
USING ABSTRACT ST.ATE MACHINES TO

MODEL .A GRAPHICAL USER INTERFACE

SYSTIEM

Ming (Mike) Su

B.Sc., University of Ottawa, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS ITOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Ming (Mike) Su 2006

SIMON FRASER UNIVERSITY

Spring 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Ming (Mike) Su

Master of Scie:nce

Using Abstract State Machines to Model a Graphical

User Interface System

Examining Committee: Dr. Jiangchuan Liu

Chair

Date Approved:

Dr. Uwe Glasser, Senior Supervisor

--

Dr. Arthur (Ted) Kirkpatrick, Supervisor

Dr. Fred Popowich, SFU Examiner

SIMON FRASER
UNWERSITYI i bra ry I

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible, to any
medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

A graphical user interface (GUI) system is a visual tool for users to operate computer

applications. In the software engineering world, verifying that the functions of a

GUI system satisfy the perspective of users j.s one important goal. System modeling

provides an opportunity to verify the functionality of the system before implementing

it.

In this thesis, we model the GUI system of the CoreASM language debugger based

on the abstract state machine (ASM) paradigm, and give a formal specification to the

GUI system. This GUI system model provides a formal mathematical foundation to

specify the architecture and the function for:m of the GUI system and to specify the

interactive actions between the users and the computer application (the CoreASM

engine). The design approach in this work incorporates both object-oriented and

task-oriented approaches. A process of level-wise refinement is used to solve particular

design problems.

This thesis is dedicated, with love, to my parents and my brother!

'(Life is finite, while knowledge is infinite. "

-- Zhuang Zi

Acknowledgments

Many thanks to all the members of my committee for their guidance and thanks to

colleagues working in the CoreASM project for discussion and feedback.

In particular, I would like to thank the following:

Dr. Uwe Glasser, whose guidance enabled me to complete this thesis.

Dr. Arthur (Ted) Kirkpatrick, whose advices assisted me to think over my work

from expectations as an HCI reader.

Mr. Roozbeh Farahbod and Mr. Mashaal Memon. It is much appreciated in the

discussions of the project and to work together.

Additional, I thank my parents and my brother for their patience and supports.

Contents

Approval

Abstract

Dedication

Quotation

Acknowledgments

Contents

List of Tables

List of Figures

List of Specs

Abbreviations

1 Introduction
. 1.1 Motivation and objectives

. 1.2 Thesis organization
. 1.3 Related works

. 1.4 Significance of work

vii

xii

...
Xlll

xiv

xvi

vii

2 Human computer interactive systems 7

. 2.1 General introduction to HCI 7

. 2.2 Graphical user interfaces 8

. 2.3 User interface management systems 9

. 2.4 Scenarios 13

. 2.5 Task analysis in HCI 14

. 2.5.1 Introduction to task analysis; 14

. 2.5.2 Hierarchical task analysis 15

. 2.5.3 Use case task analysis 16

. 2.6 Software development life cycle in HCI 17

. 2.7 System design in HCI 18

Abstract state machines 20

. 3.1 Abstract state machines 21

. 3.2 Some definitions used in ASMs 22

. 3.2.1 Universe 22

. 3.2.2 Function 22

. 3.2.3 Vocabulary 24

. 3.2.4 State 25

. 3.2.5 Update set 25

. 3.2.6 S tepandrun 25

. 3.2.7 Rule and program 26

. 3.3 Parallel abstract state machines 27

. 3.4 Non-deterministic abstract state ma. chines 27

. 3.5 Distributed abstract state machines 28

. 3.6 Turbo abstract state machines 29
. 3.7 Summary 30

4 Formal modeling approaches 31

4.1 Formal modeling approaches in GUI architecture and functional it:^ design 31

4.2 A specification approach of GUI mo'deling in the CoreASM project . 32

...
Vll l

4.3 Summary . 34

5 The GUI ASM model in the CoreNSM project 3 5

5.1 Architecture of the CoreASM supporting tool environment 35

5.2 Actors in the GUI ASM model . 38

5.3 Architecture of CASM-GUI . 40

5.3.1 Components of CASM-GUI 40

5.3.2 Communication structure in CASM..GUI 44

5.4 Activities in CASM-GUI . 48

5.4.1 Activity specifications . 49

5.5 Interfaces in the GUI ASM model . 57

5.5.1 Interfaces in the GUI ASM nod el 57

5.5.2 The GUI - User interface 59

5.5.3 The GUI - Engine interface 59

5.6 Conclusion . 61

6 Discussion 63

6.1 Four abstraction levels for the GUI ASM model 63

6.1.1 The first abstraction level . (the features) 64

6.1.2 The second abstraction level . (the interface design) 64

6.1.3 The third abstraction level . (the internal architecture) 65

6.1.4 The fourth abstraction level . (the concurrency problem) . . . 66

6.1.5 An example of refining a model in four abstraction levels . . . 66

6.1.6 Benefit of refinement by levels 74

6.2 Concurrency issues in the GUI system 75

6.2.1 GUI ASM model constraints in concurrency issue 75

6.2.2 GUI ASM model components 77

6.2.3 Activities in ControlPanelProgram 78

6.3 Summary . 81

7 Implement at ion 84

. 7.1 Visual CoreASM language debugger 84

. 7.1.1 Function areas on the GUI 84

7.1.2 Information organized in a tree structure 86

. 7.1.3 Run view 87

. 7.1.4 Control panel 88

. 7.2 Experiment of the ATM model 88

. 7.2.1 ATM model 89

. 7.2.2 Experiments 90

. 7.2.3 Conclusion 91

8 Conclusion 96

. 8.1 Conclusion 96

. 8.2 Future work 97

A List of terms used in the GUI ASM model 99

. A.1 Actors in the GUI ASM model 99

. A.2 Components of CASM-GUI 99

. A.3 Signal pools in the components 100

. A.4 Activities in CASM-GUI 100

. A.5 Signals in CASM-GUI 102

. A.5.1 USERACTIVITYREQUEST 102

. A.5.2 PROGRAMV-COMMAND 103

. A.5.3 MESSAGEV-COMMAND 103

. A.5.4 OUTPUTV-COMMAND 104

. A.5.5 RUNV-COMMAND 104

. A.5.6 STATEV-COMMAND 104

. A.5.7 UPDATESETV-COMMAND 104

. A.5.8 HISTORYV-COMMAND 105

. A.5.9 VOCABV-COMMAND 105

B Abstract model of CASM-GUI 106
. B.l Actors in the GUI ASM model 106

. B.2 Components of CASM-GUI 107

. B.3 Main rule of CASM-GUI 114
. B.4 Signals in CASM-GUI 115

. B.5 Interfaces in the GUI ASM model 118

. B.5.1 The GUI +-+ User interface 118

. B.5.2 The GUI +-+ Filestorage interface 118

. B.5.3 The GUI +-+ Engine interface 119
. B.6 Activities of CASM-GUI 120

. B.6.1 Activities 120

. B.6.2 The function isSynchronous~4ctivityRunning() 125

C ATM executable model 126

Bibliography 129

List of Tables

5.1 Components in CASM-GUI . 44

5.2 Signal pools in components . 46

5.3 Activities and signals to activate these activities 50

6.1 Asynchronous activities and synchronous activities 79

7.1 The components and the function areas in where the views of these

components are . 86

A.1 Signal pools in components . 100

xii

List of Figures

. 2.1 The Model- View-Controller model

2.2 The Presentation-Abstraction-Control model
2.3 User Inteface (UI) design with an A.SM approach

. 2.4 An example of scenario notation

2.5 Hierarchical task analysis .
2.6 Software development process: the waterfall model

. 2.7 Discussion of system specification model

5.1 CoreASM supporting tool environment architecture
. 5.2 Actors in one use case

5.3 Internal components of CASM-GUI
. 5.4 GUI tt Engine interface

7.1 The graphical user interface of the visual CoreASM language debugger

. 7.2 The view of a state

7.3 The run view .
. 7.4 The control panel

. 7.5 The states in a successful run

7.6 The output in the second step in a successful run
. 7.7 The states of an inactived ATM

xiii

List of Specs

5.1 Features of message view : display messages and clear messages . . . 43

5.2 The components in CASM-GUI . 45

5.3 Specification of a signal pool . 45

5.4 Choosing a signal from the signal pool of message view 46

5.5 Sending a signal . 47

5.6 Activity and sub-activity . 49

5.7 Controlled function example . 58

5.8 Monitored function example . 58

5.9 Activity commands . 59

5.10 Rules in the GUI tt User interface 60

5.11 Rules and functions in the control interface of GUI t-t Engine interface 60

5.12 Rules in the access interface of GUI ++ Engine interface 62

The activity ForwardRunActivity .
. . . . The activity FomoardRunActivity is activated in the main rule

The actors in the activity FomoardEihnActivity

The sequential execution of sub-activities in the activity FomoardRun-

Activity .
. The sub-activity getNumFomoardStepsRequestedSA

The sub-activity forwardRunSA .
The sub-activity getFRFeedbaclcSA

. API functions used in the activity FomoardRunActivity

The activity FomoardRunActivity is activated in the control panel . .

Sending requests to other components in activity ForwardRunActivity

xiv

. 6.11 The component state view 73

. 6.12 The constraint to activate the activity FomuardRunActivity 73

. 6.13 State of the activity FomuardRunActivity 74

. 6.14 The activation of an activity 77

. 6.15 The parallel executing components 78

. 6.16 The constraint to activate an asynclironous activity 80

. 6.17 The constraint to activate a synchronous activity 80

. 6.18 Synchronous activities and asynchronous activities 83

. 7.1 The ATM model 92

~bbreviat ions

-
LPI application program interface
4SM
IASM
:u1
ICI
IFC
4VC
'AC
JI
JIDS
JIMS
JML
rM

abstract state machine
distributed ASM
graphical user interface
human-computer interact ion
Java Foundation Classes
model-view-controller
presentation-abstraction-control
user interface
user interface development system
user interface management system
unified modeling language
virtual machine

xvi

Chapter 1

Introduction

This thesis introduces a model for the graphical user interface application created for

the CoreASM project, and gives the formal specification for it. As part of the project,

the Software Technology Lab at Simon F'raser University is developing an. executable

working environment [Section 5.11 for the CoreASM language, a language that extends

from pure abstract state machine principles [14]. CoreASM is still under development

in the Software Technology Lab. The graphkal user interface application. is one tool

in the working environment of the CoreASM language. It provides for interactive

visualization and control of CoreASM simulation runs.

A graphical user interface application is one type of human-computer interaction

system. Human-computer interaction is a huge research field. Computer science,

psychology, information science, and enginelering all influence research in this field.

This field focuses on the interactions betweten computer systems and human users.

Designing computer systems to better present information and to improve user work

performance are some of the goals of this research work.

The CoreASM language comes from the original, basic definition of abstract state

machines given in the Lipari Guide [18]. Abstract state machines are practical for

modeling hardware and software architectures, programming languages, network pro-

tocols, etc. Some applications of ASM-based modeling include the ITU-T standard

CHAPTER 1. INTRODUCTION

for SDL [19], the IEEE language VHDL [5], tthe programming languages J.ava [28] and

C# [4], and communication architectures [15] [16].

Motivation and objectives

Abstract state machine (ASM) methodologies have been proven practical for modeling

complex systems. Application examples mostly involve existing systems. One way to

make ASMs practical in industry is to use ASM methodologies to model predictively

during the design phase, rather than for analyzing systems that already exist.

ASM methodologies, such as ground model [8] [6] and stepwise refinement [7][30],

can be applied in predictive modeling as well. We need tools to apply these practical

methodologies to industrial designs. The CoireASM project is a step toward applying

ASMs in industry. The project provides a supporting tool environment to make ASMs

executable. Software engineers can do high-level design, experimental validation, and

formal verification of abstract system models in the early design phases with the

CoreASM supporting tool environment.

The graphical user interface application presents execution information for ab-

stract system models. It is a component of the CoreASM supporting tool environment

[Section 5.11. The purpose of this thesis is to apply ASM methodologies in designing

an interactive system, specifically to the graphical user interface application of the

CoreASM language debugger, using the model-based design approach. The formal

specification of the application is given as the part of the design documents. The

formal specification describes the application on three aspects, the architecture, the

functionality and the interfaces between the user and the graphical user interface

(GUI) application and the underlying CoreASM engine.

The first task of this thesis research is t,o apply a specification approach based

on the ASM paradigm to formally specify the architecture and the functionality of

the new user interface system. The graphical user interface application did not exist

prior to the project. The development of the application requires predicting the

application features. These features can be captured and be documented as informal

user requirements. The model in the thesils formally specifies these informal user

C H A P T E R 1. INTRODUCTION 3

requirements. After the application is built, the model can be used to verify the

prediction on the application features, and to validate the interfaces (APIs) between

systems specified in the second task. The thesis will present the formal model [Chapter

51 and explain the specification approach applied in the process building the formal

model. The user requirement capture and the verification of the application feature

prediction and the validation of the APIs are not covered in the thesis. As the specific

approach applied in the modeling process, tlhe mixed approach of an object-oriented

approach and a task-oriented approach [Section 4.21, and level-wise refinement [Section

6.11 will be discussed in this thesis.

The second task of this thesis research is to use ASM methodologies to specify

interactions between systems. The interactions have been specified as a set of activities

[Section 5.41. Each activity interacts between the user, the GUI application and

the CoreASM engine. The purpose of specifying these interactions is to know the

information objects exchanged during interactions and the methods used to exchange

these information objects. The above knowledge assists us in specifying interfaces

(APIs) between systems [Section 5.51.

1.2 Thesis organization

The thesis. is organized as follows.

Chapter 2 briefly overviews general design strategies and processes applied in the

development of human-computer interaction systems. Chapter 3 introduces abstract

state machine paradigms. The definitions of basic ASM terms are given in this chapter.

These ASM terms are used to describe the execution processes and the stakes of ASM

abstract models. The specification approach applied in this thesis is subsequently

explained in Chapter 4. Chapter 5 describes three aspects of the GUI ASM model:

the architecture, the activities, and the interfaces. Chapter 6 provides a discussion of

the formal modeling process carried out during this thesis work. Chapter i' introduces

the implementation of CASM-GUI, a visual CoreASM language debugger, and then

experiments an actual CoreASM model, the ATM model. Chapter 8 concludes the

thesis and discusses possible future work.

CHAPTER 1. INTRODUCTION

Related works

It is widely recognized that designing a GUI system is difficult. Some researchers are

starting to use formal modeling to design and test GUI systems.

Myers enumerated several reasons why a GUI system is difficult to design in his

technical report [23]. In addition to designing any complex system, GUI sy;stem design

has the following specific problems.

- Designers have difficulty learning the user's tasks.

- The tasks and domains are complex.

- There are many different aspects to the design which must all be balanced,

such as standards, graphic design, technical writing, internationalization,

performance, multiple levels of detail, social factors, legal issues, and im-

plementation time.

- The existing theories and guidelines are not sufficient. They are too general

or too specific, and no one theory or one guideline can address all issues.

- Iterative design is difficult. There are a few important issues needed to be

considered. To get real users who actually use the system is important in

iterative design. Also, it may be taken many times to do iterative testing on

one particular problem in order to make sure the solution to that problem

is correct.

Formal model specifications can be used for communication between designer and

implementer, and for analysis about the system and behaviors of the system. Designer

and implementer would have a better understanding about user tasks after reading

the formal model specifications.

Standard software engineering formalism~s can be used to specify an interactive

system. There are three brands of formalism, model based, algebraic formalisms,

temporal and deontic logics. Model-based specifications define the state of a system

and the operations which change the state. Model-based formalisms use precisely

defined mathematical notations to describe the behavior of a system in an abstract

CHAPTER 1. INTRODUCTION 5

language. The major model-oriented specification notations are Z and VDM and

ASM. For example, Z has been used to spelcify the GUI system, the presenter [31].

Algebraic specifications describe the effects of sequences of actions. The architecture

of the system will not be specified with algebraic specification notations. The algebraic

specification notations include Larch and A C'T- ONE. ACT- ONE is the functional part

of the IS0 standard language LOTOS. TempNora1 and deontic logics have Isleen used to

specify certain properties of actions. Temporal logics describe when actions happen,

and deontic logics describe permitted actions and responsibility.

Some formal models for GUIs have been proposed [22] [31]. They mostly model the

actions of a GUI's internal objects. One exarnple of this kind of model wa;s developed

by Atif M. Memon, Martha E. Pollack and Mary Lou Soffa [22]. Their GUI model

is constructed with a set of objects, a set of properties of these objects, and a set of

actions on the change in the properties of these objects. The objects in their model are

windows, menus, buttons, etc. This type of GUI models describes the detailed design

of a GUI system through the actions of the GUI objects. The interaction between

the GUI and other systems is not the model's concern. By contrast, the GUI model

introduced in this thesis makes the interaction between the GUI application and the

CoreASM engine a key resarch issue.

There are some researchers in the ASM field currently working on an executable

ASM environment. They include the Spec# programming system project (successor

to the ASML project) [I] and the XASM project [2], etc. The GUI application is a

component of the tool developed in these projects. This is similar to the GUI tool

developed in this thesis work. However, the GlUI tools in the above projects are simple

implementations. No ASM-based models are provided with them.

1.4 Significance of work

The GUI application described in this thesis was modeled with the help of ASM

methodologies, specificially through a mixtur'e approach of object-oriented design and

task-oriented design approaches, and level-wise refinement. ASM methodologies have

been used here to specify the functions of a, graphical user interface system. They

C H A P T E R 1. INTRODUCTION 6

are also used to define interfaces between interactive systems. The work shows that

the ASM methodologies specified in this thesis can be applied to predictively model

a general interactive system.

The GUI model described in this thesis was constructed as a foundation for ana-

lyzing the function form of a GUI system. The GUI components in the model execute

independently. The functions of the interactive system are specified as activities. Each

activity can be refined with its own detailed specification. This kind of independence

provides the ability for the GUI model to customize the architecture and the functions

of a GUI system according to requirements.

The GUI model can be used to compare the behavior of the model to the imple-

mentation of the system through the use of scenarios and to discover any errors after

the GUI model gets well-refined for execution. This evaluation can be done in the

testing phase.

Chapter 2

Human computer interactive

systems

Graphical user interface is one type of human-computer interaction (HCI) system. The

basic goal of HCI is to make computers moire user-friendly and easier to use. Some

methodologies and design processes can help developers achieve this goal when they

design a HCI system, such as task analysis, scenario design and software development

life cycle models.

2.1 General introduction to HCI

The term human-computer interaction has been widely used in computer research

since the 1980s. During the past three deca,des, many different types of computing

devices have come into popular use, especially after the introduction of the personal

computer in the 1980s and the spread of the Internet during the 1990s. Computing

devices and the computer technologies behjnd these devices are changing people's

work and personal lives.

Computing devices are becoming an important communications medium. People

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 8

use computers at work to keep in contact with colleagues or customers and to com-

municate with their relatives and their friends off work. One significant research field

is to studying on the ways that humans use clr interact with computers. This research

field is not limited to computer science; psychology and engineering technologies are

being applied in this research field as well. Lately, information science is also influ-

encing HCI research. The computer can collect information and analyze it. Managing

information during interactions between humans and computers is one issue in this

field. Researchers are doing their work to improve user work performance and to

figure out how to use theories to design better computer systems.

Human-computer interaction is defined as the interaction between user and com-

puter. A user is not necessarily one human user. It may be a group of human users.

These days the term computer is similarly not restricted to a simple computer. More

and more machines have integrated with co:mputers. These computing-enabled ma-

chines offer users more functions, and require more types of interactions with users.

