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ABSTRACT 

Objective surgical performance evaluation is a non-linear and ambiguous problem and 

hard to model with classic mathematical methods. This thesis explores employing fuzzy 

set theory as a novel approach to this problem, since the main strength of fuzzy logic is 

its ability to handle the vagueness and non-linearity of the everyday experiences. 

Using a commercial surgical simulator, data were collected from subjects who 

participated in user study of two surgical procedures. Half of these data were used to 

design four fuzzy models for surgical skills classification. The remaining data were used 

to test the constructed models and to investigate the effects of various fuzzy inference 

properties on their performances. 

Our results indicate satisfactory correlation between the surgical skill levels predicted by 

the fuzzy models and the actual skill levels of the user. Thus, fuzzy classifiers can be 

considered as effective tools to handle the fuzziness of objective performance evaluation. 

Keywords: 

Surgical performance evaluation, Objective performance assessment, Minimally invasive 

surgical simulators, Surgical skill level, Fuzzy classifiers. 
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1 INTRODUCTION 

1 .  Minimally Invasive Surgery 

Contrary to the traditional surgical approaches which have used incisions designed to 

provide maximum exposure of the operative site, Minimally Invasive Surgery (MIS) uses 

small incisions through which cameras and instruments are passed to accomplish the 

operation from within a body cavity. 

MIS was introduced to the world of medicine first by demonstrating a cystoscopy in the 

early 1800's in France, and was then occasionally used for procedures such as 

gastroscopy, endoscopic investigation of the abdominal cavity, appendectomy, etc. until 

the late 1900's (Wayand, 2004). The MIS technology was developed during these years, 

but it was in 1989 that the video demonstration of a laparoscopic cholecystectomy 

(surgical removal of the gallbladder) marked the starting signal for MIS throughout 

Europe. In the course of the following two years, practically all European countries, and 

then other parts of the world started to operate liaparoscopically (Wayand, 2004). 

The MIS techniques of surgical access and exposure have a great advantage over 

traditional incisions by significantly reducing trauma to the body, which results in better 

cosmetic outcome, reduction of post-operative: pain, earlier patient recovery time, and 

therefore faster patient discharge from the hospital (NYU medical, 2005). 

With the introduction of minimally invasive surgery however, surgeons must learn 

radically new and complex skills and procedures. Traditional methods of training that 

were adequate for conventional surgery may not be as effective in demonstrating and 

teaching these substantially new skills. A new standardized structured program for 

minimally invasive surgery training has been of interest to many researchers over the past 

decade. Recent efforts to develop such progriams have generally involved the use of 

training boxes or computer-based virtual reality simulations (Rosen, Hannaford, 

Richards, & Sinanan, 2001; Chen, Yeasin, & Sharma, 2003; Stylopoulos et al.., 2004). 



1.2 Training 

Studies have shown that minimally invasive procedures such as l~aparoscopic 

cholecystectomy may have a higher rate of operative complications than the traditional 

open surgery. For instance, Regan, Yuan, and AdcAfee in 1999 investigated the feasibility 

and safety of minimally invasive spine surgeiy compared with that of open ,orocedures. 

Their study concluded that the complications were higher for the minimally invasive 

approach (4.9%) compared to the traditional aj7proach (4.2%). (Regan, Yuan, & McAfee, 

1999). Another s tu4  has shown that the odds ratio for intra-operative injury in 

laparoscopic cholecystectomy compared with open cholecystectomy wa~s 1.79, in 

Western Australia in the period 1988 to 1994 (Fletcher et al., 1999). 

The higher rate of complications in MIS could be due to the following lirnitations of 

these procedures: First, a laparoscopic surgeon has only a two-dimensional view, with a 

restricted field of vision. Second, physical fe:edback is limited, and thus visual cues 

become more critical in identifying anatomy. A,dditionally, the increasing relilance of the 

surgeon on technology adds an intangible layer of separation between the doctor and 

patient. 

Although these limitations are real, research shows that laparoscopic procedures are 

associated with a learning curve, which once: mastered, are effective and safe when 

compared with traditional techniques of surgery (Regan, Yuan, & McAfee, 19'99). 

Surgical skills are principally obtained under the long-established apprenticeship model 

in animal and human subjects. Residents learn by observation followed by participation, 

taking more active roles in the operation as their experience increases (Moorthy, Munz, 

Sarker, & Darzi, 2003). 

However, methods of training that were suitable for the traditional surgical sicheme may 

not be as efficient in training significantly new MIS procedures. Performing MIS 

involves a multi-dimensional series of tasks requiring a combination of visual 

information and the kinematics and dynamics of the surgical tools (Rosen et al., 2001). 



Obtaining these skills under the traditional apprenticeship model requires extensive 

number of hours of training in the operating rooms. This is in face of the increasing 

limitations on the time and resources needed to train surgeons, which have reduced the 

opportunity to acquire surgical skills in the operating theatre (Moorthy et al., 2003). This 

has led to a further emphasis on finding innovative ways to teach or enhance the MIS 

skills outside the operating room (Tendick et al., 2000). 

Virtual reality training has been a long-term go(a1 of numerous investigators aind has been 

proposed as a method to both instruct surgical students and objectively evaluate their 

skills in performing surgical operations. (Rosen et al., 2001; Chen et al., 2003; 

Stylopoulos et al., 2004). Researchers from different backgrounds such as engineers, 

scientists, computer programmers, anatomists, and experienced surgeons are making 

effort to improve these systems by creating more realistic surgical scenarios and practice 

sessions that help residents master their skills during their course of training. 

Computer simulators are used for training in other industries such as military, nuclear, 

maritime, transportation and most prolifically, aviation. Flight simulators have been of 

interest since the early 1900s and have been used to familiarize flight crews in normal 

and emergency operating procedures. In such training programs the trainee does not 

advance to operating the real system (aircraft, tank, automobile, ship, etc.) until a set of 

pre-defined criteria as determined by testing "experts" with their performance level as the 

gold standard, has been met on the simulator (Simulators for Training, 2003). Similar 

approach could be taken in the surgical field; the resident does not operate upon a patient 

until the satisfactory performance level has been achieved on the simulator. 

Using simulators as training tools has several advantages for both the trainees and the 

educational system. A less stressful training environment, lower training costs, and a 

lower risk to the trainees are to name a few. For example in the aviation industry, because 

powered flight is hazardous to attempt untrained, flight simulators are used to enable new 

pilots to get the feel of the controls without actually being airborne. In addition, pilots are 

able to train for situations that they would be unable to do safely in an actual aircraft, 

such as complete power loss, engine fires, electrical faults, storms, slippery runways, 



navigational system failures and countless other problems which the crew need to be 

familiar with and act upon (Wikipedia, Modern simulators, T[ 4). 

Translated into the surgical environment, computer simulators provide a less stressful 

learning environment for the surgical students by eliminating the risks of operating on 

real patients. In addition, they allow the trainees to deal with emergency operating 

procedures as well as rare but critical surgical scenarios that the students may not 

necessarily face in the operating theatre during their course of training. To master their 

skills, the students also have the option of practicing their weaknesses on the simulators 

as many times as they want, without having to face the limitations of real surgical 

operations. Other advantages of using simulators as surgical training tools include a 

lower risk to the patient, a lower cost, and a standardized method of skills evaluation 

(Richards, Rosen, Hannaford, Pellegrini, & Siniman, 2000). 

1.2.1 Performance Evaluation 

In recent years, there has been a growing interest in competence assessment: in medical 

practice and especially so in surgery (Darzi, 2001). Until very recently, the only method 

of evaluating the level of competence in minimally invasive surgery has been based on 

examinations, log books, opinion of experienced surgeons observing the operation on the 

viewing monitors, and the overall outcome of the procedure (Cuschieri, 20101; Moody, 

Baber, Arvanitis, & Elliott, 2003). All these methods are largely subjective and lack 

validity and reliability. As mentioned by Moorthy, Munz, Sarker, and Darzi (Moorthy, 

Munz, Sarker, & Darzi, 2003), deficiencies in training and performance are difficult to 

correct without an objective feedback, making it essential to have a standardized 

objective method for assessment of surgical competency. He addresses a series of 

objective surgical assessment methods such as checklists, global rating scales, and 

dexterity analysis systems, which have been developed in recent years and are being used 

in various surgical training programs (Moorthy et al., 2005). 

Checklists are one of the commonly used methods of performance evaluation. The 

residents are required to perform a series of procedures while being observed by an 

expert. There is a different checklist for each procedure, specifying the steps that need to 



be taken during the operation. The supervisor verifies whether the student has performed 

or missed any particular step (The royal Australian, Surgical Skills Competence, T[ 1; A. 

Nagy, personal communication, December 4,2003). 

The Objective Structured Assessment of Technical Skills (OSATS) is an example of a 

global rating scales system which was developed in Toronto, Canada (MIartin et al., 

1997). The system consists of six stations for residents and trainees to perform 

procedures in a fixed time period on live animals or bench models. An expert observes 

and evaluates the students during the performance of tasks at each station by using 

checklists specific to the operation or task and a global rating scale (Moorthy et al., 

2005). 

It has been said that using checklists removes the subjectivity of the evaluation process 

by turning the examiners into observers, rather than interpreters of behavior (Regehr, 

MacRae, Reznick, & Szalay, 1998). However, using checklists and global rating scales 

could be time consuming, as it requires the presence of multiple expert observers at the 

examination scene or extensive video watching (Moorthy et al., 1997). 

One of the important aspects of technical skilll, especially in MIS, is the psychomotor 

skills or the dexterity required to perform the planned procedure (Darzi, Smith, & 

Taffinder, 1999; Darzi, 2001). This is more than being able to perform a procedure with 

quick and fluent movements that may look im~pressive to an observer. As Darzi (2001) 

points out, "it includes, for example, being able to suture tissue accurately and tie knots 

that are functional and prevent fluid leaking, but are not so tight as to cause tissue 

damage" (Darzi, 200 1). 

Dexterity analysis systems such as the Imperial College Surgical Assessment Device 

(ICSAD) or the Advanced Dundee Endoscolpic Psychomotor Trainer (ADEPT) are 

developed to objectively evaluate the dexterity of surgical residents and trainees 

(Moorthy et al., 1997). ICSAD is a commercially available electromagnetic tracking 

system (Isotrak 11, Polhemus, United States) and consists of an electromagnetic field 

generator and two sensors that are attached to the surgeon's hands at standardized 

positions. The positional data generated by the :sensors is converted to dexterity measures 



such as the number and speed of hand movements, the distance travelled by the hands 

and the time taken for the task. 

Many studies have established the validity of dexterity analysis systems for surgical 

performance evaluation (Datta, Mackay, Mandalia, & Darzi, 2001; Taffinder, Smith, 

Mair, Russell, & Darzi, 1999; Smith, Torkington, Brown, Taffinder, & Darzi, 2002). One 

drawback of this approach however, is that it is impossible to ensure standardization, 

since the students operate on real patients and all patients are different. In addition, other 

factors such as patients' safety can affect the plerformance of the trainees (Moorthy et al., 

1997). 

After the important role of computer-based simulators in MIS training was realized, 

attention was turned towards development of objective technical skill evaluation methods 

on the simulators. Computerized systems have enabled the recording of quantitative 

dexterity parameters including time to perfom the surgical tasks, economy of hand 

movements, smoothness of instrument motion and applied forces, which cannot be 

measured easily with conventional instrume~nts alone. New technologies have been 

developed in the past decade that address the issues of objective assessment: of surgical 

dexterity to some extent. 

1.3 Related Work 

Chen et al. (2003) specify three requirements for a system to accurately measure the 

technical competence of the surgical performance: (1) the system must have adequate 

sensing techniques to monitor the user's operation; (2) the system must extract 

appropriate features from the sensing data; and (3) the system needs a good 

computational model to generate a "score", representing the skill demonstrated in the 

operation based on the relevant sensing data (Chen et al., 2003). 

Computer based surgical simulators satisfy the first requirement by having the ability to 

monitor and record the performance of operating users. The other two requirements 

however, have been the main challenge in defining applicable methods of performance 

evaluation. Several researchers over the past decades have focused on identifying reliable 



metrics that are representative of users' dexterity in a procedure, and a system to translate 

those metrics into values that correlate with the: user's real level of expertise. 

Operative speed is known as an important factor in objective measurement of technical 

skill. Van-Rij et al. (1995) have used time to quantifl skill in junior surgeons (Van-Rij et 

al., 1995), and Hanna, Shimi, and Cuschieri (1'998) have utilized time as a mleans of skill 

evaluation in experienced surgeons (Hanna., Shimi, & Cuschieri, 1998:). However, 

evaluating competence simply by setting time targets for certain procedures is crude and 

unacceptable. As Darzi et al. (1997) point out, "a fast surgeon is not necessarily a good 

surgeon". (Darzi et al., 1997). 

Other studies have used electromagnetic, mechanical, and optical motion tracking 

systems to analyze the hand and tool movements during surgical operations. Software is 

used to convert the positional data generated b:y the sensors to dexterity measures (Darzi, 

200 1). 

The Imperial College Surgical Assessment Device (ICSAD), is an example of the 

electromagnetic motion tracking systems that has been used in several studies to 

determine a number of dexterity metrics such as the number and speed of hand 

movements, the distance traveled by the hands and the time taken for the task at hand. 

(Taffinder, Smith, Huber, & Russell, 1999; Datta et al., 2002). 

The Blue DRAGON (Brown, Rosen, Chang, Sinanan, & Hannaford, 2004) is another 

system for acquiring the kinematics and the dynamics of the endoscopic tools during an 

operation. It includes two four-bar mechanisms equipped with position and forceltorque 

(FIT) sensors for measuring the positions and orientations of two endoscopic tools along 

with the forces and torques applied by the surgeon's hands. In addition, the synchronized 

view of the surgical scene is incorporated into a graphical user interface displaying the 

data in real-time. For each surgical task different types of the tool-tipltissue interaction 

are decomposed into discrete tool manoeuvres (states), each with a unique FIT pattern 

using a fully connected, finite-states Markov model. Their study showed that major 

differences between residents at different skill levels were: the types of tooVtissue 

interactions being used, the transitions between toolltissue interactions being applied by 



each hand, time spent while performing each toolltissue interaction, the overall 

completion time, and the variable FIT magnitudes being applied by the subjlects through 

the endoscopic tools. 

Chen et al. (2003) also used Hidden Markov Models (HMMs) to model and evaluate 

hand movements in a typical surgical exercise such as surgical knot-tying (Chen et al., 

2003)'. They used a video-based technique for tracking the hand movements during a 

surgical knot-tying task. Their method for surgical skill assessment is based on the log 

probability of an observation sequence for a specific skill model. The probability 

measures the stochastic similarity between the performance of the observation sequence 

and the performance represented by the model - the higher the probability, the closer is 

the observation sequence to the model. Although they only consider the hand movements 

in their analysis of performance evaluation, they suggest that the same HMM-based 

approach could be taken to model other components of human skills, such a s  the forces 

applied by hands, the orientation of the hands, and the hand-eye coordination. 

Payandeh, Lomax, Dill, MacKenzie, and Cao in their studies in 2002 video ta,ped a series 

of surgical tasks performed in an animal lab and conducted time-line studies of tool 

movements during the operations. By evaluating the video taped training sessions they 

showed that surgical tasks could be decomposed into a series of subtasks. They identified 

and analyzed five basic motions that the surgeon/tool performed during various 

procedures: reach and orient, grasp and holcWcut, push, pull, and release. The study 

concluded that the length of time taken to complete these subtasks could be a measure of 

performance differences between novices and experts (Payandeh, Lomax, Dill, 

MacKenzie, & Cao, 2002). 

A different approach was taken by Cotin et al. (2002) (Cotin et al., 2002). Their system, 

the Computer-Enhanced Laparoscopic Training System or CELTS (Stylopoulos et al., 

' Hidden Markov Models are capable of characterizing two embedded stochastic proce:jses with one 
underlying process that is not observable, but can only be observed through another process that produces 
observation sequences. In the case of surgical knot tying for example, the skill of tying surgical knots is the 
hidden stochastic process, and the other process is a video sequence of continuous hand movtements during 
the operation of tying a surgical knot. 



2004), uses a five degree of freedom device: capable of tracking the motion of two 

laparoscopic instruments. Using the kinematics analysis method, software converts the 

raw data into the following parameters: the spatial distribution of the tip of the 

instrument, smoothness of motion, depth perception, response orientation, and 

ambidexterity. Also included in the measurements is the time to perform the task and 

outcome of the task as two other aspects of success of a procedure. At the end of each 

procedure, the software calculates a standardized z-score for each of the performance 

parameters by computing their distances from the results set by a group of experts. A 

final score is then determined for each instrument by calculating a weighted average of 

all the z-scores, providing instant feedback for the user. 

