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Abstract

The manner in which the Mott insulating state gives way to superconductivity when the

number of charge carriers is changed is one of the fundamental questions about high-Tc

superconductors that remains unanswered. This is because of both the complexity of the

high-Tc superconductors and the lack of experimental data on very clean underdoped sam-

ples. We have developed a novel technique for continuously varying the doping in a single

sample of YBa2Cu3O6+x without changing the oxygen content. This allows us to access

different dopings with transition temperatures between 0 K and 17 K. This thesis presents

our data on the temperature and doping dependence of the superfluid density, which shows

clear linear temperature dependence, typical of a good d-wave superconductor. An appar-

ent phase transition as the doping is varied through a transition temperature of 11 K is

discussed and evidence is shown for a small spectroscopic energy gap that is proportional

to Tc.
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Chapter 1

Introduction

For thirty years superconductivity was well explained by the theory of Bardeen, Cooper,

and Schrieffer[9] (BCS) until, in 1986, Bednorz and Müller discovered superconductivity

in BaxLa5−xCu5O5(3−x)[10]. Since that time over 100 cuprate superconductors have been

discovered, with transition temperatures (Tc’s) as high as 138 K at ambient pressure and

over 150 K under pressure. Superconductivity in this new class of materials cannot be

explained in the framework of BCS theory and a number of different theories have been

brought forward[44].

Part of the mystery of the high temperature superconductors is the way their physical

properties change as a function of charge carrier concentration. Carrier concentration can

be tuned chemically in almost all high temperature superconducting materials, a process

known as doping.

An experimental phase diagram for the hole doped cuprate superconductors is shown in

Fig. 1.1. The Tc at optimal doping is labeled as well as the doping for optimal Tc and for

superconductivity to disappear on the underdoped side. The doping is expressed in terms

of the number of holes per CuO2 in the planes (see chapter 3 for further details).

The band structure of the cuprates suggests they should be metallic at zero doping[42,

58]. However, strong coulomb repulsion forces electrons to singly occupy available sites,

completely blocking motion and resulting in a Mott insulating phase in which the electronic

spins all align antiferromagnetically. As holes are doped into the system (see chapter 3)

mobility is increased and superconductivity emerges at low temperatures. At low dopings

the pseudogap phase is encountered, where superconductivity occurs at low temperatures.

If the hole doping is further increased the superconducting Tc increases to a maximum of

1
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Figure 1.1: Phase diagram for the hole-doped cuprates.

about 93.5 K at optimal doping before dropping to under 90 K for YBa2Cu3O7. In other

cuprate superconductors the doping can be increased until superconductivity is lost and the

material becomes metallic.

The large coulomb repulsion in the cuprates also leads to a pairing state for charge car-

riers that is d-wave in character, rather than the conventional s-wave pairing seen in most

other superconductors. The coulomb energy of an electron pair is reduced because the prob-

ability for the electrons in a d-wave Cooper pair to be at the same site is vanishingly small.

Evidence for d-wave pairing was first provided by measurements of the in-plane penetration

depth[24], where a linear low temperature behaviour was observed, typical of an order para-

meter with nodes. As there are nodes in the superconducting gap at the Fermi surface there

are quasiparticles with arbitrarily low energies that can destroy the superconductivity. This

should be compared with an s-wave gap which is isotropic everywhere on the Fermi surface
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and thus can only have quasiparticle excitations when the gap energy is exceeded, resulting

in exponential temperature dependence of the superfluid density at low temperature. The

most compelling evidence for d-wave pairing came from phase-sensitive tests of the order

parameter by Tsuei et al.[53] which showed that the gap function does indeed change sign

in the same way as a dx2−y2 orbital.

The order parameter for superconductivity is a complex quantity with both an amplitude

and a phase. In BCS theory the phase of the order parameter is unimportant; the transition

temperature is related only to the amplitude of the order parameter, which is often equated

to the superconducting gap ∆. In the underdoped cuprate superconductors the superfluid

density, which is the energy scale for phase fluctuations, is very low. This has led to

proposals that it is not the amplitude of the order parameter that determines the transition

temperature in the cuprates, but rather the onset of long-range phase order[19, 22, 23, 26,

25]. In this case superconductivity would persist locally above Tc, with long-range phase

coherence suppressed by fluctuations in the phase of the order parameter. Measurements

of a strong Nernst effect above Tc have been interpreted by Xu et. al.[57] as evidence of

pairing. The Nernst effect is observed my measuring the voltage transverse to a thermal

gradient in the presence of a magnetic field applied perpendicular to the CuO2 planes. The

Nernst effect is known to be strong in superconductors, because the magnetic flux is tied

to vortices, which drift along a thermal gradient. A moving vortex induces a transverse

voltage. The observation of a Nernst signal that persists above Tc would imply that cooper

pairs also persist above Tc. The approximate region in which a strong Nernst signal is seen

is labeled in Fig. 1.1.

Microwave frequency measurements are able to determine the effective superfluid den-

sity (Ch. 4), one of the fundamental thermodynamic variables of a superconductor. This

makes these measurements extremely useful for distinguishing between different theoretical

viewpoints. At the same time, sample quality among the cuprate superconductors has been

an issue and has resulted in a number of theoretical missteps. Microwave measurements are

very susceptible to sample quality, allowing intrinsic effects to be easily separated from those

due to sample defects. There are a number of issues associated with poor sample quality.

Disorder and extended defects, such as cracks, lead to extra pairbreaking, which lowers the

superfluid density, and to nonlinear effects in the microwave response, which limits the input

power that can be applied to a sample.

Another difficulty that is encountered is related to doping homogeneity. There are two
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regions of the YBa2Cu3O6+x phase diagram where plateaus exist in the Tc for a given oxygen

content. These plateaus occur at Tc’s of 9̃0 K and 6̃0 K. Away from these plateaus it is very

difficult to produce samples with sharp superconducting transitions[38, 39].

Recently, Drs. Liang, Bonn and Hardy have succeeded in producing samples with with

sharp superconducting transitions, and we have also harnessed the process of CuO-chain

ordering to fulfill a long-held ambition in strongly correlated electron materials – continuous

tunability of the carrier density in a single sample, with no change in cation disorder[31].

This has allowed us to study the doping dependence of the superfluid density and the

microwave conductivity without the complication of sample-to-sample variations.

The cuprate superconductors are very anisotropic, and are often treated as two-dimen-

sional. A strictly two dimensional superconductor should not exist, as the Mermin-Wagner

theorem states that phase transitions in systems with a continuous degree of freedom in

two dimensions can only occur at T = 0. However, below the Kosterlitz-Thouless transition

the superfluid density is finite. In the cuprates vortices will be bound together below the

Kosterlitz-Thouless-Berezinski transition temperature TKT defined by

kBTKT =
πh̄2d

8e2µ0λ2(TKT )
, (1.1)

where λ =
√

m/µ0nse2 is the London penetration depth and ns is the number of supercon-

ducting charge carriers, of mass m and charge e. Above TKT , however, the entropy gain of

having two vortices moving independently can offset the energy cost of them moving apart

resulting in a gain in the free energy for unbound vortices. This results in the superfluidity

disappearing at TKT .

1.1 Cuprate Electrodynamics

Microwave spectroscopy is a powerful probe of the long-wavelength response of solids. It

is especially useful for superconductors, in which the d.c. resistivity is shorted to zero by

supercurrents. At microwave frequencies the conductivity of a superconductor remains finite

but becomes complex, developing an out-of-phase component because of the purely reactive

response of the super-electrons. In the Meissner state, magnetic fields are excluded from

the bulk of the sample as described London and London in 1935[41]. The second London

equation,

∇× (µ0λ
2Js) = −B , (1.2)
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where Js is the supercurrent density and B is the applied magnetic field, leads directly to

a screening equation for the magnetic field in a superconductor,

∇2B =
B
λ2

. (1.3)

In this regime the utility of microwave spectroscopy lies in the dual character of the complex

conductivity σ = σ1 − iσ2. The real part σ1 contains details of the scattering dynamics of

thermally excited quasiparticles, or ‘normal’ electrons, while the imaginary part σ2 acts

as a thermodynamic probe of the electronic excitation spectrum. It is proportional to the

superfluid density, which is a thermal equilibrium property that can be obtained directly

from the free energy.

For microwave spectroscopy of conducting materials the experimentally accessible quan-

tity is the surface impedance, the ratio of the transverse components of the electric and

magnetic fields at the surface of the sample. The surface impedance is a complex quantity,

Zs = Rs + iXs, and can be inferred from a measurement of the frequency and line-width of

a resonant mode in a resonant cavity as shown in Chapter 2. In the cuprates we normally

have the coherence length ξ0`λ and the mean free path l`λ, which puts them in the local

limit where current density at a point is determined by the local value of electric field. In

this case the conductivity is related to the surface impedance by the local-limit expression

σ = iωµ0/Z
2
s , (1.4)

where ω is the angular frequency at which the measurement takes place.

At finite frequencies the normal excitations conduct in parallel to the superfluid and

can be represented by a Drude conductivity[30, 32]. The electrodynamics of the normal

and superfluid carriers can then be incorporated into a two-fluid model of the complex

conductivity[55],

σ = σ1 − iσ2 =
ne2

m

[
fs

iω
+

fn

1/τ + iω

]
, (1.5)

where fn and fs represent the fraction of electrons which are normal and superfluid respec-

tively, with fn + fs = 1 as required in the clean limit by the oscillator strength sum rule, n

is the total number of electrons, and 1/τ is the quasiparticle transport relaxation rate.



