USING ABSTRACT STATE MACHINES TO
MODEL A GRAPHICAL USER INTERFACE

SYSTEM
by

Ming (Mike) Su

B.Sc., University of Ottawa, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Computing Science

© Ming (Mike) Su 2006
SIMON FRASER UNIVERSITY
Spring 2006

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Ming (Mike) Su
Degree: Master of Science

Title of thesis: Using Abstract State Machines to Model a Graphical

User Interface System

Examining Committee: Dr. Jiangchuan Liu
Chair

Dr. Uwe Gléasser, Senior Supervisor

Dr. Arthur (Ted) Kirkpatrick, Supervisor

Dr. Fred Popowich, SFU Examiner

Date Approved: Ar‘)r.tf/dﬂ-

ii

(9

<

& vensslibrary

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesis/project or extended essays, if technically possible, to any
medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

A graphical user interface (GUI) system is a visual tool for users to operate computer
applications. In the software engineering world, verifying that the functions of a
GUI system satisfy the perspective of users is one important goal. System modeling
provides an opportunity to verify the functionality of the system before implementing
it.

In this thesis, we model the GUI system of the CoreASM language debugger based
on the abstract state machine (ASM) paradigm, and give a formal specification to the
GUI system. This GUI system model provides a formal mathematical foundation to
specify the architecture and the function form of the GUI system and to specify the
interactive actions between the users and the computer application (the CoreASM
engine). The design approach in this work incorporates both object-oriented and
task-oriented approaches. A process of level-wise refinement is used to solve particular

design problems.

111

This thesis is dedicated, with love, to my parents and my brother!

iv

“Life is finite, while knowledge is infinite.”

—- Zhuang Zi

Acknowledgments

Many thanks to all the members of my committee for their guidance and thanks to
colleagues working in the CoreASM project for discussion and feedback.

In particular, I would like to thank the following:

Dr. Uwe Gléisser, whose guidance enabled me to complete this thesis.

Dr. Arthur (Ted) Kirkpatrick, whose advices assisted me to think over my work
from expectations as an HCI reader.

Mr. Roozbeh Farahbod and Mr. Mashaal Memon. It is much appreciated in the
discussions of the project and to work together.

Additional, I thank my parents and my brother for their patience and supports.

vi

Contents

Approval

Abstract

Dedication

Quotation

Acknowledgments

Contents

List of Tables

List of Figures

List of Specs

Abbreviations

1 Introduction

1.1
1.2
1.3
1.4

Motivation and objectives oL

Thesis organization
Related works . . .

Significance of work

............................
............................

............................

vii

ii

iii

iv

vi

vil

xii

xiii

xiv

xvi

T W W N =

2 Human computer interactive systems 7
2.1 General introduction to HCI 7
2.2 Graphical user interfaces o 0oL 8
2.3 User interface management systems 9
2.4 Scenarios e e e e e e e e e e 13
2.5 Task analysisin HCL 14

2.5.1 Introduction to task analysis 14
2.5.2 Hierarchical task analysis. 15
2.5.3 Usecasetask analysis 16
2.6 Software development life cycle in HCI 17
2.7 System designinHCI. 18

3 Abstract state machines 20
3.1 Abstract state machines oL 21
3.2 Some definitions used in ASMs 22

3.21 Universe e 22
3.22 Function e 22
3.23 Vocabulary 24
3.24 State 25
325 Updateset.« e 25
326 Stepandrun 25
327 Ruleandprogram., 26

3.3 Parallel abstract state machines oo 27
3.4 Non-deterministic abstract state machines 27
3.5 Distributed abstract state machines 28
3.6 Turbo abstract state machines 29
3.7 SUMIMATY . . v v v v e i e e e e e 30
4 Formal modeling approaches 31

4.1 Formal modeling approaches in GUT architecture and functionality design 31

4.2 A specification approach of GUI modeling in the CoreASM project . 32

viii

4.3 SUummary e e e e e e e

The GUI ASM model in the CoreASM project

5.1 Architecture of the CoreASM supporting tool environment

5.2 Actors in the GUL ASMmodel

5.3 Architecture of CASM_GUI
5.3.1 Components of CASM_.GUI
5.3.2 Communication structure in CASM.GUI

5.4 Activitiesin CASM_GUI
5.4.1 Activity specifications

5.5 Interfaces in the GUI ASM model
5.5.1 Interfaces in the GUL ASM model
5.5.2 The GUI « User interface
5.5.3 The GUI < Engine interface

5.6 Conclusion e

Discussion

6.1 Four abstraction levels for the GUI ASM model
6.1.1 The first abstraction level - (the features)
6.1.2 The second abstraction level - (the interface design)
6.1.3 The third abstraction level - (the internal architecture)

6.1.4 The fourth abstraction level - (the concurrency problem) . . .

6.1.5 An example of refining a model in four abstraction levels . . .

6.1.6 Benefit of refinement by levels
6.2 Concurrency issues in the GUI system
6.2.1 GUI ASM model constraints in concurrency issue
6.2.2 GUI ASM model components
6.2.3 Activities in ControlPanelProgram

6.3 Summary e

Implementation

7.1 Visual CoreASM language debugger

ix

35
35
38
40
40
44
48
49
57
57
39
39
61

63
63
64
64
65
66
66
74
5
5
77
78
81

84

7.1.1 Function areasonthe GUI 84

7.1.2 Information organized in a tree structure 86

7.1.3 Runview e e 87

7.1.4 Control panel 0. 88

7.2 Experiment of the ATM model 88
721 ATMmodel 89

7.2.2 Experiments Lo oo 90

723 Conclusion. o o 91

8 Conclusion 96
81 Conclusion e 96
8.2 TFuturework 97

A List of terms used in the GUI ASM model 99
Al Actorsinthe GULASMmodel 99
A.2 Components of CASM_GUI 99
A.3 Signal pools in the components 100
A4 Activitiesin CASM.GUI 100
A5 Signalsin CASM_.GUI 102
A5.1 USERACTIVITYREQUEST 102

A52 PROGRAMV.COMMAND 103

A5.3 MESSAGEV_.COMMAND 103

A5.4 OUTPUTV.COMMAND 104

AB55 RUNV.COMMAND ittt 104

A56 STATEV.COMMAND, 104

A.5.7 UPDATESETV.COMMAND 104

A58 HISTORYV.COMMAND 105

A59 VOCABV.COMMAND 105

B Abstract model of CASM_GUI 106
B.1 Actorsinthe GULASMmodel 106
B.2 Components of CASM_.GUT 107

B.3 Mainrule of CASM_GUIL 114

B.4 Signalsin CASM_.GUI 115
B.5 Interfaces in the GUl ASMmodel 118
B.5.1 The GUI + User interface 118

B.5.2 The GUI « FileStorage interface 118

B.5.3 The GUI < Engine interface 119

B.6 Activities of CASM.GUI 120
B.6.1 Activities e 120

B.6.2 The function isSynchronousActivityRunning() 125

C ATM executable model 126
Bibliography 129

xi

List of Tables

5.1 Components in CASM_.GUI 44
5.2 Signal poolsin componentso 46
5.3 Activities and signals to activate these activities 50
6.1 Asynchronous activities and synchronous activities 79
7.1 The components and the function areas in where the views of these
components are e e e e e e e e 86
A.1 Signal poolsin components. 0oL 100

xii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

5.1
5.2
9.3
0.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7

The Model-View-Controller model 10
The Presentation-Abstraction-Control model 11
User Inteface (UI) design with an ASM approach 12
An example of scenario notation oL 13
Hierarchical task analysis 15
Software development process: the waterfall model 17
Discussion of system specification model 19
CoreASM supporting tool environment architecture 37
AcCtors N ONE USE CASE .+ v« v v v v v e e e e e e 39
Internal components of CASM_.GUI 42
GUI « Engine interface 61
The graphical user interface of the visual CoreASM language debugger 85

The view of astate« . . e 87
Therun view e 87
The control panel88
The states in a successful runo 93
The output in the second step in a successful run 94
The states of an inactived ATM 95

xiii

List of Specs

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10

Features of message view : display messages and clear messages . .. 43
The components in CASM_.GUI 45
Specification of a signal pool 45
Choosing a signal from the signal pool of message view 46
Sending asignal 47
Activity and sub-activity Lo oL 49
Controlled function example L. 58
Monitored function example 58
Activity commands L oo 59
Rules in the GUI « User interface 60
Rules and functions in the control interface of GUI < Engine interface 60
Rules in the access interface of GUI «+» Engine interface 62
The activity ForwardRunActivity 67
The activity ForwardRunActivity is activated in the mainrule 67
The actors in the activity ForwardRunActivity 68
The sequential execution of sub-activities in the activity ForwardRun-

Activity o e 68
The sub-activity getNumForwardStepsRequestedSA 69
The sub-activity forwardRunSA 69
The sub-activity getF'RFeedbackSA 69
API functions used in the activity ForwardRunActivity 70
The activity ForwardRunActivity is activated in the control panel . . 71
Sending requests to other components in activity ForwardRunActivity — 72

xiv

6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
7.1

The component state view

The constraint to activate the activity ForwardRunActivity

State of the activity ForwardRunActivity

The activation of an activity

The parallel executing components

The constraint to activate an asynchronous activity

The constraint to activate a synchronous activity

Synchronous activities and asynchronous activities

The ATM model

XV

73
73
74
77
78
80
80
83
92

Abbreviations

API
ASM
DASM
GUI
HCI
JFC
MVC
PAC

.

PR [w——]
Gy
s,

JIDS
UIMS
ML
VM

P R |

application program interface
abstract state machine
distributed ASM

graphical user interface
human-computer interaction

Java Foundation Classes
model-view-controller
presentation-abstraction-control
user interface

user interface development system
user interface management system
unified modeling language

virtual machine

xvi

Chapter 1
Introduction

This thesis introduces a model for the graphical user interface application created for
the CoreASM project, and gives the formal specification for it. As part of the project,
the Software Technology Lab at Simon Fraser University is developing an executable
working environment [Section 5.1] for the CoreASM language, a language that extends
from pure abstract state machine principles [14]. CoreASM is still under development
in the Software Technology Lab. The graphical user interface application is one tool
in the working environment of the CoreASM language. It provides for interactive
visualization and control of CoreASM simulation runs.

A graphical user interface application is one type of human-computer interaction
system. Human-computer interaction is a huge research field. Computer science,
psychology, information science, and engineering all influence research in this field.
This field focuses on the interactions between computer systems and human users.
Designing computer systems to better present information and to improve user work
performance are some of the goals of this research work.

The CoreASM language comes from the original, basic definition of abstract state
machines given in the Lipari Guide [18]. Abstract state machines are practical for
modeling hardware and software architectures, programming languages, network pro-

tocols, etc. Some applications of ASM-based modeling include the ITU-T standard

CHAPTER 1. INTRODUCTION 2

for SDL [19], the IEEE language VHDL [5], the programming languages Java [28] and

C# [4], and communication architectures [15] [16].

1.1 Motivation and objectives

Abstract state machine (ASM) methodologies have been proven practical for modeling
complex systems. Application examples mostly involve existing systems. One way to
make ASMs practical in industry is to use ASM methodologies to model predictively
during the design phase, rather than for analyzing systems that already exist.

ASM methodologies, such as ground model [8][6] and stepwise refinement [7][30],
can be applied in predictive modeling as well. We need tools to apply these practical
methodologies to industrial designs. The CoreASM project is a step toward applying
ASMs in industry. The project provides a supporting tool environment to make ASMs
executable. Software engineers can do high-level design, experimental validation, and
formal verification of abstract system models in the early design phases with the
CoreASM supporting tool environment.

The graphical user interface application presents execution information for ab-
stract system models. It is a component of the Core ASM supporting tool environment
[Section 5.1]. The purpose of this thesis is to apply ASM methodologies in designing
an interactive system, specifically to the graphical user interface application of the
CoreASM language debugger, using the model-based design approach. The formal
specification of the application is given as the part of the design documents. The
formal specification describes the application on three aspects, the architecture, the
functionality and the interfaces between the user and the graphical user interface
(GUI) application and the underlying CoreASM engine.

The first task of this thesis research is to apply a specification approach based
on the ASM paradigm to formally specify the architecture and the functionality of
the new user interface system. The graphical user interface application did not exist
prior to the project. The development of the application requires predicting the
application features. These features can be captured and be documented as informal

user requirements. The model in the thesis formally specifies these informal user

CHAPTER 1. INTRODUCTION 3

requirements. After the application is built, the model can be used to verify the
prediction on the application features, and to validate the interfaces (APIs) between
systems specified in the second task. The thesis will present the formal model [Chapter
5] and explain the specification approach applied in the process building the formal
model. The user requirement capture and the verification of the application feature
prediction and the validation of the APIs are not covered in the thesis. As the specific
approach applied in the modeling process, the mixed approach of an object-oriented
approach and a task-oriented approach [Section 4.2], and level-wise refinement [Section
6.1} will be discussed in this thesis.

The second task of this thesis research is to use ASM methodologies to specify
interactions between systems. The interactions have been specified as a set of activities
[Section 5.4]. Each activity interacts between the user, the GUI application and
the CoreASM engine. The purpose of specifying these interactions is to know the
information objects exchanged during interactions and the methods used to exchange
these information objects. The above knowledge assists us in specifying interfaces
(APIs) between systems [Section 5.5].

1.2 Thesis organization

The thesis.is organized as follows.

Chapter 2 briefly overviews general design strategies and processes applied in the
development of human-computer interaction systems. Chapter 3 introduces abstract
state machine paradigms. The definitions of basic ASM terms are given in this chapter.
These ASM terms are used to describe the execution processes and the states of ASM
abstract models. The specification approach applied in this thesis is subsequently
explained in Chapter 4. Chapter 5 describes three aspects of the GUI ASM model:
the architecture, the activities, and the interfaces. Chapter 6 provides a discussion of
the formal modeling process carried out during this thesis work. Chapter 7 introduces
the implementation of CASM_GUI, a visual CoreASM language debugger, and then
experiments an actual CoreASM model, the ATM model. Chapter 8 concludes the

thesis and discusses possible future work.

CHAPTER 1. INTRODUCTION 4

1.3 Related works

It is widely recognized that designing a GUI system is difficult. Some researchers are
starting to use formal modeling to design and test GUI systems.

Myers enumerated several reasons why a GUI system is difficult to design in his
technical report [23]. In addition to designing any complex system, GUI system design

has the following specific problems.

— Designers have difficulty learning the user’s tasks.
— The tasks and domains are complex.

— There are many different aspects to the design which must all be balanced,
such as standards, graphic design, technical writing, internationalization,
performance, multiple levels of detail, social factors, legal issues, and im-

plementation time.

— The existing theories and guidelines are not sufficient. They are too general

or too specific, and no one theory or one guideline can address all issues.

— Iterative design is difficult. There are a few important issues needed to be
considered. To get real users who actually use the system is important in
iterative design. Also, it may be taken many times to do iterative testing on
one particular problem in order to make sure the solution to that problem

is correct.

Formal model specifications can be used for communication between designer and
implementer, and for analysis about the system and behaviors of the system. Designer
and implementer would have a better understanding about user tasks after reading
the formal model specifications.

Standard software engineering formalisms can be used to specify an interactive
system. There are three brands of formalism, model based, algebraic formalisms,
temporal and deontic logics. Model-based specifications define the state of a system
and the operations which change the state. Model-based formalisms use precisely

defined mathematical notations to describe the behavior of a system in an abstract

CHAPTER 1. INTRODUCTION 5

language. The major model-oriented specification notations are Z and VDM and
ASM. For example, Z has been used to specify the GUI system, the presenter [31].
Algebraic specifications describe the effects of sequences of actions. The architecture
of the system will not be specified with algebraic specification notations. The algebraic
specification notations include Larch and ACT-ONE. ACT-ONE is the functional part
of the ISO standard language LOTOS. Temporal and deontic logics have been used to
specify certain properties of actions. Temporal logics describe when actions happen,
and deontic logics describe permitted actions and responsibility.

Some formal models for GUIs have been proposed [22][31]. They mostly model the
actions of a GUI’s internal objects. One example of this kind of model was developed
by Atif M. Memon, Martha E. Pollack and Mary Lou Soffa [22]. Their GUI model
is constructed with a set of objects, a set of properties of these objects, and a set of
actions on the change in the properties of these objects. The objects in their model are
windows, menus, buttons, etc. This type of GUI models describes the detailed design
of a GUI system through the actions of the GUI objects. The interaction between
the GUI and other systems is not the model’s concern. By contrast, the GUI model
introduced in this thesis makes the interaction between the GUI application and the
CoreASM engine a key resarch issue.

There are some researchers in the ASM field currently working on an executable
ASM environment. They include the Spec# programming system project (successor
to the ASML project) {1] and the XASM project [2], etc. The GUI application is a
component of the tool developed in these projects. This is similar to the GUI tool
developed in this thesis work. However, the GUI tools in the above projects are simple

implementations. No ASM-based models are provided with them.

1.4 Significance of work

The GUI application described in this thesis was modeled with the help of ASM
methodologies, specificially through a mixture approach of object-oriented design and
task-oriented design approaches, and level-wise refinement. ASM methodologies have

been used here to specify the functions of a graphical user interface system. They

CHAPTER 1. INTRODUCTION 6

are also used to define interfaces between interactive systems. The work shows that
the ASM methodologies specified in this thesis can be applied to predictively model
a general interactive system.

The GUI model described in this thesis was constructed as a foundation for ana-
lyzing the function form of a GUI system. The GUI components in the model execute
independently. The functions of the interactive system are specified as activities. Each
activity can be refined with its own detailed specification. This kind of independence
provides the ability for the GUI model to customize the architecture and the functions
of a GUI system according to requirements.

The GUI model can be used to compare the behavior of the model to the imple-
mentation of the system through the use of scenarios and to discover any errors after
the GUI model gets well-refined for execution. This evaluation can be done in the

testing phase.

Chapter 2

Human computer interactive

systems

Graphical user interface is one type of human-computer interaction (HCI) system. The
basic goal of HCI is to make computers more user-friendly and easier to use. Some
methodologies and design processes can help developers achieve this goal when they
design a HCI system, such as task analysis, scenario design and software development

life cycle models.

2.1 General introduction to HCI

The term human-computer interaction has been widely used in computer research
since the 1980s. During the past three decades, many different types of computing
devices have come into popular use, especially after the introduction of the personal
computer in the 1980s and the spread of the Internet during the 1990s. Computing
devices and the computer technologies behind these devices are changing people’s
work and personal lives.

Computing devices are becoming an important communications medium. People

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 8

use computers at work to keep in contact with colleagues or customers and to com-
municate with their relatives and their friends off work. One significant research field
is to studying on the ways that humans use or interact with computers. This research
field is not limited to computer science; psychology and engineering technologies are
being applied in this research field as well. Lately, information science is also influ-
encing HCI research. The computer can collect information and analyze it. Managing
information during interactions between humans and computers is one issue in this
field. Researchers are doing their work to improve user work performance and to
figure out how to use theories to design better computer systems.

Human-computer interaction is defined as the interaction between user and com-
puter. A user is not necessarily one human user. It may be a group of human users.
These days the term computer is similarly not restricted to a simple computer. More
and more machines have integrated with computers. These computing-enabled ma-
chines offer users more functions, and require more types of interactions with users.
Researchers view any system that consists of computing-enabled components as a

kind of computer.

