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ABSTRACT 

Bayesian Belief networks have been used for diagnosis in some medical domains 

and in this thesis we provide a methodology for creating Bayesian Networks to predict 

Obstructive Sleep Apnea Syndrome severity. We build 3 Bayesian Network topollogies: 

by knowledge engineering, Nalve Bayes configuration and a third topology is created 

using results of the Nalve network. All networks are trained on data from 652 patients 

referred for an overnight polysomnogram. Data is derived from multiple data sources 

and includes a mix of continuous and discrete variables. We investigate the impact of 

different topologies and discretizing continuous variables, adding nodes with large 

amounts of missing values, and removing nodes from networks. 

Results show that performance is dependent on the interaction between topology 

and discretization. Node removal. increases sensitivity while node addition decrealses it. 

Keywords: Bayesian Belief Networks, Medicine, Obstructive Sleep Apnea Syndrome, 

machine learning 
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CHAPTER 1: 
INTRODUCTION AND MOTIVATION 

"Expert systems.. .involve the application of various logical and computa~;ional 

techniques of A1 to the representation of human knowledge for automated inference" [I]. 

In general, the term expert system is used to refer to a computer program that can aid 

with decision-making on a tightly delineated problem. Expert systems attempt to model 

domain knowledge in different ways and include rule-based systems, constraint-based 

systems, semantic networks, neural networks and Bayesian belief networks. Early expert 

systems focused on symbolic reasoning where logic was used to represent knowledge and 

solve problem. However, when faced with complex, real world problems, it became 

apparent that first order logic was insufficient for dealing with the uncertainty inherent in 

such problems. Different methods of handling this uncertainty include fuzzy logic, 

certainty factors, belief functions and probability theory [2]. 

Bayesian belief networks (BBNs) are useful for several different reasons. Firstly, 

they permit a graphical modelling of a network, allowing experts to concentrate on 

building a qualitative representation of a diagnostic problem before even thinking about 

quantitative specification [2]. Nodes in a graph represent random variables and directed 

edges between them represent a direct probabilistic influence of one variable over 

another. Secondly, prior knowledlge such the accumulated knowledge possessed by an 

expert, can be combined with observed data to determine the final probability of an 

expected hypothesis [3]. Learning methods exist that, from a graph, or network structure 



and a set of data, can determine the parameters (prior probabilities and conditional 

probabilities) of the network that can then be used to perform diagnostic inference. 

Obstructive Sleep Apnea Syndrome (OSAS) is a significant health problem 

worldwide and in North America, estimated to affect at least three percent of the adult 

population [4] [5]. Positive diagnosis for OSAS requires an overnight polysomnograrn 

(PSG) in a sleep clinic. Due to the paucity of sleep clinics, even those individuals that 

are referred to a sleep clinic for suspected OSAS need to wait lengthy periods of time 

before an overnight PSG can be scheduled, due to long waiting lists. In addition, the 

overnight PSG is an expensive way to diagnose individuals with OSAS. It would be 

useful to have a diagnostic system that could either diagnose patients, or prioritise them 

in terms of likely severity of illness without the requirement of an ovemight PSG. Such a 

system could take as input simple measurements that could be performed by any 

community health nurse, and responses to questions such as how sleepy the individual 

was. One of the most common symptoms of OSAS is excessive daytime sleepiness, 

which can result in significant performance decrements, costly mistakes and even death. 

The annual cost associated with sleep-related accidents in the US alone was estimated at 

$56.02 billion and is said to account for a total of 52,650,000 lost work days in 1988 [5]. 

A variety of sleepiness detection methods exist. The cheapest and easiest 

measures of sleepiness are subjective questionnaires, but these have been found to be not 

completely reliable. A more objective measure of sleepiness, the Multiple Sleep L,atency 

Test (MSLT), considered the gold standard of sleep propensity measures, is time 

consuming and as expensive to administer as an ovemight PSG. Also, it is not readily 

available to populations living away from large urban centres. The analysis of various 



eye-related parameters, both physiological and autonomic (obtained from pupillometry), 

provides a simple, short and relatively inexpensive test for ascertaining excessive daytime 

sleepiness that could be attributable to OSAS. Pupillometric data, in particular, has been 

shown to be quite reliable in discriminating between sleep-deprived and non sleep- 

deprived states in individuals, with daytime variations paralleling those of the MSLT [6], 

[7], [8], [9], [lo] and [ l l ] .  However, studies have not yet been conducted to ascertain if 

pupillometric variables can be used to differentiate between people with different 

severities of OSAS. It would be useful to have an expert system, that could combine this -- 

pupillometry data with data acquired from subjective questionnaires and simple clinical 

measurements to assist physicians, by inferring the likelihood of an individual having 

OSAS and inferring with what severity he or she is suffering. 

In this thesis, we look at the application of Bayesian belief networks to the 

assessment of Obstructive Sleep Apnea Syndrome (OSAS) severity, as represented by an 

Apnea Hypopnea Index (AHI) variable in the network. AH1 is defined as the number of 

apnea (complete blockage of the airway) or hypopnea (partial airway  obstruction)^ events 

per hour. In Section 3.2 we discuss the creation of a database from three different 

sources, including pupillometry dlata that we collected in order to assess the usefulness of 

pupillography data as a measure of sleepiness in our networks. In Sections 3.3, 3.4 and 

3.5 we discuss the selection and computation of our data variables and the creation of a 

final data set to be used for training our networks. Section 3.6 discusses how we evaluate 

our networks. In Section 3.7 we discuss building three different Bayesian belief network 

topologies ranging from a naive Rayes topology to a knowledge engineered top0 logy 

created from literature review and with the assistance of a sleep expert. We study the 



impact of network topology on a network's ability to accurately predict moderate: to 

severe OSAS. In Section 3.8 we investigate how different strategies for discretizing the 

networks' continuous variables a.ffect their predictive abilities. Section 3.9 discusses 

investigating the impact of adding nodes with very sparse data values (large amounts of 

missing data) or moderate amourits of missing data to an existing network. In section 

3.10 we then look at the effect of removing existing nodes representing variables with 

low correlation to AH1 from the network. Chapter 4 shows how we evaluate these BBNs 

using cross validation and compare performance in predicting moderate to severe OSAS, 

using measures of sensitivity, specificity and positive predictive value. 



CHAPTER 2:LITERA'I'URE REVIEW AND BACKGROUND 

2.1 Obstructive Sleep Apinea 

The term apnea is derived from the Greek word for the absence of breath. First 

discovered by European scientists in 1965 [12], it comes in two varieties. 

The first, and most rare, is called central apnea. This term includes several 

disorders which are characterizedl by the lack of effort to pull air into the lungs when 

sleeping, either due to the diaphragm, the brain or the nerve connection between the two 

[12]. Essentially when a sufferer sleeps, they stop breathing. A common form of' central 

apnea is known as Cheyne-stokes respiration. 

By far, the most common form of apnea is called Obstructive Sleep Apnea 

Syndrome (OSAS). It is caused by the laxity of the muscles that dilate the upper airway 

(pharynx) during sleep. Normally, the laxity of the muscles of the upper airway increases 

when a person is sleeping, resulting in a narrowing of the airway. In normal people, this 

does not impede beathing. However, in some individuals, this narrowing can be so 

extreme at some points that it effectively blocks the air passages to the lungs. 

From this point forth, when the term apnea is used, it will be referring to 

obstructive sleep apnea syndrome (OSAS). 

2.1.1 Symptoms 

The typical OSAS sufferer is a middle aged, overweight man that snores loudly, 

although women, especially after menopause, and thin people can also suffer from. the 



disease. Risk factors include obesity, enlarged tonsils or lymph nodes and natura.11~ small 

airways [ 121. 

Symptoms indicating severe OSAS can include high blood pressure, 

cardiovascular problems, and most commonly, excessive daytime sleepiness (EDS). 

Other, less threatening symptoms include oesophageal reflux, frequent night time: 

urination, heavy sweating at night, morning headaches, male impotence and a red-uction 

in sex drive in both men and women 1121. 

2.1.2 Etiology and Pathogenesis 

In OSAS, the negative pressure acts on an anatomically narrow airway (usually 

due to obesity, jaw and throat abnormalities etc.) resulting in the walls of the throat are 

pulled together by the suction created during inspiration. 

As a result of the lack of air being sucked into the lungs, carbon dioxide builds up 

and oxygen levels drop sharply in the bloodstream. A normal individual's blood oxygen 

level during sleep is usually between 96% and 99%. Often OSAS sufferers are observed 

with blood oxygen levels as low as between 80 - 85% before his or her breathing 

resumes. Because cells, especially brain and nervous system cells, can die when blood 

oxygen levels drop below 90%, brain damage can be a result of OSAS [5], [12]. 

In addition to low blood oxygen, during a breath stoppage the heart may slow. In 

some cases, it stops beating for up to 1 1 seconds at a time. Also, the heart muscle itself is 

oxygen starved and as a result, can develop serious rhythm problems, the most serious of 

which is ventricular tachycardia: a wild uncoordinated rapid heartbeat. This condition is 

fatal if it continues [ 121. 



It is not until oxygen levels drop to such low levels as those mentioned above that 

the stimulation becomes intense enough to awaken the brain momentarily. Then, the 

brain panics and the sleeper struggles awake. This arousal causes tongue and throat 

muscle activation resulting in the pharynx opening, which in turn allows oxygen back 

into the lungs in a series of gasping, snorting breaths. Patients with sleep apnea dlo not 

completely awaken after all this, but instead immediately fall asleep again. After a few 

seconds, when muscle tensility of the pharyx has again decreased, snoring resumes and 

the cycle begins again, repeating hundreds of times a night. The arousals from sleep, 

though life saving, result in surges in blood pressure (equivalent of what would be seen if 

the patient were lifting heavy weights) [12] that may occur hundreds or times per night, 

night after night. Surprisingly, most OSAS sufferers have no memory of their sleepless 

night. 

There are numerous consequences to suffering from untreated obstructive sleep 

apnea. The surges in blood pressure that occur during the arousals from sleep may, over 

time lead to heart failure, strokes and cardiac ischemia. The National Commission on 

Sleep Disorders Research estimates that 38,000 heart attacks & strokes in United States 

per year are due to apnea [12]. 

In addition, there are consequences resulting from the disruption of sleep. 

Because sleep is so fragmented, it has little restorative value [12]. As such, extrerne 

fatigue and sleepiness is one of the most common symptoms of OSAS. Other symptoms 

include a depressed mood, reduced work performance, loss of motivation, inability to 

concentrate, loss of short term memory, poor stamina, inefficient problem solving 

abilities, disorientation, depression, and increased risk of accidental injuries [5]. Ptatients 



with OSAS frequently fall asleep while driving or eating, often without awareness. The 

most common danger is falling asleep while driving, with some studies suggesting that 

the accident rate of OSAS sufferers is ten times that of the general population [12]. 

2.1.3 Prevalence 

OSAS is one of most serious general health problems in America. It is also one of 

the most under-diagnosed problems in medicine. OSAS affects approximately 494 of 

middle-aged men and 2% of middle-aged women. It has been estimated that 93% of 

women and 82% of men with moderate to severe SAS have not been clinically di>agnosed 

[4l 

2.1.4 Treatment 

2.1.4.1 Continuous positive airway pressure (CPAP) 

This therapy has been the most effective way of treating OSAS for the past 15 

years. It entails putting a mask over the nose and ensuring the patient sleeps with his or 

her mouth closed. The CPAP machine gently blows air into the nose at a pressure 

slightly higher than the surrounding air pressure. The positive air pressure prevents the 

airway from collapsing during sleep. Patients often report dramatic increases of daytime 

alertness and energy after even just a few nights on CPAP [12]. 

2.1.4.2 Surgery 

Multiple surgeries for the treatment of OSAS have been proposed, including 

uvulopalatopharyngoplasty (UPPIP, a procedure that involves cutting away excess tissue 

at the back of the throat; the uvula, tonsils and parts of the soft palate), a procedure that 

combines standard UPPP with a procedure to pull the large tongue muscle forward and 



away from the back of the throat, increasing the airway diameter without any visible 

external changes or a recent treatment that involves administering radio frequency waves 

to tissue in the upper airway, resulting in an overall reduction in tissue volume [12]. 

Whichever treatment is taken, often OSAS can be completely cured, unlike many other 

serious diseases. 

Losing weight, quitting smoking, avoiding sedatives, nightcaps and allergens, 

sleeping on one's side instead of back and using a firm pillow and mattress can allso all 

help to decrease the severity of the apnea experienced, although they cannot be 

considered treatment as they do riot generally cure sleep apnea [5]. 

2.1.5 Diagnosis 

One of the major problems with making a diagnosis of obstructive sleep apnea is 

that "many doctors do not consider the possibility unless patients present with sleepiness 

plus snoring as their prime compliaints" [13]. General practitioners rarely take sleep 

histories and often, while every other possible cause for symptoms is explored, the 

possibility of a patient having OSAS is not. Often patients do not complain about sleep 

problems because they are not aware that their sleep is being compromised or the:y are 

not aware of their snoring or nocturnal apneas. 

Presently, the diagnosis of OSAS depends on a polysomnography (PSG) test. 

This is a complex test that requires one night in hospital attended by a trained sfee:p 

technician. The PSG monitors a variety ofphysiological signals including air flow, 

thoraco-abdominal movement, airflow obstruction, snoring, sleep itself, oxygen 

saturation, heart rate and body position. From these various physiological signals an 



Apnea Hypopnea Index (AHI) is calculated for the patient. This is the average number of 

total or partial blockages of the airway that occur per hour during the overnight study. 

AH1 is often used to qualifl how severe a given patient's condition is. In general, a 

patient with an AH1 less than or equal to 15 is considered to have no OSAS up to mild 

OSAS, while an AH1 over 15 indlicates moderate to severe OSAS. 

Traditionally, all of the above measurements are recorded during a sleep study for 

the diagnosis of OSAS and is too difficult to do in the patient's home. Unfortunately, this 

approach is expensive in terns of hospital space, equipment and staff. Often simpler and 

less expensive approaches are sufficient for diagnosis in many patients [13]. The most 

common is an at home overnight blood oxymetry recording. 

2.2 Sleepiness Detection Methods 

A major symptom of many sleep disorders, including OSAS, insomnia, 

narcolepsy and others is Excessive Daytime Sleepiness (EDS) ([14]. As a result, much 

research has been done to try and develop methods for detecting and quantifying daytime 

sleepiness. However, before entering into a discussion of these methods, it is important 

to note that the concept of sleepiness itself can be defined to mean different things. A 

few of these include: [15] 

A state of languor or inertness 

A subjective state of sleep need 

A physiological drive resdting from sleep deprivation 

A strong sleep propensity 



2.2.1 Sleep Propensity Measures 

The first class of sleepiness measures are based on a simple definition of sleep 

need: the greater an individual's sleep need, the sleepier they are [5]. The idea is that 

sleepiness is a state in which the propensity to fall asleep is urgent and therefore, the 

sleepier an individual is, the faster they will fall asleep [ l  51. 

The most famous such test is the Multiple Sleep Latency Test (MSLT). It 

polygraphically measures the time it takes a subject to fall asleep in a darkened room by 

- .. using the EEG pattern to tell researchers when a subject's brain enters the first stage of 

sleep [5]. Each session of the test has a maximum duration of twenty minutes and it is 

administered at two-hour intervals throughout a day. The time a person takes to fzdl 

asleep is called their sleep latency. Sleep latency seems not only to be sensitive to 

circadian fluctuations of sleepiness, but also to sleep deprivation (both total and partial) 

and sleep extension. A normal person generally falls asleep within 10 to 15 minutes, 

while a sleep latency of less than five minutes usually indicates a medically significant 

sleep disorder [5] or a situation of significant sleep deprivation. This test is considered 

the gold standard for evaluating sleepiness. However, it is not useful in diagnosing 

insomniacs [ 1 51. 

Other sleep propensity tests include the Polygraphic Index of Sleepiness and the 

Polygraphic Score of Sleepiness [l  51. These evaluate not only the propensity to fdl 

asleep, but also look at architecture of the sleep stages once a subject is asleep. 

2.2.1.1 Disadvantages 

Critiques of MSLT say that it measures only situational sleep propensity and that 

it does not clearly distinguish between normal and abnormal daytime sleepiness levels 



[5]. Also, it has been shown that some people fall asleep very easily but are not really 

sleepy. In addition, the test is very expensive, time consuming, and most sleep clinics 

have significant waiting lists for the administration of such a test. 

Based on the evidence that non-sleepy people sometimes can have very low sleep 

latencies, two other tests have been devised that test a subject's ability to stay aw,ake in 

situations of low stimulus. These are the Repeated Test of Sustained Wakefulness. 

Subjects lie in bed with the lights off, and the Maintenance of Wakefulness Test in which 

subjects sit in an armchair in a non-stimulating environment [15]. 

In general, sleep propensity tests are considered optimal tests for evaluation of 

sleepiness, both for research purposes and for use in clinics, however, the invasiv~eness 

and lengthiness of such tests, as well as the equipment required, curtail its use in applied 

and field studies. 

2.2.2 Subjective Sleepiness Detection Methods 

The second class of measures for assessing sleepiness uses subjective methods. 