Chapter 2

Experimental Methods

Cavity perturbation measurements on a small superconducting single crystal of

YBa2Cu3O6.333 were performed using a rutile dielectric resonator. The apparatus was de-

signed and built by Dr. D. Broun and Dr. W. Hardy at the University of British Columbia.

In order to use the apparatus at S.F.U., a number of things were needed, including a gas

handling system, which I built and cryostat which I helped to set up.

Considerable time was also spent characterizing two different rutile resonators. Usable

resonant modes must be searched for using an Agilent 8722ES vector network analyzer and

their position dependence mapped out as discussed in Sec. 2.2.3. Finding modes that can

be used in the experiments is very time consuming, as, for example, the one resonator has

more than 200 resonant modes between 2.64 and 14 GHz, but only four of them can be used.

I have also examined the temperature dependence of the resonant frequency and optimized

some of our temperature control and additionally, I have designed an enclosure for a new,

larger rutile dielectric resonator.

2.1 Gas Handling System

My first project upon joining Dr. Broun’s laboratory was to design and build a gas handling

system. The main purpose of this system was to allow us to regulate the vapour pressure of

a liquid helium bath, which in turn sets the temperature of the bath. It was also designed to

allow us to easily connect other lines, for such things as a cold trap. One of the constraints

on our system was that we wanted it to be mobile. Instead of a large system, typically set

up on a 4 by 4 foot sheet of plywood, we wanted to fit our system into a scientific rack,

6
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about 19 inches wide by 6 feet tall. We also wanted the system to be easily accessible and

visible, which meant not using the bottom of the rack for gauges or valves. This further

reduced our usable space to about 19 inches by 3 feet.

To ensure that it was even possible to fit a gas handling system in such a small space, I

first drew up a design of the system in IronCAD, a 3 dimensional computer assisted drafting

(3D CAD) program. Figure 2.1 shows a back view of the IronCAD design of the gas handling

system and a back view of the actual system. These pictures show the complexity of the

system, while Fig. 2.2, which is of the front of the actual gas handling system, shows the

simplicity of the completed system.

2.2 Cavity Perturbation Apparatus

Cavity perturbation techniques can be used for very accurate determinations of the surface

impedance of metals and superconductors, and bypass some of the difficulties presented by

other types of measurements. An optical-type reflectivity experiment can in principle yield

the surface impedance, however the reflectivity is indistinguishable from unity in metals

and superconductors, and, at microwave frequencies, is further complicated by diffraction

effects, as the wavelength becomes comparable to the size of a typical sample. Another

possibility is to attach leads directly to the sample as in low-frequency measurements. This

is also problematic at microwave frequencies since the impedance of the sample is only a

fraction of an ohm, which is comparable to the contact resistance and difficult to match to

the characteristic impedance of a microwave transmission line.

Cavity perturbation avoids the limitations above, and thus has been widely adopted for

microwave measurements. In cavity perturbation the sample is treated as part of the inner

surface of a high quality factor (high-Q) resonator. The resonator amplifies the interaction

of the electromagnetic radiation with the sample by the Q factor, through repeated reflection

of the fields. This also multiplies up the signal and provides effective impedance matching

to the external transmission lines. As a result, the resolution of the experiment improves

with the Q of the resonant mode, allowing very low loss samples (i.e. superconductors) to be

characterized. The resonator also creates spatially well-defined fields, simplifying geometric

effects. Choice of the resonant mode determines the polarization of the microwave field,

allowing it to be lined up with a principal axis of a single-crystal sample. The surface

impedance can be simply determined through measurements of the frequency and line-width
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Figure 2.2: Photograph of the Front of the Actual Gas Handling System.
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of the resonant mode as shown in Section 2.2.2.

The best quality samples of cuprate superconductors tend to be small single crystals,

often less than a millimetre in size. Even cavity perturbation measurements on such samples

can be difficult due to their low microwave absorption and because they make up a very

small fraction of the area of the resonator walls. One of the innovations adopted to solve

these problems was the sapphire hot-finger technique[51] which allows the sample to be

heated independently of the resonator. This allows the resonator temperature to be held

constant in a helium bath for the duration of an experiment, with the result that all changes

in frequency and line-width can be attributed to the sample’s surface impedance.

Superconducting resonators, made of materials such as bulk niobium metal[51], or from

copper with a superconducting coating, such as a PbSn alloy[12, 16], are often used for cavity

perturbation, but have a number of limitations. Any joints in the apparatus tend to act as

superconducting weak links, limiting operation to low power. The quality of these resonators

also tends to degrade over time due to oxidation of the surface of the superconductor. Also,

superconducting resonators cannot be used in high magnetic fields as they would either be

driven normal or into a highly dissipative state of flux flow.

2.2.1 Low Temperature Apparatus

The design for the cavity-perturbation apparatus is constrained by several requirements.

It needs a mechanically rigid mount for the dielectric resonator that puts the resonator in

good thermal contact with the helium bath. The resonator must be surrounded by a metallic

enclosure, to prevent radiation losses, but the walls of the enclosure have to be kept well

away from the resonator to minimize conduction losses. The enclosure must contain two

coupling ports, so that microwaves can be coupled through the resonator in transmission,

and allow access for the sample, mounted on a sapphire hot finger. As the hot finger and

sample will be heated to temperatures in excess of 200 K, the space inside the enclosure has

to be kept under high vacuum. Working in high magnetic fields places further constraints

on the design. The apparatus described here fits inside a standard 2′′ diameter magnet

bore, tightly restricting the space available. Temperatures below 4.2 K are reached in this

apparatus with a miniature 1 K pot operating in one-shot mode to cool the sample thermal

stage. In addition, the design includes a feature that is very desirable in cavity perturbation

— a movable sample stage that allows the sample to be completely withdrawn from the

resonator. This is done in this system by moving the whole assembly of 1 K pot and
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sample thermal stage. As a result, the background microwave absorption of the resonator

can be measured directly, allowing the absolute microwave absorption of the sample to be

determined in situ.

The low temperature end of the apparatus is shown in Fig. 2.3. The cylindrical dielectric

resonator, with an access hole bored down the cylinder axis, is mounted with GE varnish

onto a sapphire plate that suspends it inside the copper enclosure. The strength and high

thermal conductivity of sapphire ensure rigid mounting and good thermal contact between

the resonator and helium bath. A pair of 0.141′′ stainless-steel coaxial lines run the length of

the insert and terminate in loops near the cavity. Microwaves are coupled to the resonator

through a pair of coupling ports in the sides of the enclosure. The amount of coupling can be

varied by adjusting the vertical position of the coaxial lines, which enter the vacuum space

through room-temperature sliding o-ring seals. In this experiment the maximum coupling

is limited by the size of the coupling holes, typically to about 2% of critical coupling, where

critical coupling corresponds to impedance matching the coax line to the resonator. The

position and orientation of the coupling loops is usually optimized to operate at maximum

coupling, as this improves signal strength and frequency stability. It was found in early

experiments that the Teflon dielectric in the coaxial cables allowed a slow gas leak from

room temperature, which, if left unchecked, degraded the operation of the thermal stage.

These leaks were eliminated by coating the ends of the coaxial lines, including the coupling

loops, with Stycast 2850 black epoxy. A small charcoal sorption pump attached to the

base of the copper enclosure further ensures high cryogenic vacuum for the duration of the

experiment.

The temperature of the sample is controlled using a sapphire hot finger connected to

a small, isothermal sapphire platform that is weakly thermally connected to the base of

the 1 K pot by a thin-walled quartz tube. The sample temperature is measured with a

Cernox thermometer[1], and is regulated between 1.1 K and 200 K by a Conductus/Neocera

LTC-20 temperature controller. The precision of the temperature control is 10−4 K below

10 K and 2 × 10−3 K at the highest temperatures. Wiring to the thermal platform (not

shown in Fig. 2.3) passes through the 1 K pot for optimal thermal anchoring, and there is no

discernible heat leak from room temperature into the thermal stage. Electrical feedthroughs

between the helium and vacuum spaces are made with brass wires, sealed with Stycast 2850

epoxy as they pass through the copper base of the 1 K pot. The entire thermal stage,

including the 1K pot, is movable, allowing the sample to be completely withdrawn from
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Figure 2.3: A cut-away schematic of the low temperature end of the cavity perturbation
apparatus. The 5.49 GHz rutile resonator is shown inside the copper enclosure, the outside
of which is in direct contact with the helium bath at 4.2 K. A movable sample thermal stage
is one of the novel features of the design, consisting of an independently heated sapphire
hot finger mounted below a movable 1 K refrigerator. A key component of the motion stage
is the flexible vacuum seal provided by a pair of BeCu bellows housed inside the 1 K pot
pumping line, separating it from the vacuum space.
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the resonator for background calibrations. To permit motion while maintaining a hermetic

seal between the 1 K pot pumping tube and the vacuum space, flexible BeCu bellows[2] are

used. The motion is controlled by a stainless steel rod that runs up the inside of the 1 K

pot pumping line and passes through a sliding o-ring seal at room temperature. A ledge in

the 1 K pot housing provides positive location for the sample stage when it is in the fully

engaged position.