2.2 Graphical user interfaces

A Graphical User Interface (abbreviated as GUI) is one type of interface in human-
computer interaction. Generally, a GUI is a visual operation display that takes advan-
tage of a computer’s graphical capabilities on a monitor screen to offer the computer
operator the ability to operate computer applications or computer systems. The
computer operator commands computer applications through the Graphical User In-
terface.

A Graphical User Interface assists the user to reduce the memory time required to
remember the complex command language of computer applications. It can provide
the user with a certain degree of guidance to do the next operation. For example,
some buttons are disabled after a user does an operation. This forces the user to
operate in the correct way and lets the user handle problems directly. A wizard is a

good example of a way to guide a user’s operations.

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 9

A Graphical User Interface has three main components, a windowing system, an
imaging model and an application program interface (API) [21]. The windowing
system builds windows, menus, buttons, dialog boxes and other components. The
imaging model defines graphics and fonts for a system. The application program
interface for the GUI enables a system to draw graphical components on screen.
There are a few common characteristics to a graphical user interface. They include
a pointer (a cursor on a screen), a pointing device, icons, buttons, toolbars, menus,
a desktop, windows, and dialog boxes. These common characteristics of a graphical
user interface reduce the learning curves when users move from one application to
another.

The first graphical user interface was designed by Xerox Corporation’s Palo Alto
Research Center in the 1970s. It did not gain commercial success. Apple Computer
brought the graphical user interface to its Apple Macintosh and made the graphical
user interface the most popular interface for the modern personal computer. Over the
past three decades, the graphical user interface has spread from the personal computer
to other computer devices, such as handheld devices.

There are three main paradigms influencing modern graphical user interface stan-
dards. Apple Macintosh was the first popular GUI on a personal computer. It intro-
duced some common graphical user interface elements, such as menus, point-and-click
and mouse-driven processes. The IBM SAA invented keyboard short-cut keys for the
graphical user interface. The X-windows system, mostly used by Unix and its succes-
sor Linux, works directly with a network. The display and the applications can run on
separate computers in a network. The three paradigms have different Look-and-Feel,

but share most of the same graphical user interface characteristics. [21]

2.3 User interface management systems

Some research has been done toward providing a design platform for programmers
developing interactive systems. This interactive system design platform consists of a
set of services, including a conceptual architecture for interactive environments and

techniques for implementing application semantics and its presentations [12]. This

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 10

View

Figure 2.1: The Model- View-Controller model

design platform is called User Interface Management Systems (UIMS). Some people
prefer another term, User Interface Development Systems (UIDS)[12].

One popular model for UIMS is the model-view-controller paradigm, or the MVC
paradigm. This paradigm comes from the Smnalltalk programming environment. The
central architecture of the Java Foundation Classes (JFC) also relies on the MVC
paradigm.

A system making use of the Model- View-Controller paradigm has three elements.

— Model: the application logic of the program. It is an abstraction that

represents the nature and state of a user interface object.
— View: the representation of a user interface object to users.

— Controller: the component that synchronizes the model and its view. It
keeps the view representative of the model’s nature and state. It also

accepts user inputs to update the model.

The model is the internal logic of the application. It maintains the states of a user
interface object during interactions.
The view presents users with the nature or the state of a user interface object. In

a GUI, the view renders user interface objects on the screen.

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 11

Abstraction ﬁ.—b Presentation

Figure 2.2: The Presentation-Abstraction-Control model

The view must pfesent the model. Therefore, a controller is added to manage
both the view and the model, and to provide a communication bridge between them.
When the model is updated and the state of a user interface object is changed, the
controller notices the view and refreshes the view to match the change in the model.

In this Model-View-Controller model, the view is the output channel to the user,
presenting user interface objects. The input channel is the controller. Receiving input
is the secondary role of the controller, which mainly acts as a bridge between the view
and the model. The controller receives user inputs and then updates the model. The
view may refresh with each model update.

The main idea in this Model- View-Controller paradigm is to separate the nature
of a user interface object from the presentation of it. One model can bind with
different pairs of input-output channels, views and controllers. The model is reusable,
portable, and independent of devices. It therefore can reduce the development cost.
In addition, the view-controller pair is customizable.

The Model-View-Controller is linked to a particular programming language envi-
ronment. Coutaz suggests a more conceptual architecture than the MVC model. The
architecture suggested by Coutaz is the Presentation-Abstraction-Control model, or
PAC model [10].

The PAC model follows the MVC paradigm in that it separates the application

semantics from the presentation of the application. The abstraction in the PAC model

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 12

Software Engineer
View

Ui Designer
View

Abstract
Model

t
i
i
i
i
i
i
i
i
i
i
i
i
i

Presentation

Figure 2.3: User Inteface (UI) design with an ASM approach

abstracts the application’s semantics. The presentation takes charge of the view of
the application. Both the abstraction and its presentation need the control to keep
consistent with each other. In the PAC model, the input and output channels are both
grouped into the presentation. The user does not interact with the control directly.

Both the MVC model and the PAC model are proposed for the implementation of
a user interface system. To a software desiguer, the abstract model and its presenta-
tion are two important issues in developing a user interaction system. The controller
in the above two models becomes the programming language that supports the com-
munication between the abstract model and its presentation. It becomes a choice
among implementation platforms and programming languages in the implementation
phase.

The abstract model abstracts the internal logic and states of an application. It is
obvious to a software designer. There is another set of abstractions supporting the
presentation. The presentation abstraction is visible to the user. It should also be
meaningful to the user. The GUI designer should bridge the two sets of abstractions
together and keep them consistent.

The abstract model is the core of an application. A system designer should focus on
the abstract model at the beginning of development. The GUI ASM model discussed

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 13

User opens 2 file in a computer application:

% User clicks “open...” in the menu of the compuler application on the computer screen,

Application reads file system;

¢ Application displays the file-chooser window. The file-chooser window shows files in the file
system;

%* User navigates file system through the file-chooser window;

%+ User picks one file in the file-chooser window;,

< TUser clicks the “OK” button on the file-chooser window,

** The file-chooser window disappears;

% Application opens the file chosen by User and reads it from the file system;

% Application displays the file on screen.

o

Figure 2.4: An example of scenario notation

in this thesis is this abstract model [Chapter 5]. The presentation for the system,
with specific GUI control elements, is left for the GUI designer.

2.4 Scenarios

Scenarios are stories of interaction processes. Software engineers write scenarios to
record a set of interactions between systems and their environments. Scenarios are
informal descriptions of these interaction processes. They are a well-known technique
in the HCI field. Like a story, a scenario has actors and a description of interaction be-
haviors. Readers can learn and understand a system’s interaction processes and figure
out some functions of the system. Figure 2.4 gives an example of a scenario written
in plain text. Scenarios can also be combined with sketches and screen shots. These
are called story boards, and are used to provide details about interaction processes.

Scenarios can be useful throughout the system development life cycle. Scenarios

— Verify that the design of a system makes sense to both the user and the
designer at the design phase;

— Enable communication with other parties, including users, designers, pro-

grammers and testers, during the entire development process;

— Validate other models of the same system. Testers can also design test

cases dependent on scenarios.

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 14

2.5 Task analysis in HCI

Task analysis is often used in the specification phase of design. Hierarchical task

analysis and use case task analysis are two popular task analysis techniques.

2.5.1 Introduction to task analysis

Task analysis is a process that involves the analysis of a task performed in a system
and its environment. The term Task refers to a unit of activities. These activities
are performed to achieve certain goals. To analyze tasks in HCI, it is necessary to
analyze the activity that happens between an application and a user.

Task analysis can be applied in various fields, not only in computer science. There-
fore, computer devices are not essential components in a system when we talk about
task analysis.

Another thing should be clarified about systems. A system in task analysis is not
a single system or application to be developed. It is a combination of an application,
users, the system that supports the application, and other environmental factors.

A task has individual goals to achieve. We link a series of tasks to realize longer-
term goals. This series of tasks is called a process, sometimes called a business process.
One example of a business process is sending a piece of regular mail to a receiver.
There are three main tasks in this process. Sender drops mail in a post office box;
postal company delivers mail; receiver receives mail.

Task analysis is normally applied to analyze an existing system. The system
exists, and analyst learns the system by observing the system’s behaviors. However,
task analysis is also useful when developing a new system. The analyst can often
observe a similar existing system and then design a new system. This observe-design
process contributes to the specification phase of development.

Task analysis has the following objects.

— Goal: understand the individual and overall task goals.
— Actors: understand who acts in each task.

— Environment: understand the environment that a task is performed in.

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 15

Library
book check-
out
Sequence: 1-2-3-4
1 2 3 4
Validate Validate Record Desensitize
borrower book check-out book for
check-out
Sequence: 1-2-3 Sequence; 1-2
1 2 3 1 2
Scan Check if Check if Scan book Check if
borrower's borrower is borrower book is
library card avalid can borrow allowed for
library more books check-out
member

Figure 2.5: Hierarchical task analysis

— Actions: understand the actions in task and the order of those actions.

— Precondition: understand when and if preconditions exist when a task

starts.

2.5.2 Hierarchical task analysis

Hierarchical task analysis is one standard approach to decomposing tasks. It involves
dividing a main task into a few subtasks. The completeness of all subtasks ensures
that the main task is completed. Subtasks can be divided into sub-subtasks, until
the details of each task reach an acceptable abstract level. The analyst needs to do
the following analysis: identify actors and actions for the tasks, plan the tasks, and
analyze the preconditions of the tasks.

Tasks are organized by their goals. Certain subtasks are completed to achieve a
goal one level up in the hierarchy. Hierarchical task analysis makes the to-be-analyzed

tasks organized. An analyst can easily track the tasks. The relationships of the

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 16

subtasks are clear. If an analyst applies hierarchical task analysis during the design
phase, it helps to plan the tasks in the process. Some subtasks can be performed
simultaneously with other subtasks; some cannot because their parent tasks should
be processed in a sequential way. This is one example of how an analyst can assess
system performance by making comparative predictions as to the sequences of actions

with the help of hierarchical task analysis.

2.5.3 Use case task analysis

The term use case task analysis [20] [3] is employed by some object-oriented software
design methodologies. One example is building a task model with use cases in UML
modeling [25].

Use case task analysis has two objects, actors and use cases.

Actors:

An actor is basically a user of the system. It is actually a user type or category.
As defined here, a user is not a specific person. The important concern with actors is
the role of users in the system operation.

Use Cases:

A wuse case is a scenario that describes a use of the system by actors, interacting
with the system to accomplish a goal. A scenario is used to identify the main tasks
that should be performed by actors.

The use case task analysis is normally undertaken to determine if a new system is
satisfactory from the user’s perspective. A use case should describe the way the tasks
are performed when the new system is in place. A use case should also be documented
in a way that is easy to understand for non-technical persons since a use case is usually
a medium for developers and customers to confirm that the new system satisfies the
customer’s needs.

Use cases can be refined incrementally [26]. Analysts can set up a use case at
the beginning, and then decompose it into separate small use cases. Each time, the

analyst can pay attention to individual use cases.

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 17

Requitements L_
specification

A

Architectural
design

b

Detailed design

FY

Coding and
testing

Operations and
maintenance

Figure 2.6: Software development process: the waterfall model

2.6 Software development life cycle in HCI

Software engineers have developed techniques to manage the software development
process. A few models have been built, such as the Waterfall Model, the Spiral Model
and the Ewvolutionary Model. These techniques can also be applied to describe the
process of the development of a human-computer interaction system. I am going to
use the Waterfall model to discuss the software development life cycle in HCI.

The waterfall model displayed in the Figure 2.6 is an improved version of the
original waterfall model. The need for improvement stems from the fact that the
requirement-capturing activity in the requirement specification phase is often not
properly carried out. The requirement specification may be inconsistent or incomplete.
This situation exists normally in a real development process. The developer may go
back and change both the specification and the design even during the late phases of
the project.

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 18

System specification modeling can make it possible to start the evaluation process
at a much earlier stage of the development. In order to test the usability properties
of a design, the developer needs a working system to observe interactions between
users and this working system and then to evaluate this working system to measure
its performance. It is not wise to delay the evaluation until the system is fully im-
plemented. By contrast, system specification modeling can generate a working model
for an evaluation before complete system implementation. This working model makes
evaluation possible at a much earlier development stage. Users can now be invited to
do evaluation on the system specification model at an early stage. Early stage evalu-
ation reduces errors in the requirement specification. Therefore it can also reduce the
number of times that the designer has to revisit the earlier development phases.

System specification modeling assists the developer to efficiently build a correct
system. Normally, the developer attempts to capture requirements based on a user’s
perspective. However, the user normally cannot imagine how to interact with a system
that does not exist. Nor does the user generally have a clear understanding of the
tasks and activities performed by the new system. The developer in turn cannot
gain a clear sense of the user requirements. Dix, Finlay, Abowd, and Beale described
this chicken-and-egg puzzle in their book [12]. System specification modeling may be
a solution to this puzzle. First, capture requirements that derive from what users
imagine about the new system. The developer builds a specification model for these
requirements and then invites users to evaluate it. The model is continually corrected
through discussions between users and the developer, until the model agrees with the
users’ views. The GUI ASM model built in this thesis is this kind of specification

model, that has been built in order to verify the prediction about a new system.

2.7 System design in HCI

Human computer interactive system design needs to involve multiple design method-
ologies and design processes. ASM modeling design is one agile methodology to design
an interactive system at the early design phase. An ASM model can be used to de-

scribe the business logic of a system and to abstract the appearance description from

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 19

/ \ Discussion between user
and developer

Capture
requirements

Model
specifications

Implementation

Figure 2.7: Discussion of system specification model

the system design documentations. It separates the work between system designer
and UI designer and provides UI designer a design freedom. Many task analysis tech-
nologies are design tools for system designers and assist them to refine their work.
Scenarios design is another tool for system testers to build test cases. System testers
can use these test cases to validate the consistence of the ASM model and the imple-

mentation of the system.

Chapter 3
Abstract state machines

The Abstract State Machine (abbreviated as ASM) paradigm, introduced by Yuri
Gurevich in 1988 [17], offers a framework for high-level system design and analysis.
It has been proved that ASM methodologies are practical in modeling and analyzing
different sizes of systems, from small to complex. A few research groups have been ap-
plying ASM techniques in different areas, such as hardware and software architectures,
programming languages, network protocols and algorithm verification.

ASMs offer methods for specifying systems at a highly abstract level. ASMs are
both abstract and executable. Their abstract nature allows the system designer to
focus on system concepts and not to be disturbed by the details. ASMs can specify a
system at different abstract levels. The system designer can refine the system from a
more abstract level to a less abstract level by providing more details and making more
design decisions. The executability of a well-refined ASM assists system designers to
verify and validate designed systems before coding. ASMs have precise semantics.
They are constructed mathematically and logically.

ASMs can be applied to a predictive model or be used to describe an existing
system. Many ASM researchers have successfully validated existing systems, such
as Java [28], with ASM methodology. ASMs can also be employed to model new

systems. The GUI ASM model introduced in this thesis is an exercise in modeling

20

CHAPTER 3. ABSTRACT STATE MACHINES 21

such a predictive system. System designers do not usually know or understand most
of the details of new systems at the beginning. They do not want to make many
design decisions in the early design phases. Abstraction is a good tool for system

designers to start their work with.

3.1 Abstract state machines

A basic Abstract State Machine (ASM) is defined as a set of transition rules of a form

if Condition then Updates

which specify the transition between two abstract states. These two abstract states
are the states before and after an abstract state machine executes.

A condition (also called as guard) is a first-order formula without free variables. A
condition evaluates to true or false. The term updates refers to a finite set of updates

of functions with a form

flty, ...)=t

Functions with certain parameters get updated in parallel. The value of a function
is changed (updated) to a new value. Briefly, updates occur when a finite set of
functions change their values during the transition process from one state to another
state.

The execution of an ASM machine is an update process. Starting from a given
state, the values of finite functions with indicated parameters update in parallel to
new values, according to rules specified by the ASM. If the updates of these functions
are consistent, then a new state is achieved.

An ASM model has two objects: an ASM machine and its environment. The
ASM machine is a core object in ASM modeling. The ASM machine always executes
in an environment. The environment constrains that ASM machine. The ASM ma-
chine communicates with its environment through an interface. This interface will be

discussed in the section Function [Section 3.2.2].

CHAPTER 3. ABSTRACT STATE MACHINES 22

An ASM machine consists of three components.

— Vocabulary : definitions of functions and universes [Section 3.2.3].
— Initial state: the beginning state of the ASM machine.

— Program: the main rule of the ASM machine.

3.2 Some definitions used in ASMs

This section introduces some terms used in ASMs. People use these terms to describe
the execution of an abstract state machine. Because the GUI ASM model is built to
specify a GUI application tool, that helps users of the tool to explore executions of
an ASM machine, we will see these terms many times in the description of the GUI
ASM model.

3.2.1 Universe

Universe is a set of elements used in an ASM machine. Some books call it the domain.
An ASM machine can have multiple universes existing in it, such as an integer universe

or a character universe.
— F2PW R & N S S R Y R & N N N |
Ul = { a y b y c, t , k 5 (2] }

3.2.2 Function

A function is expressed in a form

f(.’IZl, ,.’I?n)

A function is identified with its function name and its arguments (arities). This
identification is the signature of a function. When arguments have been assigned, a
function returns a certain value. A function signature and its indicated parameters

and the value of the function with those parameters construct a location. A location is

CHAPTER 3. ABSTRACT STATE MACHINES 23

like a memory unit. The combination of function signature and indicated parameters
is the location name. The value of the function with those indicated parameters is
the value stored in that location. We say that value is the value of that location.

With particular parameter values (¢, ..., &), the location for the function f(z,
con Tn)is (fl(m, ..., T), (t1, ..., &)), or more concisely f(t1, ..., t,). The value of
the location is the value of f(%;, ..., t,).

Functions in ASMs are classified into two groups, static functions and dynamic
functions.

A static function does not change its value during the execution of an ASM ma-
chine. This means that the value of a function with given parameters does not depend
on the state of the ASM machine. The values of static functions are constant in all
states.

A dynamic function can change its value during the execution of an ASM machine.
The values of these dynamic functions may differ according to the state of the ASM
machine.

Dynamic functions can be divided to three subclasses further, depending on the
communication methods between an ASM machine M and its environment.

Dynamic functions ! can be described as

— Controlled,
— Monitored,

— Shared.

A controlled function can be updated but only updated by the ASM machine M.
It is internal for M.

A monitored function can be updated and only updated by the environment. The
ASM machine M can read the value of the monitored function. The function is

external for M.

!Some books declare there is another subclass of dynamic function, the out function. An out
function is updated but not read by ASMs machine M and is read but not updated by the environ-
ment or other agents. These out functions are most used in multi-agent systems. They are a kind
of controlled function [9]. Therefore, the out function is not listed here.

CHAPTER 3. ABSTRACT STATE MACHINES 24

A shared function can be updated by both the ASM machine M and its environ-
ment, and can be read by both.

Controlled functions, monitored functions and shared functions construct the in-
terface between the ASM machine M and its environment. They provide channels for

both communication and interaction.

3.2.3 Vocabulary

A wocabulary is a finite collection of signatures of functions and universes. The sig-
nature of a function contains the function name and a fixed number of arities. Two

signatures of functions follow:

sum(a : Integer, b : Integer)

and

sum(a : Integer, b : Float)

In strong-typed ASMs, two functions are different because of the difference in the
types of the arities b; in weak-typed ASMs, two signatures identify the same function
since the function names are the same and the number of arities are the same.