Researchers view any system that consists of computing-enabled components as a

kind of computer.

Graphical user interfaces

A Graphical User Interface (abbreviated as GUI) is one type of interface in human-

computer interaction. Generally, a GUI is a visual operation display that takes advan-

tage of a computer's graphical capabilities on a monitor screen to offer th.e computer

operator the ability to operate computer a,pplications or computer systems. The

computer operator commands computer applications through the Graphical User In-

terface.

A Graphical User Interface assists the user to reduce the memory time required to

remember the complex command language of computer applications. It can provide

the user with a certain degree of guidance to do the next operation. For example,

some buttons are disabled after a user does an operation. This forces the user to

operate, in the correct way and lets the user handle problems directly. A wizard is a

good example of a way to guide a user's operations.

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 9

A Graphical User Interface has three main components, a windowing system, an

imaging model and an application program interface (API) [21]. The windowing

system builds windows, menus, but tons, dialog boxes and other components. The

imaging model defines graphics and fonts for a system. The application program

interface for the GUI enables a system to draw graphical components on screen.

There are a few common characteristics to <a graphical user interface. They include

a pointer (a cursor on a screen), a pointing device, icons, buttons, toolbars, menus,

a desktop, windows, and dialog boxes. These common characteristics of a graphical

user interface reduce the learning curves when users move from one application to

another.

The first graphical user interface was designed by Xerox Corporation's Palo Alto

Research Center in the 1970s. It did not gain commercial success. Apple Computer

brought the graphical user interface to its Apple Macintosh and made the graphical

user interface the most popular interface for the modern personal computer. Over the

past three decades, the graphical user interface has spread from the personal computer

to other computer devices, such as handheld devices.

There are three main paradigms influencing modern graphical user interface stan-

dards. Apple Macintosh was the first populax GUI on a personal computfer. It intro-

duced some common graphical user interface elements, such as menus, point-and-click

and mouse-driven processes. The IBM SAA invented keyboard short-cut keys for the

graphical user interface. The X-windows syst,em, mostly used by Unix and its succes-

sor Linux, works directly with a network. The display and the application,, can run on

separate computers in a network. The three paradigms have different Look-and-Feel,

but share most of the same graphical user interface characteristics. [21]

2.3 User interface management systems

Some research has been done toward providing a design platform for programmers

developing interactive systems. This interactive system design platform consists of a

set of services, including a conceptual ar~hit~ecture for interactive environments and

techniques for implementing application semantics and its presentations [12]. This

CHAPTER 2. HUMAN COMPUTER 1NT.ERACTIVE SYSTEMS

Figure 2.1: The Model- Kiew- Controller model

design platform is called User Interface Management Systems (UIMS) . Some people

prefer another term, User Interface Development Systems (UIDS) [12].

One popular model for UIMS is the model-view-controller paradigm, or the M V C

paradigm. This paradigm comes from the Srnalltalk programming environment. The

central architecture of the Java Foundation Classes (JFC) also relies on the MVC

paradigm.

A system making use of the Model- Vzew-Controller paradigm has three elements.

- Model: the application logic of the program. It is an abstraction that

represents the nature and state of' a user interface object.

- View: the representation of a user interface object to users.

- Controller: the component that synchronizes the model and its view. It

keeps the view representative of the model's nature and state. It also

accepts user inputs to update the model.

The model is the internal logic of the appl5cation. It maintains the states of a user

interface object during interactions.

The view presents users with the nature or the state of a user interface object. In

a GUI, the view renders user interface objects on the screen.

CHAPTER 2. HUMAN COMPUTER 1NT.ERACTIVE SYSTEMS

User

Figure 2.2: The Presentation-,4 bstraction- Control model

The view must present the model. Therefore, a controller is added to manage

both the view and the model, and to provide a communication bridge between them.

When the model is updated and the state of a user interface object is changed, the

controller notices the view and refreshes the view to match the change in the model.

In this Model-View-Controller model, the view is the output channel -to the user,

presenting user interface objects. The input channel is the controller. Receiving input

is the secondary role of the controller, which mainly acts as a bridge between the view

and the model. The controller receives user inputs and then updates the model. The

view may refresh with each model update.

The main idea in this Model- View-Contndler paradigm is to separate the nature

of a user interface object from the presentcation of it. One model can bind with

different pairs of input-output channels, views and controllers. The model is reusable,

portable, and independent of devices. It therefore can reduce the development cost.

In addition, the view-controller pair is custornizable.

The Model-View-Controller is linked to a, particular programming lan,guage envi-

ronment. Coutaz suggests a more conceptual architecture than the MVC model. The

architecture suggested by Coutaz is the Presentation-Abstraction-Control model, or

PAC model [lo].

The PAC model follows the MVC paradigm in that it separates the application

semantics from the presentation of the application. The abstraction in the .PAC model

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS

Software Engmeer

I

Abstract
Model Presentation

,._".
! User

! !
! !
! !
I I

Figure 2.3: User Inteface (UI) design with an ASM approach

abstracts the application's semantics. The presentation takes charge of the view of

the application. Both the abstraction and its presentation need the control to keep

consistent with each other. In the PAC model, the input and output channels are both

grouped into the presentation. The user does not interact with the control directly.

Both the MVC model and the PAC model are proposed for the implementation of

a user interface system. To a software designer, the abstract model and its presenta-

t i on are two important issues in developing a user interaction system. The controller

in the above two models becomes the programming language that supports the com-

munication between the abstract model and its presentation. It becomes a choice

among implementation platforms and programming languages in the implementation

phase.

The abstract model abstracts the internal logic and states of an application. It is

obvious to a software designer. There is another set of abstractions supporting the

presentation. The presentation abstraction is visible to the user. It should also be

meaningful to the user. The GUI designer should bridge the two sets of a,bstractions

together and keep them consistent.

The abstract model is the core of an application. A system designer sholdd focus on

the abstract model at the beginning of development. The GUI ASM model discussed

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS

User opens a fde in a computer application:

4 User clicks "open ..." in the menu of the computer application on the computer screen,
4 Application reads file system;
*> Application displays the file-chooser window. The file-chooser window shows files in the file

system;
0:- User navigates file system through the file-chooser window;
O User picks one file in the file-chooser window;
: User clicks the "OK button on the file-chooser window;
f. The file-chooser window disappears;
* * Application opens the file chosen by User and reads it from the file system;
* * Application displays the file on screen.

Figure 2.4: An example of scenario notation

in this thesis is this abstract model [Chapter 51. The presentation for the system,

with specific GUI control elements, is left foir the GUI designer.

2.4 Scenarios

Scenarios are stories of interaction processes. Software engineers write scenarios to

record a set of interactions between systems and their environments. Scenarios are

informal descriptions of these interaction processes. They are a well-known technique

in the HCI field. Like a story, a scenario has actors and a description of inter.action be-

haviors. Readers can learn and understand a system's interaction processes and figure

out some functions of the system. Figure 2.4 gives an example of a scenario written

in plain text. Scenarios can also be combined with sketches and screen shots. These

are called story boards, and are used to provide details about interaction processes.

Scenarios can be useful throughout the system development life cycle. Scenarios

- Verify that the design of a system makes sense to both the user and the

designer at the design phase;

- Enable communication with other parties, including users, designers, pro-

grammers and testers, during the entire development process;

- Validate other models of the same system. Testers can also design test

cases dependent on scenarios.

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS

Task analysis in HCI

Task analysis is often used in the specification phase of design. Hierarchical task

analysis and use case task analysis are two popular task analysis techniques.

2.5.1 Introduction to task analysis

Task analysis is a process that involves the ;analysis of a task performed in. a system

and its environment. The term Task refers to a unit of activities. These activities

are performed to achieve certain goals. To analyze tasks in HCI, it is necessary to

analyze the activity that happens between an application and a user.

Task analysis can be applied in various fields, not only in computer science. There-

fore, computer devices are not essential com:ponents in a system when we talk about

task analysis.

Another thing should be clarified about systems. A system in task analysis is not

a single system or application to be developed. It is a combination of an application,

users, the system that supports the application, and other environmental factors.

A task has individual goals to achieve. We link a series of tasks to realize longer-

term goals. This series of tasks is called a process, sometimes called a business process.

One example of a business process is sending a piece of regular mail to a receiver.

There are three main tasks in this process. Sender drops mail in a post office box;

postal company delivers mail; receiver receives mail.

Task analysis is normally applied to analyze an existing system. The system

exists, and analyst learns the system by observing the system's behaviors. However,

task analysis is also useful when developing; a new system. The analyst can often

observe a similar existing system and then design a new system. This observe-design

process contributes to the specification phase of development.

Task analysis has the following objects.

- Goal: understand the individual and overall task goals.

- Actors: understand who acts in each task.

- Environment: understand the environment that a task is performed in.

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS

Sequence: 1-2-3-4

borrower

Sequence: 1-2-3

borrower's
library card r' Check if

borrower is
a valid
libraly
member n Check if

borrower
can borrow
more books

17 Fl
check-out

I Sequence 1-2

allowed for
check-out

~ i ~ u r e 2.5: Hierarchical task analysis

- Actions: understand the actions i:n task and the order of those actions.

- Precondition: understand when and if preconditions exist when a task

starts.

2.5.2 Hierarchical task analysis'

Hierarchical task analysis is one standard aplproach to decomposing tasks. It involves

dividing a main task into a few subtasks. The completeness of all subta.sks ensures

that the main task is completed. Subtasks can be divided into sub-subtasks, until

the details of each task reach an acceptable abstract level. The analyst needs to do

the following analysis: identify actors and actions for the tasks, plan the tasks, and

analyze the preconditions of the tasks.

Tasks are organized by their goals. Certain subtasks are completed to achieve a

goal one level up in the hierarchy. Hierarchical task analysis makes the to-be-analyzed

tasks organized. An analyst can easily track the tasks. The relationships of the

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS 16

subtasks are clear. If an analyst applies hierarchical task analysis during; the design

phase, it helps to plan the tasks in the process. Some subtasks can be performed

simultaneously with other subtasks; some cannot because their parent tasks should

be processed in a sequential way. This is one example of how an analyst can assess

system performance by making comparative predictions as to the sequences of actions

with the help of hierarchical task analysis.

2.5.3 Use case task analysis

The term use case task analysis [20] [3] is ern~ployed by some object-oriented software

design methodologies. One example is building a task model with use cases in UML

modeling [25].

Use case task analysis has two objects, actors and use cases.

Actors:

An actor is basically a user of the system. It is actually a user type or category.

As defined here, a user is not a specific person. The important concern wjth actors is

the role of users in the system operation.

Use Cases:

A use case is a scenario that describes a use of the system by actors, interacting

with the system to accomplish a goal. A scenario is used to identify the main tasks

that should be performed by actors.

The use case task analysis is normally unldertaken to determine if a new system is

satisfactory from the user's perspective. A use case should describe the way the tasks

are performed when the new system is in place. A use case should also be documented

in a way that is easy to understand for non-technical persons since a use case is usually

a medium for developers and customers to clonfirm that the new system satisfies the

customer's needs.

Use cases can be refined incrementally [26]. Analysts can set up a use case a t

the beginning, and then decompose it into separate small use cases. Each time, the

analyst can pay attention to individual use cases.

CHAPTER 2. HUMAN COMPUTER INT.ERACTIVE SYSTEMS

Figure 2.6: Software development process: the waterfall model.

Requirements
specification

A

v

2.6 Software development life cycle in HCI

-

Software engineers have developed techniques to manage the software development

process. A few models have been built, such as the Waterfall Model, the Spiral Model

and the Evolutionary Model. These techniques can also be applied to d.escribe the

process of the development of a human-computer interaction system. I a,m going to

use the Waterfall model to discuss the softwizre development life cycle in HCI.

The waterfall model displayed in the Figure 2.6 is an improved version of the

original waterfall model. The need for improvement stems from the fact that the

requirement-capturing activity in the requirement specification phase is often not

properly carried out. The requirement specification may be inconsistent or incomplete.

This situation exists normally in a real development process. The developer may go

back and change both the specification and the design even during the late phases of

the project.

T
Architectural

design
-

CHAPTER 2. HUMAN COMPUTER INT-ERACTIVE SYSTEMS

System specification modeling can make it possible to start the evaluation process

a t a much earlier stage of the development. In order to test the usability properties

of a design, the developer needs a working system to observe interactions between

users and this working system and then to evaluate this working system to measure

its performance. It is not wise to delay the evaluation until the system is fully im-

plemented. By contrast, system specification modeling can generate a working model

for an evaluation before complete system implementation. This working model makes

evaluation possible a t a much earlier development stage. Users can now be invited to

do evaluation on the system specification moldel at an early stage. Early stage evalu-

ation reduces errors in the requirement specif cation. Therefore it can also reduce the

number of times that the designer has to revisit the earlier development phases.

System specification modeling assists the developer to efficiently build a correct

system. Normally, the developer attempts to capture requirements based on a user's

perspective. However, the user normally cannot imagine how to interact with a system

that does not exist. Nor does the user generally have a clear understanding of the

tasks and activities performed by the new system. The developer in turn cannot

gain a clear sense of the user requirements. Ilix, Finlay, Abowd, and Beale described

this chicken-and-egg puzzle in their book [121. System specification modeling may be

a solution to this puzzle. First, capture requirements that derive from what users

imagine about the new system. The developer builds a specification model for these

requirements and then invites users to evaluate it. The model is continually corrected

through discussions between users and the developer, until the model agrees with the

users' views. The GUI ASM model built in this thesis is this kind of specification

model, that has been built in order to verify the prediction about a new system.

System design in HCI:

Human computer interactive system design needs to involve multiple design method-

ologies and design processes. ASM modeling design is one agile methodology to design

an interactive system at the early design phase. An ASM model can be used to de-

scribe the business logic of a system and to abstract the appearance description from

CHAPTER 2. HUMAN COMPUTER INTERACTIVE SYSTEMS

Figure 2.7: Discussion of system specification model

the system design documentations. It separates the work between system designer

and UI designer and provides UI designer a design freedom. Many task analysis tech-

nologies are design tools for system designers and assist them to refine their work.

Scenarios design is another tool for system testers to build test cases. System testers

can use these test cases to validate the consistence of the ASM model and the imple-

mentation of the system.

Chapter 3

Abstract state machines

The Abstract State Machine (abbreviated as A S M) paradigm, introduced by Yuri

Gurevich in 1988 [17], offers a framework folr high-level system design and analysis.

It has been proved that ASM methodologies are practical in modeling and analyzing

different sizes of systems, from small to complex. A few research groups haxe been ap-

plying ASM techniques in different areas, such as hardware and software architectures,

programming languages, network protocols and algorithm verification.

ASMs offer methods for specifying systems at a highly abstract level. ASMs are

both abstract and executable. Their abstract nature allows the system designer to

focus on system concepts and not to be disturbed by the details. ASMs can specify a

system a t different abstract levels. The system designer can refine the system from a

more abstract level to a less abstract level by providing more details and making more

design decisions. The executability of a well-refined ASM assists system designers to

verify and validate designed systems before coding. ASMs have precise semantics.

They are constructed mathematically and logically.

ASMs can be applied to a predictive model or be used to describe an existing

system. Many ASM researchers have successfully validated existing systems, such

as Java [28], with ASM methodology. ASh/ls can also be employed to model new

systems. The GUI ASM model introduced in this thesis is an exercise in modeling

CHAPTER 3. ABSTRACT STATE MACHNES 21

such a predictive system. System designers do not usually know or understand most

of the details of new systems a t the beginning. They do not want to make many

design decisions in the early design phases. Abstraction is a good tool for system

designers to start their work with.

3.1 Abstract state machines

A basic Abstract State Machine (ASM) is defined as a set of transition rules of a form

if Condition th.en Updates

which specify the transition between two abstract states. These two abstract states

are the states before and after an abstract state machine executes.

A condition (also called as guard) is a first-order formula without free variables. A

condition evaluates to true or false. The term updates refers to a finite set; of updates

of functions with a form

Functions with certain parameters get upldated in parallel. The value of a function

is changed (updated) to a new value. Briefly, updates occur when a finite set of

functions change their values during the transition process from one state to another

state.

The execution of an ASM machine is an update process. Starting from a given

state, the values of finite functions with indicated parameters update in parallel to

new values, according to rules specified by the ASM. If the updates of these functions

are consistent, then a new state is achieved.

An ASM model has two objects: an ASM machine and its environment. The

ASM machine is a core object in ASM modeling. The ASM machine alwa,ys executes

in an environment. The environment constrains that ASM machine. The ASM ma-

chine communicates with its environment through an interface. This interface will be

discussed in the section Function [Section 3.2.21.

CHAPTER 3. ABSTRACT STATE MACHINES

An ASM machine consists of three complonents.

- Vocabulary : definitions of functions and universes [Section 3.231.

- Initial state: the beginning state of the ASM machine.

- Program: the main rule of the ASM machine.

Some definitions used in ASMs

This section introduces some terms used in ASMs. People use these terms to describe

the execution of an abstract state machine. Because the GUI ASM model. is built to

specify a GUI application tool, that helps users of the tool to explore executions of

an ASM machine, we will see these terms many times in the description of the GUI

ASM model.

3.2.1 Universe

Universe is a set of elements used in an ASM machine. Some books call it the domain.

An ASM machine can have multiple universes existing in it, such as an integer universe

or a character universe.

Ul = { 'a', 'b', 'c', 't', 'kt, 'o r }

3.2.2 Function

A function is expressed in a form

f(x1, - . . ,xn)

A function is identified with its function name and its arguments (arit ies) . This

identification is the signature of a function. When arguments have been assigned, a

function returns a certain value. A function signature and its indicated parameters

and the value of the function with those parameters construct a location. A location is

CHAPTER 3. ABSTRACT STATE MACHINES 23

like a memory unit. The combination of function signature and indicated parameters

is the location name. The value of the function with those indicated paxameters is

the value stored in that location. We say that value is the value of that lcocation.

With particular parameter values (tl , . . ., fn) , the location for the function f(xl,

. . ., L) is (f(xl, . . ., L), (t l , . . ., fn)), or more concisely f(tl, . . ., fn). The value of

the location is the value of f(tl, . . ., L).
Functions in ASMs are classified into two groups, static functions and dynamic

functions.

A static function does not change its value during the execution of an ASM ma-

chine. This means that the value of a function with given parameters does not depend

on the state of the ASM machine. The values of static functions are constant in all

states.

A dynamic function can change its value during the execution of an ASM machine.

The values of these dynamic functions may differ according to the state of the ASM

machine.

Dynamic functions can be divided to three subclasses further, depending on the

communication methods between an ASM machine M and its environment.

Dynamic functions can be described as

- Controlled,

- Monitored,

- Shared.

A controlled function can be updated but only updated by the ASM machine M.

It is internal for M.

A monitored function can be updated and only updated by the environment. The

ASM machine M can read the value of th'e monitored function. The function is

external for M.

lSome books declare there is another subclass of dynamic function, the out function. An out
function is updated but not read by ASMs machine .M and is read but not updated by the environ-
ment or other agents. These out functions are most used in multi-agent systems. Thtey are a kind
of controlled function [9]. Therefore, the out function is not listed here.

CHAPTER 3. ABSTRACT STATE MAChiINES 24

A shared function can be updated by both the ASM machine M and its environ-

ment, and can be read by both.

Controlled functions, monitored functions and shared functions construct the in-

terface between the ASM machine M and its environment. They provide channels for

both communication and interaction.