These methods, often in the form of scales or questionnaires, attempt to determine how 

sleepy people feel, by asking them to self-evaluate their own physical and cognitive 

symptoms, often by getting subjects to indicate which definition from a proposed set of 

definitions most closely matches their perceived state [16]. There are two categories of 

subjective measures. The first views sleepiness as a state-related condition that fluctuates 

as a function of time of day and cim be induced by atypical situations such as sleep 

deprivation. The second views sleepiness as a steady and constant trait of a person 1151. 



2.2.2.1 Sleepiness as a state-related condition 

There are a number of scales used to assess sleepiness as a state-related condition 

and how it functions throughout the day including the Stanford Sleepiness Scale, the 

Karolinska Sleepiness Scale, the Accumulated Time with Sleepiness Scale and th~e Visual 

Analogue Scale 1151, 1161. The Stanford Sleepiness Scale, the most widely used, is a 

Lickert type scale, describing seven levels of vigilance. Subjects indicate which level 

describes their present state [15]. This scale has proven useful even for normal subjects 

and is currently the most widely used of all subjective sleepiness evaluation methods. 
- 

Unfortunately, such scales are not useful for patient diagnosis because of the fact 

that they are changeable and sensitive to circadian influences. For evaluation of 

sleepiness for the purposes of patient diagnosis, it is more useful to look at sleepiness as a 

permanent trait component. 

2.2.2.2 Sleepiness as a permanent trait component 

There are a number of sca~les and questionnaires that attempt to assess the overall 

sleepiness level of an individual, including the Epworth Sleepiness Scale, the Rotterdam 

Daytime Sleepiness Scale and the Sleep-Wake Activity Inventory 1151. 

The most commonly used measure of subjective sleepiness is the Epworth 

Sleepiness Scale (ESS) 1171. It is based on the hypothesis that all individuals are 

characterized by a constant level of sleepiness which is independent of their circadian or 

ultradian rhythms. This constant sleepiness level is evidenced by the propensity of an 

individual to fall asleep in low stimulus situations. A subject is therefore asked to record 

his or her probability of falling asleep under eight different situations. The ESS is; often 

used to reveal daytime sleepiness and has been shown to discriminate between normal 



and pathological subjects [17], [I  8land [19]. The Rotterdam Daytime Sleepiness Scale 

and the Sleep-Wake Activity Inventory have been used but have not been as extensively 

validated as the ESS. 

2.2.2.3 Drawbacks of Subjective Methods 

Subjective sleepiness evaluation methods would be ideal if they were 

unequivocally proven to be reliable, valid and sensitive to certain pathologies. 

Unfortunately, this is not the case. These methods seem to be extremely vulnerable to 

environmental andlor motivational variables 1151. Some subjects do not report 

accurately. Certain subjects overestimate the severity of their disorder [15]. Still others 

negate their sleepiness partially or completely [5]. 

The ESS was originally designed to give a subjective report of objective sleep 

propensity in daily life. However, researchers have found that while the ESS should 

differentiate between different levels of sleepiness from no sleepiness to extreme 

sleepiness, most ESS items are located at the opposite extremes of this continuum. That 

is, that the ESS does not contain enough items representing situations of an intemlediate 

sopophoric nature and hence that the sensitivity of ESS to detect intermediate levels of 

sleep propensity is limited [20]. When comparing ESS scores with objective sleepiness 

as measured by the MSLT in ten patients with OSAS it was found that there is no 

significant relationship between the ESS and the MSLT [21]. When 5 1 suspected OSAS 

patients were administered an ESS as well as an overnight PSG, it was found that while 

the ESS score correlated significantly with the overall arousal index, only a weak 

correlation was found between the ESS score and AH1 [22] .  This implies that while the 

ESS can be used to determine excessive daytime sleepiness, it cannot be used to diagnose 



obstructive sleep apnea. For this, the AH1 must also be used. In a study comparing ESS 

scores, results of overnight PSG and sleep latencies as measured by the MSLT on 225 

subjects, it was found that the ESS was correlated with total sleep time, but not with sleep 

efficiency, nor with AHI. The authors concluded that the MSLT and the ESS are not 

interchangeable as the ESS is influenced by psychological factors, while the MSLT is not 

[231. 

It seems clear that, unfortunately, there is not yet a subjective method of 

measuring sleepiness that has been unequivocally proven to be reliable and accurate. 

Therefore, one must look to objective measures of sleepiness: these are usually based on 

an evaluation of a state of decreased vigilance or on the basis of specific behavioural or 

physiological parameters [ 151. 

2.2.3 Performance1 Behavioural measures of sleepiness 

Performance-based or behavioural measures of sleepiness can be made using 

tasks in various categories including psychomotor tasks, cognitive tasks, attentional tasks 

and substitution tasks. Psychomotor tasks include the Wilkinson Auditory Vigilance 

Task, a variety of reaction time tests and tracking tasks [15]. Cognitive tests include 

addition, reasoning and memory t,ests while attentional tasks include tasks such as visual 

search [ I  51. 

2.2.3.1 Disadvantages 

As with subjective measures of sleepiness, performance measures of sleepiness 

often suffer from the problem of being sensitive to and influenced by motivational and 

environmental variables. In addition they also suffer from methodological and statistical 



problems [15]. That being said, they are often the only usable methods in field 

investigations. 

2.2.4 Pupillometry and Other Arousal Decrease Measures 

This class of sleepiness measures arose from an attempt to find more accurate 

measures of sleepiness based on physiological parameters and on the desire to as:jess 

sleepiness in awake and active subjects[l5]. These include a number of different types of 

measures. 
- -. 

The first class of arousal decrease measures looks at electro-encephalography 

(EEG) parameters, such as alpha (8 - 12 Hz), and theta (4-8 Hz) band power incr'eases 

(Alpha Attenuation Test [24]), and using evoked potentials (Eps) to evaluate vigiilance 

variations. 

Another class of arousal decrease measures uses data from electro-oculography 

(EOG). Hypovigilance, or sleepiness is characterized by changes in a variety of types of 

eye movement. Parameters that have been investigated as to their relation with sleepiness 

include smooth pursuit eye move:ments, saccades and blinks [25], [26], [27], [15], [28], 

[29l, POI. 

A third class of measures evaluates changes in the response of the Autonomic 

Nervous System (ANS) as a result of sleepiness. The most commonly used technique is 

called pupillometry. It involves quantifying parameters of both the Pupillary Light 

Reflex (PLR), the contraction of the pupil in response to visual stimuli and of the pupil's 

response to dark adaptation (sitting in a conlpletely darkened room for an extended 



period of time). These parameters have been found to be affected by fatigue and 

sleepiness [IS], [ l  11. 

In dark adaptation, a subject is sitting in a darkened room; after the eye adjusts to 

the reduced light level a broad and steady pupil diameter is typical of a normal level of 

alertness while a contracted and changeable pupil is attributed to sleepiness and hypo 

activation of the autonomic nervous system ([3 11, as cited in [15]). Generally, in an alert 

subject, the pupil remains dilated in darkness, with an amplitude of pupil diameter change 

below 0.3 rnrn and a frequency of approximately 1 Hz. In sleepy subjects, not only does 

pupil diameter decrease with time, but in addition, the pupil oscillations can reach 

amplitudes of several millimeters and the frequency of such oscillations is generally 

lower (0.8 Hz or less) [ l  11. 

Researchers have also looked at measures such as the latency to pupil con,striction 

and the amplitude of pupil constriction in response to a visual stimulus [32]. However, 

pupillometry results remain controversial as some studies have shown it is not clearly 

reliable [33],[34]. 

2.3 Review of Results of Objective Sleepiness Detection Using 
Pupillometry 

2.3.1 Background 

Pupillometers, devices that record the size of an individual's pupils over tiime, 

have been used for several decades. Lowenstein and Feinberg first observed that (luring 

pupillometry recording in the dark (dark adaptation), the pupils of sleepy subjects 



oscillated widely in size, as seen in Figure 2.1 [35]. They named this phenomenon 

pupillary "fatigue waves." These fatigue waves can be quantified both in terms clf the 

wave amplitude (the amount that the pupil diameter increases and decreases in size) and 

in terms of the frequencies of the: waves. To analyze the frequencies of the fatigue 

waves, a Fast Fourier Transform is often performed. Another observation made by these 

researchers was that the pupils off sleepy subjects decreased in size over the periold of 

dark adaptation with increasing sleepiness. This contrasted sharply with the pupillary 

behaviour of subjects deemed to be alert. In alert subjects, pupils maintained a stable size 

during dark'adaptation, as seen in Figure 2.2. This research was followed by the 

development of the Alertness Level Test (ALT), a standardized pupillometry test which 

consists of 15 minutes of pupil size recording in the dark with infrared-sensitive video 

cameras while the person sits quietly with eyes open and staring at a stationary small red 

spot [36]. 

Pupil Diameter of Suspected OSAS Patient During Dark Adaptation 
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Figure 2.1 Pupil Diameter during an 11 minute ALT on an individual suspected of OSAS 



Pupil Diameter of an Alert Subject During Dark Adaptation 
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Figure 2.2 Pupil Diameter during an 11 minute ALT on an alert subject 

In the past, researchers using the ALT have evaluated the level of sleepiness 

based on the visual inspection of graphs that depict changes in the pupil size over time; 

sleepiness was estimated by the expert doing the rating. The drawback to this was that 

ratings could vary widely between the individuals who were making a determination. 

However, in 1998, Barbara Wilhelm and her group at the pupil laboratory at Tubingen 

University published a paper detailing a set of techniques for mathematically analysing 

and quantifying the amount of pupil oscillation that occurred during an 1 1 minute ALT 

[37]. One such measure is the Pupillary Unrest Index (PUI). The PUI, because it allows 

a pupillary recording of dark adaptation to be objectively summarized in terms of the 

average amount of pupil oscillation over time, permits a mathematical comparison of the 

amount of oscillation between individuals as a measure of pupil size change in 

millimeters per minute. This opened the door for the use of pupillometry as an objective 



measure of sleepiness. A summary of studies performed to investigate the relationship 

between parameters of dark adaptation and sleepiness can be found in Table 2.1, Table 

2.2, Table 2.3 and Table 2.4. Table 2.1, Table 2.2 and Table 2.3 summarize studies 

investigating pupil dynamics during dark adaptation. Table 2.1 summarizes the data on 
I 

Pupil diameter studies. Table 2.2 summarizes the data on pupil miosis studies. Table 2.3 

and Table 2.4 summarize the data on studies examining the pupillary unrest index (PUI). 

Table 2.5 and Table 2.6 deal with studies looking at pupillary dynamics during the 

pupillary light reflex. Table 2.5 summarizes data from studies investigating pupil 

constriction latency and Table 2.6 summarizes data from studies investigating pupil 

constriction amplitude. 

Table 2.1 Pupil Diameter Studies 

tesearch Studs 
Wilhelm, H et al, 
1998 

Subject Group l~arameter evaluated: pupil diameter 
Normal (7 subjects) 

am until 1 1 :00 pm not correspond to subjective sleepiness 

always larger, 
morning test: (6.04mm (+-0.72), 
afternoon test: 5.99mm (+- 0.6 1) pm test 

- 
hypersomniac (3 narcoleptic 

subjects, 4 OSA subjects ) 

normal pupil measurements 
taken repeatedly over 5 days 
at the same time of day(l0 

. .. ................. . -- 
always smaller, but diff not statistically significan 
(only 7 subjects) 
morning test: 5.85mm (+- 0.7) , 
afternoon test: 5.62mm (+- 0.67) 

(from 1994 study looking at avg. over 5 days: 6.5 
+I- .89,6.8 +I- .93,6.7 +I- .87,6.6 +I- 1.09, 6.84 
+I- 1.25) 

Control period (57 subjects) 

7 days partial sleep 
deprivation (four groups 

restricted to 3,5, 7 or 9 hours 
in bed) (57 subjects) 

the means of the four groups were between 5.4mn 
and 5.9mm 
after 7 days, average initial pupil diameters: 3hr: 
5.3mm, 5 hr: 5.7mm, 7 hr: 5.5mm, 9 hr 5.lmm, 
only the 9 hour group showed a significant 
decrease in pupil diameter (p<0.05, these were no1 
sleep deprived) 



Table 2.2 Pupil Miosis During Dark Adaptation Studies 

Research Study 

Richmond, Jack w 
EyeCheck -. -. - . ........ 

Merritt, SL et a1 1999 
and 1998 

Subject Group l~arameter evaluated: pupil diameter rniosis 

............. ................ - -. 
correlate significant1 y (p<.0 1 ) 

Normal (48 subjects) 

measurements taken 4 times given at 2 pm, than those given at 10 am, 12 noon 
during day to observe I and 4 pm. This parallels the results of the MSLT 

during dark adaptation 
Note: specific numbers not given 

circadian effect land Maintenance of wakefulness test, (no specific 

fi ]numbers given) - 

Table 2.3 Pupillary Unrest Index During Dark Adaptation Studies 

Research Study 
Wilhelm, H et al, 
1998 - - .... -. . ................................. 

Merritt, SL et a1 

Danker-Hopfe, 
Kraemer et a1 
200 1 

I [ l  llwilhelrn, B., 
Wilhelm, H. et al. 

Wilhelm, H. et al. 

Parameter evaluated: pupillary unrest 
index (PUI) (variability of pupil diiameter 

Normal (7 subjects) ......................... ...................................................... 

hypersoinniac (3 
narcoleptic subjects, 4 

OSA subjects) 
Normal subjects (9 

subjects) measurements 
taken 4 times during day 

to observe circadian 

afternoon ... test: .. - 4.90 ........................................... d m i n  - (+- 1.75) ...................................... .. - ............ 
much higher 
morning test: 9.07 d m i n  (+- 1.8 l), 
afternoon test: 9.74 d m i n  (+- 3.59) 
increase in pupil size oscillation at 2 pm 
10 am = 5.91 mdmin  (+- 2.5), 
noon: 7.32 d m i n  (+- 3.5), 
2 pm: 11.24 d m i n  (+- 7.9), 

Normal (1 3 subjects, 5 
females, 8 males) 

effect 

PUI increases significantly with increased 
sleep deprivation 

4pm: 7.52 mdmin  (+- 2.4) 
- increased coeff of variation of pupil diam, 

35 male OSAS patients 
before and after 3 months 

of nCPAP treatment 

Significant decrease in PUI after 3 months 
(one sample t-test, p<0.12) of nCPAP 



Table 2.4 Relative Pupillary Unrest Index During Dark Adaptation Studies 

Table 2.5 Pupil Constriction Latency During Pupillary Light Reflex Studies 

7 days partial sleep 3 hr group: 302 msec, 



Table 2.6 Pupil Constriction Amplitude During Pupillary Light Reflex Studies 

1 
Research Study Subject Group 
Dal Santo, Normal level of alertness 
Tousman et a1 1997 .- (self-assessed) .................. 

6 

deprivation (four groups 
restricted to 3 ,5 ,7  or 9 increased signif in 3 hr group after 7 days: 3hr: 

hours in bed) (57 subiects) 1.2. 5 hr: 1.245. 7 hr: 1.243. 9 hr: 1.33 mlm 

Parameter evaluated:amplitude of pupil 
constriction during pupillary light reflex 

subjects, not known 
how many in what 
group) 
Richmond, Jack w 

EyeCheck . ........... 

Russo, Thomas et 

Pupillometry can also be used to quantify the eye's response to a visual st:imulus. 

After a period of dark adaptation, the eye is subjected to a series of light flashes (the 

fatigue (selfassessed) in 
truck drivers 

Normal .... subjects (48) ..................................... 
24 hour sleep deprived (48 

same subjects) 

number of flashes, and time over which the flashes are shown varies depending on 

larger in self-assessed fatigued 

- ........... 

researchers). When light is focused upon the eye, the pupil constricts. This is called the 

direct light reflex. At the same tirne, the pupil of the other eye constricts too, and that is 

the consensual light reflex. There are a number of parameters that can be measured in 

this pupillary light reflex. These include the following: 

Constriction latency (time to initiation of pupil constriction) 
Time to minimum (time for the pupil to get to its position of maximum 
constriction 
Maximal constriction of pupil size during the response 
Reflex amplitude percentage (pupil constriction as a percentage) 

The Pupillary Light Reflex parameters have also been investigated as to their 

sensitivity to sleepiness and have been summarized in Table 2.5 and Table 2.6. 



2.3.2 Pupillometry as an Objective Measure of Sleepiness 

Krichmar, Thomas et al. [7] found that the second largest contributor to an index 

score of sleepiness based on oci.domotor measures was an increase in the latency of 

response of the pupillary light reflex as shown in Table 2.5, Row 3. 

Danker-Hopfe, Kramer and their group [8] examined mean pupil diameter, its 

coefficient of variation and the piupillary unrest index during dark adaptation. They also 

looked at the square root of the power within the frequency band 0.1 - 0.8 Hz in pupillary 

oscillations and how it varied with time of day. They then analysed how these variables 

inter-related with the MSLT and the Stanford Sleepiness Scale. What they found was 

that the MSLT and pupillometric variables seem to measure the same dimension (sf 

sleepiness, whereas the Stanford Sleepiness Scale showed an almost opposite patlern of 

time of day variation. A decreased pupil diameter, increased coeficient of the variation 

of pupil diameter, increased Pupillary Unrest Index and an increase in fatigue waves of 

frequencies below 0.8 Hz were all deemed to be indicators of increased sleepiness, as 

measured by the MSLT as shown in Row 4 of Table 2.1 and Table 2.3. However., the 

variation of such indicators did not correspond with subjective sleepiness as measured by 

the Stanford Sleepiness Test. 