The Lipari guide [18] does not mention whether ASM is strong-typed or weak-
typed. Most of the ASM tools available have incorporated a strong-typed system into
their specification languages (Spec# [1] and XASM [2]). Strong typing makes these
languages possible to do type checking at compile time, and helps modelers of ASM
find errors at the earlier time, in contrast to the run-time error checking. Weak-typed
ASM relies heavily on run-time error checking to produce correct programs. The
CoreASM language and its toolset focus on early phases of the software development
process. It is recommended to build a rapid prototype with ASMs, starting with
abstract and weak-typed models in early analysis and specification, with the Core-
ASM language. Weak-typed ASM satisfies this purpose. Modelers of ASM now have
an ability to ignore typing restrictions when building ASM models. One particular

CHAPTER 3. ABSTRACT STATE MACHINES 25

example is that identifiers can be used without declaration. Therefore, the CoreASM

language has been developed as a weak-typed ASM language.

3.2.4 State

State is the notion of mathematical structures of elements from universes. A state A
is a nonempty set X together with functions in vocabulary and the predicates. The
set X is called the base set or superuniverse of A. A function signature with arity ¢

is interpreted as t-ary operation over X.

3.2.5 Update set

An update of A is the pair of a location loc of A and an element v of A, (loc, v). It
is in an assignment form f(%, ..., t,) := v, read as changing a value v in a location
loc (locis f(t, ..., t,)).

Two updates (loc, v1) and (locy, vg) clash if loc; = locy but vy # vs.

An ASM machine M may fire a set of updates simultaneously from a state A,
to reach another state A,. This set of updates is called an Update Set. In the state
Ay, the value of the location f(t, ..., t.) is v;. To fire the update, the value of the
location f(t, ..., t,) is changed to v. Because updates are fired simultaneously, M
may assign different values to one location. If the clash happens during updating, we
call this update set inconsistent. The new state of M will not be reached when an

inconsistent update set exists.

3.2.6 Step and run

An ASM computation step is the process in which ASM machine M simultaneously
fires all updates for all transition rules in a given state to reach a new state. If the
update set in this process is consistent, then a new state of M is reached. If at least a
pair of updates clashes, M will halt. The new state cannot be achieved at this step.
A run is a sequence of steps completed by an ASM machine M on a timeline. The

ASM machine M changes from one state to another state. The number of steps in a

CHAPTER 3. ABSTRACT STATE MACHINES 26

run may be endless. Therefore, the number of states of the ASM machine M may be

infinite in one run.

3.2.7 Rule and program

As per the definition of ASMs [Section 3.1|, the basic rule in ASMs is the if-then
transition rule. Generally, a rule in ASMs is one of the following basic rules or one
compounded rule constructed from these basic rules.

The basic rules include the following.

— Skip rule: “ skip ”. Causes no change.

— Update rule: “f(t;, ..., t,) := v”. Assigns an element or expression to a

location.

— Conditional rule: “ ¢f e then R, else Ry”. A branch operation. Here
e is a Boolean expression. To execute this conditional rule, check e. If e is

true, execute R,. If e is false, execute Rs.

— Block rule: “ do wn-parallel R, R,”. Executes rules R;, R, simultane-

ously.

— Import rule: “ émport z R,(z)”. Discovers any element z of the reserve

and executes the rule R, (2).

Rule is used usually to describe the behaviors of ASM machine M. Function in an
ASM machine is different than a rule at this point. A function in an ASM machine
is a formula, computing expression of values of the locations and elements in the
universes. It does not describe the execution of ASM machine M. The meaning of
function at this point is different than it is in other computing languages such as C.

Program is the main rule of ASM machine M. It describes one step of M. It executes
repeatedly until the state does not change or no rule is applicable any more or the
update set fired in one step is empty [9] (successful termination). A program may

halt because of an inconsistent update set (failed termination).

CHAPTER 3. ABSTRACT STATE MACHINES 27

3.3 Parallel abstract state machines

When we list the Block rule (do-in-parallel rule) as one of basic rules in ASMs,
it declares that an ASM machine possesses a simultaneous execution ability. It is an
important feature to support refinement in parallel or distributed implementations.

A do-forall rule is introduced here to enrich the notion of ASM rules.

— Do-forall rule: “ forall z with ¢ do R,(z)”. It executes the rule R, (z)
for each z satisfying a given condition ¢. z will have some free occurrences
in R.

For each rule R;(z), there is a parallel ASM to simulate the given rule step for

step.

3.4 Non-deterministic abstract state machines

In contrast, there is another kind of execution. An ASM machine chooses an z to
execute the rule Ry (z), rather than executing for all z.

A choose rule is introduced here.

— Choose rule: “ choose z with ¢ do R;(z)’. Executes the rule R;(x)

for an z satisfying a given selection property ¢.

The choose rule causes non-determinism in ASMs. The choose method is not
specified in the choose rule. It produces a problem. The user can not predict which x
will be picked up without executing the ASM machine actually. There is a positive side
to this non-determinism in ASM methodology. It helps the designer to avoid dealing
with the details of the scheduling of rule executions. In the CoreASM supporting
tool environment, a designer can provide a particular choose method by supplying a

plug-in [14].

CHAPTER 3. ABSTRACT STATE MACHINES 28

3.5 Distributed abstract state machines

Basic ASM (sequential ASM) and parallel ASM are ASM with a single agent. Dis-
tributed Abstract State Machines (DASMs) have a set of agents. Agent is an abstract
state machine executed on its own local state. The agents interact by reading and
writing on the shared locations in the global state of this distributed abstract state
machine.

A run of distributed abstract state machines is defined as a partial order of moves
of finite numbers of agents. A single computation step of an agent is called a move
of this agent. The moves of a single agent can be atomic or durative. Agents in
distributed ASM may execute their computation steps concurrently.

Formally, a run p of a distributed ASM M is given by a triple (M, A, §) satisfying

all of the following four conditions [18]:

1. M is a partially ordered set of moves where each move has only finitely many

predecessors.

2. Xis a function on M associating agents with moves such that the moves of any

single agent of A are linearly ordered.

3. ¢ assigns a state of A to each initial segment Y of M, where 6(Y) is the result

of performing all moves in Y; §(Y) is an initial state if Y is empty.

4. The coherence condition: if z is a maximal element in a finite initial segment X
of M and Y = X - {z} then A\(z) is an agent §(Y) and 6(X) is obtained from
3(Y) by firing A(z) at 6(Y).

The definition of a run of a distributed ASM did not specify the order of executions
of different agents. This offers a benefit to model builders, a freedom to design and
analyze models for distributed systems without a prior commitment of scheduling.

The GUI ASM model in this thesis describes a GUI application system with
multiple internal components and multiple actors (CASM_User, CASM_Engine, File
Storage, and CASM_GUI). Each actor is one agent in the distributed system. An

CHAPTER 3. ABSTRACT STATE MACHINES 29

amount of synchronous and asynchronous interactions exist between internal compo-
nents and actors [Section 6.2.3]. In order to simplify the model, internal components
are specified as parallel ASMs at the very high abstraction level. According to re-
quirements about the system, internal components have been refined to distributed
ASMs at the lower abstraction level. One example is refining the model by applying
the special synchronization and communication concepts. Activities specified in the
GUI ASM model are synchronous interactions and asynchronous interactions between
internal components and actors. At the third abstraction level [Section 6.1.3] of the
GUI ASM model, the moves of the agents are atomic. Then, the moves of the agents
have been refined to durative moves when the concurrency problem of the activities
[Section 6.2.2] needs to be discussed at the fourth abstraction level of the GUI ASM
model.

The internal components and the actors in the GUI ASM model can be refined
as agents in distributed ASMs. This offers some independence to these components
and actors in the two aspects, the architecture and the execution. This kind of inde-
pendence provides the ability for the GUI ASM model to customize the architecture

and the functions of a GUI application system according to requirements.

3.6 Turbo abstract state machines

Turbo Abstract State Machines (Turbo ASMs) provide a practical composition and
structuring principle that extends the basic ASM. The execution of a turbo ASM
merges all update sets generated in individual sub-machines. A sub-machine is de-
noted as a rule R(#, b, ..., t,). Each sub-machine is treated as a black box, hiding
its local states and local updates. The state of a turbo ASM cannot be updated until
the merging of all update sets generated by all sub-machines is successful. If a local
update set in a sub-machine is inconsistent or the merging of update sets generated
by the sub-machines fails, the turbo ASM halts (failed termination).

The turbo ASM has introduced some structuring programming principles into
basic ASM, such as seq, iterate, sub-machine, recursion and value-return. The seq -

construct has been used in the GUI ASM model in this thesis to specify the sequence

CHAPTER 3. ABSTRACT STATE MACHINES 30

of activities.
The turbo ASM seq -construct combines the simultaneous atomic updates of

basic ASMs in a global state with sequential execution.

— Seqg-construct: “R; seq R,”. Starts to execute the rule B, only when the

rule R, is completed and the update sets in R; are consistent.

The merging of update sets generated by rules R; and R, is defined as the following.
One update is (loc, v), where loc is a location and v is the value in that location. U
is the update set generated by the rule Ry; V is the update set generated by the rule
R;; W is the update set that results from the merging of U and V. W is also the
update set of the turbo ASM in that step.

W— { {(loc,v) € U | loc ¢ Locations(V)} UV if U is consistent,

U otherwise

The definition implies that turbo ASM will get stuck at the first inconsistent rule.

3.7 Summary

Abstract state machine is used to build a model of a system and to describe the
behaviors of the system. Parallel ASM, distributed ASM, and turbo ASM have been
used in the thesis to build the GUI ASM model. After the ASM model is built,
system designer can validate experimentally by executing the model in the CoreASM
supporting tool environment and watching states and update sets of the ASM model

in different runs.

Chapter 4
Formal modeling approaches

Formal modeling helps build more robust systems. ASM methodology was applied in
the thesis research to formally specify a GUI system.

4.1 Formal modeling approaches in GUI architec-

ture and functionality design

People often build a model before implementing an interactive system. The model
is a structural description of the relevant information about the interactive system.
A designer can use this model to specify and analyze the interactive system to be
developed. This approach is often called the model-based design approach. UML is
one technique applied in this kind of modeling.

In design, designers can use a few kinds of models to describe the system to be
designed. These kinds of models include, but are not be limited to task models,
user models and interaction models. These models provide particle views about the
system. Not a kind of model can represent all the information about the system.
Task model describes information about tasks that the system performs [32][13]. User

model can offer information about user preferences and about forms of interaction [11].

31

CHAPTER 4. FORMAL MODELING APPROACHES 32

Interaction model can offer information about interaction and about user interface
elements [22][31]. The GUI ASM model in this thesis has captured the architecture
of the GUI application system and the tasks of that system. Each task is specified
as an activity in the GUI ASM model. The interactions between users and the GUI
application in each activity have been described at the third abstraction level of the
model [Section 6.1.3]. There exists a difference between the GUI ASM model and
an interaction model. No actual user interface elements have been specified in the
GUI ASM model when talking about interactions. And, this thesis has not discussed
the user model of the GUI application system. At a high abstraction level, the GUI
ASM model in this thesis is more like a task model. A task model can be usually
modeled in either of two approaches, the object-oriented approach and the task-based
approach.

The traditional approach in UML is object-oriented. Designers identify the objects
of the proposed interactive system and then analyze the activities of these objects.
This very successful approach is currently being widely applied in the computer in-
dustry. In recent years, the model-based design approach has developed a new trend.
Designers now focus on the tasks and the users of an interactive system. The tasks of
the interactive system are identified first, and then the objects involved are manipu-

lated. This approach is called a task-based approach. [29]

4.2 A specification approach of GUI modeling in
the CoreASM project

The object-oriented approach and the task-oriented approach are both applied through-
out the whole modeling process, in different stages. Then a process of refinement is
used to solve development problems level by level [Section 6.1]. The combination of
the two approaches, plus level-wise refinement, makes the system designer consider
the specification of such a system without resorting to heavyweight formal models at
the beginning stages. Most designers would prefer to consider lightweight models in

the initial interaction design [27].

CHAPTER 4. FORMAL MODELING APPROACHES 33

At the beginning stage of modeling, an object-oriented approach using UML is
applied in this project just as it would be with a traditional approach. The first step
is to identify the actors in the system. One of main purposes of GUI modeling in
this project is to identify the functions and the communications between the GUI
application and its environment, especially between the GUI application and the
CoreASM Engine. Therefore, they are two important steps to identify the actors and
to build the overall architecture of the system, before working out the communication
functions that exist among the actors. The object-oriented modeling approach is
suitable for this architectural stage.

At the second stage of modeling, the task-based modeling approach is used to
model CASM_GUI itself. As specified for the first level of GUI ASM model [Sec-
tion 6.1.1], the activities are listed and minimally specified. These activities are
the user-centered tasks of CASM_GUI. In a user’s view, each ac'tivity is the task
that CASM_GUI should complete to achieve one user goal, such as viewing a state
or processing one step. Fach activity involves different actors in the system, even
different components inside CASM_GUI. The way how involved these actors and
CASM_GUI components would be analyzed in each activity one by one.

The GUI model can be refined when the devéloper is ready to pay detailed atten-
tion to each activity in turn. The following questions will be answered in the refined
GUI model. What actors and/or CASM_GUI components are involved in a particular
activity? What data is exchanged between these actors and CASM_GUI components?
What is the sequence of actions in this activity”? The answers are a resource for defin-
ing the GUI APIs. The GUI APIs created can then be verified after the GUI model
is built.

ASM methodology is good for modeling complex systems, such as interactive sys-
tems, providing the developer with the ability to model a system at different levels of

abstraction [Section 6.1].

CHAPTER 4. FORMAL MODELING APPROACHES 34

4.3 Summary

The GUI ASM model is built with a mixed model-based design approach of the object-
oriented approach and the task-oriented approach. Both approaches were applied
separately at different levels of the model. This kind of modeling technique invites
system architecture design into the task model building process. It alsc makes the

GUI ASM model to be a foundation to analyze the interactions between systems.

Chapter 5

The GUT ASM model in the
CoreASM project

The GUI ASM model explained in this thesis was built as part of my research for
the CoreASM project. This GUI ASM model is one part of the CoreASM project.
Formal methods were used to produce a design of the user-interface tool. An analysis
of the interaction processes and their effect on human psychology is not an objective

of this research.

5.1 Architecture of the CoreASM supporting tool
environment

The abstract state machine method offers a framework for high-level system design
and analysis. After specifying user requirements and building a model to match these
requirements, the ASM approach can provide system designers with the valuable
option of executing the model without implementing it in real programming code.
The executability of an ASM-based model enables the system designers to discover

system faults at an early development stage, assisting with verification and validation.

35

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 36

In the CoreASM project, we are using an ASM approach to construct a supporting
tool environment that allows agile formalizing and high-level design and analysis of
a system. A set of easy-to-use tools is provided in this supporting tool environment.
This toolset includes an interpreter, CoreASM abstract storage, a debugger, a valida-
tor and more. The language parser, the interpreter, the CoreASM abstract storage,
and the scheduler constitute the CoreASM engine. The CoreASM engine interprets
ground models built with the CoreASM language. With the help of the scheduler,
the CoreASM engine can execute not only sequential ASM ground models, but also
parallel ASM ground models. The CoreASM supporting tool environment defines a
set of GUI < Engine APIs for the CoreASM engine. Third party applications can
control and access the CoreASM engine through the GUI < Engine APIs .

The GUI ASM model in this thesis specifies a graphical debugger application
tool in the CoreASM supporting tool environment. This GUI ASM model has been
used to design the graphical debugger and to validate the set of GUI < Engine
APIs involved in the communications between the GUI tool and the engine. A graph-
ical debugger implemented in Java will also be provided to apply the set of GUI «
Engine APIs described in this project.

The CoreASM supporting tool environment provides an environment in this project
to build graphical user interface tools for the CoreASM engine. The CoreASM engine
is a running system for interpreting CoreASM models, and lacks the ability to assist
system designers to understand the execution processes of the models. There are a
few kinds of tools that can aid engineers to supervise the execution processes, such
as a debugger and an animator. A graphical debugger offers a visual presentation of
the execution processes of a model.

The GUI « Engine APIs provided in the CoreASM supporting tool environment
form a bridge between the graphical user interface tool and the CoreASM engine.
This bridge includes two main sets of functions, the control for the CoreASM engine
and the access to the model entities. Everyone, including third parties, can build
graphical tools to monitor ASM execution through this set of GUI < Engine APIs .
Tool designers can decide on their own how to visually present an ASM model. A

graphical debugger implemented in Java will be provided in this thesis as a working

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT

Applicafion Tools I

Verification GUI UL Testing
Tool Tool

——
Control & Access API)
—o—'—’_'_'-'-/-

Scheduler
]
I 1
Parser F— Interpreter — Abstract
Storage

i CoreASM Enging

Figure 5.1: CoreASM supporting tool environment architecture

37

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 38

example. This debugger will help engineers to explore the updates of an ASM model
at each step and to trace function values at each step.

The CoreASM project has an important expandable feature. Yuri Gurevich in-
troduced ASM principles and ASM language semi-formal definitions. The CoreASM
language applied in this project comes from the basic ASM principles and provides
only the core functions of the general ASM language. Anyone can extend our Core-
ASM language to their own ASM language by following ASM principles. In the same
way, third party groups can extend our CoreASM engine to their own ASM engines
for their specified ASM languages through plug-ins [14]. Then again, the graphical
tools implemented for Core ASM may not satisfy other new extended ASM languages.
Therefore, we have separated the graphical user interface tools from the CoreASM en-
gine and provided the GUI < Engine APIs as one basis of the Core ASM supporting
tool environment. Third party groups can extend the GUI « Engine APIs as well
as the CoreASM engine and build a new GUI on the extended GUI « Engine APIs .
There is a second reason to separate the GUI and the CoreASM engine. Each research
group may have its own ideas as to how to visually present its ASM models and their
execution and may require different graphical tools to build, verify, test and validate
the models. Other groups can build their own graphical tools on the top of the GUI

— Engine APIs provided in this project in order to satisfy their requirements.

5.2 Actors in the GUI ASM model
There are four actors in the GUI ASM model.

— CASM_User
— CASM_GUI

CASM _Engine

— File Storage

The actor CASM_GUI is the research object of this thesis. It will be specified
in detail with ASMs (main rule CoreASMGUIProgram). The other three actors,

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 39

O S
: b \\\ - - e /)(
M user —
CASM_User N o CASM_GUI
A JU— "
()
e~
T LS
P - LoadSpecFiles S
. \\5 P - ~\~-\\\ ‘/_\\
NS ~o NS
SN) AN
File Storage CASM_Engine

Figure 5.2: Actors in one use case

CASM_User, CASM_Engine and File Storage, are the environment for the ASMs
machine CASM_GUL.

CASM _User

The human users of the CASM toolsets. The target users are software engineers,
system analysts, and testers.

CASM_GUI

The graphical user interface toolset of the CoreASM project. It is the GUI of the
visual CoreASM language debugger exactly as described in this thesis. CASM_User can
load CoreASM models in CASM_GUI, and execute and explore (view) the models.
CASM_GUI provides the visual representation of information about these models.

CASM _Engine

The engine to interpret CoreASM programs and to execute CoreASM models.
Each CoreASM model is executed in CASM_Engine. CASM_GUI controls and ac-
cesses these models in CASM_Engine.