3.2.3 Vocabulary

A vocabulary is a finite collection of signatures of functions and universes. The sig-

nature of a function contains the function name and a fixed number of a,rities. Two

signatures of functions follow:

sum(a : Integer, b : Integer)

and

sum(a : Integer, b : Float)

In strong-typed ASMs, two functions are different because of the difference in the

types of the arities b; in weak-typed ASMs, two signatures identify the same function

since the function names are the same and tlhe number of arities are the same.

The Lipari guide [18] does not mention whether ASM is strong-typed or weak-

typed. Most of the ASM tools available have incorporated a strong-typed system into

their specification languages (Spec# [I] and XASM [2]). Strong typing rnakes these

languages possible to do type checking at compile time, and helps modelfers of ASM

find errors at the earlier time, in contrast to tJhe run-time error checking. Weak-typed

ASM relies heavily on run-time error checking to produce correct programs. The

CoreASM language and its toolset focus on early phases of the software development

process. It is recommended to build a rapid prototype with ASMs, starting with

abstract and weak-typed models in early analysis and specification, with the Core-

ASM language. Weak-typed ASM satisfies this purpose. Modelers of ASM now have

an ability to ignore typing restrictions when building ASM models. One particular

CHAPTER 3. ABSTRACT STATE MACHINES 2 5

example is that identifiers can be used without declaration. Therefore, th.e CoreASM

language has been developed as a weak-typed ASM language.

3.2.4 State

State is the notion of mathematical structures of elements from universes. A state A

is a nonempty set X together with functions in vocabulary and the pred.icates. The

set X is called the base set or superuniverse of A. A function signature with arity t

is interpreted as t-ary operation over X.

3.2.5 Update set

An update of A is the pair of a location loc of A and an element v of A, (loc, v) . It

is in an assignment form f(tl, . . ., k) := v, read as changing a value v in a location

loc (loc is f(tl, . . ., k)).

Two updates (loci, vl) and (1 0 ~ 2 , v2) clash if loci = loc2 but vl # v2.

An ASM machine M may fire a set of updates simultaneously from a state Al

to reach another state A2. This set of updates is called an Update Set. In the state

A l , the value of the location f(tl, . . ., k) is q. To fire the update, the value of the

location f(tl, . . ., k) is changed to v2. Becaxse updates are fired simultsneously, M

may assign different values to one location. I'f the clash happens during updating, we

call this update set inconsistent. The new state of M will not be reached when an

inconsistent update set exists.

3.2.6 Step and run

An ASM computation step is the process in which ASM machine M simultaneously

fires all updates for all transition rules in a given state to reach a new state. If the

update set in this process is consistent, then a new state of M is reached. If at least a

pair of updates clashes, M will halt. The new state cannot be achieved at this step.

A run is a sequence of steps completed by an ASM machine M on a timeline. The

ASM machine M changes from one state to another state. The number of steps in a

CHAPTER 3. ABSTRACT STATE MACHINES

run may be endless. Therefore, the number (of states of the ASM machine M may be

infinite in one run.

3.2.7 Rule and program

As per the definition of ASMs [Section 3.11, the basic rule in ASMs is the if-then

transition rule. Generally, a rule in ASMs is one of the following basic rules or one

compounded rule constructed from these basic rules.

The basic rules include the following.

- Skip rule: " skip " . Causes no change.

- Update rule: "f(tl, . . ., k) := v". Assigns an element or expression to a

location.

- Conditional rule: " if e then Ill else R2". A branch operation. Here

e is a Boolean expression. To execute this conditional rule, check e. If e is

true, execute R1. If e is false, execute R2.

- Block rule: " d o in-parallel R1. R2". Executes rules R1, R2 simultane-

ously.

- Import rule: " impor t x Rl (x)". Discovers any element x of the reserve

and executes the rule R1 (x).

Rule is used usually to describe the behaviors of ASM machine M. Function in an

ASM machine is different than a rule at this point. A function in an ASM machine

is a formula, computing expression of values of the locations and elements in the

universes. It does not describe the execution of ASM machine M. The meaning of

function at this point is different than it is in other computing languages such as C.

Program is the main rule of ASM machine M. It describes one step of M. It executes

repeatedly until the state does not change or no rule is applicable any more or the

update set fired in one step is empty [9] (successful termination). A program may

halt because of an inconsistent update set (failed termination).

CHAPTER 3. ABSTRACT STATE MACHINES 2 7

3.3 Parallel abstract state machines

When we list the Block rule (do-in-parall.el rule) as one of basic rules in ASMs,

it declares that an ASM machine possesses a simultaneous execution ability. It is an

important feature to support refinement in parallel or distributed implementations.

A do-forall rule is introduced here to enrich the notion of ASM rulles.

- Do-forall rule: " forall x with do Rl (x)". It executes the rule Rl (x)

for each x satisfying a given condition 4. x will have some free occurrences

in R.

For each rule Rl (x), there is a parallel ASM to simulate the given rule step for

step.

3.4 Non-deterministic abstract state machines

In contrast, there is another kind of execution. An ASM machine chooses an x to

execute the rule Rl (x), rather than executing for all x.

A choose rule is introduced here.

- Choose rule: " choose x with 4 do Rl (x)" . Executes the rule Rl (x)

for an x satisfying a given selection property 4.

The choose rule causes non-determinism in ASMs. The choose method is not

specified in the choose rule. It produces a problem. The user can not predict which x

will be picked up without executing the ASM machine actually. There is a positive side

to this non-determinism in ASM methodology. It helps the designer to avoid dealing

with the details of the scheduling of rule executions. In the CoreASM supporting

tool environment, a designer can provide a particular choose method by :supplying a

plug-in [14].

CHAPTER 3. ABSTRACT STATE MACHINES 28

3.5 Distributed abstract state machines

Basic ASM (sequential ASM) and parallel ASM are ASM with a single agent. Dis-

tributed Abstract State Machines (DASMs) have a set of agents. Agent is an abstract

state machine executed on its own local sta,te. The agents interact by reading and

writing on the shared locations in the global state of this distributed abstract state

machine.

A run of distributed abstract state machines is defined as a partial order of moves

of finite numbers of agents. A single computation step of an agent is called a move

of this agent. The moves of a single agent can be atomic or durative. Agents in

distributed ASM may execute their computakion steps concurrently.

Formally, a run p of a distributed ASM hf is given by a triple (M, A , 6) satisfying

all of the following four conditions [18]:

1. M is a partially ordered set of moves ,where each move has only finitely many

predecessors.

2. X is a function on M associating agents with moves such that the moves of any

single agent of A are linearly ordered.

3. 6 assigns a state of A to each initial segment Y of M, where 6(Y) is the result

of performing all moves in Y; 6(Y) is izn initial state if Y is empty.

4. The coherence condition: if x is a maximal element in a finite initial segment X

of M and Y = X - {x) then X(x) is an agent 6(Y) and 6(X) is obi~ained from

6(Y) by firing X(x) at 6(Y).

The definition of a run of a distributed ASM did not specify the order of executions

of different agents. This offers a benefit to model builders, a freedom to design and

analyze models for distributed systems without a prior commitment of scheduling.

The GUI ASM model in this thesis describes a GUI application system with

multiple internal components and multiple actors (CASM-User, CASM-Engine, File

Storage, and CASM-GUI). Each actor is one agent in the distributed system. An

CHAPTER 3. ABSTRACT STATE MACMINES 29

amount of synchronous and asynchronous interactions exist between internal compo-

nents and actors [Section 6.2.31. In order to simplify the model, internal components

are specified as parallel ASMs at the very high abstraction level. According to re-

quirements about the system, internal components have been refined to distributed

ASMs a t the lower abstraction level. One ex.ample is refining the model by applying

the special synchronization and communication concepts. Activities specified in the

GUI ASM model are synchronous interaction.^ and asynchronous interactions between

internal components and actors. At the third abstraction level [Section 6.1.31 of the

GUI ASM model, the moves of the agents are atomic. Then, the moves of the agents

have been refined to durative moves when tlie concurrency problem of the activities

[Section 6.2.21 needs to be discussed a t the flourth abstraction level of the GUI ASM

model.

The internal components and the actors in the GUI ASM model can be refined

as agents in distributed ASMs. This offers some independence to these components

and actors in the two aspects, the architecture and the execution. This kind of inde-

pendence provides the ability for the GUI ASM model to customize the architecture

and the functions of a GUI application system according to requirements.

3.6 Turbo abstract state machines

Turbo Abstract State Machines (Turbo ASMs) provide a practical composition and

structuring principle that extends the basic ASM. The execution of a turbo ASM

merges all update sets generated in individual sub-machines. A sub-machine is de-

noted as a rule R(tl, b, . . ., k). Each sub-machine is treated as a black box, hiding

its local states and local updates. The state of a turbo ASM cannot be updated until

the merging of all update sets generated by all sub-machines is successful. If a local

update set in a sub-machine is inconsistent or the merging of update sets generated

by the sub-machines fails, the turbo ASM halts (failed termination).

The turbo ASM has introduced some structuring programming principles into

basic ASM, such as seq, iterate, sub-machine, recursion and value-return. The seq -

construct has been used in the GUI ASM model in this thesis to specify tlie sequence

CHAPTER 3. ABSTRACT STATE MACHINES

of activities.

The turbo ASM seq -construct combines the simultaneous atomic updates of

basic ASMs in a global state with sequential execution.

- Seq-construct: "R1 seq R2". Staxts to execute the rule R2 only when the

rule R1 is completed and the update sets in R1 are consistent.

The merging of update sets generated by rules R1 and R2 is defined as th.e following.

One update is (loc, v), where loc is a locatio'n and v is the value in that location. U
is the update set generated by the rule R1; V is the update set generated by the rule

R2; W is the update set that results from the merging of U and V. W is also the

update set of the turbo ASM in that step.

{(loc, v) E U I loc $! Locations(V)) U V if U is consistent

U otherwise

The definition implies that turbo ASM will get stuck a t the first inconsistent rule.

Summary

Abstract state machine is used to build a :model of a system and to describe the

behaviors of the system. Parallel ASM, distributed ASM, and turbo ASM have been

used in the thesis to build the GUI ASM model. After the ASM model is built,

system designer can validate experimentally by executing the model in the CoreASM

supporting tool environment and watching states and update sets of the ASM model

in different runs.

Chapter 4

Formal modeling a.pproaches

Formal modeling helps build more robust systems. ASM methodology was applied in

the thesis research to formally specify a GUI: system..

4.1 Formal modeling approaches in GUI architec-

ture and functionality design

People often build a model before implementing an interactive system. The model

is a structural description of the relevant information about the interactive system.

A designer can use this model to specify and analyze the interactive system to be

developed. This approach is often called the model-based design approach. UML is

one technique applied in this kind of modeling.

In design, designers can use a few kinds of models to describe the system to be

designed. These kinds of models include, but are not be limited to task models,

user models and interaction models. These imodels provide particle views about the

system. Not a kind of model can represent, all the information about i;he system.

Task model describes information about task:; that the system performs [32] [13]. User

model can offer information about user preferences and about forms of interaction [ll].

CHAPTER 4. FORMAL MODELING APPROACHES 32

Interaction model can offer information about interaction and about user interface

elements [22][31]. The GUI ASM model in this thesis has captured the architecture

of the GUI application system and the tasks of that system. Each task is specified

as an activity in the GUI ASM model. The interactions between users and the GUI

application in each activity have been described at the third abstraction level of the

model [Section 6.1.31. There exists a difference between the GUI ASM model and

an interaction model. No actual user interfhce elements have been specified in the

GUI ASM model when talking about interactions. And, this thesis has not discussed

the user model of the GUI application system. At a high abstraction level, the GUI

ASM model in this thesis is more like a task model. A task model can be usually

modeled in either of two approaches, the object-oriented approach and the task-based

approach.

The traditional approach in UML is object-oriented. Designers identify the objects

of the proposed interactive system and then analyze the activities of these objects.

This very successful approach is currently being widely applied in the computer in-

dustry. In recent years, the model-based design approach has developed a, new trend.

Designers now focus on the tasks and the users of an interactive system. The tasks of

the interactive system are identified first, and then the objects involved are manipu-

lated. This approach is called a task-based approach. [29]

specification approach of GUI modeling in

the CoreASM project

The object-oriented approach and the task-oriented approach are both applied through-

out the whole modeling process, in different stages. Then a process of refinement is

used to solve development problems level by level [Section 6.11. The combination of

the two approaches, plus level-wise refinement, makes the system designer consider

the specification of such a system without resorting to heavyweight formal models a t

the beginning stages. Most designers would prefer to consider lightweight models in

the initial interaction design [27].

CHAPTER 4. FORMAL MODELING APPROACHES 33

At the beginning stage of modeling, an object-oriented approach using UML is

applied in this project just as it would be with a traditional approach. The first step

is to identify the actors in the system. One of main purposes of GUI modeling in

this project is to identify the functions and the communications between the GUI

application and its environment, especially between the GUI application and the

CoreASM Engine. Therefore, they are two important steps to identify the actors and

to build the overall architecture of the system, before working out the communication

functions that exist among the actors. The object-oriented modeling approach is

suitable for this architectural stage.

At the second stage of modeling, the task-based modeling approach is used to

model CASM-GUI itself. As specified for the first level of GUI ASM model [Sec-

tion 6.1.11, the activities are listed and minimally specified. These activities are

the user-centered tasks of CASM-GUI. In a user's view, each activity is the task

that CASM-GUI should complete to achieve one user goal, such as viewing a state

or processing one step. Each activity involves different actors in the system, even

different components inside CASM-GUI. The way how involved these actors and

CASM-GUI components would be analyzed in each activity one by one.

The GUI model can be refined when the developer is ready to pay detailed atten-

tion to each activity in turn. The following questions will be answered in the refined

GUI model. What actors and/or CASM-GUI components are involved in a particular

activity? What data is exchanged between these actors and CASM-GUI components?

What is the sequence of actions in this activity? The answers are a resource for defin-

ing the GUI APIs. The GUI APIs created can then be verified after the GUI model

is built.

ASM methodology is good for modeling complex systems, such as interactive sys-

tems, providing the developer with the ability to model a system a t different levels of

abstraction [Section 6. I].

CHAPTER 4. FORMAL MODELING APPROACHES

4.3 Summary

The GUI ASM model is built with a mixed model-based design approach of the object-

oriented approach and the task-oriented approach. Both approaches were applied

separately at different levels of the model. 'This kind of modeling technique invites

system architecture design into the task model building process. It also makes the

GUI ASM model to be a foundation to analyze the interactions between systems.

Chapter 5

The GUI ASM model in the

CoreASM project

The GUI ASM model explained in this thesis was built as part of my research for

the CoreASM project. This GUI ASM model is one part of the CoreASM project.

Formal methods were used to produce a design of the user-interface tool. An analysis

of the interaction processes and their effect on human psychology is not an objective

of this research.

5.1 Architecture of the CoreASM supporting tool

environment

The abstract state machine method offers a framework for high-level system design

and analysis. After specifying user requirements and building a model to match these

requirements, the ASM approach can prov:ide system designers with the valuable

option of executing the model without implementing it in real programming code.

The executability of an ASM-based model enables the system designers to discover

system faults at an early development st age, assisting with verification and validation.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 36

In the CoreASM project, we are using an ASM approach to construct a supporting

tool environment that allows agile formalizing and high-level design and analysis of

a system. A set of easy-to-use tools is provided in this supporting tool environment.

This toolset includes an interpreter, CoreASM abstract storage, a debugger, a valida-

tor and more. The language parser, the interpreter, the CoreASM abstract storage,

and the scheduler constitute the CoreASM engine. The CoreASM engine interprets

ground models built with the CoreASM language. With the help of the scheduler,

the CoreASM engine can execute not only sequential ASM ground models, but also

parallel ASM ground models. The CoreASM supporting tool environment defines a

set of GUI tt Engine APIs for the CoreASM engine. Third party applications can

control and access the CoreASM engine through the GUI tt Engine AP[s .
The GUI ASM model in this thesis specifies a graphical debugger application

tool in the CoreASM supporting tool environment. This GUI ASM model has been

used to design the graphical debugger and to validate the set of GUI tt Engine

APIs involved in the communications between the GUI tool and the engine. A graph-

ical debugger implemented in Java will also be provided to apply the set of GUI tt

Engine APIs described in this project.

The CoreASM supporting tool environment provides an environment in this project

to build graphical user interface tools for the CoreASM engine. The CoreASM engine

is a running system for interpreting CoreASlLl models, and lacks the ability to assist

system designers to understand the execution processes of the models. There are a

few kinds of tools that can aid engineers to supervise the execution processes, such

as a debugger and an animator. A graphical debugger offers a visual presentation of

the execution processes of a model.

The GUI tt Engine APIs provided in the CoreASM supporting tool environment

form a bridge between the graphical user interface tool and the CoreASM engine.

This bridge includes two main sets of functions, the control for the CoreASM engine

and the access to the model entities. Everyone, including third parties, can build

graphical tools to monitor ASM execution through this set of GUI tt Engine APIs .

Tool designers can decide on their own how to visually present an ASM model. A

graphical debugger implemented in Java will be provided in this thesis as a working

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT

Application Tools !
.-..-..-..-

I Scheduler I

Figure 5.1: CoreASM supporting tool environment architecture

p~

Parser - Interpretlx Abstract

CHAPTER 5. THE GUI ASM MODEL I N THE COREASM PROJECT 38

example. This debugger will help engineers to explore the updates of an ASM model

at each step and to trace function values at each step.

The CoreASM project has an important expandable feature. Yuri Gurevich in-

troduced ASM principles and ASM language semi-formal definitions. The CoreASM

language applied in this project comes from, the basic ASM principles and provides

only the core functions of the general ASM language. Anyone can extend our Core-

ASM language to their own ASM language Ely following ASM principles. In the same

way, third party groups can extend our CoreASM engine to their own ASM engines

for their specified ASM languages through plug-ins [14]. Then again, the graphical

tools implemented for CoreASM may not satisfy other new extended ASM languages.

Therefore, we have separated the graphical u;ser interface tools from the CoreASM en-

gine and provided the GUI - Engine APIs as one basis of the CoreASM supporting

tool environment. Third party groups can extend the GUI - Engine APIs as well

as the CoreASM engine and build a new GUI on the extended GUI - Engine APIs .
There is a second reason to separate the GUI and the CoreASM engine. Each research

group may have its own ideas as to how to visually present its ASM models and their

execution and may require different graphical tools to build, verify, test and validate

the models. Other groups can build their own graphical tools on the top of the GUI - Engine APIs provided in this project in order to satisfy their requirements.

5.2 Actors in the GUI ASM model

There are four actors in the GUI ASM model.

- CASM-GUI

- File Storage

The actor CASM-GUI is the research object of this thesis. It will be specified

in detail with ASMs (main rule CoreAShlGUIProgram). The other three actors,

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 39

/
\

File Storage

Figure 5.2: Actors in one use case

CASM-User, CASM-Engine and File Storage, are the environment for the ASMs

machine CASM-GUI.

CASM-User

The human users of the CASM toolsets. The target users are software engineers,

system analysts, and testers.

CASM-GUI

The graphical user interface toolset of the CoreASM project. It is the GUI of the

visual CoreASM language debugger exactly a:; described in this thesis. CASM-User can

load CoreASM models in CASM-GUI, and execute and explore (view) the models.

CASM-GUI provides the visual representation of information about these models.

CASM-Engine

The engine to interpret CoreASM programs and to execute CoreASM models.

Each CoreASM model is executed in CASNLEngine. CASM-GUI controls and ac-

cesses these models in CASM-Engine.

