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ABSTRACT 

The mechanism of action of surangin B, a coumarin from the roots of Mammea 

longifolia, was examined in bovine heart mitochondria and mouse brain synaptosomal 

preparations. The potential antifungal activity of surangin B was also investigated. 

Complexes 11, I11 and IV of bovine heart mitochondria were strongly inhibited by 

surangin By but complex I was insensitive to this compound. Analysis of surangin B's 

inhibition of complex I1 used submitochondrial particles. Surangin B displayed non- 

competitive kinetics when either succinate or decylubiquinone were used as substrates. 

indicating that it binds to a site which is distinct from both the succinate binding site and 

the domain responsible for interacting with ubiquinone. Difference spectra of reduced 

complex I11 equilibrated with surangin B closely parallelled those of antimycin A, but 

were very different to those of the selective Q, site inhibitors myxothiazol and 

famoxadone. Other experiments used the electron acceptor 2-nitrosofluorene, which 

intercepts electrons specifically from the Qi site. These experiments confirmed that like 

antimycin A, surangin B selectively blocks electron diversion to 2-nitrosofluorene 

through Qi within complex 111. 

Surangin B causes presynaptic release of both neurotransmitter and non- 

neurotransmitter amino acids from mouse brain synaptosomes. The stimulatory effect of 

surangin B and other complex 111-specific inhibitors on amino acid release was inhibited 

by N,N,N1,N'-tetramethyl-p-phenylenediamine suggesting that complex I11 blockade in 

mitochondria of the nerve ending is an important mechanism causing release. 



Surangin B also inhibited in vitro mycelial growth and spore germination in 

several species of fungi. As an inhibitor of mycelial growth surangin B showed strongest 

activity against Rhizoctonia solani (ICSo = 3.8 pM) and Botrytis cinerea (IC50 =11.2 pM), 

but inhibitory effects were less pronounced in Alternaria dauci, Fusarium oxysporum and 

Penicillium sp. (IC50s > 30 pM) and absent in Trichoderma harzianum. Surangin B 

reduced the level of spore germination in Fusarium oxysporum (IC5o = 2.3 pM) and 

Botrytis cinerea (IC50 = 1.4 pM), although Alternaria dauci was considerably more 

tolerant of this coumarin (IC5o = 500 pM). The activity of surangin B compared 

favorably with certain commercial fungicides indicating that coumarins of this type may 

have potential as an antifungal agents. 
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CHAPTER 1. INTRODUCTION 

1.1 Botanical Insecticides - an Overview 

Botanical insecticides are conveniently defined as phytochemicals having the 

capacity to kill or severely impair the function of insects. Naturally occuring plant toxins 

were first recognized as insect controlling agents by indigenous cultures long before they 

were exploited by modem societies. By the late 18001s, about half a dozen botanical 

insecticides were in common use in Europe and North America and this situation 

continued until the introduction of the first synthetic organic insecticides in the early 

1940's. Of these, only the pyrethrins and rotenone are currently utilized in significant 

quantities. The pyrethrins continue to be used to great advantage in the protection of 

grain and natural fibres in storage and farm animals fiom arthropod (primarily insect) 

attack, as well as in the control of household and disease-transmitting pests (mainly flies 

and mosquitoes). Rotenone is applied principally in the control of animal ectoparasites, 

garden arthropod pests and is also employed as a piscicide. Low level use of ryania and 

sabadilla still occurs to protect some organically grown crops from insect attack (Zang et 

al, 1998), whereas nicotine is rarely used as a botanical insecticide, having been 

discontinued in the early 1990's in many countries (Duke, 1990). 

Predictably, those natural product insecticides which specifically interfere with 

nerve or muscle function are not generally noted for additional pesticidal activities. But 

substances, which for example target mitochondria, may have the capacity to disrupt 

function in arthropods, plants and hngi and precedents for broad spectrum pesticidal 



activity of compounds with this mode of action are known. For instance, the synthetic 

dinitrophenols have been used commercially as insecticides, fungicides and herbicides 

(The Pesticide Manual, 1977). Similarly, the mitochondrial inhibitor and natural product 

insecticide rotenone has also found a niche as a piscicide, although it does not possess 

useful herbicidal or fungicidal properties. In Chapter 4 of this thesis, evidence is 

presented to support the hypothesis that the potent mitochondrial inhibitor and insecticide 

surangin B also has inherent antifungal activity. 

Approximately half the species of organisms that inhabit planet earth are insects. 

Of these, about 10,000 impact negatively on humankind and can therefore be classified as 

pests (Metcalf and Metcalf, 1993). Insects are recognized as a major pest of agricultural 

and forest products, since they damage about one-third of the world's food and fiber 

crops, worth billions of dollars, each year (Jacobsen, 1989). Natural plant-drived toxins 

can be of clear benefit in managing pest populations, especially within an integrated pest 

management framework. In some instances natural toxins from plants can also provide 

useful leads to the discovery and development of synthetic products that are superior to 

the natural product in terms of effectiveness against pests and safety to many non-target 

organisms. A landmark achievement in this regard was the discovery of the synthetic 

pyrethroids which emerged from pyrethrin prototypes (Naurnann, 1990; Churnan et al., 

2000). The potential for development of more potent synthetic insecticidal analogs from 

other botanicals, for example, the N-isobutylamides is well-recognized (Blade, 1989). 

In addition to classical botanical insecticides, considerable research has also been 

carried out on semiochemicals such as host recognition chemicals and antifeedants 

(Pickett et al., 1991; Pickett et al., 1988; Ley et al., 1993). The natural plant material 



neem targets behavioural and endocrine processes in insects and a number of neem- 

containing products are now registered in North America and Europe (Ascher, 1992). 

Despite some successes, it is clear that botanical insect control agents command a very 

small proportion (approximately 1 %) of the total insecticide market. The first part of the 

2 1 st century will therefore continue to emphasize a heavy reliance on synthetic chemicals 

such as the pyrethroids and neonicotinoids for insect control (Elliott, 1995; Maienfisch et 

al., 2001; Maienfisch et al., 2004). 

The remaining discussion of Chapter 1 aims to provide an overview of the more 

important botanical insecticides in use today and includes the rotenoids, veratrurn 

alkaloids, pyrethrins and neem as well as those which have potential in insect control 

such as the N-isobutylamides and insecticidal coumarins. The chapter then leads into a 

review of mitochondrial function and the modes of action of agents which interfere 

selectively with mitochondrial function. This is followed by a overview of the nerve and 

neurotransmitter release. I end Chapter 1 by laying out my research objectives. 

Rotenoids 

Rotenone and its congeners (the rotenoids) are phytochemicals with useful 

arthropodicidal and piscicidal properties (Haley, 1978; Schick, 1974). Rotenoids are 

found in over sixty species of leguminous plants where they occur at significant 

concentrations in the roots, bark and fruits (Perry et al., 1998). Commercial production of 

rotenoids is now mainly limited to Derris eliptica which is cultivated in Indonesia, 

Malaya and the Philippines, and to various members of the Lonchocarpus genus which 

are grown in South America and are extracted to provide cube resin. Anecdotal reports on 



the application of rotenoid-containing plant parts to waters by indigenous peoples to 

intoxicate fish, and facilitate their collection for food, go back at least two hundred years 

(Sharp, 1961 ; Santi and Toth, 1965). As botanical arthropodicides, the rotenoids have 

been used to control agricultural pests since the 1840s (Negherbohn, 1959; Fukami and 

Nakajima, 1971, Perry et al. 1998). The chemical structure of rotenone (the major 

pesticidally active principle of the rotenoids; see Fig 1.1) was reported in 1933 (LaForge 

et al., 1933) and its total synthesis was announced some 30 years later (Miyano, 1965). 

Rotenone formulations continue to be used by fisheries biologists to control 

introduced piscine species identified as a hazard to aquatic ecosystem integrity 

(California Department of Fish and Game, 1997). The acceptability of this and other 

pesticidal uses of rotenone is facilitated by the compound's ease of photodecomposition 

and chemical breakdown, often within days of application (Cheng et al., 1972), although 

in winter the duration of activity can extend to several months (Schick 1974). Rotenone 

is extensively metabolized by microbes (Sariaslani et al., 1984), mammals, insects and 

fish (Fukami et al., 1971). In animals, several sites on the molecule are susceptible to 

oxidation by cytochrome monooxygenases, giving rise to a variety of less toxic water 

soluble products that can be excreted (Fukami et al., 1969). Rotenone's high acute 

toxicity towards arthropods and fish can be attributed to the relatively low levels of 

cytochrome P45~ present in these organisms (Fukami et al., 1969). The interaction of 

rotenone with NADH:ubiquinone oxidoreductase (complex I) of mitochondria is 

considered the primary mechanism (Singer and Ramsay, 1994) leading to acute toxicity 

in mammals, insects and fish (Fukami, 1976; Hollingworth and Aharnmadsahib, 1995; 

Ueno et al., 1994). Rotenone has no effect on complexes 11-IV since the oxidation of 



succinate or ascorbate in the presence of tetramethyl phenylene diamine is unaffected 

(Lindahl and Oberg, 1960). In this context rotenone represents an excellent biochemical 

tool for achieving selective inhibition of complex I. 

OCH, 
I 

Figure 1.1 The structure of rotenone. 

There is mounting evidence that rotenoids have anticancer potential, since it is 

known that rotenone reduces the frequency of liver and mammary tumors in rodents 

when administered in the diet (Hansen et al., 1965; Cunningham et al., 1995) and also 

blocks proliferation of hepatocytes in vitro (Cunningham et al., 1995). Furthermore, 

inhibition of phorbol ester-induced ornithine decarboxylase activity, which provides a 

useful index of cancer chemoprevention activity, is observed with deguelin and related 

rotenoids (Luyengi et al. 1994; Gerhauser et al., 1996). More recent studies using human 



breast cancer cells confirm that inhibition of induced ornithine decarboxylase activity by 

rotenoids and also pyridaben and fenazaquin (structurally unrelated miticides) occurs as a 

consequence of their inhibition of NADHxbiquinone oxidoreductase (Fang and Casida, 

1998; Rowlands and Casida, 1998). 

Clearly, NADHxbiquinone reductase may represent a useful therapeutic target 

for development of cancer chemoprevention strategies, however, it is also known that 

during sustained exposure of rodents to rotenone, brain NADHxbiquinone reductase is 

blocked and this results in typical Parkinsonian symptomology including hyperkinesia, 

rigidity and degenerative changes to nigrostriatal dopaminergic tracts (Betarbet et al., 

2000; Alam and Schmidt, 2002). Similar effects been reported for the protoxin N-methyl- 

4-phenyl-l,2,3,6-tetrahydropyridine (MPTP; Tipton and Singer, 1993; Singer and 

Ramsay, 1990), heightening concern that substances that inhibit NADHxbiquinone 

reductase can also play a role in the development of Parkinson's disease in humans. 

Veratrum Alkaloids (Sabadilla) 

Plants of the Liliaceae family, in particular the North American species (Veratrum 

viride Aiton), its closely related European counterpart (Veratrum album L.) and a Central 

American species Veratrum sabadilla (Schoenocaulon ofJicinale Gray) have long been 

known to contain substances useful in the control of ectoparasites of humans and 

domesticated animals (Griffiths, 1847; Maisch, 1885; Matthysse and Schwardt, 1943). 

The bioactive components are mainly associated with the roots of Veratrum viride and 

Veratrum album and the seeds of Veratrum sabadilla and can be extracted with organic 

solvents as a complex mixture of lipophilic alkaloids commonly known as veratrine or 



sabadilla. Of significant interest has been the broad spectrum insecticidal activity and 

blood pressure lowering effects of the crude alkaloid extract (Ikawa et al., 1945; 

Wintersteiner, 1953). Sabadilla continues to provide a control option in organic farming 

(Zang et al., 1997). The two most active alkaloids in sabadilla, the ester alkaloids 

veratridine and cevadine (Fig 1.2), interfere with the function of voltage-gated sodium 

channels (Ohta et al., 1973), an action which accounts for both their insecticidal and 

hypotensive effects. 

Figure 1.2 The structures of veratridine and cevadine. 

The majority of mechanistic investigations have focused on veratridine which 

causes sustained opening of voltage-gated sodium channels at resting membrane 



potentials (Ulbricht, 1998). The inward movement of sodium ions results in a 

depolarization of the nerve membrane (Ohta et al., 1973), which leads to increased 

neuronal sodium-potassium pump activity and in presynaptic nerve terminals, secondary 

calcium influx via activation of voltage-gated calcium channels (Satoh and Nakazato, 

199 1 ; Zhang and Nicholson, 1993), which activate neurotransmitter release. Veratridine 

and other alkaloid neurotoxins (batrachotoxin, grayanotoxin and aconitine) interact 

selectively with neurotoxin binding site 2 on voltage-gated sodium channels (Catterall, 

1980) and are assumed to access this binding region through the lipid phase of the 

membrane (Ulbricht, 1998). A number of allosteric interactions have been demonstrated 

between the alkaloid binding site (site 2) and sites 3, 5, 7 and 9 on the sodium channel 

which bind respectively, P-scorpion venoms (Izhar et al., 2004), the marine phycotoxins, 

brevetoxin and ciguatoxin (Van Dolah et al., 1994), insecticidal activators (DDT and 

pyrethroids) and therapeutic drugs such as local anesthetics, anticonvulsants and 

antiarrhythmics (Strichartz, 1976; Dullenkopf et al., 2003; Zimanyi et al., 1989; Kendig, 

1981; Ragsdale et al., 1991; Wang and Wang, 2003). Similar allosteric interactions 

between site 2 and the less well-characterized binding sites on sodium channels including 

those for dihydropyrazoles (Deecher et al., 1991), N-alkylamides (Ottea et al., 1989) and 

anandamide (Nicholson et al., 2003) have also been reported. 

More recently Wang and Wang (1998) discovered that point mutations in segment 

I-S6 of voltage-gated ~ a +  channels cause the channel to become functionally resistant to 

batrachotoxin. Total insensitivity to an extremely high concentration (5 mM) of 

batrachotoxin was observed with an Asn434Lys mutation, whereas the Asn434Ala 

mutation showed some sensitivity to this alkaloid. Moreover, channels possessing the 



Asn434Lys mutation showed virtually normal current kinetics after exposure to 

veratridine with very slight slowing of the tail current. Veratridine does however inhibit 

the peak ~ a '  current in this mutant form suggesting that batrachotoxin and veratridine 

dock with site 2 binding region in subtly different ways. 

N-Isobutylamides 

Biologically active N-isobutylamides (also known as lipid amides and N- 

alkylamides) occur naturally in plants of the Compositae, Piperaceae and Rutaceae 

families (Su, 1985) and vary widely in the acid moiety (see Figure 1.3). 

N-isobutylamides are noted both for their insecticidal activity, which can 

approach that of the pyrethrins (Metcalf, 1955), and also for their ability to elicit intense 

tingling and local anesthetic effects on the tongue and lips (Jacobson, 1954a). These 

effects however do not always parallel each other. References can also be found in the 

literature to vasodilatory, antioxidant, molluscicidal and insect growth inhibitory 

properties of N-isobutylamides (Miyakado et al., 1989; Sumitomo Chemical Company 

Patent 212 150; Kubo et al., 1984). 

Affinin-containing plant extracts were found to be topically active to a variety of 

dipterous, lepidopterous, coleopterous and hemipterous insects (Su, 1985) and numerous 

other naturally occuring N-alkylamides have been investigated as potential insect control 

agents (Jacobson, 1971 ; Bohlmann et al. 1973). More recently a range of N-alkylamide 

analogs have been synthesized with improved insecticidal properties (Elliott et al., 1987a; 

Elliott et al., 1987b; Miyakado, 1982; Crombie and Denman, 1984; Wellcome 

Foundation Patent, 1984). Despite intensive effort, none of these synthetic compounds 



have demonstrated sufficient stability or activity in the field to warrant commercial 

development. 

A WELLCOME SYNTHETIC 
ISOBUTYLAMIDE 

Figure 1.3 Structures of natural and synthetic isobutylamides. 

A neurotoxic action of isobutylamides similar to pyrethroids was demonstrated in 

insects and biochemical studies found that tetrodotoxin blocks isobutylamide-induced 

release of the neurotransmitter y-aminobutyric acid (GABA) from mammalian 

synaptosomes suggesting that these compounds activate sodium channels (Burt et al., 

1984). Subsequent investigations showed isobutylamides produce multiple spiking and 

suppression of nerve conduction in housefly nervous system, block sodium currents and 

extend tail current decay times in locust neuronal somata (Blade et al., 1989; Lees and 

Burt, 1988). Moreover, veratridine (sodium channel)-dependent release of acetylcholine 



from cockroach synaptosomes is blocked when they have been previously incubated with 

isobutylamides (Nicholson et al., 1985). Consistent with these findings, Ottea et al. (1989) 

described inhibition or stimulation of 2 2 ~ a  uptake by the N-isobutylamide BTG 502 in 

mouse brain synaptoneurosomal fractions depending on the type of sodium channel 

activation, and blockade of [3~]batrachotoxinin A-20-a-benzoate binding. 

In addition to insecticidal effects arising through targeting of sodium channels, 

isobutylamides of Echinacea species have been found to inhibit the biotransformation of 

arachidonic acid to prostaglandins which accounts for certain anti-inflammatory actions 

of echinacea (Jacobson, 1967; Bauer and Remiger, 1989). The anti-inflammatory 

potency of echinacea preparations can be standardized by quantitating isobutylamide 

content (Bauer, 1997) or approximated by gauging the intensity of the tingling or 

numbing sensation after application to the tongue. Isobutylamides from Echinacea are 

known to be insecticidally activity (Jacobson, 1954b). 

Pyrethrins 

The pyrethrins are the insecticidal components of pyrethrum oleoresin, obtained 

from solvent extraction of the flower heads of the pyrethrum plant, Tanacetum 

cinerariaefolium, a member of the chrysanthemum family. Pyrethrum plants are grown 

commercially in Kenya as well as several other African countries and agricultural 

production also occurs in Tasmania (Gullickson, 1995). The term pyrethrins describes a 

total of six esters based on coupling of chrysanthemic acid or pyrethric acid to a 

cyclopentenolone alcohol moiety (Crombie 1995; Fig 1.4 a). Pyrethrin I and pyrethrin I1 

account for the majority of the kill and knockdown activity respectively (Hendrick, 1994). 