File Storage

The storage device to store CoreASM specification files. This device may be a

local storage disk, or be a network storage device.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 40

Human-computer interaction happens mainly between two actors, CASM_User and
CASM_GUI. CASM_User does not access the CASM_Engine directly. CASM_GUI is
the bridge connecting CASM _User and CASM_Engine.

The interactions between CASM_User and CASM_GUI are specified by activ-
ities activated by commands that CASM_User sends to CASM_GUIL An activity
is a set of behaviors by the four actors. The details of the activities belonging to
CASM_GUI have been specified in the GUI ASM model [Section 5.4]. The be-
haviors of CASM_User in an activity are specified abstractly as ASM rules, such
as the rule getFileURIToLoad (aUser: CoreASM-User , aFileStorage : Core ASM-
FileStorage). These rules also identify the information data entities exchanged in
interactions; for example, the file uri is needed in the rule getFileURIToLoad (aUser:
CoreASM-User , aFileStorage : CoreASM-FileStorage).

These actions are specified by ASM rules, not by ASM functions, since these are
specifications of interaction behaviors. A system designer can refine these rules to
analyze these interactions between human and computer.

The interactions between CASM_GUI and CASM_Engine are specified as GUI
— Engine APIs in the GUI ASM model [Section 5.5.1]. We will see how these APIs

are applied in activities.

5.3 Architecture of CASM_GUI

CASM_GUI consists of a few components. Each component has its own features. A
component in CASM_GUI communicates to another component by sending signals

to the signal pool of the second component.
5.3.1 Components of CASM_GUI
CASM_GUI consists of these components.

— control panel

— output view

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 41

— message view

— program view

— run view

— vocab view

— state view

— updateset view

— history manager

Each component has its own features.

control panel:

The control panel is the control component of CASM_GUI. It controls other com-
ponents of CASM_GUI. One major task for the control panel is to respond to activity
requests from CASM_User and to activate related activity in CASM_GUIL

output view:

The output view displays the printout from the CoreASM machine executing.

message view:

The message view displays any warning/error messages produced during the exe-
cution of the CoreASM machine.

program view:

The program view displays the code for the CoreASM machine.

TUN view:

| The run view displays a run in the execution of the CoreASM machine.

vocab view:

The vocab view displays the vocabulary of the CoreASM machine.

state view:

The state view displays a state of the CoreASM machine.

updateset view:

The update set view displays an update set during the execution of the CoreASM

machine.

42

THE GUI ASM MODEL IN THE COREASM PROJECT

CHAPTER 5.

iebeuep
KiojsiH

MBIA
128 ajepdn

{

—

/ jPued
uni e u mmwfm Aeidsip * [ou0D %/ -
-7 Spepdn.
-
. AN
AN

7

/
MBIA
=7 abessay
—3
MIIA
E
N
/r
.1
MBIA
Hi

s
/
wrmum:

—
MIIA
HO'

L
e

\ —
__fepdny

AN

w,. dn
ﬂwu/
/;

AN

Figure 5.3: Internal components of CASM_GUI

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 43

history manager:

The history manager stores the history records of a run. The history records are
mainly about states and update sets. The history manager collects the information
about a run of a CoreASM machine and stores it into the history records, and then
offers these history records to the run view in the background. The run view uses
these history records to rebuild the trail of the run. Now, CASM_User can review
the run of that CoreASM machine in the run view. In contrast to the run view, the
history manager is invisible to CASM _User.

Each component is specified as an ASM rule. A component has behaviors and
provides certain features for CASM_User. For example, the message view can display
messages or can clear all messages in the view [Spec 5.1]. The history manager can

add a history record or delete a history record or even clear all history records.

rule MessageViewProgram
choose aSignal from messagevSignalPool
remove aSignal from messagevSignalPool
case firstOf{ aSignal) of
messageveDisp —
displayMsginMessage V(secondOf aSignal))
messagevcClearDisplay —
clearDisplayinMessageV

Spec 5.1: Features of message view : display messages and clear messages

All components are executed in a parallel way in the actor CASM_GUI. The
CASM_GUIis specified as a parallel ASM machine [Section 3.3]. If model designer
needs to specify more details of the components, such as the architecture of com-
ponents and the communications between these components, each component can
be refined from a simple ASM rule in a parallel ASM to an agent in a distributed
ASM [Section 3.5]. The time to refine components as distributed ASMs is decided by
model designer, based on how abstractly the model designer wants to specify those

components.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 44

| CASM_GUI Component | CoreASM Specification |

control panel rule ControlPanelProgram
output view rule OutputViewProgram
message view rule MessageViewProgram
program view rule ProgramViewProgram
TUN view rule RunViewProgram
vocab view rule VocabViewProgram
state view rule StateViewProgram
updateset view rule Updateset ViewProgram
history manager rule HistoryManagerProgram

Table 5.1: Components in CASM_GUI

The ability to specify the features of a component in an ASM rule and the ability to
execute components in a parallel way provide the independence to components. They
make model designer to create or remove a component easily from the GUI system.
The addition or the removing of a component will not affect other components in the

system.

5.3.2 Communication structure in CASM_GUI

Each component in CASM_GUI has a signal pool. Other components send signals
into that signal pool. The CASM_User in the environment sends signals of the
type USER.ACTIVITYREQUEST into the control panel’s signal pool. Each component
checks its own signal pool and activates an activity or a set of activities if a signal is
found. Each component has only one signal pool for incoming signals. There is no
outgoing signal pool. The sending process from one component in CASM_GUI or
CASM_User in the environment to another is atomic and completed immediately.
A signal pool is an abstract data structure. It may be a queue or a stack. For
this specific GUI ASM model, a queue would be a better choice. When the designer
makes the choose mechanism for the signal pool [Spec 5.4], the designer should make
sure that the first-incoming signal is served first. In order to abstract this GUI ASM
model, the type of the data structure required for the signal pool [Spec 5.3] and the

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 45

/] = — Main rule of the CoreASM GUI — ——
main rule CoreASMGUIProgram =

//GUI component programs
Vocab ViewProgram

Output ViewProgram

Message ViewProgram
ProgramViewProgram
RunViewProgram

State ViewProgram

Updateset ViewProgram
HistoryManagerProgram
ControlPanelProgram

Spec 5.2: The components in CASM_GUI

details of the signal pool’s choose mechanism [Spec 5.4] do not have been specified in
the thesis. These design decisions are left for the designer to make later.

The signal pool is specified abstractly as a list of signals.

messagevSignalPool : list of GUI Signal

Spec 5.3: Specification of a signal pool

The choose mechanism for each signal pool has not been specified. The choose rule
is used generally to describe this choose behavior.

The sending process for signals is specified as a rule, signalingTo(aSignalPool :
SignalPoolName, aSignal : GUI_Signal). This rule checks the destination by signal
pool name and then inserts the signal into the correct signal pool.

The signal is an abstract data structure. In the GUI ASM model, all signals are
of the type GUI_Signal. A signal consists of two types of objects: command objects

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 46

| Component [Signal Pool | Signal Pool Name |
CONTROL PANEL controlpanelSignalPool controlpanel
OUTPUT VIEW outputvSignalPool outputv
MESSAGE VIEW messagevSignalPool messagev
PROGRAM VIEW programvSignalPool programv
RUN VIEW runvSignalPool runv
VOCAB VIEW vocabvSignalPool vocabv
STATE VIEW statevSignalPool statev
UPDATESET VIEW updatesetvSignalPool updatesetv
HISTORY MANAGER | historymanagerSignalPool historymanager

Table 5.2: Signal pools in components

choose aSignal from messagevSignalPool

Spec 5.4: Choosing a signal from the signal pool of message view

and data objects.

The GUI_Signal is a tuple. Two functions defined for the data structure tuple are
used to interpret signal values. The first value is the command. Its type is one of
the defined signal types. The second value in GUI_Signal is a data object. The data
object is the content of the signal.

The function to get the first value from a signal is defined as firstOf(signal:tuple).
It returns the signal type.

The function to get the second value from a signal is defined as secondOf{signal:tuple).
It returns the signal data object.

Signal types:

— PROGRAMV_COMMAND,
— MESSAGEV_COMMAND,
— OUTPUTV_COMMAND,

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT

rule signalingTo(aSignalPool : SignalPoolName, aSignal: GUI_Signal)
case aSignalPool of
programy —

add aSignal to programuvSignalPool
messagev —

add aSignal to messagevSignalPool
outputy —

add aSignal to outputvSignalPool
statev —

add aSignal to statevSignalPool
updatesetv —

add aSignal to updatesetuSignalPool
runy —

add aSignal to runvSignalPool
historymanager —

add aSignal to historymanagerSignalPool
vocaby —

add aSignal to vocabvSignalPool
controlpanel —

add aSignal to controlpanelSignalPool

47

Spec 5.5: Sending a signal

RUNV_.COMMAND,

STATEV_COMMAND,

UPDATESETV_COMMAND,

HISTORYV_.COMMAND,

!

VOCABV.COMMAND,

USER_ACTIVITYREQUEST.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 48

5.4 Activities in CASM_GUI

An activity is a series of actions performed by an actor or actors to achieve a certain
objective. In an interactive system, the interaction between actors during an activity
that is performed by these actors must be considered.

An activity is performed to achieve an objective. There are a few ways to identify
activities in a system: for example, by the actions performed by individual actors,
or by the actions performed by the whole system. A human-computer interaction
system is designed for human use. Satisfying users is an important goal in HCI
design. Therefore, it is good to identity activities from a user perspective. Activities
in this GUI ASM model are identified in terms of the objectives that a user might
expect that the system could complete. These activities include ForwardRunActivity
(making the engine advance the run one step), ViewLastStateActivity (viewing a state)
and so on. The objectives that a user might expect that the system could complete
are analyzed and are achieved from the informal requirements. In the GUI ASM
model, the objective of an activity represents the result of a certain festure of the
GUI system.

In the GUI ASM model, an activity is specified in a way that seems all actions
in the activity are completed by one actor CASM_GUI. In fact, an activity is of-
ten performed by more than one actor. Interactions do exist in an activity. The
other actors, CASM_User, CASM_Engine, File Storage, are the environment for the
actor CASM_GUI. Actions completed by these environment actors are abstracted
from the activity. Interactions between all actors are specified as interfaces (APIs).
CASM_GUI interacts with other actors by applying these interfaces (APIs) while
performing activities.

An activity in the GUI ASM model represents a feature of the GUI system.
At this point it is similar to describe an activity of an object in the object-oriented
design. The difference between an activity in the GUI ASM model and an activity
in the object-oriented designing is that an activity in the GUI ASM model is the
interactions between actors, but an activity in the object-oriented design focuses on

actions performed by one object.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 49

An activity is described as a hierarchy of sub-activities. Each sub-activity consists
of some actions. We define activity (sub-activity as well) as a rule. An activity is
labeled as ****Activity. A sub-activity is labeled as ****SA.

The activity to load a file, called LoadFileActivity, is a rule. A sub-activity of the
activity LoadFileActivity, getFileURIToLoadSA, obtains the file to be loaded, and is

also a rule.

rule LoadF'ileActivity
rule getFileURIT oLoadS A

Spec 5.6: Activity and sub-activity

The sub-activities of one activity may form a sequence of actions. When analyzing
interactions in a HCI system, such sequences are often found. The next action does
not start until the previous action is completed. CASM_GUI does not know which
specification file is to be opened until CASM_User chooses a specification file to
load. Therefore, CASM_GUI performs the sub-activity loadFileSA following the sub-
activity getFileURIToLoadSA.

Sequenced activities can be specified as

AActivity = subactivitylSA seq subactivity2SA

AActivity is performed by completing sub activity subactivity2SA after the com-
pletion of sub activity subactivitylSA.

5.4.1 Activity specifications

Activities in the GUI ASM model include the following.

StartupActivity

This activity starts up the CoreASM work environment. The CoreASM work
environment includes CASM_GUI and CASM_Engine. The activity creates the GUI

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT

| Activity | Command to activate the activity]
StartupActivity userStartup
LoadFileActivity userLoadFile
CheckSpecActivity userCheckSpec
InitActivity userlInit
ForwardRunActivity userForwardRun
RollbackActivity userRollback
StopActivity userStop
InterruptActivity userInterrupt
ViewProgramCodeActivity user ViewProgramCode
ViewLastOutputActivity user ViewLastOutput
ViewOutputInHistory Activity user ViewQutputInHistory
ViewLastMsgActivity user ViewLastMsg
ViewMsglInHistory Activity user ViewMsgInHistory
ViewLastUpdateset Activity user ViewLastUpdateset
ViewLastStateActivity user ViewLastState

ViewUpdatesetInHistory

user ViewUpdatesetInHistory Activity

ViewStateInHistoryActivity

user ViewStateInHistory

AddWatchActivity userAddWatch
DeleteWatchActivity userDeleteWatch
QuitActivity userQuit

Table 5.3: Activities and signals to activate these activities

50

and the engine, then links them together. The CoreASM workspace environment is

ready after this activity.

rule StartupActivity

createGUISA seq createLinkEngineSA

LoadFileActivity

This activity loads a CoreASM specification file into CASM_GUI and displays the
file in the program view. There are two sub activities, getting the URI of the file, and

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 51

loading the file from File Storage. Two data objects are received by CASM_GUI from
its environment, through interfaces (APIs). They are the URI (guiAFileURI) of the
file that CASM_User wants to load and the file (guiAFile). The object guiA FileURI
is received by CASM_GUI from CASM_User and File Storage. The object guiAFile
is received by CASM_GUI from File Storage.

rule LoadF'ileActivity
getFileURIToLoadSA seq loadFileSA

CheckSpecActivity

This activity sends a Core ASM specification file to CASM_Engine by CASM_GUI,
and then requires CASM_Engine to check for syntax or other specification errors in
this specification program. It then displays feedback on CASM_GUI. The sending
operation and the check-requesting operation are completed in the sub activity check-
SpecSA (currentEngine, guiAFile). The data object guiA File is sent to CASM_Engine.
The feedback (output) is then received from CASM_Engine.

rule CheckSpecActivity
checkSpecSA(currentEngine, guiAFile) seq getCSFeedbackSA

InitActivity
This activity initializes the ASM machine in CASM_Engine and then displays any
feedback in CASM_GUI (the initial state is displayed in the state view, the vocabulary

in the vocab view, error messages or warning messages, if any, in the message view).

rule InitActivity
initSpecSA(currentEngine, guiAFile) seq getISFeedbackSA

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 92

ForwardRunActivity

This activity advances the CoreASM machine a few of steps in CASM_Engine and
then displays any feedback in CASM_GUI (Messages appear in the message view,
print outs in the output view, states in the state view, update sets in the update set
view, error messages or warning messages, if any, in the message view). The first
sub-activity gets the number of steps that CASM_User wants the CoreASM machine
to go forward (guiNumStepsToForward). The value of guiNumStepsToForward is
received by CASM_GUI from CASM_User after this sub-activity completes. Then,
the CASM_GUI requires CASM_Engine to execute the ASM machine in the second
sub-activity and receives feedback from CASM_Engine in the third sub-activity.

rule ForwardRunActivity
getNumForwardStepsRequestedSA seq forwardRunSA seq getF'RFeedbackSA

RollbackActivity

This activity rolls back a CoreASM machine held in CASM_Engine and then
displays the machine’s current state in state view. The first sub-activity gets the state
id that CASM _User wants the machine to roll back to. The value of guiStateldBackTo
is received by CASM_GUI from CASM_User after this sub-activity is completed.
Then CASM_GUI rolls back the machine in CASM_Engine. In contrast to the activity
ForwardRunActivity, there is no sub-activity getFeedbackSA in RollbackActivity. The
desired rolled back state can be found in the internal component history manager
in CASM_GUL It is not necessary in this case for CASM_.GUI to interact with
CASM _Engine.

rule RollbackActivity
getStateldBackToSA seq rollbackSA

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 53

StopActivity
This activity stops the running of the Core ASM specification machine. The ma-

chine stays at the last state and cannot be executed without reinitialization.

rule StopActivity

InterruptActivity
This activity interrupts the execution of the CoreASM machine in CASM_Engine.

rule Interrupt Activity

interrupt(currentEngine) = true

ViewProgramCodeActivity
This activity allows CASM_User to view program source code in the program

view.

rule ViewProgramCode Activity

ViewLastOutputActivity
This activity allows CASM_User to view the output of the most recent step in

the output view.

rule ViewLastOutputActivity

ViewOQOutputInHistoryActivity
This activity allows CASM_User to view the output of a completed step in the

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT o4

history.

rule ViewOutputInHistoryActivity

ViewLastMsgActivity
This activity allows CASM_User to view the error/warning messages for the most

recent step.

rule ViewLastMsgActivity

ViewMsgInHistoryActivity
This activity allows CASM_User to view the error/warning messages for a com-

pleted step in the history.

rule ViewMsgInHistoryActivity

ViewLastUpdateset Activity
This activity allows CASM_User to view the update set for the most recent step.

rule ViewLastUpdateset Activity

ViewLastStateActivity
This activity allows CASM _User to view the newest state.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT %)

rule ViewLastState Activity

ViewUpdatesetInHistoryActivity

This activity allows CASM_User to view one update set in the history. The
activity has two actors, CASM_User and CASM_GUI, who interact. There are two
sub-activities. The sub-activity getUpdateSetldViewInHistorySA gets the update set
id of the update set that CASM_User wants to view from the history. The value
of guiUpdateSetldViewInHistory is assigned by CASM_User after this sub-activity
completes execution. The next sub-activity allows CASM_User to view the update

set.

rule ViewUpdatesetInHistoryActivity
getUpdateSetld ViewInHistorySA
seq
viewUpdatesetInHistorySA(guiUpdateSetld To ViewInHistory)

ViewStateInHistoryActivity

This activity allows CASM _User to view one state in the history. Interaction takes
place in this activity. Two actors are involved, CASM _User and CASM_GUI. The sub-
activity getStateldViewInHistorySA gets the id for the state that CASM_User wants
to view from the history. The value of guiStateldToViewInHistory is assigned by
CASM _User after this sub-activity completes execution. The next sub-activity allows
CASM _User to view the state.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 56

rule ViewStateInHistoryActivity
getStateldViewInHistorySA
seq
viewStateInHistorySA(guiStateldTo ViewInHistory)

AddWatchActivity
This activity allows CASM_User to add a watch in CASM_GUI. A waich is a label

of a function, a function whose values CASM_User wants to watch during a run.

rule AddW atch Activity
createAWatch(currentUser, guiVocab)

DeleteWatchActivity
This activity allows CASM_User to remove a watch in CASM_GUL

rule DeleteWatch Activity
selectAWatchToDel(currentUser)

QuitActivity
This activity destroys CASM_Engine and CASM_GUI to terminate the CoreASM

work environment.

rule Quit Activity
killEngineSA(currentEngine) seq killGUISA

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 57

5.5 Interfaces in the GUI ASM model

CASM_GUI, CASM_Engine, CASM User, and File Storage communicate through in-

terfaces.

5.5.1 Interfaces in the GUI ASM model

The GUI ASM model is an application system. It interacts with other actors through
interfaces. The interfaces in this GUI ASM model include the GUI « User interface,
the GUI « FileStorage interface, and the GUI « Engine interface. The GUI <
User interface is a good object for researchers to analyze interactions between human
and computer. The GUI « Engine interface specifed with ASMs assists the designer
to design the APIs (Application Program Interfaces) for the engine. The designer can
validate these APIs through the GUI ASM model.

