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ABSTRACT

Objective surgical performance evaluation is a non-linear and ambiguous problem and
hard to model with classic mathematical methods. This thesis explores employing fuzzy
set theory as a novel approach to this problem, since the main strength of fuzzy logic is

its ability to handle the vagueness and non-linearity of the everyday experiences.

Using a commercial surgical simulator, data were collected from subjects who
participated in user study of two surgical procedures. Half of these data were used to
design four fuzzy models for surgical skills classification. The remaining data were used
to test the constructed models and to investigate the effects of various fuzzy inference

properties on their performances.

Our results indicate satisfactory correlation between the surgical skill levels predicted by
the fuzzy models and the actual skill levels of the user. Thus, fuzzy classifiers can be

considered as effective tools to handle the fuzziness of objective performance evaluation.

Keywords:

Surgical performance evaluation, Objective performance assessment, Minimally invasive

surgical simulators, Surgical skill level, Fuzzy classifiers.
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1 INTRODUCTION

1.1 Minimally Invasive Surgery

Contrary to the traditional surgical approaches which have used incisions designed to
provide maximum exposure of the operative site, Minimally Invasive Surgery (MIS) uses
small incisions through which cameras and instruments are passed to accomplish the

operation from within a body cavity.

MIS was introduced to the world of medicine first by demonstrating a cystoscopy in the
early 1800’s in France, and was then occasionally used for procedures such as
gastroscopy, endoscopic investigation of the abdominal cavity, appendectomy, etc. until
the late 1900’s (Wayand, 2004). The MIS technology was developed during these years,
but it was in 1989 that the video demonstration of a laparoscopic cholecystectomy
(surgical removal of the gallbladder) marked the starting signal for MIS throughout
Europe. In the course of the following two years, practically all European countries, and

then other parts of the world started to operate laparoscopically (Wayand, 2004).

The MIS techniques of surgical access and exposure have a great advantage over
traditional incisions by significantly reducing trauma to the body, which results in better
cosmetic outcome, reduction of post-operative pain, earlier patient recovery time, and

therefore faster patient discharge from the hospital (NYU medical, 2005).

With the introduction of minimally invasive surgery however, surgeons must learn
radically new and complex skills and procedures. Traditional methods of training that
were adequate for conventional surgery may not be as effective in demonstrating and
teaching these substantially new skills. A new standardized structured program for
minimally invasive surgery training has been of interest to many researchers over the past
decade. Recent efforts to develop such programs have generally involved the use of
training boxes or computer-based virtual reality simulations (Rosen, Hannaford,

Richards, & Sinanan, 2001; Chen, Yeasin, & Sharma, 2003; Stylopoulos et al., 2004).



1.2 Training

Studies have shown that minimally invasive procedures such as laparoscopic
cholecystectomy may have a higher rate of operative complications than the traditional
open surgery. For instance, Regan, Yuan, and McAfee in 1999 investigated the feasibility
and safety of minimally invasive spine surgery compared with that of open procedures.
Their study concluded that the complications were higher for the minimally invasive
approach (4.9%) compared to the traditional approach (4.2%). (Regan, Yuan, & McAfee,
1999). Another study has shown that the odds ratio for intra-operative injury in
laparoscopic cholecystectomy compared with open cholecystectomy was 1.79, in

Western Australia in the period 1988 to 1994 (Fletcher et al., 1999).

The higher rate of complications in MIS could be due to the following limitations of
these procedures: First, a laparoscopic surgeon has only a two-dimensional view, with a
restricted field of vision. Second, physical feedback is limited, and thus visual cues
become more critical in identifying anatomy. Additionally, the increasing reliance of the
surgeon on technology adds an intangible layer of separation between the doctor and

patient.

Although these limitations are real, research shows that laparoscopic procedures are
associated with a learning curve, which once mastered, are effective and safe when

compared with traditional techniques of surgery (Regan, Yuan, & McAfee, 1999).

Surgical skills are principally obtained under the long-established apprenticeship model
in animal and human subjects. Residents learn by observation followed by participation,
taking more active roles in the operation as their experience increases (Moorthy, Munz,

Sarker, & Darzi, 2003).

However, methods of training that were suitable for the traditional surgical scheme may
not be as efficient in training significantly new MIS procedures. Performing MIS
involves a multi-dimensional series of tasks requiring a combination of visual

information and the kinematics and dynamics of the surgical tools (Rosen et al., 2001).



Obtaining these skills under the traditional apprenticeship model requires extensive
number of hours of training in the operating rooms. This is in face of the increasing
limitations on the time and resources needed to train surgeons, which have reduced the
opportunity to acquire surgical skills in the operating theatre (Moorthy et al., 2003). This
has led to a further emphasis on finding innovative ways to teach or enhance the MIS

skills outside the operating room (Tendick et al., 2000).

Virtual reality training has been a long-term goal of numerous investigators and has been
proposed as a method to both instruct surgical students and objectively evaluate their
skills in performing surgical operations. (Rosen et al., 2001; Chen et al, 2003;
Stylopoulos et al., 2004). Researchers from different backgrounds such as engineers,
scientists, computer programmers, anatomists, and experienced surgeons are making
effort to improve these systems by creating more realistic surgical scenarios and practice

sessions that help residents master their skills during their course of training.

Computer simulators are used for training in other industries such as military, nuclear,
maritime, transportation and most prolifically, aviation. Flight simulators have been of
interest since the early 1900s and have been used to familiarize flight crews in normal
and emergency operating procedures. In such training programs the trainee does not
advance to operating the real system (aircraft, tank, automobile, ship, etc.) until a set of
pre-defined criteria as determined by testing “experts” with their performance level as the
gold standard, has been met on the simulator (Simulators for Training, 2003). Similar
approach could be taken in the surgical field; the resident does not operate upon a patient

until the satisfactory performance level has been achieved on the simulator.

Using simulators as training tools has several advantages for both the trainees and the
educational system. A less stressful training environment, lower training costs, and a
lower risk to the trainees are to name a few. For example in the aviation industry, because
powered flight is hazardous to attempt untrained, flight simulators are used to enable new
pilots to get the feel of the controls without actually being airborne. In addition, pilots are
able to train for situations that they would be unable to do safely in an actual aircraft,

such as complete power loss, engine fires, electrical faults, storms, slippery runways,



navigational system failures and countless other problems which the crew need to be

familiar with and act upon (Wikipedia, Modern simulators, 9 4).

Translated into the surgical environment, computer simulators provide a less stressful
learning environment for the surgical students by eliminating the risks of operating on
real patients. In addition, they allow the trainees to deal with emergency operating
procedures as well as rare but critical surgical scenarios that the students may not
necessarily face in the operating theatre during their course of training. To master their
skills, the students also have the option of practicing their weaknesses on the simulators
as many times as they want, without having to face the limitations of real surgical
operations. Other advantages of using simulators as surgical training tools include a
lower risk to the patient, a lower cost, and a standardized method of skills evaluation

(Richards, Rosen, Hannaford, Pellegrini, & Sinanan, 2000).

1.2.1 Performance Evaluation

In recent years, there has been a growing interest in competence assessment in medical
practice and especially so in surgery (Darzi, 2001). Until very recently, the only method
of evaluating the level of competence in minimally invasive surgery has been based on
examinations, log books, opinion of experienced surgeons observing the operation on the
viewing monitors, and the overall outcome of the procedure (Cuschieri, 2001; Moody,
Baber, Arvanitis, & Elliott, 2003). All these methods are largely subjective and lack
validity and reliability. As mentioned by Moorthy, Munz, Sarker, and Darzi (Moorthy,
Munz, Sarker, & Darzi, 2003), deficiencies in training and performance are difficult to
correct without an objective feedback, making it essential to have a standardized
objective method for assessment of surgical competency. He addresses a series of
objective surgical assessment methods such as checklists, global rating scales, and
dexterity analysis systems, which have been developed in recent years and are being used

in various surgical training programs (Moorthy et al., 2005).

Checklists are one of the commonly used methods of performance evaluation. The
residents are required to perform a series of procedures while being observed by an

expert. There is a different checklist for each procedure, specifying the steps that need to



be taken during the operation. The supervisor verifies whether the student has performed
or missed any particular step (The royal Australian, Surgical Skills Competence, q 1; A.

Nagy, personal communication, December 4, 2003).

The Objective Structured Assessment of Technical Skills (OSATS) is an example of a
global rating scales system which was developed in Toronto, Canada (Martin et al.,
1997). The system consists of six stations for residents and trainees to perform
procedures in a fixed time period on live animals or bench models. An expert observes
and evaluates the students during the performance of tasks at each station by using
checklists specific to the operation or task and a global rating scale (Moorthy et al.,
2005).

It has been said that using checklists removes the subjectivity of the evaluation process
by turning the examiners into observers, rather than interpreters of behavior (Regehr,
MacRae, Reznick, & Szalay, 1998). However, using checklists and global rating scales
could be time consuming, as it requires the presence of multiple expert observers at the

examination scene or extensive video watching (Moorthy et al., 1997).

One of the important aspects of technical skill, especially in MIS, is the psychomotor
skills or the dexterity required to perform the planned procedure (Darzi, Smith, &
Taffinder, 1999; Darzi, 2001). This is more than being able to perform a procedure with
quick and fluent movements that may look impressive to an observer. As Darzi (2001)
points out, “it includes, for example, being able to suture tissue accurately and tie knots
that are functional and prevent fluid leaking, but are not so tight as to cause tissue

damage” (Darzi, 2001).

Dexterity analysis systems such as the Imperial College Surgical Assessment Device
(ICSAD) or the Advanced Dundee Endoscopic Psychomotor Trainer (ADEPT) are
developed to objectively evaluate the dexterity of surgical residents and trainees
(Moorthy et al., 1997). ICSAD is a commercially available electromagnetic tracking
system (Isotrak II, Polhemus, United States) and consists of an electromagnetic field
generator and two sensors that are attached to the surgeon’s hands at standardized

positions. The positional data generated by the sensors is converted to dexterity measures



such as the number and speed of hand movements, the distance travelled by the hands

and the time taken for the task.

Many studies have established the validity of dexterity analysis systéms for surgical
performance evaluation (Datta, Mackay, Mandalia, & Darzi, 2001; Taffinder, Smith,
Mair, Russell, & Darzi, 1999; Smith, Torkington, Brown, Taffinder, & Darzi, 2002). One
drawback of this approach however, is that it is impossible to ensure standardization,
since the students operate on real patients and all patients are different. In addition, other
factors such as patients’ safety can affect the performance of the trainees (Moorthy et al.,

1997).

After the important role of computer-based simulators in MIS training was realized,
attention was turned towards development of objective technical skill evaluation methods
on the simulators. Computerized systems have enabled the recording of quantitative
dexterity parameters including time to perform the surgical tasks, economy of hand
movements, smoothness of instrument motion and applied forces, which cannot be
measured easily with conventional instruments alone. New technologies have been
developed in the past decade that address the issues of objective assessment of surgical

dexterity to some extent.

1.3 Related Work

Chen et al. (2003) specify three requirements for a system to accurately measure the
technical competence of the surgical performance: (1) the system must have adequate
sensing techniques to monitor the user’s operation; (2) the system must extract
appropriate features from the sensing data; and (3) the system needs a good
computational model to generate a “score”, representing the skill demonstrated in the

operation based on the relevant sensing data (Chen et al., 2003).

Computer based surgical simulators satisfy the first requirement by having the ability to
monitor and record the performance of operating users. The other two requirements
however, have been the main challenge in defining applicable methods of performance

evaluation. Several researchers over the past decades have focused on identifying reliable



metrics that are representative of users’ dexterity in a procedure, and a system to translate

those metrics into values that correlate with the user’s real level of expertise.

Operative speed is known as an important factor in objective measurement of technical
skill. Van-Rij et al. (1995) have used time to quantify skill in junior surgeons (Van-Rijj et
al., 1995), and Hanna, Shimi, and Cuschieri (1998) have utilized time as a means of skill
evaluation in experienced surgeons (Hanna, Shimi, & Cuschieri, 1998). However,
evaluating competence simply by setting time targets for certain procedures is crude and
unacceptable. As Darzi et al. (1997) point out, “a fast surgeon is not necessarily a good

surgeon”. (Darzi et al., 1997).

Other studies have used electromagnetic, mechanical, and optical motion tracking
systems to analyze the hand and tool movements during surgical operations. Software is
used to convert the positional data generated by the sensors to dexterity measures (Darzi,

2001).

The Imperial College Surgical Assessment Device (ICSAD), is an example of the
electromagnetic motion tracking systems that has been used in several studies to
determine a number of dexterity metrics such as the number and speed of hand
movements, the distance traveled by the hands and the time taken for the task at hand.

(Taffinder, Smith, Huber, & Russell, 1999; Datta et al., 2002).

The Blue DRAGON (Brown, Rosen, Chang, Sinanan, & Hannaford, 2004) is another
system for acquiring the kinematics and the dynamics of the endoscopic tools during an
operation. It includes two four-bar mechanisms equipped with position and force/torque
(F/T) sensors for measuring the positions and orientations of two endoscopic tools along
with the forces and torques applied by the surgeon's hands. In addition, the synchronized
view of the surgical scene is incorporated into a graphical user interface displaying the
data in real-time. For each surgical task different types of the tool-tip/tissue interaction
are decomposed into discrete tool manoeuvres (states), each with a unique F/T pattern
using a fully connected, finite-states Markov model. Their study showed that major
differences between residents at different skill levels were: the types of tool/tissue

interactions being used, the transitions between tool/tissue interactions being applied by



each hand, time spent while performing each tool/tissue interaction, the overall
completion time, and the variable F/T magnitudes being applied by the subjects through

the endoscopic tools.

Chen et al. (2003) also used Hidden Markov Models (HMMSs) to model and evaluate
hand movements in a typical surgical exercise such as surgical knot-tying (Chen et al.,
2003)". They used a video-based technique for tracking the hand movements during a
surgical knot-tying task. Their method for surgical skill assessment is based on the log
probability of an observation sequence for a specific skill model. The probability
measures the stochastic similarity between the performance of the observation sequence
and the performance represented by the model — the higher the probability, the closer is
the observation sequence to the model. Although they only consider the hand movements
in their analysis of performance evaluation, they suggest that the same HMM-based
approach could be taken to model other components of human skills, such as the forces

applied by hands, the orientation of the hands, and the hand-eye coordination.

Payandeh, Lomax, Dill, MacKenzie, and Cao in their studies in 2002 video taped a series
of surgical tasks performed in an animal lab and conducted time-line studies of tool
movements during the operations. By evaluating the video taped training sessions they
showed that surgical tasks could be decomposed into a series of subtasks. They identified
and analyzed five basic motions that the surgeon/tool performed during various
procedures: reach and orient, grasp and hold/cut, push, pull, and release. The study
concluded that the length of time taken to complete these subtasks could be a measure of
performance differences between novices and experts (Payandeh, Lomax, Dill,

MacKenzie, & Cao, 2002).

A different approach was taken by Cotin et al. (2002) (Cotin et al., 2002). Their system,
the Computer-Enhanced Laparoscopic Training System or CELTS (Stylopoulos et al.,

' Hidden Markov Models are capable of characterizing two embedded stochastic processes with one
underlying process that is not observable, but can only be observed through another process that produces
observation sequences. In the case of surgical knot tying for example, the skill of tying surgical knots is the
hidden stochastic process, and the other process is a video sequence of continuous hand movements during
the operation of tying a surgical knot.



2004), uses a five degree of freedom device capable of tracking the motion of two
laparoscopic instruments. Using the kinematics analysis method, software converts the
raw data into the following parameters: the spatial distribution of the tip of the
instrument, smoothness of motion, depth perception, response orientation, and
ambidexterity. Also included in the measurements is the time to perform the task and
outcome of the task as two other aspects of success of a procedure. At the end of each
procedure, the software calculates a standardized z-score for each of the performance
parameters by computing their distances from the results set by a group of experts. A
final score is then determined for each instrument by calculating a weighted average of

all the z-scores, providing instant feedback for the user.

Commercial systems such as The Minimally Invasive Surgical Trainer-Virtual Reality,
MIST-VR (Mentice,: Gothenburg, Sweden) have also developed methods of surgical
skills assessment. At the end of each procedure, the MIST-VR provides a “score” for the
user by calculating a weighted average of the user’s performance metriés. Several studies
to date have confirmed that the MIST-VR has validity as an assessment tool (Torkington,
Smith, Rees, & Darzi, 2001; Jordan, Gallagher, McGuigan, & McClure, 2001).

Recently, a non-traditional mathematical approach was proposed, using fuzzy logic to
evaluate surgical performance as judged by expert surgeons (Hajshirmohammadi &

Payandeh, 2005; Huang, Payandeh, Doris, & Hajshirmohammadi, 2005).

1.4 Motivation

Despite the recent efforts to develop standardized structured performance evaluation
systems in minimally invasive surgery, none of these models has been widely accepted
and officially integrated into a surgical training program or any other official training
course. The main challenge in designing a standard method of evaluation is to design a
scoring scheme that correlates with the subjective opinion of experienced surgeons, or in
other words, to formulate the expert’s judgment. Formulating a subjective opinion is not
a simple task, as human beings consider an enormous number of factors in their
decisions, and there are times that even themselves cannot specify reasons behind their

decisions.