Pyrethrins I and I1 are also the most abundant compounds in pyrethrum oleoresin, 

amounting to 55 - 70 % by weight (Head, 1973). Pyrethrum extract has a low order of 

toxicity to warm-blooded species (Gray and Soderlund, 1985). Although pyrethrins are 

lethal to a broad range of insect species (Elliott and Janes, 1973), all six esters break 

down rapidly when exposed to air, moisture or light, causing loss of insecticidal activity 

(Alan and Miller, 1990). This inherent instability ensures extremely short environmental 

persistence (Crosby, 1995), a property that limits pyrethrin use mostly to control of 

arthropod pests of domestic, medical and veterinary importance (Gerberg, 1995; Kennedy 

and Hamilton, 1995). 

Even so, an enormously successful expansion into agricultural insect control has 

been made possible with the pyrethroids, synthetic analogs of pyrethrins (Naumann, 

1990), which have been designed to provide greater residuality during insect control 

operations while retaining the original botanical ester attributes of potent insecticidal 

activity and relatively low mammalian toxicity (Elliott, 1995; Schoenig, 1995). 
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Figure 1.4 Structures of the pyrethrins (a) and allethrin (b). 



The rapid knockdown and lethal actions of pyrethrins and pyrethroids in 

arthropods occur as a result of these chemicals rapidly accessing the nervous system and 

causing functional impairment. Amongst the first experiments on mode of action of 

pyrethrins were those of Lowenstein (1942) who discovered that pyrethrum extract 

causes multiple spiking followed by nerve block in the giant fibre pathway of the 

cockroach (Blatta orientalis). Cuticular application of pyrethrins was later shown to 

produce multiple spiking in the crural nerve of the American cockroach (Periplaneta 

americana) (LaLonde and Brown, 1954). More recently the studies of Burt and 

Goodchild (1971) showed that topical application of pyrethrin I (the most insecticidal 

botanical ester from Tanacetum cinerariaefolium) to the American cockroach increases 

spiking activity in the sixth abdominal ganglion and eventually blocks action potentials in 

giant fibre axons, effects that parallel the progression of poisoning symptoms. Although 

subsequent experiments on chrysanthemic acid esters mostly focused on pyrethroids, the 

investigations with allethrin (a very close structural analog of pyrethrin I; Fig. 1.4 b) are 

widely considered to provide information that is relevant to the neurotoxic actions of the 

botanical esters. 

The voltage clamp technique has given important insights into the ionic basis for 

the excitatory actions of allethrin on nerve (Narahashi and Anderson, 1967; Murayama et 

al. 1972; Vijverberg et al, 1982). Under voltage clamp conditions the sodium channels of 

nerves poisoned with allethrin show almost normal voltage-dependence of opening. 

However, when sodium channels are activated by step depolarization, allethrin delays 

their closing, leading to a slowly-decaying current (known as the "tail current") upon 

repolarization (Fig. 1 S). 



Ekdlum current 

Figure 1.5 Sodium channel tail current as described by Soderlund, (1995). 

This mechanism explains the multiple spiking and negative after potential 

observed during intracellular recording of allethrin's action in cockroach giant axons 

(Narahashi, 1962). Taken together these experiments identify the voltage-gated sodium 

channel as the primary site of action for allethrin and by analogy, pyrethrin I. The 

eventual block of electrical activity observed by Lowenstein (1942) and Burt and 

Goodchild (1971) likely arises from bioenergetic failure of the nerve as a result of the 

persistent excitation and multiple spiking caused by the botanical esters. Although the 

sodium channel is the only target implicated in the neurotoxic action of pyrethrin I in 

insects to date, it must be remembered that certain synthetic pyrethroids have affinities 

for potassium (Narahashi and Anderson, 1967), calcium (Brooks and Clark, 1987; 



Syrnington et al., 1999; Duce et al., 1999) and chloride channels (Bloomquist et al., 1986; 

Burr and Ray, 2004) and the ability of pyrethrin I to act these targets is unclear. 

Azadirachtin 

The neem tree, Azadirachta indica of the Meliaciae family was originally native 

to India but is now widely distributed in many tropical and subtropical countries. Over 60 

triterpenoids together with numerous other constituents have been isolated from extracts 

of the trunk, bark, leaves, roots, fruit and seeds of this tree (Jones et al., 1989). Most 

prominent amongst these botanicals in terms of potential for insect control is azadirachtin 

(Warthen 1989) which is present at highest concentrations in the seeds (Butterworth and 

Morgan, 1986) and in common with some other neem components can potently interfer 

with feeding, reproduction and development in a range of insects, as well as promote 

deterency (Schmutterer, 1990; Koul and Isman, 1991; Isman et al., 1991 ; Lee et al., 1991; 

Verkerk and Wright, 1993). 

Evidence in support of azadirachtin's ability to disrupt feeding and growth comes 

from various studies. In Mexican bean beetle, 1-10 ppm azadirachtin typically suppresses 

feeding and weight gain and after several days larvae and other life stages succumb to 

starvation (Butterworth and Morgan, 1986; Rembold, 1988; Isman et al., 1990). The 

primary antifeedant effect can involve either activation of deterrent sensilla or 

suppression of stimulating sensilla in the maxillary region (Mordue and Blackwell, 1993), 

although neem bioactives may also prevent insects from converting food into biomass 

(Martinez and van Emden, 1999). 



Various reproductive effects of azadirachtin have been reported including 

degenerative changes to trophic cells of ovarioles in the Mexican bean beetle and 

suppression of ovarian follicle growth in the migratory locust (Schmutterer, 1990). 

Moreover, at low doses of azadirachtin, male milkweed bugs were unable to copulate and 

fruit flies lost the ability to respond to male pheromone (Schmutterer, 1988). 

In 1990, Schmutterer also proposed that azadirachtin interferes with 

developmental programming in insects by disrupting hormonal systems, particularly 

those involving the ecdysteroid ecdysone. Azadirachtin causes dose- and time- related 

effects on ecdysis and death can take place before or during molting (Mordue and 

Blackwell, 1993). Azadirachtin also depletes juvenile hormone levels in insects possibly 

by preventing its synthesis and secretion from the corpora cardiaca in insect brain (Garcia 

and Rembold, 1984; Garcia et al., 1990; Mordue and Blackwell, 1993). 

Repellency is likely mediated by an olfactory response since it occurs in the 

absence of direct contact with neem-treated plants. Such effects have been reported in the 

brown rice planthopper and cabbage webworm (Schmutterer, 1990) and likely involve 

volatile sulfur-containing organic compounds of neem (Balandrin et al, 1988), rather than 

azadirachtin itself. 

Limitations in the successful control of insect pests in the field with azadirachtin- 

containing extracts have been encountered due to the low chemical stability of this 

triterpenoid and its slow action in altering behavior and various other physiological 

processes in target insects. However, its toxicity towards certain parasitoids and some 

predators of pests is relatively low indicating potential usefulness in integrated insect pest 

management programs (Schmutterer, 1988). Another advantage of azadirachtin is its 



virtual lack of toxicity towards warm-blooded animals, in fact, neem has been used by 

humans for centuries for various therapeutic and contraceptive purposes (Koul et al, 

1990). 

Insecticidal Cournarins 

A considerable number of chemically diverse coumarins are found as secondary 

metabolites in green plants and as metabolic products in bacteria and fungi (Murray, 1989; 

Murray, 199 1 ; Hoult and Paya, 1996). From the structural perspective, coumarins consist 

of a bicyclic system made up of a fused a-pyrone and benzene ring (Fig 1.6 a). Many 

substitution patterns are possible on the central bicyclic system giving rise to a variety of 

biological effects and various pharmacological and potential therapeutic properties have 

been attributed to natural product coumarins (KO et al., 1989; Teng et al., 1992a; Teng et 

al., 1992b; Huang et al., 1992). Extracts of Mammea americana, an evergreen tree of the 

Caribbean region, for example, shows toxicity to a variety of insects (Plank, 1944; 

Morris and Pagan, 1953) and coumarins were subsequently identified as the active 

principles. According to Morton (1987), an awareness of the insecticidal properties of 

Mammea americana dates back at least to 1864 when Grosourdy published a report in El 

Medico Botanico Criollo describing the toxic effects of certain parts of this tree. When 

seeds of Mammea americana were imported into the U.S.A. in 1919 from Ecuador, the 

record compiled by the United States Department of Agriculture noted potential 

insecticidal and medicinal uses. As far as insecticidal activity in Mammea americana is 

concerned the seeds are by far the most insecticidal parts of the tree and studies by the 

Federal Experimental Station in Puerto Rico have found seed extracts to be active against 



armyworms, melonworms, cockroaches, ants, termites, adult and larval stages of 

mosquito, flies, diamond-back moth and aphids in various oral and contact assays 

(Morton, 1987). Moreover, concentrated aqueous extracts of seeds or fruits were effective 

at killing fleas and ticks on dogs. Interestingly the dogs did not display signs of poisoning 

but larger scale studies in mice resulted in 6 % mortality. Extracts of Mammea americana 

seeds are also acutely toxic to fish but 50 to 100 times less potent than derris. Anecdotal 

evidence suggests that the seeds also cause poisoning in birds and hogs. In her book, Julia 

Morton (Morton, 1987) draws attention to the observation that although fruits of 

Mammea americana have "formed part of the diet of the inhabitants of the Caribbean for 

many generations, it is well known that this fruit produces discomfort, especially in the 

digestive system in some persons". Morton and colleagues also noted "reports of 

poisoning in humans are known" and compared the fruit of Mammea americana to those 

of akee (Blighia sapida) which are also toxic. 



(a) Structure of coumarin 

(b) Structure of surangin B (note the 4-(1 -acetoxypropyl) side chain) 

Figure 1.6 Chemical structure of coumarin and surangin B. 



Various investigations, which have been conducted on the insecticidal dust and 

organosoluble extracts of mature seeds of Mammea americana, have been reviewed by 

Crombie (1990). Up until the late 1960s, a number of cournarins had been isolated from 

Mammea americana and their structures successfully determined, however, they all failed 

to explain the insecticidal activity of the crude extracts. A few years later Crombie et al. 

(1 972) identified a coumarin possessing a 4-(1 -acetoxypropyl) side chain which 

accounted for much of the insecticidal activity of this species. A 4-(1-acetoxypropyl) 

coumarin, surangin B (Fig. 1.6 b), had also been identified in Mammea longifolia, a 

related species indigenous to Madagascar and the Western Ghats of India and was shown 

to have bactericidal properties (Joshi et al. 1969). Later toxicity assays on mosquito 

larvae, houseflies and crickets confirmed that surangin B is also insecticidal (Crombie et 

al. 1972; Nicholson and Zhang, 1995), and generally more potent as an insecticide than 

its counterpart from Mammea americana (Crombie et al. 1972). 

The lack of rapid knockdown of insects dosed with surangin B accompanied by a 

progressively deepening paralysis, parallels the symptomology of certain compounds 

which target mitochondria (Nicholson and Zhang, 1995). Experiments in our laboratory 

using insect muscle mitochondria confirmed surangin B to be a potent blocker of state 3 

respiration when driven by NAD+- or ~ ~ D + - l i n k e d  substrates, but that it has no effect on 

mitochondria1 complexes I and IV, indicating that complexes I1 or I11 may be sensitive to 

inhibition by this coumarin (Zheng et al. 1998). Surangin B was further found to mimic 

cyanide in reducing whole body levels of ATP when applied to insects in vivo (Zheng et 

al. 1998). In common with rotenone, surangin B also inhibits the utilization of oxygen by 

mouse brain synaptosomes and depolarizes intrasynaptosomal mitochondria (Nicholson 



and Zhang, 1995). Other experiments revealed that this cournarin stimulates both release 

of tritium label from t~lcholine-loaded insect synaptosomes (Zheng et al. 1998) and 

release of preloaded ["HIGABA from mammalian synaptosomes (Nicholson and Zhang 

1995). These results indicate that mitochondrial blockade leading to bioenergetic failure 

in muscle and nerve are major mechanisms in the development of paralysis in insects 

exposed to surangin B. Further mechanistic investigation of the action of surangin B in 

muscle and nerve represents a significant part of this thesis. 

1.2 The Mitochondrion as a Site of Neurotoxicant Action 

Mitochondria are amongst the largest of the cytoplasic organelles and represent a 

critical site of metabolite and energy interconversion. Mitochondria can be found in 

virtually all eukaryotic cells and these structures represent the main location of cellular 

ATP synthesis under aerobic situations (Margulis and Lynn, 198 1). 

There are six distinct mechanisms by which toxicants interfere with mitochondrial 

function. Firstly, respiratory chain inhibitors such as rotenone, carboxin, antimycin, and 

cyanide block electron flow at complexes I to IV, respectively, and in consequence 

inhibit substrate-driven mitochondrial oxygen consumption in the presence of either 

adenosine diphosphate (ADP) or uncouplers. Secondly, phosphorylation inhibitors such 

as oligomycin suppress the ADP-dependent burst of oxygen consumption but fail to 

block uncoupler-stimulated respiration. Thirdly, uncoupling agents including 

dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone (CCCP) and carbonyl cyanide 

p-trifluoromethoxyphenylhydrazone (FCCP) abolish the efficient coupling between 

electron flow down the respiratory chain and the phosphorylation of ADP, which is a key 



characteristic of physiologically intact mitochondria. In contrast, certain transport 

inhibitors including atractyloside and bongkrekic acid block the export of ATP from 

mitochondria, or the import of molecules across the mitochondrial inner membrane, 

processes essential to the bioenergetic cycle. Next, certain ionophores especially 

valinomycin and nigericin render the inner membrane permeable to ionic species leading 

to disruption of compartmentalization. Lastly a number of Krebs cycle inhibitors are 

known such as arsenite, fluorocitrate and aminooxyacetate which block one or more of 

the Krebs cycle enzymes or an ancillary reactions, thus reducing formation of NADH or 

FADH2, which provide a vital shuttle of reducing equivalents to the electron transport 

chain. 

For the purposes of dissecting the functional properties of mitochondria, the three 

most important classes of mitochondrial toxicants have been electron transport inhibitors, 

uncouplers and phosphorylation inhibitors. A large number of compounds, including 

many pesticides, have now been found to interfere selectively with discrete targets in 

mitochondria and modify function. Thus a variety of valuable pharmacological probes are 

available for use in exploring the mechanism of action of novel mitochondrial toxicants, 

such as surangin B. 

1.2.1 Structure and Morphology of Mitochondria 

Mitochondria can vary in size considerably, but as a general statement they are 

typically 1.0 - 4.0 pm in length and approximately 0.4 - 1.0 pm diameter. Mitochondria 

frequently have an elongated appearance when observed under the electron microscope, 



and when examined in living cells some degree of alignment of their long axes can often 

be seen. The number of mitochondria in a given cell is known to vary with cell type and 

mitochondrial numbers often correlate with the metabolic requirements of the cell 

(Scheffler, 1999; Sherratt, 1991). Mitochondria are also mobile within the cytoplasmic 

compartment and actively divide to produce further mitochondria. 

The mitochondrion consists of two membranous envelopes, the outer and inner 

membranes, and each consists of a phospholipid bilayer with a unique assembly of 

integral proteins (Daum, 1985). These membranes divide the mitochondrion into two 

internal compartments, the intermembrane space and the central matrix. The outer 

membrane is a smooth continuous envelope that forms the surface of the mitochondrion 

or the outer mitochondrial boundary. This membrane has a very high phospholipid to 

protein ratio, close to 0.9 (Daum, 1985). The proteins associated with the outer 

membrane include enzymes of fatty acid synthesis, nucleotide diphosphokinase and porin 

(De Pinto et al., 1987). Porin is a channel-forming protein which allows ions and 

molecules with a molecular weight less than 5,000 daltons to traverse the outer 

membrane, but restricts the passage of larger proteins and other macromolecules (Parsons, 

1965; Mannella, 1982). 

The inner membrane forms the boundary separating the two mitochondrial 

compartments, the intermembrane space and the matrix (Sherratt, 1991). The inner 

membrane is highly convoluted and folds extensively forming cristae that protrude into 

the matrix provide an appropriate surface area for energy yielding reactions of the 

mitochondrion. The number of cristae and their morphology thus reflect an adaptation of 

mitochondria to the energetic demands of the cell. For example, extensively folded 



cristae with large surface areas are consistently observed in muscle and neuronal cells 

since respiratory rates can reach very high levels. The inner membrane has a relatively 

low phospholipid to protein ratio, of about 0.3 (Daum, 1985) and is also very 

impermeable with transfer of most solutes across the membrane requiring a specific 

transporter (Li et al., 1990). Also, embedded in the inner membrane is the electron 

transport chain which is made up of five discrete membrane protein complexes, NADH 

dehydrogenase (complex I), succinate dehydrogenase (complex 11), cytochrome c 

reductase (complex 111), cytochrome c oxidase (complex IV) and the ATP synthase which 

is also known as complex V (Hatefi et al., 1975). 

As already described, there are two mitochondrial compartments. The 

intermembrane space is a rather narrow region between the inner and outer membranes 

and it is normally assumed to be a continuation of the cytosol with its own enzymes. In 

fact, the composition of small molecules and ions in the intermembrane space closely 

resembles that of the cytosol since small molecules are free to pass through the porin 

channels in the outer membrane (De Pinto et al., 1987). The mitochondrial matrix is the 

compartment enclosed by the inner membrane and therefore represents the central core 

compartment of the mitochondria. The matrix has a high protein content and contains 

mitochondrial DNA and ribosomes (Nobrega and Tzagoloff, 1980), the former coding for 

some, but not all, of the mitochondrial proteins. 

1.2.2 The Physiological Function of Mitochondria 

Mitochondria perform a range of critical cellular functions. Under aerobic 

situations their primary function is to utilize the energy derived from oxidation of organic 



molecules such as glucose to synthesize ATP, the main energy currency molecule of the 

cell. In addition to generating ATP by oxidative phosphorylation, mitochondria 

synthesize lipids (Scheffler et al., 1999), heme (Meyer and Schmid, 1973), amino acids 

(Beattie et al., 1970) and also represent a key organelle in the regulation of intracellular 

pH and ion homeostasis (Simpson, 1967; Rasmussen, 197 1). 

The inner mitochondrial membrane performs a variety of critical bioenergetic 

functions. Most obvious of these is to establish and conserve the H" electrochemical 

gradient and use it to drive the phosphorylation of ADP. The inner membrane contains 

the essential components of the respiratory chain including NADH dehydrogenase, 

succinate dehydrogenase, iron-sulfur proteins (ISP), cytochromes b, cl, c, a and a3 

together with the ATPase energy transduction complex and its associated components 

and coupling factors, such as F1 and the oligomycin sensitivity-conferring protein (OSCP) 

(Nalin and Cross, 1982). Most proteins can only gain access to the matrix if they are 

selectively transported through the inner membrane, a process which requires a specific 

transporter and serves to tightly regulate the spectrum of proteins residing in the matrix. 