The interface can provide communication channels for two systems. A system
can exchange information with another system through an interface. It can also
use the interface to activate another system to carry out operations. The GUI «
User interface can offer the following opportunities. A user can activate activities
in the GUI system by sending activity requests [Section 5.4] through the GUI <
User interface. A user can view information about a machine in the engine with
the assistance of the GUI system. This view operation needs the GUI system to
communicate with the engine through the GUI < Engine interface. The GUI system
also needs the user to provide certain information about operations through the GUI
— User interface, such as the number of steps that the user wants the machine in the
engine to go forward.

In the GUI ASM model, the interface is specified as ASM rules and ASM functions.

If a feature of an interface is specified as an ASM rule, the feature requires
an actor to execute certain actions. For instance in the GUI < Engine inter-
face, CASM_GUI requires CASM_Engine to execute the CoreASM machine in the
CASM _Engine for a certain number of steps (rule step (aEngine : CoreASM-Engine
, anl : Integer)). This operation needs CASM_Engine to perform actions to com-

pute results. Therefore, it is specified as a rule. Similarly, in the GUI < User

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 58

interface, the rule getNumForwardStepsRequested (aUser : CoreASM-User) needs
CASM_User to operate on CASM_GUI, in order to provide the number of steps that
CASM_User requests the machine in CASM_Engine go forward. These operations
of CASM_User on CASM_GUI include choosing a textbox on the GUI, typing the
number of steps and notifying CASM_GUI to receive the value.

An ASM function in an interface is used to get a value when an actor is in a state.
The function getLastUpdateSet : GUI_Watch — GUI_UpdateSets gets an update set
after the machine in CASM _Engine has been updated consistently. At that moment,
CASM_Engine is in a state between executions (steps).

Depending on the way the value of ASM functions are updated, the ASM functions
in an interface can be controlled, monitored or shared.

A controlled function updates a value in the environment. For instance, it is possi-
ble to interrupt CASM_Engine by setting the value “interrupt” in CASM_Engine to

be true. The interrupt function is specified as a controlled function.

controlled interrupt : CoreASM-Engine — Boolean

Spec 5.7: Controlled function example

A monitored function allows the environment to update a value in the system
model specified. CASM_Engine sets the value of guiAnUpdateset in CASM_GUIL
CASM_Engine sends a value to CASM_GUI through an interface.

monitored getLastUpdateSet : CoreASM-Engine — GUI_UpdateSets

Spec 5.8: Monitored function example

A shared function updates a value shared by both an environment and the specified

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 59

system model. There is no example of a shared function in this GUI ASM model.

5.5.2 The GUI < User interface

The GUI < User interface specified in the GUI ASM model consists of the com-
mands to activate the activities and the operations of CASM_User on CASM_GUL
The analysis in this interface deals with the information data exchanged between
CASM_User and CASM_GUI, such as the command signals and the number of steps
that the user wants the machine to go forward.

CASM_User sends these activity commands to CASM_GUI through the GUI <

User interface.

enum domain USER_ACTIVITYREQUEST = {userStartup,
user LoadF'ile, userCheckSpec, user Init,
user ForwardRun, user Rollback, user Stop,
userInterrupt,
userViewProgramCode,
userViewLastOutput, user ViewOutputInHistory,
userViewLastMsg, userViewM sginHistory,
userViewLastUpdateset, userViewUpdatesetIn History,
userViewLastState, userViewStateIn History,
user AddW atch, user DeleteW atch, user Quit}

Spec 5.9: Activity commands

The CASM_User provides the information data to CASM_GUI through the GUI

— User interface.

5.5.3 The GUI «~ Engine interface

The GUI < Engine interface consists of a control interface and an access interface.
CASM_GUI can control executions of CASM_Engine and can check the prop-

erties of CASM_Engine through the control interface. The control operations on

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT

rule getFileURIToLoad (aUser : CoreASM-User ,
aFileStorage : CoreASM-FileStorage)
rule get NumForwardStepsRequested (aUser : CoreASM-User)
rule getStateIdBackTo (aUser : CoreASM-User)
rule getStateldViewInHistory (aUser : CoreASM-User)
rule getUpdateSetIdViewInHistory (aUser : CoreASM-User)
rule create AW atch (aUser : CoreASM-User , aVocab : GUI.VOCAB)
rule selectAW atchToDel (aUser : CoreASM-User)

Spec 5.10: Rules in the GUI « User interface

60

CASM _Engine include checking a specification in CASM_Engine, initializing a spec-

ification machine in CASM_Engine, forwarding, rollbacking, interrupting, creating a

CASM_Engine and terminating a CASM_Engine [Spec 5.11].

The access interface enables CASM_GUI to access information entities about the

CoreASM machine being executed in CASM_Engine, obtaining information such as

the states of the CoreASM machine or the value of a function in the CoreASM machine

[Spec 5.12].

rule checkSpecification (aEngine : CoreASM-Engine , aFile : File)
rule initSpecification (aEngine : CoreASM-Engine)

rule step (aEngine : CoreASM-Engine , anl : Integer)

rule rollback (aEngine : CoreASM-Engine , anld : StateID)

rule createEngine

rule killEngine (aEngine : CoreASM-Engine)

controlled interrupt : CoreASM-Engine — Boolean

monitored getEngineMode : CoreASM-Engine — ENGINE-MODE

Spec 5.11: Rules and functions in the control interface of GUI < Engine interface

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 61

GUI < Engine Interface

Control Access
APlIs APIs

Figure 5.4: GUI « Engine interface

5.6 Conclusion

The GUI ASM model has specified the architecture and the functionality of a GUI
application system, with ASM methodologies. During the refinement process, the
GUI ASM model has assisted to define interfaces between systems. Two objectives
[Section 1.1] have been fulfilled in this chapter. The functions of the GUI application
system are specified as twenty activities. Each activity represents a sequence of in-
teractions. The internal components of CASM_GUI and the actors in the GUI ASM
model are specified as parallel ASM or distributed ASM. Communications between
internal components are transferred through the signal type communication structure.
The exchanges of information between systems rely heavily on the interfaces of the

systems.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 62

monitored getGULVOCAB : CoreASM-Engine — GUI_VOCAB
monitored getOutput : CoreASM-Engine — GUI_Outputs
monitored getCurrentGUI State : CoreASM-Engine — GUI_States
monitored getLastUpdateSet : CoreASM-Engine — GUI_UpdateSets
monitored getPreviousGUI State : Core ASM-Engine
* GUI_Watch x StatelD
— GUI_ States
monitored getPreviousUpdateSet : CoreASM-Engine
* GUI_Watch * UpdateSetID
— GUI_UpdateSets
monitored getSpec : CoreASM-Engine — File

Spec 5.12: Rules in the access interface of GUI « Engine interface

Chapter 6
Discussion

This chapter discusses in depth two issues that were carried out in the formal modeling
process and gives solutions for these two issues. These two issues are level-refinement
in the modeling process and the concurrency issue in the graphical user interface

application.

6.1 Four abstraction levels for the GUI ASM model

At the beginning of the modeling stage, a system designer faced with too many in-
formal requirements and no clear idea where to start might feel overwhelmed. One
common methodology to overcome the previous problem is top-down development.
ASM methodology gives the power of abstraction to top-down modeling, allowing the
designer to model the system at different levels of abstraction. The system designer
is able to focus on solving different questions at different levels of abstraction. The
levels have a top-down relationship as the system designer refines the system model
from a highly abstract level to a less abstract level. The goal of this refinement is
to provide more implementation details to satisfy particular requirement specification
and these implementation details should be appropriate to each level of abstraction.

The GUI ASM model developed for the CoreASM project has four abstraction

63

CHAPTER 6. DISCUSSION 64

levels. The model has been refined from level 1 to level 4, in a top-down development
process. The four abstraction levels of specification cover the CASM_GUI architec-

tures, features, and interface design.

6.1.1 The first abstraction level - (the features)

The first abstraction level of the GUI ASM model specifies the activities to be per-
formed by the system. The GUI system is viewed as a whole. The architecture of
the GUI system is not analyzed at this level. The activities specified in the model at
this point are user-oriented, intended to achieve certain user goals through the system
operations. The activity, ViewLastStateActivity, would be an example of this. The
objective of modeling at this abstraction level is to see what the system can do. The
activities specified here are abstract activities. No implementation is specified as to
how these activities are to be performed. These activities can be treated as major
features of the GUI system. The model also specifies all signals that can activate the

above activities.

6.1.2 The second abstraction level - (the interface design)

The second abstraction level of the GUI ASM model specifies the model’s interactions.
The main problems solved are what are the interactions between systems in the GUI
ASM model and what are the data objects and control signals exchanged in these
interactions. To answer these questions, the first step is to specify the architecture of
the GUI ASM model and to identify the actors in it [Section 5.1].

An ASM model usually consists of a machine and its environment. As the research
target of this thesis, the actor CASM_GUI is the machine in this model. Other actors,
CASM_User, CASM_Engine and File Storage, form the environment of the ASM
machine. The interactions in the model are the interactions between CASM_GUI and
its environment.

The analysis of the interactions and the data objects exchanged in these interac-
tions is important. We can define API functions through these interactions, and the

data objects that serve as their parameters. One of the objectives in building the GUI

CHAPTER 6. DISCUSSION 65

ASM model is to define the APIs. The GUI ASM model can also verifv these API
- functions as satisfying the requirements of the CoreASM GUI system.

6.1.3 The third abstraction level - (the internal architecture)

The third abstraction level of the GUI ASM model refines CASM_GUI by build-
ing the architecture of CASM_GUI itself [Section 5.3]. The internal components of
CASM_GUI include the control panel, the output view, the message view, the program
wiew, the run view, the state view, the updateset view, the history manager, and the
vocab view. Each component provides certain features to be defined at this level of
the GUI ASM model. A component in CASM_GUI is a collection of behaviors and
functions. It is specified as an ASM rule in the model. A component is an abstract
concept. At a later point, the GUI designer can find a GUI object to implement a,
component, such as JEditorPane in Swing or RichTextBox in C+#, or even a televi-
sion screen. In the ASM model, a component abstracts behaviors and functions from
the actual objects. Therefore, a model using ASMs will not limit the GUI designer’s
imagination when it comes to visually representing that component.

The components are specified with Distributed ASM notation. Each component
executes independently. All components execute in parallel inside CASM_GUI. These
components are specified as distributed ASMs to satisfy concurrency issues which
are intrinsic to GUI systems. More discussion of concurrency issues can be found in
Section 6.2.2.

This third abstraction level introduces a signal communication structure to the
GUI ASM model. Each component has one incoming signal pool. A component
checks the signal in its signal pool at each step of the ASM’s execution run and
activates the relevant activities or operations if a signal is found. To communicate
between components, a component inserts a signal into another component’s signal
pool. Two kinds of information are contained in a signal: the command that indicates
what activities or operations should be activated by the signal, and the data objects
that are needed for execution of the activities or operations activated. As an example,

the activity InitActivity involves the interaction of certain components, including the

CHAPTER 6. DISCUSSION 66

control panel, the message view, run view, the state view, the history manager and
the vocab view. After initialization, the control panel will update the wvocab view.
The control panel sends the vocab view a request to update the vocabulary through
the command wocabvcDisp. The data object vocabulary, guiVOCAB, is attached
in the same request signal. A similar mailbox-like communication mechanism in a
distributed system is specified in [15] [16].

6.1.4 The fourth abstraction level - (the concurrency prob-

lem)

The model designer can discuss individual issues at this abstraction level generally.
In this GUI ASM model, we pay attention to the problem of two concurrent activities
taking place in CASM_GUI. The GUI application is a multithreading application. It
can respond to user requests simultaneously; therefore one activity can be activated
before a previous activity has been completed. One question arises, what kind of
activities in CASM_GUI can be executed simultaneously? For example, it does
not seem reasonable that ForwardRunActivity and RollbackActivity can be performed
concurrently. Not all activities can execute concurrently with other activities. The
GUI ASM model will specify this constraint as part of the fourth abstraction level
[Section 6.2.3].

6.1.5 An example of refining a model in four abstraction lev-

els

The activity ForwardRunActivity serves here as an example to show how to specify
and refine an interaction in four abstraction levels. In the activity, the user requires
the machine in the engine to execute forward a few of steps, and then the GUI
displays the results of these steps. This activity involves three actors, CASM_User,
CASM_GUI and CASM_Engine, and consists of three sub-activities, getNumForward-
StepsRequestedSA, forwardRunSA and getFRFeedbackSA

The first abstraction level of the GUI ASM model specifies activities performed

CHAPTER 6. DISCUSSION 67

by CASM_GUI. The activity ForwardRunActivity is defined as an ASM rule. That
means this activity is a set of operations in CASM_GUI. At this abstraction level, we
specify that this activity exists. The details of the operations in the activity are not

of concern at this level. Therefore the operations are not specified here.

//Activity Rule
rule ForwardRunActivity

Spec 6.1: The activity ForwardRunActivity

At this abstraction level, the GUI ASM model also specifies how the activity
is activated. The command in the signal, userForwardRun, activates the activity
ForwardRunActivity. This happens inside the actor CASM_GUL

/] —— Main rule of the CoreASM GUI — ——
main rule CoreASMGUIProgram =

//Signal handling by CASM_GUI
case nextUserActivityRequest() of

userForwardRun —
rule ForwardRunActivity

Spec 6.2: The activity ForwardRunActivity is activated in the main rule

At the second abstraction level of the GUI ASM model, there are two objectives: to
define the APIs and to verify their necessity in the model. Analyzing the interactions
in the system is the beginning point for defining APls. The first step is to specify the
actors in these interactions, CASM_Engine, CASM_User and File Storage, in addition
to CASM_GUT itself.

CHAPTER 6. DISCUSSION

domain CoreASM-Engine //The actorCASM _Engine
domain CoreASM-User //The actorCASM User
domain CoreASM-FileStorage ~ //The actorFileStorage

//actors in the environment

currentUser : CoreASM-User //The actorCASM U ser
currentEngine : CoreASM-Engine [//The actorCASM _Engine
currentFileStorage : CoreASM-FileStorage //The actor FileStorage

Spec 6.3: The actors in the activity ForwardRunActivity

68

Next, we refine the activity ForwardRunActivity by analyzing this interaction. The

activity ForwardRunActivity has three sub-activities, getNumForwardStepsRequest-

edSA and forwardRunSA and getFRFeedbackSA. They execute in sequential order.

//Activity : ForwardRunActivity
rule ForwardRunActivity
getNumForwardStepsRequestedSA
seq forwardRunSA
seq getFR FeedbackSA

Spec 6.4: The sequential execution of sub-activities in the activity ForwardRunActiv-

ity

The sub-activity is also an ASM rule. We specify API functions and their param-

eters in each sub-activity rule. The sub-activity getNumForwardStepsRequestedSA

gets the number of steps that CASM_User wants the machine to go forward. This
is an interaction between CASM_GUI and CASM_User. The data object guiNum-

StepsToForward is needed in the sub-activity. The function monitored getNumFor-

wardStepsRequested : Core ASM-User — Integer obtains the data object needed from

CASM _User.

CHAPTER 6. DISCUSSION 69

//subactivity : getNumForwardStepsRequestedS A
rule getNumForwardStepsRequestedSA
guiNumStepsToForward := getNumForwardStepsRequested(currentUser)

Spec 6.5: The sub-activity getNumForwardStepsRequestedSA

The second sub-activity forwardRunSA forwards CASM_Engine guiNumStepsTo-
Forward steps, by executing the rule step(currentEngine, guiNumStepsToForward)

defined in the GUI <« Engine interface.

//subactivity : forwardRunSA
rule forwardRunSA
step(currentEngine, guiNumsSteps To Forward)

Spec 6.6: The sub-activity forwardRunSA

The third sub-activity getF'RFeedbackSA makes CASM_GUI to receive feedback
from CASM_Engine about the state, the update set and the output.

//subactivity : getF RFeedbackS A

rule getFRFeedbackSA
guiAnQutput = getOutput(currentEngine)
gquiAState = getCurrentGUI_State(currentEngine)
guiAnUpdateset := getLastUpdateSet(currentEngine)

Spec 6.7: The sub-activity getF'RFeedbackSA

After verifying the functions specified in the activities, we can list these functions
safely at the beginning of the GUI ASM model.

CHAPTER 6. DISCUSSION 70

//Vocabulary of the model CoreASM — GUI — — — — — ——
vocabulary
//Interfaceof GUI — — = — — — — — — — — — — — — — — — — _
//User <« GUI Functions

//get the number of steps that theC ASM _User requests
// the model to forward
rule getNumForwardStepsRequested (aUser : CoreASM-User)

//GUI < Engine Functions
// — — Control Functions — — — — — — — — — — — — — — — — — ——
monitored step : CoreASM-Engine x Integer — Boolean

/] — — Access Functions — — — — — — — — — — — — — — — — — — —
monitored getOutput: CoreASM-Engine — GUI_Qutputs
monitored getCurrentGUI.State : CoreASM-Engine — GUI_States
monitored getLastUpdateSet : Core ASM-Engine — GUI_UpdateSets

Spec 6.8: API functions used in the activity ForwardRunActivity

The ASM rules and the ASM functions in the code section GUI « Engine Inter-
faces are API functions we need to define in this project.

At the third abstraction level, the GUI ASM model has specified the architecture
of CASM_GUI and has introduced a communication structure between the internal
components of CASM_GUI. We now need to answer the following questions. What
internal components of CASM_GUI are involved in the activity ForwardRunActivity?
How do these components react in the activity ForwardRunActivity? What behaviors
do these components perform to complete the activity ForwardRunActivity?

The GUI ASM model has to be refined to answer the above questions.

The activation of the activity ForwardRunActivity is managed in the internal com-
ponent control panel. The component control panel executes in parallel with other
internal components in CASM_GUI. Therefore, the main rule of CASM_GUI, Core-

ASMGUIProgram, has been written and refined as parallel executions of internal

CHAPTER 6. DISCUSSION 71

components (Spec 6.2 to Spec 6.9). The component control panel handles activations

of activities.

main rule CoreASMGUIProgram =
Vocab ViewProgram
OutputViewProgram
Message ViewProgram
Program ViewProgram
RunViewProgram
State ViewProgram
Updateset ViewProgram
HistoryManagerProgram
ControlPanelProgram

rule ControlPanelProgram
//Signal handling by control panel in CASM _GUI
case nextUserActivityRequest() of

userForwardRun —
ForwardRunActivity

Spec 6.9: The activity ForwardRunActivity is activated in the control panel

We add a group of operations into the activity rule Forward RunActivity. The com-
ponent control panel requests other components in CASM_GUI to display the results
after the sub-activity forwardRunSA completes. The display requests are sent through
the communication structure by signaling other internal components in CASM_GUI.

Other components receive the signal and then perform the display requests. For ex-
ample, the component state view finds that the request signal is the stateveDisp com-
mand. Then the state view executes the rule displayStateinStateV(secondOf(aSignal))
to display the new state.