Dr. Sharon Merritt and her group at the Center for Narcolepsy Research have 

done many studies using pupillometry. One study validated the reproducibility of' 

Pupillometry measurements by testing a group of normal controls at the same time of day 

for five consecutive days. No diflference in mean pupil diameter and mean PUI w,as 

found between days, indicating that individuals who maintained a consistent sleep 

schedule also had a consistent pupil diameter and pattern of pupil oscillation. Subsequent 



studies have found that there is a significantly greater decrease in pupil size and 

significantly more oscillation in pupil size during the Alertness Level Test (ALT) 

administered at two p.m. as compared to those assessed at ten am, noon and four p.m. 

This parallels sleep latency as assessed by MSLT and indicates that both the magnitude 

of the decrease in pupil size and increase in pupil size oscillation during the Alerfness 

Level Test are sensitive to circadian changes in the level of alertness [lo] [9] as shown in 

Row 3 of Table 2.1. This same group also looked at increases in theta brain wave 

activity and how this correlated with decreases in pupil size in untreated narcoleptics, 

untreated obstructive sleep apnea and normal control subjects, as shown in Row 3 of 

Table 2.2. They found that for both narcoleptics and OSAS subjects the amount of theta 

activity was significantly greater for pupil stages corresponding to the largest decrease in 

pupil size, whereas in controls, th~e amount of theta activity did not increase signilicantly 

by pupil stage 1391. 

The Pupil Research Group at the Tubingen University in Germany has also 

conducted many pupillometry studies. One early study looked at the dark adaptation of 

the pupils of healthy subjects forced to remain awake from 7 pm to 7 am. During this 

period, their pupillary behaviour was recorded every two hours. It was found that the 

power of slow pupillary oscillations (<= 0.8 Hz) and PUI increased significantly, *as did 

subjective sleepiness as assessed ,with the Stanford Sleepiness Scale as shown in Fkow 4 

of Table 2.3 [ l  I]. The group performed a similar study of dark adaptation and found that 

the pupillary unrest index, as well as the mean value of summed power values of 

frequencies below 0.8 Herz were significantly different when comparing a group of 

normal subjects with a group of hypersornniacs (narcoleptics and OSAS patients) 1401, as 



shown in Row 1 and 2 of Table 2.3. They also performed studies using pupillometry to 

investigate the effects of nCPAP treatment in obstructive sleep apnea patients. The first 

such study examined 35 patients with OSAS the day before therapy and again afi;er after 

three months nCPAP treatment. They found comparison of morning values (1 0 am) in 

PST showed a significant reductilon (mean 2 1 %) of the PUI, whereas before the rCPAP 

therapy, the morning PST had been the same as those at the afternoon PST as shown in 

Row 5 of Table 2.3. There was very little change in the PST results for the afternoon and 

evening tests [38]. 

2.4 Bayesian Networks 

Knowledge-based expert systems involve using various techniques of Artificial 

Intelligence in order to represent human knowledge for automated inference; that is, to 

formalize human expert knowledge in an attempt to improve human decision by allowing 

computer-based reasoning to do much of the work. 

Especially when modelling human disease, its symptoms, diagnosis and co- 

variables, the goal of researchers is to investigate causal connections, the relative 

strengths of those connections and how to infer them from real, noisy observations. 

Disease pathologies are often rife with exceptions and lack of regularity. Not all patients 

suffering from a given disease exhibit all the usual diagnostic symptoms. Almost all 

symptoms can be manifested in response to multiple diseases. The connection between 

diseases and symptoms cannot therefore be easily summarized by first order logic for two 

reasons: 

Abduction confounds diagnosis. Abduction is the logical process of 
inferring a 'best explanation', or in our case, the most likely disease, from 



a set of known facts (or symptoms). The problem is that there can be 
many explanations for a given observation (test result, or symptom). It is 
unusual that the manifestation of a symptom is proof-positive of the 
existence of a specific disease. Instead, it is usually the observation of 
several symptoms together that make it 'highly likely' that a patient had a 
certain disease. 

Even if all the rules were known, there may still be uncertainty about a 
particular patient because not all possible tests have been run. [41] 

Our thesis develops Bayesian networks for the purpose of OSAS assessmlent. An 

example of a Bayesian network can be seen in Figure 2.3. This network displays a 

number of diseases (AHI, as a stand-in for OSAS, PLM and Depression), a number of 

symptoms (High Blood Pressure, Oxygen Desaturation) as well as a number of variables 

that are thought to impact OSAS prevalence(Snoring, resulting from a narrow airway 

which is thought to increase the chances of having OSAS). 

Figure 2.3 Bayesian Network for Prediction of OSAS Severity 

Any expert system that hopes to aid in diagnosis must take these factors into 

account and deal with the uncertainty due to incomplete or conflicting data andlor 



models. "Probability is a 1angua.ge for expressing uncertainty about propositions. and 

quantities in terms of degrees of belief' [I,  p.651. It is a language that distinguis:hes 

various shades of likelihood and provides a method of summarizing the uncertainty 

inherent in a given domain, such as medicine. 

2.4.1 Overview of Probability Theory 

A probability is "simply a number expressing the chance that a proposition is true 

or that some event has occurred, with a value in the range from 0 (certainly  false)^ to 1 

(certainly true)." [l ,  p.651 There are three different views of probability. The first is the 

propensity or objectivist view; where probability is a physical property of something, a 

propensity of an object to behave in a certain way - for example the tendency of a given 

coin to land heads up in a sequence of coin tosses. The second is the frequency view, 

where probability is a property of a population of similar events - for example, the 

fraction of head's in a series of coin tosses. In this view, probability numbers can only 

come from experiments. The third view of probability is the subjective view, where a 

probability is defined as an expression of a person's degree of belief in a proposition or in 

the occurrence of a given event, based on the person's current information. It does not 

necessarily have any external physical significance. Using the coin example, a 

subjectivist would start with some prior belief about the tendency of a given coin to land 

head's up. As data is collected (by doing many coin tosses), this belief is updated based 

on the data being observed. After much data is gathered, in general the belief of the 

subjectivist will tend converge to the actual fraction of head's landing up as the data 

overwhelms the prior belief, and thus the subjectivist will agree with the frequentist. The 

major difference between the two., is that subjectivists are "willing to assign probabilities 



to events that are not members of any obvious repeatable sequence" [I, p.651 whereas the 

fi-equentist is not [41], [I]. 

Problems in the medical domain, as with most other judgmental domains, almost 

always involve events or quantities for which empirical data is either unavailable or too 

expensive to collect, making the fi-equentist view of probability impractical for the 

construction of useful expert systems. However, when one takes the subjectivist view of 

probability, expert opinion and knowledge, built up over years of experience, can be used 

to help create useful systems that can be applicable even when there is little data 

available [I, p.661. There are also techniques to combine data, when it becomes 

available, with judgement to revise these subjective probabilities and refine a knowledge 

base. 

2.4.1.1 Definitions 

A few preliminary definitions will be useful for subsequent discussion. These 

definitions are taken from [4 1 1. 

Proposition: a sentence that can take on the values true or false 

Elementary proposition: a proposition where one random 
variable takes on a value. E.g. Weather = sunny. Elementary proposition:; 
can be combined using standard logical connectives to form complex 
propositions. 

Random variable: the basic element of probability language, which refers 
to a part of the world, whose value is initially unknown. There are three 
kinds of random variables: 

Boolean random variables: random variables that have the: 
domain <true, false>. An  example of this in Figure 2.3 is the variable: 
"High Blood Pressure", which can take on the values of true or false. 



Discrete random variables: random variables that take on values 
from a countable domain. These values must be mutually exclusive and 
exhaustive. An example of this in Figure 2.3 is Gender, whose states can 
be <male, female>. 

Continuous random variables: random variables that take on 
values fi-om real numbers. Examples of this in Figure 2.3 include Age, 
Snoring, AHI, BMI and ESS. These are often measurements of some 
kind. 

Domain: a set of values that a given random variable can take on. For 
example the domain of gender is (male, female). 

Atomic Event: a compllete specification of the state of the world, an 
assignment of particular values to all the random variables of which the 
world is composed. Atomic events are mutually exclusive and exhaustive. 

Prior1 unconditional probability: the degree of belief accorded to .a 
proposition in the absence of any other information. E.g. P(a) 

Posterior1 Conditional probability: the degree of belief accorded to ;a 
proposition given a certain piece of information. E.g. P(a1b) means the 
probability of a, given that all we know is b. 

If P(a I b) = P(a), we say that propositions a and b are absolutely 
independent. [42]. This can also be expressed as P(a, b) = P(a)P(b) and P(b 
I a) = P(b) . 

If P(a 1 b,c ) = P(a I c), we say that a and b are conditionally independent 
given c [42], meaning that once c is known, learning b does not change our 
belief in a. 

Probability distribution: a vector of values for the probabilities of each 
individual1 state1 value of a given random variable. For continuous random 
variables, these are instead referred to as probability density functions 
because these variables can take on infinitely many values. Instead, the 
proba~bility that a random variable takes on some value x is usually a 
parameterised function of x. 

Joint Probability Distribution: a vector denoting the probabilities of alll 
possible combinations of values of a set of random variables. When the: 
set of random variables is the complete set used to describe the world, this; 
is referred to as the full joint probability distribution. 



2.4.1.2 Notation 

Capital letters will be used for random variable names (X, Y, Z, . . .) and 

lowercase letters (x, y, z, . . .) will be used for specific values taken by the variables X, Y, 

Z, . . . respectively. Propositions (X = x) will be represented by lowercase italicised 

letters (a, b,c, . . .). When discussing sets of variables, capital, italicised letters will be 

used (X, Y, Z, . . .) 

2.4.1.3 Rules and Axioms of Probability 

There are three basic axioms of probability calculus. These are often called 

Kolmogorov7s axioms. 

I. All probabilities are between 0 and I 

11. Necessarily true propositions have probability 1. Necessarily false 
propositions have probability 0 

111. P(a OR b) = P(a) + P(b) - P(a, b) where P(a, b) is short for P(a AND 
b) 

Assuming that all variables have finitely many values (are not continuous), other 

rules can be derived from these axioms. For example, any probability distribution on a 

single random variable must sum to 1. This follows from axiom 11). This can be 

extended to saying that any joint probability distribution on any set of variables must sum 

to 1 1411. 

Also, axiom 11) and 111) can be used together with the knowledge that any 

proposition is equivalent to the disjunction of all the atomic events (which are mu~nally 

exclusive) in which it holds (referred to as e(a) ) to derive the following relationship: The 



probability of a proposition is equal to the sum of the probabilities of the atomic events in 

which it holds [41]. What this means is that if we have a full joint distribution specifying 

the probabilities of all atomic events, it is possible to compute the probability of ,any 

individual proposition within the joint distribution. 

Another useful and comnnon calculation is, given a full joint distribution, to 

calculate the probability distribution of a single variable or a subset of variables. This is 

called the marginal or unconditional probability of a variable (or subset of variables). 

For any sets Y and Z, the marginal probability of set Y is given as: 

P(Y)=CzP(Y,z) [411,[421 

When one has conditional probabilities instead of a full joint probability 

distribution, P(Y) can be calculated using a rule called conditioning which is applied in 

conjunction with the product rule governing conditional probabilities. 

The product rule is given as: P(a]b) = P(a AND b) / P(b), which can also be 

written as: 

P(a AND b) = P(alb)P(b) = P(b I a) P(a) 

The product rule can also be applied to distributions. P(X I Y) is defined as the 

probability distribution representing the set of probabilities P(X = xi I Y = Yj) for each 

possible i, j and is represented as: P(X , Y) = P(X I Y) P(Y). 

Conditioning is defined as: P(Y) = Cz P(Y I z) P(z) 

2.4.2 Bayes' Theorem 

In many cases, expert systems are interested in computing the probability of 

seeing a specific value of some random variables, given evidence about others. This is 



referred to as computing the conditional or posterior probability of proposition a given b 

denoted P(a(b) and is defined above in section 2.4.1.1. 

As we saw previously, the product rule is defined in terms of conditional 

probabilities. Bayes' theorem is derived from the product rule and given by the e'quation: 

Bayes rule is useful because it provides a method of computing a posterior 

probability of a certain proposition based upon its prior probability and the conditional 

probability of seeing certain evidence given the proposition is true; a way for updating 

beliefs in response to evidence [4.2]. 

It is also possible to use Bayes' theorem to derive the probability of a proposition 

given two or more pieces of evidence. However, this requires, for n pieces of evidence, 

knowing the conditional probabilities for 2" possible combinations of observed vadues, 

which quickly becomes infeasible. What is needed are ways of simplifying expressions. 

Independence allows such simplification. 

If proposition a is absolutely independent of propositions b,c i d  d then the joint 

probability distribution is given by: P(a, b,c,d) = P(a)P(b,c,d). That is, the full joint 

probability distribution can be factored into two smaller distributions. Unfortunately, 

many random variables are not absolutely independent. However, many random variables 

are conditionally independent of each other, given another random variable (see section 

2.4.1.1 for a definition). This is given by the equation: 



In this equation, both a and b are affected by c, but neither has a direct effect on 

the other. That is to say, that the: probability distribution governing a is independent of 

the value of b, given a value for s: [3]. Conditional independence is useful because it 

simplifies probability calculatior~s. The information required to compute the probability 

of posterior probability of proposition c given two pieces of evidence is the same as that 

required to compute the posterior probability of c for each piece of evidence individually 

if those two pieces of evidence are conditionally independent given c [41]. This :is given 

by the formula: 

Conditional independence also allows a decomposition of the full joint 

distribution into smaller components. For n pieces of evidence all conditionally 

independent given a certain proposition, the size of the representation of the full joint 

distribution does grow, but only linearly as opposed to exponentially as we had before. 

"Conditional independence assertions can allow probabilistic systems to scale up; 

moreover, they are much more commonly available than absolute independence 

assertions" [41]. This is especially useful when trying to model medical knowledge 

because it is often based on the notion that a symptom is a stable characteristic of a given 

disease and is fairly independent of other factors [42]. Also, combinations of disease do 

not occur very often [43]. If one assumes that diseases are mutually exclusive, it js 

possible to model different diseases as different values of a single disease variable or 

node in the network. If, on the otlher hand, one wishes to allow for multiple diseases to 

be present at the same time, and possibly sharing the same symptoms, one can have one 

variable or node in the network for each disease. In our network, Figure 2.3, the nodes 



PLM (Periodic Limb Movement), AH1 (a stand-in for the OSAS diagnosis) and Diabetes, 

all represent different pathologies, and each one affects the ESS node, which repiresents 

subject sleepiness in the network:. 

2.4.3 Bayesian Networks 

2.4.3.1 Introduction 

A Bayesian network (also known as a belief network or a probabilistic network) is 

a data structure used to give a compact graphical representation of the full joint 

probability distribution of a set of random variables. It is a directed graph where [44] 

a node represents a random variable, either discrete or continuous 

a set of directed arrows connects pairs of nodes. If there is a:n 
arrow from node X to node Y, X is called the parent of Y. 

each node Xi has a conditional probability distribution P(Xi I 
Parents (Xi)) that quantifies the effect of its parents on it. For 
discrete variables, this is represented as a conditional probabilit:y 
table, where each row contains the conditional probability of each 
node value for a possible combination of values of its parent nodes. 

The graph is directed and acylic. 

These graphs play a key role in the decomposition of large probability distribution 

functions because they provide a visual representation of the sets of random variables that 

are relevant to each other in any given state of knowledge [42]. Bayesian networks allow 

conditional independence statements that apply to subsets of variables, as opposed to all 

variables [3]. The topology of the Bayesian network specifies the conditional 

independence relationships that hold within that world. Combined with a conditional 

probability distribution for each child node given its parents and prior probability 



distributions for source variables (nodes with no parents), the topology of the Bayesian 

network is sufficient to specify the full joint probability distribution for all of its 

component variables [44]. 

Given a distribution P defined on n discrete variables XI, X2, . . . Xn, the 

probability of a conjunction of particular assignments to each variable P(xl, . . . x,,) is 

given by: 

P(xl, . . . x,) = ll fro, i = 1 to ,, P(xi I parents(Xi) 

where parents(Xi) denotes specific values of the variables in Parents(Xi). This 

implies that each entry in the full joint probability distribution can be calculated by the 

product of the appropriate elemeints of the conditional probability tables in the Balyesian 

network, and thus that the Bayesiian network can answer any query about the given 

domain [44]. 