1.2.3 Linkage between Glycolysis and Tricarboxylic Acid Cycle 

The majority of organisms are exposed to oxygen and cells in an aerobic 

environment readily convert glucose to pyruvate via the glycolytic pathway, or glycolysis 

(Passarella and Quagliarello, 1976). These glycolytic reactions take place in the 

cytoplasmic compartment of the cell and yield two ATP molecules per molecule of 

glucose by substrate level phosphorylation and also two molecules of nicotinamide 

adenine dinucleotide (NADH). Pyruvate diffuses rapidly through the outer mitochondrial 



membrane and after transportation across the inner membrane it undergoes reductive 

decarboxylation to acetyl coenzyme A (CoA), the substrate for the TCA cycle (Passarella 

and Quagliarello, 1976; Halestrap, 1978). Acetyl-CoA is then fed into the cyclic pathway 

of the TCA cycle (Tyler, 1992; Metzler, 1977), which is the series of reactions that 

oxidizes the carbon skeleton of acetyl-CoA to carbon dioxide and generates a further two 

ATP molecules per molecule of glucose by substrate level phosphorylation. The enzymes 

that carry out these reactions are located in the mitochondrial matrix and at the matrix 

surface of the inner membrane (Metzler, 1977). However, by far the most important 

bioenergetic products of the TCA cycle are NADH and flavine adenine dinucleotide 

(FADH2), which transfer the high energy electrons gained fiom acetyl-CoA oxidation to 

the electron transport chain. Oxidation of one molecule of acetyl-CoA in the TCA cycle 

eventually generates 22 molecules of ATP via the electron transport chain and 

chemiosmosis. 

1.2.4 Electron Transport, Oxidative Phosphorylation and Energy Production 

From a bioenergetic perspective, the most important function of mitochondria is 

to carry out respiratory or oxidative phosphorylation. This is a multistage process by 

which the energy stored in NADH and FADH2 is used to produce ATP. It consists of two 

fimctional parts, the electron transport (or respiratory chain) and ATP synthesis. 

The electron transport chain (ETC) is present in the cristae of the inner 

mitochondrial membrane (Gilkerson et al., 2003). There are two main pathways for the 

passage of electrons. The first pathway is from complex I (where electrons from NADH 

are accepted) to complex I11 and then on to complex IV. The second route allows 



electrons from FADH2 to be accepted by complex I1 and then passed through complex I11 

to complex IV. (Fig. 1.7) These two pathways of electron flow converge at ubiquinone 

[or coenzyme Q (CoQ)], which serves as a mobile electron transfer molecule linking 

complex I and I1 with complex 111. The respiratory chain consists of these four integral 

membrane protein complexes (complex I - IV) and two freely-diffusible carrier 

molecules, ubiquinone and cytochrome c .  Complex I oxidizes NADH and complex I1 

oxidizes succinate (generating FADH2) and both use ubiquinone as the electron acceptor. 

Ubiquinone then reduces complex 111 which donates electrons to cytochrome c .  Reduced 

cytochrome c is then oxidized by complex IV and electrons finally are passed to 

molecular oxygen as the ultimate electron acceptor (Gupte et al., 1984). 

Complex I Complex II Complex Ill Complex IV 
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Figure 1.7 The electron transport chain. (QH2 = ubiquinone; Cyt c = cytochrome c; e = 

electron). 
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Within the electron transport chain, electrons are moved from molecules with low 

reduction potential (low affinity for electrons) to molecules with successively higher 

reduction potential (higher electron affinity). The energy released during electron 

transport is used to move protons. All the complexes except complex I1 (succinate 

dehydrogenase) pump protons from the matrix into the intermembrane space as they 

transfer reducing equivalents (either hydrogen atoms or electrons) from one carrier to the 

next. As a result, the energy released during electron transport can be stored as a proton 

gradient across the membrane. These protons are eventually channeled back into the 

matrix via the ATPase, which drives the synthesis of ATP as they return. 

Oxidative phosphorylation traps the free energy stored in the electrochemical 

proton gradient across the inner mitochondria membrane and couples it to ATP synthesis. 

The biosynthesis of ATP is catalyzed by the enzyme ATP synthase which resides within 

the inner mitochondria1 membrane (Schnaiman and Pedersen, 1968). The ATP synthase 

is a protein complex composed of three main subunits including Fo which is embedded in 

the membrane (Hamasur and Glaser, 1992), F1 which protrudes from the inside of the 

inner membrane into the matrix (Abrahams et al., 1994); and oligomycin-sensitive 

coupling protein (Maclennan and Tzagoloff, 1968; Tzagoloff et al., 1968) which connects 

to Fo. ATP synthase binds ADP and inorganic phosphate at its catalytic site and requires a 

proton gradient for substrate coupling (Hatefi et al., 1975; Boyer, 1993). The rate of 

oxidative phosphorylation is closely regulated by the ratio of ADPIATP in mitochondria. 

When ADP levels rise and inorganic phosphate is available, proton flow through ATP 

synthase is elevated and this stimulates the biosynthesis of ATP. Oligomycin is an 

antibiotic which binds to the ATP synthase and blocks the proton channel, so inhibiting 



ATP synthesis. This means that oligomycin inhibits the synthesis of ATP by specifically 

interfering with oxidative phosphorylation without inhibiting the initial conservation of 

energy as a proton gradient, which forms the proton motive force described by Peter 

Mitchell (Mitchell, 1980). As mentioned already, oligomycin binds to a protein 

associated with Fo (Glaser and Norling, 1983), and because it selectively affects the Fo 

component of the ATP synthase oligomycin inhibits coupled respiration but fails to block 

uncoupled respiration. 

1.2.5 Mitochondria1 Caf+ Transport and Ca++ Buffering 

Mitochondria from a number of vertebrate sources possess active mechanisms for 

the uptake and release of Ca++ (Nicholls and Ferguson 1992). Exposure of isolated 

mitochondria to Ca++ concentrations greater than 1 pM, normally result in uptake of this 

cation from the surrounding medium into the matrix, via a uniport mechanism. The inner 

mitochondria1 membrane also uses an independent efflux pathway, operating as a 

ca++/2Na+ antiporter, which achieves electroneutral exchange (Brand, 1985). The Na' 

translocator component of this antiporter relies on simultaneous operation of the Na+/H+ 

exchanger (Crompton and Heid, 1978; Li et al., 1992; Rasmussen, 1990), which drives 

the rapid removal of Ca++ from the matrix. 

The uptake of Ca++ by mitochondria also requires the presence of inorganic 

phosphate (Pi) which is taken up alongside Ca++. In the presence of external Pi, the rising 

pH of the matrix causes Pi to enter the matrix via the pi-/Hf symporter. In addition to 

neutralizing the increase in internal pH, this mechanism allows the accumulated ~ a ' +  to 

complex with the Pi to form an osmotically inactive calcium phosphate "gel" (Weinbach 



et al, 1967; Lehninger, 1970). Under conditions where cytoplasmic free CaU 

concentration exceeds the buffering capacity of mitochondria, a build up of Ca++ in the 

cytoplasm can often occur. This buffering capacity of mitochondria appears to have 

evolved in part as a protection mechanism to prevent cytoplasmic free Ca++ reaching a 

level which will damage the cell. This mitochondria mechanism can also protect the cell 

under pathological conditions when cytopalsmic free CaU increases (Lehninger, 1970). 

However studies show that mitochondria can only store Ca++ on a short term basis, so 

when normal function resumes as cytoplamic free ca++ concentration falls below the 

mitochondria1 trigger point for uptake, the efflux pathway takes over, reducing matrix 

Ca++ which can then be extruded from the cell (Nicholls and Akerman, 1982; 

McCormack et al., 1990). 

When neuronal voltage-gated sodium channels open, Na+ rapidly enters the nerve 

and brings the membrane potencial towards threshold, generating an action potential. 

This increase in cytoplasmic Na+ level has been shown to stimulate Ca++ efflux from the 

matrix of brain mitochondria (Nicholls and Crompton, 1980). Also, action potentials 

invading the nerve ending trigger the opening of voltage-gated calcium channels, causing 

Ca++ entry into the nerve ending. Much of the ca++ that enters is very rapidly taken up 

from the cytoplasm into the matrix of mitochondria. The accumulated Ca* is then 

released back into the cytoplasm of the nerve ending generating the increase in 

concentration of cytoplasmic calcium in the terminal which triggers physiological release 

of neurotransmitters. Intrasynaptosomal mitochondria therefore play a significant 

buffering role in the regulation of cytosolic Ca++, and that this in turn influences the net 

transport of ~ a + +  across the plasma membrane (Scott et al., 1980). 



1.2.6 Complex I and its Inhibitors 

Complex I (NADH-quinone oxidoreductase) is the one of three energy 

transducing systems of the respiratory chain of mitochondria (Horga and Singer, 1968). A 

large proportion of the electrons which cross the respiratory chain enter via complex I. 

Complex I is a large integral membrane complex with at least seven iron-sulphur clusters 

(Han et al., 1988). The redox center of complex I is composed of NADH dehydrogenase 

with flavin mononucleotide (FMN) as a cofactor (George and Ferguson, 1987), plus non- 

heme-iron proteins having at least one iron sulphur center (Nicholls and Ferguson, 1992; 

Walker, 1992; Weiss et al., 1991). The function of complex I is to transfers electrons 

from NADH to CoQ. The flow of electrons through complex I with its highly exergonic 

free energy change provides the energy to pump protons from the mitochondrial matrix 

into the intermembrane space thus contributing to ATP synthesis. 

NADH produced in the cytosol provides the electrons for the NADH 

dehydrogenase of complex I and in animal mitohondria NADH is transferred into the 

matrix by a shuttle system. Interestingly, plant mitochondria have an external NADH 

dehydrogenase which can oxidize NADH and transfer reducing equivalents directly to 

ubiquinone or complex I11 (Weiss et al., 1991). In contrast to animal NADH 

dehydrogenase the plant enzyme is insensitive to rotenone as has also been found for 

many fungi. 

Clearly, a large number of compounds have been discovered which interact 

selectively with mitochondrial complex I and the other mitochondrial complexes. 

However, for the purposes of my thesis, the discussion of this section and the sections 



which immediately follow, will be limited mostly to those inhibitors and electron 

translocating probes that have assisted in the mechanistic investigation of surangin B 

action. Note also that the mode of action of rotenone has already been discussed in 

Chapter 1.1 and that MPTP is included because of its similarity of action to rotenone. 

Of the inhibitors of complex I, some occur naturally and some are synthetics and 

these have been divided into two classes on the basis of their kinetic properties. Class I 

inhibitors inhibit complex I in a partially competitive manner with respect to ubiquinone, 

for example: piericidin A, annonin VI, phenalamid A2, aurachins A and B, thiangazole, 

and fenpyroximate; class I1 inhibitors act in a noncompetitive manner, the best known of 

these is rotenone. All complex I inhibitors appear to interfere with transfer of electrons at 

discrete points between the high potential iron-sulphur cluster and ubiquinone (Gutman et 

al., 1970; Krueger et al., 1990). 

1 -Methyl-4-phenyl- l,2,3,6-tetrahydropyridine (MPTP) 

In 1982, meperidine was illicitly manufactured and sold on the street as a heroin 

substitute. Many batches contained the impurity MPTP which was found to produce 

severe and irreversible end-stage Parkinsonian symptoms in many young users. PET 

scanning using 6-fluorodopa showed most severely symptomatic patients to have 

selective lesioning of the substantia nigra in brain. MPTP is now known to be converted 

into its active metabolite 1-methyl-4-phenylpyridine (MPP') (Betarbet et al., 2000), 

which is then selectively accumulated by doparninergic neurons via the plasma 

membrane dopamine transporter. Once it has been taken up into the cell, MPP' 

accumulates in the mitochondria where it inhibits complex I. MPP' appears to bind to 



complex I near the rotenone binding site (Ramsay et al., 1991). Since dopaminergic 

neurons selectively uptake MPP' via the synaptic dopamine transporter, only 

dopaminergic neurons accumulate MPP' in significant quantities. This explains why the 

inhibition is not systemic but instead highly selective for dopaminergic neurons (Javitch 

et al., 1985) and leads to a Parkinsonian-like syndrome in humans (Langston et al., 1983a; 

Langston et al., 1983b; Spencer et al., 1987). MPP' also generates free radicals in 

isolated mitochondria, which have been implicated in the irreversible inactivation 

complex I (Cleeter et al., 1992). Recent studies indicate that high, systemically 

administered doses of the selective complex I inhibitor rotenone also produces selective 

degeneration of dopaminergic neurons in the striatum and induces Parkinsonian-like 

symptoms (Alam and Schmidt, 2002). 

1.2.7 Complex I1 and its Inhibitors 

Complex I1 provides a fundamental link between the TCA cycle (in the form of 

succinate) and the membrane-bound electron-transport system. Succinate dehydrogenase 

(SDH) makes up the extrinsic, water-soluble domain of complex I1 which contains a 

common active site for its substrate succinate. This enzyme has the redox flavine adenine 

dinucleotide (FAD) covalently bound and is associated with three iron-sulfur clusters 

(Tyler, 1992). SDH catalyzes the interconversion of succinate and fumarate. The catalytic 

site responsible for succinate oxidation is on the flavoprotein subunit (SDH1) and the 

covalently bound FAD functions as the electron acceptor. The flavin semiquinone and 

iron-sulfur centers of the iron protein (SDH2) then transfer electrons once at a time to the 

ubiquinone reductase site (Sherratt, 199 1 ; Salerno, 199 1) which provides reduced 



ubiquinone (ubiquinol) to the mobile intramembrane pool which interfaces with complex 

111. 

Malonate 

Malonate (malonic acid) is a well-established selective inhibitor of succinate 

dehydrogenase. This compound is closely related in structure to succinate (see Figure 

1.8). Mechanistically it operates as a reversible competitive inhibitor of succinate 

dehydrogenase since it binds to the succinate binding site in such a way that it can be 

displaced progressively by increasing concentrations of succinate (Webb, 1966; Mandrik 

et al., 1983). In vivo studies show that intrastriatal injection of malonate gives rise to 

dose-dependent excitotoxic lesioning in the striaturn (Beal et al., 1993; Greene et al., 

1993; Henshaw et al., 1994), but that little damage occurred if succinate and malonate 

were co-injected or if succinate was administered soon after malonate. These in vivo 

findings are broadly consistent with a reversibly acting competitive effect on brain 

succinate dehydrogenase. 



SUCClNlCAClD MALONIC ACID CARBOXIN 

ANTlMYClN A FAMOXADONE 

Figure 1.8 The structures of succinic acid, malonic acid, carboxin, antimycin A, 

famoxadone and myxothiazol A. 



Carboxin 

Carboxin is a systemic anilide fungicide and a selective inhibitor of complex I1 

(White, 1971). Its structure is displayed in Figure 1.8. Carboxin acts by interfering in 

some way with the binding of ubiquinone to its active site. The block would be either by 

exclusion of ubiquinone from the active site or by occlusion of a pore that leads to the 

active site (Matsson et al., 2001). Which ever mechanism is operating, previous kinetic 

experiments with ubiquinone make it clear that carboxin affects binding of this redox 

intermediate to its recognition site on complex I1 in a non-competitive (i.e. indirect) way 

(Mowery et al., 1976). Inhibition of succinate dehydrogenase activity by carboxin is also 

predominantly non-competitive with respect to succinate (White, 1971). These latter 

findings of Mowery et al. and White were confirmed in my experiments which compared 

the inhibitory kinetics of surangin B to those of carboxin using succinate and ubiquinone 

as substrates. The related structural analog oxycarboxin has been shown to block 

complex I1 in a similar way (White and Thorn, 1975). Carboxin has broad spectrum 

antifungal properties and it is widely used as a seed treatment for control of smut, rot, and 

blight on barley, oats, rice, cotton, vegetables, corn and wheat. It is also used to control 

fairy rings on turf grass. The systemic properties of this fungicide enable it to be used to 

prevent both the initial establishment of fungal disease and as a therapy for fungal disease 

that has already started to spread within the plant (Ware, 1986). 

1.2.8 Complex I11 and its Inhibitors 

Complex I11 exists in the inner mitochondria1 membrane as a dimer and must be 

surrounded by a complete annulus of phospholipid for optimum activity in vitro. The 



complex 111 of bovine heart has 8 - 9 tightly bound cardiolipin molecules per monomer 

and their dissociation from the core complex causes irreversible loss of activity (Gomez 

and Robinson, 1999). 

The most prominent subunits from the functional perspective are the cytochromes 

b and q, and the Rieske iron sulphur protein (ISP), since they are the only subunits 

participating directly both in electron transfer and the associated proton translocation 

(Baum et al., 1967). The cytochrome b subunit binds two heme groups known as bL and 

bH. bL is located near the P (cytoplasmic) side of the inner mitochondria1 membrane and 

bH located close to the N (matrix) side of the membrane (Trumpower, 1990a; Trumpower, 

1990b). On the basis of X-ray diffraction data to a resolution of 2.9 angstroms, atomic 

models of the main protein components of the bovine cytochrome bcl complex include 

core 1, core 2, cytochrome b, cytochrome c l ,  and an amino-terminal fragment of the iron- 

sulfur protein (Iwata et al., 1998). The proteins core 1 and core 2 appear to be structurally 

similar to each other (Xia et al., 1997). 

Complex I11 has two reaction centers for ubiquinone, designated Qi and Q, (Baurn 

et al., 1967; Robertson et al., 1993; Tan et al., 1993). Ubiquinone functions as a mobile 

carrier between complexes I and I1 to complex I11 (Snyder et al., 2000). There are two 

properties which enable ubiquinone to act in this way. Firstly, this carrier molecule can 

be readily oxidized and reduced (Robertson et al., 1993). Secondly, its lipid solubility 

enables it to diffuse rapidly in the membrane environment, rapidly transporting 

hydrogens from one side of the inner membrane to the other (Baum and Rieske, 1966; 

Baum et al., 1967). 



The Q cycle is initiated when reduced QH2 which is generated by complex I or I1 

on the matrix side of the membrane diffuses across the membrane and gives up two 

protons to the intermembrane space. The first electron liberated in this process comes 

from the oxidation of QH2 to the semiquinone. This electron is passed sequentially to the 

Rieske iron sulphur protein of complex 111, cyt cl of the complex I11 and then finally to 

cytochrome c .  The second electron is liberated when the semiquinone is fully oxidized to 

ubiquinone (Q), and this passes to the first heme bL, and then on to the second heme bH. 