During interviews with experienced laparoscopic surgeons (A. Nagy, personal
communication, December 4, 2003), it was found to be impossible to get a structured
answer to the question “What is called a satisfactory performance in MIS?”. As they
described, “surgery is a combination of art and science... we cannot look at two
procedures and call one of them superior to the other, as long as they both have

satisfactory outcomes”.

Experts’ opinions seem to be too ambiguous and fuzzy to be formulated with
conventional mathematical techniques. That triggered the idea of using Fuzzy Set Theory
for this purpose, as the main strength of fuzzy logic is its ability to deal with the
vagueness and ambiguity in human’s natural language (Cox, 1999; Fuzzy Logic, 1997).

Over the past few decades, fuzzy logic has been introduced to successfully solve the
problem of imprecision or fuzziness common in various fields of study such as sociology,
physics, biology, finance, marketing, engineering, psychology, health management, and
computer programming. Fuzzy logic has also been effectively employed in computer
simulated systems. Examples include development of a fuzzy logic performance control
system to reduce variable error and overshoots in a reconfigurable general aviation
simulator (Beringer, 2002). Ota, Loftin, Saito, Lea, and Keller (1995) also outline how
the task of dissecting a blood vessel in a virtual environment can be evaluated by fuzzy

logic (Ota, Saito, Lea, & Keller, 1995).

This work explores the possibility of employing fuzzy set theory to evaluate the
performance of the users of minimally invasive surgical simulators. We proposed a
simple method to develop a fuzzy-based if-then: rule system, or more specifically a fuzzy

classifier based on performance data collected in a virtual reality trainer.

Research shows that surgical procedures can be divided into a number of tasks and
subtasks, and overall surgical competence can be evaluated based on performance in each
task (Payandeh et al., 2002). Thus, in this project, the focus was to design fuzzy systems
that can objectively evaluate a trainee’s skill level on two important tasks in MIS:

laparoscopic suturing and laparoscopic knot-tying.
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The long-term goal of this research is to create an automatic skill evaluation scheme to be
incorporated in computer-assisted surgical training systems. With proper assessment and
validation, such systems can provide both initial and ongoing assessment of operator skill
throughout one’s careér, while enhancing patient safety through reduced risk of
intraoperative error. Additionally, a computerized trainer can provide either terminal
(post-task completion) or concurrent (real time) feedback during the training episodes,

enhancing skills acquisition.

1.5 Contribution

This project explores the feasibility of fuzzy logic-based performance classifiers as a
novel solution to the subjective nature of the traditional methods of surgical skills
evaluation. The goal was to develop a method that is capable of objectively predicting a
surgeon’s level of expertise, based on his/her performance metrics during a procedure on
a surgical simulator. To achieve this goal, a user study was conducted to collect
performance data from 26 subjects in three different surgical skill levels: novice,
intermediate, and expert. Each user performed two surgical tasks on a virtual reality

surgical simulator, namely laparoscopic suturing and laparoscopic knot-tying.

The collected data were divided into two halves: the training dataset which was used to
train the fuzzy models, and testing dataset to test the constructed systems. Two different
approaches were taken to separate the data into the testing and training datasets, as

explained in section 4.

A new algorithm was developed to design four fuzzy classifiers, two for each surgical
task. Various fuzzy inference properties were then applied to the constructed classifiers,
and the optimal combination of fuzzy inference properties were determined for the
models. The performances of the classifiers were then tested with the testing datasets, and
the reliability of each model was determined by calculating the number of systems’

correct answers and the amount of error in the systems’ results.

A simple statistical method was also used to analyse the user study data and its results

were compared with the fuzzy models’ outcomes.
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The results were promising. It was concluded that fuzzy classifiers may have the
potential to effectively handle the complexity and fuzziness of objective surgical

performance evaluation.

1.6 Thesis Organization

The organization of this thesis is as follows:

Section 1 introduces the minimally invasive surgery and the current issues in surgical
performance evaluation. Research works related to this topic are also discussed in this

section.

Section 2 describes the process of collecting users’ performance data on a surgical

simulator. Some analyses of the raw data collected in the user study are also discussed.

Section 3 provides a brief background information about fuzzy logic and fuzzy set theory.
The history and applications of fuzzy logic are discussed. Basic principles of fuzzy set

theory and the design process of fuzzy inference systems are also explained.

Section 4 is a step-by-step explanation of the design process of fuzzy classifiers for
surgical performance evaluation. The primary analysis of performance of classifiers are

also demonstrated.

Effect of various fuzzy inference properties on performance of the classifiers are explored
in section 5, and the optimal combination of these properties for the designed fuzzy

models are identified. The reliability of the classifiers are also verified.

The results are summarized in section 6 , and compared with results of a simple statistical

approach.

Finally section 7 concludes this thesis.
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2 DATA COLLECTION

2.1 Method

We conducted a user study to test surgical performance of subjects of different MIS skill
levels and collected their performance data to design and test a fuzzy classifier for each
of the surgical tasks in the study. The Minimally Invasive Surgical Trainer-Virtual
Reality (MIST-VR) (Mentice Corp., 2004) was used to conduct the user study. Subjects
were selected and categorized into three different skill levels based on their MIS

experience, and were to complete two surgical tasks available in MIST-VR.

This experiment, which was a follow up on our preliminary user study (Huang et al.,
2005), provided us with promising results and a probable new way of categorizing
surgical performance in computer-based simulators (For a summary of our preliminary

study, please refer to Appendix A: Preliminary User Study).

2.2  User Study

2.2.1 Experimental Set Up

The user study was conducted in an isolated room in Surrey Memorial Hospital, BC,

Canada.
Our set up (Figure 1) included:

» A two-handed laparoscopic device with needle-driver handles (Virtual Laparoscopic

Interface, by Immersion Inc.)
* A dual Intel Xeon 2.8Ghz computer

* A 19” eye-level LCD monitor

13



Figure 1: Experimental Set up

The simulator that we used for the study was the MIST-VR, which is a fully validated
(MIST User Manual, 2002), commercially available laparoscopic simulator. It has been
shown that training on MIST-VR has lead to faster adaptation to the novel psychomotor
restrictions encountered by laparoscopic surgeons (Torkington et al. 2001; Jordan,

Gallagher, McGuigan, & McClure, 2001).

MIST-VR has tutorial, examination, analysis, and configuration modes. To prepare the
surgery residents for the operating rooms, the system offers a series of tasks, from basic
laparoscopic concepts such as target manipulation and placement, transferring objects
between instruments, and diathermy, to more complicated surgical tasks such as
laparoscopic suturing and knot-tying. The user’s performance metrics are measured and

recorded in a database for later reference and performance assessment.

For this study, the plan was to employ complicated surgical tasks to increase the chances
of finding a noticeable pattern in performance data of users in different levels of

expertise. We selected the Stitch and the Half-Square Knot tasks defined i1 MIST for
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this experiment, as laparoscopic stitch and knot tying skills are considered to be of the

most complex tasks in MIS (Tendick et al., 2000).

Stitch Task

Figure 2: The Stitch Task

Left: Stitching in real operaticn (Adopted from: MIST Suturing Module, 2003, by
permission) , Right: MIST-VR stitch task (Source: MIST Suturing Module, 2003, by
permission)

This task is a test of the user’s ability to pierce the tissue with the needle and then pull the
needle through the tissue to make a complete stitch (Figure 2 - Right). The objective is to
fulfil a complete stitch with maximal accuracy and minimal tension on the tissue. This
skill involves accurate 3-D placement, penetrating force with minimal strain to the tissue

and curved movement of the needle.

Visual clues guide the user throughout the whole task. For example, a green band around
one of the two grippers indicates which one to use at the moment, or target spheres on the

tissue mark the correct location to penefrate or pull out the needle (Figure 3 - a).



Figure 3: Snap shots of MIS stitching in real operation (Left column) and in MIST-VR (Right
column) for a right-handed.
(a) Penetrating the needle into the tissue with the right tool. (b) Grabbing the needle
with the left tool to exit the tissue. (¢) Pulling out the needle to complete the stitch user
(Adopted from: MIST Suturing Module, 2003, by permission)
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The task starts with the tool corresponding to the user’s dominant hand being active’ (e.g.
the right tool becomes active for a right-handed user to start the task). To make a
complete stitch, the subject should use the active gripper to grab the needle, then move

the needle towards the tissue and penetrate the tissue with the needle at the entry target

2 MIST-VR gives us the option of specifying and setting up the scene for left or right-handed asers.



sphere. The entry sphere will change color to green when the tissue is penetrated at the

correct position (Figure 3 - a).

The subject should then push the needle out through the tissue at the exit target sphere

(which will change color to green when the needle exits the tissue at the correct position),

and use the other gripper to grab the needle at the tip (Figure 3 - b) and pull it through in

a curved motion, following a path defined by the needle's radius (Figure 3 - c).

In order to evaluate the user’s dexterity, the system accounts for two categories of

performance metrics; Dynamic Evaluation Measures and Errors.

Dynamic Evaluation Measures for the Stitch task include:

Time: Total time spent to complete each trial (i.e. each stitch).

Entry/Exit Hit-Target Distance: Distance between the point that the
needle enters or exits the tissue and the target points marked by target

spheres (as shown in Figure 3).

Maximum Entry/Exit Deformation: Maximal tissue deformation of
entry/exit stitch from entry/exit hit point which is calculated through a
model of the tissue’s force-deflective (stiffness) behaviour. These values
are associated with the amount of penetrating force on the needle and its
path of motion while penetrating/exiting the tissue (because of the arched
shape of the needle, to minimize the strain on the tissue, the needle has to
be pulled through in a curved motion, following a path defined by its

radius).

Errors mainly take account of number of inappropriate collisions between the tools or

between tools and the tissue within the operating space. Table 1 demonstrates a complete

list of performance metrics for the Stitch task.
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Table 1:

Performance metrics for the Stitch task

Metrics

Description

Time

Total time spent to complete the task

Entry Hit-Target Distance (Hit Ent)

Distance between entry hit point and entry target point

Exit Hit-Target Distance (Hit Ex)

Distance between exit hit point and exit target point

Max Entry Deformation (Def Ent)

Maximal tissue deformation of entry stitch from entry hit point

Dynamic Evaluation
Measures

Max Exit Deformation (Def Ex)

Maximal tissue deformation of exit stitch from exit hit point.

Tool-Tool Collision (To-To)

When any segment of the left tool touches any segment of the
right tool

Hit Outside Entry Target (Out Ent)

When needle hits the surface outside the entry target area

Entry Overstretch (Over Ent)

When the entry stitch is deforming the surface more than a
given limit

Hit Outside Exit Target (Out Ex)

When needle hits the surface outside the exit target area

Exit Overstretch Error (Over Ex)

When the exit stitch is deforming the surface more than a given
limit

Incomplete Entry Stitch (Inc Ent)

When the needle is pulled out again through the entry point

Incomplete Exit Stitch (Inc Ex)

When the needle is pulled out again through the exit point

Errors

Closed Needle Entry (Cl Ent)

When trying to acquire the needle with the tool, but the grips
are closed

Tip Removed (Top Rem)

if an active tool entered the target object with open grips but
was subsequently withdrawn without closing the grips (which is
a failure to acquire the object)

Wrong Section Grip (Wr Sect)

When the tool grabs the needle outside the target section

Unexpected Tool (Unex To)

If the wrong tool grabs the needle

Unexpected Stitch (Unex St)

The needle hits the tissue without the target area being defined
by a target sphere (i.e. a red sphere appears when the stitch is
made)

Needle Dropped (Ne Dr)

The grips of the first tool open up after acquiring the needle

Needle Pushed Out of Reach (Tar Out)

The tool has pushed the needle out of reach
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Half-Square Knot Task

Figure 4: The Half-Square Knot Task

Left: knotting in real operation (Adopted from: MIST Suturing Module, 2003, by
permission), Right: MIST HS Knot task (Adopted from: MIST Suturing Module, 2003,
by permission)

The purpose of the Half-Square Knot (HS Knot) task is to train the correct movements in
the first half of a square knot. This includes the winding of the thread around one tool,

and then to tightening the knot (Figure 4).

Similar to the Stitch task, visual clues guide the user throughout the procedure. Examples
of these clues include the green bands around the tool(s), marking the active gripper at
the time, and target spheres spotting the part of the thread that needs to be grabbed in the
next move (Figure 5 - a). The thread itself also changes color into red, if it is
overstretched, and into green, when the knot is tightened enough at the end of the

procedure.

To start the frask, the user must acquire the needle with the active tool (which is the
grasper corresponding to the user’s dominant hand), and wind the thread around the other
tool while holding the needle with the first grasper (Figure 5 - a). Once a complete 360°
loop around the second tool is acquired, a target sphere appears at the free end of the
thread (Figure 5 - a), which is a clue for the user to grab the end of the thread with the
second tool (with thread loops intact as shown in Figure 5 - b) and move the left and right

instruments in opposite directions to form a knot (Figure 5 - ¢).



Figure S: Snap shots of MIS Knotting in real operation (left column) and in MIST-VR (right
column) for a right-handed user
(2) Winding the Thread, (b) Forming the knot, (¢) Tightening the knot (Adopted from:
MIST Suturing Module, 2003, by permission)

(@)

Similar to the Stitch task, performance metrics that MIST-VR collects for the HS Knot
task fall into two categories; Dynamic Evaluation Measures and Errors, which are

summarized in Table 2.
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Table 2: Performance metrics for the HS Knot task

Metrics Description
Time Total time to complete the task
o549
E '% g Max Winding Overstretch | Maximal thread overstretch during winding (instead of
g(_g @ pulling the thread through the stitch)
Az2
W= Max Tightening Maximal thread overstretch during tightening
Overstretch
Tool-Tool Collision When any segment of the left tool touches any
segment of the right tool
Closed Needle Entry When the active tool enters the needle with a closed
grip
Tip Removed If an active tool entered the target object with open

grips but was subsequently withdrawn without closing
the grips (which is a failure to acquire the object)

[72)
g Wrong Section Grip When the tool grabs the needle outside the target
W ' section
Dropped Thread When the free thread end is dropped after first been
grabbed correctly
Needle Dropped The grips of the first tool open up or are too loose after
acquiring the needle
Needle Pushed Out Of The tool has pushed the needle out of reach
Reach

Dynamic Evaluation Measures for the HS Knot task include:
e Time: Total time spent to complete each trial (i.e. each knot).

e  Maximum Winding Overstretch: The thread can be overstretched during
winding. The maximal thread overstretch, which is calculated through a
model of the thread’s force-deflective behaviour, will therefore represent
the likelihood of pulling the thread through the stitch before a knot is

formed, and is measured as one of the performance metrics.

o Maximum Tightening Overstretch: Maximal thread overstretch during

tightening the knot is also measured through a model of the thread’s force-
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deflective behaviour as another metric representing the user’s

performance..

2.2.2 Experimental Design

The total of 26 subjects (8 Experts, 8 Intermediates, and 10 Novices) participated in the
user study. Subjects were selected based on their experience in MIS surgery; senior
surgeons who had performed more than 50 operations were considered to be experts,
surgical assistants who were surgeons mainly responsible for controlling the camera or
holding forceps in the operating room, and had not performed more than 20 MIS (or any
other type of surgery) were in the intermediate level, and OR (Operating Room) nurses,
who were familiar with laparoscopic surgery by observing surgeries, but had no MIS

experience themselves, consisted our group of novices”.

Participants were from different age groups (all over 29 years of age), and were consisted
of 16 females and 10 males. They were asked to fill out a questionnaire ( Appendix B:
User Study Questionnaire) to give us information about their previous surgical
experience and their prior MIS training. Most of the participants in the expert group had
at least 20 hours of previous MIS training under the supervision of an experienced
surgeon in the operating room, and in some cases for a few hours in animal labs. In the
intermediate group, except for two of the participants, no one had significant hours of
prior MIS training. As for surgical simulators, only one of the experts and one of the
intermediates had training experience with physical simulators for more than 2 hours, but
no one was previously trained with virtual simulators. In the novice group, none of the

participants had any type of MIS training before.

3 Participants were selected and categorized based on experienced surgeons’ suggestions at Surrey
Memorial Hospital, BC, Canada.
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Table 3: Experiment steps and the approximate timing

Experiment steps Approximate time
{min.)
Before starting the Sign the consent form 1
experiment Fill out the questionnaire 2
Demo of the Stitch task 0.5
Errors explained 1
Stitch Task 1 practice trial (not counted in the 15
results) )
The actual test - 4 trials (counted in the 6
results)
Demo of the HS Knot task 0.5
Errors explained 1
HS Knot task 1 practice trial (not counted in the 15
results) )
The actual test - 4 trials (counted in the 6
results)
Total: 21

The experiment took less than 25 minutes for each subject. Participants were required to
complete the Stitch task first, and the HS Knot task second. For each task, the presenter
introduced the subject to the task, by demonstrating an error-free trial of the task and
explaining what constituted as errors. Each subject was then allowed to practice the task
once, before performing the four trials, which were counted in the results. Table 3 recaps

the steps in the experiment and the approximate timings.