One of the main advantages of Bayesian networks is that they are often much 

more compact than the full joint distribution. If a network contains n Boolean variables 

and each variable can be influenced by at most k other nodes, the amount of information 

needed to specify each conditional probability table for each node is at most 2k and the 

complete network can be specified using n2k numbers. By contrast, a full joint 

probability distribution contains 2" numbers. However, it is often possible to reduce the 

numbers needed to specify a Bayesian network even further. Deterministic nodes (nodes 

whose value is exactly specified by the values of their parents) often require no 

conditional probability tables because their values can directly be calculated from their 

parents' values using a formula. Noisy-OR logical relationships can also be used to 

reduce the size of the conditional probability table of a random variable which depends 



on k parents from 2"umbers to k numbers [44]. A noisy-OR represents the situation 

where each boolean parent of a boolean node has some probability of being sufficient to 

cause the child node to be true, and the event of a given parent Pi being true is 

independent from the event of each other parent Pj being true. The noisy-OR relationship 

is often used to represent causal irelationships such as those where several differeint 

diseases can each cause a common symptom [I,  p.761. When using the noisy-OF: 

relationship, it is often useful to introduce a leak node which can be used to represent 'all 

other unknown causes7. It is used to encode the probability that a given effect/ symptom 

can occur in the absence of any cause explicitly represented as a random variable in the 

Bayesian network topology [I, p.761. 

Bayesian networks allow the decomposition of complex subjective judgments into 

simpler subjective judgments about the probabilities of component events. The 

components of the model are then reassembled and the Bayesian network used to infer 

probabilities implied by these simpler judgments in order to facilitate the making of 

complex subjective judgments [I., p.671. In medicine these systems are used for aiding in 

diagnosis: inferring the most probable cause of an observed problem given a set of 

symptoms, patient history, physical signs and test results. They are especially useful in 

the medical domain because they allow the creation of a probabilistic network using 

expert knowledge of causal dependencies in a given domain but can then be used for 

diagnostic inference (predicting probabilities in the reverse direction from effect to 

cause). Bayesian networks also easily support intercausal inference (when the increased 

belief in one possible cause of an observed effect decreases the belief in another possible 

cause of the same effect) [I ,  p.711. 



2.4.3.2 Constructing Bayesian Network Topology 

When building the topology of a causal Bayesian network (one whose links 

represent represent causation between variables), it is important to add nodes in the 

correct order; nodes representing 'root causes' (diseases in the medical domain) are input 

first, then the variables those 'root cause' nodes influence are added and so on until leaf 

nodes are added (nodes which have no direct causal influence on any other variables in 

the network) [44]. If instead, a diiagnostic model is built with links from symptoms to 

causes1 diseases, the resulting network not only has far more links (dependencies), but 

often the numbers representing the conditional probability tables for these additional 

links will also be more difficult to obtain. 

Properly constructed causal Bayesian networks satisfy the following 

specifications: 

a node is conditionally independent of its predecessors, given its 
parents 

a node is conditionally independent of its non-descendants, given 
its parents 

a node is conditjonally independent of all other nodes in the 
network, given its Markov blanket (this consists of a node's 
parents, a node's children and the node's childrens' parents) [44] 

Another equivalent criterion for a properly constructed Bayesian network 1.s called 

d-separation and is discussed in more detail in [42]. 

2.4.4 Learning with Bayesian Networks 

There are four major types of problems that Bayesian networks are often wed for. 

The first is to infer the probabilities of seeing specific values of some target variable(s) 



given the known values of the random variables in the network. In this situation, the 

network topology, as well as prior and conditional probabilities are all specified. The 

three other types of problems involve learning Bayesian networks from data. Once this is 

successfully accomplished, the resulting Bayesian network can then be used to answer 

problems of the first type. In the simplest situation, a network topology is given in 

advance and prior probabilities as well as conditional probabilities have to be inkred 

from a set of training data. The second is to infer the probabilities of seeing specific 

values of some target variable(s) in networks with hidden variables. These are variables 

that are not directly observable in the data that is available for learning or from expert 

opinion as a prior probability. These hidden variables often represent, in the medlical 

domain, the disease itself; while it isn't directly measurable, it is affected by other 

random variables in the network and can affect other random variables in the network. 

The third type of problem involves learning the actual structure of the Bayesian network 

from data. 

2.4.4.1 Inference in completely specified Bayesian networks 

This represents the situation where the Bayesian network is used to infer the value 

of some target variable(s) based on some evidence (a set of observed values for some 

other variables in the network). This task involves the probability that a random variable 

will take on each of its possible values given the observed values of other variables [3]. 

This is very straightfonvard when dealing with a full joint probability distribution. 

If X is the query variable, E the set of evidence variables with e the observed values for 

them and Y the set of unobserved variables, the probability distribution for X is given by: 

P(X I e) = P(X, el = 1 SUM, P(X, e, y) 



However, as mentioned previously, this requires an input table of size O(2") and 

takes O(2") time. Bayesian networks can be used instead to infer the probabilities. 

Exact inference can be performed using a Bayesian network by computing the 

sums of products of conditional probabilities of the nodes in the network [44]. This has 

been shown to be NP hard 1451. Methods for exact inference include the variable 

elimination algorithm and join tree algorithms (a form of clustering algorithms) 1441. 

Alternatively, approximation methods can be used in an attempt to be moire 

efficient. Randomized sampling algorithms, also called Monte Carlo algorithms ,generate 

a random sample of network instantiations and estimate probabilities fiom this sample [ I ,  

p.801. Another class of approximate inference algorithms uses a heuristic search to find 

hypothesis that best explain observed findings [I ,  p.801. 

2.4.4.2 Learning parameters with complete data 

This problem involves inferring prior probabilities as well as conditional 

probabilities fiom a set of training data when a network topology is given in advance. 

One standard approach is to do maximum likelihood parameter learning. This involves 

deriving an expression for the likelihood of the data as a function of the unknown 

parameters of the network (the probabilities). Then, the parameter values are those for 

which derivative of the log likelihood with respect to each parameter is zero. Essentially 

there is a separate learning problem for each parameter of the network [46]. However, 

the problem with this method is that when the data set is small and certain events have 

not yet been observed, this method assigns a zero probability to those events 1461. 



Another approach is to estimate the conditional probability table entries using a 

nake Bayes classifier. In this model, the parameter to be predicted is the class variable C 

and is the root. Attribute variables are the leaves and are assumed to be conditionally 

independent of each other, given the class variable. With these assumptions, the model is 

trained using maximum likelihood parameter values as described above. Once this is 

accomplished, the model can be used to classify new examples for which the class 

variable C is unobserved. This r ake  Bayes classifier works fairly well, scales well to 

large problems and deals easily with noisy data [46]. 

2.4.4.3 Learning in the presence of hidden variables 

Many real problems are fkced with the situation where only a subset of a given 

Bayesian networks' variables are observable fiom data. This is very common in the 

medical domain. While symptoms observed are included in the data, there is often no 

direct observation of the disease itself. One could attempt to construct a Bayesian 

network that omits such variables, however, this often dramatically increases the number 

of parameters required to specify the network as well as the amount of data required to 

learn the parameters [46]. These unobserved variables can be referred to as hidden 

variables, latent variables or simply unobserved variables. The problem of fully 

specifying a Bayesian network now involves learning the conditional probabilities of the 

hidden variable given its parent values and learning the conditional probabilities of the 

hidden variable's child nodes given its values. The EM algorithm (short for expectation- 

maximization) can be used to train Bayesian networks in the presence of hidden 

variables. In this situation, although their values are not observed (not present in the 



training data), the EM algorithm is told that they do exist and must find a place for them 

in the network. The basic idea of the EM involves two steps [3], [46]: 

The E-step (expectation step) involves pretending that the parameters of the 

model are known (i.e. take a hypothesis representing a completely specified Bayesian 

network) and using this hypothesis to estimate the hidden variables (computing their 

'expected values'). Because we know the structure of the network (we have accepted the 

completely specified network hypothesis as being true for this step), these probabilities 

can be computed by any inference algorithm for Bayesian networks. 

The M-step (maximization step) uses the expected values for the hidden variables 

just estimated in the E-step to find an improved hypothesis; i.e. to find a new network 

model (topology and parameters) that maximize the log likelihood of the data thalt is 

available, given the expected values that have been computed for the hidden variables. 

The E and M steps constitute a loop that is iterated over. Each E step finds 

expected values for the hidden viuiables that better fit the data than the iteration previous. 

Each M step involves finding an improved network (topology and parameters) that better 

fits the data than the iteration beibre [46]. Under certain circumstances, the algorithm has 

been shown to converge to a local maximum likelihood hypothesis [3]. 

2.4.4.4 Learning the topology of Bayesian networks from data 

In many situations, a causal model for a given domain is either not available or 

disputed. In such circumstances, it is of use to be able to learn a Bayesian network from 

data when the network structure is not given. Some algorithms involve heuristic searches 

for a good model. These algorithms often follow one of two strategies. This first 



involves starting with a model containing no links and begin adding parents for each 

node, fitting parameters and measuring the accuracy of the resulting model. The second 

strategy involves making an initial guess as to the network topology and then using 

simulated annealing search to make modifications to the topology, retuning the network 

parameters after each change. Such searching algorithms are often fed an initial ordering 

of variables as input 13,461. Constraint-based approaches also exist which infer 

independence and dependence relationships from data and then use these learned 

relationships to construct a network topology 131. 

Once network topologies have been created it is important to be able to judge 

when a good network structure has been found. One method involves testing whether the 

conditional independence assertions implicit in the network structure are satisfied in the 

data 1461. A second method evaluates the degree to which the proposed topologies 

explain the data. However, both these methods need to balance this accuracy over 

training data with network complexity, otherwise the resulting network will contain far 

too many connections and be impractical to use. As a result, model complexity is 

penalized in the scoring functions that determine the best of the proposed network: 

topologies [3] [42]. 

2.4.5 Bayesian Networks in Medicine 

Bayesian networks have been used in medicine for over a decade[47], [48]1, [49], 

[50], [5 11 , [52]. They are particularly well suited to medicine as it is a domain in which 

there is still an incomplete understanding of many of the processes at work in the 

progress of disease. Acquiring an understanding of these processes is rendered difficult 

by the fact that their characteristics vary widely, often only a fraction of the factors that 



affect them can be observed and that they are subject to individual and random variation. 

In short, it is a domain full of uncertainty [43]. 

The types of tasks Bayesian networks are used for in biomedicine and health-care 

include diagnostic reasoning, prognostic reasoning, treatment selection and discovering 

functional interactions in the underlying physiological processes themselves [43]. Early 

medical diagnostic systems were constructed based on Bayesian networks constructed 

using two simplifying assumptions; first that hypotheses (diseases) were mutua1l:y 

exclusive and collectively exhaustive and the second that individual pieces of evidence 

(symptoms or test results) were conditionally independent of each other given a particular 

diagnosis. These included systems for diagnosing heart disease and acute abdominal pain 

[53]. Even in spite of these simplifications such systems often outperformed experts in 

terms of diagnosis [54]. More recent examples include the PATHFINDER project, a 

diagnostic system for lymph node pathology [48]. It became one of the first 

commercially successful expert systems for medical diagnosis and was called 

INTELLIPATH [l ,  p.841. Its creators explored a variety of rule-based and non- 

probabilistic schemes before they settled on using a Bayesian probabilistic scheme, which 

they found was noticeably better than other schemes. Another system created in the late 

1980's is called MUNIN and is a belief network for the diagnosis of neuromuscular 

disorders [ l ,  p.861. 

More recently, Bayesian networks have been used to calculate a prognosis of 

patients with severe bacterial or fimgal infections, dependent on the choice of antibiotics 

[50]. In addition, Bayesian networks have been used to assist in the determination of 

patient-specific therapy selection .for patients with oesophageal cancer. The systern 



models the presentation characteristics of the tumor, pathophysiological processes 

underlying its invasion into the oesophageal wall and its metastasis. It also includes 

characteristics of diagnostic tests and possible effects of different treatment thera~pies. 

The network is then used not only to predict the most likely stage of the patient's: cancer, 

but also to asses the most likely outcomes to the different treatment therapies [52]. 

Another network has been developed to assist intensive care unit clinicians in diagnosing 

and selecting treatment for patients with pneumonia in intensive-care units [5 11. 

Many of the afore-mentioned networks were constructed manually using human 

experts. Because they encode a career's worth of expertise, such networks can be quite 

accurate because the knowledge encoded in them "is more robust than the knowledge 

embedded in a data set of limited1 size" [43]. In addition, they can be created, even in the 

absence of data sets that specifically contain all the data required by the network. The 

downside to manually constructed Bayesian networks is that they are quite time 

consuming to build and don't use to its full advantage the vast amounts of clinical and 

biological data that is currently accessible to the scientific community. A more recent 

trend involves using Bayesian learning methods to estimate network topologies 01- 

structures from sets of data; for example, to construct models of metabolic and 

physiological processes using metabolic data [55]. Other examples include discovering 

gene interactions based on microarray expression data [56]. Another, very recently 

published paper looks at applying information retrieval techniques for obtaining prior 

probability information from World Wide Web to be used for learning Bayesian networks 

when available clinical data sets are too small to be exploited for learning. This 

particular paper used these techniques to construct a Bayesian network for the 



classification of ovarian tumors in patients [57]. While learning both network topology 

and parameters from data is extremely attractive because it can illuminate variable 

interactions and connections previously undiscovered, it can also be problematic. The 

learning algorithms require a fairly large amount of data in order to reliably determine the 

probabilistic relationships between the networks variables and most learning algorithms 

assume that there are no missing values in the data set 1431. This is usually not the case 

in medical data sets. As a result, missing values have to be filled in, possibly with the 

help of a domain expert or by sulbstituting a missing value with an average value for that 
- -- - 

variable. These can change the relationships that are present in the data set before it is 

altered to accommodate missing data. In the middle ground between completely 

manually constructed networks, and completely automated learning of networks is the 

construction of Bayesian networks using a mixed methodology. This can involve 

knowledge engineering (either with a subject matter expert or with literature review) a 

network structure or topology (creating it manually) and then, once a network topology is 

specified, it is possible to learn the parameters of the network from a real data set, even in 

the presence of missing data (if using the EM algorithm mentioned above in Section 

2.4.4.3). This mixed methodology benefits from many of the advantages of both methods 

as it incorporates knowledge both from an expert and from existing data sets. 

2.4.6 Bayesian Networks in Sleep Medicine 

In spite of the wealth of active research using Bayesian networks in medicine in 

general, there is a paucity of such research in the domain of sleep medicine. The 

literature that does exist, focuses primarily upon the automated analysis of various PSG 

signals using Bayesian approaches in order to facilitate either sleep staging or diagnosis. 



Only one article found allowed for the differential diagnosis of different sleep dilsorders 

from a set of symptoms that were not primarily based on PSG data [58]. 

The SIESTA project is a European project that is endeavouring to build an 

automatic classification system for sleep analysis. One subproject involves the automatic 

detection of sleep spindles in a EEG signal. These are defined as 0.5 to 2.0 second bursts 

of activity in the 12 - 16 Hz range. Using the EEG channels F4, C4 and P4, a spindle 

detector was implemented using a Bayesian approach, trained on a sample database. 

When used to detect sleep spindles, the spindle detector seemed to find many false 

positive spindles (segments of EEG not scored as spindles by an expert). However, when 

the signals were manually reviewed by an expert, the review showed that in manly cases, 

these false positive segments were very similar to spindles, even though they hadn't been 

scored as such [59]. Another group within the SIESTA predicts the probability that a 

subject is either awake, in deep sleep (stage 4) or in rapid eye movement (REM) sleep 

using features extracted from 6 EEG channels as inputs, at a temporal resolution of one 

second. Their analyser consists of 3 major building blocks: pre-processing stage, a 

classification stage and a sensor fusion stage. Bayesian techniques were used in e,ach of 

the blocks. The probabilities obtained by the sleep analyser showed less aging efTects 

than corresponding manual Rechtschaffen and Kales scoring [60] as done by three 

experts. However, it is known that this is a known problem of the Rechtschaffen and 

Kales scoring rules [61]. Another research study used noseflow, diaphragm and thoracic 

signals from overnight PSGs to cllassify obstructive apnea, central apnea, paradoxical 

respiration and normal respiration events. Events were classified by combining neural 

networks (Multi-layer perceptrons and Kohonen networks) with classical Bayes theory. 



The neural networks were used to estimate prior probabilities and the Bayes classifier to 

calculate posterior probabilities given these priors and the observed signal patterns. 

Using PSG signals from 3 patients, experiments to detect apneas and separate them from 

artifacts were promising in spite of the small set of data used [62]. 

Another study used Bayesian networks to perform sleep stage classification using 

features derived from EEG (sleep spindles, K complexes, and episodes of a ,  P, 6, (5 and 

8 activity) and AOG (eyes) as input. The system used three different Bayesian networks. 

The first Bayesian model was used to detect sleep spindles in 2 second segments of EEG 

signal. The presence of absence of a sleep spindle was based upon 6 child nodes 

representing six features ((5 activity and EEG power in three successive intervals). A 

second model, of identical structure was used to detect K-complexes (obviously 

parameters were different). Lastly, a network model was used to calculate the probability 

of a patient being in a given sleep state in a given 30 second window, given values in 9 

child nodes. Nodes representing a ,  P, 6, (5and 8 activity and features were quantified as 

relative values between 0 and 1. :Nodes representing sleep spindles and K-complexes 

could take on two possible states (yeslno) and their values were determined from their 

corresponding Bayesian networks. The networks were trained using a learning set of data 

created from expert scoring and the corresponding values of the nodes. Results fi~und up 

to 70.7% agreement between the system and two experts, which is quite high given that 

inter-expert agreement was 71.4% over six subjects [63]. 