The 1 K pot is constructed in two parts to avoid thermal losses associated with superfluid

film creep. The lower section is made from copper and has a volume of 1.9 ml. The upper

section is a tube made from 0.001′′ stainless-steel shim stock that acts as weak thermal link

to 4.2 K. The two sections are connected by a small, circular orifice, 0.5 mm in diameter with

knife-like edges, that interrupts superfluid film flow. The 1 K pot is operated in one-shot

mode, with a charge of helium provided by connecting the 1 K pot to a supply of high-

purity helium gas that liquifies to fill the lower section of the pot. The 1 K pot has a better

base temperature and longer hold time if the inside surfaces are assiduously kept free of

contamination. An important part of this process is to pass the helium gas through a liquid

nitrogen cold trap before it enters the apparatus in order to scrub it clean of impurity gases.

With these precautions, boil-off from the 1 K pot is low enough that it can be pumped with

a small turbo-molecular pump down to pressures below 10−3 mbar. For operation below

4.2 K, a typical hold-time for the 1 K pot is 10 hours, with a base temperature below 1.1 K.

When operating above 4.2 K a small overpressure of helium gas is kept in the 1 K pot

pumping line to ensure a reproducible thermal environment in the 1 K pot.

Sample interchange is performed with the low temperature insert warmed to room tem-

perature. The copper resonator enclosure is unbolted from the brass vacuum can at the

second lowest indium seal and removed. This gives direct access to the sapphire hot finger

and thermal stage. Several precautions are taken to protect the delicate hot-finger assembly

during this procedure. Before working near the sapphire rod, an aluminum mounting jig is

brought into position and bolted into place on the indium flange at the bottom of the brass

can. Two 1
8

′′ diameter brass guide pins, which protrude 2′′ from the base of the brass can

provide alignment for both the mounting jig and the resonator enclosure. These work by

mating with corresponding clearance holes drilled vertically through the jig and enclosure,

guaranteeing alignment to better than 0.1 mm. The sample to be measured is attached to

the sapphire hot finger with a small amount of high vacuum grease[3], which provides good

thermal contact and has negligible microwave absorption. The sample is mounted so that it
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sits at the center of the resonator with the 1 K pot stage in the fully engaged position. This

position is a local maximum in the on-axis microwave magnetic field intensity, as described

in Section 2.2.3. Siting the sample in this way enhances field uniformity and minimizes the

contribution of sapphire thermal expansion to resonator frequency shift.

2.2.2 Cavity Perturbation

Cavity perturbation is a method for relating changes in the free response of a high Q

resonator to changes in the surface impedance Zs, the permittivity ε and the permeability

µ of small samples placed inside. As shown in the Appendix, the main cavity perturbation

result is:

∆f0 + i∆fB/2 ≈
{

i

2π

∫
S

∆ZsH1 ·H2dS

−f0

∫
V

[∆µH1 ·H2 + ∆ε′E1 ·E2]dV

}/
4U. (2.1)

Here ∆f0 and ∆fB are the perturbative shifts in resonant frequency and the half-power

bandwidth, respectively, and U is the electromagnetic energy stored in the resonator. E

and H are complex phasor amplitudes of the electromagnetic fields, and the subscripts

1 and 2 denote the configurations before and after the perturbation. The prime on the

permittivity indicates that conduction currents have been folded into a redefinition of the

dielectric response, for mathematical convenience.

In our experiments the perturbation is caused by the presence of the sample and sapphire

hot-finger, and is due to either a shift in sample temperature or a change in position. For

surface impedance measurements on conductors the sample is inserted into the resonator

along a node in the electric field. As a result, once the sample is fixed in place, the volume

integral term in Eq. 2.1 can usually be ignored, and the cavity perturbation formula reduces

to

Rs(T ) + i∆Xs(T ) ≈ Γ[∆fB(T )/2− i∆f0(T )]. (2.2)

Here Γ = 8πU/
∫
S H1 ·H2dS is the resonator constant, which can typically be determined

to an accuracy of 2.5% using replica samples of known surface impedance. ∆fB(T ) is the

change in bandwidth on inserting the sample at temperature T into the empty resonator, and

∆f0(T ) is the shift in resonant frequency on warming the sample from the base temperature

to temperature T . It is never possible to determine the absolute reactance by inserting the

sample, because in doing so the magnetic permeability term in Eq. 2.1 gives a large frequency
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Figure 2.4: An illustration of the magnetic field structure of the TE01(n−δ) modes, for n = 1
and n = 3. The subscript n − δ specifies the number of half wavelengths of the TE01

waveguide mode along the z direction. The TE01(1−δ) mode is sketched on left side of the
diagram, with the TE01(3−δ) mode to the right. Alongside each illustration is a plot of the
experimentally determined magnetic field intensity |H|2, for the larger rutile resonator. The
|H|2 data were obtained from the change in bandwidth on inserting the sample, using the
bead-pull procedure described in the text.

shift that dwarfs the contribution from surface reactance, however it is possible to set the

absolute surface resistance.

2.2.3 Dielectric Resonators

The resonators for this experiment were fabricated from oriented single crystals of rutile-

phase TiO2. Rutile was chosen as the dielectric material because of its high dielectric

constant, εr ≈ 120, and its low loss tangent, tan δ ≈ 3 × 10−8. For a given frequency, the

linear size of a dielectric resonator shrinks as 1/
√

εr, with a corresponding increase in filling

factor that increases as ε
3/2
r . For high εr material, displacement currents are very efficient

at confining the microwave fields, reducing the magnitude of lossy conduction currents in

the walls of the resonator enclosure. The low loss tangent results in quality factors well in

excess of a million.

The specific resonator used in my experiments is a single-crystal rutile cylinder of ra-

dius 2.56 mm and height 5.9 mm, with a 1.5 mm diameter through hole bored along the
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axis. The crystalline c-axis is aligned with the cylinder axis to better than one degree,

which is important because rutile is strongly birefringent. The raw single-crystal material

for this resonator was supplied by eSCeTe[4], and was ground and polished to shape by

Microlap Technologies[5]. The fundamental frequency of this resonator is 5.49 GHz, and it

has a Q of 1.1 × 106 at 4.2 K. Another resonator in use in our lab is larger, with diame-

ter=height=10 mm, and a 3 mm diameter bore along the cylinder axis. The fundamental

resonance of this resonator is at 2.64 GHz and it has a Q of 1.7 × 106 at 4.2 K. Both the

single-crystal growth and the resonator fabrication were carried out by ELAN[6].

The resonator modes used in these experiments are transverse electric modes with cylin-

drical symmetry, denoted TE01(n−δ) modes. These are desirable for several reasons. The

electric field has a line node along the cylinder axis, minimizing the interaction of the sample

and sapphire hot finger with electric fields. For the odd-order modes, the on-axis microwave

magnetic field has maximum intensity at the center of the resonator. The TE01(1−δ) and

TE01(3−δ) modes are sketched in Fig. 2.4, showing the sample located at an antinode of the

microwave magnetic field.

Modes are identified using the movable sample stage to carry out a so-called “bead-

pull” experiment. Although this only probes the fields along the resonator axis, it provides

sufficient information to locate the TE01(n−δ) modes. To see how this works, Eq. 2.1 is broken

into separate expressions for the shift in resonant frequency and bandwidth. Keeping only

the dominant contributions, the small dielectric loss of the sapphire hot-finger is ignored and

the magnetic field is assumed to be completely excluded from the interior of the conducting

sample, making its effective permeability −µ0. Then

∆f0 ≈ f0

4U

{ ∫
sample
µ0H1 ·H2dV −

∫
sapphire
εrε0E1 ·E2dV

}
(2.3)

∆fB ≈ 1
4πU

∫
sample
RsH1 ·H2dS. (2.4)

Here the changes in f0 and fB are with respect to the response of the empty resonator. The

presence of a conducting sample reduces the effective volume of the resonator and increases

its frequency. The sapphire hot-finger has the opposite effect and, due to its large volume in

comparison to the sample, gives a large negative frequency shift for any mode not having an

electric field node along the cylinder axis. Most candidate modes can immediately be ruled

out using this criterion alone. Additional information is provided by the bandwidth, which

for a conducting sample gives a clean measure of the magnetic field intensity. Representative
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Figure 2.5: Bead-pull results for a number of useful modes of the larger rutile resonator.
∆fB is the change in resonant bandwidth on inserting a small YBa2Cu3O6.333 sample, in the
normal state at 30 K, into the resonator. ∆f0 is the shift in resonant frequency with respect
to the empty resonator. As described in the text, ∆fB(z) gives a map of the magnetic field
intensity along the axis. ∆f0(z) provides similar information, but contains a term due to
the interaction of the sapphire hot finger with the electric fields of the resonator. This term
should be small for modes with an electric node along the cylinder axis.
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data are presented in Fig. 2.5 for the larger resonator, showing results for modes at 2.64,

3.47, 4.51, 9.12 and 13.97 GHz. The empty resonator Qs of these modes are 1.73, 5.02, 6.0,

1.95 and 1.47 million respectively at 4.2 K. Plots of |H|2 vs. position obtained from the ∆fB

data are shown alongside the mode sketches in Fig. 2.4. A final confirmation of the field

polarization comes from the use of a crystal of high-Tc superconductor as the test sample.

The strong anisotropy of its electrodynamic response allows us to verify that the microwave

magnetic field at the center of the resonator is indeed parallel to the cylinder axis.