For the two tasks employed in this experiment, MIST gives us the option of specifying
and setting up the operating space for a left or a right-handed user. The operating scenario
for a left-handed user is symmetrical to the one for a right-handed user (e.g. in the Stitch
task, a left-handed user starts the task by grabbing and inserting the needle into the tissue
with the left tool, and continues by pulling out the needle from the other side with the
right gripper, as opposed to a right-handed user who starts the task with the right tool and
completes the stitch with the left tool - Figure 6). To eliminate the effect of hand-
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dominancy in our results, we set up the tasks for each user based on their dominant-
hands, and only considered data values corresponding to the dominant hand in our

analysis.

Figure 6: Symmetrical scenes for right and left-handed users.
Left: MIST Stitch task for a left-handed user, Right: MIST Stitch task for a right-
handed user

2.3 Data Analysis

As shown in Table I and Table 2, MIST VR collects 16 different performance metrics for
the Stitch task and 10 for the HS Knot task. Studies to date have proven that MIST
performance metrics have validity in terms of surgical skills assessment (Darzi, 2001;
Gallagher, McClure, McGuigan, Crothers, & Browning, 1999; Wilson, Middlebrook,
Sutton, Stone, & McCloy, 1997), and therefore are appropriate to be used as inputs to our
fuzzy classifiers. However, in designing a fuzzy system without the help of automated
fuzzy rule generating software, having a large number of input parameters can lead to an
unmanageably large number of possible combinations and therefore expert rules (Fayek,
& Sun, 2001). Thus, to yield a more manageable model we reduced the number of
parameters by combining each group of parameters of the same nature into a new data
value, and ignoring factors that were believed to be less effective on the results. The

changes include:

e Compiling all the different errors that MIST accounts for, into a new
parameter called Number of Errors, for both Stitch and HS Knot tasks.

(Number of Errors = Sum of all Errors)
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e Compiling Maximum Entry Tissue Deformation and Maximum Exit Tissue
Deformation in the Stitch task, into a new parameter called Maximum
Tissue Deformation (Max Tissue Deformation = Maximum Entry Tissue

Deformation + Maximum Exit Tissue Deformation)

e Compiling Maximum Winding Overstretch and Maximum Tightening
Overstretch in the HS Knot task, into a new parameter called Maximum
Thread Overstretch (Max Thread Overstretch = Maximum Winding

Overstretch + Maximum Tightening Overstretch)

e Ignoring the Entry/Exit Hit-Target Distance values in the Stitch task.

Table 4 and Table 5 demonstrate the resulting new parameters that were employed in

designing the fuzzy classifier.

Table 4: Performance metrics used for Stitch task in data analysis
Metrics Description
Time Total time spent to complete the task
Max Tissue Sum of Max Entry and E:xit Tissue Deformation (representing max
Deformation tissue deformation throughout the whole task of stitching)
Number of Errors ‘| Sum of all the errors
Table 5: Performance metrics used for HS Knot task in data analysis
Metrics Description
Time Total time spent to complete the task
Max Thread Sum of Max Winding Overstretch and Max Tightening Overstretch
Overstretch (representing max thread overstretch throughout the whole task of
knotting)
Number of Errors Sum of all the errors
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Also, to have analogues ranges of data values for different parameters, we normalized the
data collected by MIST, by dividing all the performance measurements for each
parameter to the maximum value among them. From now on, we will only work with
normalized data (ranging between 0 and 1) rather than the raw data collected in the user

study.

An example of all the modifications applied to the raw data (collected by MIST-VR) to
transform it into appropriate data for our analysis is shown in Figure 7. Data values
shown in the example are an expert user’s performance metrics for one trial of the Stitch

task.

Figure 7: Example of modifications applied to the raw data collected by MIST-VR

Performance metrics collected by MIST-VR (raw data)

~“Dynamic Evaluation

5 — Errors
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Deformation |
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Figure 8: Stitch Task - User's individual and group average performance metrics
(2) Time, (b) Num. of Errors, (¢) Max. Tissue Deformation (x-axis: Users, v-axis:
Mormalized performance metrics)
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Figure 9: HS Knot Task - User's individual and group average performance metrics
(a) Time, (b) Num. of Errors, (¢) Max. Thread Overstretch (x-axis: Users, v-axis:
Normalized performance metrics)
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Figure 8 and Figure 9 represent normalized users’ performance metrics, with columns
representing the individual values and horizontal lines showing the average values for
each group of users. Table 6 compares average values of performance metrics between
the three groups of users for both Stitch and HS Knot tasks. Please note that in this study
lower values “or individual metrics and overall scores mean a better performance (e.g. the
lower the time value is, the faster the user has performed the procedure). By looking at

the average values, it seems that Experts and Intermediates have generally performed
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faster, with less constraint on the tissue or the thread, and with fewer numbers of errors.

However, looking at individual test results, it seems impossible to find a well-defined

pattern to categorize the subjects (e.g. as shown in Figure 8, in the Stitch task, the big

range of “Time”, “Number of Errors” and “Maximum Tissue Deformation” values in the

Novice group does not follow any specific pattern).

Table 6: Average values of performance metrics in each group of expertise for Stitch and HS
Knot tasks
Stitch Task HS Knot Task
. Max Tissue Number . Max Thread Number of

Input Time Deformation of Errors Time Overstretch Errors
Experts 0.231 0.534 0.154 0.108 0.625 0.0635
Intermediates | 0.238 0.381 0.131 0.136 0.275 0.066
Novices 0.342 0.540 0414 0.196 0.202 0.169

In the following section simple statistical methods are used to analyse the user study data

and to find the relationship between the Stitch and the HS Knot task performance metrics

(represented in Table 4 and Table 5) and the users’ surgical skill levels.

2.3.1 Correlation and Regression Analysis

Correlation analysis

Correlation analysis is the statistical tool that can be used to describe the degree to which

one variable is linearly related to another. In other words, correlation analysis is used to

measure the degree of association between two variables.

The strength of the linear relationship between two variables x and y (for a sample of n

measurements on x and y) is measured by the coefficient of correlation, r, as follows:

Equation 1
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Where

ssv=2(xi._f)(yi_.)7)’ s‘su:Z(xi_f)za SSW=Z(yi—7)2
i=1 i=1 i=i

The coefficient of correlation has two important characteristics:

1. The magnitude of the correlation coefficient is independent of the scales
of measurement for variables. This means that the correlation coefficient
can compare the relationship between variables regardless of what is being

represented by them.

2. The value of a correlation coefficient is between +1.0 and -1.0. A value of
either +1.0 or -1.0 shows a 100% correlation between the variables,
meaning that the movement of the two variables is in an absolute similar

or complementary direction.

All variables used in correlation analysis must have numerical values. In this problem,
the surgical skill level takes three non-numerical values: Expert, Intermediate, and
Novice. To be able to perform the correlation analysis, we assigned a number to each of
these three values as shown in Table 7. These numbers are selected by dividing the
interval from O to 1 into three equal regions, and assigning the centre of each region to
one surgical skill level. It should be noted that the magnitudes of these values do not

affect the results of correlation analysis.
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Table 7: Numerical values assigned to surgical skill levels
Skill Level Numerical
Value
Expert 0.167
Intermediate 0.5
Novice 0.833
Figure 10:  Assigning numerical values to surgical skill levels
Expert Intermediate Novice
0 0.167 0.333 0.5 0.667 0.833 1

Sy

Table 8 and Table 9 show the correlation coefficient, calculated by MATLAB (The

MathWorks, Inc, 1994-2006), for each two pairs of performance metrics and the users’

surgical skill levels, for the Stitch and the HS Knot tasks.

Table 8: Coefficient of correlation for Stitch task performance metrics
Stitch Task Correlation Analysis Results
Time Number of Errors Max Tiss.ue Skill Level
Deformation
Time 1 0.464631 0.419861 0.391149
Number of Errors 0.464631 1 0.464631 0.606139
Tissue Deformation | 0.419861 0.464631 1 0.644996
Skill Levei 0.391149 0.606139 0.644996 1
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Table 9: Coefficient of correlation for Stitch task performance metrics

HS Knot Task Correlation Analysis Results

Time Number of Errors g\z/’:rl:‘r :;ac:: Skill Level
Time 1 0.56043 -0.24502 0.453937
Number of Errors 0.56043 1 -0.14152 0.408959
Thread Overstretch -0.24502 -0.14152 1 -0.45765
Skill Level 0.453937 0.408959 -0.45765 1

As shown in Table 8, in the Stitch task, surgical skill level has a fairly high correlation
with “Number of Errors” and “Tissue Deformation”, but not as high with “Time”. For the
HS Knot task (Table 9), correlation between the skill level and “Time”, “Number of

Errors”, and the “Thread Overstretch” are almost equal, but less than 50%.

This may indicate that the performance metrics selected for the Stitch and the HS Knot
tasks are not entirely related to surgical skill level, or it could be due to the fact that our
sample data is not representative of the population. However, as we will see later in
section 4.3, the poorly correlated data may result in contradictory fuzzy rules, which

consequently help eliminate the effect of such data in making the final decision.

Linear Regression Analysis

Linear regression analysis is another statistical method which involves finding the best
straight-line relationship to explain how the variation in an outcome (or dependent)
variable, ¥, depends on the variation in a predictor (or independent) variable, X. When Y
is a function of more than one independent variable, Multiple Regression is used to
estimate the relationship between Y and the independent variables. This estimate can be
used to build a regression equation of the form:
Y=c+alXl +a2X2+ ..+ anXn

Equation 2
Where X;’s are the independent variables, a;’s are the regression coefficients representing
the amount Y changes when the corresponding x; changes 1 unit, and c is the constant

representing the amount of Y when all the independent variables are 0. Once the
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regression equation is built, it can be used to predict the value of Y based on a set of

measured X;’s.

We used MATLAB to find the regression equation for the Stitch and the HS Knot tasks.
For each task, we split the dataset into two equal halves using two different data
separation methods, the DAU and the DHU methods (which will be explained later in
section 4). Half of the data, which we call the training dataset, were used to build the
regression equation, and the other half, or the testing dataset, were used to test the ability

of the regression equations in predicting the value of Y.

For the Stitch task, the independent variables are the “Time”, the “Number of Errors”,
and the “Maximum Tissue Deformation” performance metrics. For the HS Knot task, the
independent variables are the “Time”, the “Number of Errors”, and the “Maximum
Thread Overstretch” performance metrics, and the dependent variable for both tasks is
the “Skill Level”. Similar to the correlation analysis, we assigned numerical values
shown in Table 7 to the three surgical skill levels. The resulting regression equations are

as follows:
Stitch task (DAU):

Skill Level = -0.0663 — 0.127 x Time + 0.4292 x Num. Of Errors — 1.0668 x Max Tissue

Deformation

Equation 3

Stitch task (DHU):

Skill Level = -0.1427 — 0.0586 x Time + 0.5636 x Num. Of Errors — 0.4255 x Max Tissue

Deformation

Equation 4

HS Knot task (DAU):

Skill Level = 0.5215 + 0.2719 x Time + 0.3598 x Num. Of Errors — 0.2163 x Max Thread

Overstretch
Equation 5§
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HS Knot task (DHU):

Skill Level = 0.04112 + 1.0366 x Time + 0.4619 x Num. Of Errors — 0.2573 x Max

Thread Overstretch
Equation 6

Performance metrics in the corresponding testing datasets were then substituted in
Equation 3 to Equation 6 to predict surgical skill levels. The results are represented later

in section 6.

Even though the results of statistical analysis on our user study data do not suggest a high
correlation between the Stitch and HS Knot performance metrics and surgical skill levels,
a particular pattern of a complex combination of all the parameters, which is not
recognizable with simple statistical methods, may exist and could be used for
performance categorization. If such a pattern exists, we hypothesise that a fuzzy classifier
will be an appropriate means to recognize and model this pattern, as one of the important

applications of fuzzy logic 1s in pattern recognition.
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3 FUZZY LOGIC: BASIC PRINCIPLES AND
APPLICATIONS

3.1 History and Applications

Most of the phenomena that we encounter every day carry a certain degree of ambiguity
and fuzziness in the description of their nature. “The weather is hot today” is a typical
example of a fuzzy expression. What temperature is considered hot? How much does it
need to be decreased to be considered warm, and not hot? If the weather is hot for me, is
it hot for my neighbour as well? This kind of imprecision or fuzziness associated with
continuous phenomena is common in almost any field of study: sociology, physics,

biology, finance, marketing, engineering, psychology, health management, etc.

Before the introduction of fuzzy theory, conventional mathematical methods were the
only means of modelling natural processes. The underlying logic of these methods is the
precise Boolean logic, which is based on the law of Excluded Middle. This logic has only
two states, “0” and “1” or “True” and “False”. In other words, every proposition must
either be true or false; no intermediate values are allowed. Conventional mathematical
methods however,' require detailed and precise information to operate. They can not
handle the uncertainty of the natural phenomena and the human natural language. Albert

Einstein faced the same dilemma;

“So far as the laws of mathematics refer to reality, they are not certain.
And so far as they are certain, they do not refer to reality.”

Fuzzy logic was introduced by Lotfi Zadeh in 1965 as a means to model the uncertainty
of natural language (Lotfi Zadeh, 1965). It could be considered as a superset of
conventional (Boolean) logic that handles the concept of partial truth or truth-values
between "completely true" and "completely false". Despite the conventional logic

systems that focus on the quantitative aspects of objects, fuzzy logic describes their
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qualitative nature, which in many ways are related to the rules of grammar that focus on

descriptive adjectives and adverbs.

Even though the fuzzy logic theory was largely ignored in the western world, it attracted
the attention of industrial designers and inventors in Asian countries such as Japan and
China almost as soon as it was proposed by Dr. Lotfi Zadeh. Over the past few years,
fuzzy modeling and identification methodologies have been successfully used in a
number of real-world applications and for various aims such as analysis, design, medical
instrumentation, monitoring, decision making, patter recognition, and industrial process

control.

Examples include application of fuzzy logic in products ranging from large-scale electro-
mechanical processes, like subway systems and elevators, to mass-market consumer
applications such as cameras, camcorders, washing machines, and microwave ovens
(Fuzzy logic tool box, what is fuzzy logic, Y1, 2004; World Technology Evaluation,
Fuzzy Logic research and LIFE, 94, 2005). Fuzzy expert systems have also been used for
engineering design performance evaluation (Vanegas & Labib, 2005), or project
performance prediction and evaluation (Fayek & Sun, 2001). They have also served as
monitoring systems for intrusion detection in networked computers (Gémez & Dasgupta,
2002), or as decision support systems to assist operators (Hartog et al., 1997), and to
support decisions in medical domains (Gorzatczany & Gradzki, 1999).

One of the important applications of fuzzy logic is in the area of pattern recognition. A
common thrust of this problem area is the search for structures in data, where the issue is
to compare, in terms of relevant features, the categories identified in data with given

perfect categories (Klir, St.Clair., & Yuan, 1997).

The utility of fuzzy logic is also well established in the design of automatic controllers.
Especially in the aviation industry, because of the high degrees of nonlinearity,
uncertainty, and complexity of the aerospace systems and the involvement of human
beings, fuzzy logic-based methodologies have been widely used in the design of flight

control systems (Dote & Ovaska, 2001). For instance as intelligent helicopter navigation
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systems (Rahbari, Leach, Dillon, & DaSilva, 2002), as complex aircraft controllers

(Mengali G., 2000), or as flight control systems in aviation simulators (Beringer, 2002).

The linguistic interpretability of fuzzy systems make them suitable for another important
application; modelling of human decisions or experience. Sundaram , Naidu, and Das (2004)
used fuzzy multi attribute decision making approach to evaluate the quality of food
products as judged by human senses such as vision, taste, smell, and touch (sundaram,
Kalpana Naidu, & Das, 2004). Kumar, Stoll and Stoll (2003) used fuzzy expert systems to
approximate patients’ physical fitness based on real world physiological parameter
measurements. Without the use of expert systems, the only solution to this problem was

the advice of an expert (Kumar, Stoll, & Stoll, 2003).

The successful applications of fuzzy logic theory and the rapid growth of research
involving fuzzy logic suggest that the impact of this revolutionary approach to computing
will be felt more strongly in the coming years. Fuzzy logic is likely to play an important
role in science and engineering, but eventually its influence may extend much farther

(The Berkeley Initiative, A glimpse into the future, 1, 2005).

3.2 Fuzzy Set Theory

Fuzzy logic is almost synonymous with the theory of fuzzy sets; a theory which relates to
classes of objects with unsharp boundaries in which membership is a matter of degree.
Conventional (i.e., crisp) sets contain objects that satisfy precise properties required for
membership. The set C of real numbers from 2 to 5 is crisp; we write C = {r € R | 2 <r
< 5%, where ‘R is the set of real numbers. Equivalently, C is described by its membership

Sfunction (MF), ¢c: R>{0,1}, defined as:

1 25rsSs
)=

0 Otherwise

Equation 7

In logic, values of ¢c are called truth-values with reference to the question, “Is » in C?”

The answer is yes if and only if ¢¢ (r) = 1, and no, otherwise. As shown in Figure 11, in a
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conventional set there is a clear-cut differentiation between the elements that belong to

the set and those that do not.