Only one study was found that used Bayesian networks for the diagnosis of sleep 

disorders using Bayesian networks[58]. This study focussed more on the development of 

a Bayesian network-based development tool (software system) specifically aimed at 



creating systems for medical diagnosis. This abstracts the concepts of Bayesian network 

by presenting variables as diseases, symptoms and test results and facilitates domain 

knowledge introduction using a graphical interface. A web-page can be used to interface 

with a constructed system in order to perform diagnosis using the constructed Balyesian 

Network. The example of such a system developed with their software tool was given as 

the Sleep-Disorders Diagnostic System (SDDS). It is a system for the differential 

diagnosis of four sleep disorders (Psychophysiological Insomnia, Idiopathic Insomnia, 

Obstructive Sleep Apnea and Narcolepsy) based on a set of symptoms observed in 

subjects. Most of these symptoms are not taken fiom overnight polysomnograph signals. 

The prior and conditional probabilities used as parameters in the system were specified 

using medical literature and from consulting with experts. However, as the sleep- 

medicine application of the devellopment tool was not the focus of this article, there is no 

mention of how the system performs for diagnosis. No results are presented or di:;cussed 

in the paper 1641. Because of this, there is no data or even descriptions with which we 

can compare the performance of the networks we develop in this thesis. 



CHAPTER 3:IMATERIALS AND METHODS 

3.1 Bayesian Network Software 

Belief network development requires the use of software that is capable of 

probabilistic inference. Several such software systems currently exist, including 

commercial products such as HUGIN, NeticaTM, Baron and Ergo. Some software is 

available free of charge to researchers including BAYES, BELIEF, and TETRAD. 

Our data set contains many missing values. If one discounts all records with a 

missing value for any one variable, there are 43% records which could not be used. 

Many software packages that implement Bayesian networks stipulate that there cannot be 

any missing values. Our data set is only 652 records to begin with and cutting this almost 

in half would result in a data set that was very small. Instead, we chose to find a software 

package which would allow us to retain records that contain missing values for one or 

more variables. The software used for this research was NeticaTM (version 3.05). 

NeticaTM's main advantages for our research include the fact that it implements thie 

Expectation Maximization (EM) algorithm for parameter estimation [46]. This algorithm 

allows for the presence of missing values, has a very user-fiiendly interface, generates 

presentation quality graphics and has functions for easily performing statistical tests and 

sensitivity measurements on belief networks using test data. However, while it handles 

missing values, NeticaTM does not do network structure learning. Therefore, we need to 

supply a network topology to the software in order for it to determine network parameters 

from the training data provided. 



All parameter learning done by our networks from the training data is done with 

EM learning selected as the mode of learning. This is due to the high level of missing 

data. We have chosen to leave missing values as unknown values and to use the EM 

algorithm to handle this situation. 

3.2 Data 

The data used to train our Bayesian network was gathered from three sources: two 

from existing databases, and one (pupillometry) from data we gathered and analysed. 

3.2.1 Data from Existing Databases 

3.2.1.1 Vancouver Coastal Health Subjective Questionnaire 

The first source of data was gathered on six hundred and fifty-two (652) 

consecutive patients referred to the Sleep Disorders Clinic, at the University of British 

Columbia (UBC) hospital. These patients were referred to the clinic for a standard in- 

clinic overnight polysomnography (PSG) for the assessment of suspected OSAS between 

May 2003 and March 2005. At tlhe time of their initial visit, having given informed 

consent, these patients completed a subjective questionnaire for the Vancouver Coastal 

Health Authority containing questions relating to demographics, sleep habits, sleep- 

related symptoms, health habits, occupation, medical history, mood, occupational 

accidents, driving and driving accidents, and an ESS questionnaire. Overall there are 57 

questions in this questionnaire. 

3.2.1.2 Overnight polysomnography (PSG) report 

The second source of data is a report of the results of an overnight PSG study 

done at the Vancouver Sleep Disorders Clinic at UBC Hospital. These patients are the 



same as those who filled out the subjective sleep questionnaire mentioned above. 

However, of the 653 patients, only five hundred and twenty-one (521) patients h.ave 

digitized records of the overnight PSG. 

3.2.2 Pupillometry Data 

The third source of data consists of forty-four (44) patients who were at tlhe 

Vancouver Sleep Disorders clinic at UBC hospital for an overnight PSG study, and who, 

in addition to filling out the subjective questionnaire, agreed to have their pupil size 

recorded during dark adaptation and the Pupillary Light Response (PLR) on the morning 

following the in-clinic overnight PSG study. All studies were conducted between the 

hours of 6:3O am and 8:00 am in the morning after their overnight stay at the clinic. The 

pupil size was recorded at 100 Hz using an EyecheckTM pupillometer. For detail:; on the 

EyecheckTM pupillometer and how it is used, please refer to Appendix 1. 

3.2.2.1 Dark adaptation 

Pupil size was recorded at 100 Hz for 1 1 consecutive minutes while the pz itient sa 

in darkness, looking into the EyecheckTM pupillometer at a set of red cross hairs. The 

device then averages every 10 data points and outputs to a text file with a data point 

every 10 Hz. The pupil size data gathered during dark adaptation is used to compute the 

Pupillary Unrest Index (PUI), a measure of pupil response during dark adaptation. An 

algorithm to conlpute PUI from pupil size data (during the dark adaptation phase) was 

coded in C++ by this author, in accordance with the criteria established by [37]. The 

code can be found in Appendix 2. When run on dark adaptation pupil size data, the code 

computes average PUI during the first 4 minutes of the dark adaptation period. 



3.2.2.2 Pupillary light response (PLR) 

Pupil dynamics in response to a flash of light are recorded at 100 Hz by the 

~ ~ e c h e c k ~ ~  pupillometer. This data is used to internally (within the operating software 

of the device) to calculate several metrics that are output to a text file. Those of interest 

to us include Time To Minimum (TTM), the time it takes for the pupil to constrict 

maximally in response to the light, Time To Initiation of PLR response(TT1) and the 

Reflex Amplitude Percentage(RA%), the difference, as a percentage between the pupil 

size before the PLR and after five (5) seconds. 

3.2.2.3 Limitations of pupillomet~y data 

As mentioned above in section 3.2.2, forty-four subjects agreed to have th~eir pupil 

size recorded the morning after their overnight study. Two of these did not have digitized 

questionnaires and overnight PSG reports available. As for the remaining 42 sub-jects, 

unfortunately, only fourteen subjects had useable data for the entire eleven minutes of 

dark adaptation. While we are not sure of the cause, in quite a few subjects, after ,a 

varying number of minutes (from 2 to S), the pupillometer indicated that pupil size began 

increasing consistently up until a certain point and then indicated a special value (891) 

indicating the instrument could not determine the pupil size. This is thought to be. in part 

due to the ~ ~ e c h e c k ~ ~  pupillometer, which according to the manufacturer, was not 

intended to be used for such long periods of dark adaptation. Another possibility is that 

some patients were extremely sleepy and could not keep their eyes open enough that the 

pupillometer could accurately measure their pupil size. We then categorized patients 

according to how long their dark adaptation pupil data was valid (the whole 11 minutes, 

at least 4 minutes, not long enough to be useful) and looked at the mean age, AH1 and 



ESS score in order to see if these measures offered any clues at to the reason the 

pupillometry did not work. The results of this analysis can be seen in Table 3.1. Other 

than the fact that mean ESS Score is slightly elevated in the category of patients for 

whom less than 4 minutes of useable dark adaptation pupil data was obtained, there 

seems to be no explanation from these variables as to a possible cause of pupil recording 

problems. 

In order to use as many pupil size recordings as possible, we plotted the Average 

PUI on a per minute basis, from one up to the full eleven minutes on those data records 

that were valid for the whole period. In contrast to the studies by the Tubingen group 

[l  11, on average the second half of the dark adaptation period (minute 5.5 to 11) did not 

show higher average PUI values than those calculated for the first half of the dark 

adaptation period. Instead, we found that after four (4) minutes, the average PUI did not 

change significantly. As a result, our PUI is a measure of the average change in pupil 

size per minute over the first four (4) minutes of dark adaptation. This allowed us to use 

pupil data that could not have been used if we had calculated PUI over the full 11 minute 

ALT test. This allowed us to use thirty-one pupillometry recordings. However, for some 

Table 3.1 Mean AHI, ESS, Age and Gender Organized by Length of Dark Adaptation period 
possible 

Full I l minute 
ALT ( 14) 
Only 4 minute 
ALT possible 

- (17) 
Pupil data 
collection not 
possible (1 1) 

Mean Age 
54.1 (m) 
5 1.8(f) 
43(m) 
44.75(f) 

W m )  
46.3(f) 

Gender 
9 males 
5 female 
13 males 
4 female,$ 

8 males 
3 female:; 

Mean AH1 
29.26(m) 
16.32(f) 
29.37(m) 
29.88(f) 

25.97(m - only 4 
patients had data) 
12.7(f- only 1 
patient had data) 

Mean ESS Score 
7.67(m) 
I l ( f )  
8.38(m) 
7.67(f) 

8.8(m - only 5 
patients had data) 
8S(f - only 2 
patients had data) 



of these, their questionnaire and overnight PSG data was not available, leaving us with 

only 28 pupillometry recordings which could be incorporated into the data set. 

3.3 Variable Selection 

From the subjective questionnaire (data source one), out of the initial 57 

questions, 18 variables were chosen based on literature review and the advice of four 

medical expert. Some of these variables are taken directly from the responses to the 

subjective questionnaire (data source one) while others are calculated from data fields 

present. From the results of the overnight PSG (data source two), four variables were 

chosen or calculated. From the pupil size data (data source three) four variables were 

taken or computed. Of these, only PUI was used in our networks for the purposes of this 

thesis. These variables can be seen in Figure 3.1. The details of each variable, its 

definition and corresponding states as well as its corresponding data source and htow it 

was computed (if required) can be found in Appendix 3. 

Figure 3.1 Variables in our OSAS BIayesian Network 



3.4 Treatment of Missing values 

In medical data incomplete patient records are a very common occurrence. This 

is also the case for our data sources. In our data there are two kinds of missing values: 

Source missing values and user-defined missing values. Source missing values occur 

when a value for a given patientlvariable cannot be found or interpreted. These missing 

values can be the result of incomplete responses to questionnaires, problems with the 

digitisation of data sources or simply missing data sources for certain patients. User- 

defined missing values are responses to questions from data source where the paiient 

selected a response such as "not sure" or "unknown". While it is meaningless to 

incorporate these missing values in the calculation of statistics, the data records 

containing such missing values should not simply be eliminated. This is due to the fact 

that the total amount of remaining data may not be sufficient and, on the other hand, the 

remaining values in the data record may still contain very useful information. 

There are different strategies for dealing with missing data. One is to completely 

remove data records containing missing values for some variables. The second is to 

model missing values as a new value, namely "missing". This can permit researchers to 

discover if being missing, as a state, is related to other states in the network. How,ever, 

this extra state makes each conditional probability table in the network more costly to 

calculate and more difficult to parameterize. Another strategy used can be to replace 

missing values with the mean. For the purposes of our belief network, all sources of 

missing values are treated equally and set to "*". This is a character code used by 

~ e t i c a ~ ~  to indicate a data record for which a particular variable's value is not known. 

We then use the EM algorithm to handle this situation. 



3.5 Database Creation 

In order to create a data set from which the Bayesian belief networks training and 

test data could be created, a number of operations were necessary. First, the three 

separate data sources were merged on the basis of "study id"(SID), a unique identifier the 

Sleep Disorders Clinic uses to identify subjects. This merged database contained the 

responses to all questions from the subjective questionnaire and values filled in by the 

sleep clinic technicians and doctors after the in clinic overnight PSG, as well as the 

pupillometry variables calculated from the pupil size data for those patients for which this 

data was available. For certain SID numbers, not all data sources were available. In this 

situation, all values for the missiing data source were marked as missing values for that 

data record by setting them to "*". Then, in order to maintain anonymity, SID was 

stripped from this merged database. 

Then, from this database, numerous operations were performed to decode the 

fields in the existing database and convert them into the variables we wish to use in our 

Bayesian networks. Details of the operations performed for each variable can be found in 

Appendix 3. 

3.6 Experimental Evaluation 

In order to evaluate the performance of our networks, sets of training and lest data 

are created from the complete final set of data. There are a number of ways of doing this. 

The total data is partitioned into n sets of equal size. We train on n- 1 sets and make the 

remaining set a test set, giving us n experiments. If n is too small, we run the risk that a 

given run is not representative. If n is too large, this may lead to a large correlation 

among the training sets for each nm. We used n=10 for a 10 fold cross validation [65], 



[66]. However, we encountered problems with getting NeticaTM to properly process our 

eighth test set. We were unable to resolve these problems. We therefore use nine training 

and test sets for computing our performance measures. 

3.6.1 Experimental Evaluation with Pupillometry Data 

The training and test sets for networks including the pupillometry variable PUI 

are slightly different than the ones used for other networks. In order to reduce variance, 

we modified the original test andl training sets in order to create 10 stratified samples. 

This way each test set contains a unique set of 3 data records that include PUI data and 

each training set of data contained the remaining 25 records with PUI data. 

3.6.2 Network Performance 

In our investigation, the ultimate goal of our Bayesian Belief network is the 

prediction of AH1 level in patients, as a stand-in for a positive diagnosis of OSAS,. As a 

result, we refer to the AH1 node as our query node. While AH1 is a continuous variable, 

it is converted to an ordinal variable with values of Low or None and Moderate to Severe. 

The way in which the AH1 variable is discretized is the same in all network 

configurations and is based on literature review. 

No or Low OSA: 0 to 15 

Moderate to Severe OSA: 15 and over 

A given network's performance is judged in the following way. After having 

learned the network parameters from the training data set using EM learning, ~ e t i c a ~ ~  

reads through each test case, except for any findings for unobserved nodes (the nodes for 

which we want to predict the value). NeticaTM does belief updating based on the 



observed values it has been provided with to generate beliefs for the unobserved nodes. 

It then compares these beliefs to the true values supplied for the unobserved nodes. The 

performance of the networks in predicting the value of the AH1 query node given the 

findings at other nodes in the network is evaluated for each of the ten (10) test sets and 

then averaged in order to provide a perfoimance value that accurately reflects the overall 

predictive ability of a given network. The following statistics are calculated fiorn a 

confusion matrix which ~ e t i c a ~ ~  reports: 

3.6.2.1 Sensitivity 

Sensitivity is defined as the fraction of those with the disease that are correctly 

identified has having moderate to severe OSAS. 

3.6.2.2 Specificity 

Specificity is defined as the fraction of those without the disease that are correctly 

identified as have no or low OSAS. 

3.6.2.3 Positive predictive value 

Positive predictive value is defined as the fraction of people identified as having 

moderate to severe OSAS that actually have moderate to severe OSAS. 

3.7 Investigation of the Effect of Network Topology on a Networlk's 
Predictive Ability 

A Bayesian Belief Network (BBN) captures relationships that are believed to 

exist but may be uncertain. Once the set of key variables has been determined, the next 



step in building a BBN is to attempt to map out the causal relationships between them. 

Belief network learning is usually divided into two parts: structure learning and 

parameter learning. Structure learning determines the causal relationships between 

variables, that is, the placement ;and direction of links in the network from a set of data 

provided. Parameter learning talkes an existing structure of nodes and links between them 

and determines the conditional probability relationship at each node given the data. 

NeticaTM currently only supports parameter learning. As such, a network topology needs 

to be provided. As part of our research exploration, several different topologies are 

investigated to see how they perform compared to one another. 

3.7.1 Star Topology 

As a preliminary investigation, a star topology of the Bayesian network is created. 

This consists of our query node, AHI, being the root of the graph with links pointing out 

of it to all other nodes, making it the parent node to all other nodes. In this configuration, 

other nodes are assumed to be topologically independent ;and conditionally independent 

given AHI. When trained in this configuration, NeticaTM uses the naive Bayes model to 

learn the parameters of the network. With these assumptions, the model is trained using 

maximum likelihood parameter learning. This network configuration is quick to learn 

from the training sets because for the AH1 node, only prior probabilities are learned, 

while for the remaining nodes, their conditional probability tables are small, as they are 

assumed to be dependent only on the values taken on by the AH1 query node. Another 

advantage of using a naive Bayes classifier is that it works fairly well and deals quite 

easily with noisy data [46]. 

This network topology can be seen in Figure 3.2. 



Figure 3.2 Star Topology Bayesian1 Network 

3.7.2 3-In Network Topology 

~ e t i c a ~ ~  provides a hnction which, on hlly trained networks, allows the user to 

see how much the beliefs or expected values of a given query node are influenced; by a 

single finding at another node in the network. Several sensitivity measures are provided 

for each of these other nodes (termed "findings node" in the Netica TM manual) including 

the following: 

1. For each possible state of the query node, the minimum, maximum and 

current posterior probabilities that each state of the query node can take on 

due to a finding at a given findings node F. 

2. For each possible state of the query node, the square root of the expected 

change squared of the posterior probability of the query node being in 

state q, due to a finding at F. 



3. Mean of Real Value: for query nodes representing continuous variables, 

the average expected value the query node would take on due to a finding 

at F. 

4. Variance reduction: the expected reduction in variance of the expected real 

value of the query node due to a finding at F. 

