But 

this is clear, since cl = dlbq-l and cl. dl E k. Since the elements of A,[a]' and Ae[a]' 

differ by scalar multiples in k, we have k;,, = k;,,. 

We now compute the division polynomials of rank 1 and 2 Drinfeld moclules using 

the values listed in Table 3.1. First, let p be a rank 1 Drinfeld A-module over k. 

From Lemma 3.12, Gb,, is invariant under isomorphism classes. Since there is only 
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one isomorphism class of rank 1 Drinfeld A-modules, it suffices to only consider the 

Carlitz module given by p~ = T + 7. If degT(a)  = 1 then a = T + a, and pa and 

are given by 

p a = a + r  and $ l r : , ( x ) = x + ( T + q ) .  

If a has degree 2 in T, then a = T2 + alT + a2 and 

Next, let p be a rank 2 Drinfeld module with j-invariant u. Then p gives rise to a 

cubic or quartic division polynomial precisely when p acts on T + al, where a1 E IF,, 

and q is 2 or 3, yielding 

3.3 Galois groups 

This section is concerned with finding criteria to determine the Galois group of a 

polynomial. Let f be a polynomial of degree n over a field k with distinct roots and 

with Galois group G over k. As seen in the :previous section, G is isomo:rphic to a 

subgroup of S, and if f is irreducible then G is transitive. 

The discriminant of f is used to determine if G is isomorphic to a subgroup of 

A, (the group of even permutations). The general definition of a discriminant is used 

for fields of characteristic not equal to two, whereas in fields of characteristic 2 the 

Berlekamp discriminant is used. 

Definition 3.13 ([Gar86], p.111) Let f be a polynomial of degree n over afield k .  Let 

a l ,  ..., a, be the roots o f f  in a splitting field extension of k .  Then  the discriminant 

o f f ,  denoted A, is  defined as b2 where 
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T h e  discriminant o f  a quadratic polynomial f ( x )  = ax2 + bx + c over a field k w i th  

char k # 2 is b2 - 4ac. T o  ease t he  computation o f  cubic and quartic polyi~omials, we 

first make a linear transformation t o  eliminate the  trace term o f  t he  polynomial. T h e  

general form o f  a monic cubic polynomial over a field k is x3 + a2x2  + a l x  -t ao, where 

ao, a l ,  a2 E k .  I f  char k # 3 t h e n  replacing x wi th  x - a2 /3  yields x3 + px + q where 

1 2 3  1 
p = a1 - -a: and q = a0 + -a2 - -a2al. 3 27 3 

Similarly, the  general form o f  a monic quartic: polynomial over a field k is .c4 + a3x3 + 
a2x2 + a l x  + ao, where ao, a l ,  an, a3 E k .  I f  char k # 2 then  replacing x wit;h x - a 2 / 4  

yields x4  + px2 + qx + r where 

Lemma 3.14 ([Gar86],  p.113) Let k be a field with char k # 2 and let f ( x )  = x3  + 
px + q be a polynomial i n  k [ x ] .  Then  the discriminant o f f  is 

Lemma 3.15 ([Gar86],  p.113) Let k be a field with char k # 2 and let f ( x )  = x4  + 
Px2  + qx + r be a polynomial i n  k [ x ] .  Then the discriminant o f f  is 

Lemma 3.16 ([Gar86],  p.111) Let k be a field of characteristic not 2 with algebraic 

closure k .  S,uppose that f E k [ x ]  is  separable with n distinct roots i n  k .  Then the 

Galois group o f f  over k is isomorphic to a subgroup of An if and only if (5 E k .  

Proof: Recall that  
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If t is a transposition of S,, then t reverses the order of exactly one of th.e terms in 

the above product and t(b) = 4. Therefore, if a E Sn then 

where E, = 1 if a is an even permutation and E, = -1 if a is an odd pe:rmutation. 

Let G be the Galois group of f over k and (9 an injective map from G into Sn. If 

@(G) G A,, then g(b) = b for all g E @(G) so that b is in the fixed field of G and 

b E k. Suppose that 6 E k, then g(b) = S for all g E @(G) so that @(g) must be an 

even permutation and @(G) G A,. 

In a field of characteristic 2, the Berlekamp discriminant is used to test if the Galois 

group of a polynomial is isomorphic to a subgroup of the group of even permutations. 

Definition 3.17 ([Ber76], p.315) Let f be a monic polynomial of degree n over a field 

k with n distinct roots 0 1 ,  a;?, . . ., a, in a splitting field extension of k. Define the 

Berlekamp discriminant to be 

In a field of characteristic 2, the Berleka,mp discriminant of a polynomial f is 

increased by one whenever any adjacent pair (of roots of f is transposed. To see this, 

upon labeling the roots of f ,  consider two consecutive root indices a and b and write 

p as a sum of five summands: 

Let a be the transposition of the roots a, and ab. Then it is clear that P" + /3 = 1, 

hence pU = ,B+ 1. We conclude that /3 is invariant under the alternating group acting 

on the set of roots of f when k is a field of characteristic 2, but it is not invariant 

under the symmetric group. 
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Lemma 3.18 ([Ber76], p.315) Let f ( x )  be a monic polynomial of degree n over a field 

k of characteristic 2 with n distinct roots a l ,  a2, . . ., an in a splitting field extension 

of k .  Let G be the Galois group o f f  over k ,  and @ be a monomorphism from G into 

S,. Define 
aiaj 

b (x )  = x2 + x + C, where C = 
i<j 

a? + a:. 

Then b ( x )  E k[x]. Furthermore @ ( G )  2 An if and only if b (x)  has a root i : ~  k .  

Proof: Since C is a symmetric function, C E k and b ( x )  E k[x] .  Then b(P) = 0 where 

,8 is the Berlekamp discriminant of f .  Therefore, b(x )  has a root in k if and only if 

,8 E k.  From the above discussion, ,8 E k if and only if @ ( G )  2 A,. 

Lemma 3.19 Let k be a field of characteristic 2 and f E k [ x ] .  Using Magma 

[BCP97], we compute C when f is a quadratic, cubic, and quartic polynonzial. 

f ( x )  = x2 + a x  + b, 

C = b/a2, 

f ( x )  = x3 + ax2 + bx + c, 
a3c + abc + b3 + c2 

C = 
a2b2 + c2 7 

f ( x )  = x4 + ax3 + bx" cx + d, 

a4dz + a3bcd + a3c3 + a2b3d + abc3 + b3c2 + c4 
C = 

a4d2 + u2b2c2 + c4 

A result given in [Schgl] shows that a cubic polynomial over the rational numbers 

has 3 linear factors over Q if and only if it has a rational root and its discriminant is 

a square. This result can be generalized to all fields of all characteristics using Galois 

theory. 

Theorem 3.20 Let f be a polynomial of degree n over a field k with n distinct roots 

in  i. Then f splits over k if and only if its discriminant is a square in  k (2nd f has 
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n - 2 roots in k. If char k = 2, use the Berlekamp discriminant, othemise use the 

standard discriminant. 

Proof: Let G be the Galois group of f over k. Then f splits over k if and only if 

G = {e), or equivalently, G is isomorphic to i3 subgroup of A, n C2. By Proposition 

3.16, G is isomorphic to a subgroup of A, if' and only if the discriminant of f is a 

square. Furthermore, G is isomorphic to a subgroup of C2 if and only if f has n - 2 

roots in k. 

To further determine the Galois group of a polynomial, we express the polynomial 

as a product of irreducible factors. The first step in this process is to test i:f the poly- 

nomial in question has a linear factor. In the cubic case, one method of determining 

if the polynomial has a linear factor is to use the formulas for its roots. 

Theorem 3.21 ([Gar86], p.115) Let k be a field with char k # 2,3. Suppose f (x) = 

x3 + px + q E k[x] has discriminant A, and that a l ,  0 2 ,  and a3 are the roots o f f  in 

some splitting field extension K 1 k. Then 

where 
-27 3 -27 3 p3 = -q+-dT%;r3 == -4- 

2 2 2 

and w is a third root of unity. 

Essentially, one tries to solve f by radicals using radical extensions. Consider the 

extension k(6), where 62 = A.  Since [Klk(6)] = 3, we have that r ( K  lk((5)) A3. 
This implies that our next extension should be generated by a cube root of an element 

from k or k(6). The proof proceeds by choosing an appropriate 4 E K(w), where w is 
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a third root of unity, such that k(P3))k is a quadratic extension and the three roots 

of f can be expressed in terms of p. 

Given a cubic polynomial f over k, we can use its discriminant and the formulas for 

its roots to determine its Galois group over k. If the cubic polynomial does not have a 

linear factor then the Galois group is isomorphic to A3 if and only if its discriminant is 

a square, otherwise it is isomorphic to S3. If the cubic polynomial does have a linear 

factor, then we use the result given in Proposition 3.20 to determine if the Galois 

group is trivial or isomorphic to a conjugate of ((1 2)). 

We continue with determining the Galojs groups of quartic polyno~nials. By 
Lemma 2.5 and Theorem 2.4, the Galois group of an irreducible separable polynomial 

of degree n over a field k is isomorphic to a transitive subgroup of Sn. The transi- 

tive subgroups of Sn are known for n 5 31 [C:oh93]. For the investigation of quartic 

polynomials, we begin by listing the transitive subgroups of S4. 