2.2.4 Microwave Measurement Circuit

In these experiments the response of the resonator modes is probed in transmission, using an

Agilent 8722ES vector network analyzer (VNA). The VNA is set up to detect the scattering

parameter S̃21(f), the complex transmission amplitude through the microwave circuit. For

the free decay of a high Q resonance, the dominant contribution to S̃21(f) is a simple pole

at the complex decay frequency,

S̃21(f) ∼ 1
f − (f0 + ifB/2)

. (2.5)

A direct, non-resonant transmission amplitude D̃21 acts in parallel with the resonant cou-

pling. The model used to fit to the measured scattering amplitude is therefore

S̃21(f) =
S̃0

21(f)
1− 2i(f − f0)/fB

+ D̃21, (2.6)

where S̃0
21 is the transmission amplitude on resonance. Tildes denote complex quantities.

A LabVIEW routine, programmed by Dr. D. Broun and B. Morgan, processes the scat-

tering parameter data from the VNA, fitting to them using a complex-valued Levenberg–

Marquardt routine based on code from Numerical Recipes in C[48]. This is an improvement

over routines that fit only to the amplitude of the resonant response — retaining the phase

signal doubles the amount of information in each trace and makes direct coupling easy to

take into account. For resonances with Q’s of order 106, the fitting routine resolves f0 and

fB to better than 1 Hz. Even at low Q and in the presence of substantial direct coupling,

Eq. 2.6 models the data extremely well, only breaking down for samples with nonlinear

absorption such as superconductors with weak links.

The microwave circuit used in the experiment is shown in Fig. 2.6. The 8722ES is con-

nected directly to the input coaxial line and provides input power levels up to -5 dBm.
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Figure 2.6: The measurements system used is

Several techniques are used to boost detection sensitivity, starting with the bandwidth-

narrowing options built into the VNA. The 8722ES has Option 012, direct sampler access,

allowing the 16 dB insertion loss of the VNA’s input directional coupler to be bypassed. In

addition, a peculiarity of the VNA’s superheterodyne receiver allows substantial gains to be

made by judicious preamplification. The receiver’s local oscillator is a high order (n ≈ 200)

harmonic comb, which brings in noise at all the mixer’s many image frequencies. Pream-

plification is carried out with a pair of Miteq AFS5 series amplifiers, each with ≈ 25 dB

gain from 2 to 20 GHz and a noise figure (NF) ≈ 5 dB. These are followed by an HP8445B

tunable YIG preselector (an Yttrium iron garnet resonator acting as a bandpass filter), with

insertion loss (IL) ≈ 5 dB, that restricts the preamplifier gain to a 75 MHz band around

the resonator frequency. This greatly reduces the noise at the mixer’s image frequencies.

Below 10 GHz, preamplification boosts the dynamic range of the VNA by close to the theo-

retical maximum of (Gain - NF - IL) ≈ 40 dB, tailing off at higher frequencies. At the low

frequency end, the combination of direct sampler access and band-limited preamplification

reduces the noise floor of the VNA to -165 dBm/Hz. This allows for operation with low

input power, or for making low-noise measurements on very lossy samples without having

to increase coupling.
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Figure 2.7: 5.49 GHz surface impedance data taken on a 350 µm diameter sphere of PbSn
alloy. Open circles are the surface resistance, open squares are the measured surface reac-
tance signal. A thermal expansion correction is applied to obtain the solid line, as explained
in the text. Once corrected, the temperature dependence of Rs and Xs track accurately,
allowing the absolute reactance to be obtained by matching Rs and Xs in the normal state.
Inset: a close-up view of the surface impedance in the superconducting state, showing the
weak temperature dependence expected at low temperature.

2.2.5 Calibration Measurements

In this section calibration measurements taken on a Pb reference sample are discussed.

Fig. 2.7 shows 5.49 GHz surface impedance data for a calibration sample, a small sphere of

PbSn alloy. By comparing the measured fB data to the d.c. resistivity of the PbSn alloy the

resonator constant Γ can be empirically determined to an accuracy of 2.5%. For a metal in

the low frequency limit, Rs and Xs are expected to be equal in the normal state. Indeed, this

is often the best way to set the origin in Xs, as it cannot be measured directly. However, the

data in Fig. 2.7 reveal a large discrepancy. The disagreement is due to thermal expansion of

PbSn, which contributes a significant error term ∆Xth
s to the surface reactance. Thermal
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expansion has the same effect on the reactance as a decrease in the penetration depth, so

∆Xth
s (T ) = −ωµ0∆r(T ) = −ωµ0r

∆`(T )
`

. (2.7)

For one spherical sample accurate dimensions were obtained by weighing with a microgram

balance. From the mass, 254± 1 µg, the radius was computed as r = 174.9± 0.2 µm. Using

thermal expansion data from the literature[15], a correction term −∆Xth
s (T ) was generated

and added to the measured reactance signal. The corrected ∆Xs data are shown as the solid

line in Fig. 2.7. Note that there are no free parameters in this analysis. The temperature

dependence of the corrected Xs data tracks Rs(T ) very accurately above 25 K, allowing the

absolute reactance to be determined by matching Rs and Xs in that temperature range. It

should be pointed out that the thermal expansivity of Pb is one of the largest of all elements.

The thermal expansivities of oxides and transition metals such as Nb are typically over an

order of magnitude smaller[15]. Nevertheless, it is always necessary to rule out thermal

expansion as a potential source of error in a measurement of the surface reactance.

Below 25 K, Rs and Xs deviate: this is a result of the increasing mean free path, which

introduces relaxation and nonlocal effects into the surface impedance. The superconduct-

ing surface impedance is enlarged in the inset of Fig. 2.7, showing the exponentially flat

temperature dependence of Rs and Xs at low temperatures, typical on an s-wave order

parameter.
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The Chemistry of YBa2Cu3O6+x

YBa2Cu3O6+x is unique among the cuprate superconductors in that it can be grown in

single crystal form with cation disorder less than one part in 10−4 [38]. This allows for the

study of the intrinsic physics of the superconducting state rather than what is often seen,

the effects of defects in the crystal. YBa2Cu3O6+x is also unique in that the oxygen content,

which controls the doping level, can be varied throughout the entire phase diagram through

high temperature annealing[31, 38]. In high quality samples of this material the loosely held

dopant oxygen atoms in the CuO-chain layers remain mobile at room temperature. In the

weeks after the average oxygen content is set and homogenized, gradual ordering at room

temperature into CuO-chain structures pulls electrons from the CuO2 planes, smoothly

increasing hole dopings over time[59, 54].

3.1 Crystal Structure and Oxygen Ordering

The crystal structure of fully oxygenated YBa2Cu3O7 is shown in Fig. 3.1. With this oxygen

content the sample would be superconducting with a Tc near 90 K. Optimal doping occurs

at an oxygen content of 6.95 giving rise a Tc of about 93.5 K. YBCO has two CuO2 planes

per unit cell and one CuO chain. The doping of holes is mediated by oxygen atoms in the

CuO chain layer.

The manner in which holes are doped into the CuO2 planes is illustrated in Fig. 3.2.

Copper atoms in an empty CuO chain layer are in the Cu1+ state. A neutral oxygen atom

that enters the crystal will locate itself in the CuO chain layer and ionize two neighbouring

copper atoms within the layer producing Cu2+ from Cu1+ leaving the oxygen atom in the

22
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Figure 3.1: The crystal structure of fully oxygenated YBa2Cu3O7.
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Figure 3.2: Oxygen ordering leads to doping of holes into the CuO2 planes. The top CuO
chain is empty so all the copper atoms are in the Cu1+ state. Adding oxygen to the chain
layer oxidizes copper into the Cu2+ state. If oxygen atoms occupy neighbouring sites in the
chain layer, a copper atom in the CuO2 plane will be oxidized, leaving a hole in the plane.

O2− state. If a second oxygen atom enters the layer at a position in the crystal well away

from another oxygen atom, it will also oxidize two neighbouring copper atoms. If however,

the oxygen atom enters a site immediately adjacent to another oxygen atom it will only have

one neighbouring copper atom within the chain layer to oxidize, and thus will also oxidize a

copper atom in a neighbouring CuO2 plane. This leaves a hole in the CuO2 plane. As the

chains of oxygen atoms grow longer and longer, the hole doping is increased.

If the temperature of a YBa2Cu3O6.333 sample is above 150 oC, oxygen atoms in the

chain layer will be randomly dispersed along both the â- and b̂-axis, in what is known as

the tetragonal phase[59, 54]. As the temperature drops below 150 oC the oxygen atoms will
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Figure 3.3: Illustration of oxygen ordering in the CuO chain layers of YBa2Cu3O6.333. For
T � 150 oC the material is tetragonal and oxygen atoms occupy a- and b-axis sites with
equal likelihood (not shown). Below T ≈ 150 oC the material adopts the Ortho-I structure,
with oxygen randomly distributed amongst b-axis sites. Hole doping is very low in this phase
and Tc=0. On annealing at room temperature for 3 to 6 weeks, the oxygen orders into the
Ortho-II structure, with every second chain empty. Chainlets lengthen, introducing holes
and making Tc small but finite. High hydrostatic pressure (p ≈ 20 kbar) promotes further
ordering at room temperature into the Ortho-III′ phase. Tc saturates at its maximum value
for pressures greater than 14 kbar and the transition width ∆Tc, indicated by error bars,
narrows markedly with increasing doping.

all enter b̂-axis positions, a configuration known as the Ortho-I phase (shown in Fig. 3.3).