Commercial systems such as The Minimally lnvasive Surgical Trainer-Virtual Reality, 

MIST-VR (Mentice, Gothenburg, Sweden) have also developed methods of surgical 

skills assessment. At the end of each procedure, the MIST-VR provides a "score" for the 

user by calculating a weighted average of the user's performance metrics. Several studies 

to date have confirmed that the MIST-VR has validity as an assessment tool ('Torkington, 

Smith, Rees, & Darzi, 2001; Jordan, Gallagher, McGuigan, & McClure, 2001). 

Recently, a non-traditional mathematical approach was proposed, using fuzzy logic to 

evaluate surgical performance as judged by expert surgeons (Hajshirmohammadi & 

Payandeh, 2005; Huang, Payandeh, Doris, & Hajshirmohammadi, 2005). 

1.4 Motivation 

Despite the recent efforts to develop standarldized structured performance evaluation 

systems in minimally invasive surgery, none of these models has been widely accepted 

and officially integrated into a surgical training program or any other official training 

course. The main challenge in designing a standard method of evaluation is to design a 

scoring scheme that correlates with the subjective opinion of experienced surgeons, or in 

other words, to formulate the expert's judgment. Formulating a subjective opinion is not 

a simple task, as human beings consider an enormous number of factors in their 

decisions, and there are times that even themselves cannot specify reasons behind their 

decisions. 



During interviews with experienced lapar~oscopic surgeons (A. Nagy, personal 

communication, December 4, 2003), it was found to be impossible to get a structured 

answer to the question "What is called a satisfactory performance in MIS?". As they 

described, "surgery is a combination of art and science ... we cannot look at two 

procedures and call one of them superior to the other, as long as they both have 

satisfactory outcomes". 

Experts' opinions seem to be too ambiguous and fuzzy to be formulated with 

conventional mathematical techniques. That triggered the idea of using Fuzzy Set Theory 

for this purpose, as the main strength of fuzzy logic is its ability to deal with the 

vagueness and ambiguity in human's natural language (Cox, 1999; Fuzzy Logic, 1997). 

Over the past few decades, fuzzy logic has been introduced to successfully solve the 

problem of imprecision or fuzziness common in various fields of study such as sociology, 

physics, biology, finance, marketing, engineermg, psychology, health management, and 

computer programming. Fuzzy logic has also been effectively employed in computer 

simulated systems. Examples include development of a fuzzy logic performance control 

system to reduce variable error and overshoots in a reconfigurable general aviation 

simulator (Beringer, 2002). Ota, Loftin, Saito, Lea, and Keller (1995) also outline how 

the task of dissecting a blood vessel in a virtual environment can be evaluated by fuzzy 

logic (Ota, Saito, Lea, & Keller, 1995). 

This work explores the possibility of employing fuzzy set theory to evaluate the 

performance of the users of minimally invasive surgical simulators. We proposed a 

simple method to develop a fuzzy-based if-then rule system, or more specifically a fuzzy 

classifier based on performance data collected iin a virtual reality trainer. 

Research shows that surgical procedures can be divided into a number of tasks and 

subtasks, and overall surgical competence can be evaluated based on performzince in each 

task (Payandeh et al., 2002). Thus, in this project, the focus was to design fuzzy systems 

that can objectively evaluate a trainee's skill level on two important tasks in MIS: 

laparoscopic suturing and laparoscopic knot-tying. 



The long-term goal of this research is to create im automatic skill evaluation scheme to be 

incorporated in computer-assisted surgical training systems. With proper assessment and 

validation, such systems can provide both initial and ongoing assessment of operator skill 

throughout one's career, while enhancing patient safety through reduced risk of 

intraoperative error. Additionally, a computerized trainer can provide either terminal 

(post-task completion) or concurrent (real time) feedback during the training episodes, 

enhancing skills acquisition. 

1.5 Contribution 

This project explores the feasibility of fuzzy logic-based performance classifiers as a 

novel solution to the subjective nature of th~e traditional methods of surgical skills 

evaluation. The goal was to develop a method that is capable of objectively predicting a 

surgeon's level of expertise, based on hisher performance metrics during a procedure on 

a surgical simulator. To achieve this goal, a user study was conducted to collect 

performance data from 26 subjects in three different surgical skill levels: novice, 

intermediate, and expert. Each user performed two surgical tasks on a virtual reality 

surgical simulator, namely laparoscopic suturing and laparoscopic knot-tying. 

The collected data were divided into two halves: the training dataset which was used to 

train the fuzzy models, and testing dataset to test the constructed systems. Two different 

approaches were taken to separate the data into the testing and training datasets, as 

explained in section 4. 

A new algorithm was developed to design four fuzzy classifiers, two for each surgical 

task. Various fuzzy inference properties were tlhen applied to the constructed classifiers, 

and the optimal combination of fuzzy inference properties were determined for the 

models. The performances of the classifiers were then tested with the testing datasets, and 

the reliability of each model was determined by calculating the number of systems' 

correct answers and the amount of error in the systems' results. 

A simple statistical method was also used to analyse the user study data and its results 

were compared with the fuzzy models' outcomes. 



The results were promising. It was concludled that fuzzy classifiers may have the 

potential to effectively handle the complexity and fuzziness of objective surgical 

performance evaluation. 

1.6 Thesis Organization 

The organization of this thesis is as follows: 

Section 1 introduces the minimally invasive surgery and the current issues in surgical 

performance evaluation. Research works related to this topic are also discussed in this 

section. 

Section 2 describes the process of collecting users' performance data on a surgical 

simulator. Some analyses of the raw data collected in the user study are also discussed. 

Section 3 provides a brief background informat:ion about fuzzy logic and fuzzy set theory. 

The history and applications of fuzzy logic are discussed. Basic principles of fuzzy set 

theory and the design process of fuzzy inference systems are also explained. 

Section 4 is a step-by-step explanation of the design process of fuzzy classifiers for 

surgical performance evaluation. The primary analysis of performance of classifiers are 

also demonstrated. 

Effect of various fuzzy inference properties on performance of the classifiers are explored 

in section 5, and the optimal combination of' these properties for the designed fuzzy 

models are identified. The reliability of the classifiers are also verified. 

The results are summarized in section 6 , and compared with results of a simple statistical 

approach. 

Finally section 7 concludes this thesis. 



2 DATA COLLECTION 

2.1 Method 

We conducted a user study to test surgical performance of subjects of different MIS skill 

levels and collected their performance data to design and test a fuzzy classifier for each 

of the surgical tasks in the study. The Minimally Invasive Surgical Trainer-Virtual 

Reality (MIST-VR) (Mentice Corp., 2004) war; used to conduct the user study. Subjects 

were selected and categorized into three different skill levels based on their MIS 

experience, and were to complete two surgical tasks available in MIST-VR. 

This experiment, which was a follow up on our preliminary user study (Huang et al., 

2005), provided us with promising results and a probable new way of categorizing 

surgical performance in computer-based simulators (For a summary of our preliminary 

study, please refer to Appendix A: Preliminary User Study). 

2.2 User Study 

2.2.1 Experimental Set Up 

The user study was conducted in an isolated room in Surrey Memorial Hospital, BC, 

Canada. 

Our set up (Figure 1) included: 

A two-handed laparoscopic device with needle-driver handles (Virtual Laparoscopic 

Interface, by Immersion Inc.) 

A dual Intel Xeon 2.8Ghz computer 

A 19" eye-level LCD monitor 



Figure I: Experimental Set up 

The simulator that we used for the snldy was the MIST-VR, which is a fully validated 

(MIST User Manual, 2002), commercially available laparoscopic simulator. It has been 

shown that training on MIST-VR has 'lead to faster adaptation to the novel psychomotor 

restrictions encountered by laparoscopic surgeons ('Torkington et al. 2031; Jordan, 

Gallagher, McGuigan, & McClure, 2001). 

MIST-VR has tutorial, examination, analysis, and configuration modes. To prepare the 

surgery residents for the operating rooms, the system offers a series of tasks, from basic 

laparoscopic concepts such as target manipulation and placement, transferring objects 

between instruments, and diathermy, to more complicated surgical tasks such as 

laparoscopic suturing and knot-tying. The user's performance metrics are measured and 

recorded in a database for later reference and performance assessment. 

For this study, the plan was to employ complicated surgical tasks to increase the chances 

of finding a noticeable pattern in performance data of users in different levels of 

expertise. We selected the Stitch and the Half-Square Knot tasks defined i:n MIST for 



this experiment, as laparoscopic stitch and knot tying skills are considered to be of the 

most complex tasks in MIS (Tendick et al., 2000). 

Stitch Task 

Figure 2: The Stitch Task 

Left: Stitching in real operation (Adopted from: MIST Suturing Module, 2003, by 
permission), Right: MIST-VR. stitch task (Source: MIST Suturing Module, 2003, by 
permission) 

This task is a test of the user's ability to pierce the tissue with the needle and then pull the 

needle through the tissue to make a cornplete stitch (Figure 2 - Right). The ob,jective is to 

fulfil a complete stitch with maximal accuracy and minimal tension on the tissue. This 

skill involves accurate 3-D placement, penetrating force with minimal strain to the tissue 

and curved movement of the needle. 

Visual clues guide the user throughout the whole task. For example, a green band around 

one of the two grippers indicates which one to use at the moment, or target spheres on the 

tissue mark the correct location to penetrate or pull out the needle (Figure 3 - a). 



Figure 3: Snap shots of MIS stitching in real operation (Left column) and in MIST-'VR (Right 
column) for a right-handed. 
(a) Penetrating the needle into the tissue with the right tool. (b) Grabbing the needle 

with the left tool to exit the tissue. (c) Pulling out the needle to complete the stitch user 
(Adopted from: MIST Suturing Module, 2003, by permission) 

The task starts with the tool corresponding to the user's dominant hand being active2 (e.g. 

the right tool becomes active for a right-handed user to start the task). To make a 

complete stitch, the subject should use the active gripper to grab the needle, then move 

the needle towards the tissue and penetrate the tissue with the needle at the entry target 

MIST-VR gives us the option of specifying and setting up the scene for Ieft or right-handed Jsers. 

16 



sphere. The entry sphere will change color to green when the tissue is penetrated at the 

correct position (Figure 3 - a). 

The subject should then push the needle out through the tissue at the exit target sphere 

(which will change color to green when the nee:dle exits the tissue at the correct position), 

and use the other gripper to grab the needle at the tip (Figure 3 - b) and pull it through in 

a curved motion, following a path defined by thLe needle's radius (Figure 3 - c). 

In order to evaluate the user's dexterity, the system accounts for two categories of 

performance metrics; Dynamic Evaluation Measures and Errors. 

Dynamic Evaluation Measures for the Stitch task include: 

Time: Total time spent to complete each trial (i.e. each stitch). 

EntryIExit Hit-Target Distance: Distance between the point that the 

needle enters or exits the tissue and the target points marked by target 

spheres (as shown in Figure 3). 

Maximum EntryIExit Deformation: Maximal tissue deformation of 

entrylexit stitch from entrylexit hit point which is calculated through a 

model of the tissue's force-deflective (stiffness) behaviour. These values 

are associated with the amount (of penetrating force on the needle and its 

path of motion while penetratinglexiting the tissue (because of the arched 

shape of the needle, to minimize: the strain on the tissue, the needle has to 

be pulled through in a curved motion, following a path deiined by its 

radius). 

Errors mainly take account of number of inappropriate collisions between the tools or 

between tools and the tissue within the operating space. Table 1 demonstrates a complete 

list of performance metrics for the Stitch task. 



Table 1: Performance metrics for the Stitch task 

Metrics Descripti~on 

Time Total time spent to complete the task 
= m 
3 m Entry Hit-Target Distance (Hit Ent) - Distance between entry hit point and entry target point 
2 g 
w m Exit Hit-Target Distance (Hit Ex) 
.- 

Distance between exit hit point and exit target point O 2 -  
5 ' Max Entry Deformation (Def Ent) 
c 

Maximal iissue deformation of entry stitch from entry hit point 

&' Max Exit Deformation (Def Ex) Maximal iissue deformation of exit stitch from exit hit point. 

Tool-Tool Collision (To-To) When any segment of the left tool touches any segment of the 
right tool 

I - 

Hit Outside Entry Target (Out Ent) I When needle hits the surface outside the entry target area 

I Entry Overstretch (Over Ent) When the entry stitch is deforming the surface more than a 
given limit 

I Hit Outside Exit Target (Out Ex) I When needle hits the surface outside the exit target area 

I Exit Overstretch Error (Over Ex) When the exit stitch is deforming the surface more than a given I limit 

needle is pulled out again through the entry point 

needle is pulled out again through the exit point 

to acquire the needle with the tool, but the grips 
are closed 

Tip Removed (Top Rem) 
If an active tool entered the target object with open grips but 
was subsequently withdrawn without closing the grips (which is 
a failure to acquire the object) 

tool grabs the needle outside the target section 

tool grabs the needle 

The needle hits the tissue without the target area being defined 
Unexpected Stitch (Unex St) by a target sphere (i.e. a red sphere appears when the stitch is 

made) 

I Needle Dropped (Ne Dr) I The grips of the first tool open up after acquiring the needle 

Needle Pushed Out of Reach (Tar Out) The tool has pushed the needle out of reach 



Half-Square Knot Task 

Figure 4: 'The Half-Square Knot Task 

Left: knotting in real operation (Adopted from: MIST Suturing Module, 2003, by 
permission), Right: MIST HS Knot task (Adopted from: MIST Suturing Module, 2003, 
by permission) 

The purpose of the Half-Square Knot (HS Knot) task is to train the correct movements in 

the first half of a square knot. This includes the winding of the thread around one tool, 

and then to tightening the knot (Figure 4). 

Similar to the Stitch task, visual clues guide the user throughout the procedure. Examples 

of these clues include the green bands around the tool(s), marking the active gripper at 

the time, and target spheres spotting the part of the thread that needs to be gra.bbed in the 

next move (Figure 5 - a). The thread itself also changes color into red, if it is 

overstretched, and into green, when the knot is tightened enough at the end of the 

procedure. 

To start the rask, the user must acquire the needle with the active tool (which is the 

grasper corresponding to the user's dominant hand), and wind the thread around the other 

tool while holding the needle with the first grasper (Figure 5 - a). Once a con~plete 360" 

loop around the second tool is acquired, a target sphere appears at the free end of the 

thread (Figure 5 - a), which is a clue h r  the user to grab the end of the thread with the 

second tool (with thread loops intact as shown in Figure 5 - b) and move the left and right 

instruments in opposite directions to form a knot (Figure 5 - c). 



Figure 5: Snap shots of MIS Knotting in real operation (left column) and in MIST-VR (right 
column) for a right-handed user 
(a) Winding the Thread, (b) Forming the knot, (c) Tightening the knot (Adopted from: 
MIST Suturing Module, 2003, by permission) 

Similar to the Stitch task, performance metrics that MET-VR collects for the HS Knot 

task fall into two categories; Dynamic Evaluation Measures and Errors, which are 

summarized in Table 2. 



Performance metrics for the HS Knot task 

Metrics 

Time Total time to complete the task 

Max Winding Overstretch Maximal thread overstretch during winding (Instead of 
pulling the thread through the stitch) 

Max Tightening 
Overstretch 

Closed Needle Entry When the active tool enters the needle with a closed 

Maximal thread overstretch during tightening 

Tool-Tool Collision 

Tip Removed 

When any segment of the left tool touches any 
segment of the right tool 

If an active tool entered the target object wit11 open 
grips but was subsequently withdrawn without closing 
the grips (which is a failure to acquire the oblject) 

Wrong Section Grip When the tool grabs the needle outside the target 
section 

Dropped Thread When the free thread end is dropped after first been 
grabbed correctly 

Needle Dropped 

Dynamic Evaluation Measures for the HS Knot task include: 

Time: Total time spent to complete each trial (i.e. each knot). 

The grips of the first tool open up or are too loose after 
acquiring the needle 

Needle Pushed Out Of 
Reach 

Maximum Winding Overstretch: The thread can be overstretched during 

winding. The maximal thread overstretch, which is calculated through a 

model of the thread's force-deflective behaviour, will therefore represent 

the likelihood of pulling the thread through the stitch before a knot is 

formed, and is measured as one o~f the performance metrics. 

The tool has pushed the needle out of reach 

Maximum Tightening Overstretch: Maximal thread 0verstre:tch during 

tightening the knot is also measured through a model of the thread's force- 



deflective behaviour as another metric representing the user's 

performance.. 