Figure 11: Membership function for the conventional set C

Hc (r)‘}

Defining the real numbers between 6 and 8 is a problem that is intrinsically crisp and
would not require the use of fuzzy sets. A situation closer to what we encounter in
everyday life however, is for example deciding if the weather is hot or not in a particular
day. Reasoning according to the conventional logic, we would need to define a
temperature threshold that divides hot from not-hot weather. If the temperature is higher
than the threshold (even by 0.001 of a degree) then the weather is hot, otherwise, not hot.
This is obviously far from the way human beings make their judgments. Our perception
of the weather temperature is better described as a sort of soft switching rather than a
threshold mechanism. This is also why we often add a modifier to the word “hot” (i.e.,
not, not very, somewhat, very, etc.) in order to express “degrees of hotness” rather than

absolute true or false answers.

A fuzzy set could well accommodate the way human beings make their decisions. In the
fuzzy set “hot weather temperatures” (which will be defined as an example in the
following section) a degree of hotness is defined, thus providing a continuum rather than

an abrupt transition from true to false.

38



3.2.1 Elements of Fuzzy Set Theory

Fuzzy sets, Membership functions, and Universe of discourse

As mentioned before, a fuzzy set is a class of objects with unsharp boundaries. In other
words, elements of a fuzzy set may belong to it to partial degrees, from the full
belongingness to the full non-belongingness through all intermediate values. Hence the
membership function of a fuzzy set is allowed to have values between 0 and 1 that denote

the degree of membership of an object in the given set.

Consider X as a space of objects and let x be a generic element of X. A fuzzy set F in X is

defined as a set of ordered pairs

F = {(x, 1, (0]
Equation 8

Where yy: X — [0,1] is called the membership function (MF) for the fuzzy set F, and

maps each element of X to a membership degree u(x)<[0,1].

X is often referred to as the universe of discourse (universe, universal set, referential,
reference set, etc.) and contains all elements relevant for the particular concept. It may

consist of discrete (ordered or non-ordered) objects or it can be a continuous space.

The construction of a fuzzy set depends on two things: the identification of a suitable
universe of discourse and the specification of an appropriate membership function. There
are two possible approaches in defining the MFs; the most straightforward approach is to
ask the experts to draw the MFs. The functions could be either defined by one expert, or

as the average of the membership functions defined by several experts, so that:

1 &
V) =~ ()

xeX el
Equation 9

Where u;(x) is the MF defined by expert i. While averaging the MFs defined by different
experts reduces the subjectivity, the resulting MFs will probably have a rough shape that

is not consistent with the way of human thinking. Therefore, usually an approximation by
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a standard shape is used to smooth the membership function (Szczepaniak, Lisboa, &

Kacprzyk, 2000, page 34).

Another possible approach is to define the membership functions on the basis of
numerical data. In this case, a standard shape is usually selected for the MFs, and the

sampled data is used to define the functions parameters.

Even though there is no restriction in the shapes chosen for membership functions, there
are some standard functions that have been used more in literature. Common choices for
membership functions are Gaussian or S-shaped, Triangular/Trapezoidal and Bell shaped
functions (Szczepaniak, et al., 2000, page 34). Examples of Triangular and Gaussian
membership functions are shown in Figure 12. Because of their simplicity, Triangular
and Trapezoidal functions are the most popular choices among the standard MF shapes at
present and most authors have found them efficient enough to use in their systems (Fayek
& Sun, 2001; Dadone, 2002).

Figure 12: Examples of membership functions

(a): Triangular membership function representing the fuzzy of “tall men” (x-axis:
Height (m), y-axis: Truth-values) (b):Gaussian membership function representing the
fuzzy set of “real numbers close to 5” (x-axis: Height (m), y-axis: Truth-values)

T
Tall men

Real numbers close to S

(b)
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The following example can further clarify the concept of fuzzy sets.

Example: The “hot weather temperature” fuzzy set

Let’s go back to the question “what weather temperatures are hot?”. As mentioned
earlier, the conventional set theory fails to characterize the “hot weather temperatures” as
judged by human beings. In this example we employ the fuzzy logic approach to deal
with the problem.

Let’s define a fuzzy set named “hot weather temperatures”. The first step in specifying
the fuzzy set is to define its universe of discourse. We define 7' < R so that:

T={t|-100 <t <+100}
Equation 10

T covers all the possible weather temperatures (in degrees Celsius). If the fuzzy set
representing the “hot weather temperatures” is H, the membership function for H is
defined as: yy: T > [0,1], such that uy () € [0,1] is the degree to which an element teT
belongs to the fuzzy set H.

The next step is defining the membership functions for our fuzzy set. We do so by
choosing a standard shape like the Trapezoidal function for the MF, and identifying the
critical points in the universe of discourse and assigning them the appropriate truth-
values. For example we know that almost anyone considers a temperature of 45°C a hot
weather temperature. Therefore we can say that 45°C belong to the fuzzy set H, so that
Hr (45)=1. If 45°C is considered hot, then any temperature higher than 45°C would also
be considered hot, therefore yy (r > 45)=1. On the other hand, weather temperatures of
15°C and lower are most certainly not judged as hot temperatures and therefore do not
belong to H. In other words, uy (¢ < 15)=0. For weather temperature between 15°C and
45°C however, we can not confidently say whether they belong to H or not. 30°C is a
very hot temperature for people living in Alaska, but could be a normal temperature for

those living in Africa. From an intuitive point of view however, we can say that the
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degree of belongingness to H increases from 0 to 1, as the temperature goes up from 15 to

45°C.

The above information is enough for us to draw the Trapezoidal membership function, as
shown in Figure 13. The horizontal axis represents the weather temperatures, and the

vertical axis shows the truth-value for each temperature.

Figure 13:  Fuzzy set "Hot weather temperatures"

Other definitions and terms in fuzzy set theory

This section briefly presents basic definitions and properties related to fuzzy sets,

concentrating more on those that are relevant to this work.

Empty sets: A fuzzy set 4 in X is said to be empty, written 4A=0, if and only if:

VxeX,u,(x)=0
Equation 11

Equal sets: Two fuzzy sets A and B defined in the same universe of discourse X are said

to be equal, written 4=B, if and only if

Vx e X, 1, (x) = 1y (%)
Equation 12
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Subset: A fuzzy set A defined in X is said to be a subset of a fuzzy set B in X, written
Ac B, if and only if

VxeX,u,(x)< py(x)
Equation 13

Normal and subnormal sets: A fuzzy set A defined in X is said to be normal if and only if

max f¢,(x) =1

Equation 14
and it is said to be subnormal otherwise.

Fuzzy singleton: A fuzzy set 4 defined in X is called a fuzzy singleton, if its support is a
single point in X with u4(x) = 1.

Figure 14:  Graphical representation of a singleton fuzzy set
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Support: The support of a fuzzy set 4 in X is the set of all points with nonzero

membership degree in 4

Supp(A) = {x € X | p1,(x) > 0}
Equation 15

Figure 15:  Graphical representation of support of a fuzzy set
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Core: The core of a fuzzy set 4 is the set of all points with unit membership degree in 4

Core(A)={xe X | u,(x)=1}
Equation 16

Figure 16:  Graphical representation of the core of a fuzzy set
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Crossover points: A point xe X at which u,(x) =0.5 is called the crossover point of a

fuzzy set 4 in X.

Figure 17:  Graphical representation of the crossover points
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a-cut, strong a-cut: The a-cut or a-level set of a fuzzy set 4 is a crisp set, written 4, and

defined as the following set

4, ={reX|u,(X)2a}
Equation 17
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If we replace the “>" in Equation 17 with “>”, then we have the strong a-cut, or strong a-

level set of the fuzzy set A4.

Figure 18:  Graphical representation of the fuzzy a-cut

Ha (xﬂ‘

3.2.2 Basic Operations on Fuzzy Sets

Similar to the conventional set theory, the basic operations in fuzzy set theory are the

complement, intersection, and union.

Complement or (negation): The complement of a fuzzy set 4 in X, denoted by 4,

corresponds to the negation “not”, and is defined as

Vx € X, uy(x) =1 41, (x)
Equation 18

The complement can be represented as in Figure 19 where g4(x) is shown in heavy lines.

Figure 19: The complement of a fuzzy set
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Intersection: The intersection of two fuzzy sets 4 and B in X, written as 4 N B, is defined

as

Vxe X, i, ,=min{u,(x), 1, (x)}
Equation 19

The intersection can be illustrated as in Figure 20 Where z44~5 is shown in heavy lines.

Figure 20:  Graphical representation of the intersection of two fuzzy sets
A

1 Hanp(x)
.7 1
24(x) (%)
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=V

Union: The union of two fuzzy sets 4 and B in X, written as 4 U B, is defined as

V xeX, paop(x) = max {p(x), up(x)}
Equation 20

The union can be demonstrated as in Figure 21 Where 245 is shown in heavy lines.

Figure 21:  Graphical representation of the union of two fuzzy sets

A Haup(x)

Ha(x) Hp(x)

=V

The above definitions of fuzzy intersection and union are well established and widely

used. However, similar to the traditional set theory, these operations could also be
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defined through the general #-norm and s-norm (or t-conorm) operators (Szczepaniak et

al. page 34; Fayek & Sun, 2001; Dadone, 2001).

A t-norm, t: [0,1] x [0,1] — [0,1], is defined such that for each x, y, z € [0,1]:

[E—

Its unit element is 1: ¢ (x, 1) =x

2. Itis monotone: x<y =>t(x,z)< t(¥,2)

3. Itis commutative: # (x ,y) =t (y, X)

4. Ttisassociative: t[x, 2 (y,2)]=t[t (x,y), z]

The minimum operator is the most widely used t-norm operator in the fuzzy set theory.
Some other examples of t-norm operators are the algebraic product (¢ (x, y) = x.y) and the

Lukasiewicz t-norm (f (x, y) = max (0, x + y -1)).
An s-norm, s: [0,1] x [0,1] — [0,1], is defined such that for each x, y, z € [0,1]:
1. Its unit elementis 0: s (x, 0) =x
2. Itismonotone: x<y = s(x,2)< s(y,2)
3. Itis commutative: s (x ,y)=s (¥, X)
4. Itisassociative: s [x,s (v,z)]=s[s (x, ), z]

The most popular s-norm operator in fuzzy set theory is the maximum operator. Other

examples are the probabilistic product (s (x, y) =x + y — xy), and the Lukasiewicz s-norm

(s(x,y)=min (x +y, 1)).

3.3  Fuzzy Inference Systems

Fuzzy inference is using fuzzy logic to formulate the mapping of a given input to an
outpu. Fuzzy inference systems (FISs) are rule based systems in which the relationship
between the inputs and outputs of the system are retrieved in the form of if-then rules. In

the process of inference, the inputs are first fuzzified, (i.e. converted from crisp numbers
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to fuzzy sets). After going through the fuzzy rules contained in a rule-base, the output for
each set of inputs is computed in the form of a fuzzy set. The output fuzzy sets are then
composed and defuzzified (i.e., converted from a fuzzy set to a crisp number), since the

desired output is usually a crisp number rather than a fuzzy set.

There are two basic types of fuzzy inference systems: Mamdani-Assilian (or Mamdani),
1975 by Ebrahim Mamdani (Mamdani & Assilian, 1975) and Takagi-Sugeno-Kang (or
Sugeno), introduced in 1985 (Takagi & Sugeno 1985). These two types of inference
systems vary somewhat in the way outputs are determined. In Mamdani systems, which
is the most common methodology (Fuzzy logic toolbox, fuzzy inference systems, § 3),
both the input and output are represented with linguistic terms (such as “tall”, “short”,
“hot™, “cold”). The antecedent and consequent of an if-then rule are typically Bollean

expression of simple clauses. A simple form of the Mamdani system is of the form:

Ifxis A, theny is B.

In which 4 and B are linguistic terms defined by fuzzy sets on the ranges (universes of

discourse) X and Y respectivelt.

In Sugeno systems, the antecedant is a Bollean expression of simple clauses, but the
consequent is a function of the input (usually a polynomial). This can be represented in

the form:
Ifxis A, then y is f(x).

In which 4 is a linguistic term defined by a fuzzy set on the universe of discourse X and

fx) is a function of the input x.

The Sugeno fuzzy inference systems are faster and work well with linear techniques. The
Mamdani systems however, are intuitive and suitable for human inputs. Therefore, we

employed the Mamdani FISs to solve the problem of surgical performance evaluation.

We will briefly overview the process of fuzzy inference, and explain the design process
of Mamdani-type FISs in the following sections. For more information about Sugeno

systems, please refer to (Takagi & Sugeno, 1985).
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3.3.1 Overview of Fuzzy Inference Process

Figure 22 shows the three major elements of a fuzzy inference system. The information
flows from left to right, or from the inputs to the outputs of the system. The purpose is to
map an input space to an output space, and the key mechahism for doing this is a list of
if-then statements called fuzzy if-then rules. All rules are evaluated in parallel, and the

order of the rules is unimportant.

Figure 22: Major elements of a fuzzy inference system

INPUT OUTPUT

Fuzzy if-then rules

A single fuzzy if-then rule is in the form:
ifxisAthenyis B

Where 4 and B are linguistic values defined by fuzzy sets on the universes of discourse X
and Y, respectively. The if-part of the rule, "x is A", is called the antecedent or premise,
while the then-part of the rule, "y is B", is called the consequent or conclusion. An

example of such a rule might be
If'you are late for your meeting, then you should walk fast.

Note that “late” is represented by a fuzzy set, and so the antecédent could be interpreted
by a single number between 0 and 1, depending on the “degree of lateness”. On the other
hand, the consequent is the “fast” fuzzy set, which should later be defuzzified to assign a

single numerical value to the output.

Both the antecedent and the consequent of a rule can have multiple parts. In that case all
parts of the antecedent are calculated concurrently to determine a single number, using

the logical operators described in the previous section. On the other hand, all consequents
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are affected equally by the result of the antecedent. An example of a fuzzy rule with two

antecedent and two consequent parts could be:
If you are late for your meeting and the meeting is important,

then you should walk fast or catch a taxi.

In the case of traditional or binary logic, interpreting the if-then rules does not present
much difficulty. If the premise is true, then the conclusion is true. When dealing with a
fuzzy if-then rule however, the premise or the antecedent could be only partially true,

which will affect the consequent of the rule.
The following steps are to be taken when interpreting a fuzzy if-then rule:

1. Fuzzifying the inputs: Means resolving all parts of the antecedent to a
degree of membership between 0 and 1. In other words, it means

calculating the truth-value for all fuzzy expressions in the antecedent.

2. Applying fuzzy operators: When the antecedent has multiple parts, fuzzy
operators (t-norm or s-norm) need to be applied to resolve the antecedent
(by combining the truth values of all fuzzy expressions) to a single number

between 0 and 1, called the degree of support for the rule.

3. Applying implecation methods: means using the degree of support for the
rule to shape the output fuzzy set. If the antecedent is only partially true,
(i.e., is assigned a value less than 1), then the output fuzzy set is truncated
according to the implication method. The most common implication
methods are the minimum (which removes the a-cut for a = “degree of
support” from the output fuzzy set), and the product (which multiplies the
output fuzzy set by the degree of support).

To make it more clear, lets consider the following example:
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The restaurant rating problem: Given two sets of numbers between 0 and 10 (where 10
is excellent) that respectively represent the quality of the service and the quality of the
food at a restaurant, in a scale of 1 to 5 (5 being excelent) what should the rating of the

restaurant be?

In this problem, we have two inputs, “the quality of service” and “the quality of food”,
and one output, “the restaurant rating”. A series of rules (in linguistic terms) can be
written to connect these inputs to the output. Suppose our set of rules is consist of the

following three rules:

1. If “the quality of service” is fine and “the quality of food” is fine, then the

“rating of the restaurant” is high.

2. If “the quality of service” is average and “the quality of food” is fine, then

the “rating of the restaurant” is medium.

3. If “the quality of service” is poor or “the quality of food” is poor, then the

“rating of the restaurant” is low.

Three different linguistic terms are used in our set of rules that describe the inputs (fine,
average, and poor) and the output (high, medium, and low). Figure 23 demonstrates the
fuzzy sets that represent these linguistic terms. For each variable, the three corresponding

fuzzy sets are shown in one graph (e.g. “poor”, “average”, and “fine” quality of service

fuzzy sets in Figure 23 (a)).
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Figure 23: Input and output fuzzy sets for the “restaurant rating” problem
(a): fuzzy sets describing the “quality of service”, (b): fuzzy sets describing the “quality
of food”, (c): fuzzy sets describing the “restaurant rating” (x-axis: variable’s universe
of discourse, y-axis: truth-values).

(b)

As represented in Figure 23, fuzzy sets have divided the universe of discourse of the
inputs and the output of the system into regions, demonstrating the linguistic terms that
describe each variable. For example in Figure 23 (a), the “poor” fuzzy set is
representative of the “poor quality of service” values. Therefore, the low values assigned
to the “quality of service” input, which mean a lower level of service in a restaurant, have

a high truth-value in the “poor” fuzzy set.