At this point the sample is nonsuperconducting. If the sample is allowed to sit at room

temperature, it will enter into the Ortho-II phase (also shown in Fig. 3.3), where every

second chain is empty. At this point the sample will have a Tc of 1 to 2 K. In order to

increase Tc further, pressure must be applied to the sample.

By placing the sample in a pressure cell at 20 kBar for a period of weeks, the oxygen

can be encouraged to enter into the Ortho-III′ phase where every third chain is full, while

the other two are empty. If the sample is then kept below about −10oC at ambient pressure

it will stay in the Ortho-III′ phase.
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3.2 Sample Preparation

Experimenters face multiple challenges measuring the microwave surface impedance of un-

derdoped YBa2Cu3O6+x. Electronic anisotropy is greatly enhanced in these low doped

samples[31], with the ratio of the c-axis to in-plane penetration depths λc/λab approaching

100. As a result, measurements of ρs can only be carried out in special geometries that

drive purely ab-plane currents, such as the small single-crystal ellipsoid used in this work.

Extremely pure single crystals of YBa2Cu3O6+x[37] were grown in barium zirconate

crucibles and have cation disorder at the 10−4 level. For these experiments a crystal 0.3 mm

thick was cut and polished with Al2O3 abrasive into an ellipsoid with an average diameter of

0.35 mm. The oxygen content of the ellipsoid was adjusted to O6.333 by annealing at 914oC in

flowing oxygen, followed by a homogenization anneal in a sealed quartz ampoule at 570oC

and a quench to 0oC. At this point the sample was nonsuperconducting. After allowing

chain oxygen order to develop at room temperature for three weeks, Tc was measured to

be 3 K. The sample was then further annealed at room temperature for six weeks under a

hydrostatic pressure of 14 kbar, raising Tc to 17 K. The sample was cooled to 0oC before

removal from the pressure cell, and then stored at −10oC to prevent the oxygen order

from relaxing. All further manipulation of the ellipsoid was carried out in a refrigerated

glove box at temperatures less than −5oC. Periods of controlled oxygen disordering at room

temperature and ambient pressure were used to generate a sequence of dopings as Tc relaxed

back to 3 K. Subsequent reannealing under hydrostatic pressure of 23 kbar for a further six

weeks returned Tc to the starting value of 17 K.
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Superfluid Density

The doping dependence of the temperature dependent superfluid density ρs has been ob-

tained from a series of microwave surface impedance measurements, carried out at closely

spaced doping intervals. As the normal contribution to the imaginary part of the conduc-

tivity is quite small, ρs is proportional to the imaginary part of the complex conductivity,

which can be obtained from the surface impedance using the local-limit expression.

The superfluid density and its temperature dependance are fundamental properties of

a superconductor. ρs determines the phase stiffness (the resistance of the superconducting

order parameter to fluctuations in its phase) and its temperature dependance provides a

direct probe of the current carried by quasiparticle excitations. The temperature dependance

is entirely due to the form of the superconducting gap function, and thus serves as an

indicator of the pairing symmetry, while the behaviour near the critical temperature reflects

the importance of critical fluctuations.

4.1 Surface Impedance

The temperature dependance of the resonant frequency f0 and half-power bandwidth fB

of the TE01(1−δ) mode of the rutile dielectric resonator were measured and related to sur-

face impedance Zs using the cavity perturbation formula (Eq. 2.2). The resonator constant

was determined empirically using a Pb reference sample with similar dimensions to the

YBa2Cu3O6.333 ellipsoid. This was accomplished by comparing the slopes of the d.c. resis-

tivity and f2
B as functions of temperature. This procedure accounts for sample-to-sample

variations in residual resistivity since f2
B ∝ R2

s ∝ ρdc. The sample was positioned at the

27
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Figure 4.1: 5.48 GHz ab-plane surface impedance of an YBa2Cu3O6.333 ellipsoid, at dopings
with Tc’s of 16.8 K and 10.0 K. Rs(T ) is measured directly in the experiment, while the
absolute reactance is obtained by offsetting ∆Xs(T ) to match Rs and Xs in the normal
state. The deviations evident at high temperatures is likely due to thermal expansion of the
sapphire sample holder.

H-field antinode of the TE01(1−δ) resonator mode with the crystal’s c-axis oriented along

the microwave H field so as to induce purely ab-plane currents. Final alignment was carried

out using magnetic torque in a 7 T field resulting in an alignment uncertainty of less than

1◦. Once aligned the sample was kept in place for the duration of the doping study.

The surface resistance is determined by first subtracting the background half-power

bandwidth measured when the sample is retracted from the resonator volume. The absolute

surface reactance is then set by matching Rs and Xs in the normal state, where the imaginary

part of the microwave conductivity is expected to be very small. Figure 4.1 illustrates this

process for two of the hole dopings. The discrepancy at high temperatures is likely due to

thermal expansion of the sapphire sample holder and is not corrected for as I am primarily

concerned with low temperature properties where thermal expansion effects are negligible.

The low temperature surface impedance for all nine measured hole dopings is shown
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Figure 4.2: 5.48 GHz ab-plane surface impedance of an YBa2Cu3O6.333 ellipsoid, at nine
different dopings. Rs(T ) is measured directly in the experiment, while the absolute reactance
is obtained by offsetting ∆Xs(T ) to match Rs and Xs in the normal state. The apparent
broadness of the transitions is due to fluctuations, not inhomogeneity of Tc.

in Fig. 4.2. The rounding of the transitions is due to superconducting fluctuations, not

inhomogeneity of Tc as explained in Section 4.2. The small kink in Xs near Tc is believed

to be due to the kinetic energy involved in accelerating the superfluid.
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Figure 4.3: Real part of the conductivity σ1(T ) obtained from the one of the surface im-
pedance data sets shown in Fig. 4.2, showing a sharp fluctuation peak at Tc. ∆Tc is set to
the difference between the inflection points in σ1(T ) on opposite sides of the transition.

4.2 Conductivity

The complex microwave conductivity σ = σ1 − iσ2 is obtained from the surface impedance

data using the local-limit expression (Eq. 1.4). Figure 4.3 shows the sharp fluctuation

peak in σ1(T ) at 13.5 K for the the third highest doping. In the scaling theory of the

superconducting transition[20], σ1(T ) is expected to have upward curvature throughout

the fluctuation region, with a sharp cusp at Tc. In real samples there is rounding of the

fluctuation peak, and the estimated spread in Tc is found by equating ∆Tc to the difference

in the inflection-point temperatures of σ1(T ) on opposite sides of the transition. The doping

dependance of ∆Tc is shown by the error bars in Fig. 3.3, which decreases in absolute size

with increasing oxygen order. Given the steepness of Tc(x) in this doping range the narrow

transitions imply that the samples are highly homogenous on macroscopic scales. The real

part of the conductivity σ1 will be discussed in more detail in Chapter 5.
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Figure 4.4: Sample dependence of the low temperature curvature in 1/λ2(T ). Data on a
large platelet single crystal, measured using surface cavity perturbation, show substantially
more curvature in 1/λ2(T ) than data from the ellipsoidal sample at comparable Tc.

4.3 Strong Scattering Effects

Strong scattering defects are present to some extent in all cuprate samples, and are known

to drive a crossover from linear to quadratic behaviour in ρs(T ) below a cross-over tem-

perature T ∗ ≈
√

h̄ΓN∆/kB, where ΓN is the normal state elastic scattering rate and ∆ is

the superconducting gap maximum[29, 30]. Bonn et al. examined the role of impurities in

YBa2Cu3O6+x by making a systematic study of the effect of Zn and Ni dopants on λ(T )[11],

confirming that the introduction of strong scatterers indeed changed the low temperature

behaviour from a linear to a quadratic temperature dependence.

The effects of pair breaking are expected to become more prominent as Tc decreases in

underdoped materials. Nevertheless, our ρs(T ) data reveal a wide range of linear tempera-

ture dependance, as seen in Fig. 4.4, with a sample-dependant T ∗ between 3 and 6 K. This

suggests the origin of the low temperature curvature is extrinsic; that is, the curvature is
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Figure 4.5: ρs(T ) vs. T 2, for the Tc=17 K data set. It shows that the asymptotic low
temperature behaviour is quadratic, consistent with the effects of strong-scattering disorder.

not a property of the pure system. Also shown in Fig. 4.4 is ρs(T ) taken from surface cavity

perturbation measurements by Dr. D. Broun on a large platelet crystal with a similar value

of Tc. The ellipsoid appears to be considerably cleaner, with the linear regime of ρs(T ) ex-

tending to lower temperatures. The low temperature behaviour of ρs(T ), shown in Fig. 4.5,

is accurately quadratic, consistent with the strong-scattering theory[11, 29, 30]. Oxygen

disorder is unlikely to be the source of pair-breaking, as it is located out of the CuO2 planes

and T ∗ shows little change with increasing ordering of the CuO chains as seen in Fig. 4.6.

There is, however, a difference in the temperature dependance of the superfluid density for

samples with Tc’s above and below about 11 K. This is shown most dramatically in a plot

of λ2(T = 0)/λ2(T ) versus T/Tc as discussed in Sec. 4.7.