File Storage

The storage device to store CoreASM specification files. This device may be a

local storage disk, or be a network storage device.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 40

Human-computer interaction happens mainly between two actors, CASM-User and

CASM-GUI. CASM-User does not access the CASM-Engine directly. CA.SM-GUI is

the bridge connecting CASM-User and CASM-Engine.

The interactions between CASM-User and CASM-GUI are specified by activ-

ities activated by commands that CASM-User sends to CASM-GUI. An activity

is a set of behaviors by the four actors. The details of the activities belonging to

CASM-GUI have been specified in the GTJI ASM model [Section 5.41. The be-

haviors of CASM-User in an activity are specified abstractly as ASM rules, such

as the rule getFzle URIToLoad (aUser: CoreASM- User , aFzleStorage : CoreASM-

Filestorage). These rules also identify the information data entities exchanged in

interactions; for example, the file uri is needed in the rule getFzleURIToLoad (aUser:

CoreASM- User , aFzleStorage : CoreASM-Filestorage).

These actions are specified by ASM rules, not by ASM functions, since these are

specifications of interaction behaviors. A system designer can refine these rules to

analyze these interactions between human and computer.

The interactions between CASM-GUI and CASM-Engine are specified as GUI

H Engine APIs in the GUI ASM model [Section 5.5.11. We will see how these APIs

are applied in activities.

5.3 Architecture of CASM-GITI

CASM-GUI consists of a few components. Each component has its own features. A

component in CASM-GUI communicates to another component by sending signals

to the signal pool of the second component.

5.3.1 Components of CASM-GUI

CASM-GUI consists of these components.

- control panel

- output view

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 4 1

- message view

- program view

- mn view

- vocab view

- state view

- updateset view

- history manager

Each component has its own features.

control panel:

The control panel is the control component of CASM-GUI. It controls other com-

ponents of CASM-GUI. One major task for the control panel is to respond to activity

requests from CASM-User and to activate related activity in CASM-GUI.

output view:

The output view displays the printout from the CoreASM machine executing.

message view:

The message view displays any warninglerror messages produced during the exe-

cution of the CoreASM machine.

program view:

The program view displays the code for the CoreASM machine.

run view:

The run view displays a run in the execution of the CoreASM machine.

vocab view:

The vocab view displays the vocabulary of the CoreASM machine.

state view:

The state view displays a state of the CoreASM machine.

updateset view:

The update set view displays an update set during the execution of the CoreASM

machine.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 42

Figure 5.3: Internal components of CASM-GUI

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 43

history manager:

The history manager stores the history records of a run. The history records are

mainly about states and update sets. The history manager collects the information

about a run of a CoreASM machine and stores it into the history records, and then

offers these history records to the run view in the background. The run view uses

these history records to rebuild the trail of the run. Now, CASM-User can review

the run of that CoreASM machine in the run view. In contrast to the run view, the

history manager is invisible to CASM-User.

Each component is specified as an ASM rule. A component has be:haviors and

provides certain features for CASM-User. For example, the message view can display

messages or can clear all messages in the view [Spec 5.11. The history manager can

add a history record or delete a history record or even clear all history records.

rule MessageViewProgram
choose aSignal from messagevSigna:lPool
remove aSignal from messagevSignalPoo1
case firstOf(aSignal) of

messagevcDisp -+

displayMsginMessage V(secondOf(aSigna1))
messagevcClearDisplay -+

clearDisplayinMessage V

Spec 5.1: Features of message view : display messages and clear messages

All components are executed in a parallel way in the actor CASMLGUI. The

CASM-GUIis specified as a parallel ASM machine [Section 3.31. If model designer

needs to specify more details of the compo:nents, such as the architecture of com-

ponents and the communications between these components, each component can

be refined from a simple ASM rule in a parallel ASM to an agent in a distributed

ASM [Section 3.51. The time to refine components as distributed ASMs is decided by

model designer, based on how abstractly the model designer wants to specify those

components.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 44

CASM-GUI Component I CoreASM Specification 1
I - L -

_I

control panel I rule ControlPanelProgram 1
rule OutputViewProgram
rule MessageViewProgram
rule ProgramViewProgram

rule Runviewprogram
rule VocabViewProgram
rule St ateviewprogram

UpdatesetViewProgram
HistoryManagerProgram

Table 5.1: Components in CASM-GUI

The ability to specify the features of a component in an ASM rule and the ability to

execute components in a parallel way provide the independence to components. They

make model designer to create or remove a component easily from the GUI system.

The addition or the removing of a component will not affect other components in the

system.

5.3.2 Communication structure in CASM-GUI

Each component in CASM-GUI has a signal pool. Other components send signals

into that signal pool. The CASM-User in the environment sends signals of the

type USERACTIVITYREQUEST into the control panel's signal pool. Each component

checks its own signal pool and activates an activity or a set of activities if a signal is

found. Each component has only one signal pool for incoming signals. 'There is no

outgoing signal pool. The sending process from one component in CASM-GUI or

CASM-User in the environment to another is atomic and completed immediately.

A signal pool is an abstract data structure. It may be a queue or a stack. For

this specific GUI ASM model, a queue would be a better choice. When the designer

makes the choose mechanism for the signal pool [Spec 5.41, the designer should make

sure that the first-incoming signal is served first. In order to abstract this GUI ASM

model, the type of the data structure required for the signal pool [Spec 5.31 and the

// - - Main rule of the CoreASM GUI - --
main rule CoreASMGUIProgram =

/ /GUI component programs
Voca b Vie wProgram
Output ViewProgram
Message ViewProgram
Program View Program
Run ViewProgram
State ViewProgram
Updateset ViewProgram
HistoryManagerProgram
ControlPanelProgram

- -

Spec 5.2: The components in CASM-GUI

details of the signal pool's choose mechanism [Spec 5.41 do not have been specified in

the thesis. These design decisions are left for the designer to make later.

The signal pool is specified abstractly as a list of signals.

messagevSignalPoo1 : list of GUISignal J
Spec 5.3: Specificatio:n of a signal pool

The choose mechanism for each signal pool has not been specified. The choose rule

is used generally to describe this choose behi3vior.

The sending process for signals is specified as a rule, signalingTo(aSzgnalPoo1 :

SzgnalPoolName, aSzgnal : GUI-Signal). This rule checks the destination by signal

pool name and then inserts the signal into the correct signal pool.

The signal is an abstract data structure. In the GUI ASM model, all signals are

of the type GUISignal. A signal consists of two types of objects: command objects

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 46

Component
CONTROL PANEL

OUTPUT VIEW
MESSAGE VIEW
PROGRAM VIEW

RUN VIEW
VOCAB VIEW
STATE VIEW

UPDATESET VIEW
HISTORY MANAGER

Signal Pool
controlpanel SignalPo01

programvSignalPoo1 I programv

Signal Pool Name
controlpanel

outputvSignalPoo1
messagevSignalPool

runvSignalP001 1 runv
vocabvSignalPoo1 vocabv
statevSignalPoo1 statev

outputv
messagev

Table 5.2: Signal poo'ls in components

updatesetv!~ignalPool
historymanagerSignalPoo1

choose aSignal from messagevSzgnalPool

updatesetv
historymanager

Spec 5.4: Choosing a signal from t:he signal pool of message view

and data objects.

The GUI-Signal is a tuple. Two functions defined for the data structure tuple are

used to interpret signal values. The first va,lue is the command. Its type is one of

the defined signal types. The second value in GUI-Signal is a data object;. The data

object is the content of the signal.

The function to get the first value from a signal is defined as firstOf(signa1:tuple).

It returns the signal type.

The function to get the second value from i3 signal is defined as secondOf(signal:tuple).

It returns the signal data object.

Signal types:

- PROGRAMV-COMMAND,

- MESSAGEV-COMMAND,

- OUTPUTV-COMMAND,

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 47

rule signalingTo(aSzgnalPool : SignalPoolName, aSignal : GUI-Signal) =
case aSignalPoo1 of

programv +

add aSzgnal to programvSigna1,Pool
messagev +

add aSignal to messagevSzgna1.Pool
outputv +

add aSignal to outputvSzgnalPool
statev +

add aSignal to statevSzgnalPoo1
updatesetv +

add aSignal to updatesetvSzgna.lPool
runv +

add aSignal to runvSignalPoo1
historymanager +

add aSignal to historymanagerSignalPoo1
vocabv +

add aSignal to vocabvSzgnalPoo1
controlpanel +

add aSzgnal to controlpanelSignalPool

Spec 5.5: Sending a signal

- RUNV-COMMAND,

- STATEV-COMMAND,

- UPDATESETV-COMMAND,

- HISTORYV-COMMAND,

- VOCABV-COMMAND,

- USERACTIVITYREQUEST.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 48

Activities in CASMXWI

An activity is a series of actions performed by an actor or actors to achieve a certain

objective. In an interactive system, the interaction between actors during an activity

that is performed by these actors must be considered.

An activity is performed to achieve an objective. There are a few ways to identify

activities in a system: for example, by the actions performed by individual actors,

or by the actions performed by the whole system. A human-computer interaction

system is designed for human use. Satisfying users is an important goal in HCI

design. Therefore, it is good to identity activities from a user perspective. Activities

in this GUI ASM model are identified in terms of the objectives that a user might

expect that the system could complete. These activities include Forward.RunActivity

(making the engine advance the run one step), ViewLastStateActivity (viewing a state)

and so on. The objectives that a user might, expect that the system could complete

are analyzed and are achieved from the infbrmal requirements. In the GUI ASM

model, the objective of an activity represents the result of a certain feature of the

GUI system.

In the GUI ASM model, an activity is specified in a way that seems all actions

in the activity are completed by one actor CASM.-GUI. In fact, an activity is of-

ten performed by more than one actor. Interactions do exist in an aclivity. The

other actors, CASM-User , CASM-Engine, File Storage, are the environment for the

actor CASM-GUI. Actions completed by these environment actors are abstracted

from the activity. Interactions between all actors are specified as interfaces (APIs).

CASM-GUI interacts with other actors by applying these interfaces (APIs) while

performing activities.

An activity in the GUI ASM model represents a feature of the GUI system.

At this point it is similar to describe an activity of an object in the object-oriented

design. The difference between an activity in the GUI ASM model and an activity

in the object-oriented designing is that an activity in the GUI ASM model is the

interactions between actors, but an activity in the object-oriented design focuses on

actions performed by one object.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 49

An activity is described as a hierarchy of sub-activities. Each sub-activity consists

of some actions. We define activity (sub-activity as well) as a rule. An activity is

labeled as """"Activity. A sub-activity is labeled as """"SA.

The activity to load a file, called LoadFileActivity, is a rule. A sub-ac-tivity of the

activity LoadFileActivity, getFileURIToLoadSA, obtains the file to be loaded, and is

also a rule.

rule LoadFileActivity
rule getFileURIToLoadSA

Spec 5.6: Activity and sub-activity

The sub-activities of one activity may form a sequence of actions. When analyzing

interactions in a HCI system, such sequences are often found. The next action does

not start until the previous action is completed. CASM-GUI does not Isnow which

specification file is to be opened until CASM-User chooses a specification file to

load. Therefore, CASM-GUI performs the sub-activity 1oadFileSA following the sub-

activity getFile URIToLoadSA.

Sequenced activities can be specified as

AActivity = subactivity15'A seq subactivity2SA

AActivity is performed by completing sub activity subactivity2SA after the com-

pletion of sub activity subactivitylSA.

5.4.1 Activity specifications

Activities in the GUI ASM model include the following.

StartupActivity

This activity starts up the CoreASM work environment. The CoreASM work

environment includes CASM-GUI and CAS:M-Engine. The activity creates the GUI

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT

Activity
StartupActivity

LoadFileActivity

Command to activate the activity /
userstartup
userLoadFile

I

I ViewProgramCodeActivity /
I

u s e r ~ i e w ~ r o g r a k ~ o d e 7

CheckSpecActivity

StopActivity
Interru~tActivitv

usercheckspec

userstop
userInterru~t

Table 5.3: Activities and signals to activate these activities

and the engine, then links them together. The CoreASM workspace environment is

-
ViewLastOutputActivity

ViewOutputInHistoryActivity
ViewLastMsgActivity

ViewMsgInHistoryActivity
ViewLastUpdatesetActivity

ViewLastStateActivity
ViewUpdatesetInHistory

ViewStateInHistoryActivity
AddWatchActivity

DeleteWatchActivity
QuitActivity

ready after this activity.

I

-
userViewLast Output

userViewOutputInHistory
userViewLast Msg

userViewMsgInHistory
userViewLastUpdateset

userViewLastState

userViewStateInHistory
userAddWatch

userDeleteWatch
user Quit

rule StartupActivity

createGUISA seq createLinkEngineSA

LoadFileAct ivity

This activity loads a CoreASM specification file into CASM-GUI and displays the

file in the program view. There are two sub activities, getting the URI of the file, and

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 51

loading the file from File Storage. Two data objects are received by CASM-GUI from

its environment, through interfaces (APIs). They are the URI (guiAFileURI) of the

file that CASM-User wants to load and the file (guiAFile). The object guiAFile URI

is received by CASM-GUI from CASM-User and File Storage. The object guiAFile

is received by CASM-GUI from File Storage.

rule LoadFileActivity

getFile URIToLoadSA seq 1oadFileSA

CheckSpecActivity

This activity sends a CoreASM specification file to CASM-Engine by CASM-GUI,

and then requires CASM-Engine to check for syntax or other specification errors in

this specification program. It then displays feedback on CASM-GUI. The sending

operation and the check-requesting operation. are completed in the sub activity check-

SpecSA(currentEngine, guiAFile). The data object guiAFile is sent to CASM-Engine.

The feedback (output) is then received from CASM-.Engine.

rule CheckSpecActivity

checkSpecSA (currentEngine, guiA File) seq getCSFeedbackSA

Init Activity

This activity initializes the ASM machine in CASM-Engine and then displays any

feedback in CASM-GUI (the initial state is displayed in the state view, the vocabulary

in the vocab view, error messages or warning messages, if any, in the message view).

rule InitActivity 7
initSpecSA (currentEngine, guiA File) seq getISFeedbacWA A

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 5 2

ForwardRunActivity

This activity advances the CoreASM machine a few of steps in CASM-Engine and

then displays any feedback in CASM-GUI (Messages appear in the message view,

print outs in the output view, states in the state view, update sets in the update set

view, error messages or warning messages, if any, in the message view). The first

sub-activity gets the number of steps that CASM-User wants the CoreASM machine

to go forward (guiNumStepsToForward). The value of guiNumStepsToForward is

received by CASM-GUI from CASM-User after this sub-activity completes. Then,

the CASM-GUI requires CASM-Engine to execute the ASM machine in the second

sub-activity and receives feedback from CASM-Engine in the third sub-activity.

a
rule ForwardRunActivity

getNumFomuardStepsRequestedSA seq fomuardRunSA seq getFRFeedbackSA

RollbackAct ivity

This activity rolls back a CoreASM machine held in CASM-Engine and then

displays the machine's current state in state view. The first sub-activity gets the state

id that CASM-User wants the machine to roll back to. The value of guiStateIdBackTo

is received by CASM-GUI from CASM-User after this sub-activity is completed.

Then CASM-GUI rolls back the machine in CASM-Engine. In contrast to the activity

ForwardRunActivity, there is no sub-activity getFeedbackSA in RollbackActivity. The

desired rolled back state can be found in tlhe internal component history manager

in CASM-GUI. It is not necessary in this case for CASM-GUI to interact with

CASM-Engine.

rule RollbackActivity

getStateIdBackToSA seq rollbackSA A

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT

StopActivity

This activity stops the running of the CoreASM specification machine. The ma-

chine stays at the last state and cannot be executed without reinitialization.

rule StopActivity

Interrupt Activity

This activity interrupts the execution of t'he CoreASM machine in CAl3M-Engine.

rule InterruptActivity

intempt(currentEngine) := true

ViewProgramCodeActivity

This activity allows CASM-User to view program source code in the program

view.

rule ViewProgramCodeActivity

ViewLast Output Activity

This activity allows CASM-User to view the output of the most recent step in

the output view.

rule ViewLastOutputActivity

ViewOutputInHistoryActivity

This activity allows CASM-User to view the output of a completed step in the

CHAPTER 5. THE GUI ASM MODEL I N THE COREASM PROJECT

history.

rule ViewOutputInHistoryActivity

ViewLast MsgActivity

This activity allows CASM-User to view the errorlwarning messages for the most

recent step.

rule ViewLastMsgActivity

ViewMsgInHistoryActivity

This activity allows CASM-User to view the errorlwarning messages for a com-

pleted step in the history.

rule ViewMsgInHistoryActivity

ViewLast Updateset Activity

This activity allows CASM-User to view the update set for the most recent step.

rule ViewLast UpdatesetActivity I
ViewLast StateActivity

This activity allows CASM-User to view the newest state.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 55

rule ViewLastStateActiui ty

ViewUpdatesetInHistoryActivity

This activity allows CASM-User to view one update set in the history. The

activity has two actors, CASM-User and CASM-GUI, who interact. There are two

sub-activities. The sub-activity get UpdateSetId ViewInHistorySA gets the update set

id of the update set that CASM-User wants to view from the history. The value

of guiUpdateSetIdViewInHistory is assigned by CASM-User after this ~sub-activity

completes execution. The next sub-activity allows CASM-User to view the update

set.

rule ViewUpdatesetInHistoryActivity

get UpdateSetId ViewInHistorySA

seq
view UpdatesetInHistorySA (gui UpdateSetId To ViewInHistory)

ViewStateInHistoryActivity

This activity allows CASM-User to view one state in the history. Interaction takes

place in this activity. Two actors are involved, CASM-User and CASM-GUI. The sub-

activity getStateIdViewInHistorySA gets the id for the state that CASM-User wants

to view from the history. The value of guiStateIdTo ViewInHistory is assigned by

CASM-User after this sub-activity completes execution. The next sub-activity allows

CASM-User to view the state.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT

rule ViewStateInHistoryActivity

getStateId ViewInHistorySA

seq
viewStateInHistorySA (guiStatel'dTo ViewInHistory)

AddWat chActivity

This activity allows CASM-User t o add a, watch in CASM-GUI. A watch is a label

of a function, a function whose values CASM-User wants to watch during a run.

rule AddWatchActivity

createA Watch(current User, gui Vocab)

DeleteWatchActivity

This activity allows CASM-User to remove a watch in CASM-GUI.

rule DeleteWatchActivity

selectA WatchToDel(current User)

Quit Activity

This activity destroys CASM-Engine and CASM.-GUI t o terminate the CoreASM

work environment.

rule QuitActivi ty

killEngineSA(currentEngine) seq kill G! UISA

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 57

Interfaces in the GUI ASM model

CASM-GUI, CASM-Engine, CASM-User, and File Storage communicate through in-

terfaces.

5.5.1 Interfaces in the GUI ASM model

The GUI ASM model is an application system. It interacts with other actors through

interfaces. The interfaces in this GUI ASM model include the GUI * User interface,

the GUI * Filestorage interface, and the GUI ti. Engine interface. The GUI tt

User interface is a good object for researchers to analyze interactions between human

and computer. The GUI * Engine interface specifed with ASMs assists the designer

to design the APIs (Application Program Interfaces) for the engine. The designer can

validate these APIs through the GUI ASM model.