2.2.2 Experimental Design 

The total of 26 subjects (8 Experts, 8 Intermed'iates, and 10 Novices) participated in the 

user study. Subjects were selected based on their experience in MIS surgery; senior 

surgeons who had performed more than 50 operations were considered to be experts, 

surgical assistants who were surgeons mainly responsible for controlling the camera or 

holding forceps in the operating room, and had not performed more than 20 MIS (or any 

other type of surgery) were in the intermediate level, and OR (Operating Room) nurses, 

who were familiar with laparoscopic surgery by observing surgeries, but had no MIS 

experience themselves, consisted our group of novices3. 

Participants were from different age groups (all over 29 years of age), and were consisted 

of 16 females and 10 males. They were asked to fill out a questionnaire ( Appendix B: 

User Study Questionnaire) to give us information about their previous surgical 

experience and their prior MIS training. Most of the participants in the expert group had 

at least 20 hours of previous MIS training under the supervision of an experienced 

surgeon in the operating room, and in some cases for a few hours in animal labs. In the 

intermediate group, except for two of the participants, no one had significant hours of 

prior MIS training. As for surgical simulators: only one of the experts and one of the 

intermediates had training experience with physical simulators for more than ;! hours, but 

no one was previously trained with virtual simulators. In the novice group, none of the 

participants had any type of MIS training before. 

3 Participants were selected and categorized based on experienced surgeons' suggestions at Surrey 
Memorial Hospital, BC, Canada. 



Table 3: Experiment steps and the approximate timing 

Before starting the Sign the consent forlm 

experiment Fill out the questionnaire 

Experimlent steps 

I Demo of the Stitch task I 0.5 

Approxi~mate time 
(rnin.) 

I Errors explained I 1 

Stitch Task 

I Demo of the HS Knot task I 0.5 

1 practice trial (not counted in the 
results) 1 1.5 

The actual test - 4 trials (counted in the 
results) 6 

The experiment took less than 25 minutes for each subject. Participants were required to 

complete the Stitch task first, and the HS Knot task second. For each task, the presenter 

introduced the subject to the task, by demonstrating an error-free trial of the task and 

explaining what constituted as errors. Each subject was then allowed to practice the task 

once, before performing the four trials, which were counted in the results. Table 3 recaps 

the steps in the experiment and the approximate timings. 

HS Knot task 

For the two tasks employed in this experiment, MIST gives us the option of' specifying 

and setting up the operating space for a left or a right-handed user. The operating scenario 

for a left-handed user is symmetrical to the one for a right-handed user (e.g. in the Stitch 

task, a left-handed user starts the task by grabbing and inserting the needle into the tissue 

with the left tool, and continues by pulling out the needle from the other side with the 

right gripper, as opposed to a right-handed user who starts the task with the right tool and 

completes the stitch with the left tool - Figure 6). To eliminate the effect of hand- 

Total: 21 

Errors explained 

1 practice trial (not counted in the 
results) 

The actual test - 4 trials (counted in the 
results) 

1 

1.5 

6 



dominancy in our results, we set up the tasks for each user based on their dominant- 

hands, and only considered data values corresponding to the dominant hand in our 

analysis. 

Figure 6: Symmetrical scenes for right and left-handed users. 
L.eft: MlST Stitch task for a left-handed user, Right: MlST Stitch task for a right- 
handed user 

2.3 Data Analysis 

As shown in Table 1 and Table 2, MIST VR collects 16 different performance metrics for 

the Stitch task and 10 for the HS Knot task. Studies to date have proven that MIST 

performance metrics have validity in terms of' surgical skills assessment (Darzi, 2001; 

Gallagher, McClure, McGuigan, Crothers, & Browning, 1999; Wilson, Middlebrook, 

Sutton, Stone, & McCloy, 1997), and therefore are appropriate to be used as inputs to our 

fuzzy classifiers. However, in designing a fuzzy system without the help oi' automated 

fuzzy rule generating software, having a large number of input parameters can lead to an 

unmanageably large number of possible combinations and therefore expert rules (Fayek, 

& Sun, 2001). Thus, to yield a more manageable model we reduced the number of 

parameters by combining each group of parameters of the same nature into a new data 

value, and ignoring factors that were believed to be less effective on the results. The 

changes include: 

Compiling all the different errors that MIST accounts for, into a new 

parameter called Number of Errors, for both Stitch and HS Knot tasks. 

(Number of Errors = Surn of all Errors) 



Compiling Maximum Entry Tissue Deformation and Maximum Exit Tissue 

Deformation in the Stitch task, into a new parameter called Maximum 

Tissue Deformation (Max Tissue Deformation = Maximum Entry Tissue 

Deformation + Maximum Exit Tissue Deformation) 

Compiling Maximum Winding Overstretch and Maximum Tightening 

Overstretch in the HS Knot task, into a new parameter called Maximum 

Thread Overstretch (Max Thread Overstretch = Maximum Winding 

Overstretch + Maximum Tightening Overstretch) 

Ignoring the Entry/Exit Hit-Target Distance values in the Stitch task. 

Table 4 and Table 5 demonstrate the resulting new parameters that were employed in 

designing the fuzzy classifier. 

Table 4: Performance metrics used for Stitch task in data analysis 

Metrics Description 1 
Time 

Number of Errors I Sum of all the errors I 

Total time spent to complete the task 

Max Tissue 
Deformation 

Table 5: Performance metrics used for NS Knot task in data analysis 

Sum of Max Entry and Eixit Tissue Deformation (representing max 
tissue deformation throughout the whole task of stitching) 

Time Total time spent to complete the task 

Max Thread Sum of Max Winding Overstretch and Max Tightening Overstretch 
Overstretch (representing max thread overstretch throughout the wholle task of 

knotting) I 
I 

I Number of Errors I Sum of all the errors 

Metrics Description 
I 



Also, to have analogues ranges of data values fix different parameters, we normalized the 

data collected by MIST, by dividing all the performance measurements for each 

parameter to the maximum value among them. From now on, we will only work with 

normalized data (ranging between 0 and 1) rather than the raw data collectecl in the user 

study. 

An example of all the modifications applied to1 the raw data (collected by MIST-VR) to 

transform it into appropriate data for our analysis is shown in Figure 7. Data values 

shown in the example are an expert user's perfbrmance metrics for one trial of the Stitch 

task. 

Figure 7: Example of modifications applied to the raw data collected by MIST-VR 

Normalization 



Figure 8: Stitch Task - User's individual and group average performance metrics 
(a) Time, (b) Num. of Errors, (c) Max. Tissue Deformation (x-axis: Users, y-axis: 
Normalized performance metrics) 

Expe. 1s Inlermsdlales Fbvices 

, I- Time 

-Amrage value In each gmup of experlis L_ - _- - -- _ - __ - -. 



Figure 9: HS Knot Task - User's individual and group average performance metrics 
(a) Time, (b) Num. of Errors, (c) Max. Thread Overstretch (x-axis: Users, y-axis: 
Normalized performance metrics) 

Experts lntermhates Novices 
- 

1-.Awrage value in each group of expertis 

Experts htermclales Novlces 

b ! ~ e r t s  Intermdiites Novices / ~ M a x i m % ~ ~ e r s t r e t c h  

-.Average value in eac:h group of expertise I -.I -- - - -- -- 

Figure 8 and Figure 9 represent nornlalized users7 performance metrics, with columns 

representing the individual values and horizontal lines showing the average values for 

each group of users. Table 6 compares average values of performance metrics between 

the three grou.ps of users for both Stitch and HS Knot tasks. Please note that in this study 

lower values for individual metrics and overall scores mean a better performance (e.g. the 

lower the time value is, the faster the user has performed the procedure). By looking at 

the average values, it seems that Experts and Intermediates have generally performed 



faster, with less constraint on the tissue or the thread, and with fewer numbers of errors. 

However, looking at individual test results, it seems impossible to find a well-defined 

pattern to categorize the subjects (e.g. as shown in Figure 8, in the Stitch task, the big 

range of "Time", "Number of Errors" and "Ma~ximum Tissue Deformation" values in the 

Novice group does not follow any specific pattern). 

Table 6: Average values of performance metrics in each group of expertise for Stitch and HS 
Knot tasks 

Experts 1 0.231 1 0.534 1 0.1!j4 1 0.108 1 0.625 1 0.0635 

Input 

In the following section simple statistical methods are used to analyse the user study data 

and to find the relationship between the Stitch and the HS Knot task performance metrics 

(represented in Table 4 and Table 5) and the users' surgical skill levels. 

Stitch Task HS Knot Task 

Intermediates 

Novices 

2.3.1 Correlation and Regression Analysis 

Max Tissue 

Correlation analysis 

Correlation analysis is the statistical tool that can be used to describe the degree to which 

one variable is linearly related to another. In other words, correlation analysis is used to 

measure the degree of association between two variables. 

Number Time Max Thread Number of 

0.238 

0.342 

The strength of the linear relationship between two variables x and y (for a ;sample of n 

measurements on x and y) is measured by the coeficient of correlation, r, as follows: 

Time Deformation of Errors 0 Overstretch Errors 

Equation 1 

29 

0.381 

0.540 

0.066 

0.202 0.169 



Where 

n 

ss, = C (xi  -- q y i  - 7) , 

The coefficient of correlation has two important characteristics: 

1. The magnitude of the correlation coefficient is independent of the scales 

of measurement for variables. This means that the correlation coefficient 

can compare the relationship between variables regardless of what is being 

represented by them. 

2. The value of a correlation coefficient is between +1.0 and -1 .O. A value of 

either +1.0 or -1.0 shows a 100% correlation between the variables, 

meaning that the movement of the two variables is in an absolute similar 

or complementary direction. 

All variables used in correlation analysis must have numerical values. In this problem, 

the surgical skill level takes three non-numerical values: Expert, Intermediate, and 

Novice. To be able to perform the correlation analysis, we assigned a number to each of 

these three values as shown in Table 7. These numbers are selected by dlividing the 

interval from 0 to 1 into three equal regions, and assigning the centre of each region to 

one surgical skill level. It should be noted that the magnitudes of these values do not 

affect the results of correlation analysis. 



Table 7: Numerical values assigned to surgical skill levels 

I Skill Level I 1 Value 

I Intermediate I 0.5 I 
I Novice I 0.833 I 

Figure 10: Assigning numerical values to surgical skill levels 

Table 8 and Table 9 show the correlation coefficient, calculated by MATLAB (The 

Mathworks, Inc, 1994-2006), for each two pairs of performance metrics and the users' 

surgical skill levels, for the Stitch and the HS Knot tasks. 

Table 8: Coefficient of correlation for Stitch task performance metrics 

Analysis Results 

Max Ti: Deform 

Time 1 0.46463'1 0.41 9861 

Number of Errors 0.464631 1 0.464631 0.6061 39 

Tissue Deformation 

Skill Level 

0.41 9861 

0.391 149 

0.464637 1 I 1 0.644996 1 
0.6061 39 0.644996 



Table 9: Coefficient of correlation for Stitch task performance metrics 

I HS Knot Task Correlation Analysis Results 1 

IT ime 1 1 1 0.5:04!3 1 -0.2:502 10.453937 1 
Number of Errors 0.56043 -0.14152 0.408959 

Thread Overstretch -0.24502 -0.141!52 -0.45765 

Time 

Skill Level 0.453937 0.4089!59 -0.45765 1 1 1 

As shown in Table 8, in the Stitch task, surgical skill level has a fairly high correlation 

with "Number of Errors" and "Tissue Deformation", but not as high with "Time". For the 

HS Knot task (Table 9), correlation between the skill level and "Time", "Number of 

Errors", and the "Thread Overstretch" are almost equal, but less than 50%. 

Number of Errors 

This may indicate that the performance metrics selected for the Stitch and the HS Knot 

tasks are not entirely related to surgical skill level, or it could be due to the fact that our 

sample data is not representative of the population. However, as we will see later in 

section 4.3, the poorly correlated data may rc=sult in contradictory fuzzy rules, which 

consequently help eliminate the effect of such data in making the final decision. 

Max Thread 
Overstretch 

Linear Regression Analysis 

Skill Level 

Linear regression analysis is another statisticall method which involves findi~ng the best 

straight-line relationship to explain how the variation in an outcome (or dependent) 

variable, Y, depends on the variation in a predictor (or independent) variable, X. When Y 

is a function of more than one independent variable, Multiple Regression is used to 

estimate the relationship between Y and the independent variables. This estimate can be 

used to build a regression equation of the form: 

Y = c  + a l X l  +a2X2 + ... + anXn 
Equation 2 

Where Xi's are the independent variables, ai's are the regression coefficients representing 

the amount Y changes when the corresponding xi changes 1 unit, and c is the constant 

representing the amount of Y when all the independent variables are 0. Once the 



regression equation is built, it can be used to predict the value of Y based on a set of 

measured Xi's. 

We used MATLAB to find the regression equation for the Stitch and the HS Knot tasks. 

For each task, we split the dataset into two equal halves using two different data 

separation methods, the DAU and the DHU methods (which will be explained later in 

section 4). Half of the data, which we call the training dataset, were used to build the 

regression equation, and the other half, or the testing dataset, were used to test the ability 

of the regression equations in predicting the value of Y. 

For the Stitch task, the independent variables are the "Time", the "Number of Errors", 

and the "Maximum Tissue Deformation" performance metrics. For the HS Knot task, the 

independent variables are the "Time", the "Number of Errors", and the "Maximum 

Thread Overstretch" performance metrics, and the dependent variable for both tasks is 

the "Skill Level". Similar to the correlation analysis, we assigned numerical values 

shown in Table 7 to the three surgical skill levels. The resulting regression equations are 

as follows: 

Stitch task (DAU): 

Skill Level = -0.0663 - 0.127 x Time + 0.4292 x Num. Of Errors - 1.0668 x Max Tissue 

Deformation 

Equation 3 

Stitch task (DHU): 

Skill Level = -0.1427 - 0.0586 x Time + 0.5636 x Num. Of Errors - 0.4255 x Max Tissue 

Deformation 

Equation 4 

HS Knot task (DAU): 

Skill Level = 0.521 5 + 0.2719 x Time + 0.3598 :< Num. OfErrors - 0.2163 x Max Thread 

Overstretch 

Equation 5 



HS Knot task (DHU): 

Skill Level = 0.041 12 + 1.0366 x Time + 0.4619 x Num. Of Errors - 0.2573 x Max 

Thread Overstretch 

Equation 6 

Performance metrics in the corresponding testing datasets were then substituted in 

Equation 3 to Equation 6 to predict surgical skill levels. The results are represented later 

in section 6. 

Even though the results of statistical analysis on our user study data do not suggest a high 

correlation between the Stitch and HS Knot performance metrics and surgical skill levels, 

a particular pattern of a complex combination of all the parameters, which is not 

recognizable with simple statistical methodls, may exist and could be used for 

performance categorization. If such a pattern exists, we hypothesise that a fuzzy classifier 

will be an appropriate means to recognize and model this pattern, as one of th,e important 

applications of fuzzy logic is in pattern recognition. 



3 FUZZY LOGIC: BASIC PRINCIPLES AND 
APPLICATIONS 

3.1 History and Applications 

Most of the phenomena that we encounter evely day carry a certain degree of ambiguity 

and fuzziness in the description of their nature. "The weather is hot today" is a typical 

example of a fuzzy expression. What temperature is considered hot? How much does it 

need to be decreased to be considered warm, and not hot? If the weather is hot for me, is 

it hot for my neighbour as well? This kind of' imprecision or fuzziness associated with 

continuous phenomena is common in almost any field of study: sociology, physics, 

biology, finance, marketing, engineering, psychology, health management, etc. 

Before the introduction of fuzzy theory, conventional mathematical methods were the 

only means of modelling natural processes. The underlying logic of these methods is the 

precise Boolean logic, which is based on the law of Excluded Middle. This logic has only 

two states, "0" and "1" or "True" and "False'". In other words, every proposition must 

either be true or false; no intermediate values are allowed. Conventional mathematical 

methods however, require detailed and precise information to operate. Th~ey can not 

handle the uncertainty of the natural phenomena and the human natural language. Albert 

Einstein faced the same dilemma: 

"So far as the laws of mathematics reJler to reality, they are not cerfain. 
And so far as they are certain, they do not refer to reality." 

Fuzzy logic was introduced by Lotfi Zadeh in 1965 as a means to model the uncertainty 

of natural language (Lotfi Zadeh, 1965). It could be considered as a isuperset of 

conventional (Boolean) logic that handles the concept of partial truth or  ruth-values 

between "completely true" and "completely false". Despite the conventional logic 

systems that focus on the quantitative aspects of objects, fuzzy logic des~xibes their 



qualitative nature, which in many ways are related to the rules of grammar that focus on 

descriptive adjectives and adverbs. 