Q then diffuses back to the matrix side where it is reduced to the semiquinol by the heme 

bH. During this first half of the Q cycle the net reaction is the oxidation of QH2 to the 

seminquinone, the reduction of one cytochrome c and the transfer of two protons to the 

intermembrane space. The overall reaction is that four protons are translocated to the 

outside for every pair of electrons passing through complex I11 from QH2 to cytochrome c 

(Baurn et al., 1966; Silman et al., 1967; Trumpower, 1990a; Trumpower, 1990b; Ding et 

al., 1992; Matsuno-Ygi and hatefi, 2001). 

The inhibitors of complex I11 can be classified to two groups according to the 

specific sites on this complex that they target. The Qi or quinone reduction center is 

located on the matrix side of the inner membrane is associated with the recycling of half 

of the electrons back into the quinone pool and the uptake of protons from the matrix. 

The classical inhibitors of the Qi site are 2-heptyl-4-hydroxyquinoline-n-oxide (HQNO) 

and antimycin A. At the Q, center which located near the outer face of the inner 

membrane, electrons from reduced ubiquinone are accepted and divided into two 

pathways: half for recycling, and half for transfer via the iron-sulphur center and cyt cl to 

cytochrome c. The inhibitors of Q, site include methoxyacrylate (MOA) stilbene (Rich et 



al., 1991), myxothiazol and famoxadone (a recently commercialized agricultural 

fungicide). 

Antimycin A 

Antimycin A (see Figure 1.8 for structure) is secreted by the microbe 

Streptomyces griseus and has the ability to potently inhibit electron transfer in complex 

I11 between bH and bL and much less between bL and the iron sulfur protein. It therefore is 

classified as a Qi site inhibitor. In the intact respiratory chain it prevents the oxidation of 

both NADH and succinate, but is unable to inhibit respiration in the presence of 

N,N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD) (Tokutake et al., 

1993) the latter compound providing a means for electrons to bypass complex I11 

completely and thus overcome the Qi site block by antimycin. This pharmacological 

manipulation known as the TMPD shunt was very useful in identifying complex I11 as a 

major site of surangin B action in synaptosomes (see Chapter 3, Figure 3.10). Antimycin 

is known to have insecticidal activity towards the housefly and almond moth and shows a 

relatively wide spectrum of antifungal activity. Antimycin is also extremely toxic to fish. 

Antimycin has not achieved any practical significance in pest management, although 

proposals for this compound as a possible alternative to rotenone in fish eradication 

programs have been put forward. 

Famoxadone 

Famoxadone (see Fig. 1.8 for structure) is a member of a new class of 

oxazolidinone fungicides which show high activity against a variety of plant fungal 



pathogens. Farnoxadone combines relatively broad spectrum of activity with low 

mammalian toxicity and minimal environmental impact (Sternberg et al., 2001). 

Famoxadone is a potent inhibitor of complex I11 (Jordan et al., 1999a; Zheng et al., 2000; 

Gao et al., 2002) and achieves its inhibition by binding selectively to the Q, reaction 

centre, which is the site of bifurcation of electron transport between the Rieske iron- 

sulfur cluster and heme bL of complex I11 (Jordan et al., 1999b). 

Myxothiazol 

Myxothiazol is a natural product antibiotic produced by various species of 

Streptomyces. Its chemical structure, which was determined by Gerth et al. (1980) and 

Trowitzsch et al. (1980), incorporates the methoxyacrylate toxophore (see Fig. 1.8). 

Myxothiazol is highly effective against a broad range of filamentous fungi (Gerth et al., 

1980), but shows negligible activity against bacteria (Thierbach and Reichenbach, 1981). 

Myxothiazol exerts its antifungal action by binding exclusively to the cytochrome bL 

component of the Q, site of mitochondria1 complex 111. Myxothiazol can therefore block 

the reduction of both the Rieske centre and heme b ~ ,  although the heme bH can still be 

reduced via the Qi site via reversed electron flow using reduced hydroquinone. This 

mechanism accounts for the observation that 2-nitrosofluorene, which transfers electrons 

from the Qi-centre directly to oxygen (Klohn et al., 1996; see Figure 2.16a), relieves 

myxothiazol's inhibition of complex 111. I used 2-nitrosofluorene in my thesis research to 

help identify the binding site of surangin B on complex I11 (see Figure 2.16b). 

The onset of the myxothiazol's inhibitory effect on complex I11 is rapid and, at its 

maximum effect concentration, oxygen consumption is almost fully blocked (Thierbach 



and Reichenbach, 1981). The synthetic methoxyacrylate fungicides ICIA5504, 

azoxystrobin and kresoxim-methyl form a very important group of recently developed 

commercial fungicides based on myxothiazol and the simpler natural product 

methoxyacrylate strobilurin A (Clough and Godfrey, 1995; Henry and Gustafson, 2003). 

1.2.9 Complex IV and its Inhibitors 

Complex IV (also known as cytochrome c oxidase and cytochrome ala3) is the 

terminal enzyme of the electron respiratory chain (Hatefi, 1985). This complex has a 

molecular weight of about 200,000 Da and consists of 13 discrete polypeptides arranged 

as two catalytic subunits (a and a3). Complex IV (like mitochondria1 complexes I and 111) 

functions as an energy transducing site coupling to electron flow the the pumping of 

protons from the matrix to the intermembrane space thus fueling the ATP synthase 

(Wikstrom et al., 1981). Each subunit contains one heme center (heme a and heme a3) 

associated with a copper center (CuA and CuB) which participate in a series of redox 

reactions which provide a pathway for electron flow from cytochrome c to molecular 

oxygen. In binding to heme a3, oxygen undergoes reduction to two water molecules in a 

four electron process which consumes four protons (Michel, 1998). A proton is pumped 

across the membrane for each proton consumed in the terminal reaction. The reduction of 

oxygen catalysed by complex IV accounts for more than 90 % of all the O2 consumed by 

living organisms. Cyanide, azide and CO strongly inhibit complex IV by binding tightly 

to the ferric form (~e+++)  of heme a3, which prevents it passing electrons to molecular 

oxygen. 



1.2.10 Uncoupling Agents 

Oxygen uptake, which is dependent on the presence of ADP and phosphate, is 

defined as coupled respiration. The coupling of respiration and phosphorylation can be 

dissociated by osmotic, physical (mechanical) or chemical disruption of the mitochondria 

by means of uncoupling agents. 

Chemical uncouplers have the ability to shuttle H+ across the inner mitochondrial 

membrane, resulting in dissipation of the H+ gradient (Tyler, 1992). Uncouplers therefore 

isolate the processes of oxidation from phosphorylation in mitochondria. Since 

uncouplers collapse the H+ gradient and prevent ATP synthesis, they overcome normal 

respiratory control, but cannot stop electron flow along the electron transport chain. 

Consequently respiration proceeds very rapidly because there is no chemiosmotic 

gradient to regulate electron flow. 

Uncoupling agents are normally relatively small amphipathic molecules capable 

of high mobility in phospholipid bilayers and potent effects on proton permeability. 

Uncouplers shield the proton's electric charge as the ion passes through the membrane, 

creating a polar environment for the ion while achieving a hydrophobic interaction with 

lipids of the inner mitochondrial membrane (Tyler, 1992). 

Carbonylcyanide phenylhydrazones (Heytler and Pritchard, 1962) are perhaps the 

most well-known uncouplers and this chemical group includes chlorocarbonylcyanide 

phenylhydrazone (CCCP) and the more potent trifluoromethoxycarbonylcyanide 

phenylhydrazone (FCCP). They both act as H+ ionophores as already discussed. 



1.3 The Nerve and Neurotransmitter Release 

1.3.1 The Neuron and its Function 

A neuron represents a fundamental cell type in the nervous system. Neurons 

typically consist of four distinct domains, the dendrites, the cell body, the axon and the 

axon terminals or nerve endings. Each of these regions can be viewed as having separate 

functions. The cell body contains the nucleus together with many other organelles and the 

dendrites are fine projections (arborizations) of membrane and cytoplasm that are 

continuous with the soma and represent the main means that incoming electrical signals 

are picked up and relayed to the cell body. The axon is a single relatively long projection 

which relays action potentials from the cell body to the nerve ending. The axon hillock 

represents a region closest to the cell body which is the trigger zone for action potential 

propagation. The nerve ending then forms a synapse with the next neuron of the circuit. 

Synapses are specialized structures where neurons send and receive information. 

A synaptic complex normally consists of three components, the presynaptic terminal, the 

synaptic cleft and the postsynaptic process. The axon terminal from the presynaptic cell 

sends signals that are picked up by postsynaptic cells. Two types of synapses are known, 

the electrical synapse (gap junction) and the chemical synapse, which have different 

morphology and function (Kandel and Siegelbaum, 1985; Bennett et al., 1991; Bennett 

and Scheller, 1993; Shepherd, 1994). Although electrical synapses link many sensory and 

motor neurons in invertebrate species, this type of synapse is relatively rare in 

mammalian nervous system. In electrical synapses, the gap junction connexin proteins 

form channels in the plasma membrane which allow ions to pass from the cytoplasm of 

one neuron into that of the adjacent neuron, achieving signal propagation (Kandel and 



Siegelbaum, 1985). Chemical synapses on the other hand consist of pre- and post- 

synaptic membranes separated by a cleft of 30 - 50 nm, much wider than the 

approximately 2 nm gap between the junctional plasma membranes of electrical synapses 

(Kandel and Siegelbaum, 1985). Chemical synapses are the more abundant and elaborate 

form of junction in mammalian nervous system (Shepherd, 1994). The presynaptic and 

postsynaptic membranes of chemical synapses are often specialized and the presynaptic 

nerve endings contain numerous neurotransmitter-containing vesicles, which fuse with 

the pre-synaptic membrane to release neurotransmitters. The neurotransmitters then 

interact with specific postsynaptic specific receptors, which are coupled to ion channels 

generating various postsynaptic potentials (Kandel and Siegelbaum, 1985; Shepherd, 

1994). 

Synapses are classified as excitatory and inhibitory on the basis of the 

neurotransmitters contained within the pre-synaptic nerve ending forming the synapse. 

Excitatory synapses have nerve endings containing excitatory neurotransmitters such as 

glutamate, aspartate and acetylcholine. Action potentials invading the nerve ending open 

voltage-gated sodium channels increasing cytoplasmic ~ a +  concentration. The 

depolarization caused by sodium ion influx triggers the opening of voltage-gated calcium 

channels and influx of ~ a + +  which activates presynaptic release of excitatory transmitter. 

Excitatory neurotransmitters diffuse rapidly to the postsynaptic membrane where they 

activate receptors coupled, for example, to sodium channels which depolarize dendritic 

regions of the post synaptic cell. Inhibitory synapses operate in a similar way but involve 

inhibitory chemical transmitters, such as y-arninobutyric acid (GABA) which activates 



postsynaptic GABAA receptors causing influx of C1-, which hyperpolarizes dendritic 

regions of the postsynaptic cell (Shepherd, 1994). 

1.3.2. Neurotransmitter Substances 

The three major categories of neurotransmitter include amino acids, mines  and 

peptides. Glutamate, aspartate, glycine and GABA represent the most important amino 

acid-derived neurotransmitters. Acetylcholine (Ach), dopamine, epinephrine, 

norepinephrine (NE), histamine and serotonin (5-HT) are members of the amhe group of 

neurotransmitters and prominent peptide neurotransmitters include substance P, 

neuropeptide Y, cholecystokinin, vasopressin, somatostatin, neuroensin, dynorphins and 

the enkephalins. The main excitatory and inhibitory neurotransmitters of the brain are 

glutamic acid and GABA, respectively. Glutamate is the most abundant excitatory amino 

acid neurotransmitter and widely distributed in mammalian brain, including the 

hippocampus (Kennedy, 1994; Conti and Weinberg, 1999). Aspartate is also excitatory 

but primarily confined to the ventral spinal cord and hippocampus (Fleck et al. 1993). 

After activating postsynaptic amino acid receptors, glutamate and aspartate are 

inactivated by carrier-mediated reuptake into the pre-synaptic terminal. 

GABA is the major inhibitory neurotransmitter in the central nerve system of 

vertebrate brain accounting for transmission at 30 - 40 % of all synapses (Curtis and 

Johnston, 1974; Sivilotti and Nistri, 1991). The GABA concentration in the brain is 200 - 

1000 times greater than that of the monoamines or acetylcholine, emphasizing the 

importance of GABA-ergic transmission in brain. GABA is synthesized from glutamic 

acid and its breakdown products are fed into the TCA cycle. Following release into the 



synapse, GABA is inactivated by active transport into the presynaptic terminal and 

astrocytes (glial cells) that are closely associated with synapses. 

Taurine is a sulfur-containing inhibitory amino acid neurotransmitter in brain 

(Huxtable, 1992). Taurine has been localized in the pineal gland and various centres 

involved in taste, smell and memory. This amino acid can affect acetylcholine levels, 

helping to reduce excitability in the nervous system during epilepsy. Taurine has also 

been shown to mimic GABA in activating GABAA receptors, (Whitton et al., 1994), thus 

providing a another mechanism which might explain its inhibitory actions in the nervous 

sysyem. 

1.3.3 Involvement of Gaff, Synapsins, and ~a++/calmodulin-dependent Protein 

Kinases in Neurotransmitter Release 

As explained previously, when an action potential depolarizes the nerve ending, 

voltage-gated calcium channels open causing ca++ influx. The increase in ca" triggers 

synapsin phosphorylation (Kelly, 1988). Synapsins are proteins capable of interacting 

both with the cytoplasmic surface of synaptic vesicles and protein kinases. When the 

cytosolic levels of ca++ increase, ca++ binds to calmodulin (a small soluble protein) 

forming the ~ a + + / c a .  complex, which then activates calcium/calmodulin-dependent 

protein kinase I1 (ca"1ca.m kinase 11). The activated Ca"/cam kinase I1 phosphorylates 

synapsins which cause release of synaptic vesicles from the cytoskeleton and facilitate 

vesicle docking with the presynaptic membrane and release of neurotransmitters 

(Greengard et al., 1993; Zimmermann, 1993). After release of neurotransmitters, 



phosphatases then dephosphorylate synapsin molecules, which allowing them to bind to 

the surface of synaptic vesicles, actin and fodrin and resecure vesicles to the cytoskeletal 

framework within the pre-synaptic terminal (Trimble et al., 1991). The phosphorylation 

and dephosphorylation cycle within the nerve ending is therefore intimately involved in 

regulation of transmitter release. The SNARE (soluble N-ethylmaleimide-sensitive-factor 

attachment protein receptor) hypothesis can explain the docking, fusion and release of 

vesicles in synaptosomes (Brunger, 2001a; Fiebig et al., 1999). Two proteins, NEM- 

sensitive fusion protein (NSF) and soluble NSF-attachment proteins (SNAPS) (Malhotra 

et al., 1988; Clary et al., 1990), are involved in synaptic vesicle fusion. These proteins 

interact with vesicle-associated SNARE (v-SNARE), such as synaptobrevin, and target 

membrane SNARES (t-SNARE), syntaxin and SNAP-25, to form a macromolecular 

complex that spans the two membranes and causes them to fuse (Lin and Scheller, 2000). 

Synaptotagmin, another vesicle-associated protein, acts as a caw sensor, and causes 

vesicle release when ~ a + +  binds (Brunger, 200 1 b; Sudhof, 2004). 

1.4 Absorbance and Fluorescence Methods 

Since many of the assays I used in my thesis research involved either absorbance 

or fluorescence determinations, this section briefly describes the principles behind these 

techniques. 

UV-visible spectroscopy is the measurement of the wavelength and intensity of 

absorption of ultraviolet and visible light by a sample. When an atom or molecule 

absorbs light energy, electrons are promoted from their ground state to an excited state. A 

large number of molecules absorb ultraviolet or visible light, however, the absorption in 



organic molecules is restricted to certain functional groups called chromophores. 

Different chromophores absorb radiation of different wavelengths often due to the 

presence of an aromatic or conjugated system in the molecule. Since absorption involves 

measurement of transmitted light relative to incident light intensities at the same 

wavelength, the concentration of an analyte in solution can be determined. The solvent or 

some compounds also have an effect on the spectrum of the species. The red shift in 

absorbance of complex I11 is caused by attractive polarization forces between the solvent 

and the absorber, which lower the energy levels of both the excited and unexcited states. 

This effect is greater for the excited state, and so the energy difference between the 

excited and unexcited states is slightly reduced, resulting in a small red shift. 

Fluorescence occurs in certain molecules (fluorophores) when energy, absorbed 

from an external light source, excites electrons from a vibrational level in the electronic 

ground state to one of the many vibrational levels in the electronic excited state. The 

excited electronic singlet state then rapidly and spontaneously falls to the lower ground 

state and, as a result of this process, energy is dissipated in the form of a photon of light. 

Since the energy of this photon is lower than that of the excitation photon, its wavelength 

is longer. Fluorescence quantitation of OPA-amino acids was used extensively to 

investigate the transmitter-releasing effects of surangin B. 

1.5 Objectives of this Research 

Plants contain a large reservoir of pesticidal substances that may be used directly 

or as prototypes for the synthesis of pesticides. The interest of the pesticide industry and 

the pesticide market in this source of natural products as pesticides has increased 



dramatically in the past few years. The published research on the botanical coumarin 

surangin B (discussed in chapter 1.1) would suggest that the pesticidal properties of this 

and related coumarins warrant systematic investigation. Recent regulatory requirements 

increasingly require adequate definition of mechanism of action as well as definition of 

toxic effects and this applies to natural products as well as synthetic pesticides. 

The research described in this thesis therefore seeks to clarify firstly the nature of 

surangin B's interaction with mitochondria, and secondly the ability of surangin B to 

cause endogenous release of a key excitatory (L-glutamate) and inhibitory (GABA) 

neurotransmitter in brain. Since these results showed that surangin B acted in a similar 

way to some commercial fungicides, my third objective was to investigate the potential 

antifungal action of surangin B. 

For the first and second objectives, my experiments used preparations from 

bovine heart mitochondria and mouse brain synaptosomes (functional pinched-off nerve 

endings), respectively, and particular attention was given to delineating the mechanism of 

action of surangin B in this research. In antifungal experiments, the effects of surangin B 

towards several fungal pathogens of crop plants were compared with other antifungals 

including commercial fungicides. The detailed approaches taken to address each research 

objective are described in Chapters 2 - 4 that follow. 