It is this last sensitivity measure on which we focus our attention, as it allows us 

rank which of the findings nodes will provide the most information about the predicted 

state of our query node. 

For our purposes, the query node is the root node AHI. We use the "Sensitivity to 

Findings" feature that ~ e t i c a ~ ~  provides on our Star topology networks. Becaus,e the 

joint probability distribution of a trained Bayesian network is dependent on the data used 

to learn the parameters of the network, the list of findings nodes that most influence our 

AH1 node changes with each training set of data. That being said, the majority oftrained 

networks agree on the top three such finding nodes. This information is then used to 

create a new type of topology, which we refer to as the 3-In network topology. 

In this topology, the AH1 node is still the parent of most other network noldes, 

however, it is no longer the root of the network. It now has three parents, those nfodes 

that ranked as the top three findings nodes in terms of their influence on the AH1 query 

node when the network topology was a star formation. We investigate this network 

topology in order to explore the cumulative effect of linking the three nodes that rnost 

influenced our AH1 node on the predictive ability of the networks. This allows us to 

study the interaction of these three nodes as a group with the AH1 node, even though the 



links are not representative of the causal reIationships at play between the variables in the 

network. This network topology can be seen in Figure 3.3. 

Oxygen Desaturation 

==f=&i, 

Industry 23 
Figure 3.3 3-In Network Topology Bayesian Network 

3.7.3 Knowledge Engineered Network Topology 

The next network topology that was explored for its predictive abilities was one 

designed with the help of our medical expert. From the set of variables selected, he 

mapped out, using his expert opinion, a subset of the causal links between our network 

nodes. Too many links between nodes results in very long learning times, and large 

conditional probability tables at certain nodes, thus only the most important causal links 

were included in this network. 

This network topology ccm be seen in Figure 3.4. 



Figure 3.4 Knowledge Engineered Bayesian Network 

3.8 Investigation of Discretization of Network Variables on Predlictive 
Ability of Networks 

Many data variables used in the study of OSAS are measurements of 

physiological states or events, or quantities1 frequencies and as such are considered 

continuous variables. In our data set these include the AHI, the Periodic Limb Movement 

Arousal Index (PLM), Percentage of time spent working the night shift (Shiftworker), 

alcohol consumed per month, caffeine consumed per month, ESS Score, Body Mass 

Index, Oxygen Desaturation, Age and Miles Driven. We hypothesize that the way in 

which these variables are discretized (broken up into categories or ranges) for the 

purposes of creating conditional probability tables for their child nodes may have an 

effect on the predictive ability of a given Bayesian network. Therefore, the next stage of 

exploration involves using different strategies for discretizing these variables and 

observing the results on the perfoirmance of the various networks created in section (3) 

above. 



3.8.1 Binning as a Strategy For Discretization of Continuous or Ordinal Variables 

NeticaTM provides a feature which allows for the easy discretization of such 

variables. This allows the user to specify how many bins into which the total range of a 

continuous variable should be divided. When a variable is binned, NeticaTM divides the 

continuous variable into ranges or bins such that each bin will have a roughly equal 

number of records with a value falling in that particular bin's range. 

We investigate breaking up these continuous variables into two, three and five 

bins of equal size and what effec:t this has on network performance. We hypothesize that 

three bins will provide the best performance as it theoretically provides enough 

separation between extreme cases and a middle ("average") zone for a given variable and 

yet will not result in a conditional probability table that is too large for that node's 

children, as is the case when a variable is divided into five bins. The ranges for each 

continuous variable, once discretized into the various bins can be found in Appendix 4 

and examples of the resulting networks can be seen in Figure 3.5 for the Star topology 

and Figure 3.6 for the 3-In topology. 
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Figure 3.5 Star Topology Network with Continuous Variables Discretized into Two Equal Sized 
Bins 
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Figure 3.6 3-In Network Topology with Continuous Variables Discretized into Three Equal Sized 
Bins 

3.8.2 Expert Discretization of Continuous Variables 

A different strategy for breaking up continuous variables into ranges or bins 

involves looking at statistics for these variables and how they relate to AHI. In this way, 

continuous variables can be broken up into ranges that favour the differentiation between 

cases that have low, medium andl high values of AHI. In order to accomplish this, box 

plots of each continuous variable against AH1 are created using SPSS 13.0 for Windows, 

a software package by SPSS Inc. used for generating statistics. The continuous variables 

are first re-categorized as ordinal variables and recoded using SPSS in a variety of ways. 

The breakdown that seems to provide the optimal separation between low and high AH1 

is chosen as the 'expert' way of discretizing that particular continuous variable. This is 

done by examining a box plot of each categorization plotted against the AH1 as a 

continuous variable. A box plot is a visual display that summarizes data using a "box 

and whiskers" format to show the minimum and maximum values (ends of the whiskers), 

interquartile range (length of the box), and median (line through the box). Each variable 



is broken up into two ranges or categories to avoid the AH1 query node having too many 

entries in its conditional probability table. This is done for the following variables: BMI, 

ESS, Age, Snoring and Oxygen Desaturation as these are the continuous variables that 

most directly affect AH1 in the knowledge engineered network topology. Age, Snoring 

and BMI are parents of the AHI' node while High Blood Pressure, ESS and Oxygen 

Desaturation are children of the AH1 node. Therefore, these are the nodes that should 

have the greatest causal links to the AH1 node. 

3.9 Adding a Node to an Existing Bayesian Network 

When working with Bayesian networks, it is interesting to add variables into a 

network in order to see the effect they have on the predictive ability of the network. In 

our network two additional variables of interest are investigated as nodes to insert into the 

network. 

When using large data sets, libraries of network components can be trained 

separately to decrease the time it takes to train a network. Then, these network 

components can be re-assembled to do 'belief updating' or inference on the comlbined 

network. We could have created a network component for each new node and its parents 

that we were inserting, trained these network components separately and then added them 

to the existing networks however, it was decided this would take more time than simply 

retraining networks with the new node added in. In order to achieve this, the training and 

test data sets were simply augmented by another variable, and a new set of networks 

created with the added node. These are then trained and subsequently tested on the 

augmented data sets. 



3.9.1 Adding a Node with Small Amounts of Data Relative to Existing Data Set 

As mentioned in Section 2.3.2, pupillometry has been investigated as a possible 

source of autonomic measures of sleepiness. Our hypothesis is that such data will 

enhance the predictive ability of our Bayesian networks either in combination with the 

ESS node (a standard though controversial subjective measure of sleepiness) or alone. 

As mentioned above in section 3.2.2.3, we gathered pupillometry data from 44 but were 

only able to use the data from 28 of these patients. As a result of this, data records 

containing valid values for the pupillometry variable PUI constitute only 4.29% of the 

total number of valid data records. Unfortunately, PUI has no significant correlations 

with any other OSAS variables (AHI, ESS, BMI, Oxygen Desaturation). A scatter plot of 

PUI against AH1 can be seen in Figure 3.7. Other variables that were investigated for 

correlations with PUI included total sleep time, sleep efficiency and sleep latency the 

night of the overnight PSG. None of these correlates significantly with PUI either. For 

the remainder of the data records in the database created, PUI has missing values. 
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Figure 3.7 Scatter Plot of PUI against AH1 

We investigate what effect, if any, the addition of a node into the network with so 

few training examples may have on the ability of the network to predict the value of our 

query node AHI. We begin with the PUI node, adding it to the best performing network, 

3-In-3Levels. PUI was added as a child node of AHI, as sleepiness is a consequence of 

OSAS, not a cause of it. This resulted in a network structure as seen in Figure 3.8. 



Figure 3.8 3-111 Bayesian Network with PUI node added 

3.9.2 Adding a Node with Moderate Amounts of Data Relative to Existing Data Set 

The next area of investigation became adding a variable for which there were 

significantly fewer missing values. We chose neck circumference because it is a simple 

measurement reflecting obesity in the upper airway. While it alone is still not sufficient 

to predict obstructive sleep apnea severity without an overnight sleep study, it has been 

found to be more useful, especially when corrected for height, in predicting the severity 

of OSAS than measures of general obesity such as BMI [67]. Other studies show that 

when apnoeic and non-apnoeic patients are matched one-for-one for BMI and age, neck 

circumference was significantly higher in apnoeic patients [68]. Unfortunately, the neck 

circumference value in our data set is not a clinical measure. Instead, it is a response to 

one of the questions in the subjective questionnaire (Data Source one). As a result, 

results will be less accurate than clinical measurements. In addition, patients are able to 

respond that they are unsure of their neck circumference. Such responses were recoded 

as missing values. After this recoding, of the total 652 data records, 303 data records 

contained valid subjective values for the neck circumference attribute. This constitutes 



46.5% of the total records, over ten times more valid records than the number of records 

containing valid PUI data as discussed above. 

We initially chose to discretize neck circumference into three ranges (Low[O, 131, 

Medium [14, 171 and High [18, over 221 inches). However, when plotted againist AH1 it 

was found that the medium and high ranges had significant overlap as seen below in 

Figure 3.9. 

Figure 3.9 Box Plot of Neck Circumference (3 categories) against AH1 

As a result, we recategorized the neck circumference into two ranges ([O, 151, [I 6, over 

221 inches. This seems to provide better separation between ranges when plotted against 

AH1 as seen in Figure 3.10. 
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Figure 3.10 Box Plot of Neck Circumference (2 categories) plotted against AH1 

We chose the same network to add the neck circumference node to as the: one to 

which we add the PUI node, that is, 3 - In--3Levels, in order to be able to properly 

compare results. 

3.10 Investigation of the Effect of Node Removal on Network 
Performance 

Once having observed the effects that adding a node to a BBN can have on a 

network's predictive performance, the next investigation is the removal of a node from an 

existing network. We hypothesize that nodes representing variables that do not correlate 

well with AH1 could possibly hinder accurate prediction of the value of AH1 as opposed 



to facilitate it. The Pearson correlation coefficients of five nodes representing continuous 

variables most likely to affect AHI, especially in the expert designed network layout, 

were computed and can be seen in Table 3.2. The Pearson correlation coefficient is a 

measure of how well a linear equation describes the relation between two variables 

measured on the same object or organism. From these correlations, it would seem likely 

that eliminating Age, ESS, and Snoring nodes from networks should decrease the 

network prediction errors. Eliminating the BMI may decrease network prediction errors, 

although, in our data set it is better correlated with AH1 than the other three variables. 

Table 3.2 Pearson Correlation Coefficients of Different network Variables with AH1 

Pearson Correlation Coefficient r with AH1 

0.132 (significant at the 0.01 level) 
Snoring 0.14 1 (significant at the 0.0 1 level) 

0.286 (significant at the 0.01 level) 
0.5 15 (signif cant at the 0.01 level) 

We begin with the base network, (both in terms of network topology and in the 

way that continuous variables are discretized into ranges) that we had used in the node 

addition experiments, the 3 - In - 3Levels network. We proceed in three phases. The first 

phase removes only one node from the network at a time. The second phase removes two 

nodes from the network at a time, and the third phase removes three nodes from the 

network at one time. As with the topology and node addition experiments, for each 

resulting network we use nine training and test data sets, and we average the prediction 

errors together in order to obtain an average network prediction error for the AH1 query 

node. These training and test sets are the same as those used in the other experiments in 

order to maintain consistency. 



CHAPTER 4:RESULTS AND DISCUSSION 

4.1 Topology Exploration 

4.1.1 Star Topology 

The Star topology networks result in average sensitivities, specificities and 

positive predictive values as seen in column1 of Table 4.1, Table 4.2 and Table 4.3. The 

Star topology represents a naive Bayesian network. In this network, no arcs are allowed 

between variables, just one from the variable being classified (AHI) to all other variables 

in the network. While this topology does not model the causal links between all the 

variables in the network, researchers have shown that when used for classification 

problems, nahe Bayes networks tend to outperform more complicated networks 1691. 

Performance depends on how the continuous variables in a given network are discretized, 

but in terms of sensitivity, the Star topology performed best in half of all cases, and 

second best in the other half. In terms of specificity, the star topology network fiiired 

slightly less well, coming in second best 75% of the time and first in the remaining 

network. However, in terms of positive predictive value, the star topology fared the best, 

coming in first place in all different discretized network configurations. 



Table 4.2 Specificity of different network topologies 

Table 4.1 Sensitivity of different network topologies 

Discretization 
Strategy 
2 bins 
3 bins 
5 bins 
Expert 

Star topology 3-111 topology 

Table 4.3 Positive Predictive Value of different network topologies 

Star topology 

7 1.5% +I- 7% 
67.5% +I- 9% 
69.6% +I- 8% 
66.2% +I- 7% 

Knowledge 

Strategy 
2 bins 
3 bins 
5 bins 
Expert 

Strategy 
2 bins 1 58.6% +I-5.1% 1 56.8% +I- 6.6% 1 57.5% +I- 5.2% 

3-111 topology 

67.6% +I- 10% 
72.4% +I- 6% 
66.0% +/-I 2% 
65.8% +I- 8% 

50.0% +I- 6.6% 
53.7% +I- 6.6% 
53.1% +I- 5.3% 
45.3% +I- 3.8% 

Star topology 

Knowledge 

61.7% +/-I 0% 

As discussed in Section 3.7.1, we also investigated which nodes in these star 

49.2% +I- 6.2% 
49.5% +I- 8.5% 
5 1 .O% +I- 9.8% 
42.1% +I- 3.2% 

3-In topology 

topology networks most affected the predicted value of our query node AHI, by using the 

"Sensitivity to Findings" feature that ~ e t i c a ~ ~  provides. These results can be seen in 

Table 4.4. It is not surprising that Oxygen Desaturation influenced AHI's predicted value 

more than other variables in all network configurations. Of all the variables in the 

network, it is the most strongly correlated with AHI. However, other variables in the 

"top three" list were a bit of a surprise. If one looks at the features as ranked by 

53.7% +I- 8.8% 

Knowledge 
Engineered topology 

3 bins 
5 bins 
Expert 

59.0% +I- 3.2% 
59.4% +I- 6.5% 
54.4% +I- 5.8% 

58.9% +I- 4.3% 
57.1 % +I-7.4% 
52.8% +I- 5.4% 

56.5% +I- 8.0% 
57.0% +I- 7.6')/0 
52.7% +I- 6.2% 



correlation coefficients in Table 4.5, one expects BMI and PLM to be the other two 

variables that influence the predictive value of AH1 the most. This is not the case. 

Instead, it is Sleep Weekends, Snoring and Depression that appear most often in the top 3 

Findings nodes. 

Table 4.4 Top 3 Findings Nodes in terms of influencing predicted AH1 value 

Table 4.5 Correlation Coefficients of different Variables with AH1 

Discretization Strategy 
Binning - 2 Levels 
Binning - 3 Levels 
Binning - 5 Levels 
Expert Discretization - 2 Levels 

Top 3 Finding Nodes for that network 
Oxygen Desaturation, Sleep Weekends, Snoring 
Oxygen Desaturation, Depression, Body Mass Index 
Oxygen Desaturation, Snoring, Depression 
Oxygen Desaturation, Sleep Weekends, Snoring 

Discussion of discretization of continuous variables will be detailed further in Section 

Oxygen Desaturation 
BMI 
PLM 
Snoring 
ESS 
Sleep Weekends 
Sleep Weekdays 
Shift Worker 
Caffeine 

Age 
Alcohol 

4.1.2 3-111 Topology 

Pearson Correlation Coefficient r 
.515(**) 
.286(**) 
.149(*) 
.141(**) 
.I 32(**) 
.11 O(*) 
. l l  O ( * )  
.1 05(*) 
-.049 
.033 
-.015 

The 3 - In network topology was created by reversing the links between the top 

*. Correlation is significant at the 0.05 level (2-tailed) 
**. Correlation is significant at the 0.01 level (2-tailed) 

three Findings nodes and the AH][ node such that the links point in towards the All1 node 



instead of out of it. These networks result in average sensitivities, specificities and 

positive predictive values as seen in column 2 of Table 4.1, Table 4.2 and Table 4.3. 

The 3 - In topology does not result in significantly better sensitivity or specificity. 

Instead, in comparison to the Naive Bayes Star network topology, it performs 

consistently worse, with one exception. The sensitivity of the 3-In-3Levels nelwork is 

the best of all the networks (72.4%). This is the network which has the Oxygen 

Desaturation, Depression and Body Mass Index(BM1) nodes as parents of the AH1 node 

and its continuous variables are discretized into thee  levels. It would seem that the 

interaction between these three variables and AHI, as well as the discretization Ilevel 

favour the identification of those individuals with moderate to severe OSAS. That said 

however, the same network perform significantly worse than the other two topologies in 

terms of specificity, indicating there are many false positives. This is a trend that is seen 

in all networks: the higher the sensitivity, the lower the specificity of a given network. 

The 3 - In networks fare slightly better in terms of positive predictive value, where it is 

second best in all but one network configuration. One possible explanation for the 

relatively poor performance of this topology overall is that, of the nodes that most 

influence the AH1 node, only two of them, Snoring and BMI are causally related to AH1 

in the direction indicated. Snoring can be indicative of a blockage in the throat 01- 

pharynx which in turn can cause a decrease in the oxygen entering or exiting the body, 

affecting AHI. BMI indicates overall obesity. A fatty neck can also favour a blockage of 

the pharynx while sleeping. However, Oxygen Desaturation is affected by, but does not 

affect the AH1 of a given patient. SleepWeekends, while it may affect sleepiness or be an 

indication of the level of sleepiness experienced during the weekdays, does not itself 



influence AHI. The same goes for Depression. It does not affect AH1 directly. The fact 

that these 3-In network topologies do not reflect the causal relationships between the 

network variables, especially with the AH1 query node, may explain why such network 

topologies when trained on real data give poor predictive results. However, this network 

topology was studied to investigate the interactions between groups of variables and AH1 

to see how this affected the predictive ability of a network. 