The interface can provide communication channels for two systems. A system

can exchange information with another system through an interface. It can also

use the interface to activate another system to carry out operations. The GUI *
User interface can offer the following opportunities. A user can activate activities

in the GUI system by sending activity requests [Section 5.41 through the GUI *
User interface. A user can view information about a machine in the engine with

the assistance of the GUI system. This view operation needs the GUI system to

communicate with the engine through the GUI tt Engine interface. The GUI system

also needs the user to provide certain information about operations through the GUI

* User interface, such as the number of steps that the user wants the machine in the

engine to go forward.

In the GUI ASM model, the interface is specified as ASM rules and ASM functions.

If a feature of an interface is specified as an ASM rule, the feature requires

an actor to execute certain actions. For instance in the GUI * Engine inter-

face, CASM-GUI requires CASM-Engine to execute the CoreASM machine in the

CASM-Engine for a certain number of steps (rule step (aEngine : CoreASM-Engine

, an1 : Integer)). This operation needs CASM-Engine to perform actions to com-

pute results. Therefore, it is specified as a~ rule. Similarly, in the G'UI * User

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 58

interface, the rule getNumForzuardStepsRequested (aUser : CoreASM- User) needs

CASM-User to operate on CASM-GUI, in order to provide the number of steps that

CASM-User requests the machine in CASM-Engine go forward. These operations

of CASM-User on CASM-GUI include choosing a textbox on the GUI: typing the

number of steps and notifying CASM-GUI to receive the value.

An ASM function in an interface is used to get a value when an actor is in a state.

The function getLast UpdateSet : GUI- Watch + GUI- Updatesets gets an update set

after the machine in CASM-Engine has bee11 updated consistently. At that moment,

CASM-Engine is in a state between executions (steps).

Depending on the way the value of ASM functions are updated, the ASM functions

in an interface can be controlled, monitored or shared.

A controlled function updates a value in the environment. For instance, it is possi-

ble to interrupt CASM-Engine by setting the value "interrupt" in CASM-Engine to

be true. The interrupt function is specified aLs a controlled function.

controlled i n t e m p t : CoreASM-Engine + Boolean

Spec 5.7: Controlled :function example

A monitored function allows the enviroriment to update a value in the system

model specified. CASM-Engine sets the value of guiAnUpdateset in CASM-GUI.

CASM-Engine sends a value to CASM-GUI through an interface.

monitored getLast UpdateSet : CoreAS:M-Engine + GUI-Updatesets A
Spec 5.8: Monitored function example

A shared function updates a value shared by both an environment and the specified

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 59

system model. There is no example of a shared function in this GUI ASbA model.

5.5.2 The GUI ++ User interface

The GUI tt User interface specified in the GUI ASM model consists of the com-

mands to activate the activities and the operations of CASM-User on CASM-GUI.

The analysis in this interface deals with the information data exchanged between

CASM-User and CASM-GUI, such as the command signals and the number of steps

that the user wants the machine to go forward.

CASM-User sends these activity commands to CASM-GUI through the GUI tt

User interface.

enum domain USER-ACTIVITYREQUEST = {userStartup,
userLoadFile, userCheckSpec, userlnit ,
userForwardRun, userRollback, userstop,
userInterrupt,
userViewProgramCode,
user ViewLastOutput, user ViewOutputInHistory,
userViewLastMsg, userViewMsgInHistory,
userViewLastUpdateset, userViewUpdatesetInHistory.,
userViewLastState, userViewStateInHistory,
userAddWatch, userDeleteWatch, userQuit)

Spec 5.9: Activit,~ commands

The CASM-User provides the information data to CASM-GUI through the GUI

tt User interface.

5.5.3 The GUI +-+ Engine interface

The GUI tt Engine interface consists of a control interface and an access interface.

CASM-GUI can control executions of CASM-Engine and can check the prop-

erties of CASM-Engine through the control interface. The control opmerations on

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 60

rule getFileURIToLoad (aUser : CoreASM-User ,
aFileStorage : CoreASM-Filestorage)

rule getNumForwardStepsRequested (aUser : CoreASM-User)
rule getStateIdBackTo (aUser : CoreASM-User)
rule getStateIdViewInHistory (aUser : CoreASM-User)
rule get UpdateSetIdViewInHistory (a User : CoreASM-User)
rule createAWatch (aUser : CoreASM-User , avocab : GUI-VOCAB)
rule sel ec tA WatchToDel (a User : CoreASM-User)

Spec 5.10: Rules in the GUI t, User interface

CASM-Engine include checking a specification in CASM-Engine, initializing a spec-

ification machine in CASM-Engine, forwarding, rollbacking, interrupting, creating a

CASM-Engine and terminating a CASM-Engine [Spec 5.111.

The access interface enables CASM-GUI to access information entities about the

CoreASM machine being executed in CASNI-Engine, obtaining information such as

the states of the CoreASM machine or the value of a function in the CoreASM machine

[Spec 5.121.

rule checkspeci f ication (aEngine : CoreASM-Engine , aFile : File)
rule ini tspeci f ication (aEngine : CoreASM-Engine)
rule step (aEngine : CoreASM-Engine , an1 : Integer)
rule rollback (aEngine : CoreASM-Engine , anId : StateID)
rule createEngine
rule kil lEngine (aEngine : CoreASM-Engine)
controlled interrupt : CoreASM-Engine + Boolean
monitored getEngineMode : CoreASM,-Engine + ENGINE-MODE

Spec 5.11: Rules and functions in the control interface of GUI t, Engine interface

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 6 1

GUI f 3 Engine Interface

Figure 5.4: GUI tt Engine interface

5.6 Conclusion

The GUI ASM model has specified the architecture and the functionality of a GUI

application system, with ASM methodologies. During the refinement process, the

GUI ASM model has assisted to define interfaces between systems. Two objectives

[Section 1.11 have been fulfilled in this chapter. The functions of the GUI application

system are specified as twenty activities. Each activity represents a sequence of in-

teractions. The internal components of CASIM-GUI and the actors in the GUI ASM

model are specified as parallel ASM or distributed ASM. Communications between

internal components are transferred through the signal type communication structure.

The exchanges of information between systems rely heavily on the interfaces of the

systems.

CHAPTER 5. THE GUI ASM MODEL IN THE COREASM PROJECT 6 2

- - -- --

monitored getGUI-VOCAB : CoreASM-Engine --t GUI-VOCAB
monitored getoutput : CoreASM-Engine 4 GUI-Outputs
monitored getCurrentGUIS'tate : CoreASM-Engine --t GUI-States
monitored getLast Updateset : CoreASM-Engine --+ GUI-Updatesets
monitored getPreviousGUI-State : CoreASM-Engine

* GUI-Watch * StateID
-t GUI-States

monitored getPreviousUpdateSet : CoreASM-Engine
* GUI-Watch * UpdateSetID

--t GUI-UpdateSets
monitored getspec : CoreASM-Engine --t File

Spec 5.12: Rules in the access interface of GUI tt Engine interface

Chapter 6

Discussion

This chapter discusses in depth two issues thak were carried out in the formal modeling

process and gives solutions for these two issues. These two issues are level-refinement

in the modeling process and the concurrency issue in the graphical user interface

application.

6.1 Four abstraction levels for the GUI ASNI model

At the beginning of the modeling stage, a system designer faced with too many in-

formal requirements and no clear idea where to start might feel overwhelmed. One

common methodology to overcome the previous problem is top-down development.

ASM methodology gives the power of abstraction to top-down modeling, allowing the

designer to model the system a t different levels of abstraction. The system designer

is able to focus on solving different questions a t different levels of abstraction. The

levels have a top-down relationship as the system designer refines the system model

from a highly abstract level to a less abstra~ct level. The goal of this refinement is

to provide more implementation details to satisfy particular requirement specification

and these implementation details should be appropriate to each level of abstraction.

The GUI ASM model developed for the CoreASM project has four abstraction

CHAPTER 6. DISCUSSION 64

levels. The model has been refined from level 1 to level 4, in a top-down d.evelopment

process. The four abstraction levels of specification cover the CASM-GUI architec-

tures, features, and interface design.

6.1.1 The first abstraction level - (the features)

The first abstraction level of the GUI ASM model specifies the activities to be per-

formed by the system. The GUI system is viewed as a whole. The arc:hitecture of

the GUI system is not analyzed at this level. The activities specified in the model at

this point are user-oriented, intended to achieve certain user goals through the system

operations. The activity, ViewLastStateActivity, would be an example of this. The

objective of modeling at this abstraction level is to see what the system can do. The

activities specified here are abstract activities. No implementation is specified as to

how these activities are to be performed. These activities can be treated as major

features of the GUI system. The model also specifies all signals that can activate the

above activities.

6.1.2 The second abstraction level - (the interface design)

The second abstraction level of the GUI ASM model specifies the model's interactions.

The main problems solved are what are the interactions between systems in the GUI

ASM model and what are the data objects and control signals exchanged in these

interactions. To answer these questions, the first step is to specify the architecture of

the GUI ASM model and to identify the actors in it [Section 5.11.

An ASM model usually consists of a machine and its environment. As t,he research

target of this thesis, the actor CASM-GUI is the machine in this model. Other actors,

CASM-User, CASM-Engine and File Storage, form the environment of the ASM

machine. The interactions in the model are the interactions between CASM-GUI and

its environment.

The analysis of the interactions and the data objects exchanged in these interac-

tions is important. We can define API functions through these interactions, and the

data objects that serve as their parameters. One of the objectives in building the GUI

CHAPTER 6. DISCUSSION 65

ASM model is to define the APIs. The GUI ASM imodel can also verify these API

functions as satisfying the requirements of the CoreASM GUI system.

6.1.3 The third abstraction level - (the internal architecture)

The third abstraction level of the GUI ASM model refines CASM-GUI by build-

ing the architecture of CASM-GUI itself [Section 5.31. The internal components of

CASM-GUI include the control panel, the output view, the message view, the program

view, the run view, the state view, the updateset view, the history manager, and the

vocab view. Each component provides certain features to be defined a t this level of

the GUI ASM model. A component in CASM-GUI is a collection of behaviors and

functions. It is specified as an ASM rule in the model. A component is an abstract

concept. At a later point, the GUI designer can find a GUI object to implement a

component, such as JEditorPane in Swing o,r RichTextBox in C#, or even a televi-

sion screen. In the ASM model, a component abstracts behaviors and functions from

the actual objects. Therefore, a model using ASMs will not limit the GUI designer's

imagination when it comes to visually representing that component.

The components are specified with Distributed ASM notation. Each component

executes independently. All components execute in parallel inside CASM-GUI. These

components are specified as distributed ASMs to satisfy concurrency issues which

are intrinsic to GUI systems. More discussion of concurrency issues can be found in

Section 6.2.2.

This third abstraction level introduces a signal communication structure to the

GUI ASM model. Each component has one incoming signal pool. A component

checks the signal in its signal pool at each step of the ASM's execution run and

activates the relevant activities or operatiom if a signal is found. To communicate

between components, a component inserts a signal into another component's signal

pool. Two kinds of information are contained in a signal: the command that indicates

what activities or operations should be activated by the signal, and the data objects

that are needed for execution of the activities or operations activated. As an example,

the activity InitActivity involves the interaction of certain components, including the

CHAPTER 6. DISCUSSION 6 6

control panel, the message view, run view, the state view, the history manager and

the vocab view. After initialization, the control panel will update the vocab view.

The control panel sends the vocab view a request to update the vocabulary through

the command vocabvcDisp. The data object vocabulary, gui VOCAB, is attached

in the same request signal. A similar mailbox-like communication mechanism in a

distributed system is specified in [15] [16].

6.1.4 The fourth abstraction level - (the concurrency prob-

lem)

The model designer can discuss individual issues at this abstraction level generally.

In this GUI ASM model, we pay attention to the problem of two concurrent activities

taking place in CASM-GUI. The GUI application is a multithreading application. It

can respond to user requests simultaneously; therefore one activity can be activated

before a previous activity has been completed. One question arises, what kind of

activities in CASM-GUI can be executed simultaneously? For example, it does

not seem reasonable that ForwardRunActivity and RollbackActivity can be performed

concurrently. Not all activities can execute concurrently with other activities. The

GUI ASM model will specify this constraint as part of the fourth abstraction level

[Section 6.2.31.

6.1.5 An example of refining a model in four abstraction lev-

els

The activity ForwardRunActivity serves here as an example to show how to specify

and refine an interaction in four abstraction levels. In the activity, the user requires

the machine in the engine to execute forward a few of steps, and then the GUI

displays the results of these steps. This activity involves three actors, CASM-User,

CASM-GUI and CASM-Engine, and consists of three sub-activities, getNumForward-

StepsRequestedSA, fomardRunSA and getFI1FeedbackSA

The first abstraction level of the GUI ASM model specifies activities performed

CHAPTER 6. DISCUSSION 67

by CASM-GUI. The activity FomardRunActivity is defined as an ASM rule. That

means this activity is a set of operations in CASM-GUI. At this abstraction level, we

specify that this activity exists. The details of the operations in the activity are not

of concern a t this level. Therefore the operations are not specified here.

//Activity Rule
rule ForwardRunActivity

Spec 6.1: The activity FomardRunActivity

At this abstraction level, the GUI ASM model also specifies how the activity

is activated. The command in the signal, userFomardRun, activates 1;he activity

FonuardRunActivity. This happens inside the actor CASM-GUI.

// - - Main rule of the CoreASM GUI -- --
main rule CoreASMG UIProgmm =

//Signal handling by CASM-GUI
case next UserActivityRequest() of

userForwardRun +

rule ForwardRunActivity

Spec 6.2: The activity ForwardRunActivity is activated in the main rule

At the second abstraction level of the GUI ASM model, there are two objectives:

define the APIs and to verify their necessity :in the model. Analyzing the interactions

in the system is the beginning point for defining APls. The first step is to specify the

actors in these interactions, CASM-Engine, CASM-User and File Storage, in addition

to CASM-GUI itself.

CHAPTER 6. DISCUSSION

domain CoreASM-Engine / / T h e a c t o r C A S M E n g i n e
domain CoreASM-User / / T h e actorCASM-Uses-
domain CoreASM-Filestorage / / T h e actorFileStorage

/ /ac tors in the environment
current User : CoreASM- User / / T h e actorCAS M-User
currentEngine : CoreASM-Engine / / T h e a c t o r C A S M E n g i n e
currentFileStorage : CoreASM-FileStorage / / T h e actorFileStorage

Spec 6.3: The actors in the activity ForwardRunActivity

Next, we refine the activity ForwardRunActivity by analyzing this interaction. The

activity ForwardRunActivity has three sub-activities, getNumFomoardStepsRequest-

edSA and fomoardRunSA and getFRFeedbaclcSA. They execute in sequential order.

/ /Ac t i v i t y : ForwardRunActivi ty
rule ForwardRunActivity
getNumFonuardStepsRequestedSA

seq forwardRunSA
seq getFR FeedbackSA

Spec 6.4: The sequential execution of sub-activities in the activity Fomoal-dRunActiv-
i ty

The sub-activity is also an ASM rule. We specify- API functions and t:heir param-

eters in each sub-activity rule. The sub-activity getNumForwardStepsPLequestedSA

gets the number of steps that CASM-User wants the machine to go forward. This

is an interaction between CASM-GUI and CASM-User. The data object guiNum-

StepsToForward is needed in the sub-activity. The function monitored getNumFor-

wardStepsRequested : CoreASM- User t Integer obtains the data object needed from

CASM-User.

CHAPTER 6. DISCUSSION 69

//subactivity : getNumForwardStepsRequestedSA
rule getNumForwardStepsRequestedSA

guiNumStepsToForward := getNumForwardStepsRequested(currentUser.)

Spec 6.5: The sub-activity getNumForwardStepsRequestedSA

The second sub-activity forwardRunSA forwards CASM-Engine guiNumStepsTo-

Forward steps, by executing the rule step(currentEngine, guiNumSteps ToForward)

defined in the GUI - Engine interface.

//subactivity : f orwardRunSA
rule forwardRunSA

step(currentEngine, guiNumSteps ToForward)

Spec 6.6: The sub-activity forwardRunSA

The third sub-activity getFRFeedbackSA makes CASM-GUI to receive feedback

from CASM-Engine about the state, the update set and the output.

//subactivity : getFRFeedbackSA
rule getFRFeedbackSA

guiAnOutput := get Output(currentEngine)
guiAState := getCurrentGUI-State(currentEngine)
guiAn Updateset := getLast UpdateSet(currentEngine)

Spec 6.7: The sub-activity getFRFeedbackSA

After verifying the functions specified in the activities, we can list these functions

safely at the beginning of the GUI ASM model.

CHAPTER 6. DISCUSSION 70

//Vocabulary of the model CoreASM - GUI - - - - - --
vocabulary :

/ / In ter face o f GUI - - - - - - - - - - - - -- - - - - - - -
/ /User tt GUI Functions

/ /get the number of steps that theCASM-User requests
// the model to forward
rule getNumForwardStepsRequested (aUser : CoreASM-User)

/ / G U I tt Engine Functions
// - - Control Functions - - - - - - - - - -- - - - - - - - --
monitored step : CoreASM-Engine x Integer t Boolean

// - - Access Functions - - - - - - - - - - -- - - - - - - - - -
monitored getoutput : CoreASM-Engine t GUI-Outputs
monitored getCurrentGUI-State : CoreASM-Engine t GUI-States
monitored getLastUpdateSet : CoreASMLEngine t GUI-Updatesets

Spec 6.8: API functions used in the activity FomuardRunActivity

The ASM rules and the ASM functions in the colde section GUI tt Engine Inter-

faces are API functions we need to define in this project.

At the third abstraction level, the GUI ASM model has specified the architecture

of CASM-GUI and has introduced a commilnication structure between the internal

components of CASM-GUI. We now need to answer the following questions. What

internal components of CASM-GUI are involved in the activity FomoardRunActivity?

How do these components react in the activity FomuardRunActivity? Whak behaviors

do these components perform to complete th.e activity ForwardRunActivity?

The GUI ASM model has to be refined to answer the above questions.

The activation of the activity FomuardRunActivity is managed in the internal com-

ponent control panel. The component control panec! executes in parallel with other

internal components in CASM-GUI. Therefore, the main rule of CASM-GUI, Core-

ASMGUIProgram, has been written and refined as parallel executions of internal

CHAPTER 6. DISCUSSION 7 1

components (Spec 6.2 to Spec 6.9). The component control panel handles activations

of activities.

main rule CoreASMGUIProgram =
Vocab View Program
Output ViewProgram
Message ViewProgram
Program ViewProgmm
R u n ViewProgram
State ViewProgram
Updateset ViewProgram
HistoryManagerProgram
ControlPanelProgram

rule ControlPanelProgram
/ /S igna l handling by control panel in C A S M - G U I
case next UserActivityRequest() of

userForwardRun --+

ForwardRunActivity

Spec 6.9: The activity ForwardRunActivity is activated in the control panel

We add a group of operations into the activity rule ForwardRunActivity. The com-

ponent control panel requests other components in CASM-GUI to display the results

after the sub-activity forwardRunSA completes. The display requests are sent through

the communication structure by signaling otlher internal components in CASM-GUI.

Other components receive the signal and then perform the display requests. For ex-

ample, the component state view finds that the request signal is the statevcDisp com-

mand. Then the state view executes the rule displayStateinState V(secondOf(aSigna1))

to display the new state.