Suppose restaurant “X” whose “quality of service” and “quality of food” are
characterized by numbers 6 and 8, respectively, is to be rated with our fuzzy model. To
do so, we first need to interpret the model’s three rules. Let’s start with a step-by-step

interpretation of rule 1:
If “the quality of service” is good and “the quality of food” is good,
then the “rating of the restaurant” is high

1. Fuzzifying the inputs: the numbers 6 and 8, representing the service and
food quality in restaurant “X” should be fuzzified. In other words, their
truth-values in the corresponding fuzzy sets (i.e. “fine” fuzzy set in
“quality of service” and “fine” fuzzy set in “quality of food”) need to be
determined. As shown in Figure 23 (a), The truth-value of number 6 is 0.2
in the “fine quality of service” fuzzy set. Also, the truth-value of number 8

is 0.6 in the “fine quality of food” fuzzy set.
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2. Applying fuzzy operators: The degree of support for rule 1 needs to be
calculated by resolving the antecedent into a single number, using fuzzy t-
norm and s-norm operators. In this example, we will apply the minimum
and maximum operators as the fuzzy t-norm and s-norm operators
respectively. The word “AND” that connects the two parts of the
antecedent tells us that we need to use a t-norm (the minimum) operator.

Therefore the degree of support for rule 1 will be calculated as:
Rule 1’s degree of support = min{0.2, 0.6}= 0.2

3. Applying the implication method: We apply the minimum implication
method to truncate the “high” fuzzy set in the output, by the rule’s degree
of support (i.e. 0.2)

The other two rules of the restaurant rating problem are interpreted in a similar way. Each
row in Figure 24 demonstrates the process of interpreting one of the three rules. For
example in row 1, the truth-value for number 6 in the “fine quality of service” fuzzy set,
and number 8 in the “fine quality of food” fuzzy set is determined. The minimum of the
two truth-values, or the degree of support for rule 1, is carried over and truncated the

“high restaurant rating” fuzzy set in the output.

The output fuzzy sets for each rule need to be combined in some manner, so that they all

contribute to the final output of the FIS. This is called the aggregation process.
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Figure 24:  Fuzzy inference process for the restaurant rating problem
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The aggregation process

The input of the aggregation process is the list of truncated output functions returned by
the implication process for each rule. The output of the aggregation process is one fuzzy
set for each output variable. The aggregation method is commutative, therefore the order
in which the rules are executed is unimportant. Two of the common methods of
aggregation are the maximum (maximum of all rules output sets), and sum (the sum of all
rules output sets). The last row in Figure 24 shows an example of the aggregarion process

(maximum) ia the restaurant rating proslem.

The result of the aggregation process is a fuzzy set that needs to be resolved to a crisp
number, as the final desired output in an FIS is generally a single number. This process is

called the defuzzification process.

The defuzzification process

Defuzzification is the final stage in the fuzzy inference process. The input for the
defuzzification process is a fuzzy set (the output of the aggregation process), and the
output is a single number. Some of the defuzzification methods are the centroid method

(which calculates the center of mass under the fuzzy set), the bisector (which returns
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bisector of area under the curve), middle of maximum (the average of the maximum

value of the output set), largest of maximum (largest of the maximum values of the

output set), and smallest of maximum.

Figure 25:  Different Defuzzification methods applied to an example fuzzy output curve.
The vertical line shows location of the numerical fuzzy output over the output curve.
Methods applied: (a): Centroid, (b): Bisector, (¢): Middle of maximums, (c): Largest of

maximums, (e): Smallest of maximums

° (@)
o RS ©
D" | X 1 (e)

(b)

' (d)

Figure 25 dernonstrates examples of these methods. The vertical line in each f gure shows

the location cf the defuzzified output value over the output fuzzy set.

We used the centroid method to determine the final output for the restaurant rating

problem. As shown in Figure 24, the final result or “the rating of the restaurant” is

calculated to be 2.55 out of 5.
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3.3.2 Design Process of Fuzzy Inference Systems

This section is a step-by-step explanation of the process of designing a Mamdani-type
fuzzy inference system. Essentially, there are three fundamental stages in the

construction of a fuzzy model:
e Selecting the input and output (control) variables
e Defining the fuzzy sets
e Constructing the relationship between input and output spaces (rules)

e Selecting the fuzzy inference properties

Selecting the input and output variables

The first step in designing a FIS is to define the system’s two major elements: the
information (data points) that flows into the system, and the data elements that are
eventually the outputs of the system. This involves identifying the inputs and outputs of
the system based on the initial information and the goal of the problem, and specifying

the universe of discourse for each of the input and output variables.

Defining the fuzzy sets

Fuzzy sets need to be defined to classify the input and output variables into categories (or
classes of data) that represent possible states of that variable. Linguistic terms are usually
used to identify these data categories. For example in the restaurant rating problem
introduced in section 3.3.1, fuzzy sets fine, average, and poor categorize the “quality of

service” input into three states.

Membership functions are curves that specify how each point in a fuzzy set’s space maps
to a membership value between 0 and 1. They could be drawn by intuition, which is
derived from the intelligence and understanding of human beings and involves contextual
and semantic knowledge about an issue (similar to the approach taken in the restaurant
rating problem in section 3.3.1), or defined on the basis of numerical data. In the latter

case, groups of data that produce a concise representation of the variables behaviour
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characterize the fuzzy sets and membership functions. Clustering of numerical data is a
way of identifying the natural groupings of data from a large dataset. Fuzzy c-means
(FCM) is an example of a clustering technique in which each data point belongs to a
cluster that is defined by a membership degree. The algorithm starts with an initial guess
for the cluster centres (meant to mark the mean location of each cluster) and a
membership grade for each cluster assigned to every data point. The cluster centres move
to the right location by iteratively minimizing a function that represents the distance from

any given data point to a cluster centre weighted by that data point's membership grade.

Figure 23 in section 3.3.1 demonstrates how fuzzy sets define the different linguistic term

for the input/output variables in the restaurant rating problem.

Constructing the relationship between input and output spaces (rules)

Fuzzy conditional statements, or simply fuzzy if-then rules, describe the relationship
between the input and output variables in an FIS. Several methods have been proposed
for generating fuzzy rules. Many of these methods, similar to the approach taken in this
project, are based on clustering techniques (Yager & Filev, 1994; Hong & Lee 1996;
Hong & Chen 1999). These methods can be categorized into two phases:

1. Partitioning (or clustering) the variable spaces into classes of data
2. Identifying fuzzy rules for each class of data

The process of designing fuzzy if-then rules in this project is described in more details in

section 4.3.

Selecting the Fuzzy Inference Properties

Properties of the FIS, such as shapes of the membership functions, type of the t-norm and
t-conorm processors, the aggregation method, and the defuzzification method need to be
defined during the design process of the system. These properties may be selected
intuitively (based on the nature of the problem and judgment of the system’s expert) or

derived from the numerical data.
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3.3.3 Fuzzy Logic Toolbox in MATLAB

In this project, the fuzzy logic toolbox in MATLAB (Fuzzy logic toolbox, 2004) was
used for modeling the fuzzy systems. The fuzzy logic toolbox is a collection of functions
built on the MATLAB numeric environment. It relies on the graphical user interface
(GUI) tools that provide an environment for fuzzy inference system design, analysis and
implementation. Five primary GUI tools help building, editing, and observing fuzzy
inference systems: The Fuzzy Inference or FIS editor, the membership function editor,
the rule editor, the rule viewer, and the surface viewer. These tools are dynamically
linked, thus changes made to the FIS using one of them affects the other four. In
addition, the toolbox includes the Adaptive Neuro-Fuzzy Inference System (ANFIS)
editor, which is used for building and analyzing Sugeno-type FISs.
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The fuzzy inference system editor

The FIS editor handles the high level issues for the system such as the number of input

and output variables and their names, types of the “And” and “Or” operators, and the

aggregation and defuzzification methods.

Figure 26 shows the FIS editor for the restaurant rating problem as an example. It

displays general information about the system. The diagram at the top of rhe window

shows the names of the input and output variables. Popup menus on the bottom left allow

the user to modify the FIS properties and the fields on the bottom right display the name,

the membership type and the range for each of the input or output variables.

Figure 26:  Example of the “FIS editor” window
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The membership function editor

The membership function editor is used to define the properties of the membership

functions for the system’s variables.

Figure 27:
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The rule editor

The rule editor enables the user to define and edit the list of rules that describe the

behaviour of the system.

Figure 28:  Example of the "rule editor" window
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The rule viewer

The rule viewer is a read only tool that displays the whole fuzzy inference diagram. An
example of the rule viewer window is demonstrated in Figure 29. Each column illustrates
one variable and each row of small plots represent the antecedents and the consequents of
one rule in the FIS. The rule viewer shows for a given set of inputs, which rules are

active, what is the output, and how individual membership function are affecting the

output.

Figure 29:
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The surface viewer

The surface viewer is also a read-only tool. It is used to display how an output is
dependant on any one or two of the inputs. For instance Figure 30 shows the relationship
between the output (z-axis) and the two inputs (x and y axes) in the restaurant rating
problem. The popup menus at the bottom of the window allow the user to choose which

variables to be plotted.

Figure 30: Example of the "surface viewer' window
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4 DESIGN PROCESS OF FUZZY CLASSIFIERS FOR
SURGICAL PERFORMANCE EVALUATION

Having 26 subjects participating in the experiment provided us with 26 full sets of data
for each of the Stitch and HS Knot tasks. The data for each task was organized into 104
vectors in total (26 subjects who did 4 trials each). Each vector contained the 3
performance metrics for the trial. For instance the Stitch task data vectors were in the

form of:

V (Time, Max Tissue Deformation, Number of Errors)

We then split each full set of data into two equal halves; 52 data vectors were used as
Training Data Set (to design and train the classifier), and the other 52 as Testing Data Set
(to test the constructed model). There were two possible approaches in getting separate

training and testing data sets:

1. Using data from all participants for both sets, separating each subject's
data into two groups randomly (we call this approach the “Data from All
Users”, or DAU method).

Or,

2. Dividing the subjects in each level of expertise into two groups randomly.
Then using the data from one group to train the system and from the other
group to evaluate the system (e.g. having 8 expert subjects, randomly
select data from 4 of them to be in one group and from the other 4 to be in
the second group). We call this approach the “Data from Half of the
Users” or DHU method.

Figure 7 shows the DHU and DAU methods applied to data from the experts group as an

example. Data from the Intermediate and Novice groups were split in the same way.
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Figure 31:

Example of the DHU and DAU data splitting methods
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Either approach has costs and benefits; the limit of the DAU approach is that if our
sample of surgeons is not representative of the overall population, we can train our
system, and successfully evaluate it. But when we use trainees from outside our training
group, the system doesn’t work. This would be because our system had trained itself on

features that are present in our group but not in the population at large.

The DHU approach suffers from the complementary risk: If our evaluation set does not
do very well, is that because the group we trained it on is abnormal or the evaluation
group is non-standard? Hard to say! Therefore cach method was employed once to create
a fuzzy classifier for each of the Stitch and HS Knot tasks, providing us with four fuzzy

classifiers in total.

The training and testing datasets for the fuzzy models are demonstrated in Table 10 to

Table 13.
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We designed our classifiers based on Mamdani’s Fuzzy Inference Method (explained in

section 3.3.2), through the following four steps:
e Selecting the input and output (control) variables
e Defining the fuzzy sets
e Constructing the relationship between input and output spaces (rules)

e Selecting the fuzzy inference properties

4.1 Selecting the Input and Qutput Variables

The nature of our classifiers suggests the inputs to the fuzzy systems to be user’s
performance metrics, and the outputs to be a fuzzy score representing user’s surgical skill
level. Thus, as shown in Figure 32, each system has three inputs and one output; “Time”,
“Maximum Tissue Deformation”, and “Number of Errors” are inputs to the Stitch task
classifiers, and “Time”, “Maximum Thread Overstretch”, and “Number of Errors” are
inputs to the HS Knot task classifiers. Since we used normalized data values to design the
classifiers, the universe of discourse for each of our input and output variables is between

zero and one.
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Figure 32:
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4.2 Defining the Fuzzy Sets

Knowing the input and output variables of the systems, fuzzy sets were required to be
defined that classify these variables into different categories, so that each category
represents a possible state of the corresponding variable. We defined three linguistic
descriptors; Low, Medium, and High, each of which can be represented by a fuzzy

membership function (or a fuzzy set). Low, Medium, and High membership functions for
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an input correspond to relatively low, medium or high values of the input, respectively.

Figure 33 shows an example of the three membership functions for the “Number of

Errors” input in the HS Knot task.
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Figure 33:  Example of input membership functions

"Number of Errors" input, HS Knot Task (x-axis: “Number of Errors” values, y-axis:
truth-values)

=

Tow Medium ‘ ' ' ‘ ‘ High

«

We used the training datasets to determine the boundaries of the low, medium and high

categories for each input variable, as follows:

The data values corresponding to each input variable were first sorted in the ascending
order. We then used the Fuzzy Logic Toolbox in MATLAB (introduced in Section 3.3.3)
to find three clusters of data among data values corresponding to each input variable,
based on the Fuzzy c-means (FCM) clustering method (fuzzy logic toolbox, Fuzzy C-
Means Clustering section, § 1), explained in section 3.3.3. These data clusters represent

the low, medium, and high categories for each input variable.

Example: Defining the Low, Medium, and High categories for the “Number of Errors”
input variable in the HS Knot task

The left-side table in Figure 34 saows the data values in the training dataset
corresponding to the “Number of Errors” variable in the HS Knot task. To determine the
three categories mentioned earlier, we first arranged the data in the ascending order
(Figure 34, Right-side table). MATLAB was then used to find three clusters of data
values within the sorted data. These three groups represent the Low, Medium, and High

values for the “Number of Errors” variable in the HS Knot task.
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Figure 34: Example of clustering the data into Low, Medium, and High categories
for the “Number of Errors variable in the HS Knot task

Sorted data
Training dataset
Number of Errors Data Index Number of Errors
0 1 0
0 2 0
0.064516 3 0
0.032258 4 0
0.129032 5 0
0.032258 6 0
0.032258 7 0
0 8 0
0.096774 ) 0
0.096774 10 0
0.032258 T 0.032258 Low
0.064516 12 0.032258 category
0 13 0.032258
0.032258 14 0.032258
0.129032 15 0.032258
0.032258 16 0.032258
0.064516 17 0.032258
0 18 0.032258
0 19 0.032258
0.064516 20 0.032258
0.096774 21 0.032258
0.064516 22 0.032258
0.064516 23 0.032258
0.032258 24 0.064516
0 25 0.064516
0.032258 26 0.064516
0.096774 27 0.064516
0.032258 28 0.064516
0.322581 Sort in ascending 29 0.064516
S oder —
: category
0.16129 32 0.096774
0.225806 33 0.096774
0.580645 34 0.096774
0.387097 35 0.096774
0.548387 36 0.096774
0 37 0.096774
0.16129 38 0.129032
0.032258 39 0.129032
0.193548 40 0.129032
0.032258 41 0.16129
0.225806 a2 0.16129
0.451613 43 0.193548
0.096774 44 0.193548
0.096774 45 0.193548
0.032258 46 0.225806
0.193548 47 0.225806
0 48 0.322581
0.064516 49 0.387097
0.1 9(:)3548 50 0.451613 High
51 0.548387
0.032258 52 0.580645 category
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An index number was assigned to each data value to plot the 1-dimensional in 2-D, as

shown in Figure 35. The three categories of Low, Medium, and High are shown with x’s,

*’s, and o’s, respectively. The ®‘s mark the centre values for each category or class of

data (0.011, 0.061, and 0.267 are the centre values for Low, Medium, and High classes of

data in “Number of Errors” in the HS Knot task).

Figure 35:

Example of clusters of data in the "Number of Errors" variable in the HS Knot Task

(-axis: data index, y-axis: Number of Errors)
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The commonly used triangular and trapezoidal shapes were selected to represent the

membership functions (or fuzzy sets), and the following rules were followed to generate

these functions:

1. In each class of data, the centre of the class has the maximum membership

value (i.e. 1) in the corresponding membership function.

2. Membership functions representing the smallest or the largest linguistic

term (i.e. Low and High categories) are trapezoidal in shape, since all

values below the biggest, or above the smallest value with the highest

membership, respectively, are considered to have the same maximum
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membership value. The Medium linguistic term, which is in between the
two end-of-the-range categories, is represented with triangular

membership functions.

3. For the Low and High membership functions, all the values below or

above the centre value, respectively, have the maximum truth-value (i.e.

1.

4. The overlap between each input’s membership functions are chosen so
that the sum of the truth-values of all points through the overlapping fuzzy
sets is equal to one. This is called the “Sum-to-one (or less)” rule (Cox,

1999).

Example: Defining the membership functions for the “Number of Errors” variable in the
HS Knot task

Figure 36 shows the membership functions for the “Number of Errors” variable in the HS

Knot task. The following steps were taken in defining these functions:

1. 0.011, 0.061, and 0.267, which are the centres of the Low, Medium, and
High categories, respectively, were given truth-value of 1 in the

corresponding membership functions (Figure 36).

2. Trapezoidal functions were used to represent the Low and High fuzzy sets,

and triangular function for the Medium fuzzy set.