CHAPTER 4. SUPERFLUID DENSITY 33

0

1

2

3

4

0 4 8 12 16

1/
λ2  (µ

m
-2

)

Temperature (K)

Figure 4.6: Doping dependance of the superfluid density. ρs(T ) of an YBa2Cu3O6.333 el-
lipsoid, measured starting in the most ordered state (Tc=17 K) followed by controlled oxy-
gen disordering in small steps down to Tc=3 K. Lines mark where the vortex-unbinding
transition should occur for a 2-D superconductor. The dashed line corresponds to ρs =
(8e2µ0kB/πh̄2d)T in each CuO2 plane. The solid line shows ρs = (8e2µ0kB/πh̄2d)T in each
CuO2 bilayer.

4.4 Lack of a Kosterlitz-Thouless-Berezinski Transition

The temperature dependant superfluid density ρs(T ) is given by

ρs(T ) ≡ 1/λ2(T ) ≈ ωµ0σ2(T ). (4.1)

Figure 4.6 shows ρs(T ) plotted as 1/λ2(T ) for all eight superconducting dopings. The

most striking feature of the data at the highest dopings is the wide range of linear tem-

perature dependance, extending from Tc down to T ≈ 4 K. This is especially surprising,

because underdoped YBa2Cu3O6+x has a highly anisotropic electronic structure[31], with

λ2
c(T → 0)/λab

2(T → 0) ≈ 104. As a result, superconducting phase fluctuations are ex-

pected to be two dimensional and should drive an abrupt Kosterlitz-Thouless-Berezinski
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(KTB) vortex unbinding transition[34, 28].

The minimum 2D superfluid density at which a KTB transition is expected to occur is

shown in Fig. 4.6 for both isolated CuO2 planes and for bilayers as the dashed and solid

lines respectively. For bilayers the phase stiffness is expected to be stronger so that TKT

is lower. ρs(T ) passes smoothly through both of these lines, with no indication of a vortex

unbinding transition or even of 3D critical fluctuations. Recent work has shown that the

KTB transition does occur in ultrathin YBa2Cu3O6+x films, but that the effective thickness

for the fluctuations is the film thickness[61, 62]. This data supports the fact that the effective

thickness is the film thickness and shows that in bulk samples the transition is mean-field

like.

4.5 Temperature Slope of the Superfluid Density

A central issue in the underdoped cuprates is whether the low temperature superfluid density

is controlled by quasiparticle excitations or phase fluctuations. Phase fluctuations, if present,

are acting unconventionally, as there is no KTB transition. If instead quasiparticles play

the dominant role, the low temperature superfluid response will be governed by excitations

near the gap nodes. In that case

ρs(T ) = ρs0 −
2 ln 2

π

kB

h̄2

1
d
α2 vF

v∆
T, (4.2)

where vF
v∆

is the ratio of the quasiparticle group velocities perpendicular and parallel to the

Fermi surface and α is the charge-current renormalization factor [36, 18]. |dρs/dT |, which

is proportional to α2 vF
v∆

, is plotted in Fig. 4.7. At low dopings the slope decreases approx-

imately linearly with Tc. In this range vF is known to vary only weakly with doping[60].

The decrease in |dρs/dT | is unlikely to be due to a divergence of v∆, so must be primarily

due to α. Such behaviour can arise in several ways. Within the Fermi liquid framework,

weak residual interactions between electrons lead to backflow currents, reducing the total

electrical current carried by a quasiparticle [56, 43, 18, 34]. Alternatively, in some distinctly

non-Fermi-liquid theories of the under-doped cuprates, such as the slave-boson gauge the-

ories of Anderson’s resonating valence bond model [8, 33, 36, 56], the superconducting

quasiparticle is a combination of a chargeless spinon and a spinless holon, with an effective

charge that shrinks to zero upon underdoping. U(1) and SU(2) gauge theories [33, 36, 56]

predict α2 ∼ ρ2
s0, a result also obtained in theories of fluctuating d-wave superconductors
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Figure 4.7: Temperature slope of the superfluid density. |dρs(T )/dT | is obtained from
linear fits to ρs(T ) between 4 K and Tc. Error bars represent the combined uncertainties in
calibration, matching of Rs and Xs, and sample alignment.

[23, 26, 27]. The observed doping dependence of α, however, is much weaker than predicted.

An alternative cause of the decline in |dρs/dT | is the onset of microscopic phase sep-

aration with underdoping, resulting in a gradual rescaling of ρs(T ) in proportion to the

nonsuperconducting fraction. However, examination of the c-axis superfluid response in-

dicates that this is unlikely. Figure 4.8 shows a plot of the normal fluid density for both

in-plane and out-of-plane currents. The normal fluid density,

ρn(T ) ≡ 1/λ2(T → 0)− 1/λ2(T ), (4.3)

is sensitive to the energy spectrum of the nodal quasiparticles and directly probes their

current response[49]. For in-plane currents, ρn(T ) fans out with doping, a consequence of

the doping dependant slope. By contrast, for currents out of the plane, ρn(T ) collapses

onto a single, doping independent curve away from Tc. This is consistent with a negligible

doping dependence of vF and v∆, and would not be the case if the superconducting volume
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Figure 4.8: Anisotropy of the normal fluid density. ρn ≡ 1/λ2(T → 0)− 1/λ2(T ) is a probe
of the supercurrent carried by quasiparticle excitations close to the d-wave gap nodes, and is
sensitive to the effects of charge-current renormalization. a) For currents within the CuO2

planes, ρn(T ) fans out with doping, revealing a clear increase in temperature slope. b)
For currents perpendicular to the CuO2 planes, all the ρn(T ) data coalesce onto a common
curve, independent of doping. This suggests that c-axis currents are not renormalized, and
argues against microscopic phase separation as the cause of the unusual behaviour of the
in-plane superfluid density. λc(T ) data are taken from Ref. [31]. For clarity not all data
sets are shown.

fraction were shrinking on underdoping. Instead, the decline of |dρs/dT | is seen to be purely

a property of the in-plane quasiparticles, indicating that they are very different from the

physical electrons that tunnel between layers.

The anomalous behaviour of ρs revealed by these experiments has motivated new theo-

retical work. Herbut has shown that the problem of nodal quasiparticles coupled to strong

phase fluctations maps onto the weakly interacting, anisotropic 3D Bose gas, due to the

short-ranged nature of the Coulomb interaction in layered superconductors [27, 14]. In that

model ρs(T ) should be given at low dopings by the condensate fraction of a noninteracting

Bose gas, ∆ρs(T ) ∼ T ln(T/t), with t the interlayer Josephson coupling. This correctly cap-

tures the linear T dependence of ρs(T ) and the lack of a critical region, but is at odds with

the decline of |dρs/dT | as Tc → 0. Franz and Iyengar have proposed an alternative theory

based on vicinity to a quantum critical point, which they argue makes the relevant model
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of phase fluctuations a (3+1)D–XY model, leading naturally to a mean-field transition [21].

Within this framework they calculate the renormalization of of the zero temperature su-

perfluid density ρs0 and the effective quasiparticle charge, and find behaviour in qualitative

accord with our experimental observations. We also point out that recent neutron scatter-

ing experiments on YBa2Cu3O6+x with Tc = 18 K have revealed short-range, fluctuating

spin correlations, but rule out phase separation and coexistence of superconductivity with

long-range-ordered antiferromagnetism [52]. This raises the interesting possibility that the

behaviour of ρs is linked to the emergence of intrinsic, bulk magnetism. Future experi-

ments will aim to test this connection, but it seems suggestive that slowly fluctuating spin

structures are observed at the point where |dρs/dT | develops a strong doping dependence.

4.6 Correlation Between Tc and ρs0

One of the longest standing results in the study of underdoped cuprate superconductors is

that of a linear correlation between the transition temperature Tc and the zero temperature

superfluid density ρs0. This strong correlation has led many to believe that it is the super-

fluid density that controls Tc in the underdoped cuprates[19, 26, 13]. As ρs0 is the energy

scale for fluctuations in the phase of the order parameter, it is postulated that above Tc

superconductivity persists locally with long range phase coherence setting in at Tc.

My measurements show a sub-linear power law for the correlation between Tc and

ρs0 ≡ 1/λ2(T → 0) as shown in Fig. 4.9. The dip seen at ρs0 = 2.5 µm−2 will be discussed

in Section 4.7. Fig. 4.10 shows this data plotted on a logarithmic axis alongside existing

data for single crystal and thin film YBa2Cu3O6+x. These include: very recent µSR data

on single crystals[50]; data from Gd3+ ESR, taking the geometric mean of the a and b-axis

values[47]; Hc1 data, converted to superfluid density assuming the Ginzburg-Landau pa-

rameter κ = 50[40] and mutual inductance measurements on thin film YBa2Cu3O6+x[61].