Lemma 3.22 ([Esc97], p.264) The transitive subgroups of S4 are comprised of S4, 

A4, three conjugate subgroups isomorphic to D4, one subgroup isomorphic to & (the 

Klein Viergruppe of order 4) ,  and three conjugate subgroups isomorphic to C4. 

Let S be a set of four distinct ele~nents and S4 the permutation group acting on 

S.  Suppose that H is a transitive subgroup of S4. The order of H is a rnultiple of 

4. Hence, the possible orders of H are 4, 8, 1'2, and 24. If the order of H is 24 then 

H = S4 and if the order of H is 12 then H = 144. If the order of H is 8 then H is one 

of the three Sylow 2-subgroups of S4 isomorphic to D4. These three group:; are 

H2 = { e ,  (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)): 

H3 = { e ,  (14), (23), (12)(34), (13)(24), (14)(23), (1243), (1342)). 

If the order of H is 4 then H must be a subgroup of H1, H2, or H3. The :;ubgroups 

of H1, H2, and H3 of order 4 are isomorphic to the Klein Viergruppe 
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and the three mutually conjugate subgroups of S4 isomorphic to C4 are 

J2 = { e ,  (1234), (13)(24), (1432))l 

J3 = { e .  (1243), (14)(23), (1342)). 

Remark 3.23 I f f  is a quartic polynomial over a field k ,  t hen  either f is  irreducible 

and the Galois group o f f  over k i s  isomorphzc t o  a transitive subgroup of S4, or  f is  

reducible and the  Galois group o f f  either trivial, o r  isomorphic t o  a subgroup of S3 

o r  a conjugate of ((1 2)) x ((3 4)). 

The following two lemmas are used to test if @(G) E H1 D4 and if @(G) G J1 

C4 respectively. The Galois group of an irred.ucible quartic can then be d.etermined 

from the results of these tests. 

Lemma 3.24 ([Esc97], p.267) Let k be a field with algebraic closure i. Suppose 

f (x) = x4 + a3x3 + a2x2 + alx + a0 E k [ x ]  has  distinct roots in and set 

Let G be the Galois group o f f  over k and @ be a monomorphism from (2 in to  S4. 

T h e n  

@(G) H1 if and only if a1a2 $- a3a4 E k ,  

@(G) E H2 i f  and only if ala3 $. a 2 a 4  E k ,  

@(G) E H3 if and only if ala4 + a 2 0 3  E k. 

Proof: First we note that R(x)  has distinct roots in i. This can be seen by :supposing 

the contrary, that is ala2 + a 3 0 4  = 0 1 0 3  + 0204. Factoring then yields (a l  -- 0 4 )  ( a2  - 

a3) = 0 and we get the contradiction that either crl = a4 or a2 = 03. 

Without loss of generality, we will prove the result for the first case, that is @(G) E 
H1 if and only if ala2 + a3a4 E k. It is noted that for every g E @(G), g(alcr2 + a3a4) 
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is either a102 + 0 3 0 4 ,  a l a ~  + a 2 ~ ~ 4 ,  or a1a4 + a2~3 .  Furthermore, the fixed group 

of ala2 + a3a4 as a polynomial is precisely H1. Suppose that @(G) LI H1, then 

g(ala2 + 0 3 ~ 4 )  = 0 1 ~ x 2  + a3a4 for every g E @ (G) and ala2 + a3a4 E k as desired. 

Conversely, suppose that @(G) g HI. Then there exists some g E @(G) such that 

g 4 HI. Since g 4 HI, g(ala2 + ~ ~ 3 ~ x 4 )  # a1a2 + a3a4 and g(alcu2 + cu3a4) is one of the 

other two roots of R. Since the roots of R are distinct, g does not fix ala2 + ~ 3 ~ 4 .  

Consequently, ala2 + a3a4 $ k. 

Remark 3.25 The polynomial R (x )  as given in Lemma 3.24 is in k[x],  since expand- 

ing and simplifying R gives 

Lemma 3.26 ([Esc97], p.268) Let k,  k, f and G be as in Lemma 3.24. Sa;ppose that 

@(G) 2 HI 2 D4 and set 

Suppose C ( x )  has distinct roots. Then @(G) 5; J1 2 C4 if and only if ale$ + a3c$ + 
a2a; + 04a: E k. 

Proof: Let a = ala: + as@; + a2a42 + a4a: and b = a& + a3a: + a1a; -t a&. It 

is noted that for every g E @(G) C H1, g ( a )  is either a or b. Furthermore., the fixed 

group of a as a polynomial is precisely J1. Suppose @(G) J1, then g ( a )  = a for 

every g E @(G).  Therefore, a E k as desired. Conversely, suppose that @(G) g J1. 

Then there exists some g E @(G) such that g 6 J1. Since g ( a )  is a conjugate of a and 

g 4 J1, g ( a )  = b. Since the roots of C are distinct, g ( a )  # a and therefore 4 k. 

Remark 3.27 Let t denote the root of R(x )  in k from Lemma 3.24 and C ( x )  be as 

given in Lemma 3.26. Then C(x )  E k[x] and is given b y  
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3.4 The structure of PGL2(@/mZ) 

Proposition 3.28 PGL2(Z/2Z) 2 S3. 

Proof: Let G = GL2(Z/2Z)/{&1) = GL2(:E/2Z). The order of G is 6. Suppose 

G contains an element of order 6. Then G is cyclic, hence abelian which gives a 

contradiction. Furthermore, G has one cyclic subgroup of order 3 and three cyclic 

subgroups of order 2. Let H =< a > be the cyclic subgroup of G of order 3 and T E G 

be an element of order 2. Then G = H LI TH, where H contains all elements of order 

dividing 3 and T H  is the set of all elements in G of order 2. Then (rai:~(rai) = e 

and we have 70% = a-'. In particular, T-'UT = a-'. Hence, G S D3 S3 which 

completes the proof. 

Proposition 3.29 PGL2(Z/3Z) r S4. 

Proof: Let G = PGL2(Z/3Z). Consider the map 19 given by the action of G on 

F = P1(Z/3Z) = {[1,0], 11, -11, [I,  11, [O, 11). Then 19 : G + C F  E S4 is injective, 

since if g E G fixes every element of F then g must be the identity. In addition, 19 is 

an isomorphism since (GI = IS41 = 24. Therefore, G E S4 as desired. 

Theorem 3.30 ([Lan76], p.185) Let F be afield of characteristic 1. Let G be a f in i t e  

subgroup of GL2(F),  of order prime t o  1. Let H be the image of G i n  PGL2(F).  T h e n  

we have the following cases. 

( i )  H is  cyclic. 
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(ii) H is dihedral. 

(iii) H is isomorphic to A4, S4, or A5. 

Theorem 3.31 ([Lan76), p.183) Let F be a field of characteristic 1. Let G be a finite 

subgroup of GL2(F), of order divisible by I .  Then either G is contained in a Borel 

subgroup (the group of upper triangular matrices), or G contains SL2 (F) .  

Using Theorem's 3.30 and 3.31, we can give the correspondence between subgroups 

of S4 and PGL2(Z/3Z). Let H be a subgroup of PGL2(Z/3Z). If [HI is prime to 3 

then H is either cyclic or dihedral. If H is cyclic, then H is isomorphic to C2 or C4, 

which in turn is isomorphic to a conjugate of ((1 2)) or ((1 3 2 4)). If H is dihedral, 

then H is isomorphic to D4 or D2, which in turn is isomorphic to a conjugate of H I  

or V4 as given in Lemma 3.22, or ((1 2)) x ((3 4)). 

Let B a Borel subgroup of GL2(Z/3Z) and consider B as a subgroup GL2(Z/3Z)/{f l), 

denoted by B. Then 1 B I  = 6 and B is isomorphic to S3. Let S = SL2(Z/3Z)/{f1). 

Then IS1 = 12 and S is isomorphic to A4. Therefore, if H is a subgroup of G of order 

divisible by 3: then H is isomorphic to either #a subgroup of S3, or a group containing 

A4. 



Chapter 4 

Elliptic curves 

In this chapter, we calculate the Galois groups of fields generated by the x-coordinates 

of torsion points on an elliptic curve. We refer the reader to Section 3.1 for background 

information on torsion points on elliptic curves relevant to this section. Let k be a 

field of characteristic p and let E be an elliptic curve over k with j-in1rarian.t u,. From 

Lemma 3.3, for m prime to p? G',,, is isomorphic to a subgroup of GL2(Z/rnZ)/{dZ1}. 

We wish to find necessary and sufficient algebraic conditions on u, that determine the 

containment of G',., in subgroups of GL2(Z/'mZ)/{dZ1}. 

In what follows, we categorize GL,, for m = 2,3 based on algebraic conditions on 

u,. In several cases, we parametrize curves of genus 0 with a k-rational point in order 

to get algebraic conditions on u,. These parametrizations are guaranteed to exist by 

Theorem 2.9. 