As the third abstraction level of the GUI ASM model shows, a system designer can

find answers for the questions asked in the page 70. The internal components control

panel, message view, run view, state view and history manager are involved in the

CHAPTER 6. DISCUSSION

//Activity : ForwardRunActivity
rule ForwardRunActivity
getNumForwardStepsRequestedSA

seq forwardRunSA
seq

signalingTo(messagev, (messagevcDisp, guiAn0utput))
signalingTo(outputv, (outputvcDisp, guiAnOutput))
signalingTo(statev, (statevcDisp, guiAState))
signalingTo(updatesetv, (updatesetvcDisp, guiAnUpdateset))
signalingTo(runv, (runvcDisp, getCJurrentStepID()))
signalingTo(historymanager,

(historymanagercAddAStep, getCurrentStepID()))

Spec 6.10: Sending requests to other components in activity ForwardRunActivity

activity ForwardRunActivity since control panel conimunicates to these components

in the activity rule ForwardRunActivity [Spec 6.101. The components react to the

request from control panel by checking the received signals in their signal pool and

executing the relevant behaviors ([Spec 6.101 and [Spec 6.111). The component state

view performs the behavior displayStateinSl;ateV(secondOf(aSignal)) to display the

result of the activity ForwardRunActivity.

The fourth abstraction level of the GUI ASM model concentrates on solving the

activity concurrency problem. Some kinds of activity in CASM-GUI cannot be in-

terrupted by another activity and must be completed before quitting (The activity

InterruptActivity is a special case). The GUI system specified in this model is a mul-

tithread application. It can respond to multiple user requests simultaneously. There-

fore activity concurrency exists in this GUI ASM model. In this kind of rnultithread

application, we know a t least one constraint exists: the activity ForwardRunActiv-

ity cannot start when CASM-Engine is executing forwarding or rollbacking actions.

When refining this abstraction level, we add a constraint into the GUI A.SM model.

The control panel checks whether a forward or rollback action is executing before

CHAPTER 6. DISCUSSION

// - - STATE V I E W - - - -
rule StateViewProgram

choose aSignal from statevSignalPoo1
remove aSignal from statevSignalPoo1
case JirstOf(aSigna1) of

statevcDisp t
displayStateinState V(secondOf(aSignal))

statevcClearDisplay t
clearDisplayinState V

Spec 6.11: The component state view

activating an activity ForwardRunActivity. The checking is done in the function is-

// - - C O N T R O L P A N E L - - - -
rule ControlPanelProgram

/ / i f a synchronous activity i s in process, n o other synchronous
// activity can r u n except interruptions.

case next UserActivityRequest() of
userForwardRun t

if not isSynchronousActivityRunning() then
ForwardRunActivity

Spec 6.12: The constraint to activate the activity FomardRunActivity

We have assigned each activity a flag (guiSAM:ode-***A) to label the activity

states has-not-started, in-process and completed. The function isSynchronousActiv-

ityRunning0 checks whether an initialization or execution activity, such as activity

ForwardRunActivity or activity RollbackActivity, is executing in CASM-GUI. The flag

helps the control panel to detect the activity execution. We refine the activity rule

CHAPTER 6. DISCUSSION 74

ForwardRunActivity by assigning the activity state guiACompleted to the activity flag

guiSAMode-FomoardRunA at the end of the activity FomoardRunActivity.

guiSA Mode-ForwardRunA := guiA Completed I
Spec 6.13: State of the activity FomoardRunActivity

The refinement of the activity ForwardRunActivity in the four different abstraction

levels of GUI ASM model is a process to make design decisions. These design deci-

sions help to build a system that satisfies the requirements. The GUI ASM model has

answered the following questions during the refinemlent process. Is the activity For-

wardRunActivity one behavior of CASM-GUI? How does CASM-GUI interact with

other actors (the environment) in the activity FomoardRunActivity and what are the

API functions in the interaction? What internal components in CASM-GUI are

involved in the activity FomoardRunActivity and what roles do they play? Can the

activity FomoardRunActivity execute in parallel with other activities in CASM-GUI?

6.1.6 Benefit of refinement by levels

When a system designer specifies a complex system, he or she would probably like to

start from a high level of design; during the system development life cycle, the designer

will also likely prefer that the specified system model be easily modified several times,

whenever new detailed questions arise or when the requirements are changed.

This thesis introduces a mixed model-building approach that applies ASM method-

ology [Section 4.21. In this approach, the system designer starts with the traditional

object-oriented approach to build the architecture of the system as a whole and to

point out the actors in the system and the roles of these actors. The system de-

signer takes a global view of the complex system and decides its boundaries. Then

the system designer switches to a task-based approa~ch, analyzing the tasks that the

system can perform. The task analysis at this stage is user-oriented if the system

CHAPTER 6. DISCUSSION 75

is interactive. The tasks analyzed in the model should complete certain user goals.

The specified model receives continuing refinement at each of the different abstrac-

tion levels, enabling the designer to analyze the behaviors of the system and to match

specification requirements. Each abstraction level should focus on a specific group of

questions. The system designer should decide the number of abstraction levels and

objectives of each abstraction level depending on the projects.

A mixed development approach helps system designers to specify a complex system

model from the top to the bottom. System designers can think about the main objec-

tives at the beginning and prevent marginal and detailed questions from obstructing

decision making. ASM methodology is another tool to assist system designers. It has

the power to abstract behaviors and functions of objects a t a high level. In a graph-

ical user interface system, ASM methodology can abstract an object in a model's

behaviors and functions from its appearance. This type of specification model leaves

the graphics designer a considerable amount of freedom in designing the interface's

graphic appearance. The refinement process in the ASM methodology also makes it

possible to modify the model if the requirements should change.

6.2 Concurrency issues in the GUI system

A GUI system is normally a multithreading system. The concurrency issues in GUI

application design can be solved by defining a few constraints and by taking advantage

of distributed ASMs.

6.2.1 GUI ASM model constraints in concurrency issue

In some activities, CASM-GUI would send requests to an outside actor in the envi-

ronment, such as CASM-Engine, and wait for a response. It may take a long time for

CASM-GUI to receive a response. For instance, requesting CASM-Engine to exe-

cute a step and this step takes a long time. During this waiting time, CASM-GUI is

supposed to be available to respond to some user requests, such as a request to view

program code.

CHAPTER 6. DISCUSSION

Activity Concurrency Policy:

1. CASM-GUI cannot receive any user request for execution or initialization when

a user request for execution or initialization is already in process;

2. Multiple instances of an activity cannot be processed in CASM-GTJI simulta-

neously;

We have specified that there is only one CASM-User in the system environment.

This single CASM-User interacts with a single CASM-GUI. CASM-User cannot

execute the same activities simultaneously with one CASM-GUI. It is safe to say two

activities, for example two uses of ViewPro~gramCodeActivity, initiated by one user

will not occur a t the same time.

There is another situation needed to be discussed here. The case might exist where

CASM-User requests CASM-GUI to process an activity when the previous instance

of the same activity is in process. For example, CASM-User might change his or her

mind and want to view a previous state record when he or she is already viewing a

different previous state record. Both activities are the activity VzewStateInHzstory-

Activity. In this situation, the second activity instance interrupts the previous one if

this activity instance is the same kind of view activity. We introduce the policy 2 to

avoid the situation that might occur if multiple instances of one activity simultane-

ously execute. The second instance of an activity cannot be processed if the previous

activity instance is still alive (Spec 6.14). This keelps the GUI ASM model simple

a t this fourth level of abstraction. Execution or initialization activities, such as Ini-

tActivity, FomuardRunActivity, RollbackActivity and so on, are non-interruptible by

user requests for the same activity. The policy 2 satisfies the needs of initialization

or execution activities too.

One execution or initialization activity should not be interrupted by the same ac-

tivity, and it normally should not be interrupted by other execution or initialization

activities, either (there is an exception: user.lnterrupt) . To satisfy these two require-

ments, there are two solutions. One is to hold the second execution or initialization

activity user request in CASM-GUI until the previous execution or initialization ac-

tivity has been completed. The second solution is to ensure that CASM-GUI cannot

CHAPTER 6. DISCUSSION 77

case next UserActivityRequest() of

userViewStateInHistory -+

if guiSAMode- ViewStateInHistoryA = undef then
ViewStateInHistoryActivity

Spec 6.14: The activation of an activity

receive another execution or initialization activity u.ser request during the period of

time when CASM-GUI is dealing with an execution or initialization activity. For this

GUI ASM model, the second option was selected (policy 1). At times, a GUI designer

normally sets up the system to close the input channel to prevent CASM-User from

sending an activity user request. For example, at certain times, the Forward button

might be disabled.

6.2.2 GUI ASM model components

The GUI ASM model in this thesis consists of nine components expressed as ASM

rules, seven ViewPrograms and one HistoryManagerProgram and one ControlPan-

elprogram. All components execute in parallel. They are specified as distributed

abstract state machines (DASMS) .

The ViewProgram provides functions for CASM-User to view the executing

specification model on CASM-GUI. The HistoryManagerProgram manages the state

history records and update set history records in CASM-GUI. The ControlPanel-

Program is the program controlling CASM_.GUI. It; has interfaces for t:he environ-

ment (CASM-User, CASM-Engine, File Storage) to interact with CASM-GUI. One

important task for the control panel is to respond to UserActivityRequests from

CASM-User and to activate the corresponding activities in CASM-GTJI. In GUI

design, the control panel is a collection of GUI controls located on the GUI, including

the initializing button, the step button, etc.

CHAPTER 6. DISCUSSION 78

All components should work in parallel. One component in an execution state

does not block another component's execution. Each component is an ASM rule and

has its own behaviors. All components execute in paxallel according to the main rule

CoreASMGUIProgram of CASM-GUI (Spec: 6.15).

1 // - - Main rule of the CoreASM GUI - --
main rule CoreASMGUIProgram =

Vocab ViewProgram
Output ViewProgram
Message ViewProgram
Program ViewProgram
Run ViewProgram
State ViewProgram
Updateset ViewProgram
HistoryManagerProgram
ControlPanelProgram

Spec 6.15: The parallel executing components

The component control panel is specified as the only component in CASM-GUI

handle user requests from CASM-User and to send and receive responses from

CASM-Engine. The control panel dispatches activities in response to user requests.

It is this approach that guarantees that the processes are thread-safe.

6.2.3 Activities in ControlPanelProgram

The GUI component control panel dispatches activities in response to user requests

and controls these activities. On one step of ASM rude ControlPanelProgram, control

panel handles one user request and dispatches the coirresponding activity. The second

response of the control panel is to keep uncompleted previous activities executing.

There are two kinds of activities in CASM-GUI, synchronous activity and asyn-

chronous activity. A synchronous activity is an activity that should be executed

CHAPTER 6. DISCUSSION 79

without interruption from another activity. For example, ForwardRunActivity has to

complete before RollbackActivity starts. ForwardRunActivity is a synchronous activ-

ity. Most synchronous activities in this GUI ASM model are those activities that

involve execution by CASM-Engine. By contrast, IntemptActivity is a special activ-

ity. It can interrupt other synchronous activities.

In the ViewStateInHisto yActivity, CASM-GUI gets the state from the historg

manager and displays that state in the state view. This activity does not need

CASM-GUI to communicate with CASM-Engine. Therefore, we treat the activity

ViewStateInHisto yActivity as an asynchronous activity. An asynchronous activity is

an activity that can be interrupted by another activity and the interruption will not

affect the execution of the CoreASM machine.

Asynchronous Activity I Synchronous Activity
ViewProgramCodeActivity
ViewLastOutputActivity

ViewOutputInHistoryActivity
ViewLastMsrrActivitv ForwardRunActivitv

-
~ i e w ~ a s t ~ p d a t e s & ~ c t i v i & 7 StopAct ivity '

I StartupActivity I I IT-1
AddWatchAct ivity

DeleteWatchActivity

Table 6.1: Asynchronous activities and s:ynchronous activities

An activity is activated by a user request in the control panel. If this activity is

an asynchronous activity, control panel allows the activity to process when the same

activity is not being executed a t the same time (guiSAMode-****A = undef) (Spec

6.16) (Policy 2).

If the activity is a synchronous activity, control panel allows that activity to be

CHAPTER 6. DISCUSSION

case nextUserActivityRequest() of
/ / i f t he model i s not processing t h e activity V i e w S t a t e I n H i s t o r y ,
// t h e n process it.

userViewStateInHistory -+

if guiSAMode-ViewStateInHistoryA = undef .then
ViewStateInHistoryActivity

Spec 6.16: The constraint to activate an asynchronous activity

activated only when no other synchronous activity is executing in CASM-GUI at the

time (Spec 6.17).

case nextUserActivityRequest() of
/ / i f t h e model i s not processing a synchronous activity
// t h e n process it.

userForwardRun -+

if not isSynchronousActivityRunning() then
ForwardRunActivity

Spec 6.17: The constraint to activate a synchronous activity

The next task for control panel is to keep uncompleted activities in CASM-GUI ex-

ecuting. The GUI ASM model applies parallel ASMs here again and executes all

uncompleted activities in parallel (Spec 6.18)

An asynchronous activity does not require the result of the activity to display

on the GUI immediately. Two asynchronous activities can overlap each other. For

instance, a user can interrupt a viewing state and switch to viewing program code,

then switch back. The CASM-GUI executes the uncompleted activities ViewPro-

gramCodeActivity and ViewStateInHistoryActivity in parallel to specify this situation

CHAPTER 6. DISCUSSION 8 1

(Spec 6.18). The only constraint is to make sure no identical activity js executing

currently (Spec 6.16). This does satisfy the policy 2.

A synchronous activity cannot be interrupted by another synchronous activity.

The policy 1 is defined to satisfy this requirement. The system checks whether a syn-

chronous activity is being executed currently before activating a synchronous activity.

Two synchronous activities, ForwardRunActzvity and RollbackActivity, seem as if they

can execute in parallel (Spec 6.18). In fact, this will not happen given the constraint

(Policy 1).

One synchronous activity may take a long time to complete and ak the same

time it may hold an important resource, an outside actor, such as CASM-Engine or

File Storage. This produces one problem. The CASM-User may want to stop a

synchronous activity if it takes too long. InterruptActivity is introduced as a special

synchronous activity to interrupt other synchronous activities.

An asynchronous activity and a synchronous activity are allowed to be executed si-

multaneously. For example, a user can view program code while waiting for the engine

processes one step. The activities ViewProgramCodeActivity and ForwardRunActiv-

ity execute in parallel (Spec 6.18). CASM-GUI will not freeze when a synchronous

activity is running. The control panel will activate an asynchronous activity when a

user request for the asynchronous activity is incoming, even if a synchronous activity

is running in CASM-GUI (Spec 6.16). A synchronous activity will not block other

incoming asynchronous activity requests.

6.3 Summary

This chapter discussed the level-refinement during the modeling process and the con-

currency issue in the graphical user interface appli~a~tion.

Level-refinement refined the GUI ASM model a t abstraction levels in a top-down

development process. Each abstraction level had particular requirement specification

goals. The activity ForwardRunActivity was used as an example to explain the level-

refinement process.

Concurrency issue normally exists in a GUI system. The GUI ASM model took

CHAPTER 6. DISCUSSION 82

advantage of distributed ASMs to model GUI components that execute in parallel.

An activity concurrency policy was also given in the GUI ASM model 1;o solve the

activity concurrency problem in GUT systems.

CHAPTER 6. DISCUSSION 83

/ /synchronous activity
if guiSAMode-RollbackA = guiACompleted then

// quits th is activity
guiSA Mode-RollbackA := undef

else
// i f t he activity i s in process, continue the activity
if not (guiSAMode-RollbackA = undef) then

RollbackActivity

/ /synchronous activity
if guiSAMode-ForwardRunA = guiACompleted then

// quits th is activity
guiSAMode-ForwardRunA := undef

else
// i f t he activity i s in process, continue the activity
if not (guiSAMode-ForwardRunA = undef) then

ForwardRunActivity

/ /asynchronous activity
if guiSAMode-ViewProgramCodeA = guiACompleted then

// quits th is activity
guiSAMode-ViewProgramCodeA := undef

else
// i f the activity i s in process, continue the activity
if not (guiSAMode- ViewProgram,CodeA := undej7 then

ViewProgramCodeActivity

/ /asynchronous activity
if guiSAMode-ViewStateInHistoryA = guiACompleted then

// quits th is activity
guiSAMode- ViewStateInHistoryA := undef

else
// i f the activity i s in process, continue the activity
if not (guiSAMode- ViewStateInHistoryA = undef) then

ViewStateInHistoryActivity

Spec 6.18: Synchronous activities and asynchronous activities

Chapter 7

Implement at ion

This chapter introduces the implementation of the GUI ASM model, a visual Core-

ASM language debugger, and then experiments an actual CoreASM model, the ATM

model.

7.1 Visual CoreASM language debugger

A visual CoreASM language debugger is currently under development. The GUI of

the debugger is the implementation of CASM-GUI described in Chapter 5.

The programming language used to implement t:he debugger is Java. The reason

to choose Java as the programming language is to allow the visual debugger to be

cross-platform. The minimum Java virtual machine required to execute the GUI of

the debugger is the version 1.2 or higher. The GUI is implemented with the Swing

technology.

7.1.1 Function areas on the GIJI

There are four main function areas on the GUI.

- Program Edit Area: the area where the user can edit the code of a CoreASM

Ha" Qm --
D

Ell

Figure 7.1: The graphical user interface of the visual CoreASM language debugger

machine in. It locates on the upper-left corner of the GUI (labeled by 1 in

Figure 7.1).

- Machine View Area: the areit that displays the properties of a CoreASM

machine. The properties of the machine are vocabulary, states and update

sets. This area locates on the upper-right corner of the GUI (labeled by 2

in Figure 7.1).

- Execution Information Area: the area that displays the information of the

execution of a CoreASM nachine. The information includes the messages

about the execution of the machine and the output of the mackine a,nd the

history of a run of the machine. This area locates on the lower-left corner

of the GUI (labeled by 3 in the Figure 7.1).

- Control Panel Area: the area where the user can operate to execute a,

CoreASM machine in. This area locates on the lower-right corner of the

GUI (labeled by 4 in Figure 7.1).

CHAPTER 7. IMPLEMENTATION 86

The views of most components of CASM-GUI can be found on this GUI imple-

mentation. The table 7.1 shows these components and the function areas where the

views of these components are in.

I vocab view I Machine View Area I

CASM-GUI Component
pro,qram view

I $ I state view Machine View Area i

Function Area I
Pro,qram Edit Area ' I

I updateset view I Machine View Area I
I message view I Execution In.formation Area

I control panel I Control Panel Area 1

-

output view
run view

1 history manager

Execution Information Area 1
Execution Information Area /

Table 7.1: The components and the function areas in where the views of these com-
ponents are

The history manager is invisible to CASM-User. Therefore, it does not have a

view on the GUI.

7.1.2 Information organized in a tree structure

Users learn a CoreASM machine by observing the states and the updates of the

machine in a run. A state is a set of elements together with functions. An update set

in an update is a set of locations and elements. The function signatures can be used

to identify the locations. Therefore, all the information items in a state or an update

set can be grouped by functions. A tree view is a good representation of this kind of

information organization.

In Figure 7.2, the information of the state is classified to three groups, the function

stepNum, the function isEven and the function iconColor. Four locations, isEven(O),

isEven(l) , isEven(2), and isEven(3) are in the group of the function isEven.

The information is organized in a tree structure. This applies to both views, the

state view and the update set view. The purpose of the information organization is

CHAPTER 7. IMPLEMENTATION

state#: '4
--

Funct ions
@- stepNum() -> Integer, Defaultvalue undef
9 IsEven(lnteger) -> Integer Default Value undef

lsEven(1) = fake
lsEven(2) = true
lsEven(0) = true
IsEven(3) = false

9 ~conColor() > Color, DefaultValue undef
~conCnlor() =yellow

State View -e Set V~I-

Figure 7.2: The view of a state

Figure 7.3: Th.e run view

for users to find a particular 1ocatiol:i and its value easily.