Even though the fuzzy logic theory was largely ignored in the western world, it attracted 

the attention of industrial designers and inventors in Asian countries such as Japan and 

China almost as soon as it was proposed by Dr. Lotfi Zadeh. Over the past few years, 

fuzzy modeling and identification methodologies have been successfully used in a 

number of real-world applications and for various aims such as analysis, design, medical 

instrumentation, monitoring, decision making, patter recognition, and indusll-ial process 

control. 

Examples include application of fuzzy logic in products ranging from large-scale electro- 

mechanical processes, like subway systems imd elevators, to mass-market consumer 

applications such as cameras, camcorders, washing machines, and microwave ovens 

(Fuzzy logic tool box, what is fuzzy logic, 111, 2004; World Technology Evaluation, 

Fuzzy Logic research and LIFE, 74,2005). Fuzzy expert systems have also been used for 

engineering design performance evaluation (Vanegas & Labib, 2005), or project 

performance prediction and evaluation (Fayek & Sun, 2001). They have also served as 

monitoring systems for intrusion detection in networked computers (G6mez & Dasgupta, 

2002), or as decision support systems to assist operators (Hartog et al., 1997), and to 

support decisions in medical domains (Gorzalczany & Grqdzki, 1999). 

One of the important applications of fuzzy logic is in the area of pattern recognition. A 

common thrust of this problem area is the search for structures in data, where the issue is 

to compare, in terms of relevant features, the categories identified in data with given 

perfect categories (Klir, St-Clair., & Yuan, 1997). 

The utility of fuzzy logic is also well established in the design of automatic controllers. 

Especially in the aviation industry, because of the high degrees of nonlinearity, 

uncertainty, and complexity of the aerospace systems and the involvement of human 

beings, fuzzy logic-based methodologies have been widely used in the design of flight 

control systems (Dote & Ovaska, 2001). For instance as intelligent helicopter navigation 



systems (Rahbari, Leach, Dillon, & DaSilval, 2002), as complex aircraft controllers 

(Mengali G., 2000), or as flight control systems in aviation simulators (Beringer, 2002). 

The linguistic interpretability of fuzzy systems make them suitable for another important 

application; modelling of human decisions or experience. Sundaram , Naidu, and Das (2004) 

used fuzzy multi attribute decision making a~pproach to evaluate the quality of food 

products as judged by human senses such as vision, taste, smell, and touch (~undararn, 

Kalpana Naidu, & Das, 2004). Kumar, St011 and Sl.011 (2003) used fuzzy expert systems to 

approximate patients' physical fitness based on real world physiological parameter 

measurements. Without the use of expert systems, the only solution to this problem was 

the advice of an expert (Kumar, Stoll, & Stoll, ;!003). 

The successful applications of fuzzy logic theory and the rapid growth of research 

involving fuzzy logic suggest that the impact of this revolutionary approach to computing 

will be felt more strongly in the coming years. Fuzzy logic is likely to play an important 

role in science and engineering, but eventually its influence may extend much farther 

(The Berkeley Initiative, A glimpse into the future, 11,2005). 

3.2 Fuzzy Set Theory 

Fuzzy logic is almost synonymous with the theory of fuzzy sets; a theory which relates to 

classes of objects with unsharp boundaries in which membership is a matter of degree. 

Conventional (i.e., crisp) sets contain objects that satisfy precise properties required for 

membership. The set C of real numbers from 2 to 5 is crisp; we write C = {r E 93 1 2 r 

54, where 93 is the set of real numbers. Equivalently, C is described by its membership 

function (MF), pc : 93 3 {0,1) , defined as: 

Equation 7 

In logic, values of pc are called truth-values with reference to the question, "Is r in C?" 

The answer is yes if and only if pc (r) = 1, and no, otherwise. As shown in Figure 1 1, in a 



conventional set there is a clear-cut differentiation between the elements that belong to 

the set and those that do not. 

Figure 11: Membership function for the conventional set C 

Defining the real numbers between 6 and 8 is a problem that is intrinsicallly crisp and 

would not require the use of fuzzy sets. A situation closer to what we encounter in 

everyday life however, is for example deciding if the weather is hot or not in a particular 

day. Reasoning according to the conventio~ial logic, we would need to define a 

temperature threshold that divides hot from not-hot weather. If the temperature is higher 

than the threshold (even by 0.001 of a degree) then the weather is hot, otherwise, not hot. 

This is obviously far from the way human beings make their judgments. Ow perception 

of the weather temperature is better described as a sort of soft switching rather than a 

threshold mechanism. This is also why we often add a modifier to the word "hot" (i.e., 

not, not very, somewhat, very, etc.) in order to1 express "degrees of hotness" rather than 

absolute true or false answers. 

A fuzzy set could well accommodate the way human beings make their decisjlons. In the 

fuzzy set "hot weather temperatures" (which will be defined as an example in the 

following section) a degree of hotness is defined, thus providing a continuum rather than 

an abrupt transition from true to false. 



3.2.1 Elements of Fuzzy Set Theory 

Fuzzy sets, Membership functions, and Universe of discourse 

As mentioned before, a fuzzy set is a class of objects with unsharp boundaries. In other 

words, elements of a fuzzy set may belong to it to partial degrees, from the full 

belongingness to the full non-belongingness tfuough all intermediate values. Hence the 

membership function of a fuzzy set is allowed to have values between 0 and 1 that denote 

the degree of membership of an object in the given set. 

Consider X as a space of objects and let x be a generic element of X A fuzzy set F in X is 

defined as a set of ordered pairs 

Where pf:  X + [0,1] is called the members hi,^ function (MF) for the fuzzy set F, and 

maps each element of X to a membership degree pkx) E [0, 1 1. 

X is often referred to as the universe of discalurse (universe, universal set, referential, 

reference set, etc.) and contains all elements relevant for the particular concept. It may 

consist of discrete (ordered or non-ordered) objects or it can be a continuous space. 

The construction of a fuzzy set depends on two things: the identification or  a suitable 

universe of discourse and the specification of an appropriate membership function. There 

are two possible approaches in defining the MFs; the most straightforward approach is to 

ask the experts to draw the MFs. The functions could be either defined by onle expert, or 

as the average of the membership functions defined by several experts, so that: 

Equation 9 

Where pi($ is the MF defined by expert i. While averaging the MFs defined by different 

experts reduces the subjectivity, the resulting M:Fs will probably have a rough shape that 

is not consistent with the way of human thinking. Therefore, usually an approximation by 



a standard shape is used to smooth the membership function (Szczepaniak, Lisboa, & 

Kacprzyk, 2000, page 34). 

Another possible approach is to define the membership functions on the basis of 

numerical data. In this case, a standard shape is usually selected for the MFs, and the 

sampled data is used to define the functions parameters. 

Even though there is no restriction in the shapes chosen for membership functions, there 

are some standard functions that have been used more in literature. Common choices for 

membership functions are Gaussian or S-shaped, TriangularITrapezoidal and Bell shaped 

functions (Szczepaniak, et al., 2000, page 34). Examples of Triangular and Gaussian 

membership functions are shown in Figure 12. Because of their simplicity, Triangular 

and Trapezoidal functions are the most popular choices among the standard MF shapes at 

present and most authors have found them efficient enough to use in their systems (Fayek 

& Sun, 2001; Dadone, 2002). 

Figure 12: Examples of membership functions 

(a): Triangular membership function representing the fuzzy of "tall men" (x-axis: 
Height (m), y-axis: Truth-values) (b):Gaussian membership function representing the 
fuzzy set of "real numbers close to 5" (x-axis: Height (m), y-axis: Truth-values) 



The following example can further clarify the concept of fuzzy sets. 

Example: The "hot weather temperature" fuzzy set 

Let's go back to the question "what weathe:r temperatures are hot?". As; mentioned 

earlier, the conventional set theory fails to characterize the "hot weather temperatures" as 

judged by human beings. In this example we employ the fuzzy logic approach to deal 

with the problem. 

Let's define a fuzzy set named "hot weather temperatures". The first step in specifying 

the fuzzy set is to define its universe of discourse. We define T c 93 so that: 

T = (t 1 -100 I t  I+100) 
Equation 10 

T covers all the possible weather temperatures (in degrees Celsius). If the fuzzy set 

representing the "hot weather temperatures" is H, the membership function for H is 

defined as: p ~ :  T + [0,1], such that pH (t) E [01,1] is the degree to which an element t e T  

belongs to the fuzzy set H. 

The next step is defining the membership functions for our fuzzy set. We do so by 

choosing a standard shape like the Trapezoidall function for the MF, and identifying the 

critical points in the universe of discourse and assigning them the appropriate truth- 

values. For example we know that almost anyone considers a temperature of'45"C a hot 

weather temperature. Therefore we can say thart 45•‹C belong to the fuzzy set H, so that 

p~ (45)=1. If 45•‹C is considered hot, then any temperature higher than 45•‹C would also 

be considered hot, therefore p H  (t 2 45)=1. On the other hand, weather temperatures of 

15•‹C and lower are most certainly not judged as hot temperatures and therefore do not 

belong to H. In other words, p H  (t I 15)=0. Folr weather temperature between 15•‹C and 

45•‹C however, we can not confidently say wh~ether they belong to H or not. 30•‹C is a 

very hot temperature for people living in Alaska, but could be a normal temlperature for 

those living in Africa. From an intuitive point of view however, we can say that the 



degree of belongingness to H increases from 0 ]to 1, as the temperature goes ulp from 15 to 

The above information is enough for us to draw the Trapezoidal membership function, as 

shown in Figure 13. The horizontal axis represents the weather temperatures, and the 

vertical axis shows the truth-value for each temperature. 

Figure 13: Fuzzy set "Hot weather temperatures" 
(x-axis: weather temperatures in degrees Celsius, y-axis: truth-values) 

Other definitions and terms in fuzzy set theory 

This section briefly presents basic definitions and properties related to fuzzy sets, 

concentrating more on those that are relevant to this work. 

Empty sets: A fuzzy set A in X is said to be empty, written A=@, if and only if: 

b ' x ~  X,pA(x)=O 
Equation 11 

Equal sets: Two fuzzy sets A and B defined in the same universe of discourse X are said 

to be equal, written A=B, if and only if 

Equation 12 

42 



Subset: A fuzzy set A defined in X i s  said to lbe a subset of a fuzzy set B in X, written 

A c B, if and only if 

Normal and subnormal sets: A fuzzy set A defined in X is said to be normal if and only if 

max p, ( x )  = 1 
+EX 

Equation 14 

and it is said to be subnormal otherwise. 

Fuzzy singleton: A fuzzy set A defined in X is called a fuzzy singleton, if its support is a 

single point in X with pA(x) = 1. 

Figure 14: Graphical representation of a singleton fuzzy set 

 PA^ 

Support: The support of a fuzzy set A in X is the set of all points with nonzero 

membership degree in A 

Equation 15 

Figure 15: Graphical representation of support of a fuzzy set 



Core: The core of a fuzzy set A is the set of all ]points with unit membership degree in A 

Core(A) = {X  E X I pA(x) = 1) 
Equation 16 

Figure 16: Graphical representation of the core of :a fuzzy set 

PA(~T 

, Con: : 

Crossover points: A point X E X  at whichpA(x) = 0.5 is called the crossover point of a 

fuzzy set A in X 

Figure 17: Graphical representation of the crossover points 

a-cut, strong a-cut: The a-cut or a-level set of ;a fuzzy set A is a crisp set, written A ,  and 

defined as the following set 



If we replace the "2" in Equation 17 with ">", then we have the strong a-cut, or strong a-  

level set of the fuzzy set A. 

Figure 18: Graphical representation of the fuzzy a-cut 

3.2.2 Basic Operations on Fuzzy Sets 

Similar to the conventional set theory, the basic operations in fuzzy set theory are the 

complement, intersection, and union. 

Complement or (negation): The complement of a fuzzy set A in X, denoted by A, 

corresponds to the negation "not", and is defined as 

Equation 18 

The complement can be represented as in Figure 19 where pA<x) is shown in heavy lines. 

Figure 19: The complement of a fuzzy set 

4 



Intersection: The intersection of two fuzzy sets A and B in X, written as A n 13, is defined 

as 

The intersection can be illustrated as in Figure 20 Where ,DAM is shown in heavy lines. 

Figure 20: Graphical representation of the intersection of two fuzzy sets 

Union: The union of two fuzzy sets A and B in ;c written as A u B, is defined as 

The union can be demonstrated as in Figure 21 'Where is shown in heavy lines. 

Figure 21: Graphical representation of the union of' two fuzzy sets 

The above definitions of fuzzy intersection and union are well established and widely 

used. However, similar to the traditional set theory, these operations could also be 



defined through the general t-norm and s-norm (or t-conorm) operators (Szczepaniak et 

al. page 34; Fayek & Sun, 200 1; Dadone, 200 1). 

A t-norm, t: [0, I] x [0,1] + [0,1], is defined such that for each x, y, z E [0,1]: 

1. Its unit element is 1 : t (x , 1) = x 

2. It is monotone: x<y 3 t (x , z) I t O, , z) 

3. It is commutative: t (x , y) = t O, : x) 

4. It is associative: t [x, t O, , z)] = t [t (x , y), z] 

The minimum operator is the most widely used t-norm operator in the fuzzy set theory. 

Some other examples of t-norm operators are the algebraic product (t (x, y) = .x.y) and the 

Lukasiewicz t-norm (t (x, y) = max (0, x + y -1)). 

An s-norm, s: [O, 11 x [O, 11 + [O, 11, is defined such that for each x, y, z E [O, 11: 

1. Its unit element is 0: s (x , 0) = x 

2. It is monotone: xXy 3 s (x , z) I s O, , z) 

3. It is commutative: s (x , y) = s O, , x) 

4. It is associative: s [x, s 01 , z)] = s [s (x , y), z] 

The most popular s-norm operator in fuzzy set theory is the maximum operator. Other 

examples are the probabilistic product (s (x, y) = x + y - xy), and the Lukasietvicz s-norm 

(S (x, y) = min (x + y , 1)). 

3.3 Fuzzy Inference Systems 

Fuzzy inference is using fuzzy logic to formulate the mapping of a given input to an 

outpu. Fuzzy inference systems (FISs) are rule based systems in which the relationship 

between the inputs and outputs of the system are retrieved in the form of if-then rules. In 

the process of inference, the inputs are first fuzzlJied, (i.e. converted from crisp numbers 



to fuzzy sets). After going through the fuzzy rules contained in a rule-base, the output for 

each set of inputs is computed in the form of a1 fuzzy set. The output fuzzy s,ets are then 

composed and defuzzfied (i.e., converted froml a fuzzy set to a crisp number), since the 

desired output is usually a crisp number rather than a fuzzy set. 

There are two basic types of fuzzy inference systems: Mamdani-Assilian (or Mamdani), 

1975 by Ebrahim Mamdani (Mamdani & Assiljan, 1975) and Takagi-Sugeno-Kang (or 

Sugeno), introduced in 1985 (Takagi & Sugeno 1985). These two types of inference 

systems vary somewhat in the way outputs are determined. In Mamdani systems, which 

is the most common methodology (Fuzzy logic toolbox, fuzzy inference systems, 7 3), 

both the input and output are represented with linguistic terms (such as "tall", "short", 

"hot", "cold"). The antecedent and consequent of an if-then rule are typically Bollean 

expression of simple clauses. A simple form of the Mamdani system is of the form: 

If x is A, then y is B. 

In which A and B are linguistic terms defined by fuzzy sets on the ranges (universes of 

discourse) X and Y respectivelt. 

In Sugeno systems, the antecedant is a Bollean expression of simple clauses, but the 

consequent is a function of the input (usually a polynomial). This can be represented in 

the form: 

If x is A, then y is f(x). 

In which A is a linguistic term defined by a fuzzy set on the universe of discourse X and 

Ax) is a function of the input x. 

The Sugeno fuzzy inference systems are faster and work well with linear techniques. The 

Mamdani systems however, are intuitive and suitable for human inputs. Therefore, we 

employed the Mamdani FISs to solve the prob1e:m of surgical performance evailuation. 

We will briefly overview the process of fuzzy inference, and explain the design process 

of Mamdani-type FISs in the following sections. For more information ab'out Sugeno 

systems, please refer to (Takagi & Sugeno, 1985). 



3.3.1 Overview of Fuzzy Inference Process 

Figure 22 shows the three major elements of a fuzzy inference system. The information 

flows from left to right, or from the inputs to the outputs of the system. The purpose is to 

map an input space to an output space, and the key mechanism for doing thjk is a list of 

if-then statements called fuzzy ifthen rules. A11 rules are evaluated in parallel, and the 

order of the rules is unimportant. 