CHAPTER 2. INTERACTION OF SURANGIN B WITH 
BOVINE HEART MITOCHONDRIA 

2.1 Introduction 

As already discussed in Chapter 1 under "Insecticidal Coumarins" certain of the 

coumarins in Mammea americana and especially surangin B, a 4-(1-acetoxypropy1)- 

containing coumarin of Mammea longifolia, show interesting insecticidal activity. 

Surangin B does not exhibit early knockdown in insects, but instead causes an ever 

deepening paralysis, which is similar to the symptomology of some compounds which 

target mitochondria (Zheng et al., 1998). Zheng and colleagues (1998) found that 

surangin B is a very potent blocker of state 3 respiration when insect muscle 

mitochondria are respiring on NAD+- or FAD+- linked substrates, but this coumarin has 

minimal effect on mitochondrial complexes I and IV. These results show that in insects, 

complexes I1 or I11 may be relevant targets of this coumarin. Other previous work from 

our laboratory has found that surangin B inhibits oxygen uptake by mouse brain 

synaptosomes and depolarizes intrasynaptosomal mitochondria, an effect also produced 

by the specific complex I inhibitor rotenone (Nicholson and Zhang, 1995). It is likely that 

mitochondrial blockade leading to bioenergetic failure in muscle and nerve, the latter 

causing indiscriminate release of neurotransmitters, is responsible for the paralysis in 

insects exposed to surangin B. 

In an attempt to resolve questions on the sensitivity of the various mitochondrial 

complexes to surangin B and to examine some of the mechanisms involved, I initiated a 



systematic investigation into the action of surangin B in the model beef heart 

mitochondria1 preparation. My first objective in this study was to investigate the 

sensitivity of the different complexes of the electron transport chain of mammalian 

mitochondria to surangin B to determine which may be its relevant target(s). Knowing 

this, I would embark on an investigation to clarify the mechanism(s) involved. 

2.2 Materials and Methods 

2.2.1 Chemicals and Biological Materials 

Surangin B was extracted and purified from the roots of Mammea Iongijolia 

according to a method described by Joshi et al. (1969). Nicotinamide adenine 

dinucleotide (reduced form; NADH), sodium succinate, 2,6-dichlorophenolindophenol 

(DCIP), cytochrome C, rotenone, antimycin A (AA), myxothiazol, 

thenoyltrifluoroacetone (TTFA), nitropropionic acid (NP), sodium cyanide, sodium 

borohydride and decylubiquinone were purchased from Sigma-Aldrich Canada Ltd. 

Oakville (ON). Carboxin and farnoxadone were kindly provided by Dr. Mark Dekeyser, 

Uniroyal Chemical Ltd, Guelph, (ON) and Dr. Douglas Jordan, Sine Haskell Reseach 

Center, Newark, (DE), respectively. Bovine hearts were obtained from Grand Maison 

Beef Farm Ltd., Cloverdale (BC). All other solvents and reagents employed in this study 

were analytical grade. 



2.2.2 Isolation of Mitochondria from Bovine Heart 

A bovine heart, obtained within five minutes of animal slaughter, was sealed in a 

plastic bag and immediately transfered to large cooler containing crushed ice for transport 

to the lab. Upon arrival at the laboratory (within 1 hour), adipose and connective tissue 

were removed as much as possible and the heart muscle was then sectioned into small 

cubes (approximately 1 x 1 cm). Heart tissue was placed in ice-cold 0.25 M sucrose 

solution, containing 0.01 M tris base and 0.2 mM ethylenediaminetetraacetic acid 

(EDTA), adjusted to pH 7.8 with HC1, and blended (1 + 2; wlv) for 35 - 40 sec. After 

adjustment of the pH to 7.8 with tris base (2 M), the mixture was homogenized in batches 

at approximately 1,200 rpm pestle rotation using two 10 second passes. This homogenate 

was again adjusted to pH 7.8 using 2 M tris base prior to centrifugation (Beckman J2-HS) 

at 1,200g for 20 min. The supernatant was carefully removed and filtered through two 

layers of cheesecloth. The filtrate was then adjusted to pH 7.8 with 2 M tris base and 

centrifuged (Beckman J2-HS) for 15 min at 26,000 g. The upper portion of the pellet 

(loosely compacted buff-colored layer), consisting of broken mitochondria, was 

discarded. The middle dark brown layer (consisting of intact mitochondria) was 

resuspended in sucrose solution (1 0 ml; using homogenization), added to a further 170 ml 

of ice-cold sucrose solution and the pH re-adjusted to 7.8. The suspension was 

centrifuged at 26,000g for 15 min. The mitochondria1 pellet was washed again by 

resuspension and centrifugation yielding the final pellet which was suspended in sucrose 

solution to a protein concentration of 20 - 40 mglml, then aliquoted into vials and flash 

frozen in liquid nitrogen. Mitochondria were stored at - 80 OC prior to experimentation. 

All experiment and centrifugation procedures were carried out at 1 - 5 OC. 



2.2.3 Preparation of Submitochondrial Particles (SMPs) 

Submitochondrial particles were prepared from bovine heart mitochondria using 

the procedure of Matsuno-Yagi and Hatefi (1 985). Frozen mitochondria were allowed to 

thaw slowly at room temperature. Batches of the suspension (100 ml) were then 

homogenized and subjected to sonication for 1 min at 0 OC using Branson sonicater. The 

sonication was repeated again after allowing the samples to cool down for 5 min in an ice 

bath. After this, the pH was adjusted to 7.5 with 1 M KOH and the suspension was 

centrifuged for 7 min at 32,500 g. The supernatant was carefully removed leaving behind 

a loosely packed pellet which was then compacted by recentrifugation for 45 min at 

130,000 g. The pellet was washed once by resuspension in 10 mM tris-acetate buffer pH 

7.5, containing 0.25 M sucrose followed by centrifugation. The final submitochondrial 

particle pellet was suspended in the same buffer at a protein concentration of 40 - 60 mg 

proteidml, frozen in liquid nitrogen in small aliquots, and stored at -80 OC. 

2.2.4 Assays of Complexes I to IV 

Each complex (I - IV) was assayed spectrophotometrically (Spectronic 3000 

Array Spectrophotometer, Milton Roy Company) using previously published techniques 

(Krahenbuhl et al., 1991 ; Desai et al., 1996) with minor modifications. Complex I activity 

was measured by following the oxidation of NADH, given by a decrease in absorbance at 

340 nrn. The reaction mixture consisted of 50 mM potassium phosphate buffer (1 ml; pH 

7.6) containing 0.25 mM NADH and decylubiquinone (50 pM) as the electron acceptor. 

Mitochondria (200 pg protein) were added to start the reaction. Complex I1 activity was 

measured as the rate of reduction of ubiquinone to ubiquinol by succinate, and 



quantitated by the secondary reduction of 2,6-dichlorophenolindopheno1 (DCIP) as the 

quinol forms. The reaction mixture contained 50 mM potassium phosphate buffer (1 ml; 

pH 7.6), 20 mM succinate, 1.0 mM EDTA, 0.05 mM DCIP and 3 mM sodium azide. 

Decylubiquinone (50 pM) was added followed by mitochondria (65 pg) to start the 

reaction. The decrease in absorbance as DCIP becomes reduced was measured at 600 nm. 

Complex I11 activity was assayed as an increase in absorbance at 550 nm as cytochrome c 

is reduced by complex I11 with decylubiquinol present as the electron donor. The reaction 

mixture consisted of 50 mM potassium phosphate buffer (1 ml; pH 7.6) containing 0.1 % 

BSA, 0.1 mM EDTA, 60 pM cytochrome c, 3 mM sodium azide, and decylubiquinol 

(150 pM). Mitochondria (10 pg protein) were then added to initiate the reaction. 

Complex IV activity was measured with reduced cytochrome c as substrate. The reaction 

mixture consisted of 50 mM potassium phosphate buffer (1 ml; pH 7.6) containing 

sucrose (0.25 mM) and 25 pM reduced cytochrome c. Mitochondria (10 pg protein) were 

introduced to start the reaction and the oxidation of cytochrome c was monitored at 550 

nm. Cytochrome c was reduced with sodium dithionite prior to assay. Inhibitors were 

added to these assays using microsyringes in no more than 3 p1 DMSO and all assays 

were carried out at 30 OC. 

2.2.5 Effect of Surangin B on Complex I1 Kinetics 

Complex I1 oxidation was measured at 30•‹C using succinate as a substrate and 

DCIP as a terminal electron acceptor (Mowery, et al., 1976; White, 1971). The reaction 

mixture (total volume 1 ml) contained 1.0 mM EDTA; 0.05 mM DCIP and 3 mM NaN3 

in 50 mM potassium phosphate buffer (pH 7.6). In the first series of experiments, the 



succinate substrate was added at different concentrations (5, 10, 15, 20 and 25 mM) and 

decylubiquinone was kept constant at (50 pM). In the second set of assays the complex I1 

electron acceptor analog decylubiquinone was varied (5, 7.5, 15 and 25 pM) and 

succinate was held at 20 mM throughout. Surangin B and carboxin were introduced in 

DMSO (10 pl) and malonate was added in buffer. Submitochondrial particles (45 pg) 

were added to initiate the reaction and the absorbance decline was followed over 5 

minutes at 600 nrn. 

2.2.6 Purification and Characterization of Complex 111 

The isolation of complex I11 from beef heart mitochondria used the method of 

Berry et al., (1 99 1) with slight modifications. Upon thawing, mitochondria were added to 

ice-cold 50 mM potassium phosphate buffer (pH 7.5) containing 300 mM NaCl and 1 % 

dodecyl maltoside to achieve a final concentrations of 1 g1100 ml protein. Gentle 

homogenization was used to assist solubilization of mitochondrial material and the 

resulting suspension was centrifuged at 130,000g in a Beckrnan L8-80 ultracentrifuge for 

25 min. The supernatant was applied to a DEAE-Sepharose column (1.5 x 50 cm) and 

moved into the upper stationary phase with 50 mM potassium phosphate buffer, pH 7.5, 

containing 300 mM NaCl and 0.01 % dodecyl maltoside. The detergent-solubilized 

mitochondrial extract was then eluted (1 5 mlkr) with 50 mM potassium phosphate buffer 

(pH 7.5) and 0.01 % dodecyl maltoside incorporating a linear gradient (1 50 + 150 ml) of 

300 - 500 mM NaC1. Fractions (5 ml) were collected and assayed by protein 

determination (Figure 2.1). Complex I11 (contained in red fractions) was then adsorbed 

onto a 1 x 2 cm hydroxyapatite column and washed with 50 mM potassium phosphate 



buffer (pH 7.5) containing 300 mM NaCl and 0.01 % dodecyl maltoside (Berry et al., 

1991). Purified complex I11 was then eluted using 300 mM potassium phosphate buffer 

(pH 7.0) containing 0.5 mM EDTA, and 0.1 % Brij-35 detergent, allowing isolation of 

the product in 1 - 2 ml. Aliquots of this concentrated solution of complex 111 were taken 

for protein determination, assay of enzymic activity (Fig 2.2) and PAGE analysis 

(Schagger and von Jagow, 1987) (15 % gel was used in this experiment) to confirm 

identity and purity (Fig 2.3). The remainder was flash frozen in liquid nitrogen and stored 

at - 80•‹C until used. 
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Figure 2.1 Chromatography of dodecylmaltoside-solubilized bovine Heart 

mitochondria on DEAE-Sepharose. 



2.2.7 Assay of Red Shift Difference Absorption Spectra 

Recordings of red shift spectra were conducted on purified complex I11 using a 

Milton Roy Spectronic 3000 Array as described by Jordan et al., (1999). Inhibitors were 

added singly or sequentially (as required) to complex I11 (0.215 mg proteinlml) following 

its complete reduction with sodium dithionite. Complex I11 was scanned (500 - 650 nm) 

after each addition and the result was recorded digitally. The difference spectra were 

calculated by subtration of digitally-stored spectra from the various complex I11 

treatments as appropriate. Inhibitors were added in DMSO (3 pL). 

2.2.8 Synthesis of Decylubiquinol 

Decylubiquinol was synthesized according to of Gudz (Gudz et al., 1997) and all 

procedures were carried out in subdued light. Decylubiquinone (10 pmol) was dissolved 

in 2 ml ethanol+water (1 + 1 vlv; pH 2) and reduced to the corresponding alcohol by 

addition of NaBH4. The decylubiquinol was twice extracted from the aqueous ethanol 

using 1 ml of diethylether+isooctane (2 + 1; vlv). The organic phases were combined, 

then washed with 2 ml of 2 M NaCl and evaporated to dryness at room temperature under 

a stream of nitrogen. The product was dissolved in ethanol (990 pl), acidified by addition 

of 10 p1 of 0.1 M HC1 and transferred to a storage vial and kept at - 20 OC in darkness. 
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Cytochrome reductase activity of purified complex 111. Absorbance 

measurement were carried out at 550 nm. Each cvcle is 3 seconds. 
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Figure 2.3 SDS-PAGE analysis of complex I11 isolated from bovine heart. (bcl = 

complex 111; SMP = submitochondrial particles; MW = molecular weight) 



2.2.9 Synthesis of 2-nitrosofluorene (2-NOF) 

The procedure I employed for synthesis of 2-NOF (Fig. 2.4) was based on an 

approach developed by Lotlikar et al., (1 965) and Sandler et al. (1 97 1) with modification. 

2-Nitrofluorene (1 g) was dissolved in 100 ml dimethylformamide (DMF). To this was 

added 0.4 g ammonium chloride dissolved in 100 ml of 80 % ethanol, followed by l g  

zinc dust and the mixture stirred overnight at room temperature. The reaction vessel was 

continuously flushed with nitrogen gas. After filtration (Whatman No. I), the solid 

material was washed with 200 ml DMF + distilled water (4 + 1, vlv). Next, 25 ml of 

concentrated H2SO4 was slowly added to the filtrate, followed by sodium dichromate 

(0.45 g) in 1.5 ml distilled water. The combination was then stirred for 1 - 2 hrs over an 

ice bath after which ice-cold distilled water (approximately 1 litre) was slowly added. 

The precipitate of 2-nitrosofluorene was harvested by centrifugation at 2,000 g for 5 min 

and dried under vacuum. 

UV absorbance measurements on 2-nitrosofluorene in 95 % ethanol gave the 

expected absorption spectrum maxima at 362 and 246 nm; minima at 280 and 227 nrn 

and the shoulder at 260 nm (Fig 2.5). The crystal melting point was found to be 78 - 79 

OC, in agreement with Lotlikar et al., (1965). Purity was found to be at least 98 % (Fig 2.6 

a and b) using reverse phase (CI8) HPLC with two different mobile phases: (1) 

acetonitrile + 1 % phosphoric acid (70 + 30 vlv); (2) a linear gradient of acetonitrile 0 - 

100 % over 30 min. in 0.1 % acetic acid with absorbance detection at 360 nm at room 

temperature. 



2-HYDROXYLAMINE DERIVATIVE 
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Figure 2.4 Synthesis of 2-nitrosofluorene. 
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Figure 2.5 The UV spectrum of 2-NOF. The expected absorption spectrum maxima at 

362 and 246 nm; minima at 280 and 227 nm and the shoulder at 260 nm are 

present. 
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Figure 2.6 RP-HPLC traces of synthetic 2-NOF. (a) acetonitrile + 1 % phosphoric acid 

(70 + 30 vlv); (b) a linear gradient of acetonitrile 0 - 100 % over 30 min. in 

0.1 % acetic acid with absorbance detection at 360 nm at room temperature. 



2.2.10 Assay of 2-NOF-stimulated Oxygen Consumption by Mitochondria 

Oxygen consumption of beef heart mitochondria was measured at 25 "C in a 2 ml 

glass chamber using a Clark-type oxygen electrode (Yellow Springs Instrument Co. Inc., 

OH) fitted with a high sensitivity membrane using a technique described by Klohn et al. 

(1996). Mitochondria (1.8 mg) were stirred continuously in respiration buffer (0.3 M 

sucrose, 5 mM Na-MOPS, 1mM EGTA, 5 mM KH2P04, 5 mM MgS04.7H20 and 1 % 

BSA (fatty acid free), adjusted to pH 7.4 with NaOH. The output from the electrode was 

amplified and oxygen consumption recorded using LABVIEW 4.0 (National Instruments 

Corporation, Austin, TX). Surangin B, other inhibitors and 2-nitrosofluorene, were added 

in no more than 3 p1 DMSO. 

2.2.11 Protein Assays 

Protein concentrations in whole mitochondria1 preparations were conveniently 

determined using the biuret method with bovine serum albumin as a standard (Gornall et 

al., 1949). All other protein estimations were carried out using an adaptation of the 

Lowry procedure (Peterson, 1977). 

2.2.12 Statistical Analyses 

Data were analyzed by analysis of variance (ANOVA), followed by Student's t- 

test. A value of p < 0.05 was taken as significant and p < 0.01 as highly significant. The 



concentration causing 50% inhibition of the response (ICso) was calculated using Prism 3 

software (Graphpad Software Inc., San Diego, CA). 

2.3 Results 

2.3.1 Differential Effects of Surangin B at Complexes I - IV of Bovine Heart 

Mitochondria 

In bovine heart mitochondrial preparations, concentrations of surangin B as high as 

100 pM are unable to inhibit complex I (Fig. 2.7 and 2.8), as compared to the classical 

complex I inhibitor rotenone, which produced threshold inhibition of complex I at 1 nM 

and 90 % inhibition at 1 pM (Fig 2.8). However, in obvious contrast, surangin B is a 

potent inhibitor of complex I1 (ICSO = 0.2 pM; Fig. 2.7). In parallel assays, the selective 

complex I1 inhibitors carboxin, oxy-carboxin, thenoyltrifluoroacetone and nitropropionic 

acid also showed extensive block whereas the negative controls rotenone, antimycin A, 

famoxadone and cyanide were ineffective (Fig. 2.9). Bovine heart mitochondrial 

complexes I11 and IV were also sensitive to inhibition by surangin B (ICsos 14.8 pM and 

3.1 pM respectively; Fig 2.7) under conditions where positive controls famoxadone and 

antimycin (complex 111) and cyanide (complex IV) gave the expected inhibition (Fig. 

2.10 and2.11). 

2.3.2 Inhibitory Kinetics of Surangin B on Complex I1 

Kinetic studies on surangin B's action at complex I1 of bovine heart mitochondria. 