7.1.3 Run view

The run view displays the trail of a run of a CoreASM machine. A user clicks one

state buttori in the run view, then the information about the machine a t that st>ate

will display in the state view and in the update set view.

CHAPTER. 7. IMPLEMENTATIGN 88

Figure 7.4: The control panel

7.1.4 Control panel

In the GUI ASM model, the component control panel responds all activity requests

from CASM-User. In the implementation, th.e paael in the Control Panel Area on the

GUI is only a partial view of the component control panel, because most, but not all, of

the activity request buttons can be found in the Control Panel Area. The initialization

request button and the execution request buttons are in the Control Panel Area. The

other activity requests, such as view requests, are going to be received in the other

function areas on the GUI. For instance! a user needs to click on one state button in

the run view if he/she wants to view the history record about that state.

7.2 Experiment of the ATM model

We chose ail actual CoreASM model to test the GUI implemented in Java. This

CoreASM model is the ATM model.

CHAPTER 7. IMPLEMENTATION

7.2.1 ATM model

The ATM model abstractly models a cash machine control. There are three separate

active entities that are involved in ATM operations. The active entities are an ATM

manager, and an authentication manager, and an account manager. To simplify the

model, the ATM manager is specified as a CoreASM machine, and the authentication

manager and the account manager are in the system environment.

The withdrawal operation of the ATM should follow these steps:

1. Input the bank card and the PIN code.

2. Check the validity of the bank card and the PIN code.

3. Input the amount to be withdrawn.

4. Check the account balance against the credit line.

5. On approval update the account balance.

6. Output cash or notification about denial of transaction.

The timeout mechanisms of the ATM may cause the cancellation of transactions

a t any time.

The ATM model is given in Spec 7.1, with refinement. So the ATM model can be

experimented in the visual CoreASM language debugger [Section 7.11.

There are a few simplifying assumptions in this ATM model.

- The bank card and the PIN code are input in the same step.

- The bank card and the PIN code are always authenticated.

- The transaction is always valid.

- The mode of the ATM is always idle at the initial state.

- It is known in advance a t the initial state whether CancellationEvent will

occur during the withdrawal operation.

CHAPTER 7. IMPLEMENTATION 90

7.2.2 Experiments

The ATM model is ready to be executed in the visu.al CoreASM language debugger.

To experiment the perspective of the ATM on the .withdrawal operation, a few test

cases were prepared.

Test case: successful operation

The ATM is in the idle mode and is activated a t the in.itia1 state. No CancellationEvent

will occur.

The initial state in the test case:

init :

mode := idle

isActivated := true

isCancelled := false

The states of the ATM model in a withdrawal operation are displayed in Figure

7.5 on the page 93.

The output of the ATM model in a withdrawal operation are displayed in Figure

7.6 on the page 94.

In this test case, the ATM manager starts from tlhe idle mode, then tu:rns into the

processing mode, finally goes back to the idle mode. 'This is a test case for a successful

operation. The changes of the mode are same as the perspective of the ATM. The

output of the ATM model in the second step [Figure 7.61 also matches the perspective

of the ATM.

Test case: inactivated ATM

The ATM is in the idle mode, but it is not activated a t the initial state. No Cancel-

1ationEvent will occur.

CHAPTER 7. IMPLEMENTATION

The initial state in the test case:

init :

mode := idle

isActivated := false

isCancelled := false

The states of the ATM model in a withdrawal operation are displayed in Figure

7.7 on the page 95.

There is no output of the ATM model in a withdrawal operation.

In this test case, the ATM manager is inactivated. The mode keeps being idle

during steps. No further actions are to be performed.. This matches the perspective of

the ATM. The withdrawal operation cannot be perfoirmed if the ATM is not activated.

7.2.3 Conclusion

In the previous experiment, it shows that the visual CoreASM language debugger can

be used to experiment the perspective of a system by running test cases. The test

cases are developed from the scenarios that written jn the specification phase [Figure

2.61. If the ATM model gets further refinement, for instance, refining the function

isAuthenticated, more test cases can be prepared. Then, the designer can explore

more behaviors of the ATM.

CHAPTER 7. IMPLEMENTATION

asm ATMmanager

vocabulary :
enum domain Mode = {idle, processing)

definitions :

main rule CoreASMGUIProgram =

if Idle and ActivationEvent then
data := getCardData
code := getpincode
amount := getAmount
mode := processing

if Processing and IsAuthenticated(data, code) then
if Is ValidTransaction(data, amount) then!

ReleaseCash(amount)
UpdateAccountBalance(data, amount)

else
Output CancellationNoti=fication

mode := idle
if Processing and (not (IsAuthenticated(data, code)) or Cancellation.Event)

then
0utputCancellationNotification
mode := idle

where
rule Idle

mode = idle
rule Processing

mode = processing
rule ActivationEvent

isActivated = true
rule CancellationEvent

isCancelled = true
rule IsAuthenticated(data, code)

isAuthenticated(data, code) = true
rule IsValidTransaction(data, amount)

is Valid Transaction(data, amount) = true

Spec 7.1: The ATM model

CHAPTER 7. I.blPLEME1VTATIOiV

state#: 0
. - - . .

FmllBack
-- I

9 Functions
9 mode() -a Mode; UefaultValue: undef

mode() = idle
9 iskctivated() - a Boolean; DefaultValue: undef

isActivated() = true
code() -a String; DefaultValue: undef
isAuthenticated(String ' String) -:. Boolean; DefaultValue: undef
data() -> String; Default Value: undef

W e # : 1

9 Functions
9 mode() -* Mode, DefaultValue i~ndef

mode() = processing
9 IsAct~vated()-> Boolean, DefaultValue undel

isActnated() = true
9 code() -= Stnng, DefaultValue undef

code() ='345?Oa
9 isAuthentrcated(Str~ng * String) -: Boolean, Default Value undef

isAuthenticatedC2345673241" , '34520") = true
9 data() - 2 Strlng, DafaultValue undef

data() ='234567324X'

m e # : '2 - ---
9 Funct~ons

9 mode() -> Mode, Default Value bndef
mode() = idle

9 ~sAchvafed() -> Boolean, Default Value undef
~sAct~vated() = true

9 code() -> String, DefaultLalue undef
code() = '34520"

9 isAuthent~cated(String 'String) -> Boolean, Default Value undef
1sAuthertticated~2345673242". "34520') = true

9 data() -3 String. DefaultValue urdef
data() = "2345873242"

I -1

1 s ta tev iew -~d%%=eii'

Figure 7.5: The states in a successful run

CHAPTER 7. IMPLELVENTATION

Releash cash.
Update account balance.

Figure 7.6: The output in the se~-.ond step in a successful run

CHAPTER 7. IMPLEIME-VTATI0.N

?--- - -- -- - -- - -- - - --
Sate#:. o

JTGz-

Q Functions
dala() - * Str~ng; DsfaullValue: undef
cork() -2 String; DefaultValue: undef
~sAuthenticated(Stiing ' String) -= Boolean; Deiault Value. undef

9 mode() -= Idode; Default'Value, undef
mode() = ldle

9 isAclivated() - a Boolean; DefaultValue: undef
isActivated() = false

- - ------- I -
Q Funct~ons

data() -= Strlng, Dr>faultValue undef
code() - a Strlny, DefaUIIValue under
~sA?lthentlcated(Slrlng * Strlng) -> Boolean. DefaultValue undef

9 mode() - * Mode, DefaultValue. undef
mode() = ldle

9 lsActlvaled() - > Boolean, Default'Jalue undef
1sActnated0 = alse

state#: 2 RollBack I_- -
Q Functrons

data() -* String. Default Value ur~def
code() - * Strlny, DefaullValue undef
lsAuthenbcated(Strlng 'String) - a Boolean. Default Value undef

9 mode() - * Mode. DefaullValue. undef
mode() = Idle

9 ~sActlvated() -2 Boolean, DefauNValue: undef
~sActlvated() = alse

Figure 7.7: The states of an inactived ATM

Chapter 8

Conclusion

8.1 Conclusion

This thesis presents the work of designing a GUI appllication system a t a hj.gh abstract

level with model-based design. Abstract state machines methodologies have been

applied in the modeling process. The GUI ASM modlel is specified with the CoreASM

language. It provides a formal mathematical foundation to specify the architecture

and the function form of the GUI system and to specify the interactive actions between

the user and the CoreASM engine.

The formalization of the functions of the GUI system shows the ASM model is a

precise semantic foundation to model human-computer interaction system at a high

abstract level. The GUI ASM model describes the architecture of the system and

specifies the functions of the system as activities. This model is a formal foundation

for analysts to analyze GUI system behaviors and is a formal model for designers to

validate the GUI system by walk-through inspection. The inspection can be switched

to experimental validation through simulation and testing and formal verification

when the CoreASM working environment is ready.

The GUI ASM model is built with a mixed design approach of the object-oriented

approach and the task-oriented approach [Section 4.21. The object-oriented design

CHAPTER 8. CONCLUSION

creates the architecture of the CoreASM supporting tool environment and the ar-

chitecture of the GUI application system (CASM-G-UI) at the beginning. The task-

oriented design guides the system designer to focus on one core object in the GUI

system, CASM-GUI. As the design process progresses, level-wise refinement can push

the GUI ASM model to become more detailed. An ASM model is scalable. With

multiple levels, each level is concerned with particular features of the syste~n and keeps

other features abstracted. The higher level of specification can be easier proved. The

lower level needs only be proven correct with respect to the previous higher level.

Level-wise refinement makes the design process traceable and manageable.

One challenge of this project research in the graphical user interface design is

to present users with information about execution of a CoreASM machine. This

challenge consists of two questions. 1. What is this information? 2. How should this

information be presented visually? The thesis shows a way to collect the information

in the second abstraction level of the GUI ASM model as well as a way to create APIs

(GUI tt Engine interface) with these information. The Java implementation of the

graphical debugger for the CoreASM language is an example of the visual presentation

of this set of information.

Future work

The GUI ASM model in this thesis has captured the architecture and functions of

the GUI application system. This model is built on the informal requirements of

a GUI application system in the CoreASM project. To define the requirements for

interactive systems, William M. Newman and Michael G. Lamming suggested that

the requirements should be defined in such areas: defining functional form, identifying

the users and setting performance requirements [24]. The GUI ASM model in this

thesis has specified the functional form of the GUI system and has identified the users.

The users are specified as CASM-User in the GUI ASM model and are identified

(/abstracted) by their behaviors and functions tha,t they provide for CASM-GUI.

More studies can be done to formally model the users in their behaviors and to analyze

the interactions between the users and the GUI system. To specify the performance

CHAPTER 8. CONCLUSION

requirements with ASMs would be another challenge.

Appendix A

List of terms used in the GUI ASM

model

This appendix presents the terms defined in the GUI ASM model.

A. l Actors in the GUI ASM model

The actors:

- CASM-User

- CASM-GUI

- CASM-Engine

- File Storage

A.2 Components of CASM-GUI

The internal components of CASM-GUI:

- control panel

- output view

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL

- message view

- program view

- run view

- vocab view

- state view

- updateset view

- history manager

A.3 Signal pools in the components

The following table shows the signal pool in each component.

outputvSignalPoo1 I outputv I output view I

Signal Pool
controlpanelSignalPool

runvSignalPoo1 I runv I run view I

Signal Pool Name
controlpanel

messagevSignalPool
proaramvSianalPoo1

componenq
control pane-

programv

updatesetvSignalPo01 I updatesetv. I updateset view I

vocabvSignalPool
statevSianalPoo1

historymanagerSignalPoo1 I historymanager I history manager I

vocab view
vOcabv statev +-I state view

Table A.l: Signal pools in coimponents

A.4 Activities in CASM-GUI

The activities in CASM-GUI are classified into two groups, synchronous activity and

asynchronous activity.

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL

The synchronous activities:

- LoadFileActivity

- CheckSpecAct ivity

- InitActivity

- ForwardRun Activity

- RollbackActivity

- StopActivity

- Interrupt Activity

The asynchronous activities:

- ViewProgramCodeActivity

- ViewLastOutputActivity

- ViewOutputInHistoryActivity

- ViewLastMsgActivity

- ViewMsgInHistoryActivity

- ViewLastUpdatesetActivity

- ViewLast StateActivity

- ViewUpdatesetInHistoryActivity

- ViewStateInHistoryActivity

- StartupActivity

- QuitActivity

- AddWatchActivity

- DeleteWatchActivity

Each activity has three modes. Each mode is defined as the following.

- undef : The activity does not exist in the machine.

- guiAInProcess : The activity is in process

- guiACompleted : The activity is completetd, but still exists in the machine.

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL 102

A.5 Signals in CASM-GUI

Signals are used to activate certain activities.

The types of these signals are,

- USERACTIVITYREQUEST

- PROGRAMV-COMMAND

- M ESSAGEV-COM MAN D

- OUTPUTV-COMMAND

- RUNV-COMMAND

- STATEV-COMMAND

- UPDATESETV-COMMAND

- HISTORYV-COMMAND

- VOCABV-COMMAND

A.5.1 USERACTIVITYREQUEST

These signals are the signals that activate the activities of CASM-GUI. They are sent

by CASM-User.

The signals are,

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL 103

- userViewProgramCode

- userViewLastOutput

- userViewOutputInHistory

- userViewLast Msg

- userViewMsgInHistory

- userViewLastUpdateset

- userViewLast St ate

- userViewUpdatesetInHistory

- userViewStateInHistory

- userAddWatch

- userDeleteWatch

- userQuit

A.5.2 PROGRAMV-COMMAND

These signals are the signals that activate the activities of program view. They are

received by program view.

The signals are,

- programvcDisplayFile: to display the CoreASM machine code in program

view;

- programvcClearDisplay: to clear the display in program view.

A.5.3 MESSAGEVXOMMAND

These signals are the signals that activate the activities of message view. They are

received by message view.

The signals are,

- messagevcDisp: to display the warning/error messages in message view;

- messagevcClearDisplay: to clear the display in message view.

APPENDIX A. LIST OF TERMS USED IN THE GW ASM MODEL

A.5.4 OUTPUTV-COMMAND

These signals are the signals that activate the activities of output view. They are

received by output view.

The signals are,

- outputvcDisp: to display the printout in output view;

- outputvcClearDisplay: to clear the display in output view.

A.5.5 RUNV-COMMAND

These signals are the signals that activate the activitjes of run view. They are received

by run view.

The signals are,

- runvcAddAStep: to add a new state icon in run view;

- runvcDelSteps: to delete icons in run view;

- runvcHighlightAStep: to highlight an icon in run view;

- runvcClearDisplay: to clear the display in run view.

A.5.6 STATEV-COMMAND

These signals are the signals that activate the activities of state view. They are

received by state view.

The signals are,

- statevcDisp: to display a state of the CoreASM machine in state view;

- statevcClearDisplay: to clear the display in state view.

A.5.7 UPDATESETV-COMMAND

These signals are the signals that activate the activjties of updateset view. They are

received by updateset view.

APPENDIX A. LIST OF TERMS USED IN THE GUI ASM MODEL

The signals are,

- updatesetvcDisp: to display an update set in updateset view;

- updatesetvcClearDisplay: to clear the display in updateset view.

A.5.8 HISTORYV-COMMAND

These signals are the signals that activate the activities of history manager. They are

received by history manager.

The signals are,

- historymanagercAddAStep: to add a history record into history manager;

- historymanagercDelSteps: to delete history records from history manager;

- historymanagercclear: to clear all history records in history manager.

A.5.9 VOCABVXOMMAND

These signals are the signals that activate the activities of vocab view. They are

received by vocab view.

The signals are,

- vocabvcDisp: to display the vocabulary of the CoreASM machine in vocab

view;

- vocabvcClearDisplay: to clear the display in vocab view.

Appendix B

Abstract model of CASM-GUI

This appendix presents the GUI ASM model at the fourth abstraction level.

B.1 Actors in the GUI ASM model

There are four actors in the GUI ASM model, CASM-User, CASM-GUI, CASM-Engine,

and File Storage.

CASM-GUI is specified as an ASM machine.

asm CASM-GUI

The other three actors are the environment for CASM-GUI.

I vocabulary :

domain CoreASM-Engine //The actor CASMEngine

domain CoreASM-User //The actor CASM-User

domain CoreASM-Filestorage //The actor FileStorage

APPENDIX B. ABSTRACT MODEL OF CASM-GUI

B.2 Components of CASM-GUI

CASM-GUI consists of nine components, output view, message view, program view,

run view, vocab view, state view, updateset view, history manager, and control panel.

Component: output view

The tasks of the output view:

- Display the printout from the CoreASM machine executing;

- Clear the display in the view.

rule Output View Program

choose aSignal from outputvSignalPoo1

remove aSignal from outputvSignalPoo1

case firstOf(aSigna1) of

outputvcDisp t

displayMsginOutput V(secondOf(aSigna1))

outputvcClearDisplay t

clearDisplayinOutput V

Component: message view

The tasks of the message view:

- Display any warninglerror messages produced during the execution of the

CoreASM machine;

- Clear the display in the view.

APPENDIX B. ABSTRACT MODEL OF CASM-GUI 108

rule MessageViewProgram

choose aSignal from messagevSignalPoo1

remove aSignal from messagevSignalPoo1

case firstOf(aSigna1) of

messagevcDisp -+

displayMsginMessage V(secondOf(aSigncr1))

messagevcClearDisplay -+

clearDisplayinMessage V

Component: program view

The tasks of the program view:

- Display the code of the CoreASM machin.e;

- Clear the display in the view.

rule ProgramViewProgram

choose aSignal from programvSignalPoo1

remove aSignal from programvSignalPoo1

case first Of(aSigna1) of

programvcDisplayFile -+

displayFileinProgram V(secondOf(aSigna1))

programvcClearDisplay -+

clearDisplayinProgram V

Component: run view

The tasks of the run view:

- Add a new state icon in the view;

- Delete icons in the view;

APPENDIX B. ABSTRACT MODEL OF CASM-G UI

- Highlight an icon in the view;

- Clear the display in the view.

rule RunViewProgram

choose aSigna1 from runvSignalPoo1

remove aSignal from runvSignalPoo1

case first Of(aSigna1) of

runvcAddAStep -+

addA Run ViewElementinRun V(secondOjf(aSigna1))

runvcDelSteps -+

delRun ViewElementsinRun V(secondOf(aSigna1))

runvcHighlightAStep -+

hightlightRun ViewElementinRun V(secondOf(aSignal))

runvc ClearDisplay -+

clearDisplayinRun V

Component: vocab view

The tasks of the vocab view:

- Display the vocabulary of the CoreASM machine;

- Clear the display in the view.