Figure 22: Major elements of a fuzzy inference system 

OUTPUT 

Fuzzy if-then rules 

A single fuzzy if-then rule is in the form: 

ifx is A then y is B 

Where A and B are linguistic values defined by fuzzy sets on the universes of discourse X 

and Y, respectively. The if-part of the rule, "x is A", is called the antecedent or premise, 

while the then-part of the rule, "y is B", is called the consequent or conclusion. An 

example of such a rule might be 

Ifyou are late for your meeting, then you should walk fast. 

Note that "late" is represented by a fuzzy set, and so the antecedent could be interpreted 

by a single number between 0 and 1, depending on the "degree of lateness". On the other 

hand, the consequent is the "fast" fuzzy set, which should later be defuzz@ea1 to assign a 

single numerical value to the output. 

Both the antecedent and the consequent of a rule can have multiple parts. In ithat case all 

parts of the antecedent are calculated concurrently to determine a single number, using 

the logical operators described in the previous section. On the other hand, all consequents 



are affected equally by the result of the antecedent. An example of a fuzzy rule with two 

antecedent and two consequent parts could be: 

Ifyou are late for your meeting and the meeting is important, 

then you should walk fast or catch a taxi. 

In the case of traditional or binary logic, interpreting the if-then rules does not present 

much difficulty. If the premise is true, then the conclusion is true. When dealing with a 

fuzzy if-then rule however, the premise or the antecedent could be only partially true, 

which will affect the consequent of the rule. 

The following steps are to be taken when interpreting a fuzzy if-then rule: 

1. Fuzzifying the inputs: Means resolving all parts of the antecedent to a 

degree of membership between 0 and 1. In other words, it means 

calculating the truth-value for all fuzzy expressions in the antecedent. 

2. Applying fuzzy operators: Whein the antecedent has multiple parts, fuzzy 

operators (t-norm or s-norm) need to be applied to resolve the antecedent 

(by combining the truth values of all fuzzy expressions) to a single number 

between 0 and 1, called the degr'ee of support for the rule. 

3 .  Applying implecation methods: means using the degree of support for the 

rule to shape the output fuzzy stet. If the antecedent is only partially true, 

(i.e., is assigned a value less thain I), then the output fuzzy set is truncated 

according to the implication method. The most common implication 

methods are the minimum (which removes the a-cut for a = "degree of 

support" from the output fuzzy set), and the product (which multiplies the 

output fuzzy set by the degree of' support). 

To make it more clear, lets consider the following example: 



The restaurant rating problem: Given two sets of numbers between 0 and 10 (where 10 

is excellent) that respectively represent the quality of the service and the quality of the 

food at a restaurant, in a scale of 1 to 5 (5 beiing excelent) what should the rating of the 

restaurant be? 

In this problem, we have two inputs, "the quality of service" and "the quality of food", 

and one output, "the restaurant rating". A series of rules (in linguistic terms) can be 

written to connect these inputs to the output. ;Suppose our set of rules is cclnsist of the 

following three rules: 

1. If "the quality of service" isfine and "the quality of food" isfine, then the 

"rating of the restaurant" is high. 

2. If "the quality of service" is average and "the quality of food" is$ne, then 

the "rating of the restaurant" is medium. 

3. If "the quality of service" is poor or "the quality of food" is poor, then the 

"rating of the restaurant" is low. 

Three different linguistic terms are used in our set of rules that describe the inputs (fine, 

average, and poor) and the output (high, medium, and low). Figure 23 demonstrates the 

fuzzy sets that represent these linguistic terms. For each variable, the three corresponding 

fuzzy sets are shown in one graph (e.g. "poor", "average", and "fine" qualit], of service 

fuzzy sets in Figure 23 (a)). 



Figure 23: Input and output fuzzy sets for the "restaurant rating" problem 
(a): fuzzy sets describing the "quality of service", (b): fuzzy sets describing the "quality 
of food", (c): fuzzy sets describing the "restaurant rating" (x-axis: variable's universe 
of discourse, y-axis: truth-values). 

As represented in Figure 23, fuzzy sets have divided the universe of discourse of the 

inputs and the output of the system into regions, demonstrating the linguistic terms that 

describe each variable. For example in Figure 23 (a), the "poor" f ~ ~ z z y  set is 

representative of the "poor quality of service" values. Therefore, the low values assigned 

to the "quality of service" input, which mean a lower level of service in a restaurant, have 

a high truth-value in the "poor" fuzzy set. 

Suppose restaurant "X" whose "quality of service" and "quality of food" are 

characterized by numbers 6 and 8, respectively, is to be rated with our fuzzy model. To 

do so, we first need to interpret the model's three rules. Let's start with a step-by-step 

interpretation of rule 1 : 

Ifuthe quality of service" is good and "tlhe quality of food" is good, 

then the "rating of the restaurant" is hig:h 

1. Fuzzifying the inputs: the numbers 6 and 8, representing the service and 

food quality in restaurant "X" should be fuzzified. In other words, their 

truth-values in the corresponding fuzzy sets (i.e. "fine" filzzy set in 

"quality of service" and "fine" fuzzy set in "quality of food") need to be 

determined. As shown in Figure 23 (a), The truth-value of number 6 is 0.2 

in the "fine quality of service" fuzzy set. Also, the truth-value of number 8 

is 0.6 in the "fine quality of food" fuzzy set. 



2. Applying fuzzy operators: The degree of support for rule 1 needs to be 

calculated by resolving the antecedent into a single number, using fuzzy t- 

norm and s-norm operators. In this example, we will apply the minimum 

and maximum operators as the fuzzy t-norm and s-nonn operators 

respectively. The word ''ANT)" that connects the two parts of the 

antecedent tells us that we needl to use a t-norm (the minimum) operator. 

Therefore the degree of support for rule 1 will be calculated as: 

Rule 1 's degree of support = min{O.2, 0.6) = 0.2 

3. Applying the implication method: We apply the minimum implication 

method to truncate the "high" fi~zzy set in the output, by the rule's degree 

of support (i.e. 0.2) 

The other two rules of the restaurant rating problem are interpreted in a similar way. Each 

row in Figure 24 demonstrates the process of interpreting one of the three rules. For 

example in row 1, the truth-value for number 6 in the "fine quality of service:" fuzzy set, 

and number 8 in the "fine quality of food" fuzzy set is determined. The minimum of the 

two truth-values, or the degree of support for rule 1, is carried over and truncated the 

"high restaurant rating" fuzzy set in the output. 

The output fuzzy sets for each rule need to be combined in some manner, so ,that they all 

contribute to the final output of the FIS. This is called the aggregation process. 



Figure 24: Fuzzy inference process for the restaurant rating problem 

AND Rating = 2.55 

Rule 1 

Rule 2 

Rule 3 

Defuzzification method: 
Centroid 

The aggregation process 

The input of the aggregation process is the list of truncated output hnctions returned by 

the implication process for each rule. The output of the aggregation process is one fuzzy 

set for each output variable. The aggregation method is commutative, therefore the order 

in which the rules are executed is unimportant. Two of the common methods of 

aggregation are the maxinzzrm (maximum of all rules output sets), and sum (the sum of all 

rules output sets). The last row in Figure 24 shclws an example of the aggregaizion process 

(maximum) in the restaurant rating pro'3lem. 

The result of the aggregation process is a fuzzy set that needs to be resolved to a crisp 

number, as the final desired output in an FIS is generally a single number. This process is 

called the dejiczzzfication process. 

The defuzzification process 

Defuzzification is the final stage in the fuzzy inference process. The input for the 

defuzzification process is a fuzzy set (the output of the aggregation process), and the 

output is a single number. Some of the def~~zzification methods are the centroid method 

(which calculates the center of mass under the fuzzy set), the bisector (wkich returns 



bisector of area under the curve), middle of maximum (the average of the maximum 

value of the output set), largest of maximum (largest of the maximum values of the 

output set), and smallest of maximum. 

Figure 25: Different Defuzzification methods applied to an example fuzzy output curve. 
The vertical line shows location of the numerical fuzzy output over the output curve. 
Methods applied: (a): Centroid, (b): Bisector, (c): Middle of maximums, (cl): Largest of 
maximums, (e): Smallest of maximums 

Figure 2.5 demonstrates examples of these methods. The vertical line in each fgure shows 

the location of the defuzzified output value over the output fuzzy set. 

We used the centroid method to determine the final output for the restaurant rating 

problem. As shown in Figure 24, the final result or "the rating of the re:staurantW is 

calculated to be 2.55 out of 5 .  



3.3.2 Design Process of Fuzzy Inference Systems 

This section is a step-by-step explanation of the process of designing a Mamdani-type 

fuzzy inference system. Essentially, there are three fundamental stages in the 

construction of a fuzzy model: 

Selecting the input and output (c:ontrol) variables 

Defining the fuzzy sets 

Constructing the relationship between input and output spaces ((rules) 

Selecting the fuzzy inference properties 

Selecting the input and output variables 

The first step in designing a FIS is to define the system's two major elements: the 

information (data points) that flows into the system, and the data elements that are 

eventually the outputs of the system. This involves identifying the inputs anti outputs of 

the system based on the initial information and the goal of the problem, and specifying 

the universe of discourse for each of the input and output variables. 

Defining the fuzzy sets 

Fuzzy sets need to be defined to classify the input and output variables into categories (or 

classes of data) that represent possible states of that variable. Linguistic terms are usually 

used to identify these data categories. For example in the restaurant rating problem 

introduced in section 3.3.1, fuzzy setspne, average, and poor categorize the "quality of 

service" input into three states. 

Membership functions are curves that specify hlow each point in a hzzy set's space maps 

to a membership value between 0 and 1. They could be drawn by intuition, which is 

derived from the intelligence and understanding of human beings and involves contextual 

and semantic knowledge about an issue (similar to the approach taken in the restaurant 

rating problem in section 3.3. l), or defined on the basis of numerical data. In the latter 

case, groups of data that produce a concise representation of the variables behaviour 



characterize the fuzzy sets and membership functions. Clustering of numerical data is a 

way of identifying the natural groupings of dlata from a large dataset. Fuzzy c-means 

(FCM) is an example of a clustering technique in which each data point belongs to a 

cluster that is defined by a membership degree. The algorithm starts with an iinitial guess 

for the cluster centres (meant to mark the mean location of each cluster) and a 

membership grade for each cluster assigned to every data point. The cluster centres move 

to the right location by iteratively minimizing a function that represents the distance from 

any given data point to a cluster centre weighted by that data point's membership grade. 

Figure 23 in section 3.3.1 demonstrates how fuzzy sets define the different linguistic term 

for the inputloutput variables in the restaurant rating problem. 

Constructing the relationship between input and output spaces (rules) 

Fuzzy conditional statements, or simply fuzzly if-then rules, describe the irelationship 

between the input and output variables in an F'IS. Several methods have been proposed 

for generating fuzzy rules. Many of these methods, similar to the approach taken in this 

project, are based on clustering techniques (Yager & Filev, 1994; Hong & Lee 1996; 

Hong & Chen 1999). These methods can be categorized into two phases: 

1. Partitioning (or clustering) the variable spaces into classes of dada 

2. Identifying fuzzy rules for each class of data 

The process of designing fuzzy if-then rules in this project is described in more details in 

section 4.3. 

Selecting the Fuzzy Inference Properties 

Properties of the FIS, such as shapes of the membership functions, type of the t-norm and 

t-conorm processors, the aggregation method, and the defuzzification method need to be 

defined during the design process of the system. These properties may be selected 

intuitively (based on the nature of the problem and judgment of the system's expert) or 

derived from the numerical data. 



3.3.3 Fuzzy Logic Toolbox in MATLAB 

In this project, the fuzzy logic toolbox in MATLAB (Fuzzy logic toolbox, 2004) was 

used for modeling the fuzzy systems. The fuzzy logic toolbox is a collection of functions 

built on the MATLAB numeric environment. It relies on the graphical user interface 

(GUI) tools that provide an environment for filzzy inference system design, analysis and 

implementation. Five primary GUI tools help building, editing, and observing fuzzy 

inference systems: The Fuzzy Inference or FIS editor, the membership function editor, 

the rule editor, the rule viewer, and the surface viewer. These tools are dynamically 

linked, thus changes made to the FIS using one of them affects the other four. In 

addition, the toolbox includes the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

editor, which is used for building and analyzing Sugeno-type FISs. 



The fuzzy inference system editor 

The FIS editor handles the high level issues for the system such as the num3er of input 

and output variables and their names, types of the "And" and "Or'" operators, and the 

aggregation and defuzzification methods. 

Figure 26 shows the FIS editor for the restaurant rating problem as an example. It 

displays general information about the system. The diagram at the top of \:he window 

shows the na:mes of the input and output variables. Popup menus on the bottom leA allow 

the user to modify the FIS properties and the fields on the bottom right display the name, 

the membership type and the range for each of the input or output variables. 

Figure 26: Example of the "FIS editor" window 

File Ed~t View 

RS Name: Restaurant rating FIS Type: mamdani I 
And method I min 

Or method 1-7 
Implication 3 
Aggregation rGX.----"- 1 
Defirzzification 1-11 

-- 
System 'Restaurant rating": 2 inputs, 1 output, and 3 rules 1 



The membership function editor 

The membership function editor is used to define the properties of the membership 

functions for the system's variables. 

Figure 27: Example of the "membership Tunction editor" window 

File Edrt View 

FIS Variables Membership function plots plot points: r-%?- 
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r Average f 
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Type input 

3 ange 1 [0101 --- -"- 
3isplay Range c 



The rule editor 

The rule editor enables the user to define and edit the list of rules that describe the 

behaviour of the system. 

Figure 28: Example of the "rule editor" window 

File Edit 

1. If [Quality-of-service is Poor] or [Qualityof-food is Poor] th,m (output1 is Low] (1) 

i 
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z-----' 
not 

. Connectior~ 

or 

F and 1 

and 
Quality-of-faad is 

Weight: 

Then 
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The rule viewer 

The rule viewer is a read only tool that displays the whole h z z y  inference diagram. An 

example of the rule viewer window is demonstrated in Figure 29. Each colurrin illustrates 

one variable and each row of small plots represent the antecedents and the consequents of 

one rule in the FIS. The rule viewer shows for a given set of inputs, whizh rules are 

active, what is the output, and how individual membership hnction are affecting the 

output. 

Figure 29: Example of the "rule viewer" window 

File Edit Vit:w Opt~ons 

Input 
p1~_7409] + 1l~ l l3 t  points- 

" --i -lnl- r~ & .P --...* gssar 

F D p M e d r n  Restaurant rating, 3 ruler 



The surface viewer 

The surface viewer is also a read-only tool. It is used to display how an output is 

dependant on any one or two of the inputs. For instance Figure 30 shows the relationship 

between the output (z-axis) and the two inputs (x and y axes) in the resta.urant rating 

problem. The popup menus at the bottom of the window allow the user to choose which 

variables to be plotted. 

Figure 30: Elxample of the "surface viewer" window 



4 DESIGN PROCESS OF FUZZY CLASSIFIERS FOR 
SURGICAL PERFORMANCE: EVALUATION 

Having 26 subjects participating in the experiment provided us with 26 full sets of data 

for each of the Stitch and HS Knot tasks. The  data for each task was organized into 104 

vectors in total (26 subjects who did 4 trials each). Each vector conta.ined the 3 

performance metrics for the trial. For instance: the Stitch task data vectors were in the 

form of 

V (Time, Max Tissue Deformation, Number of Errors) 

We then split each full set of data into two eqpal halves; 52 data vectors were used as 

Training Data Set (to design and train the classifier), and the other 52 as Testing Data Set 

(to test the constructed model). There were two possible approaches in getting separate 

training and testing data sets: 

1. Using data from all participants for both sets, separating each subject's 

data into two groups randomly (we call this approach the "Data from All 

Users", or DAU method). 

2. Dividing the subjects in each level of expertise into two groups randomly. 

Then using the data from one group to train the system and from the other 

group to evaluate the system (e.g. having 8 expert subjects, randomly 

select data from 4 of them to be in one group and from the other 4 to be in 

the second group). We call this approach the "Data from Half of the 

Users" or DHU method. 

Figure 7 shows the DHU and DAU methods applied to data from the experts group as an 

example. Data from the Intermediate and Novice groups were split in the same way. 



Figure 31: Example of the DHU and DAU data splitting methods 



Either approach has costs and benefits; the limit of the DAU approach is that if our 

sample of surgeons is not representative of the overall population, we can train our 

system, and successfully evaluate it. But when we use trainees from outside our training 

group, the system doesn't work. This would be because our system had trained itself on 

features that are present in our group but not in the population at large. 

The DHU approach suffers from the complementary risk: If our evaluation set does not 

do very well, is that because the group we trained it on is abnormal or the evaluation 

group is non-standard? Hard to say! Therefore each method was employed once to create 

a fuzzy classifier for each of the Stitch and HS Knot tasks, providing us with four fuzzy 

classifiers in total. 