The sublinear correlation persists to optimal doping, although the data cannot be described

by a single power law. Scaling theory[35] predicts that Tc ∝ ρy
s0 with y = 1/2 in the under-

doped cuprates, where the system is close to a zero-temperature critical point so that it is

three dimensional and quantum fluctuations are important. At this point most other theo-

ries predict a linear correlation in accord with the first measurements of ρs0 in underdoped

cuprates. The value y = 1/2 is very close to what is observed in my measurements and in a

recent study[61] on thin film YBa2Cu3O6+x that reports Tc ∝ ρ0.43
s0 . It should also be noted
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Figure 4.10: Correlation between Tc and the zero-temperature superfluid density shown on
a log-log plot. Shown are data from: Gd3+ ESR, taking the mean of a and b-axis values [47];
lower critical field Hc1 measurements, assuming κ = 50 [40]; µSR [50]; thin films[61]; and
the cavity perturbation results reported in this work. Lines indicate different power laws,
Tc ∝ ρn

s . Tc decreases smoothly over more than 3 decades in the superfluid density, with
a sublinear correlation extending over the whole range. The superfluid density in the thin
films follows a similar power law but is nearly an order of magnitude lower in magnitude.
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Figure 4.11: λ2(T = 0)/λ2(T ) versus T/Tc. The superfluid density can be scaled by match-
ing the slopes of the plots of 1/λ2(T ) just below Tc. The scaled superfluid density falls on
two different curves for Tc > 11 K (the upper curves) and Tc < 11 K (the lower curves),
presenting the possibility of a phase transition for a Tc around 11 K.

that the absolute values of ρs0 at low dopings in the thin film measurements are almost an

order of magnitude smaller than in single crystal YBa2Cu3O6+x, due either to granularity

or substantial pair breaking effects in the thin films. Despite the strong correlation between

Tc and ρs0, the apparent lack of a universal correlation raises the possibility that phase

fluctuations might not ultimately limit Tc in the underdoped cuprates.

4.7 Phase Transition?

Our measurements reveal a kink in the function Tc(ρs0) for a Tc of about 11 K, and a

qualitative change in the temperature dependence of ρs at this doping. Figure 4.11 shows

ρs(T/Tc) scaled so that the slope of ρs(T ) is equal for all dopings just below Tc. For Tc > 11 K

the scaled superfluid density falls onto the upper curve, with an abrupt transition to the
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lower temperature dependance for lower dopings. The abruptness of the change is shocking,

suggesting a sudden switching on of extra pair breaking below some critical doping. One

possibility is that this is connected to the onset of long-range magnetic order. Stock et

al. have recently observed short-range, fluctuating spin correlations in neutron scattering

experiments on YBa2Cu3O6+x with Tc=18 K[52]. They rule out phase separation and

coexistence of the superconductivity with long-range-ordered antiferromagnetism. The Tc

at which the temperature dependance changes is below that of the sample studied by Stock

et al.[52], so long-range magnetic ordering or phase separation could be causing the change

seen in our data. A more detailed study of this region is planned.



Chapter 5

Microwave Conductivity

The same surface impedance data and electrodynamic analysis used to obtain ρs(T, x) in

the previous chapter yields the real part of the conductivity σ1 associated with dissipative

processes and electrical transport in the superconductor. The results of this analysis are

shown in Fig. 5.1 where it can be seen that the conductivity increases upon entering the

superconducting state for all dopings, while at low T it appears to decrease slightly. For the

purposes of separating quasiparticles and fluctuations, it is clear at the highest dopings that

we can interpolate through the fluctuation peak. In the superconducting state the number

of charge carriers is decreasing with temperature as they pair up and condense into the

superfluid so an increase in the conductivity must imply that the quasiparticle transport

relaxation rate is decreasing more rapidly than the normal fluid fraction.

5.1 Two-Fluid Analysis

Additional information can be extracted using a two-fluid model of the conductivity. In a

superconductor the superfluid condensate conducts in parallel with quasiparticle excitations.

The superfluid conductivity is dissipationless and takes the form

σs(ω) =
nse

2

m∗

(
πδ(ω) +

1
iω

)
. (5.1)

The zero-frequency delta function represents the energy absorbed in accelerating the super-

fluid and is required by the conductivity sum rule. The conductivity sum rule,

1
π

∫ ∞

−∞
σ1(ω)dω =

ne2

m
, (5.2)

41
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Figure 5.1: The real part of the conductivity σ1(T ) obtained from the surface impedance
data via Eq. 1.4. The dashed lines are a guide to the eye to indicate how the conductivity
separates into fluctuation and quasiparticle components.

applies to all systems of electrons and states that the total area under the curve σ1(ω) is

constant. This is illustrated in Fig. 5.2 where in the normal state we have a Drude conduc-

tivity. Somewhat below Tc the scattering rate has decreased resulting in a much narrower

spectrum with a zero-frequency delta function due to the superfluid condensate. The height

of the spectrum has increased in order to keep the total area constant in agreement with the

conductivity sum rule. At very low temperatures the delta function has grown and the loss

of normal carriers has lowered the low frequency conductivity. All of the above situations

can be described by the Drude two-fluid model of Equation 1.5.

Knowing the real and imaginary parts of the conductivity enables one to extract the

scattering rate 1/τ and normal fluid fraction fn using the two-fluid model of Eq. 1.5. The

equations used are shown below.

ωτ =
σ1(T )

σ2(0)− σ2(T )
(5.3)
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Figure 5.2: Quasiparticle conductivity spectrum at three different temperatures. The red
arrow represents the zero-frequency delta function.

fn = (1 + ω2τ2)
σ2(0)− σ2(T )

σ2(0)
(5.4)

Here σ2(0) represents the total spectral weight as determined by a linear extrapolation of

ρs(T ) to T = 0[55].

5.2 Normal Fluid Fraction

The normal fluid fraction fn extracted from our data using Eq. 5.4 is shown in Fig. 5.3.

The two-fluid analysis requires allowing for a residual fn at T = 0 K. The natural way

to determine this is by extrapolating the linear part of ρs(T ) to T = 0. The amount of

residual normal fluid evident in Fig. 5.3 is supported by unpublished broadband microwave

measurements performed by Dr. P. Turner and J. Bobowski. It can be noted that the

relative normal fraction is decreasing with Tc, while the absolute value is increasing nearly

linearly. Pair breaking, the cause of residual normal fluid, is complicated, and is related to
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Figure 5.3: The normal fluid fraction fn versus T . All data sets show a large linear regime.

the strong scattering effects described in Sec. 4.3.

5.3 Quasiparticle Transport Relaxation Rate

Equation 1.5 can be rearranged to extract the quasiparticle transport relaxation rate 1/τ

from the conductivity data with the result of such an analysis is shown in Eq. 5.3. The

results are shown in Fig. 5.4. The dashed line illustrates how one can interpolate through

the fluctuation peak to obtain the actual relaxation rate. Upon entering the superconducting

state the relaxation rates drop dramatically with all of the data falling onto the same curve

at low T . This behaviour suggests that the nodal spectrum, defined by

Ep =
√

(vF p⊥)2 + (v∆p‖)2, (5.5)

where p⊥ and p‖ are the momentum perpendicular and parallel to the fermi surface, doesn’t

change in this doping range, consistent with the c-axis ρn data shown in Fig. 4.8b. This in

turn suggests that density of states around the node is unchanged in this doping region.
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Figure 5.4: The quasiparticle scattering rate versus temperature for all dopings. The dashed
line shows an interpolation through the fluctuation peak. At low T all of the scattering rates
fall on the same curve except for the lowest doping.
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Figure 5.5: Quasiparticle scattering rate for six different samples. Although that Ortho-
III′ YBa2Cu3O6+x has a much higher scattering rate than either Ortho-I or Ortho-II
YBa2Cu3O6+x, it is different than the other cuprates, saturating at low T while the others
pass nearly linearly through T = 0. All other data taken from [46].
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The relaxation rate shown in Fig. 5.4 is saturating at a low temperature value of

0.4× 1012 s−1 which, converted into temperature units using h̄/τ = kBT , is 3 K. This

corresponds quite well with the scattering induced crossover temperature T∗ in the super-

fluid density of 3 to 6 K. The mean free path can also be calculated if the Fermi velocity

vF is known. Zhou et al.[60] have shown that vF is universal in the cuprates, with a value

of 1.8 eV·Å. This is converted to SI units by dividing by h̄, resulting in vF = 2.7× 105 m/s.

Assuming that quasiparticles are moving ballistically at this velocity we infer a mean free

path ` = 0.7 µm from our data.

A mean free path of 0.7 µm seems to move us out of the local limit as the penetration

depth varies from about 0.43 µm to over 3 µm as the hole doping is decreased. However,

the fact that data is consistent through out the entire doping regime suggests that the local

limit is never lost. A possible explanation for this may have to do with differences between

intranode and internode scattering.

In systems with extended scatterers intranode scattering occurs much more frequently

than internode scattering events. Intranode scattering affects the group velocity of the

quasiparticle but not the electrical current while internode scattering affects both so that

from the point of view of electrical transport quasiparticles move diffusively rather than

ballistically. The average distance moved between strong scattering events is then

∆x =
`√
N

(5.6)

where N is the ratio of the single particle scattering rate Γsp to the transport scattering

rate Γtr,

N =
Γsp

Γtr
(5.7)

which can be as high as 100[17]. Thus the quasiparticles would not move out of the pene-

tration depth region between strong scattering events and the local limit would be upheld.