3. In the Low fuzzy set, all the values below the centre of the low category
(i.e. 0.011), were assigned the truth-value of 1. Also in the High
membership function, all the values above 0.267, which is the centre of

the High category were given the highest truth-value (Figure 36).

4. The “Sum-to-one” rule was used to determine the overlaps between the
neighbouring membership functions. It means that for any value of
“Number of Errors” input, the sum of the truth-values in all fuzzy sets is

equal to one. For example, as shown in Figure 36, the truth-value for a
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“Number of Errors” value of 0.2 is 0 in the Low fuzzy set, 0.28 in the

Medium fuzzy set, and (.72 in the High fuzzy set (0 +0.28 +0.72 = 1).

Figure 36: Membership functions for the "Number of Errors" input in HS Knot Task

(x-axis: Input value, y-axis: Input’s truth-value)
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To categorize outputs of the systems, the fuzzy score (or score), the output space was
divided into three equal regions. As shown in Figure 37, the memberstip function
corresponding to the lowest score values was named Experts, as those scores were
expected to be achieved by the expert users. Same is for the Intermediate and Novice
membership functions in the system’s output. After testing the classifiers the output fuzzy

sets could be adjusted iteratively to improve the performance of the system.

Figure 37:  Output of the fuzzy classifier- {x-axis: output (score) value, y-axis: output's truth-value)
i . .
Intermediate Novice

o]
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4.3 Rules

Data from the Training Datasets was used to construct the rules for the four fuzzy
models: the Stitch task DAU, Stitch task DHU, HS Knot task DAU, and HS knot task
DHU classifiers. For each user, performance metrics were first categorized into the class

of data (Low, Medium, or High) that would best characterize their value, or in other

words, the class of data that had the highest truth-value in the corresponding fuzzy set.

We then constructed one rule per user, based on the classified user performance metrics

and their level of expertise. The process of constructing the rules is explained further

through the following example.

Example: Constructing a fuzzy rule, based on an expert user’s performance metrics

Table 14 shows performance metrics of an expert user, for one trial of the HS Knot task.

Table 14: Example of categorizing a user’s performance metrics into one of the three classes of

data (HS Knot task)

Time Max Thread Overstretch | Number of Errors
Performance metrics | 0.067784 0 0.064516
Class of data Low Low Medium
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Figure 38:  Membership functions for the HS Knot task
(a) Time, (b) Maximum Thread Overstretch, (¢c) Number of Errors - (x-axis: Input
value, y-axis: Input’s truth-value)
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To classify the user’s performance metrics, we look at the membership functions for the
HS Knot task input variables, shown in Figure 38, to see which membership unction has
the highest truth-value for each of the user’s performance metrics. For example, the
user’s “Time” value is approximately “0.067”. Looking at Figure 38 (a), membership
functions for the “Time” input variable, we will see that “0.067” has the truth-value of
“1”” in the Low fuzzy set, and “0” in the Medium and High fuzzy sets. Therefore, the Low
fuzzy set is the best representative for the user’s “Time” value, or in other words, the
user’s “Time” is Low. Similarly, we can see that “0” is a Low value for ““Maximum
Thread Overstretch””’, and “0.064” is a Medium value for the “Number of Errors”
input (in Figure 38 (¢), the truth-value for “0.064” is “0.92” in the Mediumn fuzzy set,
which is higher than its truth-value in the Low fuzzy set, “0”, and the Medium fuzzy set,

“0.097). These classifications are shown in Table 14.

Knowing that the performance metrics shown in Table 14 are those of an expert user, if

we feed them to the fuzzy classifier as inputs, the resulting fuzzy score is expected to be a
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rather low score, best represented by the Expert membership function in the output fuzzy

set (Figure 37). To guarantee this outcome, we generate the following rule for our fuzzy

system:

If “Time” is Low and “Maximum Thread Overstretch” is Low and
“Number of Errors” is Medium,

then

the Score is (that of an) Expert

We can now be sure that if we test our system with a set of performance metrics that are

Low, Low, and Medium in “Time”, “Maximum Thread Overstretch”, and “Number of

Errors” inputs, respectively, the system will predict the user with those metrics to be an

expert, unless the effect of this rule is influenced by contradictory rules as explained later.

For each fuzzy model, the same method was used to construct 52 rules, one for each data

vector in the training dataset. Table 15 shows the categorized values of the HS Knot task

(DHU) training dataset as an example.

Table 15: Categorized performance metrics in the training dataset, HS Knot task-DHU
(L: Low, M: Medium, H: High, E: Expert, I: Intermediate, N: Novice)
Data Time hon‘?:r::'r :aetf:ig Number of Errors Level Pf
vector Expertise
Value Category | Value | Category Value Category
1 0.095967 L 0 L 0 L E
2 0.100583 L 1 H 0 L E
3 0.067784 L 0 0.064516 M E
4 0.073615 L 0 . 0.032258 L E
5 0.102041 L 1 H 0.129032 M E
6 0.057337 L 1 H 0.032258 L E
7 0.088921 L 0.1 M 0.032258 L E
8 0.065112 L 0 L 0 L E
9 0.095481 L 1 H 0.096774 M E
10 0.128037 M 1 H 0.096774 M E
11 0.068513 L 1 H 0.032258 L E
12 0.082604 L 1 H 0.064516 M E
13 0.165452 M 0.1 M 0 L E
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Max Thread

Data Time Overstretch Number of Errors Level .of
vector Expertise
Value Category | Value | Category Value Category
14 0.139456 M 1 H 0.032258 M E
15 0.152089 M 04 M 0.129032 M E
16 0.106414 M 0 L 0.032258 L E
17 0.094752 L 0.1 M 0.064516 M I
18 0.171283 M 0.4 M 0 L I
19 0.117833 M 0 0 L |
20 0.140428 M 0 . 0.064516 M I
21 0.12415 M 0.2 M 0.096774 M I
22 0.074344 L 0.2 M 0.064516 M I
23 0.070943 L 0.2 M 0.064516 M I
24 0.050292 L 1 H 0.032258 L I
25 0.18829 H 0 L 0 L I
26 0.285957 H 0.1 M 0.032258 L |
27 0.225705 H 0.1 M 0.096774 M I
28 0.146501 M 1 H 0.032258 L I
29 0.20068 H 0 L 0.322581 H |
30 0.152089 M 0.5 M 0.064516 M I
31 0.152332 M 1 H 0.129032 M I
32 0.179057 H 1 H 0.16129 H i
33 0.137512 M 0.1 M 0.225806 H N
34 0.293246 H 0.1 M 0.580645 H N
35 0.172012 M 0.1 M 0.387097 H N
36 0.195335 H 0.1 M 0.548387 H N
37 0.084548 L 0 L 0 L N
38 0.089893 L 0.1 M 0.16129 H N
39 0.071672 L 0.1 M 0.032258 M N
40 0.126093 M 0.5 M 0.193548 H N
41 0.157434 M 0 L 0.032258 L N
42 0.285957 H 0 L 0.225806 H N
43 0.304665 H 0 L 0.451613 H N
44 0.126093 M 0.1 M 0.096774 M N
45 0.137998 M 0 L 0.096774 M N
46 0.119776 M 0 L 0.032258 L N
47 0.184159 H 0.1 M 0.193548 H N
48 0.133625 M 0 L 0 L N
49 0.249271 H 0.4 M 0.064516 M N
50 0.233479 H 0.2 M 0.193548 H N
51 0.165695 M 0.2 M 0 L N
52 0.130466 M 0 L 0.032258 L N

85



As demonstrated in Table 15, 52 rules can be generated from the HS Knot task training
dataset. Some of these rules however, are repeated a few times . For instance in Table 15,

data vectors 5, 9, and 12, generate the same rule;

if “Time” is Low, and “Maximum Thread Overstretch” is High, and
“Number of Errors™ is Medium, the user is an Expert.

Instead of repeating the recurring rules, we assigned each rule a weighting proportional to
the frequency of its appearance. For example the weighting for the above-mentioned rule,
which is repeated three times, is three times the weighting for a rule that is extracted only

once.

In the case of having a contradiction (meaning that two rules with the same premise have
different conclusions), we included both rules in the rule set. For example in Table 15,

data vectors 1 and 4 suggest the same rule;

if “Time” is Low, and “Maximum Thread Overstretch” is Low, and
“Number of Errors” is Low, the user is an Expert.

Data vector 37 however, generates a second rule with the same premise, but with a

different conclusion;

if “Time” is Low, and “Maximum Thread Overstretch” is Low, and
“Number of Errors™ is Low, the user is a Novice.

These contradictory rules in the rule set eliminate each other’s effects during the fuzzy

inference process, and therefore do not affect the final decision.

The resulting rules along with their corresponding weightings formed our set of rules for

each fuzzy model.

4.4 Selecting the Fuzzy Inference Properties

Properties of the fuzzy systems such as shapes of the membership functions, the t-norm
and t-conorm operators, and the aggregation and defuzzification methods need to be

specified (refer to section 3 for more information). We selected the most commonly used
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fuzzy inference properties to design our systems. They include the triangular/trapezoidal
membership functions, the maximum and minimum t-norm and t-conorm operators,
respectively, the maximum aggregation method, and the centroid defuzzification method.
Particulars of these methods are explained in section 3. The effect of other fuzzy

inference preperties on the classifiers are studied in section 5.

4.5 Results and Analysis

Each of the DAU and DHU data separation methods were employed once to create a
fuzzy classifier for each of the Stitch and HS Knot tasks, which provided us with four

fuzzy classifiers in total.

Figure 39:  The effect of Time and Number of Errors on the Stitch task’s fuzzy score

(x-axis: Number of Errors, y-axis: Time, z-axis: fuzzy score)
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The constructed models demonstrated a highly non-linear and non-monotonic
relationship between the inputs and the output of the systems. Figure 39 shows the effect
of “Time” and “Number of Errors” inputs on the “Score” for the Stitch task model as
an example. As we can see in the figure, for Ligher values of “Time” and “Number of
Errors” (“Time™> 0.5, “Number of Errors”™ 0.3), there is a monotonic relationship
between the output (score) and the two inputs. For lower values of “Time” (< 0.5),

however, the effect of the “Number of Errors” input on the Score does not follow any
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specific pattern. Similarly, for “Number of Errors” values below 0.3, the effect of “Time”

on the output is irregular and serrated.

We used the testing datasets (each containing 52 data vectors) to test our classifiers. The

results are shown in Figure 40.

Figure 40:  Fuzzy Scores for the Stitch and HS Knot tasks
(a): DAU Stitch testing dataset, (b): DHU Stitch testing dataset, (c): DAU HS Knot
testing dataset, (d): DHU HS Knot testing dataset - (x-axis: data vectors, y-axis: fuzzy

score).
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Based on the numerical fuzzy scores, the users’ levels of expertise can be predicted by
the fuzzy classifiers. Each user belongs to one of the three categories (expert,
intermediate, or novice) that has the highest truth-value for his/her fuzzy score in the

classifier’s output fuzzy sets.

Example: predicting the users’ levels of expertise based on their fuzzy scores

The fuzzy scores for 5 users are shown in Table 16 as an example. Each subject has a real
level of expertise (depending on their experience in MIS as explained in section 2.2.2),
and a predicted level of expertise, which is determined based on the score they achieved
in the user study. For example, subject 1 in Table 16, who was in the expert group, has
achieved a fuzzy score of 0.3. In the classifiers’ output fuzzy sets, 0.3 has the truth-value
of 0.59 in the Expert fuzzy set, 0.41 in the Intermediate fuzzy set and 0 in the Novice
fuzzy set. Therefore, because user 1’s score has the highest truth-value in the Expert
fuzzy set, his predicted level of expertise would also be expert. For user 3 however, the
predicted level of expertise is novice (his fuzzy score is 0.755, which has the highest
truth-value in the Novice fuzzy set), although his real level of expertise is intermediate.
Thus, we have a match between the real and predicted levels of expertise for user 1, but

not for user 3.

Table 16: Example of users’ predicted and real levels of expertise.
Table shows the fuzzy score, real levels of expertise, predicted levels of expertise, and
whether there is a match between the real and predicted levels of expertise for 5

participants.
Usor | Niperiee. | Scors | - Expertise | Match?
1 Expert 0.3 Expert Yes
2 Expert 0.708 Novice No
3 Intermediate 0.755 Novice No
4 Intermediate 0.494 Intermediate Yes
5 Novice 0.757 Novice Yes
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Figure 41:

Predicting users’ levels of expertise based on the Qutput fuzzy sets.

(x-axis: fuzzy score (output), y-axis: output's truth-value)
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Performance of the classifiers can be evaluated according to the number of matches

between the users’ real and predicted levels of expertise. Table 17 shows the percentage

of matches between the real and predicted levels of expertise, after all the users have been

categorized.

Table 17: Percentage of correct results in all groups of expertise and in total for each classifier
Stitch Task Stitch Task HS Knot Task | HS Knot Task
(DAU) (DHU) (DAU) (DHU)
Experts 0% 6.25% 25% 43.75%
Intermediates 100% 56.25% 93.75% 81.25%
Novices 30% 25% 5% 15%
Total 42.31% 28.85% 38.46% 44.23%
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S EXPLORING THE EFFECT OF VARIOUS FUZZY
INFERENCE PROPERTIES ON THE PERFORMANCE
OF FUZZY CLASSIFIERS

In the design of our fuzzy classifiers we employed the simplest, or the most commonly
used Fuzzy Inference System (FIS) properties. For example, we used the simple
triangular/trapezoidal shapes for the membership functions, and used the common
minimum t-norm operator and the centroid defuzzification method in our systems. In this

section we explore the effect of some other FIS properties on our fuzzy classifiers.

It is shown that amongst the different FIS properties, the shapes of the membership
Junctions, the t-norm operators (the AND method), and the types of the defuzzifiers are
the most signiﬁcant factors in the fuzzy inference process (Dadone, 2001). Therefore, we
tested and compared the performance of our classifiers with different combinations of

these three factors.

To do so, we first examined the effect of various membership functions and t-norm
operators on our classifiers to find the system with the optimal combination of these two
factors. We then applied different defuzzification methods to that system and identified

the most functional grouping of FIS properties for our fuzzy classifiers.

To be able to compare performance of the different classifiers, and in order to find the
one with the optimal combination of FIS properties, we took two different approaches to

compare the functionalities of the systems after they were tested with the testing dataset.

One approach is based on the number of correct classifications for each system, or the
number of matches between users’ real and predicted levels of expertise. Since the
objective of the test is to classify users correctly, this method sounds like a reasonable

approach.

However, it should also be considered that there are different levels of fallacy among the

systems’ incorrect answers. For instance a classifier that predicts a novice user to be an
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expert is making a major error, which may cause an inexperienced surgeon to advance to
the operating rooms. In comparison, another system that classifies the same user also
incorrectly, but as an intermediate, is less likely to cause such a fatal error and therefore
is more reliable. Considering only the number of correct classifications for the systems
does not take this problem into account, and therefore the other approach that we used to
compare the functionalities of our classifiers is based on the total error in the predicted
levels of expertise for the user in the testing dataset, and is explained in the following

section.

5.1 The “Root Mean-Squared Error”

The Root Mean-Squared Error

Root Mean-squared error (RMS error), determined by calculating the deviations of points
from their true position, summing up the squares of the measurements, then taking the
square root of the sum, and then dividing the result by the number of points, is the most
commonly used measure of success of numeric prediction (GRB Research, GRP Tool

Shed, 9 3.2.4, 2005). For example if a;, ay, ..., a,, are the system’s predicted values, with

corresponding true values of ¢y, ¢z, ..., ¢y, the RMS error for a; to a, is calculated as:
\Fal —¢) +(a,—¢,)’ +..+(a,—c,)’
h Equation 21

To determine the RMS error for each classifier’s fuzzy scores, the deviations of the
predicted scores from their true values need to be calculated. The true value of score for
each user is the value that best represents the group of expertise that the user belongs to.
Considering the output membership functions for our classifiers (Figure 42), we can see
that the true (or ideal) score for each group of expertise is the score that has the highest
truth-value in the corresponding membership functions. For example the ideal score for
an expert user is the score that has the highest truth-value (i.e. 1) in the Expert fuzzy set

in the output membership functions.

92



Figure 42:  ldeal score for each group of expertise in the output fuzzy sets.

{(x-axis: output (score) value, y-axis: output's truth-value)
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As shown in Figure 42, all the values below 0.167 and above 0.833 have the maximum
truth-value in the Expert and Novice fuzzy sets, respectively. Therefore the ideal score
for the expert group could be any value below 0.167, and above 0.833 for the novice
group. Because the Intermediate fuzzy set is triangular in shape, there is only one score
with the maximum truth-value for the intermediate group. Therefore the ideal score for an

intermediate user will be 0.5. These va:ues are shown in Table 18.