The training and testing datasets for the fuzzy models are demonstrated in 'Table 10 to 

Table 13. 
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We designed our classifiers based on Mamdani's Fuzzy Inference Method (explained in 

section 3.3.21, through the following four steps: 

Selecting the input and output (control) variables 

Defining the fuzzy sets 

Constructing the relationship between input and output spaces (rules) 

Selecting the fuzzy inference properties 

4.1 Selecting the Input and Output Variables 

The nature of our classifiers suggests the inputs to the fuzzy systems to be user's 

performance metrics, and the outputs to be a fu:zzy score representing user's surgical skill 

level. Thus, as shown in Figure 32, each system has three inputs and one output; "Time", 

"Maximum Tissue Deformation", and "Number of Errors" are inputs to the Stitch task 

classifiers, and "Time", "Maximum Thread Overstretch", and "Number of Errors" are 

inputs to the HS Knot task classifiers. Since we used normalized data values to design the 

classifiers, the universe of discourse for each of' our input and output variables is between 

zero and one. 



Figure 32: Control Variables in Stitch and HS Knot Fuzzy Systems 
I I 
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4.2 Defining the Fuzzy Sets 

Knowing the input and output variables of thr: systems, fuzzy sets were required to be 

defined that classify these variables into different categories, so that each category 

represents a possible state of the corresponding variable. We defined three linguistic 

descriptors; Low, Medium, and High, each of which can be represented by a fuzzy 

membership function (or a fuzzy set). Low, Medium, and High membership fiunctions for 

an input correspond to relatively low, medium or high values of the input, respectively. 

Figure 33 shows an example of the three membership functions for the "'Number of 

Errors" input in the HS Knot task. 



Figure 33: E.xample of input membership functions 

"Number of Errors" input, HS Knot Task (x-axis: "Number of Errors" values, y-axis: 
truth-values) 

We used the training datasets to determine the boundaries of the low, medium and high 

categories for each input variable, as follows: 

The data values corresponding to each input variable were first sorted in the ascending 

order. We then used the Fuzzy Logic Toolbox in MATIAB (introduced in Section 3.3.3) 

to find three clusters of data among data va1u.e~ corresponding to each input variable, 

based on the Fzmy c-means (FCM) clustering method (fuzzy logic toolbox, Fuzzy C- 

Means Clustering section, 11 l),  explained in section 3.3.3. These data clusteirs represent 

the low, medium, and high categories for each input variable. 

Example: Defining the Low, Medium, and High categories for the "Number of Errors" 
input variable in the HS Knot task 

The left-side table in Figure 34 slows the data values in the training dataset 

corresponding to the "Number of Errors" variable in the HS Knot task. To determine the 

three categories mentioned earlier, we first arranged the data in the ascending order 

(Figure 34, Right-side table). MATLAB was then used to find three clusters of data 

values within the sorted data. These three groups represent the Low, Medium, and High 

values for the "Number of Errors" variable in the HS Knot task. 



Figure 34: Example of clustering the data into Low., Medium, and High categories 
for the "Number of Errors variable in th~e HS Knot task 

Trainin dataset w 
Number of Errors 

n 

Sort in ascending 
order 

Sorted data 

category E 

category 

category 



An index number was assigned to each data value to plot the 1-dimensional in 2-D, as 

shown in Figure 35. The three categories of Low, Medium, and High are shown with x's, 

*'s, and 0's' respectively. The 8 ' s  ms.rk the centre values for each category or class of 

data (0.01 1, 0.06 1, and 0.267 are the centre values for Low, Medium, and High classes of 

data in "Nurrber of Errors" in the HS Knot task). 

Figure 35: Example of clusters of data in the "Number of Errors" variable in the H S  Knot Task 

(x-axis: data index, y-axis: Number of  Errors) 
---.,.- " - -  - " .? - 

Index 

The commonly used triangular and trapezoidal shapes were selected to represent the 

membership functions (or fuzzy sets), and the following rules were followed to generate 

these functions: 

1. In each class of data, the centre of the class has the maximum inembership 

value (i.e. 1) in the corresponding membership function. 

2. Membership functions representing the smallest or the largest linguistic 

term (i.e. Low and High categories) are trapezoidal in shape, since all 

values below the biggest, or above the smallest value with the highest 

membership, respectively, are considered to have the same maximum 



membership value. The Medium linguistic term, which is in lbetween the 

two end-of-the-range categories, is represented with triangular 

membership functions. 

3. For the Low and High membex-ship functions, all the values below or 

above the centre value, respectively, have the maximum truth-value (i.e. 

1). 

4. The overlap between each input's membership functions are chosen so 

that the sum of the truth-values of all points through the overlapping fuzzy 

sets is equal to one. This is called the "Sum-to-one (or less)" rule (Cox, 

1999). 

Example: Defining the membership functions for the "Number of Errors" variable in the 
HS Knot task 

Figure 36 shows the membership functions for ithe "Number of Errors" variable in the HS 

Knot task. The following steps were taken in defining these functions: 

1. 0.01 1, 0.061, and 0.267, which are the centres of the Low, Medium, and 

High categories, respectively, were given truth-value of 1 in the 

corresponding membership functions (Figure 36). 

2. Trapezoidal functions were used to represent the Low and High fuzzy sets, 

and triangular function for the Medium fuzzy set. 

3. In the Low fuzzy set, all the values below the centre of the low category 

(i.e. 0.011), were assigned the truth-value of 1. Also in the High 

membership function, all the values above 0.267, which is the centre of 

the High category were given the: highest truth-value (Figure 36). 

4. The "Sum-to-one" rule was used to determine the overlaps between the 

neighbouring membership functions. It means that for an:y value of 

"Number of Errors" input, the slum of the truth-values in all filzzy sets is 

equal to one. For example, as shown in Figure 36, the truth-value for a 



"Number of Errors" value of 0.2 is 0 in the Low fuzzy set, 0.28 in the 

Medium fuzzy set, and 0.72 in the High fuzzy set (0 + 0.28 + 0.72 = 1). 

Figure 36: Membership functions for the "Number of Errors" input in HS Knot Task. 

(x-axis: Input value, y-axis: Inlput's truth-value) 
I - r - - - -T-- - - ' - i - - - l - -  I I I 

Medium High '1 

To categorize outputs of the systems, the fuzzy score (or score), the output space was 

divided into three equal regions. As shown in Figure 37, the membership function 

corresponding to the lowest score values was named Experts, as those scores were 

expected to be achieved by the expert users. Same is for the Intermediate and Novice 

membership functions in the system's output. A-fter testing the classifiers the output fuzzy 

sets could be adjusted iteratively to improve the performance of the system. 

Figure 37: Output of the fuzzy classifier- (x-axis: output (score) value, y-axis: output's truth-value) 
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4.3 Rules 

Data from the Training Datasets was used to construct the rules for the four fuzzy 

models: the Stitch task DAU, Stitch task DHU, HS Knot task DAU, and HS knot task 

DHU classifiers. For each user, performance metrics were first categorized into the class 

of data (Low, Medium, or High) that would best characterize their value, or in other 

words, the class of data that had the highest truth-value in the corresponding fuzzy set. 

We then constructed one rule per user, based on the classified user performance metrics 

and their level of expertise. The process of clonstructing the rules is explained further 

through the following example. 

Example: Constructing a fuzzy rule, based on an expert user's performance metrics 

Table 14 shows performance metrics of an expert user, for one trial of the HS Knot task. 

Table 14: Example of categorizing a user's performance metrics into one of the three classes of 
data (HS Knot task) 

I I Time I Max Thread Overstretch I Number of Errors I 
Performance metrics 

Class of data 

0.067784 

Low 

0.06451 6 



Figure 38: Membership functions for the HS Knot task 
(a) Time, (b) Maximum Thread Overstretch, (c) Number of Errors -(x-axis: Input 
value, y-axis: Input's truth-value) 
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To classify the user's performance metrics, we look at the membership functions for the 

HS Knot task input variables, shown in Figure 38, to see which membership ;:unction has 

the highest truth-value for each of the user's performance metrics. For example, the 

user's "Time" value is approximately "0.067". Looking at Figure 38 (a), membership 

functions for the "Time" input variable, we will see that "0.067" has the truth-value of 

"1" in the Low fuzzy set, and "0" in the Medium and High fuzzy sets. Therefore, the Low 

fuzzy set is the best representative for the user's "Time" value, or in other words, the 

user's "Time" is Low. Similarly, we can see that "0" is a Low value for  maximum 

Thread Overstretch"", and "0.064" is a Medium value for the "Number of Errors" 

input (in Figure 38 (c), the truth-value for "0.064" is "0.92" in the Mediurn fuzzy set, 

which is higher than its truth-value in the Low fuzzy set, "Ow, and the Medium fuzzy set, 

"0.09"). These classifications are shown in Table 14. 

Knowing that the performance metrics shown in Table 14 are those of an expert user, if 

we feed them to the fuzzy classifier as inputs, the resulting fuzzy score is expected to be a 



rather low score, best represented by the Expert membership function in the output fuzzy 

set (Figure 37). To guarantee this outcome, we generate the following rule for our fuzzy 

system: 

If "Time" is Low and "Maximum Tlhread Overstretch" is Low and 
"Number of Errors" is Medium, 

then 

the Score is (that of an) Expert 

We can now be sure that if we test our system with a set of performance metrics that are 

Low, Low, and Medium in "Time", "Maximum Thread Overstretch", and "Number of 

Errors" inputs, respectively, the system will predict the user with those metrics to be an 

expert, unless the effect of this rule is influenced by contradictory rules as explained later. 

For each fuzzy model, the same method was used to construct 52 rules, one for each data 

vector in the training dataset. Table 15 shows the categorized values of the HS Knot task 

(DHU) training dataset as an example. 

Table 15: Categorized performance metrics in the training dataset, HS Knot task-DHU 

(L: Low, M: Medium, H: High, E: Expert, I: Intermediate, N: Novice) 

Max Threa'd Number of Errors Level of 
Overstretch 

.:izr f*i Expe"ise 1 
Category Value Catelgory Category 





As demonstrated in Table 15, 52 rules can be generated from the HS Knot task training 

dataset. Some of these rules however, are repeated a few times . For instance in Table 15, 

data vectors 5, 9, and 12, generate the same rule; 

i f  "Time" is Low, and "Maximum Thread Overstretch" is High, and 
"Number of Errors" is Medium, the user is an Expert. 

Instead of repeating the recurring rules, we assigned each rule a weighting proportional to 

the frequency of its appearance. For example the weighting for the above-mentioned rule, 

which is repeated three times, is three times the weighting for a rule that is extracted only 

once. 

In the case of having a contradiction (meaning that two rules with the same premise have 

different conclusions), we included both rules in the rule set. For example in Table 15, 

data vectors 1 and 4 suggest the same rule; 

i f  "Time" is Low, and "Maximum Thread Overstretch" is Low, and 
"Number of Errors" is Low, the user is tm Expert. 

Data vector 37 however, generates a second rule with the same premise, but with a 

different conclusion; 

i f  "Time" is Low, and "Maximum Thread Overstretch" is Low, and 
"Number of Errors" is Low, the user is a Novice. 

These contradictory rules in the rule set eliminate each other's effects during the fuzzy 

inference process, and therefore do not affect thle final decision. 

The resulting rules along with their corresponding weightings formed our set of rules for 

each fuzzy model. 

4.4 Selecting the Fuzzy Inference Prloperties 

Properties of the fuzzy systems such as shapes of the membership functions, the t-norm 

and t-conorm operators, and the aggregation and defuzzification methods need to be 

specified (refer to section 3 for more informatioln). We selected the most commonly used 



fuzzy inference properties to design our systems. They include the triangulal./trapezoidal 

membership functions, the maximum and minimum t-norm and 1:-conorm operators, 

respectively, the maximum aggregation method, and the centroid defuzzification method. 

Particulars of these methods are explained in section 3. The effect of other fuzzy 

inference properties on the classifiers are studied in section 5. 

4.5 Results and Analysis 

Each of the DAU and DHU data separation methods were employed once to create a 

fuzzy classifier for each of the Stitch and HS Knot tasks, which provided us with four 

fuzzy classifiers in total. 

Figure 39: The effect of Time and Number of Errors on the Stitch task's fuzzy score 

(x-axis: Number of Errors, y-axis: 'Time. z-axis: fuzzy score) 
-.- '" , "."-"9-- - -I* -?--- -. .- --. ---, 

The constructed models demonstrated a highly non-linear and non-monotonic 

relationship between the inputs and the output of the systems. Figure 39 shows the effect 

of "Time" and "Number of Errors" inputs on the "Score" for the Stitch task model as 

an example. As we can see in the fig~.re, for k.igher values of "Time" and "Number of 

Errors" (''Timev> 0.5, "Number of Errorsn> 0.3), there is a monotonic relationship 

between the output (score) and the two inputs. For lower values of ''Tim? (< O S ) ,  

however, the effect of the "Number of Errors" input on the Score does not follow any 



specific pattern. Similarly, for "Number of Errors" values below 0.3, the effect of "Time" 

on the output is irregular and serrated. 

We used the testing datasets (each containing 52 data vectors) to test our classifiers. The 

results are shown in Figure 40. 

Figure 40: Fuzzy Scores for the Stitch and HS Knol: tasks - 
(a): DAU Stitch testing dataset, (b): DHlJ Stitch testing dataset, (c): DAU HS Knot 
testing dataset, (d): DHU HS Knot testing dataset - (x-axis: data vectors, y-axis: fuzzy 
score). 
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Based on the numerical fuzzy scores, the users' levels of expertise can be predicted by 

the fuzzy classifiers. Each user belongs to one of the three categories (expert, 

intermediate, or novice) that has the highest truth-value for hislher fuzzy score in the 

classifier's output fuzzy sets. 

Example: predicting the users' levels of expertise based on their fuzzy scores 

The fuzzy scores for 5 users are shown in Table: 16 as an example. Each subject has a real 

level of expertise (depending on their experience in MIS as explained in section 2.2.2), 

and a predicted level of expertise, which is determined based on the score they achieved 

in the user study. For example, subject 1 in Ta~ble 16, who was in the expert group, has 

achieved a fuzzy score of 0.3. In the classifiers' output fuzzy sets, 0.3 has the truth-value 

of 0.59 in the Expert fuzzy set, 0.41 in the Intermediate fuzzy set and 0 in the Novice 

fuzzy set. Therefore, because user 1's score has the highest truth-value in the Expert 

fuzzy set, his predicted level of expertise would also be expert. For user 3 hcowever, the 

predicted level of expertise is novice (his fuzzy score is 0.755, which has the highest 

truth-value in the Novice fuzzy set), although his real level of expertise is intermediate. 

Thus, we have a match between the real and predicted levels of expertise for user 1, but 

not for user 3. 

Table 16: Example of users' predicted and real levels of expertise. 
Table shows the fuzzy score, real levels alf expertise, predicted levels of expertise, and 
whether there is a match between the real and predicted levels of expertise for 5 
participants. 

User 

1 

2 

3 

4 

5 

Real Level of 
Expertise 

Expert 

Expert 

Intermediate 

Intermediate 

Novice 

Predicted Level of 
Expertise 

Expert 

Novice 

Novice 

Intermediate 

Novice 

Fuzzy 
Score 

0.3 

0.708 

0.755 

0.494 

0.757 

klatch? 

Yes 

N o 

N o 

Yes 

Yes 



Figure 41: Predicting users' levels of expertise based on the Output fuzzy sets. 
(x-axis: fuzzy score (output), y-axis: output's truth-value) 

I I I I I 17- 

lntermediat - Novice 

Performance of the classifiers can be evaluated according to the number of matches 

between the users' real and predicted levels of expertise. Table 17 shows the percentage 

of matches between the real and predic1:ed levels of expertise, after all the users have been 

categorized. 

Table 17: Percentage of correct results in all groups of expertise and in total for each classifier 

lntermediatcts 

Novices 

Total 

Stitch Task 
(DAU I 

0 O/o 

100% 

30% 

42.31% 

----- 
Stitch Task 

(DlilJ) 

6.25% 
-- 

56.25% 
-- 

25% 
-- 

28.85% -- 

HS 

43.75% 

93.75% 

5% 

38.46% 44..23% -- 



5 EXPLORING THE EFFECT OF VARIOUS FUZZY' 
INFERENCE PROPERTIES ON THE PERFORMALNCE 
OF FUZZY CLASSIFIERS 

In the design of our fuzzy classifiers we employed the simplest, or the most commonly 

used Fuzzy Inference System (FIS) properties. For example, we used the simple 

triangularltrapezoidal shapes for the membership functions, and used the common 

minimum t-norm operator and the centroid defhzzification method in our systems. In this 

section we explore the effect of some other FIS properties on our fuzzy classifiers. 