Figure 5.5 shows the transport relaxation rate for a number of different cuprate

superconductors[46]. YBa2Cu3O6+x usually has a very low relaxation rate as can be seen

from the Ortho-I and Ortho-II data. This is due to the very low cation disorder as com-

pared to Bi2Sr2CaCu2O8+δ and Tl2Ba2CuO6+δ. However, the underdoped sample that I

have studied seems to have a transport relaxation rate more similar to Bi2Sr2CaCu2O8+δ

and Tl2Ba2CuO6+δ than to the other dopings of YBa2Cu3O6+x. This high scattering rate

cannot by due to cation disorder as the cation disorder in YBa2Cu3O6+x is independent of

oxygen content. This leaves oxygen disorder as the one remaining candidate for chemical
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Figure 5.6: The conductivity spectral weight σ1(ω) in the (a) clean limit and (b) dirty
limit. The arrows indicate the approximate measurement frequency, while the shaded area
represents the portion of the conductivity spectrum that collapses into the superconducting
condensate.

disorder. However, we believe oxygen disorder to have a weak effect, because there is no

systematic decrease in scattering as the Othro-III′ phase is approached. Why the relaxation

rate is then so high is unknown. A possible explanation is that magnetic correlations gain-

ing strength as the Mott insulating state is approached and these magnetic structures are

scattering quasiparticles. Stock, Buyers, Yamani et al. have recently observed short-range,

fluctuating spin correlations, but rule out phase separation and coexistence of the supercon-

ductivity with long-range-ordered antiferromagnetism in neutron scattering experiments on

Tc=18 K YBa2Cu3O6+x[52].

Fig. 5.6 illustrates the differences in the conductivity spectrum σ1(ω) for the clean and

dirty limits. The arrows indicate the approximate measurement frequency. The dashed lines

show the normal state spectrum. In the superconducting state a frequency corresponding to

twice the gap energy is required to break pairs. In the clean limit nearly all of the spectral

weight is condensed into the superfluid, while in the dirty limit only a small fraction of the

spectral weight is condensed. The area of the shaded region is determined experimentally

by the zero temperature superfluid density. Since my measurements were done at such a

low frequency on the scale of the frequency spectrum, the normal state conductivity I have

calculated determines the height of the conductivity spectrum. As a result the normal state

relaxation rate determined by two-fluid analysis is the width of the shaded area as shown

by 1/τ in Fig. 5.6. Thus in the dirty limit, the normal state relaxation rate measures the

size of the superconducting gap 2∆, while in the clean limit it measures the width of the

conductivity spectrum, i.e. the effective relaxation rate 1/τeff ∼ min(4∆/π, 1/τtr).
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Figure 5.7: a) 1/τeff versus T . The normal state relaxation rate is taken at T = 40 K which
should correspond to 2∆ in the dirty limit. b) 2∆ versus Tc. The red line is 2∆ = 8kBTc.
The gap energy appears to scale with Tc.

In the superconducting state YBa2Cu3O6.333 is in the clean limit and the effective scat-

tering rate determined via the two-fluid analysis is the transport relaxation rate. However,

in the normal state YBa2Cu3O6.333 is in the dirty limit as is evident in how the effective

scattering rate shown in Fig. 5.7a approaches a constant value at higher temperatures. Thus,

in the normal state, the effective scattering rate is related to the size of the superconducting

gap. The size of the gap, 2∆ is plotted for the different hole dopings in Fig. 5.7. The red

line is 2∆ = 8kBTc which appears to correspond quite well with the data. This shows clear

evidence for an increase in the size of the superconducting gap as a function of hole doping.



Chapter 6

Conclusion

Microwave cavity perturbation using new rutile dielectric resonators has allowed us to per-

form high resolution measurements of the surface impedance of highly underdoped

YBa2Cu3O6+x. These measurements have provided unique insight into the physics of un-

derdoped cuprate superconductors. The technique and the apparatus used in making these

measurements is described in Chapter 2 of this thesis.

In Chapter 3 the chemistry of YBa2Cu3O6+x is discussed, with an emphasis on the

nature of the hole doping mechanism. The beauty of this mechanism is that it allows for a

doping study to be performed on a single sample, with no change in oxygen content or cation

disorder. This then allows us to study the intrinsic properties of YBa2Cu3O6+x, without

being bothered by sample-to-sample variations, and in the future will lead to doping studies

throughout the YBa2Cu3O6+x phase diagram.

Chapter 4 lays out the first set of results, discussing the doping and temperature depen-

dance of the in-plane superfluid density, which displays a linear temperature dependence,

confirming d-wave pairing and showing a clear lack of 2- or 3- dimensional critical behaviour.

Among the other results discussed are the effects of strong scattering, a sublinear correlation

between Tc and ρs0, and the possibility of a phase transition as the doping is varied. These

results challenge existing phenomenology, and will likely form a foundation for the proper

understanding of the underdoped cuprate superconductors.

Finally, the results of a two-fluid analysis are discussed, showing a doping independent

transport relaxation rate and evidence for a small superconducting gap that is proportional

to Tc. This last result has motivated a collaboration with Dr. J. S. Dodge to look for the

absorbtion edge using terahertz radiation.
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Appendix A

The Cavity Perturbation

Approximation

In this appendix it is shown how cavity perturbation can be used to obtain direct mea-

surements of the surface impedance Zs, the permittivity ε, and the permeability µ of small

samples placed in the fields of a microwave resonator.1 The utility of the technique lies in

its simplicity — changes in the complex quantities Zs, ε and µ are directly proportional to

shifts in the resonant frequency f0 and bandwidth fB of the microwave resonator.

The methods of Altshuler[7] and Ormeno et al.[45] are used in the following. The

subscripts 1 and 2 denote the configurations before and after the perturbation, respectively.

Although a continuous wave source is used to sweep out the frequency response of the

resonant modes, the experiment is actually probing the free-decay response of the resonator.

It is therefore convenient to use a complex-exponential notation in which, for example, the

time dependance of the magnetic field is given by ~H(t) = <{Heiω̃t}. Here H is a complex

phasor vector field and ω̃ = ω′+ iω′′ is a complex angular frequency with positive imaginary

part. The Fourier transform of this time dependance is a Lorentzian centered at f0 = ω′/2π,

with full width at half maximum fB = ω′′/π.

The integral over the cavity volume∫
V
{E1 · ∇ ×H2 −H2 · ∇ ×E1 + H1 · ∇ ×E2 −E2 · ∇ ×H1}dV (A.1)

1Zs, ε and µ can be treated as scalars, because we usually align the symmetry axes of single crystal
samples with the microwave field polarization.
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can be converted to a surface integral over the cavity walls using the divergence theorem,

resulting in ∫
S
[H2 ×E1 −H1 ×E2] · n̂ dS, (A.2)

where n̂ is the outward pointing normal to the surface.

The surface impedance relates the tangential components of the electric and magnetic

fields at the surface and is formally defined by

Et = Zsn̂×H, (A.3)

allowing A.2 to be rewritten as∫
S

[Zs1H2 × (n̂×H1)− Zs2H1 × (n̂×H2)] · n̂ dS. (A.4)

Using the identity A× (B×C) = B(A ·C)−C(A ·B) this becomes∫
S

{
Zs1 [n̂(H2 ·H1)−H1(H2 · n̂)]− Zs2 [n̂(H1 ·H2)−H2(H1 · n̂)]

}
· n̂dS. (A.5)

The high-frequency fields deep inside the metal surface vanish, which, by continuity of flux,

requires n̂ ·H1,2 = 0. Then∫
S
[H2 ×E1 −H1 ×E2] · n̂dS = −

∫
S

∆ZsH1 ·H2 dS, (A.6)

showing that A.1 is directly related to a change in the surface impedance of the surface

bounding the volume.

The next step is to relate the surface impedance to the complex resonator frequency,

and to changes in the electric and magnetic properties of the materials inside the resonator.

Faraday’s law in phasor form is

∇×En = −iω̃nµnHn, (A.7)

where n = 1, 2. Ampère’s law is usually written

∇×Hn = Jn + iω̃nεnEn, (A.8)

but here the conduction current density Jn = σnEn is absorbed into a redefinition of the

permittivity,2 εn → ε′n = εn − iσn/ω, so that

∇×Hn = iω̃nε′nEn. (A.9)

2This reflects that fact that at finite frequency there is no fundamental difference between free and bound
charge. To avoid spurious frequency shifts in the experiment, samples of highly conducting material should
be positioned in regions of low electric field.
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Substituting Eqs. A.7 and A.9 into A.1 yields∫
V
{E2 · (iω̃1ε

′
1E1) + H1 · (iω̃2µ2H2)−H2 · (iω̃1µ1H1)−E1 · (iω̃2ε

′
2E2)}dV (A.10)

= −i

∫
V

{
(ω̃2ε

′
2 − ω̃1ε

′
1)E1 ·E2 + (ω̃1µ1 − ω̃2µ2)H1 ·H2

}
dV (A.11)

= iω̃1

∫
V

[∆ε′E1 ·E2 −∆µH1 ·H2]dV + i∆ω̃

∫
V

[ε′2E1 ·E2 − µ2H1 ·H2]dV.(A.12)

For small perturbations E1 ≈ E2 and H1 ≈ H2. For a high Q resonance ω̃ is predom-

inantly real so that to good approximation the phase difference between E and H is ±π
2 .

Without loss of generality we set the phase of H to zero, giving the following result:∫
V

(µ2H1 ·H2 − ε′2E1 ·E2)dV ≈
∫

V
(µ2|H|2 + ε′2|E|2)dV = 4U, (A.13)

where U is the energy stored in the resonator.

Equating Eq. A.12 to Eq. A.5, substituting Eq. A.13, and solving for ∆ω̃ yields the main

cavity perturbation result:

∆f0 + i∆fB/2

≈
{

i

2π

∫
S

∆ZsH1 ·H2dS − f0

∫
V

[∆µH1 ·H2 + ∆ε′E1 ·E2]dV

}/
4U. (A.14)
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