APPENDIX B. ABSTRACT MODEL OF CASM-G'UI 110

rule VocabViewProgram

choose aSignal from vocabvSignalPoo1

remove aSignal from vocabvSignalPoo1

case firstOf(aSigna1) of

vocabvcDisp +

diaplay Vocabin Vocab V(secondOf(aSigna1))

vocabvcClearDisplay +

clearDisplayin Vocab V

Component: state view

The tasks of the state view:

- Display a state of the CoreASM machine;

- Clear the display in the view.

rule StateViewProgram

choose aSignal from statevSignalPoo1

remove aSignal from statevSignalPoo1

case firstOf(aSigna1) of

statevcDisp +

displayStateinState V(secondOf(nSigna1))

statevcClearDisplay +

clearDisplayinState V

Component: updateset view

The tasks of the update set view:

- Display an update set produced during the execution of the CoreASM

machine;

APPENDIX B. ABSTRACT MODEL OF CASM-GUI

- Clear the display in the view.

rule UpdatesetViewProgram

choose aSignal from updatesetvSignalPoo1

remove aSignal from updatesetvSignalPoo1

case firstOf(aSigna1) of

updatesetvcDisp -+

displaysetin Updateset V(secondOf(aSigna1))

updatesetvcClearDisplay -+

clearDisplayin Updateset V

Component: history manager

The tasks of the history manager:

- Add a history record into the history manager;

- Delete history records from the history manager;

- Clear all history records in the history manager.

rule HistoryManagerProgram

choose aSignal from historymanagerSignalPo01

remove aSignal from historymanagerSignalPo01

case firstOfl aSignal) of

historymanagercAddAStep -+

addARuninHistoryManager(secondOf(aSignal))

historymanagercDelSteps -+

delRunsinHistoryManager(secondOf(aSi,gnal))

historymanagercClear -+

clearinHistoryManager

APPENDIX B. ABSTRACT MODEL OF CASM-GUI

Component: control panel

The tasks of the control panel:

- Activate an activity;

rule Control Panel Program

case nextUserActivityRequest() of

userstartup +

if guiSAMode-StarupA = undef then StartupActivity

/ / i f a synchronous activity is i n process, no other synchronous

//activity can run except interruptions.

userLoadFile +

if not isSynchronousActivityRunning() then LoadFileActivity

userCheckSpec +

if not isSynchronousActivityRunning() then CheckSpecActivity

userInit +

if not isSynchronousActivityRunning() then InitActivity

userForwardRun +

if not isSynchronousActivityRunning() then FomuardRunActivity

userRollback +

if not isSynchronousActivityRunning() then RollbackActivity

userstop -+

if not isSynchronousActivityRunning() then StopActivity

userIntempt +

if guiSAMode-IntemptA = undef then InterruptActivity

APPENDIX B. ABSTRACT MODEL OF CASM-GUI 113

userViewProgramCode +

if guiSAMode- ViewProgramCodeA = undef then

ViewProgramCodeActivity

userViewLastOutput +

if guiSAMode-ViewLastOutputA = undef then

ViewLastOutputActivity

u~erViewOutputInHistory +

if guiSAMode- ViewOutputInHistoryA == undef then

View OutputInHistoryActivity

userViewLastMsg +

if guiSAMode-ViewLastMsgA = undef then ViewLastMsgActivity

userViewMsgInHistory +

if guiSAMode-ViewMsgInHistoryA = undef then

ViewMsgInHistoryActivity

userViewLast Updateset +

if guiSAMode- ViewLast UpdatesetA = undef then

ViewLast UpdatesetActivity

userViewLastState +

if guiSAMode-ViewLastStateA = unde*f then

ViewLastStateActivity

user View UpdatesetInHistory +

if guiSAMode- View UpdatesetInHistoryA = undef then

View UpdatesetInHistoryActivity

userViewStateInHistory +

if guiSAMode-ViewStateInHistoryA = undef then

ViewStateInHistoryActivity

userAdd Watch +

if guiSAMode-Add WatchA = undef then Add WatchActivity

userDelete Watch +

if guiSAMode-Delete WatchA = undef then Delete WatchActivity

userQuit +

if guiSAMode-QuitA = undef then QuitActivity

APPENDIX B. ABSTRACT MODEL OF CASM-GUI 114

B.3 Main rule of CASM-GUI

The machine of the CASM-GUI model is specified as parallel executions of compo-

nents.

main rule CoreASMGUIProgram =

/ /GUI component programs

Voca b Vie wProgram

Output ViewProgram

Message ViewProgram

Program View Program

Run ViewProgram

State ViewProgram

Updateset ViewProgram

HistoryManagerPmgmm

APPENDIX B. ABSTRACT MODEL OF CASM-GUI 115

B.4 Signals in CASM-GUI

These signals are the activity requests from CASM-User to activate the activities of

CASM-GUI.

vocabulary :

enum domain USERACTIVITYREQUEST = {userstartup,

userLoadFile, usercheckspec, userlnit ,

userForwardRun, userRollback, userstop,

userInterrupt,

userViewProgramCode,

userViewLastOutput, user ViewOutputInHistory,

userViewLastMsg, user ViewMsgInHistory,

userViewLastUpdateset, userViewUpdatesetInHistory,

userViewLastState, userViewStateInHistory,

userAddWatch, userDeleteWatcr5, userQuit)

APPENDIX B. ABSTRACT MODEL OF CASM-GUI 116

The following s ignals are the signals that are tra:nsferred be tween i n t e rna l compo-

nen t s of CASM-GUI.

vocabulary :

enum domain PROGRAMV-COMMAND = {

programvcDisplayFile, progranzvcClearDisplay)

enum domain VOCABV-COMMAND = {

vocabvcDisp, vocabvcCl ear Display)

enum domain MESSAGEV-COMMAND = {

messagevcDisp, messagevcClearDisplay)

enum domain OUTPUTV-COMMAND = {

outputvcDisp, outputvcCl ear Displ ay)

enum domain STATEV-COMMAND = {

statevcDisp, statevcClearDisplay)

enum domain UPDATESETV-COMMAND = .[

updatesetvcDisp, updatesetvcClearDisplay)

enum domain RUNV-COMMAND = {

runvcAddAStep, runvcDelSteps, runvcHighlightAStep,

runvcClear Display)

enum domain HISTORYMANAGER-COMMAND = {

historymanagercAddAStep, historymanagercDelSteps,

historymanagercC1 ear)

APPENDIX B. ABSTRACT MODEL OF CASM-GUI 117

The sending process for signals is specified as a, rule, signalingTo(aSignalPoo1 :

SignalPoolName, aSignal : G UIS'ignal).

rule signalingTo(aSignalPoo1 : SignalPoolName, aSignal : GUI-Signal) =

case aSignalPoo1 of

programv -+

add aSigna1 to programvSignalPoo1

messagev -+

add aSignal to messagevSignalPoo1

outputv 4

add aSignal to outputvSignalPool

statev -+

add aSignal to statevSignalPoo1

updatesetv -+

add aSignal to updatesetvSignalPoo1

runv -+

add aSignal to runvSignalPoo1

historymanager -+

add aSignal to historymanagerSignalPoo1

vocabv -4

add aSignal to vocabvSignalPoo1

controlpanel -+

add aSignal to controlpanelSignalPool

APPENDIX B. ABSTRACT MODEL O F CASM-GUI 118

B.5 Interfaces in the GUI ASM model

There are three interfaces specified in the GUI ASM model. They are the GUI tt

User interface, the GUI tt FileStorage interface, and the GUI tt Engine interface.

B.5.1 The GUI t, User interface

The GUI tt User interface specified in the GUI ASM model consists of the cornrnands

to activate the activities and the operations of CASIU-User on CASM-GUI.

rule getFileURIToLoad (aUser : CoreASM-User ,
aFileStorage : CorePcSM-Filestorage)

rule getNumForwardStepsRequested (aUser : CoreASM-User)

rule getS ta te IdBackTo (aUser : CoreASM-User)

rule ge tS ta t e IdV iewInHis to ry (aUser : CoreASM-User)

rule getUpdateSetIdViewInHistory (aUser : CoreASM-User)

rule createAWatch (aUser : CoreASM-User , (avocab : GUI-VOCAB)

rule selectAWatchToDe1 (aUser : CoreASM-User)

B.5.2 The GUI ++ FileStorage interface

The GUI tt FileStorage interface specified in the GUI ASM model provides an I/O

channel to read a file stored on File Storage.

rule 1 oadFil e (aFileStorage CoreASM-Filestorage , a Uri : FileURI) I

APPENDIX B. ABSTRACT MODEL OF CASM-(GUI

B.5.3 The GUI - Engine interface

The GUI tt Engine interface consists of a control :interface and an access inter

The control interface of GUI tt Engine interface:

rule checkspecification (aEngine : CoreASM-Engine , aFile : File)

rule initspeci f ication (aEngine : CoreASM-Engine)

rule step (aEngine : CoreASM-Engine , an1 : Integer)

rule rollback (aEngine : CoreASM-Engine , a d d : StateID)

rule createEngine

rule killEngine (aEngine : CoreASM-Engine)

controlled interrupt : CoreASM-Engine + Boolean

monitored getEngineMode : CoreASM-Engine + ENGINE-MODE

The access interface of GUI tt Engine interface:

monitored getG UI- VOCA B : CoreASM-Engine + GUI-VOCAB

monitored getoutput : CoreASM-Engine + GUI-Outputs

monitored getCurrentGUI-State : CoreASM-Engine + GUI-States

monitored getLast UpdateSet : CoreASM-Engine + GUI-Updatesets

monitored getPreuiousGUI-State : CoreASM-Engine

* GUI-Watch * StateID

-+ GUI-States

monitored getPreuious UpdateSet : CoreASM-Ehgine

* GUI-Watch * UpdateSetID

+ GUI-Updatesets

monitored getspec : CoreASM-Engine + File

APPENDIX B. ABSTRACT MODEL OF CASM-GUI

B.6 Activities of CASM-GUI

The activities in CASM-GUI are specified as ASM rules. And they are classified into

two groups, synchronous activity and asynchronous activity.

B.6.1 Activities

The followings are the activities specified at the second abstraction level of the GUI

ASM model. The details about the signals transferring among the internal compo-

nents and the usage of the interfaces in each sub-activity are specified formally at the

third and the fourth abstraction levels. The full version of the four abstraction levels

of the GUI ASM model will be provided as required.

StartupActivity

rule StartupActivity

createGUISA seq createLinkEngineSA

LoadFileActivity

rule LoadFileActivity

getFile URIToLoadSA seq 1oadFileSA 1
CheckSpecActivity

rule CheckSpecActivity

checkSpecSA(currentEngine, guiAFile) seq getCSFeedbackSA

APPENDIX B. ABSTRACT MODEL OF CASM-GUI

Init Activity

rule InitActivity

initSpecSA (currentEngine, guiA File)

seq getISFeedbackSA

ForwardRunActivity

rule ForwardRunActivity

getNumForwardStepsRequestedSA seq forwardRunSA seq getFRFeedbackSA

RollbackActivity

rule RollbackActivity

getStateIdBackToSA seq mllbackSA

StopActivity

rule StopActivity

Interrupt Activity

rule Interrupt Activity

intempt(currentEngine) := tme

APPENDIX B. ABSTRACT MODEL OF CASM-GUI

ViewProgramCodeActivity

rule ViewProgramCodeActivity

ViewLast Output Activity

rule ViewLastOutputActivity

ViewOutputInHistoryActivity

rule ViewOutputInHistory Activity 7
ViewLast MsgActivity

rule ViewLastMsgActivity Y

APPENDIX B. ABSTRACT MODEL OF CASM-GUI

ViewMsgInHistoryActivity

I
rule ViewMsgInHistoryActivity

ViewLastUpdatesetActivity

rule ViewLastUpdatesetActivity

ViewLastStateActivity
- -

rule ViewLastStateActivi ty

ViewUpdatesetInHistoryActivity

rule ViewUpdatesetInHistoryActivity

get UpdateSetId ViewInHistorySA

seq
view UpdatesetInHistorySA(gui UpdateSetId To ViewInHistory)

APPENDIX B. ABSTRACT MODEL OF CASM-GUI

ViewStateInHistoryActivity

rule ViewStateInHistoryActivity

AddWatchActivity

rule AddWatchAct iv i ty

createA Watch(current User, guivocab)

DeleteWatchActivity

rule Delete WatchAc t i v i t y

selectA WatchToDel(current User)

Quit Activity

rule Qui tAct iv i ty

IcillEngineSA(currentEngine) seq killGUISA

APPENDIX B. ABSTRACT MODEL OF CASM-GUI 125

B.6.2 The function isSynchronousActivityRunning()

The function is defined t o check if a synchronous activity is currently processing in

CASM-GUI.

isSynchronousActivityRunning()

if (guiSAMode-StarupA = undef)

and (guiSAMode-LoadFileA = undef)

and (guiSAMode- CheckSpecA = undt?f)

and (guiSAModeJnitA = undef)

and (guiSAMode-ForwardRunA = undef)

and (guiSAMode-RollbackA =: undef)

and (guiSAMode-StopA = undef)

and (guiSAMode-IntemptA = undej) then

isSynchronousActivityRunning := true

Appendix C

ATM executab e model

This appendix presents the ATM executable model.

asm ATMmanager

vocabulary :

enum domain Mode = (id1 e, processzng)

APPENDIX C. ATM EXECUTABLE MODEL 127

-

definitions :

main rule CoreASMGUIProgram -
if Idle and ActivationEvent then

data := getCardData

code := getpincode

amount := getAmount

mode := processing

if Processing and IsAuthenticated(data, code) then

if Is Valid Transaction(data, amount) then

ReleaseCash(amount)

UpdateAccountBalance(data, amount)

else

Output CancellationNotification

mode := idle

if Processing and (not (IsAuthenticated(data, code)) or CancellationEvent)

then

Output CancellationNotification

mode := idle

where

rule Idle

mode = idle

rule Processing

mode = processing

rule ActivationEvent

isActivated = true

rule CancellationEvent

isCancelled = true

rule IsAuthenticated(data, code)

isAuthenticated(data, code) = true

APPENDIX C. ATM EXECUTABLE MODEL 128

where

rule IsValidTransaction(data, amount)

is Valid Transaction(data, amount) = true

rule Re1 easeCash(amount)

print " R e l e a ~ h c a s h . ~ ~

rule UpdateAccountBalance(data, amount)

print "Updateaccount balance."

rule OutputCancellationNoti f ication

print L'Theoperationiscancelled.N

staticisAuthenticated(data, code) := true

staticisValidTransaction(data, amount) := true

getCardData := "2345673242"

getpincode := "3452011

getAmount := 400.00

data : String

code : String

amount : Double

mode : Mode

isActivated : Boolean

isCancelled : Boolean

Bibliography

[I] Spec# Home, http://research.microsoft.com/specsharp/.

[2] extensible Abstract State Machines, http://www.xasm.org/.

[3] G. Booch. Object-Oriented Analysis and Design. Redwood City, CA: Ben-
j amin/Cummings, 1994.

[4] E. Borger, N. G. Fruja, V. Gervasi, and R. F. Stark. A high-level modular
definition of the semantics of C#. Theoretical Computer Science, 2004.

[5] E. Borger, U. Glasser, and W. Miiller. Formal Definition of an Abstract VHDL193
Simulator by EA-Machines. In C. Delgado Kloos and P. T. Breuer, editors,
Formal Semantics for VHDL, pages 107--139. Kluwer Academic Publishers, 1995.

[6] E. Borger, E. Riccobene, and J. Schmid. Capturing requirements by abstract
state machines: The light control case study. Journal of Universal Computer
Science, 6(7) :597-620, 2000.

[7] E. Borger and D. Rosenzweig. A mathematical definition of full Prolog. In
Science of Computer Programming, volume 24, pages 249-286. North-Holland,
1994.

[8] Egon Borger. The ASM ground model method as a foundation for requirements
engineering. In Verification: Theory and Practice, pages 145-160, 2003.

[9] Egon Borger and Robert Stark. Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

[lo] J. Pac Coutaz. An object oriented model for dlialog design. In H. J. Bullinger
and B. Shackel, editors, Human-Computer Interaction - INTERACT'87, pages
431-6. Elsevier Science Publishers, North-Holland, Amsterdam, 1987.

[Ill Paul Curzon and Ann Blandford. From a formal user model to design rules.
In DSV-IS '02: Proceedings of the 9th Internutional Workshop on Interactive

BIBLIOGRAPHY 130

Systems. Design, Specification, and Verification, pages 1-15, London, UK, 2002.
Springer-Verlag.

[12] Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell Beale. Human - Com-
puter Interaction. Pearson-Prentice Hall, third edition, 2004.

[13] Jacob Eisenstein and Charles Rich. Agents and GUIs from task models. In
IUI '02: Proceedings of the 7th International Conference on Intelligent User
Interfaces, pages 47-54, New York, NY, USA, 2:002. ACM Press.

[14] Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glasser. Coreasm: An extensible
ASM execution engine. In Proc. of the 12th Intl Workshop on Abstract State
Machines, 2005.

[15] Uwe Glasser, Y. Gurevich, and M. Veanes. An abstract communication model.
Technical Report MSR-TR-2002-55, Microsoft Research, Microsoft Corporation,
May 2002.

[16] Uwe Glasser, Y. Gurevich, and M. Veanes. High-level executable specification of
the universal plug and play architecture. In Proc. of 35th Hawaii International
Conference on System Sciences, Software Technology Track, Domain-Specific
Languages for Software Engineering, IEEE, 2002.

[17] Y. Gurevich. Logic and the Challenge of Computer Science. In E. Borger, editor,
Current Trends in Theoretical Computer Science, pages 1-57. Computer Science
Press, 1988.

[18] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Borger, editor, Specifi-
cation and Validation Methods, pages 9-.36. Oxford University Press, 1995.

[I91 ITU-T Recommendation 2.100 Annex F (11/00). SDL Formal Semantics Defi-
nition. International Telecommunication Union, 2001.

[20] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented
Software Engineering: a Use Case Driven Approach. Addison-Wesley, 1992.

[21] Bernard J . Jansen. The Graphical User Interface: An Introduction, pages 22-26.
SIGCHI Bulletin, 1998.

[22] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Automated test oracles
for GUIs. In Proc. of the Eighth International Symposium on Fou,ndations of
Software Engineering, pages 30-39, 2000.

BIBLIOGRAPHY 131

[23] Brad A. Myers. Why are Human-Computer Interfaces Difficult to Design and
Implement? Technical report, Pittsburgh, PA, 'USA, 1993.

[24] William M. Newman and Michael G. Lamming. Interactive System Design.
Addison-Wesley Publishing Company, 1995.

[25] Fabio Paterno. Towards a UML for interactive systems. In G. Goos, J . Hartma-
nis, and J . van Leeuwen, editors, Engineering for Human-Computer .Interaction,
Lecture Notes in Computer Science. Springer, 2001.

[26] Dave Roberts, Dick Berry, Scott Isensee, and John Mullaly. Designing for the
User with 0 VID: Bridging User Interface Design and Software Engineering. Soft-
ware Engineering Series. Macmillan Technical Publishing, 1998.

[27] Meurig Sage and Chris Johnson. Pragmatic formal design: A case study in inte-
grating formal methods into the HCI development cycle. In Design, Specification
and Verification of Interactive Systems'98, pages 134-155, Abingdon, UK, 1998.
Springer Verlag.

[28] R. Stark, J . Schmid, and E. Borger. Java and the Java Virtual Machine: Defi-
nition, Verification, Validation. Springer-Verlag., 2001.

[29] Adriana-Mihaela Tarta. Task modeling in systems design. Studia Univ. Babes-
Bolyal, Inforasmtica, XLIX(2), 2004.

1301 H. Tonino and J. Visser. Stepwise Refinement of an Abstract State Machine for
WHNF-Reduction of A-Terms. Technical Report 96-154, Faculty of Technical
Mathematics and Informatics, Delft university of Technology, 1996.

1311 Roger Took. Putting design into practice: Formal specification and the user in-
terface. In Michael Harrison and Harold Thimbleby, editors, Formal Methods in
Human-Computer Interaction, Cambridge Series on Human-Computer Interac-
tion, pages 63-96. Cambridge University Press, 1990.

1321 Hallvard Trztteberg. Using user interface models in design. In CADUI'2002:
Proceedings of 4th International Conference on Computer-Aided Design of User
Interfaces, 2002.