It is shown that amongst the different FIS properties, the shapes of the membership 

functions, the t-norm operators (the AND method), and the types of the deftrzziJiers are 

the most significant factors in the fuzzy inference process (Dadone, 2001). Therefore, we 

tested and compared the performance of our classifiers with different combinations of 

these three factors. 

To do so, we first examined the effect of various membership functions and t-norm 

operators on our classifiers to find the system with the optimal combination of these two 

factors. We then applied different defuzzification methods to that system and identified 

the most functional grouping of FIS properties fix our fuzzy classifiers. 

To be able to compare performance of the different classifiers, and in order to find the 

one with the optimal combination of FIS properties, we took two different approaches to 

compare the functionalities of the systems after they were tested with the testing dataset. 

One approach is based on the number of correct classifications for each system, or the 

number of matches between users' real and predicted levels of expertise. Since the 

objective of the test is to classify users correctly, this method sounds like a reasonable 

approach. 

However, it should also be considered that there: are different levels of fallacy among the 

systems' incorrect answers. For instance a classifier that predicts a novice us'er to be an 



expert is making a major error, which may cause an inexperienced surgeon to advance to 

the operating rooms. In comparison, another system that classifies the same user also 

incorrectly, but as an intermediate, is less likely to cause such a fatal error and therefore 

is more reliable. Considering only the number of correct classifications for the systems 

does not take this problem into account, and therefore the other approach that we used to 

compare the functionalities of our classifiers is based on the total error in the predicted 

levels of expertise for the user in the testing dataset, and is explained in the following 

section. 

5.1 The "Root Mean-Squared Error'" 

The Root Mean-Squared Error 

Root Mean-squared error (RMS error), determined by calculating the deviations of points 

from their true position, summing up the squares of the measurements, then taking the 

square root of the sum, and then dividing the rlesult by the number of points, is the most 

commonly used measure of success of numeric prediction (GRB Research, GRP Tool 

Shed, 7 3.2.4, 2005). For example if a,, a2, . . ., a,, are the system's predicted values, with 

corresponding true values of cl, c2, . . ., c,, the RMS error for a1 to a, is calculated as: 

I 2 2 2 (a, -c,)  +(a2 -c2) +...+(a, -c,) 
4 v n Equation 21 

To determine the RMS error for each classifier's fuzzy scores, the deviations of the 

predicted scores from their true values need to be calculated. The true value of score for 

each user is the value that best represents the group of expertise that the user belongs to. 

Considering the output membership functions for our classifiers (Figure 42)' we can see 

that the true (or ideal) score for each group of expertise is the score that has the highest 

truth-value in the corresponding membership fimctions. For example the ideal score for 

an expert user is the score that has the highest truth-value (i.e. 1) in the Expert fuzzy set 

in the output membership functions. 



Figure 42: Ideal score for each group of expertise in the output fuzzy sets. 

(x-axis: output (score) value, y-axis: output's truth-value) 

7 I I I I t m I Expert Intermediate Novice I 

As shown in Figure 42, all the values below 0.167 and above 0.833 have the maximum 

truth-value in the Expert and Novice h z z y  sets, respectively. Therefore the ideal score 

for the expert group could be any value below 0.167, and above 0.833 for the novice 

group. Because the Intermediate fuzzy set is triangular in shape, there is only one score 

with the maximum truth-value for the intermediate group. Therefore the ideal score for an 

intermediate user will be 0.5. These va:.ues are shown in Table IS. 

Table 18: Ideal score for users in each group of expertise 

1 user I Ideal (true) 
score I 

I Intermediate 1 0.5 1 

The deviations of the fuzzy scores from their true values can now be calculated through 

the following equations: 



To Fuzzy Score 5 0.167 

Experts ' Scores Deviation = I Fuzzy Score - 0.167 Fuzzy Score > 0. l&{uation 22 

Intermediates ' Scores Deviation = Fuzzy Score - 0.5 

Equation 23 

Fuzzy Score 2 0.833 

Novices' Scores Deviation = 

Fu.zzy Score - 0.833 Fuzzy Score < 0.833 
Equation 24 

To determine the RMS Error for each classifier after being tested with the 52 data vectors 

in the testing dataset, user's fuzzy and ideal scores were substituted in: 

Equation 25 

In which Mi, AI,, and ANk are the score deviations for the ith expert, jth intermediate, and 

kth novice data vectors, and are calculated by substituting the testing data set fiuzzy scores 

in Equation 22 to Equation 24. 

Relative Root Mean-Squared Error 

The relative RMS error is defined to be the ratio of the RMS Error to the maximum 

RMS Error value possible for each classifier, and indicates the relative reliability of the 

classifiers. The maximum RMS Error is calculated as follows: 



max ( RMS ~ r r o r  ) = max 

Equation 26 

Since the fuzzy scores belong to [0,1], from Equations 2 to 4 we have: 

max(&Yf)= (1 - 0.167)' = (0.833)' = 0.694 

By substituting these values in Equation 26, we will have: 

16 x 0.694 + 16 x 0.25 + 20 x 0.694 
= d y r  = 0.746 

Equation 27 

The relative RMS Error for each classifier would be its RMS Error value divided by the 

result of Equation 27 



5.2 Various Fuzzy Inference ]Properties 

5.2.1 Membership Functions 

Various functions such as TriangularITrapezoitlal, Gaussian, Sigmoid, Bell Shaped, and 

Polynomial-based curves are used to represent the membership functions in fuzzy 

inference systems. We studied the effect of Gaussian and TriangularlTrapezoidal shapes 

on the input and outputs membership functions in our fuzzy classifiers. 

5.2.2 T-norm Operators 

It is shown that the optimal behaviour of the fuzzy controllers is achieved by the 

differentiable t-norm operators such as the Product operator (Dadone, 2001). The 

minimum t-norm operator is also commonly used in fuzzy systems (Szczepaniak, Lisboa, 

& Kacprzyk, 2000). Thus, we tested each of our classifiers, employing the minimum and 

the Product operators. 

To find the best functions for the input and output fuzzy sets, and the most effective t- 

norm operator in our systems, for each of our four classifiers, we created all the possible 

combinations of the TriangularITrapezoidal and Gaussian membership functions, and the 

Product and minimum t-norm operators. The resulting 8 combinations for each classifier 

(two functions for each of the input and output membership functions and two t-norm 

operators lead to 23 or 8 combinations of FIS properties) were then tested with the testing 

dataset. Table 19 to Table 22 show the percentage of correct results and the average 

scores in each group of expertise for each of the classifiers. The results are also 

represented in Figure 43 to Figure 46 (vertical bars correspond to the individual scores 

and horizontal lines represent the average score in each group of expertise). 
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Figure 43: Results of various combinations of memlbership functions and t-norm operators for the 
Stitch Task (DAU) fuzzy classifier. 

The vertical bars represent the individual scores and horizontal lines show the average 
score in each group of expertise. 
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Figure 44: Results of various combinations of membership functions and t-norm operators for the - 

Stitch Task (DHU) fuzzy classifier. 

The vertical bars represent the individu:al scores and horizontal lines show the average 
score in each group of expertise. 
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Figure 45: Results of various combinations of memlbership functions and t-norm operators for the 
HS Knot Task (DAU) fuzzy classifier. 

The vertical bars represent the individual scores and horizontal lines show the average 
score in each group of expertise. 
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Figure 46: Results of various combinations of membership functions and t-norm operators for the 
HS Knot Task (DHU) fuzzy classifier. 

The vertical bars represent the individ~~al scores and horizontal lines show the average 
score in each group of expertise. 
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To compare the performance of these fuzzy classifiers, we tested them with the testing 

dataset, and calculated the RMS Error value for each system. These values are shown in 

Table 23 to Table 26. Highlighted rows corresplond to the classifier with the lowest RMS 

error values. 

Table 23: Percentage of matches and RMS Table 24: Percentage of matches and RMS 
Error for classifiers with various Error for classifiers wit,h various 
combinations of FIS properties - combinations of FIS properties - 
Stitch Task (DAU) Stitch Task (DHU) 

Stitch Task (DAU) FIS Properties I 

Gaussian TrilTrap Min 42.31 0.25 

Input MF 

TrilTrap 

TrilTrap 

TrilTrap 

TrilTrap 

I Gaussian I TrilTrap I Product 1 42.31 1 0.253 1 

Percentage 
of Matches 

42.31 

42.31 

Gaussian Gaussian Min 

Gaussian Gaussian Product 32.69 0.256 

RMS 
Error 

0.261 

0.261 

Output 
MF 

TrilTrap 

TrilTrap 

Gaussian 

Gaussian 

Stitch Task (DHU) FIS Properties 

T-norm 
Method 

Min 

Product 

1 TrilTrap 1 TrilTrap 1 Min 1 28.8!i 1 K!;; 1 
TrilTrap TrilTrap Product 28.8!j 

Min 

Product 

1 TrilTrap 1 Gaussian 1 Min 1 ;;!: 1 ll:l;; 1 
TrilTrap Gaussian Product 1 Gaussian 1 TrilTrap 1 Min 1 36.54 1 if'3 1 

Gaussian TrilTrap Product 36.54 

34.62 

34.62 

I Gaussian 1 Gaussian 1 Min 1 30.77 1 0.27 1 

0.263 

0.264 

p u s s i a n  I Gaussian I Product I 30.77 1 0.273 1 
Table 25: Percentage of matches and RMS Talble 26: Percentage of matches a.nd RMS 

Error for-classifiers with various 
combinations of FIS properties - 
S Knot Task (DAU) 

I I I I HS Knot (DHU) FIS Properties I I 
Percentage RMS 
of Matches Error 

I I I I 

TrilTrap TrilTrap Min 38.46 0.243 

Gaussian TrilTrap Min 34.62 0.247 

Gaussian TrilTrap Product 36.54 0.247 

Gaussian Gaussian Min 32.69 0.251 

Gaussian Gaussian Product 32.69 0.252 

Error for-classifiers with various 
combinations of FIS properties - 

HS Knot (DHU) FIS Properties 

output T . ~ ~ ~ ~  of Matches Error 

Input 1 MF 1 Method 1 1 
TrilTrap I TrilTrap I Min I 44.23 1 0.275 

TrilTrap 1 TrilTrap 1 Pr;; 1 46.15 1 0.275 

TrilTrap Gaussian 32.60 0.27 

TrilTrap I Gaussian I Product 1 34.6;! 1 0.263 

Gaussian Trimrap Min 

Gaussian TrilTrap Product 

Gaussian Gaussian Min 

Gaussian Gaussian Product 



As we can see in Table 23 to Table 26, for all four models, fuzzy classifiers with the 

lowest amount of RMS Error also have the highest percentage of matches between users' 

real and predicted levels of expertise (highlighted rows). Thus, it can be concluded that 

the best combination of the input and output membership functions and t-nonn operators 

for our models are: 

Stitch task (DAU): Gaussian input MF, TriangularITrapezoidal output MF, 

and Minimum T-Norm operator 

Stitch task (DHU): TriangularITrapezoidal input MF, Gaussian output MF, 

and Product T-Norm operator 

HS Knot task (DAU): Triangular/Trapezoidal input MF, 

TriangularITrapezoidal output MF, and Product T-Norm operatlor 

HS Knot task (DHU): Gaussian input MF, Triangular/Trapezoidal output 

MF, and Minimum T-Norm operator 

5.2.3 Defuzzification Methods 

Our classifiers were initially designed using the centroid defuzzification method. In this 

section, we explore the effect of some of the other defuzzification methods 011 our fuzzy 

systems. 

There are five different defuzzification methods supported in MATLAB; centroid (which 

returns the center of area under the curve), bisector (which returns bisector of area under 

the curve), middle of maximum or MOM (the average of the maximum value of the 

output set), largest of maximum or LOM (largest of the maximum values of the output 

set), and smallest of maximum or SOM. Figure 47 shows examples of these methods. 

The vertical line in each figure shows the location of the defuzzified output value over 

the output curve. 



We implemented each of these five methods in our system with the optimal combination 

of membership functions and t-norm operators (determined in the previous section) to 

find the most appropriate defuzzifier for our systems. 

Figure 47: Different Defuzzification methods applied to an example fuzzy output curve. 
The vertical line shows location of the numerical fuzzy output over the output curve. 
Methods applied: (a): Centroidl, (b): Bisector, (c): Middle of maximums, (d): Largest of 
maximums, (e): Smallest of maximums 

The resulting classifiers were tested against the testing dataset. Table 27 to Table 30, 

and Figure 48 to Figure 5 1 represent the results. 



Table 28: Results of various defuzzification methods for the Stitch Task (DHU) fuzzy classifier 

Table 27: Results of various defuzzification methotds for the Stitch Task @AU) fuzzy classifier 

Stitch Task 
(DAU) - 

Defuuification 
Method 

Centroid 
Bisector 

MOM 
LOM 
SOM 

Defuuification I Method I Experts I Intermediates I Novices / Total I Experts / lntermediates I Novices I 
Stitch Task 

Percentage of Correct Results 

(DHU) - in each a r o u ~  1 Percentage of Correct Results 

Centroid 

Bisector 

Average Score in each group 

Average Fuzzy Score 

MOM 

LOM 

SOM 

Expeltr 

0 
0 

31.25 
0 

81 25 

Experts 

0.48 
0.48 
0.47 
0.72 
0 21 

0 
0 

Table 29: Results of various defuzzification methods for the HS Knot Task (DAU) fuxzy classifier 

Novices 

30 
30 
4 5 
75 
0 

lntermediates 

100 
100 
100 
0 
0 

Intermediates Novice 

0.47 
0.47 
0.49 0.57 
0.79 0.80 
0 20 0 30 

6.25 
0 

68.75 

Percentage of Correct Results 

Total 

40.38 
40.38 
59.62 
40.38 
34.62 

Total 

42.31 
42.31 
57.69 
28.85 
25 

100 
87.5 

15 36.54 0.57 

5 28.85 0.53 0.55 

56.25 
6.25 
37.5 

Average Fuzzy Score 
in each group 

100 
0 32.69 

Experts 

0.42 
0.40 
0.36 
0.61 
0.12 

Intermediate!; Novice 

0.51 
0.52 
0.49 
0.73 
0.25 



Table 30: Results of various defuzzification methods for the HS Knot Task (DHU) fuzzy classifier 

HS Knot 
Task (DHU) - 

Figure 48: Results of various defuzzification methods applied to the Stitch Task (DAU) model with 

Defuuification 
Method 

Centroid 

Bisector 

MOM 

LOM 

SOM 

the optimal combination of membership functions and t-norm operator. 

The vertical bars represent the individual scores and horizontal lines show the average 

Percentage of Correct Results 

score in each group o f  expertise. 

Average Fuzzy Score in 
each group 

Experts 

37.50 
50.00 
62.50 
0.00 

87.50 

Stitch (DAU) 
lnput Mem. Func: Gaussian 
Output Mem. Fun: TrilTrap 
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Intermediates 

93.75 
62.50 
12.50 
43.75 
43.75 
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Output Mem. Fun: TrilTrap 

T-Norm: Minimum 
Defuzzification Method: LOM 

F u z z y  Score 

-Average fuzzy score in each group 

Novices 

15.00 
20.00 
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80.00 
0.00 

- 

Stitch (DAU) 
lnput Mem. Func: Gaussian 
Output Mem. Fun: TrilTrap 

T-Norm: Minimum 
Defuzzification Method: Bisector 

F u z z y  Score 1 -Average fuzzy score in each gou( 

Total 

46.15 
42.31 
40.38 
44.23 
40.38 

Stitch (DAIJ) 
lnput Mem. Func: Gaussian 
Output Mem. Fun: TrilTrap 

T-Norm: Minimum 
Defuzzification Method: SOM 

F u z z y  Score 

-Average fuzzy score in each group 

Experts 

0.42 

0.42 

0.40 

0.67 

0.13 

Stitch (DAU) 
lnput Mem. Func: Gaussian 
Output Mem. Fun: TrilTrap 

T-Norm: Minirnum 
Defuzzification Method: MOM 

Intermediates Novice 

0.49 

0.454 

0.83 

0.24 

F u z z y  Score 
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Figure 49: Results of various defuzzification methods applied to the Stitch Task (DHU) model with 
the optimal combination of membership functions and t-norm operator. 

The vertical bars represent the individur~l scores and horizontal lines show the average 
score in each groupof expertise. 
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Figure 50: Results of various defuzzification methods applied to the HS Knot Task (D.4U) model 
with the optimal combination of membership functions and t-norm operator. 