Table 18: Ideal score for users in each group of expertise

User ldeal (true)
score
Expert <0.167
Intermediate 0.5
Novice >(.833

The deviations of the fuzzy scores from their true values can now be calculated through

the following equations:
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0 Fuzzy Score <0.167

Experts’ Scores Deviation =

Fuzzy Score — 0.167 Fuzzy Score > 0. IEZua tion 22

Intermediates’ Scores Deviation =  Fuzzy Score — 0.5

Equation 23

0 Fuzzy Score > 0.833

Novices’ Scores Deviation =
Fuzzy Score — 0.833 Fuzzy Score < (0.833

Equation 24

To determine the RMS Error for each classifier after being tested with the 52 data vectors

in the testing dataset, user’s fuzzy and ideal scores were substituted in:

16 5 16 5 20 5
ZI:AE,. +Z;A1j +;ANk
i= Jj= =

52

RMS  Error=

Equation 25

In which AE;, AL, and AN are the score deviations for the i* expert, j intermediate, and
k™ novice data vectors, and are calculated by substituting the testing data set fuzzy scores

in Equation 22 to Equation 24.

Relative Root Mean-Squared Error

The relative RMS error is defined to be the ratio of the RMS Error to the maximum
RMS Error value possible for each classifier, and indicates the relative reliability of the

classifiers. The maximum RMS Error is calculated as follows:
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16 16 20
}_JAE,? +ZA1} + 3 AN;
max (RMS  Error)=max | {|-= ] =152 =

imax(AEf)+imax(A[f‘).-i-imax(ANf)
_4]=t k=t

J=1

52
Equation 26
Since the fuzzy scores belong to [0,1], from Equations 2 to 4 we have:
max(AE?)= (1-0.167)* = (0.833)* =0.694
(1-0.5)°
max(A72)={or = (£0.5)* = 0.25
(0-0.5)
max(AN? )= (0-0.833)? = (0.833) = 0.694
By substituting these values in Equation 26, we will have:
16 16 20
D 0.694+>0.25+ Y 0.694
max (RMS Error) =A= /=1 k=l
52
_ \/16x0.694+ 16x0.25+20x0.694 _ .,
52
Equation 27

The relative RMS Error for each classifier would be its RMS Error value divided by the
result of Equation 27.
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5.2 Various Fuzzy Inference Properties

5.2.1 Membership Functions

Various functions such as Triangular/Trapezoidal, Gaussian, Sigmoid, Bell Shaped, and
Polynomial-based curves are used to represent the membership functions in fuzzy
inference systems. We studied the effect of Gaussian and Triangular/Trapezoidal shapes

on the input and outputs membership functions in our fuzzy classifiers.

5.2.2 T-norm Operators

It is shown that the optimal behaviour of the fuzzy controllers is achieved by the
differentiable t-norm operators such as the Product operator (Dadone, 2001). The
minimum t-norm operator is also commonly used in fuzzy systems (Szczepaniak, Lisboa,
& Kacprzyk, 2000). Thus, we tested each of our classifiers, employing the minimum and

the Product operators.

To find the best functions for the input and output fuzzy sets, and the most effective t-
norm operator in our systems, for each of our four classifiers, we created all the possible
combinations of the Triangular/Trapezoidal and Gaussian membership functions, and the
Product and minimum t-norm operators. The resulting 8 combinations for each classifier
(two functions for each of the input and output membership functions and two t-norm
operators lead to 2° or 8 combinations of FIS properties) were then tested with the testing
dataset. Table 19 to Table 22 show the percentage of correct results and the average
scores in each group of expertise for each of the classifiers. The results are also
represented in Figure 43 to Figure 46 (vertical bars correspond to the individual scores

and horizontal lines represent the average score in each group of expertise).
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Fi 43:
igure 43 Stitch Task (DAU) fuzzy classifier.

Results of various combinations of membership functions and t-norm operators for the

The vertical bars represent the individual scores and horizontal lines show the average

score in each group of expertise.
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Figure 44:

Stitch Task (DHU) fuzzy classifier.

Results of various combinations of membership functions and t-norm operators for the

The vertical bars represent the individual scores and horizontal lines show the average
score in each group of expertise.
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Figure 45:  Results of various combinations of membership functions and t-norm operators for the
HS Knot Task (DAU) fuzzy classifier.

The vertical bars represent the individual scores and horizontal lines show the average
score in each group of expertise.
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Figure 46:

Results of various combinations of membership functions and t-norm operators for the
HS Knot Task (DHU) fuzzy classifier.

The vertical bars represent the individual scores and horizontal lines show the average

score in each group of expertise.
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To compare the performance of these fuzzy classifiers, we tested them with the testing
dataset, and calculated the RMS Error value for each system. These values are shown in
Table 23 to Table 26. Highlighted rows correspond to the classifier with the lowest RMS
error values.

Table 23:  Percentage of matches and RMS Table 24:  Percentage of matches and RMS

Error for classifiers with various Error for classifiers with various
combinations of FIS properties — combinations of FIS properties —
Stitch Task (DAU) Stitch Task (DHU)
Stitch Task (DAU) FIS Properties Stitch Task (DHU) FIS Properties
Percentage | RMS Percentage | RMS
Input MF Ol;}lgm -’; _:t?‘:: of Matches | Error Input MF Ol;}lgm L ;nt;:’n:l of Matches | Error
TiilTrap | TriTrap Min 4231 0.261 TrifTrap TriTrap Min 28.85 0.296
Tri/Trap | Tri/Trap | Product 42,31 0.261 Tri/Trap TrifTrap | Product 28.85 0.295
TrifTrap | Gaussian Min 34.62 0.263 Tri/Trap | Gaussian Min 28.85 0.281
TrifTrap | Gaussian | Product 34.62 0.264 TrifTrap | Gaussian | Product 36.54 0.269
Gaussian | TrifTrap Min 42.31 0.25 Gaussian | TrifTrap Min 36.54 0.27
Gaussian | Tri/Trap | Product 42.31 0.253 Gaussian | TrifTrap | Product 36.54 0.273
Gaussian | Gaussian Min 36.54 0.254 Gaussian | Gaussian Min 30.77 0.27
Gaussian | Gaussian | Product 32.69 0.256 (aussian | Gaussian | Product 30.77 0.273

Table 25: Percentage of matches and RMS Table 26: Percentage of matches and RMS

Error for classifiers with various Error for classifiers with various
combinations of FIS properties — combinations of FIS properties —
S Knot Task (DAU) HS Knot Task (DHU)
HS Knot (DHU) FIS Properties HS Knot (DHU) FIS Properties
Percentage | RMS Percentage | RMS
Output | T-norm of Matches | Error Output | T-norm of Matches | Error
MputMF | “ME | Method nputMF | “ME | Method
TrifTrap TrifTrap Min 3846 0.243 Tri/Trap TrifTrap Min 4423 0.275
TrifTrap TrifTrap | Product 40.38 0.24 TrifTrap Tri/Trap | Product 46.15 0.275
TrifTrap | Gaussian Min 36.54 0.247 TrifTrap | Gaussian Min 32.69 0.27

Tri/Trap | Gaussian | Product 36.54 0.246 TrifTrap | Gaussian | Product 3462 0.263

Gaussian | Tri/Trap Min 34.62 0.247 Gaussian | Tri/Trap Min 46.15 0.251

Gaussian | Tri/Trap | Product 36.54 0.247 Gaussian | Tri/Trap | Product 46.15 0.255

Gaussian | Gaussian Min 32,69 0.251 Gaussian | Gaussian Min 36.54 0.259

Gaussian | Gaussian | Product 32,69 0.252 Gaussian | Gaussian | Product 36.54 0.254
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As we can see in Table 23 to Table 26, for all four models, fuzzy classifiers with the
lowest amount of RMS Error also have the highest percentage of matches between users’
real and predicted levels of expertise (highlighted rows). Thus, it can be concluded that
the best combination of the input and output membership functions and t-norm operators

for our models are:

o Stitch task (DAU): Gaussian input MF, Triangular/Trapezoidal output MF,

and Minimum T-Norm operator

o Stitch task (DHU): Triangular/Trapezoidal input MF, Gaussian output MF,

and Product T-Norm operator

e HS Knot task (DAU): Triangular/Trapezoidal input MF,

Triangular/Trapezoidal output MF, and Product T-Norm operator

o HS Knot task (DHU): Gaussian input MF, Triangular/Trapezoidal output

MF, and Minimum T-Norm operator

5.2.3 Defuzzification Methods

Our classifiers were initially designed using the centroid defuzzification method. In this
section, we explore the effect of some of the other defuzzification methods on our fuzzy

systems.

There are five different defuzzification methods supported in MATLAB; centroid (which
returns the center of area under the curve), bisector (which returns bisector of area under
the curve), middle of maximum or MOM (the average of the maximum value of the
output set), largest of maximum or LOM (largest of the maximum values of the output
set), and smallest of maximum or SOM. Figure 47 shows examples of these methods.
The vertical line in each figure shows the location of the defuzzified output value over

the output curve.
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We implemented each of these five methods in our system with the optimal combination
of membership functions and t-norm operators (determined in the previous section) to

find the most appropriate defuzzifier for our systems.

Figure 47: Different Defuzzification methods applied to an example fuzzy output curve.
The vertical line shows location of the numerical fuzzy output over the output curve.
Methods applied: (a): Centroid, (b): Bisector, (¢): Middle of maximums, (d): Largest of
maximums, (¢): Smallest of maximums

b |

UL‘ o : 1f n 1
(a) (b)
| |
0 . o C 1
o 3
(e)

The resulting classifiers were tested against the testing dataset. Table 27 to Table 30,

and Figure 48 to Figure 51 represent the results.
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Table 27:

Results of various defuzzification methods for the Stitch Task (DAU) fuzzy classifier

Stzgczl}')a_sk Percentage of Correct Results Average Score in each group
Defuzzification . . . Novice

Method Experts | Intermediates Novices Total Experts | Intermediates s
Centroid 0 100 30 42.31 0.48 0.47 0.58
Bisector 0 100 30 42.31 0.48 0.47 0.57
MOM 31.25 100 45 57.69 0.47 0.49 0.57
LOM 0 0 75 28.85 0.72 0.79 0.80
SOM 81.25 0 0 25 0.21 0.20 0.30

Table 28: Results of various defuzzification methods for the Stitch Task (DHU) fuzzy classifier

Stitch Task Percentage of Correct Results Ave.r age Fuzzy Score
(DHU) - in each group
Defl':nz:tl:gztlon Experts | Intermediates | Novices Total Experts | Intermediates | Novices
Centroid 0 100 15 36.54 0.57 0.53 0.61
Bisector 0 87.5 5 28.85 0.53 0.55 0.58
MOM 6.25 56.25 65 44.23 0.54 0.56 0.64
LOM 0 6.25 100 40.38 0.89 0.90 0.96
SOM 68.75 37.5 0 32.69 0.20 0.23 0.32
Table 29: Results of various defuzzification methods for the HS Knot Task (DAU) fuzzy classifier
HS Knot
Task (DAU) Percentage of Correct Results Ave.rage Fuzzy Score
N in each group
Defuzzification Experts | Intermediates Novices Total | Experts | Intermediates Novice
Method P P ' s
Centroid 31.25 93.75 5.00 40.38 042 0.51 0.54
Bisector 31.25 93.75 5.00 40.38 0.40 0.52 0.55
MOM 43.75 68.75 65.00 59.62 0.36 0.49 0.57
LOM 0.00 6.25 100.00 | 40.38 0.61 0.73 0.82
SOM 87.50 25.00 0.00 34.62 0.12 0.25 0.32
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Table 30: Results of various defuzzification methods for the HS Knot Task (DHU) fuzzy classifier
HS Knot Average Fuzzy Score in
Task (DHU) Percentage of Correct Results 9 v
! each group
Defuzzification Experts | Intermediates | Novices Total | Experts | Intermediates Novice
Method P P ' s
Centroid 37.50 93.75 15.00 46.15 0.42 0.49 0.55
Bisector 50.00 62.50 20.00 42.31 042 0.49 0.56
MOM 62.50 12.50 45.00 40.38 0.40 0.454 0.67
LOM 0.00 43.75 80.00 4423 0.67 0.83 0.93
SOM 87.50 4375 0.00 40.38 0.13 0.24 0.40
Figure 48:  Results of various defuzzification methods applied to the Stitch Task (DAU) model with

the optimal combination of membership functions and t-norm operator.

The vertical bars represent the individual scores and horizontal lines show the average
score in each group of expertise.
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Figure 49: Results of various defuzzification methods applied to the Stitch Task (DHU) model with
the optimal combination of membership functions and t-norm operator.

The vertical bars represent the individual scores and horizontal lines show the average
score in each group of expertise,
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Figure 50: Results of various defuzzification methods applied to the HS Knot Task (DAU) model
with the optimal combination of membership functions and t-norm operator.

The vertical bars represent the individual scores and horizontal lines show the average

score in each group of expertise.
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Figure 51:  Results of various defuzzification methods applied to the HS Knot Task (DHU) model
with the optimal combination of membership functions and t-norm operator.

The vertical bars represent the individual scores and horizontal lines show the average
score in each group of expertise.
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To compare the efficiency of these defuzzifiers, we calculated the RMS Error value for
each model. These values are shown in Table 31 (a), (b), (c), and (d) for each of the four
models with the five defuzzification methods applied.
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Table 31: RMS Errors for various defuzzification methods applied to classifiers with optimal
combination of membership functions and t-norm operator
(minimum value(s) highlighted)

Stitch Task (DAU) Stitch Task (DHU)
Defuzzification | Percentage | RMS Defuzzification | Percentage | RMS
Method of Matches | Error Method of Matches | Error
Centroid 42.31 0.250 Centroid 36.54 0.2814
Bisector 42.31 0.254 Bisector 28.85 0.260
Middle of Max 57.69 0.293 Middle of Max 44.23 0.268
Largest of Max 28.85 0.387 Largest of Max 40.38 0.464
Smallest of Max 25 0.403 1 Smallest of Max 32.69 0.378
(@) (b)
HS Knot Task (DAU) HS Knot Task (DHU)
Defuzzification | Percentage | RMS Defuzzification | Percentage | RMS
Method of Matches | Error Method of Matches | Error
Centroid 40.38 0.24 Centroid 46.15 0.251
Bisector ’ 40.38 0.235 Bisector 42.31 0.255
Middle of Max 59.62 0.227 Middle of Max 40.38 0.293
Largest of Max 40.38 0.362 Largest of Max 44 .23 0.348
Smallest of Max 34.62 0.342 Smallest of Max 40.38 0.406
(c) (d)

As shown in Table 31 (a), (b), (c¢), and (d), the Middle of Maximum (MOM)
defuzzification method has the highest percentage of matches in all models except for the
HS Knot task (DHU), in which the highest percentage of matches is achieved by the
Centroid method. For the HS Knot (DAU) and HS Knot (DHU) models, the systems with
the highest percentage of mﬁtches are also the ones with the lowest RMS Error, but this is
not the case for the Stitch task models. However, because the differences between the
RMS Error values is insignificant, we consider the models with the highest percentage of
matches (highlighted rows in Table 31) to have the optimal combination of fuzzy
inference properties. Thus, it could be concluded that the most appropriate
defuzzification method for the Stitch task (DAU), Stitch task (DHU), and the HS Knot
task (DAU) is the Middle of Maximum defuzzification method and Centroid method for
the HS Knot task (DHU) model.
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6 ANALYSIS OF RESULTS

6.1 Results summary

As explained in the previous section, the optimal combination of fuzzy inference
properties for each of the four fuzZy classifiers was identified. Table 32 summarizes these
combinations and the percentage of matches and RMS Error values for each of the four
models. The Relative RMS Error in Table 32 shows the ratio of the RMS Error for each
model to the maximum possible RMS Error for our classifiers, which was calculated in

Equation 27 in section 5.1.

Table 32: Summary of results for the fuzzy models with the optimal combination of fuzzy
inference properties

Best fuzzy inference properties combination i
y prop Percentage RMS Zi;tllsv
Input MF Output T-Norm Defuzzification of Matches Error Error
P MF Operator method
Stitch . . L
Gaussian Tri/Trap Minimum MOM 57.69 0.293 0.393
(DAU)
Stitch | 7 Gaussi Product MOM 4423 0.263 | 0.359
(DHU) ri/Trap aussian roduc . .26 .
HS
Knot TrifTrap TrifTrap Product MOM 59.62 0.227 0.304
(DAU)
HS
Knot Gaussian TrifTrap Minimum Centroid 46.15 0.251 0.336
(DHU)

Comparing the percentage of matches between the DAU and DHU models for each task
shows that models with the DAU data separation have performed better for both the
Stitch and the HS Knot tasks. This could be due to the fact that our sample population has
not been large enough to represent the overall population, and dividing the users in two

groups in the DHU method has resulted in even smaller training and testing datasets that
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do not share common characteristics. Different results might be obtained in a system with

a larger sample size.

6.2 Comparing Fuzzy Classifiers with Conventional Mathematical
Methods

As mentioned in section 2.3.1, we applied regression analysis as a linear statistical
method to our training datasets. Equation 3 to Equation 6 in section 2.3.1 represent the
resulting regression equations for the four models (Stitch (DAU), Stitch (DHU), HS Knot
(DAU), and HS Knot (DHU)), which estimate the value of “skill level” based on the
Stitch and HS Knot performance metrics. We substitute the performance metrics from the
testing datasets in the corresponding regression equations to predict the related surgical

skill levels. These values are represented in Table 33 and Table 34.