As the third abstraction level of the GUI ASM model shows, a system designer can
find answers for the questions asked in the page 70. The internal components control

panel, message view, run view, state view and history manager are involved in the

CHAPTER 6. DISCUSSION 72

/[Activity : ForwardRunActivity
rule ForwardRunActivity
getNumForwardStepsRequestedSA
seq forwardRunSA
seq
signalingTo
signalingTo
signalingTo
signalingTo
signalingTo
signalingTo

messagev, (messagevcDisp, guiAnQutput))
outputv, (outputveDisp, guiAnOutput))

statev, (stateveDisp, guiAState))

updatesetv, (updatesetveDisp, guiAnUpdateset))
runv, (runvcDisp, getCurrentStepID()))
historymanager,

(historymanagercAddAStep, getCurrentStepID()))

P A A

Spec 6.10: Sending requests to other components in activity Forward RunActivity

activity ForwardRunActivity since control panel communicates to these components
in the activity rule ForwardRunActivity [Spec 6.10]. The components react to the
request from control panel by checking the received signals in their signal pool and
executing the relevant behaviors ([Spec 6.10] and [Spec 6.11]). The component state
view performs the behavior displayStateinStateV(secondOf(aSignal)) to display the
result of the activity ForwardRunActivity.

The fourth abstraction level of the GUI ASM model concentrates on solving the
activity concurrency problem. Some kinds of activity in CASM_GUI cannot be in-
terrupted by another activity and must be completed before quitting (The activity
InterruptActivity is a special case). The GUI system specified in this model is a mul-
tithread application. It can respond to multiple user requests simultaneously. There-
fore activity concurrency exists in this GUI ASM model. In this kind of multithread
application, we know at least one constraint exists: the activity Forward RunActiv-
ity cannot start when CASM_Engine is executing forwarding or rollbacking actions.
When refining this abstraction level, we add a constraint into the GUI ASM model.

The control panel checks whether a forward or rollback action is executing before

CHAPTER 6. DISCUSSION 73

/] ——STATE VIEW — — ——
rule StateViewProgram
choose aSignal from statevSignalPool
remove aSignal from statevSignalPool
case firstOf(aSignal) of
stateveDisp —
displayStateinState V(second Of(aSignal))
stateveClearDisplay —
clearDisplayinState V

Spec 6.11: The component state view

activating an activity ForwardRunActivity. The checking is done in the function is-

SynchronousActivityRunning().

// —— CONTROL PANEL — — — —

rule ControlPanelProgram
//if a synchronous activity is in process, no other synchronous
// activity can run except interruptions.

case neztUserActivityRequest() of
userForwardRun —
if not isSynchronousActivityRunning() then
ForwardRunActivity

Spec 6.12: The constraint to activate the activity ForwardRunActivity

We have assigned each activity a flag (guiSAMode ***A) to label the activity
states has-not-started, in-process and completed. The function isSynchronousActiv-
ityRunning() checks whether an initialization or execution activity, such as activity
ForwardRunActivity or activity RollbackActivity, is executing in CASM_GUI. The flag

helps the control panel to detect the activity execution. We refine the activity rule

CHAPTER 6. DISCUSSION 74

Forward RunActivity by assigning the activity state guiA Completed to the activity flag
guiSAMode_ForwardRunA at the end of the activity ForwardRunActivity.

guiSAMode_ForwardRunA = guiACompleted

Spec 6.13: State of the activity Forward RunActivity

The refinement of the activity ForwardRunActivity in the four different abstraction
levels of GUI ASM model is a process to make design decisions. These design deci-
sions help to build a system that satisfies the requirements. The GUI ASM model has
answered the following questions during the refinement process. Is the activity For-
wardRunActivity one behavior of CASM_GUI? How does CASM_GUI interact with
other actors (the environment) in the activity ForwardRunActivity and what are the
API functions in the interaction? What internal components in CASM_GUI are
involved in the activity ForwardRunActivity and what roles do they play? Can the
activity ForwardRunActivity execute in parallel with other activities in CASM_GUI?

6.1.6 Benefit of refinement by levels

When a system designer specifies a complex system, he or she would probably like to
start from a high level of design; during the system development life cycle, the designer
will also likely prefer that the specified system model be easily modified several times,
whenever new detailed questions arise or when the requirements are changed.

This thesis introduces a mixed model-building approach that applies ASM method-
ology [Section 4.2]. In this approach, the system designer starts with the traditional
object-oriented approach to build the architecture of the system as a whole and to
point out the actors in the system and the roles of these actors. The system de-
signer takes a global view of the complex system and decides its boundaries. Then
the system designer switches to a task-based approach, analyzing the tasks that the

system can perform. The task analysis at this stage is user-oriented if the system

CHAPTER 6. DISCUSSION 75

is interactive. The tasks analyzed in the model should complete certain user goals.
The specified model receives continuing refinement at each of the different abstrac-
tion levels, enabling the designer to analyze the behaviors of the system and to match
specification requirements. Each abstraction level should focus on a specific group of
questions. The system designer should decide the number of abstraction levels and
objectives of each abstraction level depending on the projects.

A mixed development approach helps system designers to specify a complex system
model from the top to the bottom. System designers can think about the main objec-
tives at the beginning and prevent marginal and detailed questions from obstructing
decision making. ASM methodology is another tool to assist system designers. It has
the power to abstract behaviors and functions of objects at a high level. In a graph-
ical user interface system, ASM methodology can abstract an object in a model’s
behaviors and functions from its appearance. This type of specification model leaves
the graphics designer a considerable amount of freedom in designing the interface’s
graphic appearance. The refinement process in the ASM methodology also makes it

possible to modify the model if the requirements should change.

6.2 Concurrency issues in the GUI system

A GUI system is normally a multithreading system. The concurrency issues in GUI
application design can be solved by defining a few constraints and by taking advantage
of distributed ASMs.

6.2.1 GUI ASM model constraints in concurrency issue

In some activities, CASM_GUI would send requests to an outside actor in the envi-
ronment, such as CASM_Engine, and wait for a response. It may take a long time for
CASM_GUI to receive a response. For instance, requesting CASM_Engine to exe-
cute a step and this step takes a long time. During this waiting time, CASM_GUI is
supposed to be available to respond to some user requests, such as a request to view

program code.

CHAPTER 6. DISCUSSION 76

Activity Concurrency Policy:

1. CASM_GUI cannot receive any user request for execution or initialization when

a user request for execution or initialization is already in process;

2. Multiple instances of an activity cannot be processed in CASM_GUI simulta-

neously;

We have specified that there is only one CASM_User in the system environment.
This single CASM_User interacts with a single CASM_GUI. CASM_User cannot
execute the same activities simultaneously with one CASM_GUI. It is safe to say two
activities, for example two uses of ViewProgramCodeActivity, initiated by one user
will not occur at the same time.

There is another situation needed to be discussed here. The case might exist where
CASM_User requests CASM_GUI to process an activity when the previous instance
of the same activity is in process. For example, CASM_User might change his or her
mind and want to view a previous state record when he or she is already viewing a
different previous state record. Both activities are the activity ViewStatelInHistory-
Activity. In this situation, the second activity instance interrupts the previous one if
this activity instance is the same kind of view activity. We introduce the policy 2 to
avoid the situation that might occur if multiple instances of one activity simultane-
ously execute. The second instance of an activity cannot be processed if the previous
activity instance is still alive (Spec 6.14). This keeps the GUI ASM model simple
at this fourth level of abstraction. Execution or initialization activities, such as Ini-
tActivity, ForwardRunActivity, RollbackActivity and so on, are non-interruptible by
user requests for the same activity. The policy 2 satisfies the needs of initialization
or execution activities too.

One execution or initialization activity should not be interrupted by the same ac-
tivity, and it normally should not be interrupted by other execution or initialization
activities, either (there is an exception: userInterrupt). To satisfy these two require-
ments, there are two solutions. One is to hold the second execution or initialization
activity user request in CASM_GUI until the previous execution or initialization ac-

tivity has been completed. The second solution is to ensure that CASM_GUI cannot

CHAPTER 6. DISCUSSION 77

case nertUserActivityRequest() of

userViewStateInHistory —
if guiSAMode_ViewStateInHistoryA = undef then
ViewStateInHistoryActivity

Spec 6.14: The activation of an activity

receive another execution or initialization activity user request during the period of
time when CASM_GUI is dealing with an execution or initialization activity. For this
GUI ASM model, the second option was selected (policy 1). At times, a GUI designer
normally sets up the system to close the input channel to prevent CASM _User from
sending an activity user request. For example, at certain times, the Forward button
might be disabled.

6.2.2 GUI ASM model components

The GUI ASM model in this thesis consists of nine components expressed as ASM
rules, seven ViewPrograms and one HistoryManagerProgram and one ControlPan-
elProgram. All components execute in parallel. They are specified as distributed
abstract state machines (DASMS).

The ViewProgram provides functions for CASM_User to view the executing
specification model on CASM_GUI. The HistoryManagerProgram manages the state
history records and update set history records in CASM_GUIL. The ControlPanel-
Program is the program controlling CASM_GUI. It has interfaces for the environ-
ment (CASM_User, CASM_Engine, File Storage) to interact with CASM_GUI. One
important task for the control panel is to respond to UserActivityRequests from
CASM_User and to activate the corresponding activities in CASM_GUIL In GUI
design, the control panel is a collection of GUI controls located on the GUI, including

the initializing button, the step button, etc.

CHAPTER 6. DISCUSSION 78

All components should work in parallel. One component in an execution state
does not block another component’s execution. Each component is an ASM rule and
has its own behaviors. All components execute in parallel according to the main rule

Core ASMG UIProgram of CASM_GUI (Spec 6.15).

// — — Main rule of the CoreASM GUI — ——
main rule CoreASMGUIProgram =

Vocab ViewProgram
OutputViewProgram
Message ViewProgram
Program ViewProgram
RunViewProgram

State ViewProgram
Updateset ViewProgram
HistoryManagerProgram
ControlPanelProgram

Spec 6.15: The parallel executing components

The component control panel is specified as the only component in CASM_GUI to
handle user requests from CASM_User and to send and receive responses from
CASM _Engine. The control panel dispatches activities in response to user requests.

It is this approach that guarantees that the processes are thread-safe.

6.2.3 Activities in ControlPanelProgram

The GUI component control panel dispatches activities in response to user requests
and controls these activities. On one step of ASM rule ControlPanelProgram, control
panel handles one user request and dispatches the corresponding activity. The second
response of the control panel is to keep uncompleted previous activities executing.
There are two kinds of activities in CASM_GUI, synchronous activity and asyn-

chronous activity. A synchronous activity is an activity that should be executed

CHAPTER 6. DISCUSSION 79

without interruption from another activity. For example, ForwardRunActivity has to
complete before RollbackActivity starts. ForwardRunActivity is a synchronous activ-
ity. Most synchronous activities in this GUI ASM model are those activities that
involve execution by CASM_Engine. By contrast, InterruptActivity is a special activ-
ity. It can interrupt other synchronous activities.

In the ViewStateInHistoryActivity, CASM_GUI gets the state from the history
manager and displays that state in the state view. This activity does not need
CASM_GUI to communicate with CASM_Engine. Therefore, we treat the activity
ViewStatelnHistoryActivity as an asynchronous activity. An asynchronous activity is
an activity that can be interrupted by another activity and the interruption will not

affect the execution of the CoreASM machine.

| Asynchronous Activity | Synchronous Activity
ViewProgramCodeActivity LoadFileActivity
ViewLastOutputActivity CheckSpecActivity
ViewOutputInHistoryActivity Init Activity
ViewLastMsgActivity ForwardRunActivity
ViewMsgInHistoryActivity RollbackActivity
ViewLastUpdateset Activity StopActivity
ViewLastStateActivity InterruptActivity *

ViewUpdatesetInHistory Activity
ViewStateInHistoryActivity
StartupActivity
QuitActivity
AddWatchActivity
DeleteWatchActivity

Table 6.1: Asynchronous activities and synchronous activities

An activity is activated by a user request in the control panel. If this activity is
an asynchronous activity, control panel allows the activity to process when the same
activity is not being executed at the same time (guiSAMode_****A = undef) (Spec
6.16) (Policy 2).

If the activity is a synchronous activity, control panel allows that activity to be

CHAPTER 6. DISCUSSION 80

case nextUserActivityRequest() of
//if the model is not processing the activity ViewStateInHistory,
// then process it.

user ViewStateInHistory —
if guiSAMode_ViewStateInHistoryA = wundef then
ViewStateInHistoryActivity

Spec 6.16: The constraint to activate an asynchronous activity

activated only when no other synchronous activity is executing in CASM_GUI at the
time (Spec 6.17).

case nextUserActivityRequest() of
//if the model is not processing a synchronous activity
// then process it.

userForwardRun —
if not isSynchronousActivityRunning() then
ForwardRunA-ctivity

Spec 6.17: The constraint to activate a synchronous activity

The next task for control panel is to keep uncompleted activities in CASM_GUI ex-
ecuting. The GUI ASM model applies parallel ASMs here again and executes all
uncompleted activities in parallel (Spec 6.18)

An asynchronous activity does not require the result of the activity to display
on the GUI immediately. Two asynchronous activities can overlap each other. For
instance, a user can interrupt a viewing state and switch to viewing program code,
then switch back. The CASM_GUI executes the uncompleted activities ViewPro-
gramCodeActivity and ViewStateInHistoryActivity in parallel to specify this situation

CHAPTER 6. DISCUSSION 81

(Spec 6.18). The only constraint is to make sure no identical activity is executing
currently (Spec 6.16). This does satisfy the policy 2.

A synchronous activity cannot be interrupted by another synchronous activity.
The policy 1 is defined to satisfy this requirement. The system checks whether a syn-
chronous activity is being executed currently before activating a synchronous activity.
Two synchronous activities, ForwardRunActivity and RollbackActivity, seem as if they
can execute in parallel (Spec 6.18). In fact, this will not happen given the constraint
(Policy 1).

One synchronous activity may take a long time to complete and at the same
time it may hold an important resource, an outside actor, such as CASM_Engine or
File Storage. This produces one problem. The CASM_User may want to stop a
synchronous activity if it takes too long. InterruptActivity is introduced as a special
synchronous activity to interrupt other synchronous activities.

An asynchronous activity and a synchronous activity are allowed to be executed si-
multaneously. For example, a user can view program code while waiting for the engine
processes one step. The activities ViewProgramCodeActivity and ForwardRunActiv-
ity execute in parallel (Spec 6.18). CASM_GUI will not freeze when a synchronous
activity is running. The control panel will activate an asynchronous activity when a
user request for the asynchronous activity is incoming, even if a synchronous activity
is running in CASM_GUI (Spec 6.16). A synchronous activity will not block other

incoming asynchronous activity requests.

6.3 Summary

This chapter discussed the level-refinement during the modeling process and the con-
currency issue in the graphical user interface application.

Level-refinement refined the GUI ASM model at abstraction levels in a top-down
development process. Each abstraction level had particular requirement specification
goals. The activity ForwardRunActivity was used as an example to explain the level-
- refinement process.

Concurrency issue normally exists in a GUI system. The GUI ASM model took

CHAPTER 6. DISCUSSION 82

advantage of distributed ASMs to model GUI components that execute in parallel.
An activity concurrency policy was also given in the GUI ASM model to solve the

activity concurrency problem in GUI systems.

CHAPTER 6. DISCUSSION

//synchronous activity
if guiSAMode_RollbackA = guiACompleted then
/] quits this activity
guiSAMode_RollbackA := undef
else
// if the activity is in process, continue the activity
if not (guiSAMode_RollbackA = wundef) then
RollbackActivity

//synchronous activity

if guiSAMode_ForwardRunA = guiACompleted then
// quits this activity
guiSAMode_ForwardRunA := undef

else
// if the activity is in process, continue the activity
if not (guiSAMode_ForwardRunA = undef) then

Forward RunActivity

//asynchronous activity
if guiSA Mode_ViewProgramCodeA = guiACompleted then
// quits this activity
guiSAMode_ViewProgramCodeA := undef
else
/] if the activity is in process, continue the activity
if not (guiSAMode_ViewProgramCodeA = undef) then
ViewProgram Code Activity

/ Jasynchronous activity
if guiSAMode_ViewStateInHistoryA = guiACompleted then
// quits this activity
guiSA Mode_ViewStateInHistoryA := undef
else
// if the activity is in process, continue the activity
if not (guiSAMode_ViewStateInHistoryA = wundef) then
ViewStateInHistoryActivity

83

Spec 6.18: Synchronous activities and asynchronous activities

Chapter 7
Implementation

This chapter introduces the implementation of the GUI ASM model, a visual Core-
ASM language debugger, and then experiments an actual CoreASM model, the ATM

model.

7.1 Visual CoreASM language debugger

A visual CoreASM language debugger is currently under development. The GUI of
the debugger is the implementation of CASM_GUI described in Chapter 5.

The programming language used to implement the debugger is Java. The reason
to choose Java as the programming language is to allow the visual debugger to be
cross-platform. The minimum Java virtual machine required to execute the GUI of
the debugger is the version 1.2 or higher. The GUI is implemented with the Swing
technology.

7.1.1 Function areas on the GUI

There are four main function areas on the GUI.

— Program Edit Area: the area where the user can edit the code of a CoreASM

84

CHAPTER 7. IMPLEMENTATION 85

e

' Help

}Now}q:sn’Emi

r

~t

|« [

stepNum()= &
asm ColorChaice | @ conColor() -» Color, Default Value: undef ‘
i IconCelor() = red
vacabulary

atas: 4

b
(?’ Functiois
i 9 stephum{) -» Integer; Cefault Value: undet

|
TestCase 1 --- Color randomly choosing |
i

enum domain Color = {red, yellow, while, black, green} 1k i
domain integer |

stepNum :-» integer

icorColor : -» Color 4 ; 9
stepNum = 0 £

it
itonCofor = urdef
definiions®
main rule ColorCholceProgram =
stepNum = stepNum « 1 I
choose iconColor fram Cotor ‘
print“The icon color is ™ « iconColor]
T ——
_ — | StataView [Upda Set View | Nocaimtasy W |
= e S i moe Zer g2 & R
‘orward ona step |
| stales0 | slala¥1 J V. B 7

5" 'm-‘-za;f’fgw 5
\ ¥

[jdr;lhlze —\

wsich |

Massavovion | Cuma v] v |

Forwarding succassed.

Figure 7.1: The graphical user interface of the visual CoreASM language debugger

machine in. It locates on the upper-left corner of the GUI (labeled by 1 in
Figure 7.1).

Machine View Area: the area that displays the properties of a CoreASM
machine. The properties of the machine are vocabulary, states and update
sets. This area locates on the upper-right corner of the GUI (labeled by 2
in Figure 7.1).

FExecution Information Area: the area that displays the information of the
execution of a CoreASM machine. The information includes the messages
about the execution of the machine and the output of the mackine and the
history of a run of the machine. This area locates on the lower-left corner
of the GUI (labeled by 3 in the Figure 7.1).

Control Panel Area: the area waere the user can operate to execute a
CoreASM machine in. This area locates on the lower-right corner of the
GUI (labeled by 4 in Figure 7.1).

CHAPTER 7. IMPLEMENTATION 86

The views of most components of CASM_GUI can be found on this GUI imple-
mentation. The table 7.1 shows these components and the function areas where the

views of these components are in.

| CASM_GUI Component | Function Area !
program view Program Edit Area
vocab view Machine View Area
state view Machine View Area
updateset view Machine View Area
message view Ezecution Information Area
output view Execution Information Area
run view Ezecution Information Area
control panel Control Panel Area
history manager

Table 7.1: The components and the function areas in where the views of these com-
ponents are

The history manager is invisible to CASM_User. Therefore, it does not have a
view on the GUI.

7.1.2 Information organized in a tree structure

Users learn a CoreASM machine by observing the states and the updates of the
machine in a run. A state is a set of elements together with functions. An update set
in an update is a set of locations and elements. The function signatures can be used
to identify the locations. Therefore, all the information items in a state or an update
set can be grouped by functions. A tree view is a good representation of this kind of
information organization.