The vertical bars represent the individual scores and horizontal lines show the average 
score in each group bf expertise. 
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Figure 51: Results of various defuzzification methods applied to the HS Knot Task @HU) model 
with the optimal combination of membership functions and t-norm operator. 

The vertical bars represent the individual scores and horizontal lines show the average 
score in each group of expertise. 
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To compare the efficiency of these defuzzifiers, we calculated the RMS Error value for 

each model. These values are shown in Table 3 1 (a), (b), (c), and (d) for each of the four 

models with the five dehzzification methods applied. 

T-Norm: Minimum 
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Table 31: RMS Errors for various defuzzification methods applied to classifiers with optimal 
combination of membership functions and t-norm operator 
(minimum value(s) highlighted) 

Stitch Task (DAU) 1 

I Centroid 1 42.31 1 0.250 1 

Defuzzification I Method 

I Bisector 1 42.31 1 0.254 1 

Percentage 
of Matches I Error RMS I 

I Middle of Max 1 57.69 1 0.293 1 

Stitch Task (DHU) 

Middle of Max 44.23 1 Largest of Max 1 1 ;:;;; 1 Smallest of Max 

Largest of Max 

Smallest of Max 

I HS Knot Task (DHU) I 

28.85 

25 

As shown in Table 31 (a), (b), (c), and (Id), the Middle of Maximum (MOM) 

defbzzification method has the highest percentage of matches in all models except for the 

HS Knot task (DHU), in which the highest percentage of matches is achieved by the 

Centroid method. For the HS Knot (DAU) and HS Knot (DHU) models, the systems with 

the highest percentage of matches are also the ones with the lowest RMS Error, but this is 

not the case for the Stitch task models. However, because the differences between the 

RMS Error values is insignificant, we consider the models with the highest percentage of 

matches (highlighted rows in Table 31) to have the optimal combination of fuzzy 

0.387 

0.403 

Ilefuzzification 1 Centroid 

Bisector 

Middle of Max 

inference properties. Thus, it could be concluded that the most appropriate 

defbzzification method for the Stitch task (DAU), Stitch task (DHU), and the HS Knot 

task (DAU) is the Middle of Maximum defbzzification method and Centroid method for 

the HS Knot task (DHU) model. 

Percentage RMS 
of Matches Error 

46.15 

42.31 0.255 

40.38 0.293 



6 ANALYSIS OF RESULTS 

6.1 Results summary 

As explained in the previous section, the optimal combination of fuzzy inference 

properties for each of the four fuzzy classifiers was identified. Table 32 summarizes these 

combinations and the percentage of matches and RMS Error values for each of the four 

models. The Relative RMS Error in Table 32 shows the ratio of the RMS Error for each 

model to the maximum possible RMS Error for our classifiers, which was calculated in 

Equation 27 in section 5.1. 

Table 32: Summary of results for the fuzzy models with the optimal combination of fuzzy 
inference properties 

I Best fuz, 1 inference 

Output 
MF 

properties combination I / percentage / 1 :E 
T-Norm Defuzzification of Matches 

Operator method 

TrilTrap I Minimum I MOM 1 57.69 1 0.293 1 0.393 

Gaussian / Product I MOM 1 44.23 1 0.268 ( 0.359 

TrilTrap I Product I I 59.62 1 0.22'7 1 0.304 

TrilTrap 1 Minimum 1 Centroid 1 46.15 1 025,l 1 0.336 

Comparing the percentage of matches between the DAU and DHU models for each task 

shows that models with the DAU data separation have performed better for both the 

Stitch and the HS Knot tasks. This could be due to the fact that our sample population has 

not been large enough to represent the overall population, and dividing the users in two 

groups in the DHU method has resulted in even smaller training and testing datasets that 



do not share common characteristics. Different results might be obtained in a system with 

a larger sample size. 

6.2 Comparing Fuzzy Classifiers with Conventional Mathematical 
Methods 

As mentioned in section 2.3.1, we applied regression analysis as a linear statistical 

method to our training datasets. Equation 3 to Equation 6 in section 2.3.1 represent the 

resulting regression equations for the four mode:ls (Stitch (DAU), Stitch (DHU), HS Knot 

(DAU), and HS Knot (DHU)), which estimate the value of "skill level" based on the 

Stitch and HS Knot performance metrics. We substitute the performance metrics from the 

testing datasets in the corresponding regression equations to predict the related surgical 

skill levels. These values are represented in Table 33 and Table 34. 

It was mentioned in section 2.3.1 that we assigned a numerical value to each surgical skill 

level by dividing the interval from 0 to 1 intlo three equal regions, and assigning the 

center of each region to one surgical skill level (Figure 52). After predicting numerical 

values for the "skill level", we took a reverse action to classify those values into the three 

categories of Expert, Intermediate, and Novice, as follows: 

Expert 0 I Skill Level Value <0.333 

Skill Level Category = 0.333 I Skill Level Value <O.B67 

[ ~ o v i c e  0.667 I Skill Level Value I 1  

The predicted categories of surgical skill levels are shown in Table 33 and Table 34. 

Figure 52: Assigning numerical values to surgical skill levels 

1 , F q  , Ti;" - 
0 0.167 0.333 0.5 0.667 0.833 1 



Table 33: Test results of regression equations with Stitch task (DAU) and Stitch task @HU) 
testing datasets 





Table 34: Test results of regression equations with HS Knot task (DAU) and Stitch task (DHU) 
testing datasets 



In Table 34, percentage of matches and the RMS Error values for the results of regression 

analysis are compared with those obtained by filzzy classifiers. Performance of the fuzzy 

models has been slightly better in three of the four models. Stitch task (DAU), Stitch task 

(DHU), and HS Knot task (DAU) fuzzy models have a higher percentage of matches with 

lower amounts of RMS Errors compared to thr: results of regression analysis. The only 

fuzzy model that did not perform better than the regression analysis is the HS Knot task 

(DHU), with equal percentage of matches and a slightly higher amount of RMS Error. 

I Stitch Task (DAU) Stitch Task (DHIJ) 



Table 35: Comparing Regression Analysis and Fumy Classifier results 

1 Regression Analysis Results ( Fuzzy Classifier Results 

Percentage of RMS Percentage of 
Matches I Error I Matches Error 

Stitch (DAU) I 51.92 1 0.309 1 57.69 1 0.294 

HS Knot (DHU) 46.1 5 0.248 46.1 5 1 0.251 

Stitch (DHU) 

HS Knot (DAU) 

26.92 

40.38 

0.290 1 &%:: 10.268 
0.232 0.227 



7 DISCUSSION AND CONCLUSION 

Fuzzy set theory makes it possible to express heuristic claims about complicated facts in 

mathematical language, and is a powerful tool to handle imprecision or fuzziness 

associated with continuous phenomena dealt with in a large number of practical problems 

(Cox, 1999). Examples of such problems can be found in various fields of study such as 

physics, sociology, biotechnology, ecology, finance, medicine, and especially in 

engineering. 

In most cases, the underlying phenomena in such systems are not clearly understood and 

the most significant source of information is the knowledge of human experts. This 

knowledge may be too vague and inexact to be expressed by mathematical functions. It 

is, however, often possible to describe the performance of systems by means of natural 

language, in the form of if-then rules. 

In addition, the nature of many real-world systems is non-linear and cannot be 

represented by linear models used in conventioinal system identification. Artificial neural 

networks and fuzzy models are two of the most popular model structures used for the 

identification of non-linear systems from measured data. 

Fuzzy modelling and identification methodollogies have been successfully used for 

various aims in a broad range of real-world applications. Applications of fuzzy set theory 

are considerably more developed in engineering than in other areas of research (Klir et 

al., 1997). Two of the important applications of fuzzy logic are in the problem areas of 

decision-making and pattern recognition. 

Fuzzy methods have been broadly and successfidly developed in virtually all branches of 

decision-making, including multiobjective, multiperson, and multistage decision-making. 

These methods are, in general, more realistic th~an their classical counterparts (Klir et al, 

1997). 



The utility of fuzzy set theory is also well established in the problem area of pattern 

recognition. This is quite understandable since most categories we commonly encounter 

and use do not have precise boundaries (Pal, & Dutta Majumder, 1986). 

Fuzzy rule-based systems seem to be appropria~te tools to handle the problem of surgical 

performance evaluation, as the nature of the variables is continuous, the relationship 

between the inputs and outputs of the system is non-linear and complicated, and the only 

accepted methods of evaluation are based on the complex, imprecise and subjective 

opinion of experts. Although an objective method of surgical performance evaluation has 

been the focus of a number of studies, no formal framework has been set. 

In this project we investigated the use of fuzzy classifiers as a new approach in objective 

surgical skills assessment, based on numerical performance metrics collected by a 

surgical simulator. The goal was to create a skill evaluation scheme to be incorporated in 

computer-assisted surgical training systems. With proper assessment and validation, such 

systems can provide feedback during the training episodes, enhancing skills acquisition. 

Twenty six subjects with three different surgical skill levels (novice, intermediate, and 

expert), completed one suturing and one knot-tying task available in the MIST-VR 

surgical simulator. The performance data collected in the experiment were divided into 

two equal datasets: the training dataset, which was used to train the fuzzy classifiers, and 

the testing dataset, used to evaluate the resulting models. This was achieved with the use 

of two different data separation methods, the DAU and the DHU. 

The initial analysis of the user study data revealed some inconsistencies between the 

surgical skill levels and performance metrics collected by MIST-VR. In the Stitch task 

for instance, the Maximum Tissue Deformation values were generally higher in the 

expert and the novice groups, but low in the intermediate group (Figure 8). Similarly in 

the HS Knot task, the Maximum Thread Overstretch values had the highest values in the 

expert group (Figure 9). Basic statistical analysis on the collected data also did not 

suggest a strong correlation between the performance metrics collected by MIST-VR and 

the surgical skill levels (Table 8 and Table 9). However, it was hypothesised, and was 



proved to a great extent later, that fuzzy logic-based classifiers can recognize hidden 

patterns in even poorly correlated data and conquer the imperfections in the sample data. 

The Mamdani's Fuzzy Inference Method (Mamdani, 1977) was used to design four fuzzy 

classifiers: Stitch task DAU, Stitch task DHU, HS knot task DAU, and HS Knot task 

DHU. The initial models were designed employing the most popular fuzz:y inference 

properties. The constructed models were then tested with the testing dataset. 

The effects of a few different fuzzy inference properties were then explored on the 

performance of the classifiers. Various combinations of membership functions, t-norm 

operators, and defuzzification methods were applied to our models and each model was 

tested against the testing dataset. 

Performance of the classifiers with various combinations of fuzzy inference properties 

were compared based on the amount of "Root-Mean-Squared Error" in each system's 

results, and the number of matches between each system's predicted surgical skill levels 

and users' real levels of expertise. The best combination of fuzzy inference properties 

was identified for models with the highest number of matches, which also had a low 

amount of RMS Error. 

Systems with the DAU data separation method provided more reliable results, which may 

indicate that our sample population was not large enough to represent the overall 

population. This was due to the extremely busy schedule of the potential participants of 

this study, and also time and financial limitations. 

Regression analysis was used on the user studly data as a simple statistical method to 

identify the inputloutput relationship in the problem of surgical performance evaluation. 

The resulting regression equations were then tested with the testing datasets. The 

comparison between outcomes of the regression analysis and the fuzzy classifications 

showed that in general, fuzzy models have performed slightly better than the statistical 

method (Table 35). 



The preliminary verifications of our novel approach confirmed that fuzzy classifiers may 

have the potential to distinguish between various surgical skill levels, and the results of 

this research can be used as a basis for further improved models. 

Since our fuzzy classifiers were designed based on data values collected in a user study, 

the logistic difficulties in acquiring participants limited the fuzzy systems' source of data. 

A larger sample size which represents the pclpulation more accurately coulld generate 

more efficient classifiers. 

Further controlling the experimental conditions may also improve the results of the user 

study. For instance, the presenter in our study .was not blind to the participants' surgical 

skill levels, which may have negatively affected1 the results. 

Other factors such as age, gender, fatigue, and even previous experience with computer 

games may also have affected the results of this study. Further considerations when 

acquiring participants may improve the results. 

Another issue with the design of fuzzy classifiers in this study was the low correlation 

between the performance metrics collected by MIST-VR and the participants' surgical 

skill levels. Using more relevant metrics may improve performance of the classifiers. 

The initial design of the fuzzy classifiers was based on an ad hoc procedure. Investigating 

the effect of various fuzzy inference properties in section 5 showed that performance of 

these models could be improved by modifying the fuzzy inference properties. [n addition, 

other characteristics of the systems such as the membership functions' attributes could be 

further adjusted with the help of fuzzy adaptive learning systems (Abony, Nagy, & 

Szeifert, 1999; Jang, 1993). 

Additionally, using more sophisticated performance metrics such as force and torque 

measurements in advanced surgical training environments may result in more effective 

systems for assessment of a trainee's skill level. 



Finally, the combined effect of the fuzzy classifiers designed for different surgical 

manoeuvres (such as the Stitch and HS Knot tasks in this study) could be considered as 

an alternative way of predicting a trainee's surgical expertise. 
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Appendices 

Appendix A: Preliminary User Study 

A primary user study of 12 subjects in three catlegories of expertise (novice, intermediate, 

and expert) was conducted, employing Acquire! Place and Transfer Place tasks available 

in MIST-VR. Both tasks involved the manipulation of a ball with grippers and were 

among the most basic tasks defined in MIST-VR. Half of the performance metrics were 

used to design a fuzzy classifier for each task, and the rest to test the models. Our 

classifiers however, did not offer the optimal results. We believed that the results could 

be improved by: 

Testing a lager sample size that would be a better representative of the 

performance variation of our thre:e categories of participants, and 

Employing more complicated surgical tasks, which could increase chances 

of success of a classifier by providing a larger skill gap between the three 

categories of expertise. 

Our following experiment, which is explained in this thesis, was designed by 

incorporating the above-mentioned factors. 



Appendix B: User Study Questionnaire 

Using Fuzzy Set Theory to Evaluate performance on 
Surgical Simulators 
Study Questionnaire Form 

Part 1 : About the participant 

1. Participant's position: 
0 Senior Surgeon 0 Surgical Resident 0 Intern 
0 Other (Please specify): 

2. Participant's Age: 
0 19-29 0 29-39 0 39-49 0 49-59 0 Over 59 

3. Participant's dominant hand: 
0 Left 0 Right 

Part 2: Minimally Invasive Surgery training history 

1. Have you ever had training in minimally invasive surgery? 
0 No (Go to Part 3) 

Yes 

2. Have you had any training in computer-based simulators? 
0 No (Go to question 3) 

Yes 

0 6-9 
For how many hours? 

0 Less than 2 0 3-5 0 10-13 Over 13 

3. Have you had any training using physical simulators? 
0 No (Go to question 4) 
0 Yes 

For how many hours? 
0 Less than 2 0 3-5 0 6-9 0 10-13 Over 13 

4. Have you had any training in animal labs? 
0 No (Go to question 5) 
0 Yes 



For how many hours? 
0 Less than 2 0 3-5 0 6-9 0 10-13 Over 13 

5. Have you had any training in an OR, by observing a surgery? 
0 No (Go to question 6) 
0 Yes 

How many surgeries have you been present in? 

6. Have you had any training in an OR, by assisting a surgery? 
0 No (Go to question 7) 
0 Yes 

Please specify in how many surgeries and the type of assistance? 

7. Have you had any training in an OR, by performing a surgery under the 
supervision of an expert surgeon? 

0 No (Go to part 3) 
0 Yes 

How many surgeries? 

Part 3 : Previous surgical experience 

1. For purposes other than training, have you ever been present in the operating 
room as a performerlobserver of a minimally invasive surgery? 

0 No (Go to Part 4) 
0 Yes 

2. How many minimally invasive surgeries have you observed? 
0 0 01 -20  0 21-40 0 41-60 0 Over 60 

3. How many minimally invasive surgeries have you assisted in? 
0 0 01-20  0 21-40 0 41-60 0 Over 60 

Type of assistance: 

4. How many minimally invasive surgeries have you performed? 
0 0 01 -20  0 21-40 0 41-60 0 Over 60 

Part 4: Previous experience with surgical simulators 



1. For purposes other than training, have you ever used computer-based surgical 
simulators? 

0 No (Go to question 2) 
Yes 
For how many hours? 
Less than 2 0 2-5 0 6-9 0 10-13 0 Over 13 

2. For purposes other than training, have you ever used physical surgical simulators? 

No (Go to part 5) 
Yes 
For how many hours? 
Less than 2 0 2-5 6-9 0 10-13 Over 13 

-- 

Part 5:  Comments 

Thank you for participating in this experiment and for filling this questionnaire. 