It was mentioned in section 2.3.1 that we assigned a numerical value to each surgical skill
level by dividing the interval from O to 1 into three equal regions, and assigning the
center of each region to one surgical skill level (Figure 52). After predicting numerical
values for the “skill level”, we took a reverse action to classify those values into the three

categories of Expert, Intermediate, and Novice, as follows:

p
Expert 0 < Skill Level Value <0.333

Skill Level Category =< Intermediate 0.333 < Skill Level Value <0.667
\Novice 0.667 < Skill Level Value <1

The predicted categories of surgical skill levels are shown in Table 33 and Table 34.

Figure 52:  Assigning numerical values to surgical skill levels

Expert Intermediate Novice

it it i

— T T

0 0.167 0.333 0.5 0.667 0.833 1

Sy
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Table 33: Test results of regression equations with Stitch task (DAU) and Stitch task (DHU)
testing datasets
Stitch Task (DAU) Stitch Task (DHU)
Data Predicted Skill Level Predicted Skill Level
Vector Relz'wsell(i" Value Category Relzlvzll(i" Value Category
1 E 0.5862 f E 0.6877 N
2 E 0.2464 E E 0.5902 I
3 E 0.539 I E 0.4297 I
4 E 0.6837 N E 0.4994 I
5 E 1.0682 N E 0.5788 I
6 E 0.966 N E 0.5216 I
7 E 0.3115 E E 0.712 N
8 E 0.3039 E E 0.6361 I
9 E 0.5772 | E 0.4341 i
10 E 0.5167 ! E 0.2217 E
11 E 0.3902 I E 0.3035 E
12 E 0.2941 E E 0.3362 I
13 E 0.5796 1 E 0.3276 E
14 E 0.1899 E E 0.2544 E
15 E 0.7182 N E 0.6084 I
16 E 0.1679 E E 0.258 E
17 I 0.5049 I I 0.3577 I
18 I 0.3099 E I 0.3173 E
19 I 0.3251 E I 0.4052 I
20 | 0.6148 I | 0.3031 E
21 | 0.5735 1 I 0.3145 E
22 I 0.3404 | I 0.2904 E
23 I 0.2487 E I 0.3716 !
24 | 0.3342 I I 0.2913 E
25 I 0.3354 ! I 0.2519 E
26 I 0.2603 E I 0.337 I
27 I 0.4962 I I 0.3072 E
28 i 0.3473 I 1 0.3261 E
29 I 0.3368 ! l 0.3598 |
30 I 0.1978 E I 0.2948 E
31 | 0.3043 E I 0.3164 E
32 i 0.4068 I I 0.2996 E
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Stitch Task (DAU) Stitch Task (DHU)
Data Predicted Skill Level Predicted $kill Level
Vector Relzlvz:(ill Value Category ReI:Iv::(ill Value Category
33 N 0.8194 0.5025 |
34 N 0.6835 N N 0.5131 |
35 N 0.7514 N N 0.3762 |
36 N 0.7148 N N 0.4882 i
37 N 0.4824 | N 0.7681 N
38 N 0.1593 E N 0.7599 N
39 N 0.9984 N N 0.5134 |
40 N 0.8741 N N 0.278 E
41 N 0.695 N N 0.659 |
42 N 0.8871 N N 0.624 |
43 N 0.3017 E N 0.7648 N
44 N 0.3239 E N 0.4114 |
45 N 0.4559 | N 0.5952 |
46 N 0.6313 ! N 0.3119 E
47 N 0.5476 | N 0.3683 |
48 N 0.6019 | N 0.5763 |
49 N 0.5322 | N 0.6378 |
50 N 0.7122 N N 0.6991 N
51 N 0.7414 N N 04325 |
52 N 0.7703 N N 0.6082 |
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Table 34: Test results of regression equations with HS Knot task (DAU) and Stitch task (DHU)
testing datasets
Stitch Task (DAU) Stitch Task (DHU)
Data Predicted Skill Level Predicted $kill Level
Vector ReIZIVZ:(iH Value Category Relzlvsell(ill Vaiue Category

1 E 0.5475 | E 0.5556 |
2 E 0.5631 | E 0.5048 |
3 E 0.5356 | E 0.6295 |
4 E 0.5392 | E 0.6547 |
5 E 0.4587 | E 0.3739 |
6 E 0.6023 i E 0.5488 |
7 E 0.3354 | E 0.2748 E
8 E 0.3508 | E 0.3179 E
9 E 0.3546 | E 0.4747 [
10 E 0.5227 | E 0.2395 E
11 E 0.3522 | E 0.2093 E
12 E 0.3635 | E 0.3869 |
13 E 0.5381 | E 0.2887 E
14 E 0.3276 E E 0.2415 E
15 E 0.3559 ! E 0.2229 E
16 E 0.3232 E E 0.2537 E
17 | 0.5405 | | 0.4837 |
18 ! 0.5392 I | 0.3696 |
19 | 0.5488 | | 0.3018 E
20 1 0.5535 1 | 0.4789 |
21 | 0.5417 | | 0.4885 1
22 | 0.508 | | 0.3535 |
23 | 0.5468 | | 0.4696 |
24 | 0.3304 | | 0.675 N
25 | 0.5516 | ! 0.526 |
26 ! 0.5411 | | 0.5079 !
27 | 0.5967 | | 0.486 |
28 | 0.6442 | ! 0.4855 |
29 | 0.5727 | | 0.6395 |
30 | 0.3566 | | 0.6809 N
31 ! 04779 | | 0.7325 N
32 | 0.393 | | 0.5881 ]
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Stitch Task (DAU) Stitch Task (DHU)
Data Predicted Skill Level Predicted Skill Level
Vector Relzlvzil(i" Value Category Rﬁ:'vzri" Value Category
33 N 0.6185 | N 0.3449 |
34 N 0.6859 N N 0.5383 I
35 N 0.3706 | N 0.5668 |
36 N 0.5931 | N 0.4938 |
37 N 0.5444 | N 0.5879 |
38 N 0.5309 | N 0.5394 |
39 N 0.5759 | N 0.6168 ]
40 N 0.7668 N N 0.5096 |
41 N 0.5237 | N 1.6782 N
42 N 0.5551 | N 0.6248 |
43 N 0.5938 | N 0.5261 |
44 N 0.5578 | N 0.6018 |
45 N 0.5703 | N 0.6143 |
46 N 0.5593 | N 0.2851 E
47 N 0.5978 | N 0.5685 |
48 N 0.5935 | N 0.3237 E
49 N 0.5232 | N 1.1533 N
50 N 0.5685 1 N 0.7685 N
51 N 0.8105 N N 1.0368 N
52 N 0.6465 | N 0.3902 |

In Table 34, percentage of matches and the S Error values for the results of regressioﬁ
analysis are compared with those obtained by fuzzy classifiers. Performance of the fuzzy
models has been slightly better in three of the four models. Stitch task (DAU), Stitch task
(DHU), and HS Knot task (DAU) fuzzy models have a higher percentage of matches with
lower amounts of RMS Errors compared to the results of regression analysis. The only
fuzzy model that did not perform better than the regression analysis is the HS Knot task
(DHU), with equal percentage of matches and a slightly higher amount of RMS Error.
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Table 35: Comparing Regression Analysis and Fuzzy Classifier results

Regression Analysis Results

Fuzzy Classifier Results

Percentage of RMS Percentage of RMS

Matches Error Matches Error

Stitch (DAU) 51.92 0.309 57.69 0.294
Stitch (DHU) 26.92 0.290 46.15 0.268
HS Knot (DAU) 40.38 0.232 59.62 0.227
HS Knot (DHU) 46.15 0.248 46.15 0.251
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7 DISCUSSION AND CONCLUSION

Fuzzy set theory makes it possible to express heuristic claims about complicated facts in
mathematical language, and is a powerful tool to handle imprecision dr fuzziness
associated with continuous phenomena dealt with in a large number of practical problems
(Cox, 1999). Examples of such problems can be found in various fields of study such as
physics, sociology, biotechnology, ecology, finance, medicine, and especially in

engineering.

In most cases, the underlying phenomena in such systems are not clearly understood and
the most significant source of information is the knowledge of human experts. This
knowledge may be too vague and inexact to be expressed by mathematical functions. It
is, however, often possible to describe the performance of systems by means of natural

language, in the form of if-then rules.

In addition, the nature of many real-world systems is non-linear and cannot be
represented by linear models used in conventional system identification. Artificial neural
networks and fuzzy models are two of the most popular model structures used for the

identification of non-linear systems from measured data.

Fuzzy modelling and identification methodologies have been successfully used for
various aims in a broad range of real-world applications. Applications of fuzzy set theory
are considerably more developed in engineering than in other areas of research (Klir et
al., 1997). Two of the important applications of fuzzy logic are in the problem areas of

decision-making and pattern recognition.

Fuzzy methods have been broadly and successfully developed in virtually all branches of
decision-making, including multiobjective, multiperson, and multistage decision-making.
These methods are, in general, more realistic than their classical counterparts (Klir et al,

1997).
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The utility of fuzzy set theory is also well established in the problem area of pattern
recognition. This is quite understandable since most categories we commonly encounter

and use do not have precise boundaries (Pal, & Dutta Majumder, 1986).

Fuzzy rule-based systems seem to be appropriate tools to handle the problem of surgical
performance evaluation, as the nature of the variables is continuous, the relationship
between the inputs and outputs of the system is non-linear and complicated, and the only
accepted methods of evaluation are based on the complex, imprecise and subjective
opinion of experts. Although an objective method of surgical performance evaluation has

been the focus of a number of studies, no formal framework has been set.

In this project we investigated the use of fuzzy classifiers as a new approach in objective
surgical skills assessment, based on numerical performance metrics collected by a
surgical simulator. The goal was to create a skill evaluation scheme to be incorporated in
computer-assisted surgical training systems. With proper assessment and validation, such

systems can provide feedback during the training episodes, enhancing skills acquisition.

Twenty six subjects with three different surgical skill levels (novice, intermediate, and
expert), completed one suturing and one knot-tying task available in the MIST-VR
surgical simulator. The performance data collected in the experiment were divided into
two equal datasets: the training dataset, which was used to train the fuzzy classifiers, and
the testing dataset, used to evaluate the resulting models. This was achieved with the use

of two different data separation methods, the DAU and the DHU.

The initial analysis of the user study data revealed some inconsistencies between the
surgical skill levels and performance metrics collected by MIST-VR. In the Stitch task
for instance, the Maximum Tissue Deformation values were generally higher in the
expert and the novice groups, but low in the intermediate group (Figure 8). Similarly in
the HS Knot task, the Maximum Thread Overstretch values had the highest values in the
expert group (Figure 9). Basic statistical analysis on the collected data also did not
suggest a strong correlation between the performance metrics collected by MIST-VR and

the surgical skill levels (Table 8 and Table 9). However, it was hypothesised, and was
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proved to a great extent later, that fuzzy logic-based classifiers can recognize hidden

pétterns in even poorly correlated data and conquer the imperfections in the sample data.

The Mamdani’s Fuzzy Inference Method (Mamdani, 1977) was used to design four fuzzy
classifiers: Stitch task DAU, Stitch task DHU, HS knot task DAU, and HS Knot task
DHU. The initial models were designed employing the most popular fuzzy inference

properties. The constructed models were then tested with the testing dataset.

The effects of a few different fuzzy inference properties were then explored on the
performance of the classifiers. Various combinations of membership functions, t-norm
operators, and defuzzification methods were applied to our models and each model was

tested against the testing dataset.

Performance of the classifiers with various combinations of fuzzy inference properties
were compared based on the amount of “Root-Mean-Squared Error” in each system’s
results, and the number of matches between each system’s predicted surgical skill levels
and users’ real levels of expertise. The best combination of fuzzy inference properties
was identified for models with the highest number of matches, which also had a low

amount of RMS Error.

Systems with the DAU data separation method provided more reliable results, which may
indicate that our sample population was not large enough to represent the overall
population. This was due to the extremely busy schedule of the potential participants of

this study, and also time and financial limitations.

Regression analysis was used on the user study data as a simple statistical method to
identify the input/output relationship in the problem of surgical performance evaluation.
The resulting regression equations were then tested with the testing datasets. The
comparison between outcomes of the regression analysis and the fuzzy classifications
showed that in general, fuzzy models have performed slightly better than the statistical
method (Table 35).
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The preliminary verifications of our novel approach confirmed that fuzzy classifiers may
have the potential to distinguish between various surgical skill levels, and the results of

this research can be used as a basis for further improved models.

Since our fuzzy classifiers were designed based on data values collected in a user study,
the logistic difficulties in acquiring participants limited the fuzzy systems’ source of data.
A larger sample size which represents the population more accurately could generate

more efficient classifiers.

Further controlling the experimental conditions may also improve the results of the user
study. For instance, the presenter in our study was not blind to the participants’ surgical

skill levels, which may have negatively affected the results.

Other factors such as age, gender, fatigue, and even previous experience with computer
games may also have affected the results of this study. Further considerations when

acquiring participants may improve the results.

Another issue with the design of fuzzy classifiers in this study was the low correlation
between the performance metrics collected by MIST-VR and the participants’ surgical

skill levels. Using more relevant metrics may improve performance of the classifiers.

The initial design of the fuzzy classifiers was based on an ad hoc procedure. Investigating
the effect of various fuzzy inference properties in section 5 showed that performance of
these models could be improved by modifying the fuzzy inference properties. [n addition,
other characteristics of the systems such as the membership functions’ attributes could be
further adjusted with the help of fuzzy adaptive learning systems (Abony, Nagy, &
Szeifert, 1999; Jang, 1993).

Additionally, using more sophisticated performance metrics such as force and torque
measurements in advanced surgical training environments may result in more effective

systems for assessment of a trainee’s skill level.
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Finally, the combined effect of the fuzzy classifiers designed for different surgical
manoeuvres (such as the Stitch and HS Knot tasks in this study) could be considered as

an alternative way of predicting a trainee’s surgical expertise.
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Appendices

Appendix A: Preliminary User Study

A primary user study of 12 subjects in three categories of expertise (novice, intermediate,
and expert) was conducted, employing Acquire Place and Transfer Place tasks available
in MIST-VR. Both tasks involved the manipulation of a ball with grippers and were
among the most basic tasks defined in MIST-VR. Half of the performance metrics were
used to design a fuzzy classifier for each task, and the rest to test the models. Our
classifiers however, did not offer the optimal results. We believed that the results could

be improved by:

e Testing a lager sample size that would be a better representative of the

performance variation of our three categories of participants, and

e Employing more complicated surgical tasks, which could increase chances
of success of a classifier by providing a larger skill gap between the three

categories of expertise.

Our following experiment, which is explained in this thesis, was designed by

incorporating the above-mentioned factors.
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Appendix B: User Study Questionnaire

Using Fuzzy Set Theory to Evaluate performance on

Surgical Simulators
Study Questionnaire Form

Part 1: About the participant

O 0O0-

aw

Participant’s position:
Senior Surgeon O Surgical Resident O Intern
Other (Please specify):

Participant’s Age:
19-29 0O 29-39 0O 39-49 0O 49-59 O Over 59

Participant’s dominant hand:
Left O Right

Part 2: Minimally Invasive Surgery training history

L.
O
O

oo

)

oo»

Have you ever had training in minimally invasive surgery?
No (Go to Part 3)
Yes

Have you had any training in computer-based simulators?
No (Go to question 3)
Yes

For how many hours?
Less than 2 0 3-5 O 6-9 O 10-13 O Over 13

Have you had any training using physical simulators?
No (Go to question 4)
Yes

For how many hours?
Less than 2 O 3.5 O 6-9 0 10-13 O Over 13

Have you had any training in animal labs?
No (Go to question 5)
Yes
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oo«

ogs

oo

For how many hours?

Less than 2 O 3-5 O 6-9 0O 10-13 O Over 13
Have you had any training in an OR, by observing a surgery?

No (Go to question 6)

Yes

How many surgeries have you been present in?

Have you had any training in an OR, by assisting a surgery?
No (Go to question 7)
Yes

Please specify in how many surgeries and the type of assistance?

Have you had any training in an OR, by performing a surgery under the
supervision of an expert surgeon?

No (Go to part 3)

Yes

How many surgeries?

Part 3: Previous surgical experience

1.

oo

o

3.
O

Type of assistance:

4.
O

For purposes other than training, have you ever been present in the operating
room as a performer/observer of a minimally invasive surgery?

No (Go to Part 4)

Yes

How many minimally invasive surgeries have you observed?
0 0O1-20 O 21-40 O 41-60 O Over 60

How many minimally invasive surgeries have you assisted in?
0 0O1-20 O 21-40 O 41-60 O Over 60

How many minimally invasive surgeries have you performed?
0 0120 0O 21-40 0O 41-60 O Over 60

Part 4: Previous experience with surgical simulators
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1. For purposes other than training, have you ever used computer-based surgical
simulators?

No (Go to question 2)

Yes

For how many hours?

Less than 2 0 2-5 O 6-9 010-13 O Over 13

O OO

2. For purposes other than training, have you ever used physical surgical simulators?

No (Go to part 5)
Yes

For how many hours?
Less than 2 O 2-5 M 6-9 010-13 O Over 13

O oo

Part 5: Comments

Thank you for participating in this experiment and for filling this questionnaire.
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