Figure 2.12 (a, b and c) includes velocity versus succinate substrate plots as influenced by 



a) surangin B, b) carboxin and c) the classical competitive inhibitor malonate. Surangin B 

inhibits succinate oxidation with mixed type kinetics. Consistent with the literature, 

malonate and carboxin are respectively competitive and non-competitive inhibitors of 

succinate oxidation by complex I1 (White, 1971). The double reciprocal plots for 

inhibition of complex I1 showed non-competitive inhibition with respect to 

decylubiquinone for surangin B (Fig. 2.13 a), carboxin (Fig. 2.13 b) and malonate (Fig. 

2.13 c). 
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Figure 2.7 Concentration-dependence of surangin B's inhibitory effects on electron 

transport at complexes I, 11, I11 and IV of bovine heart mitochondria. Data 

points show mean 2 standard error of 3 - 5 determinations. 
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Figure 2.8 Comparison of surangin B with rotenone in assays of complex I using 

bovine heart mitochondria. SB = surangin B. Columns represent means and 

the bars the standard errors of at least 3 determinations. 
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Figure 2.9 Comparison of surangin B with other inhibitors of electron transport in 

assays of complex I1 using bovine heart mitochondria. SB = surangin B, Rot 

= rotenone, F = famoxadone, CN- = cyanide, NP = nitropropionic acid, TFA 

= thenoyltrifluoroacetone, CB = carboxin, 0-CB = oxycarboxin, AA = 

antimycin A. Columns represent means and the bars the standard errors of 

at least 3 determinations. 
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Figure 2.10 Comparison of surangin B with other inhibitors of electron transport in 

assays of complex I11 using bovine heart mitochondria. SB = surangin B, 

Rot = rotenone, F = farnoxadone, CN- = cyanide, CB = carboxin, AA = 

antimycin A. Columns represent means and the bars the standard errors of 

at least 3 determinations. 
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Figure 2.1 1 Comparison of surangin B with other inhibitors of electron transport in 

assays of complex IV using bovine heart mitochondria. SB = surangin B, 

Rot = rotenone, F = famoxadone, CN- = cyanide, TFA = 

thenoyltrifluoroacetone, CB = carboxin, AA = antimycin A. Columns 

represent means and the bars the standard errors of at least 3 determinations. 
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Figure 2.12 Double reciprocal plots showing the effect of increasing concentration of 

surangin B on complex I1 using different concentrations of the electron 

donor succinate compared to equivalent experiments with the inhibitors 

carboxin and malonate. Data points represent means and the bars the k 

standard errors of 3 - 6 determinations. 
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Figure 2.13 Double reciprocal plots showing the effect of increasing concentration of 

surangin B on complex I1 using different concentrations of the electron 

acceptor decylubiquinone compared to equivalent experiments with the 

inhibitors carboxin and malonate. Data points represent means + standard 

error of 3 - 6 determinations. 



2.3.3 Spectral Analysis of Surangin B Binding to Purified Complex 111 

The spectrum of reduced complex I11 with surangin B bound was red shifted, 

indicating a trough at 558, a peak at 575 and was very similar to the spectrum induced by 

the Qi site inhibitor antimycin (Fig. 2.14 a and b). Subtraction of the spectrum of either 

surangin B- or antimycin-saturated reduced complex 111 from the spectrum of reduced 

complex I11 equilibrated with surangin B and antimycin produced negligible change in 

the difference spectra (Fig. 2.14 c and d). The spectra of reduced complex I11 obtained in 

the presence of Q, site inhibitors (myxothiazol or famoxadone) minus the spectrum of 

reduced complex 111 (Fig. 2.14 e and g), showed less similarity to spectra induced by 

surangin B or antimycin. Moreover, when the spectrum of reduced complex 111 

equilibrated with either myxothiazol or famoxadone was subtracted from the spectrum of 

reduced complex 111 saturated with surangin B and the respective Q, site inhibitor, a 

surangin B-like spectrum was observed in each case (Fig. 2.14 f and h). 



Figure 2.14 Difference spectra obtained by scanning reduced complex I11 in the absence 

and presence of inhibitors and inhibitor combinations.(a) Spectrum of 

reduced complex I11 after equilibration with surangin B (SB; 50 pM) minus 

spectrum of reduced complex 111. (b) Spectrum of reduced complex I11 after 

equilibration with antimycin A (AA; 50 pM) minus spectrum of reduced 

complex 111. (c) Spectrum of reduced complex I11 after equilibration with 

surangin B (50 pM) then antimycin A (50 pM) minus spectrum of reduced 

complex I11 incubated with surangin B (50 pM). (d) Spectrum of reduced 

complex I11 after equilibration with antimycin A (50 pM) then surangin B 

(50 pM) minus spectrum of reduced complex I11 incubated with antimycin 

A (50 pM). (e) Spectrum of reduced complex I11 after equilibration with 

myxothiazol (MX; 50 pM) minus spectrum of reduced complex 111. (f) 

Spectrum of reduced complex I11 after equilibration with myxothiazol(50 

pM) and surangin B (50 pM) minus spectrum of reduced complex I11 

incubated with myxothiazol(50 pM). (g) Spectrum of reduced complex I11 

after equilibration with famoxadone (F; 50 pM) minus spectrum of reduced 

complex 111. (h) Spectrum of reduced complex I11 after equilibration with 

famoxadone (50 pM) then surangin B (50 pM) minus spectrum of reduced 

complex I11 incubated with famoxadone (50 pM). 
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2.3.4 Functional Perturbation of Complex I11 by Surangin B 

To determine the mechanism by which surangin B interferes with the transfer of 

electrons in complex 111, I used 2-nitrosofluorene which stimulates cyanide-resistant 

oxygen consumption through creation of an electron bleed at the Qi site linking to oxygen 

(Klohn et al., 1996). Mitochondria blocked at complexes I and I1 were allowed to respire 

on decylubiquinol. Preliminary experiments confirmed that under these conditions 

stimulation of oxygen consumption by 2-nitrosofluorene occured in the presence of 

cyanide (data not shown). Inhibition of oxygen consumption by surangin B (5 pM) or 

antimycin (5 pM) was not relieved by 2-nitrosofluorene (Figs 2.15 a and b). In marked 

contrast, the block on decylubiquinol-driven oxygen consumption by myxothiazol (1 0 

pM) was overcome by 2-nitrosofluorene (Fig. 2.15 c). 

2.4 Discussion 

The present investigation demonstrates that in bovine heart mitochondria the 

insecticidal coumarin surangin B acts as an inhibitor at three important sites regulating 

flow of electrons along the respiratory chain. The most sensitive site in this regard is 

complex I1 which is inhibited by 50 % with 0.2 pM surangin B. Less potent inhibition of 

electron transfer through complexes I11 and IV was observed as evidenced by ICSOs of 

14.8 and 3.1 pM respectively. In addition, my results clearly show that complex I of 

bovine heart mitochondria is insensitive to surangin B, an observation which closely 

parallels the result with insect flight muscle mitochondria (Zheng et al., 1998). Also in 

agreement with Zheng et al. (1998) is the finding in the present investigation that 



surangin B blocks complexes I1 and 111. However, inhibition of complex IV was clearly 

detected in mammalian heart mitochondria, in contrast to experiments with insect 

mitochondria (Zheng et al., 1998). Whether this sensitivity difference to surangin B in 

insect and mammalian muscle reflects a species difference in the structure of complex IV 

remains to be demonstrated. Inhibitors which interact with more than one mitochondria1 

complex are not without precedent, for example the ubiquinone analog inhibitor HQNO 

is displaced from its binding site on complex I11 by antimycin (Van Ark and Berdem, 

1997) and also blocks succinate:quinone oxidoreductase of Bacillus sp. (Qureshi et al., 

1996). 

The kinetic experiments involving surangin B and complex I1 of bovine heart 

mitochondria explored the way in which this coumarin might affect either the substrate 

(succinate) binding site or the region facilitating reduction of ubiquinone. These 

experiments demonstrate that the interaction of surangin B with complex I1 is mainly of a 

non-competitive type with respect to each bioenergetic intermediate. From these results, 

the inference can be made that surangin B does not associate directly with the binding 

sites of succinate or ubiqinone on complex 11. Because the structure of malonate is very 

similar to that of succinate, malonate can competitively inhibit the binding of succinate to 

the enzyme. The inhibitory effect of carboxin is through binding to the membrane- 

anchoring proteins close to the S3 center of the Ip subunit, which blocks electron flow 

(Keon et al., 1994). From a kinetic perspective, this mechanism is very similar to that of 

the fungicide carboxin in Ustilago maydis (White, 1971), although the precise molecular 

target for surangin B on complex I1 remains to be identified. 



Figure 2.15 Typical recordings showing the ability of 2-nitrosofluorene (2-NOF; 100 

pM) to activate decylubiquinol-driven consumption of oxygen by bovine 

heart mitochondria in the presence of (a) surangin B (SB; 5 pM), (b) 

antimycin A (AA; 5 pM) or (c) myxothiazol (MX; 10 pM). Mitochondria 

(1.8 mg protein) and rotenone (5 pM; to block complex I) were added 

before the start of recording. Succinate-stimulated electron flow through 

complex I1 was inhibited by addition of carboxin (50 pM) and malonate 

(1 00 pM). Following this, electron flow through complex I11 was 

accelerated by addition of decylubiquinol (UQ-01; 150 pM). Succinate was 

added at 4 mM. Dith = dithionite. The enclosed table summarizes rates 

before and after addition of 2-NOF. Values represent means 5 standard 

error of 3 - 6 separate experiments. Mean inhibitory effects of carboxin 

prior to UQ-01 addition for treatments a, b and c were not significantly 

different. Control treatments with DMSO produced no changes in O2 

consumption. 
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Surangin B blocks artificial transfer of electrons by 2-nitrosofluorene from the Qi 

site of complex I11 to molecular oxygen (Fig 2.16). Since I found surangin B inhibits 

complex IV as well as complex 111, 2-nitrosofluorene offered an ideal choice for 

exploring interference of electron flow by surangin B at the Qi region, because electron 

drain from Qi via 2-nitrosofluorene to oxygen occurs readily when complex IV is blocked 

(Klohn et al., 1996). The discovery that surangin B prevents 2-nitrosofluorene from 

reactivating oxygen consumption in complex I11 provides strong evidence that this 

coumarin, like antimycin, interferes functionally with the Qi site, and my results clearly 

distinguish surangin B mechanistically from the Q, site inhibitor myxothiazol which the 

results show, in agreement with others (Klohn et al., l996), fails to prevent this response. 
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Figure 2.16 (a) Reduction of oxygen by 2-NOF as described by Klohn et al., (1995) and 

(b) 2-NOF effect on inhibition of complex 111 by antimycin and 

myxothiazol. Note: 2-NOF binds selectivitely to the Qi site of complex 111. 



Equilibration of surangin B with reduced complex I11 induced a red shift similar 

to those previously observed with classical inhibitors of this complex (von Jagow and 

Engel, 1981; Becker et al., 1981). The difference spectra experiments on reduced 

complex I11 indicated that surangin B has the ability to bind to a site on cytochrome bcl 

that is likely associated with the antimycin A-specific Qi binding pocket. Support for this 

idea is provided by the finding that the difference spectra of reduced complex I11 

produced by surangin B and antimycin A are very similar. Moreover, when reduced 

complex I11 is first equilibrated with surangin B and then exposed to antimycin A (or vice 

versa) minimal changes in difference spectra were found. It is also apparent from these 

experiments that surangin B dramatically increases the difference spectrum of reduced 

complex I11 equilibrated with either myxothiazol or famoxadone, suggesting this 

cournarin is not targeting the Q, pocket. 

My data indicating equivalence of the difference spectra of surangin B and 

antimycin binding suggest that these inhibitors induce very similar conformational 

changes upon binding to complex 111. In this respect, it can be noted that several regions 

of the surangin B and antimycin A molecules appear analogous (Fig 2.17). Significantly, 

an intramolecular hydrogen bond between the aromatic hydroxyl and carbonyl in 

antimycin, which is a major determinant of this antibiotic's inhibition at complex I11 

(Miyoshi et al., 1995), is also a feature of surangin B (Crombie, 1989). This and other 

similarities (see Fig. 2.17) may therefore allow surangin B to bind to certain critical 

residues of the antimycin binding site in the Qi pocket. 
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Figure 2.17 Regions of structural similarity between surangin B and antimycin A. The 

aromatic hydroxyl and carbonyl (a) offer opportunity for hydrogen bond 

bridging of surangin B to residue(s) on the Qi binding site of complex 111, as 

proposed previously for antimycin (Miyoshi et al., 1995). Surangin B also 

incorporates a lactone carbonyl (b) alkyl substituents (c and d) and an alkyl 

ester group (e), analagous to regions of antimycin A's dilactone ring and 

ring substituents which promote hydrophobic interaction of this antibiotic 

with the binding cavity (Miyoshi et al., 1995). 
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CHAPTER 3. EFFECTS OF SURANGIN B ON THE 
RELEASE OF ENDOGENOUS AMINO ACIDS FROM 

MOUSE BRAIN SYNAPTOSOMES 

3.1 Introduction 

Synaptosomes are pinched-off nerve endings which have resealed, trapping their 

original content of cytoplasm. Synaptosomes not only retain a wide variety of functions 

that one would normally attribute to the nerve ending in situ such as synthesis, storage, 

release and re-uptake of transmitters but they also conserve sensitivity to the many 

pharmacological agents which act on these processes (Bradford, 1969; Blaustein and 

Goldring, 1975; Blaustein, 1975). Because synaptosomes from various brain regions have 

excellent biochemical and morphological preservation, they offer an invaluable system 

for studying neurochemical processes in vitro and provide highly functional preparations 

of nerve terminals for study (Whittaker et al., 1964; Luo and Bodnaryk, 1987). The 

functional integrity of the synaptosomal membrane is demonstrated by its ability to 

transport a variety of biomolecules including ~ a +  (Ling and Abdel-Latif, 1968), K+ 

(Marchbanks and Campbell, 1976; Escueta and Appel, 1969), choline (Marchbanks, 

1968), GABA (Weinstein et al., 1965) and calcium (Akerman and Nicholls, 1981). 

Synaptosomes remain viable for several hours after isolation, during which time they 

display a variety cellular functions related to the processes of neurotransmission and 

neurosecretion (Bradford, 1975). More recently, the development of a rapid Percoll-based 

method to isolate highly functional synaptosomes from rat brain in high purity was 

reported which has the advantage that it eliminates osmotic stress during fractionation 



(Dunkley et al., 1986). Consequently, in the investigations of the presynaptic actions of 

surangin B I describe in this thesis, I prepared synaptosomes from the brains of CD1 mice 

using the method of Dunkley and associates. 

Separation and detection of the amino acid o-phthalaldehyde (OPA) derivatives 

can be achieved with sufficient resolution and sensitivity to follow release of glutamic 

acid (Glu), aspartic acid (Asp), alanine (Ala) and GABA by isolated synaptosomes. OPA- 

amino acids can be analyzed by high-performance liquid chromatography using a variety 

of systems and derivatization methods. The separation was carried out on a reversed- 

phase (CI8) column using a gradient-elution procedure. 

In this chapter, I describe my investigation into the effects of surangin B on 

release of endogenous transmitter and non-transmitter amino acids from isolated nerve 

terminal preparations. The rationale for this study follows from previous observations on 

the neuroactive properties of surangin B (Nicholson and Zhang, 1995; Zheng et al., 1998, 

and has already been developed (see Insecticidal Coumarins in chapter 1.1). As 

hypothesized from our laboratories existing data on release of exogenously-loaded 

[ 3 ~ ] ~ ~ ~ ~  and [3~]choline by synaptosomes loaded with tritiated transmitters, I found 

that surangin B is a potent activator of endogenous transmitter and non-transmitter amino 

acids (Deng and Nicholson, 2003). Moreover, my results demonstrate that surangin B 

releases amino acids presynaptically in a similar fashion to that of other agents which 

selectively target mitochondria, and that inhibition of complex I11 by surangin B is an 

important mechanism contributing to its releasing effect. 



3.2 Materials and Methods 

3.2.1 Chemicals 

Surangin B was obtained from the roots of M. Longfolia as previously described 

(Nicholson and Zhang, 1995). Rotenone, antimycin A, carbonyl cyanide 

chlorophenylhydrazone (CCCP), tetramethyl-p-phenylenediamine (TMPD), tetrodotoxin 

(TTX), o-phthaldialdehyde and amino acid standards were obtained from Sigma-Aldrich 

Canada Ltd, Oakville, (ON). Carboxin and famoxadone were kindly provided by Dr. 

Mark Dekeyser, Uniroyal Chemical Ltd, Guelph, (ON) and Dr. Douglas Jordan, Sine 

Haskell Reseach Center, Newark, (DE), respectively. 

The mobile phase was composed of phosphate buffer and methanol (HPLC grade; 

Rathburn, Walkerburn, Great Britain). Individual amino acid standards were obtained 

through Sigma. A stock solution of each amino acid was prepared by dissolving it in 10 

mM HC1 to provide concentration of 100 pM. Standard solutions containing 100 nM of 

each amino acid were prepared from the stock solution by dilution with water. All other 

reagents were of analytical reagent grade and used without further purification. 

3.2.2 Isolation of Synaptosomes from Mouse Brain 

Synaptosomes, essentially free of myelin, extraterminal (free) mitochondria and 

extraneous membrane fragments, were prepared from the whole brains of male CD 1 mice 

(male, 6 - 8 weeks, 20 - 25 g) based on isoosmotic Percoll gradients according to a 

published method (Dunkley et al., 1986). All animal experimentation complied with the 

Canadian Council on Animal Care guidelines. Synaptosomes (fractions 3 and 4) were 

pooled, pelleted, then suspended in saline (128 mM NaC1, 5 mM KC1, 1.2 mM 

MgC12.7H20, 5 mM NaHC03, 0.8 mM CaC12.2H20, 14 mM glucose, 20 mM HEPES; 



buffered to pH 7.4 with 1.0 M Tris) to a concentration of 8 mg protein / ml and held on 

ice prior to assay. Protein concentration was determined using the procedure of Lowry et 

al., as modified by Peterson (1 977). 

3.2.3 Assay of Amino Acid Release from Synaptosomes 

Synaptosomal suspensions (50 pl), were added to saline (100 pl), containing 

solvent control (DMSO 1 pl), surangin B, or other compounds, as appropriate, vortexed 

gently, and allowed to incubate for 15 min at 32OC. After this, the mixtures were 

centrifuged on a Beckman Microfuge E (1 min, 4OC), and 130 p1 of each supernatant then 

acidified with perchloric acid (6 M; 3 pl). 