In Figure 7.2, the information of the state is classified to three groups, the function
stepNum, the function isEven and the function iconColor. Four locations, isEven(0),
isEven(1), isFven(2), and isEven(8) are in the group of the function isEven.

The information is organized in a tree structure. This applies to both views, the

state view and the update set view. The purpose of the information organization is

CHAPTER 7. IMPLEMENTATION 87

Statef: |4

® Functions

©- stepNum() -= Integer; Default Value: undef

@ iskven(integer) -» Integer Default Value: undef
isEven(1) = false
isEven(2) = trug
iskven(D) = true
iskEven(3) = false

@ iconColor()-= Color, Default Value: undef
iconCalor() = yellow

| State View | Update 5ot Viow | Vocabitary View |

Figure 7.2: The view of a state

i_ﬁ_;ﬂﬂj 5 (statef1 ‘ [stalef2 |’>'>'Estamf3 [:‘E?lfgl %‘
l

Kb 77277 R
| Message View || Oulput View | RunView |

Figure 7.3: The run view

for users to find a particular location and its value easily.

7.1.3 Run view

The run view displays the trail of a run of a CoreASM machine. A user clicks one
state button in the run view, then the information about the machine at that state

will display in the state view and in the update set view.

CHAPTER 7. IMPLEMENTATION 88

=

Forward one step I

' Reinitialize

I AddiD elete watch J

Figure 7.4: The control panel

7.1.4 Control panel

In the GUI ASM model, the component control panel responds all activity requests
from CASM _User. In the implementation, the panel in the Control Panel Area on the
GUI is only a partial view of the component control panel, because most, but not all, of
the activity request buttons can be found in the Control Panel Area. The initialization
request button and the execution request buttons are in the Control Panel Area. The
other activity requests, such as view requests, are going to be received in the other
function areas on the GUIL For instance, a user needs to click on one state button in

the run view if he/she wants to view the history record about that state.

7.2 Experiment of the ATM model

We chose an actual CoreASM model to test the GUI implemented in Java. This
CoreASM model is the ATM model.

CHAPTER 7. IMPLEMENTATION 89

7.2.1 ATM model

The ATM model abstractly models a cash machine control. There are three separate
active entities that are involved in ATM operations. The active entities are an ATM
manager, and an authentication manager, and an account manager. To simplify the
model, the ATM manager is specified as a CoreASM machine, and the authentication
manager and the account manager are in the system environment.

The withdrawal operation of the ATM should follow these steps:

1. Input the bank card and the PIN code.

2. Check the validity of the bank card and the PIN code.
3. Input the amount to be withdrawn.

4. Check the account balance against the credit line.

5. On approval update the account balance.

6. Output cash or notification about denial of transaction.

The timeout mechanisms of the ATM may cause the cancellation of transactions
at any time.

The ATM model is given in Spec 7.1, with refinement. So the ATM model can be
experimented in the visual CoreASM language debugger [Section 7.1].

There are a few simplifying assumptions in this ATM model.

— The bank card and the PIN code are input in the same step.
— The bank card and the PIN code are always authenticated.

- — The transaction is always valid.
— The mode of the ATM is always idle at the initial state.

— It is known in advance at the initial state whether CancellationEvent will

occur during the withdrawal operation.

CHAPTER 7. IMPLEMENTATION 90

7.2.2 Experiments

The ATM model is ready to be executed in the visual CoreASM language debugger.
To experiment the perspective of the ATM on the withdrawal operation, a few test

cases were prepared.

Test case: successful operation

The ATM is in the idle mode and is activated at the initial state. No CancellationFEvent
will occur.

The initial state in the test case:

init
mode = idle
isActivated := true
isCancelled := false

The states of the ATM model in a withdrawal operation are displayed in Figure
7.5 on the page 93.

The output of the ATM model in a withdrawal operation are displayed in Figure
7.6 on the page 94.

In this test case, the ATM manager starts from the idle mode, then turns into the
processing mode, finally goes back to the idle mode. This is a test case for a successful
operation. The changes of the mode are same as the perspective of the ATM. The
output of the ATM model in the second step [Figure 7.6] also matches the perspective
of the ATM.

Test case: inactivated ATM

The ATM is in the idle mode, but it is not activated at the initial state. No Cancel-

lationFEvent will oceur.

CHAPTER 7. IMPLEMENTATION 91

The initial state in the test case:

init
mode = idle
isActivated = false

isCancelled := false

The states of the ATM model in a withdrawal operation are displayed in Figure
7.7 on the page 95.

There is no output of the ATM model in a withdrawal operation.

In this test case, the ATM manager is inactivated. The mode keeps being idle
during steps. No further actions are to be performed. This matches the perspective of
the ATM. The withdrawal operation cannot be performed if the ATM is not activated.

7.2.3 Conclusion

In the previous experiment, it shows that the visual CoreASM language debugger can
be used to experiment the perspective of a system by running test cases. The test
cases are developed from the scenarios that written in the specification phase [Figure
2.6]. If the ATM model gets further refinement, for instance, refining the function
isAuthenticated, more test cases can be prepared. Then, the designer can explore
more behaviors of the ATM.

CHAPTER 7. IMPLEMENTATION

asm AT Mmanager

vocabulary
enum domain Mode = {idle,processing}

definitions
main rule CoreASMGUIProgram =
if Idle and ActivationFEvent then
data = getCardData
code := getPinCode
amount = getAmount
mode = processing
if Processing and IsAuthenticated(data, code) then
if IsValid Transaction(data, amount) then
ReleaseCash{amount)
Update AccountBalance(data, amount)
else
OutputCancellationNotification
mode = idle
if Processing and (not (IsAuthenticated(data, code)) or Cancellation.Event)
then
OutputCancellationNotification
mode = idle
where
rule Idle
mode = 1idle
rule Processing
mode = processing
rule ActivationEvent
isActivated = true
rule Cancellation Event
isCancelled = true
rule IsAuthenticated(data, code)
isAuthenticated(data, code) = true
rule IsValidTransaction(data, amount)
isValid Transaction(data, amount) = true

Spec 7.1: The ATM model

CHAPTER 7. IMPLEMENTATION

State#: 0 parf el [_R_E!IBack

@ Functions
@ mode()-» Mode; Default Value: undef
mode() =idle
@ isActivated()y -> Boolean; Default Value: undef
isActivated() = true
cade() -> String; Default value: undef
isAuthenticated{String * String) -= Boolean; Default Value: undef
data() -» String; Default Value: undef

|_state view [[Dpdate Setview | WocahularyView |

\d

State#: 1 : ‘ RollBack

@ Functions

@ mode()-» Mode; Default Value: undef
mode() = processing

@ isActivated() -» Boolean; Default Value: undef
isActivated() = true

@ code() -» String; Default Value: undef
code(y="34520"

@ isAuthenticated(String * String) -» Boolean; Default Value: undef
isAuthenticated("2345673242" ["34520") = true

@ data() -» String; Dafault Value: undef
data()="2345673242"

| state View [Update SetView | Vocabuiary View |
States: 2

@ Functions

@ mode() -» Mode; Default Value: undef
mode() = idle
@ isActivated() -» Bonlean, Default value: undef
isActivated() = frue
@ code() -» String; Default Value: undef
code()="34520"
@ isAuthenticated(String * String) -» Boglean, Default Value: undef
isAuthenticated('2345673242" ,"34520") = true
@ data()-> String; Default Value: ur def
data() ="2345673242"

1. State View [TUndate SatView | Vocabulary View |

Figure 7.5: The states in a successful run

93

CHAPTER 7. IMPLEMENTATION

Releash cash.
Update account halance.

D

Figure 7.6: The output in the second step in a successful run

94

CHAPTER 7. IMPLEMENTATION 95

State#: 0 RollBack

@ Functions
data() -» String, D2fault Value: undef
cade() -» String, Default Value; undef
isAuthenlicated(String * String) -= Boolean; Derault Value: undef
@ mode() -» Mode; Default Value: undef
made() = idle
@ isActivated() -» Boolean; Default Value: undef
isActivated() = false

_state View [/ Update Setview | Vocabulary View |

\

[Q Functions
data() -» String; Defauit Value: urdef
code() -» String, Default Value: undef
isAuthenticated(String * String) -» Boolean; Default Value: undef
@ maode() -» Mode, Default Value: undef
made() = idie
@ isActivated() -» Boolean; Default Value: undef
isActivated() = false

'

|_State View [[Update Set\View | Vozabulary View

\

State: 2 : |_RollBack

(@ Functions
data() -= String; Defauit Value: undef
code() -» String; Default Value: undef
isAuthenticated(String * String) -> Boolean; Default Value: undef
@ mode()-> Mode; Default Value: undef
mode() =idle
@ isActivated() -» Bonlean; Defauit Value: undef
isActivated() = false

|_state view [Update Set View. | Vocabulary View |

Figure 7.7: The states of an inactived ATM

Chapter 8

Conclusion

8.1 Conclusion

This thesis presents the work of designing a GUI application system at a high abstract
level with model-based design. Abstract state machines methodologies have been
applied in the modeling process. The GUI ASM model is specified with the CoreASM
language. It provides a formal mathematical foundation to specify the architecture
and the function form of the GUI system and to specify the interactive actions between
the user and the CoreASM engine.

The formalization of the functions of the GUI system shows the ASM model is a
precise semantic foundation to model human-computer interaction system at a high
abstract level. The GUI ASM model describes the architecture of the system and
specifies the functions of the system as activities. This model is a formal foundation
for analysts to analyze GUI system behaviors and is a formal model for designers to
validate the GUI system by walk-through inspection. The inspection can be switched
to experimental validation through simulation and testing and formal verification
when the CoreASM working environment is ready.

The GUI ASM model is built with a mixed design approach of the object-oriented
approach and the task-oriented approach [Section 4.2]. The object-oriented design

96

CHAPTER 8. CONCLUSION 97

creates the architecture of the CoreASM supporting tool environment and the ar-
chitecture of the GUI application system (CASM_GUI) at the beginning. The task-
oriented design guides the system designer to focus on one core object in the GUI
system, CASM_GUI. As the design process progresses, level-wise refinement can push
the GUI ASM model to become more detailed. An ASM model is scalable. With
multiple levels, each level is concerned with particular features of the system and keeps
other features abstracted. The higher level of specification can be easier proved. The
lower level needs only be proven correct with respect to the previous higher level.
Level-wise refinement makes the design process traceable and manageable.

One challenge of this project research in the graphical user interface design is
to present users with information about execution of a CoreASM machine. This
challenge consists of two questions. 1. What is this information? 2. How should this
information be presented visually? The thesis shows a way to collect the information
in the second abstraction level of the GUI ASM model as well as a way to create APIs
(GUI « Engine interface) with these information. The Java implementation of the
graphical debugger for the CoreASM language is an example of the visual presentation

of this set of information.

8.2 Future work

The GUI ASM model in this thesis has captured the architecture and functions of
the GUI application system. This model is built on the informal requirements of
a GUI application system in the CoreASM project. To define the requirements for
interactive systems, William M. Newman and Michael G. Lamming suggested that
the requirements should be defined in such areas: defining functional form, identifying
the users and setting performance requirements [24]. The GUI ASM model in this
thesis has specified the functional form of the GUI system and has identified the users.
The users are specified as CASM_User in the GUI ASM model and are identified
(/abstracted) by their behaviors and functions that they provide for CASM_GUI
More studies can be done to formally model the users in their behaviors and to analyze

the interactions between the users and the GUI system. To specify the performance

CHAPTER 8. CONCLUSION

requirements with ASMs would be another challenge.

98

Appendix A

List of terms used in the GUI ASM

model

This appendix presents the terms defined in the GUI ASM model.

A.1 Actors in the GUI ASM model

The actors:

— CASM_User
— CASM_GUI
— CASM_Engine

— File Storage

A.2 Components of CASM_GUI
The internal components of CASM_GUI:

— control panel

— output view

99

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL 100

— message view

— program view

— TUn view

— wvocab view

— state view

— updateset view

— history manager

A.3 Signal pools in the components

The following table shows the signal pool in each component.

| Signal Pool | Signal Pool Name | Component |
controlpanelSignalPool controlpanel control panel
outputvSignalPool outputv output view
messagevSignalPool messagev message view
programvSignalPool programv program view
runvSignalPool runv TUN view
vocabvSignalPool vocabv vocab view
statevSignalPool statev state view
updatesetvSignalPool updatesetv updateset view
historymanagerSignalPool historymanager history manager

Table A.1: Signal pools in components

A.4 Activities in CASM_GUI

The activities in CASM_GUI are classified into two groups, synchronous activity and

asynchronous activity.

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL 101

The synchronous activities:

— LoadFileActivity

— CheckSpecActivity
— InitActivity

— ForwardRunActivity
— RollbackActivity

— StopActivity

— InterruptActivity

The asynchronous activities:

— ViewProgramCodeActivity

— ViewLastOutputActivity

— ViewOutputInHistoryActivity
— ViewLastMsgActivity

— ViewMsgInHistoryActivity

— ViewLastUpdateset Activity
— ViewLastStateActivity

— ViewUpdatesetInHistoryActivity
— ViewStateInHistoryActivity
— StartupActivity

— QuitActivity

— AddWatchActivity

— DeleteWatchActivity

Each activity has three modes. Each mode is defined as the following.

— undef : The activity does not exist in the machine.
— guiAInProcess : The activity is in process

— guiACompleted : The activity is completed, but still exists in the machine.

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL 102

A.5 Signals in CASM_GUI

Signals are used to activate certain activities.

The types of these signals are,
— USERACTIVITYREQUEST
— PROGRAMV_COMMAND
— MESSAGEV_COMMAND
— OUTPUTV_COMMAND
— RUNV_COMMAND
~ STATEV_.COMMAND
— UPDATESETV_COMMAND
— HISTORYV_COMMAND
~ VOCABV_COMMAND

A.5.1 USERACTIVITYREQUEST

These signals are the signals that activate the activities of CASM_GUI. They are sent
by CASM _User.

The signals are,

— userStartup

— userLoadFile

— userCheckSpec
— userlnit

— userForwardRun
— userRollback

— userStop

— userlnterrupt

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL 103

— userViewProgramCode

— userViewLastOutput

— userViewOutputInHistory
— userViewLastMsg

— userViewMsgInHistory

— userViewLastUpdateset
— userViewLastState

— userViewUpdatesetInHistory
— user ViewStateInHistory
— userAddWatch

— userDeleteWatch

— userQuit

A.5.2 PROGRAMV_COMMAND

These signals are the signals that activate the activities of program wview. They are
received by program view.

The signals are,

— programvcDisplayFile: to display the CoreASM machine code in program
view;

— programvcClearDisplay: to clear the display in program view.

A.5.3 MESSAGEV_COMMAND

These signals are the signals that activate the activities of message view. They are
received by message view.

The signals are,

— messageveDisp: to display the warning/error messages in message view;

— messagevcClearDisplay: to clear the display in message view.

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL 104

A.5.4 OUTPUTV_COMMAND

These signals are the signals that activate the activities of output view. They are
received by output view.

The signals are,

— outputveDisp: to display the printout in output view;

— outputvcClearDisplay: to clear the display in output view.

A.5.5 RUNV_COMMAND

These signals are the signals that activate the activities of run view. They are received
by run view.

The signals are,

runvcAddAStep: to add a new state icon in run view;

runvcDelSteps: to delete icons in run view;

runvcHighlight AStep: to highlight an icon in run view;

runvcClearDisplay: to clear the display in run view.

A.5.6 STATEV_.COMMAND

These signals are the signals that activate the activities of state view. They are
received by state view.
The signals are,
— statevcDisp: to display a state of the CoreASM machine in state view;

— statevcClearDisplay: to clear the display in state view.

A.5.7 UPDATESETV_.COMMAND

These signals are the signals that activate the activities of updateset view. They are

received by updateset view.

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL 105

The signals are,

— updatesetvcDisp: to display an update set in updateset view;

— updatesetvcClearDisplay: to clear the display in updateset view.

A.5.8 HISTORYV_COMMAND

These signals are the signals that activate the activities of history manager. They are
received by history manager.

The signals are,

— historymanagercAddAStep: to add a history record into history manager;
— historymanagercDelSteps: to delete history records from history manager;

— historymanagercClear: to clear all history records in history manager.

A.5.9 VOCABV_COMMAND

These signals are the signals that activate the activities of vocab view. They are
received by vocab view.

The signals are,

— vocabveDisp: to display the vocabulary of the CoreASM machine in vocab
view;

— vocabvcClearDisplay: to clear the display in vocab view.

Appendix B

Abstract model of CASM _GUI

This appendix presents the GUI ASM model at the fourth abstraction level.

B.1 Actors in the GUI ASM model

There are four actors in the GUI ASM model, CASM _User, CASM_GUI, CASM_Engine,
and File Storage.
CASM_GUI is specified as an ASM machine.

asm CASM_GUI

The other three actors are the environment for CASM_GUI.

vocabulary

domain CoreASM-Engine //The actor CASM _Engine
domain CoreASM-User //The actor CASM User
domain CoreASM-FileStorage //The actor FileStorage

106

APPENDIX B. ABSTRACT MODEL OF CASM_GUI 107

B.2 Components of CASM_GUI

CASM_GUI consists of nine components, output view, message view, program view,
run view, vocab view, state view, updateset view, history manager, and control panel.
Component: output view

The tasks of the output view:

— Display the printout from the CoreASM machine executing;

— Clear the display in the view.

rule OutputViewProgram
choose aSignal from outputvSignalPool
remove aSignal from outputvSignalPool
case firstOf{ aSignal) of
outputveDisp —
displayMsgin Output V(secondOf(aSignal))
outputveClearDisplay —
clearDisplayin OutputV

Component: message view

The tasks of the message view:

— Display any warning/error messages produced during the execution of the
CoreASM machine;

— Clear the display in the view.

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

108

rule MessageViewProgram
choose aSignal from messagevSignalPool
remove aSignal from messagevSignalPool
case firstOf(aSignal) of
messagevcDisp —
displayMsginMessage V(second Of(aSignal))
messagevcClearDisplay —

clearDisplayinMessageV

Component: program view

The tasks of the program view:

— Display the code of the CoreASM machine;

— Clear the display in the view.

rule ProgramViewProgram
choose aSignal from programvSignalPool
remove aSignal from programuvSignalPool
case firstOf(aSignal) of
programuvcDisplayFile —
displayFilein Program V(secondOf(aSignal))
programuvcClearDisplay —

clearDisplayinProgramV

Component: run view

The tasks of the run view:

— Add a new state icon in the view;

— Delete icons in the view;

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

— Highlight an icon in the view;

— Clear the display in the view.

109

rule RunViewProgram
choose aSignal from runvSignalPool
remove aSignal from runvSignalPool
case firstOf{ aSignal) of
runvcAddAStep —
addA RunViewElementinRun V(secondOf(aSignal))
runvcDelSteps —
delRun ViewElementsinRun V{secondOf aSignal))
runvcHighlightAStep —
hightlight Run ViewElementinRun V(second Of(aSignal))
runvcClearDisplay —

clearDisplayinRunV

Component: vocab view

The tasks of the vocab view:

— Display the vocabulary of the CoreASM machine;

— Clear the display in the view.