4.1 Galois group of 2-torsion submodule 

Let E be an elliptic curve over a field k. Suppose char k is 0 or prime to 2. From 

Proposition 3.3, GL,2 is isomorphic to a subgroup of G = GL2(Z/2Z)/{f 1) and from 

Proposition 3.28, G S3. Hence, Gk,2 is isomorphic to a subgroup of S:.. In what 

follows, we determine the structure of G',., by considering two cases; char k = 2, 

and char k # 2. In the case that char k = 2, we will see that if k is perfect then 
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Remark 4.1 Suppose E is an elliptic curve over a field k of charactenstic 2 with 

j-invariant equal to uo E k \ ( 0 ) .  Then up to isomorphism over i! E is o,f the form 

with 2-torsion division polynomial 

The Galois group of $12 over k is trivial and the y-coordinate corresponding to x = 0 is 

1 / 6 ,  hence Gk., is trivial and GE.2 is isomorphic to Z / 2 Z  i f  6 4 k ,  otherwise 

it is trivial. Furthermore, i f  k is a perfect field: then GL., = GE,2 and E is  ordinary. 

Theorem 4.2 Let k be a field with char k + 2 and let E be an  elliptic cu.rve over k 

with j-invariant uo E k \ (0 ,1728) .  Then 

(i)  G& is trivial if and only i f  

for some to E k;  

(ii) GE., is isomorphic to a subgroup of C2 :if and only if 

for some to E k ;  

(iii) GL2 is isomorphic to a subgroup of Ag i f  and only if 

for some to E k ;  

This is  the Legendre family of elliptic curves with j-invariant uo ([Si186], p.54). 
The expression uo  = ( t , ~ - 2 5 6 ) ~ / t ?  relates to the complex analytic parametrization of the modular 

curve X o ( 2 )  (Bir-721. 
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(iv) otherwise, GL,2 S3. 

Proof of Theorem 4.2 

From Lemma 2.14, E is isomorphic over Ic to an elliptic curve E' with Weierstrass 

equation 

Then from Corollary 3.6, GL,, GL,,,. Therefore, it suffices to only consider the 

family of elliptic curves given by E'. Let f (LC) E k[x] be the division polynomial of 

the 2-torsion points in ~ ' ( i ) .  Then f is given by 

3 2 144 f (x) = $2 = 42 + Z - -- x - 
4 

u,---1728 u,-1728' 

and the x-coordinates of the 2-torsion points in ~ ' ( i )  are precisely the roots of f .  

Furthermore, GL,, is equal to  the Galois group of f over k, denoted b:y G. The 

discriminant of f is 
16u; 

(uO - 172855' 

which is never equal to 0 since u, # 0. Therefore, the roots of f are distinct. Let <P be 

a choice of monomorphism G - S3 after labeling the roots of f .  Then it suffices to 

categorize @(G) based on algebraic conditions on u,. We begin by giving constraints 

on u, that determine the factorization o f f  over k. 

Proposition 4.3 Let k be a field with char k # 2 and u, E k \ (0,17281, and let f 

be as given in (4.1). Then f has a linear factor over k if and only if 

(to + 256)3 u, = -- 
t ," 

for some to E k. 

Proof: If u, = (to + 256)3/t; for some to E k then f factors as 

Conversely, suppose f has a linear factor over k. Then 



CHAPTER 4. ELLIPTIC CURVES 

for some cr E k. Solving for uo in terms of cr gives 

Then there is a Mobius transformation, namely to = 2048cr/(4cr + I) ,  such that 

Proposition 4.4 Let k be a field with char k: # 2 and uo E k \ {0,1728), and let f 

be as given in (4.1). Then f has three linear jactors over k if and only if 

for some to E k. 

Proof: If 

for some to E k, then f factors as 

Conversely, suppose f has three linear factors over k. By Proposition 4.3, there 

exists some s,, E k such that 
(so + f!56)3 uo = -- 

s: 

and the quadratic term of f in terms of so is 

Then the discriminant of g over k, namely 
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is a square in k. Therefore, there exists some no E k such that 

n: = so + 64, and 

(n: + 1 9 2 ) ~  uo = --. ,c; 
0 

Furthermore, there is a Mobius transformation, namely to = (no - 8)/(no + 8): such 

that 

Let us now return to  the proof of Theorem 4.2. Clearly, @(G) = {e) if and only 

if f has three linear factors over k. Part (i) t:hen follows from Proposition 4.4. @(G) 

is contained in a conjugate of ((1 2)) if and o:nly if f has a linear factor over k. Part 

(ii) then follows from Proposition 4.3. The discriminant of f ,  namely 

1621; 
(u, - 17287' 

is a square in k if and only if u, = t; + 1728 for some to E k. Part (iii) then follows 

directly from Lemma 3.16. Part (iv) is clear since the only proper nontrivial subgroups 

of S3 are A3 and conjugates of ((1 2)). 

4.2 Galois group of 3-torsion submodule 

Let E be an elliptic curve over a field k. Suppose char k is 0 or prime to 3. From 

Proposition 3.3, GkI3 is isomorphic to a subgroup of G = G L 2 ( Z / 3 ~ ) / { 1 1 )  = 

PGL2(Z/3Z) and from Proposition 3.29, G E Sq. Hence, Gb.3 is isomorphic to a 

subgroup of S4. As we have seen in Section ;3.4, the subgroups of PGL2(Z/3Z) are 

isomorphic to C2, C4, D2, D4, S3, A4, S4, or a Bore1 subgroup. In what follows, we 

determine Gk,3 by considering two cases; char k = 3, and char k f- 3. 

Remark 4.5 Suppose E is an elliptic curve over a field k of characteristic 3 with 

j-invariant equal to u, E k \ (0). Then up to isomorphism over x, E is of the form 
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with 3-torsion division polynomial 

1 $,, = x3 - -. 
210 

The Galois group of $,, over k  is trivial. Suppose k  is a perfect field, then the 3-torsion 

points on E are ( l / uo ,  O ) ,  ( l / uo ,  2/21,)> and (3E. Therefore, E[3] Z/3Zl and E is 

ordinary. 

Theorem 4.6 Let k  be a field with char k  # 3 and let E be an elliptic curve over k  

with j-invariant uo E k  \ (0,1728). Then 

(i) G', , is trivial if and only if G',., is isomorphic to a subgroup of C2 and x2+x+ 1 

has a root in k ;  

(ii) G', , is isomorphic to a subgroup of C2 if and only if 

for some to E k ;  

(iii) G', , is isomorphic to a subgroup of A3 if and only if x2 + x + 1 has c! root in k  

and 

for some to E k ;  

(iv) G', , is isomorphic to a subgroup of S3 i,f and only if 

27to(to $. 8 ) ,  
21, = 

(to - 
PI 

for some to E k ;  

(v) G', , is isomorphic to a subgroup of Z/2Z x Z/2Z  if and only if 

21, = - 
(to + 9)3(t,, - 3), 

t; 
[D2 I 

for some to E k;  
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(v i )  G k 3  is  isomorphic t o  a subgroup of  C4 i f  and only i f  char k = 2 and 

for  some to E k ,  o r  char k f 2 and u, = t; for some  to E k and there exists 

some  v, E k such that  -3($ + 12v0 + 144) is a square i n  k; 

(vi i)  G k 3  is  isomorphic t o  a subgroup of V4 i f  and only if uo = t; for  s c m e  to E k 

and x2 + x + 1 has a root in k; 

1 0 2 1  

(viii) G', , i s  isomorphic t o  a subgroup of D4 i f  and only i f  uo = t; for some to E k; 

( ix)  G', is isomorphic t o  a subgroup of A4 z:f and only if x2 + x + 1 has a root i n  k; 

(x) otherwise, G S4. 

Proof of Theorem 4.6 

From Lemma 2.14, E is isomorphic over k to an elliptic curve E' with Weierstrass 

eauation 

Then from Corollary 3.6, G',,m S G&,,m. Therefore, it suffices to only consider the 

family of elliptic curves given by E'. Let f (x) E k[x] be the division polynomial of 

the 3-torsion points in ~ ' ( k ) .  Then f is given by 

216 12 U, - 432 
f (x)  = $3 = 3x4 + x3 - x -  - 

u, - 1728 u, - 1728 (u, - 1 728)2 ' (4.3) 

and the x-coordinates of the 3-torsion points in E'(i) are precisely the roots of f .  

Furthermore, G',,3 is equal to the Galois group of f over k, denoted by G. If char 

k f 2 then the discriminant of f is 

which is not equal to zero since u, f 0. If cha:r k = 2 then the discriminan; of f is a 

root of x2 + x  -+ 1, which clearly cannot be zero. Therefore, the roots of f are distinct. 
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Let @ be a choice of monomorphism G - S3 after labeling the roots of f .  Then it 

suffices to categorize @(G) based on algebraic conditions on u,. We begin by giving 

constraints on uo that determine the factorization of f over k. 

Proposition 4.7 Let k be a field with char k # 3 and uo E k \ {0,1728}, and let f 

be as given in (4.3). Then  f has a linear factor over k if and only if 

for  some to E k .  

Proof: If 
27to(to + 8)3 uo = -- 

(to - 
for some to E k, then f factors as 

Conversely, suppose f (a) = 0 for some tr E k. Then making the substitution 

x = a in f ,  clearing denominators, and regarding the result as a polynomial in u,, 

yields 

If the characteristic of k is 2 then 

1 uo = -- 
a 4  + a3' 

and there is a Mobius transformation, namely to = l/(a + I ) ,  such that 

t: uo = -- 
(to + 

as desired. Suppose that the characteristic of k is not 

regarded as a polynomial in uo is (12a + 1 ) ~ ( 4 3 2 a ~  -t 

2. Then the discriminant of g 

1). Since uo E k, there exists 
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some v ,  E k such that 432cr2 + 1 = v i .  By  parametrizing the conic 432z2 $. 1 - y2 = 0 

with the line y = s z  + 1, we have 

Therefore 

for some s ,  E k. Using equations (4.4) and (4.5) to solve for u, in terms of s ,  gives 

Then there are Mobius transformations, namely 

s,-36 
s o t 1 8  

if (4.6) occurs, 

-2(so+12) 
so-24 if (4.7) occurs. 

such that 

27t,(t, + 8)3 
u, = and 

(to - l ) C  

as desired. 