3.2.4 HPLC Analysis of Amino Acids 

For high performance liquid chromatographic (HPLC) analysis (Lenda and 

Svenneby, 1980), samples were centrifuged again and 50 p1 of each supernatant added to 

borate buffer (200 p1; 0.1 M). OPA reagent (50 pl; Kilpatrick, 1991) to intitate 

derivatization and after 1 min incubation at room temperature, 40 p1 was applied to the 

column. OPA-amino acid separations were performed on a Hewlett Packard 1050 

Chromatograph fitted with a C 18 column (1 5 cm x 4.6 rnrn ID; 5 pm particle size). The 

mobile phase gradient was constructed by appropriate mixing of buffer A (80 % 0.05 M 

sodium phosphate buffer + 20 % methanol; pH 5.7) and buffer B (20 % 0.05 M sodium 

phosphate buffer + 80 % methanol; pH 5.7). Elutions were initiated using buffer A (85 %) 

+ buffer B (1 5 %), with programmed reduction of buffer A to 15 % over 16 min. At this 

stage, a 4 min elution with buffer A (85 %) + buffer B (1 5 %) was carried out to clean up 



and re-equilibrate the column. OPA-amino acids in column eluates were analysed with an 

HP 1046A programmable fluorescence detector (excitation 330 nm; emission 450 nm). 

OPA-amino acid peak areas were quantitated and chromatographic traces recorded with 

an HP 3396 Series I1 integrator. OPA-derivatives of L-glutamic acid, GABA, aspartic 

acid, serine, taurine and alanine in synaptosomal supernatants were identified by 

comparing their retention times with standard OPA amino acids. Amino acid standards 

gave fluorescence responses that were linear over the working range of amino acid 

concentrations generated by synaptosomes in these assays. The levels of DMSO used in 

these assays had no effect on amino acid release from synaptosomes. 

3.2.5 Analysis of Data 

Curve fitting, determination of ECSos with 95 % confidence limits, and statistical 

analyses (Student's t-test; p value < 0.05 considered significant) were carried out suing 

Prism 3 software (Graphpad Software Inc., San Diego, CA). 

3.3 Results 

The relationships between concentration of surangin B and release of glutamic acid, 

GABA and aspartic acid from synaptosomes are given in Figures 3.1, 3.2 and 3.3 

respectively, and direct comparisons with rotenone, CCCP and carboxin are also 

provided. Surangin B stimulated release of glutamic acid, GABA and aspartic acid in the 

low micromolar range as demonstrated by ECso of 5.23, 11.24 and 6.59 pM respectively 

(Table 3.1). Rotenone and CCCP were consistently more potent than surangin B based on 



ECso which, for glutarnic acid, GABA and aspartic acid, ranged from 0.19 - 0.4 pM 

(rotenone) and 0.26 - 0.88 pM (CCCP). However, at higher concentrations, surangin B 

released greater quantities of glutamic acid and GABA from synaptosomes than 

equivalent concentrations of either CCCP or rotenone. Surangin B, rotenone and CCCP 

also increased efflux of taurine, serine and alanine from synaptosomes (Table 3.2). By 

contrast, the selective complex I1 inhibitor carboxin was at best marginally effective at 

stimulating release of amino acids from synaptosomes (Figures 3.1, 3.2 and 3.3; Table 

3.2). Release assays conducted in the presence of tetrodotoxin resulted in moderate 

reductions (glutamic acid 28 % h 4.8 %; GABA 34 % * 1.6 %; aspartic acid 33 % * 5.6 

%; alanine 19 % h 0.8 %) in surangin B-evoked release of from synaptosomes (Fig 3.4), 

whereas this toxin had no significant inhibitory effect on surangin B-evoked release of 

other amino compounds (data not shown). When incubations were conducted in calcium- 

free incubation saline, surangin B-induced release was lower for all amino acids (Fig 3.5). 

Incubation of synaptosomes with TMPD, which shunts electrons around compex I11 

(Biswas et al., 1997), inhibited surangin B-, antimycin-, and famoxadone induced release 

of glutamic acid (Fig 3.6), GABA (Fig 3.7), aspartic acid (Fig 3.8) and alanine (Fig 3.9). 
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Figure 3.1 

Surangin B -f 

Effects of surangin B, rotenone, CCCP and carboxin on release of glutamic 

acid from mouse brain synaptosomes. Data points represent means + SE of 

3 - 8 experiments. 
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Figure 3.2 Effects of surangin B, rotenone, CCCP and carboxin on release of GABA 

from mouse brain synaptosomes. Data points represent means + SE of 3 - 8 

experiments. 
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Figure 3.3 Effects of surangin B, rotenone, CCCP and carboxin on release of aspartic 

acid from mouse brain synaptosomes. Data points represent means + SE of 

3 - 8 experiments. 



Table 3.1 Summary of EC50 data for surangin B and other compounds in relation to 

release of glutarnic acid (GLU), y-aminobutyric acid (GABA) and aspartic 

acid (ASP) from synaptosomes. Values represent ECSOs (pM) and 95 % 

confidence limits are given in square brackets. ND = could not be 

accurately determined. 

Table 3.2 Release of taurine (TAU), alanine (ALA) and serine (SER) by surangin B 

and other compounds. Values (as nrnollmg protein) represent means + SE 

of 3 - 8 experiments. (* = significantly different from control, P < 0.05). 

Glu 
GABA 
ASP 

I Control 1 1.77 * 0.06 I 

Surangin B 
5.23 [3.42-7.991 
11.24 [9.59- 13.1 81 
6.59 [3.43-12.671 

TAU 

[ Carboxin 1 25 pM 1 10.24 * 0.08 1 1.89 * 0.05 1 1.85 * 0.06 

Rotenone 
0.19 [0.09-0.391 
0.40 C0.24-0.661 
0.15 [0.08-0.321 

ALA 

Rotenone 11.94*0.05* 3.44*0.05* 2.67 * 0.02* 

SER 

CCCP 

CCCP 
0.26 [O. 17-0.391 
0.88 [0.58-1.341 
0.20 [0.12-0.341 

Carboxin 
ND 
ND 
ND 

25 pM 
7 uM 

1 1.42 * 0.04 
11.85 * 0.12" 

3.05 * 0.08* 
3.22 * 0.15" 

2.47 * 0.07 
2.73 * 0.30 
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Effect of tetrodotoxin (5 pM) on surangin B-induced release of endogenous 

amino acids from synaptosomes. Surangin B was applied at 7 pM. Bars 

show means + SE of 4 experiments, (* p < 0.05; **  p < 0.01). 
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Figure 3.5 Surangin B-induced release of endogenous amino acids from synaptosomes 

in the absence and presence of 1 mM external calcium. Surangin B was 

applied at 7 pM. Bars represent means + SE of 3 - 7 experiments, (* p < 

0.05; ** p < 0.01). The no ~ a *  treatment contained EGTA (2 mM). 
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Figure 3.6 
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TMPD (0.5 mM) reduces the ability of surangin B, antimycin and 

famoxadone to release glutamic acid from synaptosomes. Surangin B and 

antimycin and famoxadone were applied at 7 pM, 4 pg/ml and 100 pM 

respectively. Solid bars show stimulation by mitochondria1 inhibitors above 

TMPD controls and data represent means + SE of 3 - 4 experiments, (* p < 

0.05; **  p < 0.01). 
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Figure 3.7 TMPD (0.5 mM) reduces the ability of surangin B, antimycin and 

famoxadone to release GABA from synaptosomes. Surangin B and 

antimycin and famoxadone were applied at 7 pM, 4 pglml and 100 pM 

respectively. Solid bars show stimulation by mitochondria1 inhibitors above 

TMPD controls and data represent means + SE of 3 - 4 experiments, (* p < 

0.05; ** p < 0.01). 
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Figure 3.8 TMPD (0.5 mM) reduces the ability of surangin B, antimycin and 

famoxadone to release aspartic acid from synaptosomes. Surangin B and 

antimycin and famoxadone were applied at 7 pM, 4 pgfml and 100 pM 

respectively. Solid bars show stimulation by mitochondria1 inhibitors above 

TMPD controls and data represent means 2 SE of 3 - 4 experiments, (* p < 

0.05; ** p < 0.01). 
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Figure 3.9 TMPD (0.5 mM) reduces the ability of surangin B, antimycin and 

famoxadone to release alanine from synaptosomes. Surangin B and 

antimycin and famoxadone were applied at 7 pM, 4 pglml and 100 pM 

respectively. Solid bars show stimulation by mitochondria1 inhibitors above 

TMPD controls and data represent means + SE of 3 - 4 experiments, (* p < 

0.05; **  p < 0.01). 



3.4 Discussion 

Synaptosomes display many of the properties attributed to nerve terminals of 

functionally intact brain (De Belleroche and Bradford, 1973; Marchbanks and Camplell, 

1976; Dodd et al., 1981). Moreover, the relative ease with which specific cellular 

processes involved in the release of neurotransmitters can be pharmacologically activated 

in synaptosomal preparations makes this preparation ideal for investigating the 

presynaptic actions of neuroactive compounds. Also, being virtually cellular entities, 

synaptosomes contain an abundance of possible neuronal sites of attack by neurotoxic 

chemicals. This feature clearly increases the chances of identifying novel, toxicologically 

relevant sites of action, so offering advantage over less complex systems. 

The present investigation demonstrates that micromolar concentrations of 

surangin B stimulate the release of number of endogenous amino acids including the 

aminosulfonic acid taurine fiom synaptosomes isolated from mammalian brain. Within 

this group are substances known to have important signalling functions in brain such as 

the neurotransmitters glutamic acid, aspartic acid and GABA (Stephenson, 1988; Bowery, 

1989; Sivilotti and Nistri, 1991; Fleck et al., 1993), the neurohumoral factor taurine 

(Huxtable, 1992), as well as amino acids of metabolic importance. The results therefore 

suggest that surangin B has potential to cause wide ranging impairment of synaptic 

function in mammalian brain. In previous reports, we concluded that the surangin B- 

induced release of radiolabel fiom synaptosomes preloaded with [ 3 ~ ] ~ ~ ~ ~  or 

[3~]choline and the increase in frequency of miniature EPSCs observed in cultured 

cerebrocortical cells exposed to surangin B was likely a result of blockade of 

mitochondria1 electron transport in the nerve ending (Nicholson and Zhang, 1995; Zheng 



et al, 1998). The idea that interference with the bioenergetics of intraterminal 

mitochondrial leads to release of both neurotransmitter and metabolic amino acids from 

the nerve ending is strongly supported by the present results which show that rotenone, a 

site I inhibitor (Lindahl and Oberg, 1960; Lindahl and Oberg, 1961), CCCP which 

collapses the mitochondrial proton gradient (Jurkowitz et al., 1983), and antimycin and 

famoxadone, the latter both complex I11 inhibitors (Izzo et al., 1978; Jordan et a1 1999a) 

produce effects on release which are qualitatively similar to surangin B. The validity of 

this type of mechanism for mitochondrial toxicants is also supported by previous work 

which showed that the extrasynaptosomal accumulation of glutamic acid caused by 

hydrogen sulphide is accompanied by depolarization of intraterminal mitochondria, 

inhibition of oxygen consumption and reduced ATP levels (Nicholson et al., 1998). 

The ability of rotenone to cause amino acid release is consistent with 

mitochondria of nerve endings relying predominantly on pyruvate and other energy 

substrates concerned with maintaining NADH-dependent transfer of electrons to complex 

I of the electron transport chain. In marked contrast, my results show that carboxin, a 

highly potent inhibitor of mitochondrial complex I1 (White and Thorn, 1975; Mowery et 

al., 1977), was virtually inactive in causing amino acid release. This result implies that 

blockade of complex I1 in mitochondria of the nerve ending does not achieve a level of 

bioenergetic compromise sufficient to cause presynaptic amino acid release. The 

possibility that carboxin may not be able to access the mitochondrial inner membrane is 

unlikely since we used it at high concentrations (up to 100 pM) and this pesticide can 

clearly access complex I1 in fungi by penetrating fungal cells. 

The experiments with TMPD provide useful insight into the mechanism by which 



surangin B interferes with mitochondria1 function in the nerve ending. TMPD, which 

shunts electrons around complex I11 (Fig 3.10), reduced surangin B-induced release of 

glutamic acid, GABA, aspartic acid and alanine from synaptosomes. Furthermore, the 

releasing effects of other known complex I11 inhibitors (antimycin and famoxadone) were 

also reduced by TMPD to similar extents. My results therefore indicate that surangin B- 

induced release of amino acids from synaptosomes can arise from inhibition of complex 

111. It is important to note that in I found surangin B to block both complex I1 and 

complex 111 in bovine heart mitochondria (see Chapter 2), which implies, along with the 

carboxin result, that block of complex I1 in synaptosomes likely causes minimal release. 

Succinate 

1 
I I 

NADH + I - CoQ - 

Antimycin, Famoxadone, Surangin B 

Figure 3.10 Electron transfer via TMPD. 

In the present study, the extrasynaptosomal accumulation of all six amino acids 



induced by surangin B was partially reduced in calcium-free saline, revealing distinct 

calcium-dependent and calcium-independent components to this coumarin's action. Given 

the mechanism I propose, one would not expect a lack of extrasynaptosomal calcium to 

greatly modify amino acid release arising from direct inhibition of mitochondrial function. 

However, the level of dependence of this response on external calcium suggests that in 

addition to blocking mitochondrial function, surangin B is also affecting a calcium entry 

mechanism to induce a moderate level of endogenous amino acid release. Reductions in 

amino acid efflux were also observed in the presence of tetrodotoxin (TTX), however, 

these inhibitory effects were less marked and were not observed for all amino acids. This 

result may reflect secondary activation by surangin B of voltage-gated sodium channels, 

since previous observations using synaptosomes (Zheng et al., 1998) show surangin B 

causes marked plasma membrane depolarization concurrent with mitochondrial inhibition. 

In conclusion, the results of my study are consistent with the hypothesis that 

surangin B stimulates the release of endogenous amino acids from synaptosomes 

primarily through inhibition of complex 111 in mitochondria and to a lesser extent by 

stimulating calcium entry, the latter established as a mechanism for activating 

physiological amino acid neurotransmitter release. Impaired supply of ATP to the N~+/K+ 

ATPase can account for cyanide-induced increases in the basal efflux of glutamic acid 

from synaptosomes (Sanchez-Prieto et al., 1987), and ATP reduction is also associated 

with extrasynaptosomal glutamic acid accumulation following exposure to the 

cytochrome c oxidase inhibitor hydrogen sulfide (Nicholson et al., 1998). Therefore it is 

likely that in addition to enhanced ~ a "  efflux from mitochondria due to failing catt 

sequestration mechanisms (which will directly activate the transmitter release machinery), 



bioenergetic compromise of intraterminal mitochondria by surangin B will eventually 

affect the energetics of plasma membrane transporters responsible for amino acid 

reuptake. 
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CHAPTER 4. THE ANTIFUNGAL ACTIVITY OF 
SURANGIN B 

4.1 Introduction 

A variety of natural product coumarins occur as metabolic products in green 

plants and microorganisms (Murray, 1989; Murray, 1991; Hoult and Paya, 1996) and 

some of these exhibit interesting pharmacological and potentially useful therapeutic 

properties (KO et al., 1989; Huang et al., 1992; Huang et al., 1993a; Itokawa et al., 1994). 

Coumarins present in the mature seeds of the Carribean evergreen tree Mammea 

americana are also insecticidal (Plank, 1944; Morris and Pagan, 1953; Crombie et al., 

1972; Crombie, 1989) and surangin B, a 1 -(acetoxypropyl)-coumarin isolated from the 

roots of a related species Mammea longifolia of India's Western Ghats (Joshi et al., 1969), 

is toxic towards mosquito larvae, houseflies and crickets (Crombie et al., 1972; Crombie, 

1989; Nicholson and Zhang, 1995). Surangin B has also been reported to be antibacterial 

(Joshi et al., 1969). In my research I have clarified the mechanisms underlying some of 

the the toxic actions of surangin B in muscle and brain (Deng and Nicholson, 2003; Deng 

and Nicholson, 2004). Together with previous work from our lab using insect and 

mammalian preparations (Nicholson and Zhang, 1995; Zheng et al., 1 998), it is now clear 

that this coumarin is a potent inhibitor of mitochondria1 function, blocking specifically at 

complexes 11, I11 and IV, which represent critical sites regulating the flow of electrons 

along the respiratory chain. Inhibition of electron transport is an important mechanism by 

which a number of synthetic crop protection chemicals exert their fungicidal effects. For 



example, in fungal and mammalian preparations, the oxathiin carboxanilide carboxin and 

its sulfone derivative oxycarboxin are potent inhibitors of complex I1 (Mowery et al., 

1976; White, 197 l), while famoxadone, azoxystrobin and kresoxim-methyl interfere with 

ubiqinone function at the Q, site of complex I11 (Jordan et al., 1999a; Knight et al., 1997). 

My recent work has shown that like carboxin, surangin B acts as a non-competitive 

inhibitor of succinate and ubiquinone binding to complex 11, while at complex 111, 

surangin B mimics antimycin A by binding to the Qi site (Deng and Nicholson, 2004). In 

view of the close parallels between surangin B and several fungicidal compounds in 

terms of the way in which they inhibit electron transport it was considered important to 

examine surangin B for possible in vitro antifungal activity. 

Six species of fungi, Alternaria dauci, Botrytis cinerea, Fusarium ocysporum, 

Penicilium spp., Trichoderma harzianum and Rhizoctonia solani, were used in the 

experiments. Botrytis cinerea is a pathogen commonly found responsible for gray-mold 

rot or botrytis blight. It affects a wide range of plants including vegetable and fruit crops, 

as well as shrubs, trees, flowers, and weeds. Botrytis cinerea proliferates under cool 

moist conditions, so the effects of this pathogen are commonly encountered under green 

house conditions. Alternaria dauci is often found associated with plant debris in the soil 

and becomes readily established on the stems of seedlings below ground level, causing 

death. Rhizoctonia solani is a widely distributed soilborne pathogen which can infect a 

wide diversity of host plants. It mostly attacks plant parts that are below ground level 

such as the seeds and roots, but can also affect above ground structures such as pods, 

fruits, leaves and stems. Penicilliurn spp. is responsible for blue mold, which is one of the 

most important forms of decay of stored apples. This fungus is also known to produce 



patulin, a carcinogenic mycotoxin, which is toxic to mammals. Trichoderma harzianum 

is a naturally occurring fungus that has the ability protect crops fiom Botrytis, 

Rhizoctonia, Fusarium, and fungi causing powdery mildew. This beneficial fungus does 

not appear to cause any disease or adverse health effects in humans and is not considered 

harmful the environment in other ways. Trichoderma harzianum is therefore of valuable 

potential in the integrated management of fungal disease. 