4.1.3 Knowledge Engineered Topology 
-- - 

The knowledge engineered topology was created with the assistance of our 

medical sleep expert. It attempts to map out the important causal links between the 

variables in our network. These network topologies result in average sensitivities, 

specificities and positive predictive values as seen in the last column of Table 4.1, Table 

4.2 and Table 4.3. 

This network topology is sensitive to how continuous variables are discretized. In 

this topology, the AH1 query node has three parents; Age, Snoring and BMI and it in turn 

is the parent of the three nodes; High Blood Pressure, Oxygen Desaturation and .ESS (a 

measure of sleepiness). Together these six nodes can directly affect the predicted AH1 

value. In terms of sensitivity, with expert discretization, it performs within 1 % of the 

best of all networks, the 3 - In - 3Level network. However, when continuous varia~bles are 

discretized into three or five bins using ~ e t i c a ~ ~ ,  the network topology performs worse 

than the other two networks. In terms of specificity, with the exception of the network 

with expert discretization (which performs very poorly), this topology yields good 

results. 



However, all these results are not very different from those of the nake Bayes 

(star) topology or the 3-In topology, even though its structure should reflect the actual 

causal links between the variables in the network. There are several possible reasons for 

this. One is that in each network, there are six or less nodes which are very important in 

terms of influencing values at our query node AH1 and that in each network topology, 

these nodes are within the Markov blanket of the AH1 node. This consists of the AH1 

node's children, those children's parent nodes, and the AHI's parent nodes. As a result, 

all the nodes of importance are present and influencing the AH1 node in all the 

topologies. Another possible reason for this poor performance might be overfitting. In 

order to see if this was the case, we trained all three network topologies on the fidl data 

set and then tested each on the h l l  data set that was used to train them. This is clften 

viewed as an internal consistency test to see how well the independence assumptions 

encoded in the network topology are reflected in the actual data set used to train and test. 

The resulting sensitivities can be seen in Table 4.6, specificities in Table 4.7 and positive 

predictive values in Table 4.8. 

The Star topology did not perform very well, with sensitivities of 72.6%, 71.8%, 

72.2% and 62.0% as can be seen in column one of Table 4.6, even though essentially, all 

these networks had to do is "remember" the data they had learned. These results imply 

that this structure is too far from the actual relationships present in the data to get 

accurate results. The Knowledge engineered topology however, performs extremely well 

when testing on the full training data set, in terms of sensitivity, specificity and positive 

predictive value. This suggests that this network topology does in fact model the 

relationships between the various variables. If this is the case, why did the Knowledge 



Engineered topology perform so badly when doing 10 fold cross validation? Our 

hypothesis is that the poor performance is a result of overfitting. This is a phenomenon 

which occurs when a learning algorithm adapts so well to a training set, that rartdom 

disturbances in training set (noise) are included as being meaningful. This is evidenced 

by predictive performance on a test set being much lower than when testing on the 

training set. Our Knowledge Engineered topology performed fairly well with Expert 

discretization, however, it performed poorly with other discretization levels when we 

look at the ten-fold cross validation results. However, when testing on the training set of 

data, the Knowledge Engineered topology performs very well, with over 90% sensitivity 

and specificity for the 3 and 5 bin networks, as seen in rows 2 and 3 of Table 4.6 and 

Table 4.7 respectively. This is indicative that the structure of this network topology does 

indeed match the relationships the variables display in the data set. It is most likely that 

learning was performed too long and that some form of early stoppage will result in a 

network which will generalize better than the current trained Knowledge Engineered 

network topology does. Having additional data for training will also alleviate this 

problem. 

Table 4.6 Sensitivity of Network Topologies When Testing on Full Training Data 1 St"' "~0'"' 3-1" '"PO"'" pw~ I 
Discretization 

3 bins 1 71.80% 1 76.69% 1 90.97% 7 
Strategy 
2 bins 72.55% 

5 bins 
Ex~e r t  

73.68% 

72.18% 
62.03% 

74.4% 

75.56% 
63.16% 

90.60% 
86.09% 4 



Table 4.8 Positive Predictive Values of Network Topologies When Testing on Full Training Data 

Table 4.7 Specificity of Network Topologies When Testing on Full Training Data 

Star topology 

Discretization 
Strategy 
2 bins 
3 bins 
5 bins 
Expert 

Discretization 

72.56% 71.53% 78.00% 
3 bins 69.96% 68.69% 92.02% 

Star topology 

71.37% 
70.61% 
71.37% 
66.67% 

I 3-1n 

5 bins 72.45% 75.0% 
Expert 66.0% 64.86% 80.35% 

Knowledge 
Engineered 

4.2 Discretization of Continuous Variables 

3-In topology 

69.41% 
63.52% 
73.73% 
64.31% 

4.2.1 Binning Strategy 

The average performance of the various network topologies when continuous 

variables are discretized into 2, 3 and 5 approximately equal sized bins are summarized in 

the first three rows of Table 4.1, Table 4.2 and Table 4.3. There appears to be no trend in 

terms of which level of discretization provides the best performance, except for the fact 

that in terms of sensitivity, the 5 level network tends to perform the worst, and in terms of 

Engineered 
topology 

78.03% 
91.76% 
92.55% 
78.01% 



specificity it performs the best. As before, networks that perform well in terms of 

sensitivity tend to perform poorly in terms of specificity. When ranked in terms of 

Positive predictive value, each level of discretization performs in first place in one 

topology, in second place in another and in third place with a third topology, and as such 

perform equally well. Instead, how the networks perform varies with network topology. 

It seems to be more the interaction between a topology and a discretization level that 

results in a network that perfornis well. Discretization using binning does not seem to 

provide a tangible change that affects performance regardless of network topology. 

4.2.2 Expert Discretization 

The resulting ranges for each variable when discretized using statistical 

knowledge of the variables and how they relate to AH1 can be seen in Table 4.9 imd 

results in the sensitivities, specificities and positive predictive values as found in the last 

row of Table 4.1, Table 4.2 and Table 4.3. This strategy yielded little results. With the 

single exception of the network that combines Expert discretization with the knowledge 

engineered topology, all networks with expert discretization performed in last place in 

terms of sensitivity, specificity and positive predictive value. This goes against what we 

hypothesized. It is not known why the networks performed so poorly when discretized in 

this manner. However, the combination of knowledge engineered topology and 

knowledge engineered discretization does result in a network that performs very well in 

terms of sensitivity. This same network (knowledge engineered topology and expert 

discretization) performs very badly in terms of specificity. Most likely this mix of high 

sensitivity and low specificity is also reflective of the fact that in general, medical experts 

are biased towards erring on the side of false positives as opposed to false negatives. 



Table 4.9 Expert Discretizatiorn Rarnges of Continuous Variables 

I Desaturation I 

Variable Name 
BMI 
ESS Score 
Snoring 

Age 
Oxygen 

4.3 Adding Nodes to Existing Networks 

4.3.1 Adding a PUI Node 

Contrary to our hypothesis, PUI did not statistically significantly correlate with 

AH1 (Pearson correlation coefficient ~ 0 . 0 4 3 ) .  That being said, ESS, a standard for 

assessing subjective sleepiness, also correlated very little to AH1 (Pearson correlation 

coefficient r= .132, significant at the 0.01 level). After the pupillometry data had been 

gathered, when discussing the poor results with the equipment manufacturer, they 

mentioned that they had performed a study when pupil data had been gathered first thing 

in the morning. They found that the data gathered in the first 90 minutes of being awake 

did not correlate with any other sleepiness measures. It seems that individuals vary 

greatly in terns of sleep inertia (the feeling of grogginess after awakening). This is not 

something we had taken into account in our study. We recorded the pupil sizes of up to 3 

subjects per morning, from immediately after their awakening to 45 minutes after their 

awakening. This was done in order to facilitate getting volunteers for our study as the 

Sleep Clinic patients were required to stay at the clinic in the morning until a sleep doctor 

arrived to consult with them on their overnight PSG results. Afterwards, most patients 

rushed off to work, and most patients did not want to stay after their visit with the sleep 

doctor. Sleep inertia temporarily reduces a person's ability to perform even simple tasks 

Ranges used for discretizing the variable 
[16,28], [28.1, 621 
[O, 81, [9,24l 
[O, 41 time per week, [5, 71 times per week 
P O ,  451, [46,841 
[0,501, [5 1,2001 



and can last from 1 minute to 4 hours, but typically lasts 15-30 minutes in normal 

individuals. However, effects can be severe if a person is very sleep deprived or has been 

woken from a deep sleep stage. It may be that our pupillometry data should have been 

gathered slightly later in the day, after at least a 90 minute period had elapsed, allowing 

for all subjects to have recovered from their sleep inertia. Nonetheless, we still 

proceeded with the experiment of adding a node with very sparse data into our networks 

to observe the results. 

Inserting a PUI node, when PUI is discretized into three categories ([3, 7'1, [7: 111, 

[ 1 1, 151) very slightly decreases the sensitivity while it very slightly increases the 

specificity and positive predictive value of a network, averaged over the training and test 

sets, as can be seen in row 2 of Table 4.10. This is a small change, most likely 

attributeable to the slight differences between these testing and training sets and the ones 

used to train and test the network in the topology and discretization experiments. This 

change was necessary to make the training and test sets stratified so that they included the 

same number of pupillometry records in each test set and covered all of them. 

Table 4.1 0 Sensitivity, Specificity and Positive Predictive Value with Node Added Networks 

inserted (3 Levels) 
3-In-3Levels with 1 70.5% +I- 7.6% 1 52.0% +I- 7.6% / 59.3% +I- 5.4% 

Network Topology 

3 In 3Levels 
3-In-3Levels with PUI 

neck-circumference 
inserted 

Sensitivity 

72.4% +I- 6.0% 
72.1% +I- 9.3% 

Specificity 

49.5% +I- 8.5% 
53.4% +I- 9.8% 

Positive Predictive 
Value 
58.9% +I- 4.3% 
60.7% +I- 7.0% 



4.3.2 Adding a Neck Circumference Node 

Our second experiment involves adding a node representing a variable which, while it 

still has a great deal of missing values, still has 46.5% of the total records which contain 

valid neck circumference data. We hypothesize that the addition this node to the network 

will increase the sensitivity of the resulting network. Firstly, in our data set, neck 

circumference correlates mildly with AH1 severity (Pearson correlation coefficient r = 

0.224, significant at the 0.0 1 level). Secondly, it has ten times more data records 

containing valid data than that which exists for the PUI node. 

Once trained, this augmented network is able to predict the presence of rnoderate 

to severe OSAS with a sensitivity 2% lower than our base network, a specificity 2.5% 

higher than our base network and positive predictive value 0.4% higher than the base 

network, as can be seen in row 3 of Table 4.10. This is not what was expected. We 

speculate that there is some adverse interaction between this neck circumference node 

and another in the network. 

4.4 Removing Nodes from Exiting Networks 

It was hypothesized that removing nodes with low correlation to AH1 could 

increase network performance in terms of its ability to accurately predict moderate to 

severe OSA (AH1 node). We fellt that most likely removing a combination of the two 

lowest-correlating variables (Age and ESS) would result in a network with the best 

sensitivity. Removing three nodes at one time might remove too much information from 

the network and instead increase errors. The sensitivities, specificities and positive 

predictive values for the resulting networks can be seen in Table 4.1 1. Out of the eleven 

new networks created, the top 3 performers in terms of sensitivities are the following: 



with Age and BMI removed, with Age and Snoring removed and with ESS and BMI 

removed. What is surprising is that the network with Age and ESS removed, which was 

predicted to perform best, has an average sensitivity even lower than those of the base 

network (in which no node was removed). The reason for this is unknown. Another 

surprise is that every network in which the BMI node is removed performs better than the 

base network, in spite of BMI being relatively well correlated with AHI. This being said, 

the changes in sensitivity resulting from node removal are within 1% to 4% of those of 

the base network, and as such are not very large. Therefore, it seems that in this data set, 

removing these nodes that represent variables that are not highly correlated with AH1 

does not have a large effect on sensitivities and specificities. Even removing the three 

nodes Age, ESS and Snoring results in a sensitivity only 1 % higher than the base 

network. 

Table 4.11 Sensitivity, Specificity and Positive Predictive Value for Moderate to Severe OSAS 
when Removing Nodes from Network 

BMI 
3-In-3Levels without Age, ESS, 
Snoring 

Network Topology 

3 In 3Levels (base network) 
3 In 3Levels without Age 
3 In 3Levels without ESS 
3 In 3Levels without Snoring 
3 In 3Levels without BMI 
3 In 3Levels without Age, ESS 
3-In-3Levels without Age, 
Snoring 
3 In 3Levels without Age, BMI 
3-In-3Levels without ESS, 
Snoring 
3 In 3Levels without ESS, BMI 
3-In-3Levels without Snoring, 

Specificity 

49.5% +I- 8.5% 
5 1.5% +I- 5.6% 
53.1%+/-9.0% 
49.7% +I- 5.5% 
53.1% +I- 17.9% 
52.6% +I- 8.5% 
5 1 . I% +I- 12.0% 

47.2% +I- 6.0% 
49.7% +I- 7.0% 

47.5% +I- 6.1% 
45.2% +I- 5.4% 

Sensitivity 

72.4% +I- 6.0% 
72.5% +I- 7.2% 
71.4%+/-8.1% 
72.1% +I- 6.3% 
72.8% +I- 3.9% 
72.1% +I- 7.9% 
75.0% +I- 3.7% 

75.5% +/- 4.3% 
71.7% +I- 7.7% 

73.5% +I- 2.9% 
72.6% +I- 6.0% 

73.4% +I- 7.9% 

Positive Predictive 
Value 
58.9% +I- 4.3% 
60.3% +I- 4.9% 
60.2% +I- 5.9% 
58.7% +I- 3.5% 
57.6% +I- 5.5% 
60.2% +I- 6.0% 
61 .O% +I- 6.0% 

58.6% +I- 5.7% 
58.6% +I- 4.5% 

58.2% +I- 6 2% 
56.8% +I- 4.6% 

50.0% +I- 5.0% 



CHAPTER 5:CONCLUSIONS AND FUTURE WORK 

Contributions of this thesis include development of a set of Bayesian network 

models of Obstructive Sleep Apnea. The networks include the naive Bayesian network, 

one created by experimenting with the naive Bayesian network and a knowledge 

engineered network. We have investigated varying topology and varying the way in 

which continuous variables are discretized. We have also studied the effects of 

simplifying existing network models by removing nodes representing variables that do 

not correlate well with our query variable, observing the impact this has on the predictive 

abilities of the networks. Lastly, we have studied the effects of adding new nodes to 

networks when there are both small and large amounts of missing data. 

Using Bayesian network modelling software such as ~ e t i c a ~ ~ ,  these models 

provide a graphical user interface that is simple to use and adapt. In addition, for those 

networks knowledge engineered with the help of a medical expert, the networks show a 

causal map of OSAS risk. 

We have found that the 3-In-3Levels network topology, with the Age and BMI 

nodes removed performed best overall, with a sensitivity of 75.5%, a specificity of 47.2% 

and a positive predictive value of 58.6%. Overall, neither network topology nor 

discretization strategy alone influences network performance in terms of being able to 

accurately predict if a subject has moderate or severe OSAS. Instead, it seems t h t  the 

interaction between the topology and how continuous variables are discretized is 

influencial in determining the predictive accuracy of the network. This being saild, all 



network topologies perform similarly when doing I0 fold cross validation. However, it is 

suspected that there may be overfitting occuring and that the Knowledge Engineered 

network topology can actually result in much higher sensitivities and specificities than 

those shown in these results. The reason for this belief is that when testing on the 

complete training data set, sensitivities and specificities in the Knowledge Engiineered 

network topology, especially the 3 and 5 bin networks increased to over 90%. It is hoped 

in the future, a combination of additional data and some form of early stoppage will allow 

the creation of Knowledge Engineered network which will generalize better than the one 

we currently have. That being said, the current Knowledge Engineered network: is a good 

base fiom which to continue future experiments. 

In addition, it seems that networks with fewer nodes perform better overall than 

networks with a large number of nodes. Adding the PUI node influenced the 

performance of the network very little, which is not surprising given the small amount of 

data records with actual values for the PUI variable. But even adding neck 

circumference, a variable that is correlated in our data set to AH1 index and has a large 

number of valid values, does not increase performance. Instead, it actually decreases 

sensitivity by 2%. In comparison, removing nodes fiom the 3 - In-Level network resulted 

in higher sensitivity for predicting moderate to severe OSAS in seven out of eleven cases, 

even when the variables being removed were correlated significantly with AH1 (BMI, 

Snoring). This is thought to be in part because of the small amount of training data. If 

there were a great deal more data available for training, then it is likely that removing 

nodes would not increase networks' predictive abilities. 