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

110

rule VocabViewProgram
choose aSignal from vocabvSignalPool
remove aSignal from vocabuSignalPool
case firstOf(aSignal) of
vocabveDisp —
diaplay Vocabin Vocab V(second Of(aSignal))
vocabvcClearDisplay —

clearDisplayin VocabV

Component: state view

The tasks of the state view:

— Display a state of the CoreASM machine;

— Clear the display in the view.

rule StateViewProgram
choose aSignal from statevSignalPool
remove aSignal from statevSignalPool
case firstOf{ aSignal) of
statevcDisp —
displayStateinState V(secondOf aSignal))
statevcClearDisplay —
clearDisplayinStateV

Component: updateset view

The tasks of the update set view:

— Display an update set produced during the execution of the CoreASM

machine;

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

— Clear the display in the view.

111

rule UpdatesetViewProgram
choose aSignal from updatesetvSignalPool
remove aSignal from updatesetvSignal Pool
case firstOf{ aSignal) of
updatesetvcDisp —
displaySetin Updateset V(secondOf(aSignal))
updatesetvcClearDisplay —
clearDisplayinUpdateset V

Component: history manager

The tasks of the history manager:

— Add a history record into the history manager;
— Delete history records from the history manager;

— Clear all history records in the history manager.

rule HistoryManager Program
choose aSignal from historymanagerSignalPool
remove aSignal from historymanagerSignalPool
case firstOf(aSignal) of
historymanagercAddAStep —
addA RuninHistoryManager(secondOf{ aSignal))
historymanagercDelSteps —
delRunsinHistoryManager(secondOf{ aSignal))
historymanagercClear —

clearinHistoryManager

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

Component: control panel

The tasks of the control panel:

— Activate an activity;

112

rule Control Panel Program
case nextUserActivityRequest() of

userStartup —

if guiSAMode_StarupA = wundef then StartupActivity

//if a synchronous activity is in process, no other synchronous

//activity can run except interruptions.

userLoadFile —

if not isSynchronousActivityRunning() then LoadFileActivity
userCheckSpec — A

if not isSynchronousActivityRunning() then CheckSpecActivity
userInit —

if not isSynchronousActivityRunning() then InitActivity
userForwardRun —

if not isSynchronousActivityRunning() then ForwardRunActivity
userRollback —

if not isSynchronousActivityRunning() then RollbackActivity
userStop —

if not isSynchronousActivityRunning() then StopActivity
userInterrupt —

if guiSAMode_InterruptA = undef then InterruptActivity

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

113

user ViewProgramCode —
if guiSAMode_ViewProgramCodeA = wundef then
ViewProgramCodeActivity
userViewLastOutput —
if guiSAMode_ViewLastOutputA = undef then
ViewLastOutputActivity
user ViewOutputInHistory —
if guiSAMode_ ViewOutputinHistoryA = undef then
ViewOQutputinHistoryActivity
userViewLastMsg —
if guiSAMode.ViewLastMsgA = undef then ViewLastMsgActivity
user ViewMsgInHistory —
if guiSAMode_ViewMsgInHistoryA = wundef then
ViewMsgInHistoryActivity
userViewLastUpdateset —
if guiSAMode_ViewLastUpdatesetA = undef then
ViewLast Updateset Activity
userViewLastState —
if guiSAMode_ViewLastStateA = undef then
ViewLastState Activity
user ViewUpdatesetInHistory —
if guiSAMode_ViewUpdatesetInHistoryA = undef then
ViewUpdatesetInHistoryActivity
user ViewStateInHistory —
if guiSAMode_ViewStateInHistoryA = undef then
ViewStateInHistoryActivity
userAddWatch —
if guiSAMode_AddWatchA = wundef then AddWatchActivity
userDelete Watch —
if guiSAMode_DeleteWatchA = wundef then Delete WatchActivity
userQuit —

if guiSAMode_QuitA = undef then QuitActivity

APPENDIX B. ABSTRACT MODEL OF CASM_GUI , 114

B.3 Main rule of CASM_GUI

The machine of the CASM_GUI model is specified as parallel executions of compo-

nents.

main rule Core ASMGUIProgram =

//GUI component programs
Vocab ViewProgram

Output ViewProgram

Message ViewProgram
ProgramViewProgram
RunViewProgram

State ViewProgram
UpdatesetViewProgram
HistoryManagerProgram

ControlPanelProgram

APPENDIX B. ABSTRACT MODEL OF CASM_GUI 115

B.4 Signals in CASM_GUI

These signals are the activity requests from CASM_User to activate the activities of
CASM_GUL

vocabulary

enum domain USER_ACTIVITYREQUEST = {userStartup,
user LoadF'ile, userCheckSpec, userInit,
user Forward Run, user Rollback, user Stop,
userInterrupt,
userViewProgramCode,
userViewLastOutput, userViewQutputInHistory,
userViewLastM sg,userViewM sgInHistory,
userViewLastUpdateset, userViewUpdatesetInHistory,
userViewLastState, userViewStateInHistory,
user AddW atch, user DeleteW atch, userQuit}

APPENDIX B. ABSTRACT MODEL OF CASM_GUI 116

The following signals are the signals that are transferred between internal compo-
nents of CASM_GUL

vocabulary

enum domain PROGRAMV_COMMAND = {
programuvcDisplayFile, programuvcClearDisplay}
enum domain VOCABV.COMMAND = {
vocabveDisp, vocabvcClearDisplay}
enum domain MESSAGEV_.COMMAND = {
messageveDisp, messagevcClear Display}
enum domain OUTPUTV_.COMMAND = {
outputveDisp, outputveClear Display}
enum domain STATEV.COMMAND = {
statevcDisp, statevcClear Display}
enum domain UPDATESETV_.COMMAND = {
updatesetvcDisp, updatesetveClear Display}
enum domain RUNV.COMMAND = {
runvcAddAStep, runvcDelSteps, runvcHighlight AStep,
runvcClear Display}
enum domain HISTORYMANAGER_.COMMAND = {
historymanagercAddAStep, historymanagercDelSteps,

historymanagercClear}

APPENDIX B. ABSTRACT MODEL OF CASM_GUI 117

The sending process for signals is specified as a rule, signalingTo(aSignalPool :
SignalPoolName, aSignal : GUI_Signal).

rule signalingTo(aSignalPool : SignalPoolName, aSignal: GUI_Signal) =
case aSignalPool of

programuv —

add aSignal to programvSignalPool
messagev —

add aSignal to messagevSignalPool
outputv —

add aSignal to outputvSignalPool
statev —

add aSignal to statevSignalPool
updatesety —

add aSignal to updatesetvSignalPool
rUnY —

add aSignal to runvSignalPool
historymanager —

add aSignal to historymanagerSignalPool
vocaby —

add aSignal to vocabuSignalPool
controlpanel —

add aSignal to controlpanelSignalPool

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

B.5 Interfaces in the GUI ASM model

There are three interfaces specified in the GUI ASM model. They are the GUI <

User interface, the GUI « FileStorage interface, and the GUI < Engine interface.

B.5.1 The GUI < User interface

The GUI < User interface specified in the GUI ASM model consists of the commands

to activate the activities and the operations of CASM_User on CASM_GUI.

rule getFileU RIToLoad (aUser : CoreASM-User ,
aF'ileStorage : CoreASM-FileStorage)
rule get NumForwardStepsRequested (aUser : CoreASM-User)
rule getStateldBackTo (aUser : CoreASM-User)
rule getStateldViewInHistory (aUser : CoreASM-User)
rule getUpdateSetldViewInHistory (aUser : CoreASM-User)
rule create AWatch (aUser : CoreASM-User , aVocab : GUILVOCAB)
rule selectAWatchToDel (aUser : CoreASM-User)

B.5.2 The GUI < FileStorage interface

The GUI « FileStorage interface specified in the GUI ASM model provides an I/0O

channel to read a file stored on File Storage.

rule loadFile (aFileStorage : CoreASM-FileStorage ,aUri : FileURI)

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

B.5.3 The GUI < Engine interface

119

The GUI < Engine interface consists of a control interface and an access interface.

The control interface of GUI « Engine interface:

rule checkSpecification (aEngine : CoreASM-Engine , aFile : File)
rule initSpecification (aEngine : CoreASM-Engine)

rule step (aEngine : CoreASM-Engine , anl : Integer)

rule rollback (aEngine : CoreASM-Engine , anld : StatelD)

rule createEngine

rule killEngine (aFEngine : CoreASM-Engine)

controlled interrupt : CoreASM-Engine — Boolean

monitored getEngineMode : CoreASM-Engine — ENGINE-MODE

The access interface of GUI < Engine interface:

monitored getGUI_VOCAB : CoreASM-Engine — GUI_VOCAB
monitored getOutput : CoreASM-Engine — GUI.Outputs
monitored getCurrentGUI_State : CoreASM-Engine — GUI States
monitored getLastUpdateSet : CoreASM-Engine — GUI_UpdateSets
monitored getPreviousGUI State : CoreASM-Engine
* GUIL.Watch * StatelD
— GUIL States
monitored getPreviousUpdateSet : CoreASM-Engine
* GUI_Watch x UpdateSetID
— GUI_UpdateSets
monitored getSpec : CoreASM-Engine — File

APPENDIX B. ABSTRACT MODEL OF CASM_GUI 120

B.6 Activities of CASM_GUI

The activities in CASM_GUI are specified as ASM rules. And they are classified into

two groups, synchronous activity and asynchronous activity.

B.6.1 Activities

The followings are the activities specified at the second abstraction level of the GUI
ASM model. The details about the signals transferring among the internal compo-
nents and the usage of the interfaces in each sub-activity are specified formally at the
third and the fourth abstraction levels. The full version of the four abstraction levels
of the GUI ASM model will be provided as required.

StartupActivity

rule StartupActivity
createGUISA seq createLinkEngineSA

LoadFileActivity

rule LoadF'ile Activity
getFileURIToLoadSA seq loadFileSA

CheckSpecActivity

rule CheckSpecActivity
checkSpecSA(currentEngine, guiAFile) seq getCSFeedbackSA

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

Init Activity

121

rule InitActivity
initSpecSA(currentEngine, guiAFile)
seq getlISFeedbackSA

ForwardRunActivity

rule ForwardRunActivity
getNumForwardStepsRequestedSA seq forwardRunSA seq getFRFeedbackSA

RollbackActivity

rule RollbackActivity
getStateldBackToSA seq rollbackSA

StopActivity

rule StopActivity

Interrupt Activity

rule InterruptActivity

interrupt(currentEngine) = true

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

ViewProgramCodeActivity

122

rule ViewProgramCodeActivity

ViewLastOutputActivity

rule ViewLastOutput Activity

ViewOutputInHistoryActivity

rule ViewOutputInHistoryActivity

ViewLastMsgActivity

rule ViewLastM sgActivity

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

ViewMsgInHistoryActivity

123

rule ViewM sgInHistoryActivity

ViewLastUpdatesetActivity

rule ViewLastUpdateset Activity

ViewLastStateActivity

rule ViewLastStateActivity

ViewUpdatesetInHistoryActivity

rule ViewUpdatesetInHistoryActivity
getUpdateSetldViewInHistorySA
seq
viewUpdatesetInHistorySA(guiUpdateSetld To ViewInHistory)

APPENDIX B. ABSTRACT MODEL OF CASM_GUI

ViewStateInHistoryActivity

124

rule ViewStateInHistoryActivity
getStateld ViewInHistorySA
seq
viewStateInHistorySA(guiStateld ToViewInHistory)

AddWatchActivity

rule AddW atchActivity
create AWatch(currentUser, guiVocab)

DeleteWatchActivity

rule DeleteW atchActivity
selectAWatchToDel(currentUser)

QuitActivity

rule QuitActivity
killEngineSA(currentEngine) seq killGUISA

APPENDIX B. ABSTRACT MODEL OF CASM_GUI 125

B.6.2 The function isSynchronousActivityRunning()

The function is defined to check if a synchronous activity is currently processing in

CASM_GUL

isSynchronous ActivityRunning()

if (guiSAMode_StarupA = undef)

and (guiSAMode_LoadFileA = undef)

guiSAMode_CheckSpecA = wundef)
guiSAMode_InitA = undef)
gquiSAMode_ForwardRunA = undef)
guiSAMode_RollbackA = wundef)
guiSAMode_StopA = undef)
guiSAMode_InterruptA = undef) then

and
and
and
and

and

and

isSynchronous Activity Running := true

Appendix C

ATM executable model

This appendix presents the ATM executable model.

asm AT Mmanager
vocabulary

enum domain Mode = {idle, processing}

126

APPENDIX C. ATM EXECUTABLE MODEL

127

definitions
main rule CoreASMGUIProgram =
if Idle and ActivationEvent then
data = getCardData
code = getPinCode
amount = getAmount
mode := processing
if Processing and IsAuthenticated(data, code) then
if IsValidTransaction(data, amount) then
ReleaseCash(amount)
UpdateAccountBalance(data, amount)
else
OutputCancellationNotification
mode = idle
if Processing and (not (IsAuthenticated(data, code)) or CancellationEvent)
then
OutputCancellationNotification
mode = idle
where
rule Idle
mode = idle
rule Processing
mode = processing
rule ActivationFEvent
isActivated = true
rule Cancellation Fvent
isCancelled = true
rule I'sAuthenticated(data, code)

isAuthenticated(data, code) = true

APPENDIX C. ATM EXECUTABLE MODEL

128

where

rule IsValidTransaction(data, amount)
is Valid Transaction(data, amount) = true
rule ReleaseCash({amount)
print “Releashcash.”
rule Update Account Balance(data, amount)
print “Updateaccountbalance.”
rule OutputCancellationN oti fication

print “Theoperationiscancelled.”

staticisAuthenticated(data, code) := true
staticis ValidTransaction(data, amount) := true
getCardData = “2345673242"

getPinCode := “34520"

getAmount := 400.00
data : String

code : String
amount : Double
mode : Mode
isActivated : Boolean

1sCancelled : Boolean

Bibliography

[1]
[2]
3]

[4]

[5]

[7]

8]

(9]

[10]

[11]

Spec# Home, http://research.microsoft.com/specsharp/.
eXtensible Abstract State Machines, http://www.xasm.org/.

G. Booch. Object-Oriented Analysis and Design. Redwood City, CA: Ben-
jamin/Cummings, 1994.

E. Borger, N. G. Fruja, V. Gervasi, and R. F. Stark. A high-level modular
definition of the semantics of C#. Theoretical Computer Science, 2004.

E. Borger, U. Glasser, and W. Miiller. Formal Definition of an Abstract VHDIL’93
Simulator by EA-Machines. In C. Delgado Kloos and P. T. Breuer, editors,
Formal Semantics for VHDL, pages 107-139. Kluwer Academic Publishers, 1995.

E. Borger, E. Riccobene, and J. Schmid. Capturing requirements by abstract
state machines: The light control case study. Journal of Universal Computer
Science, 6(7):597-620, 2000.

E. Borger and D. Rosenzweig. A mathematical definition of full Prolog. In
Science of Computer Programming, volume 24, pages 249-286. North-Holland,
1994.

Egon Borger. The ASM ground model method as a foundation for requirements
engineering. In Verification: Theory and Practice, pages 145-160, 2003.

Egon Borger and Robert Stark. Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

J. Pac Coutaz. An object oriented model for dialog design. In H. J. Bullinger
and B. Shackel, editors, Human-Computer Interaction - INTERACT’87, pages
431-6. Elsevier Science Publishers, North-Holland, Amsterdam, 1987.

Paul Curzon and Ann Blandford. From a formal user model to design rules.
In DSV-IS ’02: Proceedings of the 9th International Workshop on Interactive

129

BIBLIOGRAPHY 130

Systems. Design, Specification, and Verification, pages 1-15, London, UK, 2002.
Springer-Verlag.

[12] Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell Beale. Human - Com-

[13]

[17]

[18]

[19]

[20]

[21]

[22]

puter Interaction. Pearson-Prentice Hall, third edition, 2004.

Jacob Eisenstein and Charles Rich. Agents and GUIs from task models. In
IUI ’02: Proceedings of the Tth International Conference on Intelligent User
Interfaces, pages 47-54, New York, NY, USA, 2002. ACM Press.

Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Gléasser. Coreasm: An extensible
ASM execution engine. In Proc. of the 12th Intl Workshop on Abstract State
Machines, 2005.

Uwe Glasser, Y. Gurevich, and M. Veanes. An abstract communication model.
Technical Report MSR-TR-2002-55, Microsoft Research, Microsoft Corporation,
May 2002.

Uwe Glasser, Y. Gurevich, and M. Veanes. High-level executable specification of
the universal plug and play architecture. In Proc. of 85th Hawaii International
Conference on System Sciences, Software Technology Track, Domain-Specific
Languages for Software Engineering, IEEFE, 2002.

Y. Gurevich. Logic and the Challenge of Computer Science. In E. Borger, editor,
Current Trends in Theoretical Computer Science, pages 1-57. Computer Science
Press, 1988.

Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Borger, editor, Specifi-
cation and Validation Methods, pages 9-36. Oxford University Press, 1995.

ITU-T Recommendation Z.100 Annex F (11/00). SDL Formal Semantics Defi-
nition. International Telecommunication Union, 2001.

I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented
Software Engineering: a Use Case Driven Approach. Addison-Wesley, 1992.

Bernard J. Jansen. The Graphical User Interface: An Introduction, pages 22-26.
SIGCHI Bulletin, 1998.

Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Automated test oracles
for GUIs. In Proc. of the FEighth International Symposium on Foundations of
Software Engineering, pages 30-39, 2000.

BIBLIOGRAPHY 131

23]

24]

[25]

[26]

[27]

Brad A. Myers. Why are Human-Computer Interfaces Difficult to Design and
Implement? Technical report, Pittsburgh, PA, USA, 1993.

William M. Newman and Michael G. Lamming. Interactive System Design.
Addison-Wesley Publishing Company, 1995.

Fabio Paterno. Towards a UML for interactive systems. In G. Goos, J. Hartma-
nis, and J. van Leeuwen, editors, Engineering for Human-Computer Interaction,
Lecture Notes in Computer Science. Springer, 2001.

Dave Roberts, Dick Berry, Scott Isensee, and John Mullaly. Designing for the
User with OVID: Bridging User Interface Design and Software Engineering. Soft-
ware Engineering Series. Macmillan Technical Publishing, 1998.

Meurig Sage and Chris Johnson. Pragmatic formal design: A case study in inte-
grating formal methods into the HCI development cycle. In Design, Specification
and Verification of Interactive Systems’98, pages 134-155, Abingdon, UK, 1998.
Springer Verlag.

R. Stark, J. Schmid, and E. Bérger. Java and the Java Virtual Machine: Defi-
nition, Verification, Validation. Springer-Verlag, 2001.

Adriana-Mihaela Tarta. Task modeling in systems design. Studia Univ. Babes-
Bolyal, Inforasmtica, XLIX(2), 2004.

H. Tonino and J. Visser. Stepwise Refinement of an Abstract State Machine for
WHNF-Reduction of A\-Terms. Technical Report 96-154, Faculty of Technical
Mathematics and Informatics, Delft University of Technology, 1996.

Roger Took. Putting design into practice: Formal specification and the user in-
terface. In Michael Harrison and Harold Thimbleby, editors, Formal Methods in
Human-Computer Interaction, Cambridge Series on Human-Computer Interac-
tion, pages 63-96. Cambridge University Press, 1990.

Hallvard Traetteberg. Using user interface models in design. In CADUI’2002:
Proceedings of 4th International Conference on Computer-Aided Design of User
Interfaces, 2002.