4.2 Materials and Methods 

4.2.1 Chemicals and Biological Materials 

Surangin B was extracted and purified fiom the roots of Mammea longifolia 

according to Joshi et al., (1969). Antimycin A, potato dextrose agar and potato dextrose 

broth were purchased from Sigma-Aldrich Canada Ltd. Oakville (ON). I thank Dr. 

Douglas Jordan of the Stine Haskell Research Center, Newark, (DE) and Dr. Mark 

Dekeyser, Crompton Corporation, Guelph (ON) for providing the famoxadone and 

carboxin, respectively. All solvents and reagents employed in this study were analytical 

grade. The various fungal species used in this investigation (Alternaria dauci, Botrytis 

cinerea, Fusarium ocysporum, Penicilium spp., Trichoderma harzianum and Rhizocionia 

solani) were kindly supplied by Dr. Zarnir Punja of the Department of Biological 

Sciences, SFU. 



4.2.2 Determination of Mycelial Growth Inhibition in vitro 

Fungal species (Alternaria dauci, Botrytis cinerea, Fusarium oxysporum, 

Penicilium spp., Trichoderma harzianum and Rhizoctonia solani) were grown on potato 

dextrose agar on plates (60 or 90 cm) for 14 days at 22 - 24 OC. Each innoculum was 

prepared by blending the fungal mass complete with agar support in 50 ml of potato 

dextrose broth (Baya et al., 2001). The suspensions were centrifuged (Beckman RT-2000) 

for 1 min at 300 g to spin down the agar material. Each supernatant was then filtered 

through nylon fabric (100 micron mesh) and diluted to an optical density of 0.02 at 600 

nm to provide the innoculum. Assays to determine inhibition of mycelial growth were 

carried out using 96-well plates ~ i c r o t e s t ~ ~  tissue culture plates (Falcon, Becton 

Dickinson Labware) as described by Jordan et al. (1999a). To the wells of the first row 

was added 150 pl of fresh media while 100 pl was placed in all remaining wells. The 

study compound and other test substances at the highest concentration to be tested 

(dissolved in DMSO solvent control; 3 pl) were then added, as appropriate, to the first 

row of wells. After mixing throughly, sequential dilutions of test substances were 

achieved by transfering aliquots (50 pl) from the first row into the second row, mixing 

and then repeating down the rows. The fungal innoculum to be examined (100 pl) was 

then deposited in all wells, yielding a total assay volume of 200 pl and final test 

compound concentrations of 30, 10, 3.3, 1 . l ,  0.37, 0.123, 0.04 and 0.014 pM. Fungal 

suspensions were then incubated 24-48 hrs at 30•‹C. Growth inhibition was quantitated by 

monitoring differences in optical density (OD) at 450 nm relative to controls using a 

microtiter plate reader. Experiments were carried out in quadruplicate. The concentration 

of chemical producing 50 % inhibition of mycelial growth was estimated from 



semilog concentration-inhibition curves constructed using Prism 3 software (GraphPad 

Software Inc., San Diego, CA). 

4.2.3 Inhibition of Spore Germination in vitro 

Fungi (Alternaria dauci, Botrytis cinerea, Fusarium oxysporum) were cultured on 

agar and allowed to sporulate. The spores were separated from the fungal mass by 

addition of sterile distilled water followed by agitation and the mixture was then filtered 

through cotton wool under sterile conditions to yield the spore suspension. The quantity 

of spores in suspension was determined using a hemocytometer. The germination assay 

was based on procedures described by others (Dhingra et al., 1995; Kim et al., 2001). 

Spore suspensions (1 ml) were added to eppendorf tubes containing surangin B or other 

inhibitors dissolved in DMSO (3 pl), or DMSO solvent control, as appropriate, and then 

mixed thoroughly. Four individual 25 p1 droplets of the different spore suspensions were 

applied to standard microscope slides. The slides were then quickly transfered to a glass 

rack in a moisture chamber. The culture droplets were incubated at room temperature and 

then evaluated after 48 - 72 hours for the extent of spore germination. A spore was 

considered to have germinated if the germ tube extended at least the length of the spore. 

One hundred spores in three different fields were routinely counted at the light 

microscope level. Each experiment was repeated 3 times allowing mean percentage 

germination + standard error to be calculated. The concentration of chemical which 

reduced spore germination by 50 % was estimated from concentration-response curves as 

described in the previous section. 



4.3 Results 

Surangin B was an effective in vitro inhibitor of the mycelial growth of 

Rhizoctonia solani and Botrytis cinerea as evidenced by ICSOs of 3.8 pM and 11.2 pM, 

respectively (Fig. 4.1, Table 1). In experiments with Rhizoctonia solani, surangin B was 

comparable in potency to antimycin, but 19- and 40-fold less active than carboxin and 

famoxadone, respectively. Against Botrytis cinerea, surangin B was more potent than 

famoxadone, of similar activity to carboxin, but 7-fold less potent than antimycin. In 

contrast, surangin B was a much weaker inhibitor of mycelial growth in Alternaria dauci, 

Fusarium oxysporum and Penicilium sp., where 1Cso values were not achieved at 30 pM. 

Interestingly, when tested for inhibition of Fusarium oxysporum mycelial growth, none 

of the other compounds had ICsos below 30 pM, although mycelial growth of Alternaria 

dauci and Penicilium sp. was strongly inhibited by famoxadone and antimycin (ICsos = 1 

pM or below). Neither surangin B nor the synthetic fungicides were able to prevent 

growth of Trichoderma harzianum mycelium at 30 pM and at this concentration 

antimycin inhibited only about 10 %. In the spore germination assays (Fig 4.2, Table 2), 

Fusarium oxysporum showed a higher sensitivity to surangin B (ICSo = 2.4 pM) 

compared to the other inhibitors. Surangin B, famoxadone and carboxin showed similar 

activity in preventing germination of Botrytis cinerea spores (ICsos = 1.4,4.4 and 1.8 pM 

respectively) but this was surpassed by antimycin (ICso = 0.23 pM). Spore germination in 

Alternaria dauci was considerably less sensitive to inhibition by surangin B (ICSo = 500 

pM) when compared to Fusarium oxysporum and Botrytis cinerea, however a generally 

weaker in vitro activity against Alternaria dauci was noted for the other test compounds. 
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Figure 4.1 The susceptibility of the in vitro growth of mycelium of a) Alternaria dauci 

b) Botrytis cinerea, c) Fusarium oxysporum, d) Penicillium sp., e) 

Trichoderma harzianum and f )  Rhizoctonia solani to antimycin A, carboxin, 

famoxadone and surangin B. Symbols identifying all chemical treatments 

are given in Fig. 4.1 ( f ) .  Data points represent means + SEM of 4 

determinations. 



Table 4.1 Summary of the inhibitory effects of surangin B and other compounds on 

mycelial growth. Data represent ICSos estimated from concentration-response 

curves or percentage inhibition (%) values where ICSo were not achieved (see 

Fig. 4.1). NA = no activity detected. 

I Botrytis cinerea 111.2pM 110.2pM 120%at30pM11.6pM 

Alternaria dauci 

Surangin B 

36% at 30pM 

Fusarium oxysporum 

Penicillium sp 

Trichoderma harzianum 

Rhizoctonia solani 

Carboxin 

44% at 30pM 

42% at 3 0pM 

41% at 30pM 

NA 

3.8 pM 

Farnoxadone 

1.2 pM 

19% at 3 0pM 

17% at 30pM 

Antimycin A 

0.16 pM 

NA 

0.2 pM 

NA 

0.37 pM 

33% at 30pM 

0.63 pM 

NA 

0.09 pM 

14% at 30pM 

1.15 pM 



4.4 Discussion 

To my knowledge, this is the first report describing antifungal activity of the 

natural product coumarin, surangin B, from Mammea longifolia. In my experiments, the 

in vitro susceptibility to surangin B and the other inhibitors varied according to fungal 

species and whether effects on the mycelial growth or spore germination phase of the life 

cycle were under investigation. My results show the activity of surangin B against 

Botrytis cinerea mycelial proliferation to be similar to or better than that produced by the 

commercial fungicides carboxin and famoxadone, but weaker than antimycin. The other 

experiments on mycelial inhibition of Rhizoctonia solani showed that surangin B, 

famoxadone, carboxin and antimycin achieve similar efficacies at 30 pM, although 

carboxin and famoxadone were found to be the most potent inhibitors of this group. 

While inhibitory effects of surangin B on spore germination in Alternaria dauci, Botrytis 

cinerea and Fusarium oxysporum were demonstrated, the sensitivity of Fusarium 

oxysporum to surangin B clearly exceeded that of the other compounds. 
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Figure 4.2 Comparison of the inhibitory effects of surangin B with carboxin, 

famoxadone and antimycin A on the germination of a) Alternaria dauci b) 

Botrytis cinerea, and c) Fusarium oxysporum spores in vitro. Symbols 

identifying all chemical treatments are given in Fig. 4.2 (c). Data points 

represent means + SEM of 3 determinations. 

Table 4.2 Summary of the effects of surangin B and other compounds on spore 

germination. Values represent ICsos obtained from concentration-response 

curves (see Fig. 4.2) 

Alternaria dauci 

Botrytis cinerea 

Fusarium oxysporum 

Surangin B 

500 pM 

1.4 pM 

2.3 pM 

Carboxin 

63 pM 

1.8 pM 

6.4 pM 

Famoxadone 

53 pM 

4.4 pM 

9.1 pM 

Antimycin A 

20 pM 

0.23 pM 

6.9 pM 



My results support the idea that surangin B and indeed other coumarins of Mammea 

longifolia may have potential as prototypes for development of novel antifungals with 

therapeutic andlor prophylactic properties. The low activity of surangin B in some of the 

fungal assays may have arisen from restricted intracellular access, enhanced detoxication 

or reduced target site sensitivity of this coumarin. Since Trichoderma harzianum can be 

used as a fungal biocontrol agent, the insensitivity of this species to surangin B may 

represent an advantage in the use of coumarins in integrated fungal management 

programs. 



CHAPTER 5. CONCLUSIONS AND FUTURE PROSPECTS 

My conclusions are presented below with perspectives on future studies where I 

consider they are warranted. 

5.1 Interaction of surangin B with bovine heart mitochondria 

a) Surangin B potently blocks electron transport in bovine heart mitochondria. 

Complexes I11 and IV were inhibited at low micromolar concentrations (ICSo = 14.8 and 

3.1 pM respectively), whereas complex I1 was the most sensitive to the inhibitory action 

of this coumarin (IC50 = 0.2 pM). Complex I of bovine heart mitochondria was 

unaffected by 100 pM surangin B. 

b) Studies on the inhibitory effects of surangin B on the kinetics of complex I1 

revealed that this cournarin operates as a non-competitive inhibitor of both succinate's 

and ubiquinone's interaction with this complex. Surangin B's inhibitory profile is clearly 

different from malonate (which shows competitive inhibition with succinate as substrate) 

but closely parallels that of the commercial fungicide carboxin. Further investigation is 

therefore warranted to identify the precise recognition site for surangin B on complex 11. 

The catalytic subunits of complex I1 consist of a flavoprotein containing the succinate / 

fumarate catalytic site, and an iron sulfur complex which contains three iron-sulphur (Fe- 

S) centers. Electrons are transfered through complex I1 by a dual pathway in which 

electron pairs from FADH2 are split. The first electron with high potential reduces Fe-Sl 

while the second one with low potential reduces Fe-S2. Fe-S1 then reduces Fe-S3 and Fe- 



S2 reduces cytochrome b. Fe-S3 and cyt b in turn reduce ubiquinone to ubiquinol 

(Salerno, 1991). The Fe-S3 iron-redox center of the Ip subunit of complex I1 is the 

binding site of several inhibitors such as carboxin. A conformational change within the 

Fe-S3 iron-redox center is the reason site insensitivity resistance to carboxin occurs 

(Keon et al., 1994). Although surangin B does not show an obvious structural resembance 

to carboxin (see Figs. 1.6 and 1 A), my results show that it does inhibit complex I1 in a 

very similar way. Since magnetic resonance spectroscopy has been used successfully to 

elucidate the site of action of inhibitors like carboxin at complex 11, this approach should 

be advantageous in further delineating the locus of action of surangin B on this complex. 

Likewise, further clarification of the binding site for surangin B on complex IV is 

warranted. As previously described, complex IV contains two heme groups, cytochrome 

a ,  cytochrome a3, and two copper ions CuA and CUB that are crucial for the transport of 

electrons to molecular 02. The binuclear center consists of an a3 type heme of a beta form 

and a CUB atom of an alpha form (Pinakoulaki et al., 2002). Electron flow from cyt c 

following a path to CuA, then to cyt a, cyt a3 and CUB through to molecular 02, with 

concomitant movement of H+ from the matrix to intermembrane space. CUB is located at 

the 0 2  delivery channel and has been proposed to play a crucial role in both the catalytic 

and proton pumping mechanisms of heme-copper oxidases (Pinakoulaki et al., 2004). 

This complex would clearly represent a critical one to investigate regarding surangin B's 

action. However, I feel it would be prudent to first conduct a more general assessment of 

potential regions of surangin B action within complex IV. Since the cytochromes of 

complex IV have characteristic absorption spectra in the visible region, difference spectra 

of the oxidized and reduced purified complex can be examined spectrophtometically to 



determine if surangin B interferes with these components. The approach would be similar 

to the one I used for part of the complex I11 study of my thesis research. Further valuable 

information on the site of action of surangin B on complexes I1 and IV would come from 

classical binding studies with tritiated surangin B on the purified complexes and their 

components. Although this would require custom radiosynthesis, it is known to that the 

geranyl side chain of surangin B can be reduced by hydrogen gas and the reduced form 

retains good electron transport inhibitory activity (Dr. Nicholson: personal 

communication). 

c) The fact that after incubation of surangin B with purified complex I11 a red shift 

in the absorption difference spectrum is observed, provides further evidence that complex 

I11 is targeted by this cournarin. Subsequent experiments confirmed the difference 

spectrum of surangin B to be qualitatively and quantitatively very similar to that of 

antimycin A both of which are very different to those of famoxadone and myxothiazol 

(Q,-site inhibitors). This result indicates that surangin B binds to the same region on 

complex I11 as antimycin A (the Qi pocket). 

d) In marked contrast to myxothiazol, the block of decylubiquinol-driven electron 

flow through complex I11 by both surangin B and antimycin A cannot be relieved by 2- 

NOF. Since 2-NOF specifically intercepts electrons from the Qi-site and passes them 

directly to molecular oxygen, it can be concluded that surangin B cannot inhibit complex 

I11 at any location other than the Qi-site. 

e) Comparison of the structures of surangin B with antimycin A reveals several 

distinct regions of correspondence. I consider the aromatic hydroxyl and carbonyl group 

of surangin B, which provides the opportunity for hydrogen bonding between surangin B 



and residues on the Qi binding site, to be of particular significance, since such a feature 

has been implicated in the high affinity binding of antimycin A to Qi. Since the 

topography of the Qi pocket has now been determined if would be very informative to 

examine further the binding interaction between Qi and surangin B using molecular 

graphic techniques. 

5.2 Stimulation of endogenous amino acid release from synaptosomes by 

surangin B 

Surangin B was found to stimulate the release of a variety of endogenous 

transmitter and non-transmitter amino acids from mouse brain synaptosomes at 

micromolar concentrations. Although similar amino acid-releasing effects were observed 

with rotenone and CCCP, carboxin was virtually ineffective in this regard. However, 

since the stimulatory effect of surangin B, antimycin and famoxadone on amino acid 

release was significantly reversed by TMPD, I can conclude that a substantial part of the 

transmitter-releasing effect of surangin B arises through block of complex I11 within 

intraterminal mitochondria. The failure of carboxin to stimulate release was unexpected, 

particularly since my results show this compound to be a potent inhibitor of complex I1 in 

bovine heart mitochondria. It may be that inhibition of complex I1 does not compromise 

the function of neuronal mitochondria as much as those of muscle. This hypothesis could 

be investigated by measuring the effect of carboxin on synaptosomal oxygen 

consumption. Also, other selective blockers of complex I1 should be evaluated in both the 

transmitter release and oxygen consumption assays. These latter experiments may shed 

light on another possibility that carboxin may not readily pass across the synaptosomal 



plasma membrane to access intraterminal mitochondria. Additional experiments to find 

out more about the transmitter releasing action of surangin B are warranted. For example, 

the hypothesis that surangin B causes calcium release from intraterminal mitochondria 

could be tested by directly measuring release of 4 5 ~ a f +  from mitochondria after their 

isolation from mouse brain. Also, based on my experiments with Ca++-free saline, 

calcium channel blockers, such as omega-conotoxin, should reduce surangin B-induced 

release. If this occurs, it will provide further evidence that some extracellular Ca++ must 

enter the nerve ending for surangin B to achieve its full effect on transmitter release. An 

increase in free Ca++ levels within the nerve ending should activate Ca++ CAM kinase, 

which will phosphorylate synapsins. This could be studied using 3 2 ~  labelled phosphate, 

followed by PAGE analysis of the phosphoproteins concerned (Zhang et al. 1996). Lastly, 

since botulinum toxin cleaves SNARE proteins, this toxin should totally abolish surangin 

B evoked transmitter release if this coumarin is acting only by activating calcium- 

dependent release of neurotransmitters. 

5.3 Antifungal activity of surangin B 

Surangin B inhibited fungal growth and spore germination in several fungal 

pathogens of plants but spared Trichoderma harzanium, a biocontrol agent. In some 

assays with surangin B, antifungal ICsos compared favorably with those of commercial 

agricultural fungicides. It should be noted that only fungistatic actions of surangin B 

have been identified in these experiments and further work will be required to determine 

any fungicidal effects of this coumarin. Studies on other compounds present in the root 

are also warranted. My results strongly suggest that further studies should be conducted. 



For example, there are at least two other cournarins (surangins A and C) present in 

Mammea longifolia and a variety of coumarins present in Mammea americana which 

should be isolated and tested for antifungal activity. During this work it will be advisable 

to systematically fractionate and test starting from the crude extracts, so that potential 

antifbngal activity associated with other compounds is not missed. The range of plant 

fungal pathogens included in the in vitro tests should be extended and the in vitro test 

battery should include a range of human fungal pathogens of medical importance. Any 

promising activity should be followed up on an in vivo basis. 
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