Proposition 4.8 Let k be a field with char k # 3 and u, E k \ (0 ,1728);  and let f 

be as given in. (4.3). Then f has a quadratic J'actor over k if and only i f  

for some t ,  E I?. 
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Proof: If 
(to + 9):'(t0 - 3)3 

Uo = - 
t; 

for some to E k,  then f factors as 

Conversely, suppose f has a quadratic factor over k .  Then there exist a ,  b, c ,  d E k 

such that 

f ( x )  = ( 3 x 2 + a x + b ) ( x 2 + c x + d )  

= 3 x 4  + ( a  + 3c)x3  + ( b  + a.c + 3 d ) x 2  + (bc + a d ) x  + bd. 

Equating the coefficients of the above polynomial with the coefficients of 1: gives 

Let a = 1 - 3c,  b = b ' / ( u  - 1728) and d = d'/(lu - 1728). Then 

b' - c(3c  - 1 )  (u, - 1728) t- 3d' = -216, (4 .8)  

b'd' = 432 - u,. (4.10) 

If c = 0 then a = 1,  d' = -12, b' = -180, and -12b' = 432 - uo yielding uo = -1728. 

In this case, there exists some to,  namely to = -3, such that 

( t o  + 9)3( ' to - 3)3 
Uo = - 

t 2; 
Suppose c # 0. Using equations (4.8)  and (4.9)  in succession to solve for b' and d' in 

terms of c and substituting these values in equation (4.10) gives 
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There are two cases to consider; char k = 2 and char k # 2. 

Suppose char k = 2. If 6- l / c  = 0 then we get the contradiction 1 = 0. Therefore, 

Since uo # 0, we have c # 0 , l  and 

Then there is a Mobius transformation, namely to = c/(c + I) ,  such that 

Now suppose char k # 2. If 6 - l / c  = 0 then we get the contradiction uo = 0. 

Therefore, 

must have a root in k, namely u,. The discriminant of h is 

which has a square root in k since uo E k is a zero of h. Hence, 1 + 36c - 108c2 = vz 

for some vo E k. By parametrizing the curve 1 + 36x - 108x2 - y2 = 0 with t,he line 

y = sx  + 1 we have 

Therefore, 

for some so E k. Furthermore, uo in terms of so is given by 

Then there are Mobius transformations, namely 

se if (4.11) occurs, 

-3(s0-18) 
s o t 6  

if (4.12) occurs. 
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such that 

as desired. 

Proposition 4.9 Let k be a field with char k # 3 and uo E k \ {0,1728),  and let f 

be as given i n  (4.3). Then f has two linearfizctors over k i f  and only if 

for some to E k 

Proof: If 
2 q t ;  - 2t0 + q 3 t ; ( t O  + 213 

?Lo = 
( to  - q3(t,2 + t o  + 113 

for some to E k, then f factors as 

Conversely, suppose f has two linear factors over k. Then f has a linear and a 

quadratic factor and by Propositions 4.7 and 4.8, 

2 7no (no + 8 )  (m, + 913 (m, - 313 
uo = and 21, = - 

( n o  - m: 

for some m,, no E k.  Equating the above values for uo gives 

Hence, there exists some t o  E k such that no == t: and uo in terms of to  is 

as desired. 
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Let us now return to the proof of Theorem 4.6. 

If char k  # 2, then the discriminant of f is 

which is a square in k  if and only if -3 is a square in k .  If char k = 2 then the 

Berlekamp discriminant of f is in k if and only if x2 + x + 1 has a root in k .  

The result then follows from Lemmas 3.16 and 3.18. 

The D4 resolvent of f is 

If char k = 2, then R(x )  has a root in k  if and only if u, is a cube in k. Suppose 

char k  # 2 and let el, cp, and c3 denote the roots of g ( x )  = x3 - uz E k [ x ]  in a 

splitting field extension of k .  Then 

by Theorem 3.21, and R has a root in k  if and only if ci E k  for some i E {1,2,3). 

We will show- that ci E k  for some i E {1,2,3) if and only if u, is a cube in k. 

Suppose u, is a cube in k and let u, = n3, for some a E k .  Then g ( a 2 )  = 0 and 

R(x)  has a root in k .  Conversely, suppose ci E k for some i E {1,2,3). Then 

c: = uz yielding u, = u~/c:, and u, is a cube in k .  The result then fcdlows from 

Lemma 3.24. 

The result follows from parts ( i x )  and (viii) since Vq is a subgroup of Aq and 

D4. 

Suppose @(G) is isomorphic to a subgroup of D4. Then there exists some v, E k  

such that u, = v: and R has a linear factor over k, namely 
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Then the Cq resolvant of f is 

Suppose char k  = 2. Then 

Making the substitution x = X/I.J~ gives 

Suppose Cl (x) has a linear factor over k ,  :namely x-to. Then t~+to+(v,,+l)/vo = 

0 and vo in terms of uo is 
1 

as desired. Conversely, suppose vo = l/(t: + to + 1) for some to E k .  Then 

Therefore, Cl(x) (consequently C(x)) has a linear factor over k  if and only if 

for some to E k ,  which completes the case when char k  = 2. 

Suppose char k  # 2. Then the discriminant of C(x) is 

- 
v: 

27(vo - 12)"v,2 + 12v0 + 144)3 ' 

which has a square root in k  if and only -3(v: + 12v0 + 144) is a square in k. 

Hence, by Lemma 3.26, @(G) C J C4 if and only if char k  = 2 and 

for some to E k ,  or char k  # 2 and t'here exist's some vo E k  such tha.t uo = v; 

and -3(v: + 1221, + 144) has a square root in k .  



CHAPTER 4. ELLIPTIC CURVES 55 

(v) The subgroup @(G) is contained in a conjugate of ((1 2)) x ((3 4)) if and only if 

f has two quadratic factors over k. Part (ui) follows directly from I'roposition 

4.8. 

(iv) The subgroup @(G) is contained in a conjugate of Stabs4(4) if and only if f has 

a linear factor over k and part (iu) follows directly from Proposition 4.7. 

(iii) Suppose @(G) is contained in a conjugate of Stabs4(4). Then f has a cubic 

factor over k. F'rom Proposition 4.7, 

for some t, E k, and the cubic factor of f in terms of to is 

Furthermore, if char k # 2, then the discriminant of Q(x) is 

which has a square root in k if and only if -3 is a square in k. S:~milarly, if 

char k = 2, then the Berlekamp discriminant is a root of x2 + x + 1. Hence, by 

Lemmas 3.16 and 3.18, @(G) is contained in a conjugate of ((1 2 3)) if and only 

if x2 + x + 1 has a root in k. 

(ii) The subgroup @(G) is contained in a conjugate of ((1 2)) if and only if f has 

two linear factors over k.  Part (ii) then follows directly from Proposition 4.9. 

(i) From Theorem 3.20, @(G) = {e) if and only if @(G) is contained in a conjugate 

of ((1 2)) and A4. The result then follows from Parts (ii) and (ix). 

(x) The nontrivial subgroups of S4 are the transitive subgroups listed j.n Lemma 

3.22 and conjugates of Stabs4 (4), ((1 2 3)),  ((1 2)) , and ((1 2)) x ((3 4)). Since 

@(G) is a subgroup of S4, if cases (i) - (ix) do not occur then @(G) := S4. 
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4.3 Example 

Consider the elliptic curve given by E : x3  t- y3 + z3 = 3Xxyz over a field k where 

X E k. Let H be the Hessian of E then 

with determinant [HI = 216xyz - 54X2x3 - 54X2z3 - 54X3xyz - 54X2y3. 'raking the 

intersection of E and /HI gives the following :rational points 

which are the flex points of E. The following transformations are made to put E in 

canonical normal form. Note that in each step the transformation is given followed 

by the resulting equation representing the elliptic curve E. 

1. Move the flex point [-I, 1,O] to [0,1,0]. 

2. Interchange x and z. 
z I 

x = -  
6 ' 

y = y f ,  Z = - X I  

3. Consider z as the coefficient term of y2.  

4. Make a transformation so that E is monic in x .  
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5. Set z = 1. 

Now that E is in the canonical normal form, the j-invariant can be computed. Let 

4 be the j-invariant of E. Then 

Since X E k, by Theorem 4.6, if x2 + x  + 1 has a root in k then G)E,3 trivial otherwise 

G)E,3 C2. 



Chapter 5 

Drinfeld Modules 

In this chapter, we calculate the Galois groups of fields generated by torsion points 

on a Drinfeld module. We refer the reader t o  Section 3.2 for background information 

on torsion points on Drinfeld modules relevant to  this section. Let A = F,[T] and 

let p be a rank 2 Drinfeld A-module over k with j-invariant u,. For a E .4, we wish 

to determine necessary and sufficient algebraic conditions on u, that determine the 

containment of Gb,, in subgroups of GL, ( A/a) //.L,-~. 