Performance in terms of specificity was lower across all network configurations 

and discretization strategies when compared to sensitivity. There were significantly more 

false positives than false negatives in the results overall. In general, changes made to 

networks that resulted in higher sensitivities also resulted in lower specificities indicating 

that with an increasing number of true positives, there was an accompanying increase in 

false positives. This was expected to a certain extent because the cases used to train the 

network were all clinical cases referred to the sleep clinic for suspicion of OSA!S, heavily 

biasing the data towards a positive diagnosis. Also, physicians are biased towards 

making false positives rather than false negatives. 

There remains much territory to be explored. 

It would be interesting to collect more pupillometry data, but this time when 

subjects are not under the influence of varying amounts of sleep inertia - either later in 

the morning, or perhaps in the evening before they go to sleep. Acquiring more data 

from all three data sources would also be useful in making the training data sets more 

robust. This combined with early stoppage would hopefully alleviate the problems of 

overfitting which seem to be present in the current networks. 

Another experiment would be to adapt the data set, by removing missing values, 

such that we could run a structure learning algorithm and compare the topologies that the 

program would suggest with the ones we have created. 

Another direction of future exploration would be the treatment of missing data. 

Currently, we simply treat missing values as having an unknown value. Other strategies 

that have been explored by others include removing data records with missing vahes, 

modelling missing values as a separate category, namely, "missing" or replacing imissing 



values with the mean values for their corresponding variables. Our data sets could be 

altered to try these different strategies and see whether this influences predictive ability in 

a positive or negative way. 

In addition, as it seems that simpler models perform better in terms of th!eir 

predictive ability, another set of future experiments would include node removal 

experiments on the knowledge engineered network topology to see resulting 

performance. 

If it were possible to obtain matched normal controls and access to a sleep clinic 

for overnight polysomnography, it would be very interesting to see how the networks we 

have developed perform as a screening system. An OSAS screening technology could be 

used as a way of ensuring that individuals at high risk of having OSAS but who would 

not otherwise present themselves to a sleep clinic, either due to their location (far from 

major urban centre) or denial of the problem, could be flagged as needing to be examined 

by a sleep expert. In theory, if these networks are able to separate clinical cases that have 

moderate to severe OSAS from those who do not, they should be able to predict with 

even greater specificity those out of a general population most likely have moderate to 

severe OSAS. 

Finally, whatever the set of networks would result from this future work, it will be 

necessary to validate the predictive results with a doctor on different data and analyze 

whether the results would be better or worse than current diagnostic procedures in 

correctly identifying patients with moderate to severe OSAS. 



APPENDICES 



Appendix 1. ~ ~ e c h e c k ~ ~  Pupillometer Specifications 

A pupillometer is an instrument used to measure the changes in the size of the 

pupil of the eye over time. The EyecheckTM pupillometer relies on scattering techniques. 

An infrared beam is shone into the eye and the pupillometer collects of light leaving the 

pupil and uses this to calculate pupil size. This type of process entitles EyecheckTM to 

measure pupil diameter and it's reaction to light in real time, for ABSOLUTE pupil 

dynamic measurements. It allows both eyes to be tested, albeit one at a time. 

The subject is seated in a comfortable chair in a quiet room. The pupillo~neter is 

held up to the subject's eyes, and the subject simply peers into the unit's viewine, area. 

The visor around the viewing area blocks out outside light. The eyes are illuminated 

with infrared light and the scattering of this light from the eyes is collected in order to 

calculate the size of the pupil. These measurements are taken 100 times per second 

(100Hz) and the data stored on a computer. 

Dark Adaptation Test: 

The subject's pupil sizes are recorded for 10 minutes, in a dark, quiet room. 

Following a brief period of adjustment afler the lights are turned off, the pupil of' an alert 

person maintains a constant size while that of a sleepy person on fluctuates slowly, a 

number of times during the 10 minutes. The amount of instability in pupil size can be 

calculated with the Pupillary Unrest Index (PUI), a quantitative measure of the average 

amount of change in size that occurs during the pupillometry test. Other measurements 

include the total cumulative miosis of the pupil over the 11 minutes, the starting size of 



the pupil during the dark adaptation period, and the power of fluctuation frequencies 

below 0.8 Hz. 

Pupil Light Response Test: 

During the Pupil Light Response test (PLR) data is collected on changing pupil 

size in response to three light flashes. The light source is a yellowish green. Parameters 

that can be measured during this test include initial pupil diameter, final pupil diameter at 

maximum constriction, latency to onset of pupil constriction, total time to minimum pupil 

size, and reflect amplitude percentage. All of these are based on the pupil size and how it 

change over time in response to the administration of light. 

The specifics of the ~ ~ e ~ h e c k ~ ~  pupillometer are as follows: 

Handheld Pupillometer Unit 
Weight 40 ounces 
Battery Pack w1Charger 
7.2V 1500 rn4h rechargeable battery 
CD with Systems Display Software 
Operator's Manual 
DB9 cable or USB adaptor 



Appendix 2. C* Code for Algorithm Used to Calculate PUI from Raw 
10 Hz Pupillometry Data 

#include "stdafx.hW 
#include "math.hv 
#include <fstream> 
ifinclude <vector> 
#include <stdlib.h> 

using namespace std; 

int main(int argc, char* argv[]) 
1 

2 u p w  ~ I I ~ L I L  file 
ifstream inFile; 
char inFileName[100]; 
strcpy(inFileName,argv[l]); 
inFile.open(inFi1eName); 
if ( inFile.fail()) 

return 0; 

ope11 output file 
ofstream outFile; 
char outFileName[100]; 
strcat(outFileName, 

"C:\\Sleep\\PupillometryData\\DarkData\\GoodFirst4Min\\PU1PerMinFirst4Min.txtt'); 
outFile.open(outFileName, ios::app); 
if (outFile.fail()) 

return 0; 

!i output the rlanlc of'thc input Elt. li)r a given line ol'PIIIs 
std::string inName(inFi1eName); 
std::string insubstring; 
insubstring = inName.substr((inNan~e.find-last-of("\\"))+ 1); 
outFile << inSubstring.c-str() << "\t\tM; 

i; Begin prwx~slr~g the input file. 
:" distal-d iil-st 6 lines of f i fe hii. they contain no useiid dam 
char introLine[200]; 
for (int i=O; i<2; i++) 

inFile.getline(introLine, 200, 13); 
inFile.getline(introLine, 200); 
inFile.getline(introLine,200,13); 
inFile.getline(introLine,200,13); 
inFile.getline(introLine,200, 13); 

vector<int> minutel ; 
vector<int> minute2; 



for (int k=O; k<4; k++) 
{ 

i /  We want PUI per minute: 
I :  re f ' ,! ai m all data points for a given miriute. averagz tach 6 V ~ I C I C S  
:':: artit store tl~zrn in m e  of the segment vectors 
if (!inFile.eof()) 
i 

for (i=l; i-400; ) .:'dxxe are 10 data points pel- second, 60 seconds 
i 

!:' read in 6 vaiues and average then1 together 
:'/ e:ich value i s  the first double on a given line 
$ store this in thc cc,msponciing vector 
int avgValue = 0; 
int newvalue = 0; 
char newValueString[4]; 

if (! inFile.eof()) 
l 

inFile.get(newValueString,9); 
newvalue = atoi(newVa1ueString); 
avgValue += newvalue; 

: rrash the rest of the line so rile n e ~ t  time me read fiom the keginning 
inFile.getline(introLine, 1 00, 13); 
i++ ; 

1 
else 

break; 

avgValue = avgValue/(j+ 1); i:: t s L ~  the sverage 
allSegments.at(k).push-back(avgVa1ue); 
avgValue =O; :/ xse t  to 0 

1 
else 

break; 
1 

1 
else 

break; 



i:' For each i::tlue in c.&l .c:ecii>r, calculate Ilje absolute dil'f'erence 
il w i t l ~  i t s  neighbour, 
vector<double> PUIPerMin; 
k=O; 
for (k=O; k<4; k t e )  
{ 

double sumDiffs = 0.00; 
for (unsigned int j =O; j+l < allSegments.at(k).size(); j++) 
{ 

sumDiffs+= abs(allSegments.at(k).at(j) - allSegments.at(k).at(j+l) ); 
I 
j: Also, PUI in thz Gyzcheck file in recorded as 10 exp -5 ng so :' to convert to mrn we rjeccl to divide by 100. 
PUIPerMin.push-back(sumDiffs/ 100); 
outFile << sumDiffs/100 << "\t"; / n o  norn-salize since each vector is one minute 
i r e s e t  SwnrXff's 
sumDiffs = 0.00; 

I 

outFile << PUIPerMin.at(0) << "\t"; 
outFile << (PUIPerMin.at(0) + PUIPerMin.at(l))/2 << "\t"; 
outFile << (PUIPerMin.at(0) + PUIPerMin.at(1) + PUIPerMin.at(2))/3 << "\t"; 
outFile << (PUIPerMin.at(0) + PUIPerMin.at(1) + PUIPerMin.at(2) + PUIPerMin.at(3))/4 << "\t"; 

outFile << endl; 
inFile.close(); 
outFile.close(); 
return 0; 

I 



Appendix 3. Variables and their Derivation 

Index (AHI) 

Periodic Limb 
Movement 
Arousal Index 
(PLM) 

Shift Worker r 
Sleepweekdays 

Injuries 

Accidents 

Definition 

the average number of apneas 
and hypopneas per hour 
recorded during sleep as 
measured by polysomnography 
number of PLMS per hour of 
sleep leading to arousal, as 
defined by (American Sleep 
Disorders Association and 
Sleep Research Society Task 
Force criteria[70]) 
The estimated average 
percentage(over the last 2 
years) of work time spent 
working night shift ( I  1 pm to 7 
am> 
The estimated average number 
of hours of sleep obtained pel- 
night on weekdays 

The estimated average number 
of hours of sleep obtained per 
night on weekends 

The number of occupational 
injuries suffered over the last 
24 months 

The number of motor vehicle 
iccidents over the last 24 
nonths in which the patient 
was driving 
The frequency with which 
rescription medication 
'sleeping aids) is taken to get 
,r stay asleep by the patient 

How Derived Fron 
Source Data 

Data Source: 
overnight PSG 
study, entry c 25 

Data Source: 
overnight PSG 
study, entry c 15a 

Data source: 
subjective 
questionnaire, 
question 24c 

Data Source: 
subjective 
questionnaire, 
question 7a 
Data Source: 
subjective 
questionnaire 
question 7b 
Data Source: 
subjective 
questionnaire, 
question 26a 
Data Source: 
subjective 
questionnaire, 
question 45a 
Data Source: 
subjective 
questionnaire, 
question 36 

Possible States 

Continuous varialde 

Continuous variable 

Continuous variable 

Vever, very rarely (less than 
mce per month), rarely (less 
han one night per week but 
nore than once per month), 
{ometimes (1-2 nights per 
~eek ) ,  frequently (3-4 nights 
)er week), almost always (5- 
7 nights per week) 



Variable Name Definition How Derived From Possible S-1 

Sleepiness Scale 
Score (ESS) 

Body Mass 
1ndex (BMI) 

The total number of alcoholic 
beverages (beer, wine or 
liquor) consumed, on average 
(during the past year), per 
month 

The score on the Epworth 
Sleepiness Scale Questionnaire 
~ 7 1  

The total number of 
caffeinated beverages 
(carbonated beverages with 
caffeine, tea or coffee) 
consumed on average (during 
the past year), per month 

Whether the patient has been 
diagnosed by a physician with 
Diabetes 

The body mass index of the 
patient, as calculated from their 
height and weight. BMI is 
defined as being equal to: 
Weight(kg)/(Height(cm) * 
~eight(cm)) * 1000 
The gender of the patient 

Whether the patient has been 
liagnosed by a physician with 
1 major mood disorder 
:depression) 
The age of the patient 

The average (over the last 
nonth) the patient has been 
old they snored or noticed 
hey were snoring 

Source Data 
Data Source: 
subjective 
questionnaire, 
question 18 d,e and 
f converted to 
number of drinks 
per month and 
summed 
Data Source: 
subjective 
questionnaire, 

scored as per [I 71 
Data Source: 
subjective 
questionnaire, 
question 18 a, b and 
c converted to 
number of drinks 
per month and 
summed 
Data Source: 
subjective 
questionnaire, 

Data Source: 
wemight PSG 
;tudy, entries c2 and 
:3, converted to 
3M1, as per 
lefinition 
Iata Source: 

pestionnaire, 
iuestion 2 
3ata Source: 
ubjective 
luestionnaire, 
iuestion 33a 
:alculated from 
lata Source: 
,ubjective 
pestionnaire, 
pestion 1. 
lata Source: 
ubjective 
pestionnaire, 
pestion 1 1 

Continuous varialie 

Possible scores are whole 
numbers ranging Rom 0 to 24 

Continuous variablle 

Absent, Present 

Continuous variable 

Male, Female 

Yes, No 

Continuous variable 

Never, rarely(1ess than once 
per week), sometimes (1-2 
times per week), frequently 
:3-4 times per week:), almost 
ilways (5 -7 per week), not 
a r e  



Oxygen 
Desaturation 

Variable Name 

Whether the patient has been 
diagnosed by a physician as 
having hypertension 

The industry in which the 
subject has been occupied over 
the last 24 months 

Definition 

The average(over the last 24 
nonths) number of kilometers 
lriven per week 

How Derived From 

The total fraction (out of 200) 
)f time spent during sleep with 
I oxygen desaturation below 
,0% 

Possible !-1 

'upillary Unrest Index, the 
verage amount of pupil 
~scillation over time (mrdmin) 
luring a period of dark 
daptation 

Source Data 
Data Source: 
subjective 
questionnaire, 
question 33i 
Data Source: 
subjective 
questionnaire, 
question 23 

Data Source: 
;ubjective 
luestionnaire, 
pestion 44 
lata Source: 
wemight PSG 
.eport question, sum 
)f questions 32 b,c, 
13 b,c, 34 b,c, 35 
),c and 36 b,c 
3ata Source: pupil 
:ize recording 
luring dark 
~daptation the 
norning after the in- 
:linic overnight 
"SG recording, run 
hrough the PUI 
.lgorithm and 
:veraged over the 
irst four minutes of 
lark ada~tation 

Yes, No 

Agriculture, Fishing, 
Forestry, Oil and 
~ a s l ~ i n e r a l  Resources, Fooc 
and Beverage Manufacturing 
Metal/Non-Metallic Mineral 
Product Manufacturing, 
Petroleum or Coal or Rubber 
or Plastic or Chemical 
product manufacturing, wood 
and paper producit 
manufacturing, other 
manufacturing, general 
construction, heavy 
construction, road 
construction or maintenance, 
warehousing, transportation 
and related services, Retail 
trade, wholesale trade, 
working for the federal 
government, Military service, 
Public administration other 
than the federal government, 
accommodation or food or 
leisure services, business 
services, healthcare and 
jocial assistance, professional 
x scientific or teclmical 
;ewices, other services, other 
"ntinuous variable 

2ontinuous variable (max 
ZOO) 

2ontinuous variable 



RA%, Reflex 
Amplitude in 
percentage 

Variable Name 

TTM 

Definition 

TTI 

The difference, expressed as a 
percentage between the pupil 
size before a flash of light is 
shone in the eye, and the pupil 
size 3 seconds after a light has 
been shone into the eye (thus 
triggering the pupillary light 
reflex) 
The time, in milliseconds, 
between a light flash in the eye 
and the point of maximum 
pupillary constriction as a 
result of the pupillary light 
reflex) 
The time, in milliseconds, 
between a light flash in the eye 
and the initiation of pupillary 
constriction 

How Derived From 
Source Data 

DataSource: 
pupillometry data 
on PLR (pupillary 
light reflex) 

DataSource: 
pupillometry data 
on PLR (pupillary 
light reflex) 

DataSource: 
pupillometry data 
on PLR (pupillary 
light reflex) 

Possible States 

Continuous variable 

Continuous variable 

Continuous variable 



Appendix 4. Continuous Variable Ranges when Discretized by PieticaTM 

I Variable Name 

/ Snoring 

BMI 

Caffeine 

Alcohol 

I PLM Index 

Ranges for 2 bins 
[0,5 11,[52,841 

[0,4],[5,7] times 
per week 

[O, 1 1,[1 1,2001 
(sum of 
percentage time 
spent below 90% 
saturation during 
REM and non- 
REM sleep 
[16,302]],[30.1,6 
21 

beverages per 
month 

[0,2],[3,1890] 
3everages per 
month 

[0,19],[11,24] 

:0,2], [2.1,48] 

Ranges for 3 bins 
[0,45], [46,551, [56, 

times per week 

[101, 12601 
beverages per month 

[O, 01, [O, 101, [ l l ,  
18901 beverages per 
month 

Ranges for 5 bins 
[0,401, [41, '181, 
[49,531, [54,591, 
[59, 841 
[0, less than once 

per week 
[O,Ol, [O, 0.31, 

[16,26], [26.l, 291, 
[29.1, 321, [32.1, 
361, [36.1, 6 
[O, 301, [3 1,601, 
~61 ,  901, [91,1501, 
[150, 12601 
beverages per 
month 

18901 beverages 
per month 
[O, 51,[6, 81,[9, 111, 
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