In what follows, we categorize Gb., for the cases when p has rank 1 and a is a linear 

or quadratic polynomial in A and when p has rank 2 and a is a linear polynomial 

in A. We also categorize G,,, when p is a rank 1 Drinfeld module and a is linear in 

T. The values for T ,  q and a are summarized. in Table 5.1. In several instances, we 

parametrize curves of genus zero with a ration.al point in k to  get algebraic conditions 

on u,. These parametrizations are guaranteed to exist by Theorem 2.9. 

5.1 Rank 1 Drinfeld modules 

5.1.1 Galois group of (T + a)-torsion submodule 

It has been shown that for k = F,(T) there are only finitely many rank one Drinfeld 

modules (up to isomorphism over k) that have nonzero torsion in k. In particular, 
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Table 5.1: Drinfeld modules 1 r Rank of the 
Drinfeld module 

give rise to  polynomials of 

I a E A = IF,[T] 
c r l , c r 2  E IF, 

59 

it most four 

if q = 2 then p is isomorphic to the Carlitz module over k and {A E klpa(A) = 

0 for some nonzero a E A )  IF,[T]/(T2 + T) as an IF,[T]-module. Suppose q > 2. 

If p is isomorphic over k to +T = T - (T + C)T for some c E IF, then the torsion 

submodule 

{A E klpa(A) = 0 for some nonzero a E A) 

equals IF, and is isomorphic to IF,[T]/(T+c) as an IF, [TI-module. If p is not isomorphic 

to such a Drinfeld module, then the torsion submodule 

{A E klpa(A) = 0 for some nonzero a E A) 

equals (0) ([Poo97], p.582). For the purpose of this thesis, we take k to be ar. extension 

of IF,(T) and we study torsion submodules of I;, rather than in k,. 

Theorem 5.1 Let p be a Drinfeld A-module of rank 1 over a field exte:uion k of 

IF, (T) given by p~ = T + U,T, where u, E k \ (0). If a = T + cr E A and v, = l lu ,  

then G , ,  is contained in a cyclic group of order d dividing q - 1 if and only if 



CHAPTER 5.  DRINFELD MODULES 

for some z, E k. 

Corollary 5.2 If  u, = 1 and k = IF,(T) then G,., is isomorphic to (IF,)*.' 

Remark 5.3 First we note that a Drinfeld A-module p~ = T + u , ~  is isomorphic to 

$T = T - (T + C ) T  over k if and only if 

where c E IF, and z, E k .  From Theorem 5.1, G,,, is trivial, where a == T .  This 

implies that the set of torsion points of pa is contained i n  k .  From Poonen's result, 

we also have that A,[a] E IF,. 

Proof of Theorem 5.1 

Let u, E k and let p be a Drinfeld A-module of rank 1 over a field extension k of 

IF,(T) given by 

pi- = U,T + T. 
Let a = T + cr E A: v, = llu,, and let f (x) E k[x] be the a-division polynomial of p. 

Then f is given by 

f (x) = xq-l + (T + crl)vo 

and GP,a is equal to the Galois group of f over k. 

The ideas presented in this proof are taken from ([LanOZ], p.289). Let P E iE 
be a root of f .  Since k contains all of the q - 1 roots of unity, f splits over k(P). 
Furthermore, all the roots of f are distinct. Let G be the Galois group of k(P) over 

k. 

If a E G then a(P) = w,P, where w, is a q - 1 root of unity. The map a - w, is 
clearly a homomorphism of G into the group of q - 1 roots of unity. Since a subgroup 

of a cyclic group is cyclic, G is cyclic. 

Suppose that 

' This result corresponds with Proposition 12.7 in [RosOZ] with P = T + and e = 1. 
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for some dl(q - 1) and zo E k. Then 

But we also have that 

-(T + crl)vo = pq-l, 

so that 

(@I)"-' = g-1, 

and pd E k. Let a be a generator of G. Since pd is fixed under G, 

and w, is a primitive d root of unity. Therefore, G is contained in a cyclic group of 

order d dividing q - 1. 

Conversely, suppose that G is contained in a cyclic group of order d dividing q - 1. 

If a is a generator for G, then w, is a primitive d root of unity and we get 

Hence, pd is fixed under G and pd E k. Furthermore? we have 

and the theorem is proved. 

Proof of Corollary 5.2 

If u = 1, then vo = 1 and there exists a z, E k, namely -(T + crl), such that 

By Theorem 5.1, G is contained in a cyclic group of order q - 1. Suppose there exists 

a d < q - 1 such that d divides q - 1 and 

for some zo E k. Then the degree in T of the denominator is strictly smaller than the 

degree in T of the numerator, yielding a contradiction. Therefore G is a cyclic group 

of order q - 1, hence G (IFq)*. 
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5.1.2 Galois group of (T2 + alT + a2)-torsion submodule 

Theorem 5.4 Let p be a rank 1 Drinfeld A-module over a field extension k of IF2(T). 

(a) If a = T2  + T then G,,, is trivial; 

(b) If a = T2  + a, then G,, is trivial if and only if 

2 1 x + x - t -  
T + a  

has a root i n  k ,  otherwise G,, Z ( ( 1  2 ) ) ;  

(c)  If a = T2 + T + 1,  then GP,, is trivial i f  and only i f  

has a root i n  k ,  otherwise G,, 2 A3. 

Theorem 5.5 Let p be a Drinfeld A-module of rank 1 over a field extension k of 

IF3(T) and let a = T2 + alT + a2 E A. 

(i) If (a,,  a2)  E ( ( 1 ,  O ) ,  ( -  1 ,  O ) ,  (0. - I ) ) ,  then Gb., is trivial if and only if (T - 

(al  + l ) ) ( T  - a1 + 1 )  is a square i n  k ,  otherwise Gb,, E C2. 

(ii) If (al ,  (22) E ( ( 0 ,  O ) ,  ( 1 ,  I ) ,  (- 1, 1 ) ) :  then Gb,, is trivial i f  and only if 

has a root i n  k ,  otherwise Gb-, A3. 

(222) If (al ,  ~ 2 )  E ((0, I ) ,  ( - I 7  - I ) ,  ( 1 ,  - 1 ) ) :  then Gb,, is trivial i f  and only if 

has a root i n  k ,  otherwise Gb, C4. 
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Proof of Theorem 5.4 

Let p be a Drinfeld A-module of rank 1 over a field extension k of IF2(T). From 

Lemma 3.12, GL*, is invariant under isomorphisms over 2. Therefore, it suffices to 

only consider the rank 1 Drinfeld A-module given by 

Let a = T2 + alT + a 2  E A and let f (x) E k[x] be the a-division polynomial of p. 

Then f is given by 

f (x) = x3 + ( T ~  + T + a2)z + ( T ~  + CY~T + a2), 

where f has distinct roots in i. To see this, suppose f has a double root for a 

contradiction. If f has a double root then f (:r) = (x + a)2(x + b), for some a, b E i. 
This implies that f (x) = x3 + bx2 + a2x + a2b, yielding b = 0. But clearly, 0 is 

not a root of f (x), giving a contradiction. Let G be the Galois group of' f over k, 

and @ be a choice of monomorphism G --t A93 after labeling the roots o:F f .  Then 

G' P,, GP,, g @ (G) . 

(a) If crl = 1 and a 2  = 0 then f factors as (x - t l ) (x+T)(x+(T+l ) )  and @(G)  = {e). 

(b) If a1 = 0 then f factors as (x + (T + a2) ) (x2  + (T + a2 )x  + (T + Q ~ ) ) .  The 

Berlekamp discriminant of the quadratic: factor of f is a root of 

By Lemma 3.18, f has three linear factors (equivalently! @(G) = {e)) if and 

only if (5.1) has a root in k. Otherwise, @(G) is a conjugate of ((1 2)). 

(c) If a1 = a 2  = 1, then the Berlekamp discriminant of f is in k if and o:nly if 

has a root in k. Since b(T) = 0, @(G) S A3. If a E k is a root of f th.en 

Therefore, @(G) = {e) if and only if f has a root in k, otherwise @(G) = A3. 
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Proof of Theorem 5.5 

Let p be a Drinfeld A-module of rank 1 over a field extension Ic of U3(T). From 

Lemma 3.12, G b ,  is invariant under isomorphisms over I .  Therefore, it, suffices to 

only consider the rank 1 Drinfeld A-module given by 

Let a = T2 + a l T  + a2 E A and let f (x) E Ic[x] be the a-division polynomial of the 

x-coordinates of p. Then f is given by 

f (x) = x4 + ( T ~  + T + a l )x  + ( T ~  + a l T  + ~ 2 ) .  

The discriminant of f is (T2 + a l T  + a2)3 # 0, therefore f has distinct roots in I .  
Let G be the Galois group of f over Ic, and Q) be a choice of monomorphism G - S4 

after labeling the roots of f .  Then Gb:, G @(G). 

(i) Suppose (al, a2) E ((1, O) ,  (-1, O),  (0, -1)). Then f factors as 

and @(G) is contained in a conjugate of ((12)). The discriminant of the quadratic 

factor is 

( T  - (a1 + l ) ) ( T  - a1 + I )?  

which is a square in Ic if and only if ( T  -- (al + l ) ) ( T  - al + 1) is a square in k. 

The result then follows. 

(ii) Suppose (al, a2) E ((0, O) ,  ( I l l ) ,  (2 , l ) ) .  Then f factors as 

and @(G) is contained in a conjugate of Stabs,(4). Furthermore, @(G) is con- 

tained in a conjugate of ((1 2 3)) since the discriminant of the cubic factor, 

namely 

(T + ad4, 
is a square in Ic. Furthermore, f has two linear factors over Ic when 

has a root in Ic. The result then follows from Theorem 3.20. 
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(iii) Suppose ( a l :  a 2 )  E ( ( 0 ,  I ) ,  (2 ,2) ,  (1 ,2) ) .  The D4 resolvant of f ( x )  given by 

R ( x )  = x3 - ( T ~  + o l T  + a2)x  - ( T ~  + T + a1)2 ,  

which factors over k as 

( x  - ( T 2  + a l T  + a 2 ) ) ( x 2  + ( T ~  + + a2)x  + (T - a 1 ) p 2  + a1T  + a 2 ) ) .  

Hence, @(G) 2 H 2 D4. The C4 resolvant of f ( x )  is given by 

and ha.s a linear factor over k since its discriminant, 

is a square in k. Therefore, @(G)  2 J 2 C4. Using Magma [BCP97], if f has 

one linear factor over k ,  then f has four linear factors. Therefore, if @(G) = { e )  

if and only if f has a linear factor over k ,  otherwise @(G) S C4. 

5.2 Rank 2 Drinfeld modules 

5.2.1 Galois group of (T + &)-torsion submodule 

Theorem 5.6 Let p be a Drinfeld A-module of rank 2 over a field exttinsion k of 

IF2(T) with j-invariant u, E I; \ ( 0 ) .  If a = ?' + a  E A and v, = llu,, then 

(i)  G , ,  is trivial if and only if 

for some 2, E k ;  

(ii) G , ,  is isomorphic to a subgroup of C2 ,if and only i f  

v, = Z ? ( ~ , ( T  + a )  + 1) 

for some 2, E k ;  
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(iii) G,., is isomorphic to a subgroup of A3 if and only if 

for some z, E k ;  

(iv) otherwise, G,., E S3. 

Theorem 5.7 Let p be a Drinfeld A-module of rank 2 over a field extension k of 

IF3(T) with j-invariant u,  E k \ (0). If a = T + Q E A and v, = l/u,, then 

(i) G;,, is trzvial if and only if 2x6 + (T + a)$x2  + v: has a root in k and 

for some z, E k ;  

(ii) Gb,, is isomorphic to a subgroup of C2 if and only if v, = 2z,3(z0(T + (9) + I )  for 

some z, E k and 

2x6 + (T + tr)v,3x2 + v: 

has a root in k ;  

(iii) Gb,, is isomorphic to a subgroup of A3 zf and only if 

for some z, E k;  

(iv) Gb, is isomorphic to a subgroup of S3 if and only if v, = 2z;(z,(T + a )  + I )  for 

some z, E k ,  

(v) Gb,, is isomorphic to a subgroup of 2 / 2 2  x 2 / 2 2  if and only ij 

for some z, E k;  
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(vi) Gb,, is isomorphic to a subgroup of V4 if and only if 

for some zo E k; 

(vii) Gb,, is isomorphic to a subgroup of C4 if and only if 

21, = - 
1 

4 2 z,(z, + 1)(T + C Y ) ~  

for some z, E k; 

(viii) Gb,, is isomorphic to a subgroup of D4 if and only if 

for some z, E k; 

(ix) Gb,, is isomorphic to a subgroup of A4 if and only if v, = ( T  + 0)~ :  for some 

zo E k; 

(x) otherwise, Gb,, E S4. 

Proof of Theorem 5.6 

Let p be a Drinfeld A-module of rank 2 over a field extension k of F2(T) with 

j-invariant u, E k given by 

p~ = uQor2 + U,T + T. 

Let a = T + CY E A, v, = l /uo,  and let f (x) E k[x] be the a-division p~lyn~omial of p. 

Then f is given by 

f (x) = x3 + v,x + ( T  + C Y ~ ) Z J ? ,  

where f has distinct roots in i. To see this, suppose f has a double root for a 

contradiction. If f has a double root then f (.x) = (x + a)' (x + b) ,  for some a,  b E %. 
This implies that f (x) = x3 + bx2 + a2x + a2b, yielding b = 0. But clearly, 0 is not a 

root of f (x), giving a contradiction. Let G be the Galois group of f over k ,  and @ be 

a choice of monomorphism G - S3 after labeling the roots of f .  Then G, a @(G). 
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(ii) By parametrizing the cubic D(x ,  y) = x3 + yx + y2(T + a l )  with the line y = Z X  

we have 

x = z ( z (T  + c u l )  + I ) ,  and y = z2(z (T  + cul) + 1). 

Then f has a linear factor over k if and only if there exists a z, E k such that 

D(x,, u,) = 0. Therefore, f has a linear factor over k and @(G)  is contained in 

a conjugate of ( ( 1  2 ) )  if and only if 

for some z, E k. Furthermore, writing v, in terms of 2, in f ( x )  and factoring 

gives 

(i) Using the results from the previous cizse, @(G)  = {e} if and only if v, = 

m;(m,(T + a l )  + 1 )  for some m, E k and the quadratic 

has a linear factor over k. Using the Berlekamp discriminant, (5.2) has a linear 

factor over k if and only if 

has a root in k. Let ml = m,(T + a l )  + 1 E k be nonzero. Then b(x) has a root 

in k if and onlv if 

has a root in k. Suppose bl(zo) = 0 for some z, E k 

of z, gives 

Then writing ml in terms 

Conversely, suppose ml = I/( ,-:  + 2, + 1 )  for some z, E k. Then bl(x)  = 

( x  + 2,) ( x  + z, + 1 ) .  Therefore, bl ( x )  (hence b(x) ) has a root in k if and only if 

ml = 1/(z: + 2, + 1 )  for some z, E k. 
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The result then follows upon writing m, in terms of z,, namely 

and writing v, in terms of z,, yielding 

(iii) From Lemma 3.18, @(G) E A3 if and only if 

has a root in k. However, substituting ,ml = ( T  + ~ l ) ~ v ,  in b(x) yie:.ds 

Using the same method as given in case (i) above, b(x) has a root in k if and 

only if 
2 

vo = 20 

(T + ~ 1 ) ~ ( 2 , 2  + z, + 1) 

for some z, E k. 

(iv) The nontrivial subgroups of S3 are A3 and conjugates of ((1 2)). Since @(G) is 

a subgroup of S3, if cases (i) to (iii) do not occur, @(G) = S3. 

Proof of Theorem 5.7 

Let p be a Drinfeld A-module of rank 2 over a field extension k of lF3(T) with 

j-invariant u,, E k given by 

= Z L ~ T ~  f UoT f T. 

Let a = T + cr E A, v, = llu,, and let f (x) E k[x] be the a-division polynomial of 

the x-coordinates of p. Then f is given by 

f (x) = x4 + $5 + ( T  + crl)~;. 

The discriminant of f is v:(T + cr1)3 # 0. therefore f has distinct roots in. k. Let G 

be the Galois group of f over k, and @ be a choice of monomorphism G c-+ S4 after 

labeling the roots of f .  Then GL,, @(G). 
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Proposition 5.8 Let k  be a field extension of IF3(T) and v ,  E k .  Let a E .4 and f be 

as given in Theorem 5.7. Then f has a linear factor over k  if and only if 

for some z, E k .  

Proof: If 

v, = 2z:(Tz0 + crlz, + 1 )  

for some z, E k ,  then f factors as 

Conversely, suppose f (x,) = 0  for some so E k .  B y  parametrizing t.he quartic 

x4 + v2x  + (T + 01)v3 with the line v  = z x ,  we have 

x = 2 z 2 ( ( T + c r l ) z + 1 ) ,  and v=2z3 ( (T+cu l ) z+1) .  

Since f (x,) = 0 ,  

20 = 2 2 , 2 ( ( ~ + c r 1 ) ~ + 1 )  and 

uo = 2 2 , 3 ( ( ~  + c r 1 ) 2 ,  + 1)  

for some z, E k :  which completes the proof. 

Proposition 5.9 Let k  be a field extension ofIF3(T) and v, E k .  Let a E A. and f be 

as given in Theorem 5.7. Then f has a quadrutic factor over k  if and only if 

for some z ,  E k .  
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Proof: The polynomial f ( x )  has a quadratic factor over k if and only if 

for some m, b, c, d E k.  Solving for the coefficients of f gives c = -m and 

b + 2 m 2 + d  = 0,  
2 m(2b+ d )  = v,, 

bd = (T + crl)v:. 

Obviously, m # 0. Then using equations (5.5) and (5.6) in succession to solve for b 

and d,  and writing equation (5.7) in terms of m yields 

Dividing both sides by m6 and making the substitutions w = v , /m  and y = v,2/m3 

gives 

2 +  ( ~ + c r l ) w y + y ~  = 0.  

By parametrizing the above curve with the line y = z,, we have 

Then substituting m3 = v;/z ,  into w" v?/nz3 gives v ,  = wlz,. Therefore, equation 

(5.8) has a root in k if and only if 

for some z, E k and the result then follows. 

Let us now return to the proof of Theorem 5.'7. 

(ix) The discrimimant of f is 

V:(T + a d 3 ,  

which is a square in k if and only if v ,  = (T + a1)z; for some 2, E k. 'The result 

then follows from Lemma 3.16. 
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(viii) The D4 resolvant of f is R(x) = x3 + 2(T + cq)v?x + 221:. If 

for some 2, E k: then R factors as 

Conversely, suppose R(x,) = 0 for some x, E k. By parametrizing the curve 

x3 + 2(T + al)v3x + 2v4 with the line v = zx, we have 

Since R(x,) = 0, 

1 
xo = and v, = 

1 

z,3(T + a1 + z,) z:(T + a1 + 2,) 

for some 2, E k. Part (viii) then follows form Lemma 3.24. 

(vii) Suppose @(G) V Z Vq, then @(G) 5; A4 and @(G) H 2 D4. By parts 
(viii) and (ix) 

1 
vo = and v o = ( ~ + a l ) n z  

mz (T + a1 + m,) 

for some m,, no E k, yielding 

Clearly, it must be the case that (T  + a1 + m,)(T + al) = 22 for sorne 2, E k. 

Solving for m, in terms of z, gives 

Substituting (5.10) in (5.9) and solving for no in terms of z, gives 
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and we have 

vo = 
(T + a d 3  

z,2(z,2 + 2(T + ~ 1 ) ~ ) ~  

as desired. Conversely, if 

for some z, E k, then with 

@(G) g A4 and @(G)  c H Z D4. Hence, @(G)  G V V4. 

(vi) Suppose that @(G)  C H 2 D4. Then 

for some m,  E k. The C4 resolvant o f f  is 

with discriminant 
T + a ,  

mz (T+al  +mo)4' 

which is a square in k if and only if m,  = ( T  + a l ) z i  for some 2, E k .  Further- 

more, 21, written in terms of z, is 

The result then follows from Lemma 3.26. 

(v) The subgroup @ ( G )  is contained in a conjugate of ( ( 1  2 ) )  x ( ( 3  4 ) )  if and only 

i f f  has a quadratic factor. Part ( v )  then follows directly from Proposition 5.9. 

(iv) The subgroup @ ( G )  is contained in a conjugate of Stabs, (4) if and only if f has 

a linear factor. Part ( iv)  then follows directly from Proposition 5.8. 
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(iii) Suppose that @(G) is contained in a conjugate of Stabs4 ( 4 ) .  Then 

for some m, E k, and f has a cubic factor with discriminant 

which is a square in k if and only if 2m,,(T + ol )  (m,(T + ol )  + 1 )  is #3, square in 

k. By parametrizing the curve 2 m ( T  + ol )  (m(T + ol )  + 1 )  + 2n2 with the line 

m = z n ,  we get 

and 2m.,(T + crl)(mo(T + c r l )  + 1)  is a square in k if and only if 

for some z,  E k. The result then follows from Lemma 3.16. 

(ii) The result follows from parts ( i v )  and ( v ) ,  since @(G) is contained in a conjugate 

of ( ( 1  2 ) )  if and only if @(G) is contained in a conjugate of Stabs4(4)  and 

( ( 1  2 ) )  x ( ( 3  4 ) ) -  

(i) The result follows from parts (ii) and (,ix), since the only subgroup of C2 and 

A4 is the identity. 

(x) The nontrivial subgroups of S4 are the transitive subgroups listed in Lemma 

3.22 and conjugates of Stabs,(4),  conjugates of ( ( 1  2  3)) ,  conjugates of ( ( 1  2 ) )  

, and conjugates of ( ( 1  2 ) )  x ( ( 3  4 ) ) .  Since @(G)  is a subgroup of 5 '4 ,  if cases 

( i )  - (ia:) do not occur, then @(G) = S4. 



Appendix A 

Elliptic curves with j-invariant 

equal to 0 or 1728 

In this appendix, we investigate the Galois groups of fields generated by the x- 

coordinates of torsion points of order 2 and 3 on an elliptic curve with j-invariant 

u, = 0,1728. We refer the reader to Sections 2.2 and 3.1 for background information 

on elliptic curves relevant to this section. Recall from Lemma 2.14(a), two elliptic 

curves defined over k are isomorphic over il. if and only if they have the same j- 
- invariant. If E and E' are isomorphic elliptic curves with j-invariant 0 or 1728, then 

I C E , ,  is not necessarily isomorphic to kk.,. Therefore, we will study the elliptic curves 

with j-invariant 0 or 1728 in their most general form. 

Consider an elliptic curve E defined over a field k with j-invariant equal to 0. 

Then E has complex multiplication, that is, the ring End(E) of endomorphisms of 

E is bigger than Z. Suppose p # 2, 3. Then R = End(E) is Z[w], where w is a 

third root of unity. In this case, the group of units of R is {f 1, f w, f id2) which 

is isomorphic to Z/6Z. Therefore, GE,, is isomorphic to a subgroup of i2/6Z. We 

refer the reader to ([Har77], p.331) for more details. If char k is 2 or 3 then E is 

supersingular. Furthermore, if char k = 2 then the only 2-torsion point :in E(L) is 

OE. Similarly, if char k = 3, then the only 3-torsion point in E(Z) is OE. We now 

determine G;.,, where char k # 2 ,3  and m = 2,3. 
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Theorem A . l  Let k be a field with char k :+ 2,3  and let E be a n  elliptic curve over 

k with j-invariant 0 given by 

E :  y2 = B, 

where B E k \ (0). T h e n  

(i)  GI,, is trivial if and only if -3 is a square in k and -B is a cube 2:n k ;  

(ii) GI,2 is isomorphic to  a subgroup of C2 if and only if -B is a cube in k;  

(iii) G',, is isomorphic to  a subgroup of .A3 if and only if -3 i s  a square in k;  

(iv) otherwise, G S S3. 

Proof: Let f (x) E k[x] be the division polynomial of the 2-torsion points in ~ ( k ) .  

Then f is given by 

f (x) = 4(x3 + B): 

and the x-coordinates of the 2-torsion points in ~ ( k )  are precisely the roots of f .  

Furthermore, GI,., is equal to the Galois group of f over k .  The discrimkant of f is 

which is not equal to zero. Therefore the roots of f are distinct. Let be a choice of 

monomorphism G -+ S3 after labeling the roots of f .  Then it suffices to categorize 

@(G) based on algebraic conditions on u,. 

The discriminant of f (x) has a square in k if and only if E k. Part (iii) 

then follows from Lemma 3.16. Part (ii) follows since f (x) has a linear factor over k 

if and only if -B is a cube in k .  Part ( i )  follows directly from Theorem 3.20. Part 

(iv) is clear since the only nontrivial proper subgroups of S3 are A3 and conjugates 

of ((1 2)). 

Theorem A.2 Let k be a field with char k + 2 , 3  and let E be an  elliptic curve over 

k with j-invariant 0 given by 

E : y2 = x3 + B, 

where B E k \ (0). 
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(i)  GI,, is trivial if and only if -3 is a square i n  k and -4B is a cube in k; 

(ii) Gj,, is isomorphic t o  a subgroup o f C 2  if and only if -4B is a cube in k; 

(iii) G', , is isomorphic t o  a subgroup of A3 if and only if -3 is a squaw in k; 

(iv) otherwise, G&,3 S3. 

Proof: Let f (x) E k[x] be the division polynomial of the 3-torsion points in ~ ( i ) .  

Then f is given by 

f (x) = 3x(x3 + 4B), 

and the x-coordinates of the 3-torsion points in ~ ( i )  are precisely the roots of f .  

Furthermore, GL,3 is equal to the Galois group of f over k, denoted by G. The 

discriminant of f is 

- 3 ( 1 2 9 6 ~ * ) ~ ,  

which is not equal to zero. Therefore the roots of f are distinct. Let @ be a choice of 

monomorphism G c-t S4 after labeling the roots of f .  Then it suffices to categorize 

@(G) based on algebraic conditions on u,. 

Clearly, @(G) is isomorphic to a subgroup of S3. The discriminant of .x3 + 4B is 

-3(12B)~, which has a square in k if and only if a E k. Part (iii) then follows 

from Lemma 3.16. Part (ii) follows since x3 +4B has a linear factor over k if and only 

if -4B is a cube in k. Part (i) follows directly from Theorem 3.20. Part ( i v )  is clear 

since the only nontrivial proper subgroups of S3 are A3 and conjugates of ((1 2)). 

If E is an elliptic curve defined over a field k with j(E) = 1728 then E has 

complex m~lt~iplication, that is, the ring End(E) of endomorphisms of E is bigger 

than Z. Suppose j(E) = 1728 and p # 2,3. Then R = End(E) is the ring of Gaussian 

integers Z[i] and the group of units of R, or equivalently Aut(E), is {fl,  f i )  Z/4Z. 

Therefore, GE,m is isomorphic to a subgroup of Z/4Z. We refer the reader to ([Har77], 

p.331) for more details. We now determine Gi?,m, where char k # 2 ,3  and 5% = 2,3. 
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Theorem A.3 Let k  be a field with char k  # 2,3, and let E be an elliptic curve over 

k  with j-invariant 1728 given by 

E : y2 = x3 + Ax, 

where A E k  \ (0). Then G',., is trivial i f  and only i f  -A is a square in  k .  Otherwise, 

G',., is isomorphic to C2. 

Proof: Let f (x) E k[x] be the division polynomial of the 2-torsion points in E(&) 

Then f is given by 

f (x) = 4x(x% A), 

and the x-coordinates of the 2-torsion points in E(&) are precisely the roots of f .  

Furthermore, G',,, is equal to the Galois group of f over k ,  denoted by G. The 

discriminant of f is 

- 102.1~3, 

which is not equal to zero. Therefore the roots of f are distinct. Let @ be a choice of 

monomorphism G c, S3 after labeling the roots of f .  Then it suffices to categorize 

@(G) based on algebraic conditions on u,. 

Clearly, @(G) is isomorphic to a subgroup of ((1 2j). Also, it is clear that @(G) = 

{ e }  if and only if -A is a square in k .  

Theorem A.4 Let k  be a field with char k  # 2 ,3  and let E be an elliptic curve over 

k  with j-invariant 1728 given by 

E : y2 = x3 -t Ax, 

where A E k \ (0). Then 

(i) G', , is trivial if and only if A = (3 + 2&)a2 for some a E k and -3 is a square 

in  k ;  

(ii) G',, is isomorphic to C2 if and only if 14 = (3 + 2&)a2 or A = (3 -- 2&)a2, 

for some a E k;  
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(iii) Gk is isomorphic to a subgroup of Z/2Z x Z/2Z if and only if either 3 is a 

square in k or -3 is a square in k and 

1 1 
A = --a2(3 + u), or A = --a2(3 - u), 

8 8 

where u2 = -3 and a E k; 

(iv) otherwise, G&.3 is isomorphic to a subgroup of D4. 

Proof: Let $3(x) E k[x] be the division polynomial of the 3-torsion points in E ( E )  
and set f (x) E k[x] to be 

Then the x-coordinates of the 3-torsion points in E ( E )  are precisely the roots of f .  

Furthermore, Gi ,3  is equal to the Galois group of f over k, denoted by G. The 

discriminant of f is 

which is not equal to zero. Therefore the roots of f are distinct. Let @ be a choice of 

monomorphism G -+ S4 after labeling the roots of f .  Then it suffices to categorize 

@(G) based on algebraic conditions on u,. 

(iii) Suppose 3 is a square in k and u2 = 3 for some u E k. Then f factors as 

Suppose -3 is a square in k and u2 = --3 for some v E k. If A = - 4a2(3 + u) 

for some a E k, then f factors as 

If A = -Qa2(3 - u) for some a E k, then f factors as 
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Conversely, suppose f has two quadratic factors. Then there exist (2,  b, c, d E k 

such that 

f ( x )  = ( x 2  + ax  + b) ( x 2  + cz + d )  

= ( x4  + ( a  + c)x3  + (b + d + ac)x2 + (ad + bc)x+ bt-l). 

Equating the coefficients of the above polynomial with the coefficients of f gives 

Let a = -c and consider two cases; c = 0 and c # 0. If c = 0 then b+cl = 2A and 

bd = -A2/3.  Substituting b = 2A-d into bd = -A2 /3  gives d2-2Ad--A2/3 = 0. 

Therefore, d is a root of 

whose disriminant is a 8. Since d E k the discriminant of g is in k ,  hence 3 is 

a square in k. 

If c #  0 then b= d and 

Substituting d = A + c2/2 into d2 = -A2 /3  gives 

Hence, A is a root of g ( x )  = $:r2 + c2x + f c E k [ x ]  and the discriminant of 

g,  namely -c4/3, has a square in k. Therefore, u2 = -3 for some u E k. 

Furthermore, 
1 

A = --c2(3 5 u):  
8 

as desired. 
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(ii) Suppose that u2 = 3 for some u E Ic. If A = (3 + 2u)a2 for some a E k ,  then f 

factors as 

(x - a) (x + a)  (x2 + (7 + 4u)a2). 

If A = (3 - 2u)a2 for some a E k, then f factors as 

Conversely, suppose f has a linear factor over Ic. Then f (a) = 0 for some a E k 

and 

Hence, A is a root of g(x) = -x2/3 + 2a% +a4 and the discriminant of g, namely 

3(4a2)" has a square in k. Therefore, u2 = 3 for some u E Ic. Furthermore, 

It is noted that if f has a linear factor, x - a ,  over Ic then f factors over Ic as 

(x - a ) (x+a ) (x2  + a 2  + 2 ~ ) .  

(i) The discriminant of f is 
(64A3) 

which has a square in Ic if and only if -3 is a square in Ic. The result then follows 

directly using the results from part (ii) and Theorem 3.20. 

(iv) The D4 resolvent of f (x) is 

whence @(G) H r D4 by Lemma 3.24. Furthermore, the C4 resolvent of f (x) 

is C(x) = x2, which does not have distinct roots in Ic. Therefore, we loannot use 

Lemma 3.26. 
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Theorem A.5 Let k be a field with char k .= 2 and let E be an elliptic curve over k 

with j-invariant 0 given b y  

where A, B, C E k and A # 0. Then 

(i) GL , is trivial if and only if x4 + A2x -t- B2 and x2 + x + 1 each have a root in 

k and A is a cube in k ;  

(ii) G', , is isomorphic to a subgroup of Cz i f  and only if x4 + A2x + B2 has a root 

in k and A is a cube in k; 

(iii) G', , is isomorphic to a subgroup of A3 if and only if GG, is isomorphic to a 

subgroup of S3 and x2 + x + 1 has a root in k; 

(iv) GL, is isomorphic to a subgroup of S3 if and only if x4 + A2x + B2 has a root 

in k; 

(v) GL, is isomorphic to a subgroup of Z/2Z x Z/2Z if and only if A" = c3 and 

B 2  = (c2 + d)d, for some c, d E k ;  

(vi) GI,, is isomorphic to a subgroup of D4 if and only if A is a cube in k; - 

(vii) GI, , is isomorphic to a subgroup of Aq zf  and only if x2 + x + 1 has a root in k ;  

(viii) G', , S4. 

Proof: Let f (x) E k[x] be the division polynomial of the 3-torsion points in ~ ( i ) .  

Then f is given by 

f (x) = 7+!j3 = x4 + A'X + B ~ ,  

and the x-coordinates of the 3-torsion points in E ( i )  are precisely the roots of f .  

Furthermore, GL,, is equal to the Galois group of f over k, denoted by G. The 

Berlekamp discriminant of f is a root of x2 + x + 1, which is clearly not equal to zero. 

Therefore the roots of f are distinct. Let be a choice of monomorphisnl G - S4 

after labeling the roots of f .  Then it suffices to categorize @(G)  based on algebraic 

conditions on u,. 
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(vii) The Berlekamp discriminant of f is a root of x" x + 1. The result then follows 

from Theorem 3.16. 

(vi) The D4 resolvent of f is 

R ( x )  = x3 + A4, 

which has a root in k if and only if A is a cube in k.  Suppose a E k is a root of 

R. Then the C4 resolvent of f is C ( x )  := x2,  which does not have distinct roots 

in k .  Therefore, we cannot use Lemmas 3.26. 

(v) Suppose A2 = c3 and B 2  = (c2 + d)d for some c, d E k .  Then f factors as 

( x 2  + c5 + d )  (x'! + cx + c2 + d ) .  

Conversely, suppose f has two quadratic factors. Then there exist a, b, c, d E k 

such that 

f ( x )  = ( x 2 + a x + b ) ( x 2 + c x + d )  

= x4 + ( a  + c)x3 + (b -t d + ac)x2 + (ad + bc)x + bd. 

Equating the coefficients of the above polynomial with the coefficients of f gives 

Substituting a = -c and b = c2 - d into equations ( A . l )  and (A.2) gives 

A~ = C3 and B2 = d(d + c2) 

as desired. 

(iv) This is clear. 

(iii) The result follows directly from Parts (i,u) and (v i i ) .  

(ii) The result follows directly from Parts ( i v )  and (v i ) .  
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(i) From Theorem 3.20, Q,(G) = { e )  if and only if Q,(G) is contained in a conjugate 

of ((1 2)) and Ad. The result then follows from Parts ( i i )  and (vii). 

Theorem A.6 Let k be a field with char k = 3: and let E be an elliptic curve over 

k with j-invariant 0 given b y  

where A, B E k and A # 0. Then 

(i) GI,, is trivial if and only if A is a square in k and x3 + Ax + B has a root in k; 

(ii) GI,, is isomorphic to a subgroup of C2 if and only if x3 + Ax + B has a root in 

k ;  

(iii) GI, , is isomorphic to a subgroup of A3 if and only if A is a square :in k; 

(iv) otherwise,. GI,,, S3. 

Proof: Let f (x)  E k[x] be the division polynomial of the 2-torsion points in E(E).  
Then f is given by 

f (x )  = 14~ = x3 -t AX + B,  

and the x-coordinates of the 2-torsion points in E(%) are precisely the :roots of f. 

Furthermore, G;,, is equal to the Galois group of f over k, denoted by G. The 

discriminant of f is 2A3, which is not equal to zero. Therefore the roots of f are 

distinct. Let Q, be a choice of monomorphisnl G c, S3 after labeling the roots of f. 

Then it suffices to categorize Q,(G) based on algebraic conditions on u,. 

The discriminant of f is 2A3, which has a square in k if and only if A is a square 

in k. Part (ii i)  then follows directly from Lemma 3.16. Part ( i i )  is clear. Part ( i )  

follows directly from Theorem 3.20. Part (iv) is clear since the only nontrivial proper 

subgroups of S3 are A3 and conjugates of ((1 2)) .  
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