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Abstract

In order to study the parity of a k-colouring, Tutte introduced the notion of a k-colouring
complex in 1969. Given a k-colourable graph X, the k-colouring complex Bk(X) is the
graph which has all the independent sets which are colour classes of X as its vertices
and two vertices A and B in V (Bk(X)) joined by an edge if the colour classes A and B

appear together in a k-colouring of X. Subsequently, Fisk proved that the graph Bk(X) is
k-colourable and discovered infinite families of graphs for which Bk(Bk(X)) is isomorphic
to X.

In this thesis, we resolve a question Tutte posed about the 4-colouring complex at one of
his final public lectures in 1999. He asked whether the 4-colouring complex of a planar
triangulation could have two components in which all colourings have the same parity.
In response, we construct triangulations of the plane whose 4-colouring complexes have
arbitrarily many even and odd components. Furthermore, we exhibit an infinite family of
4-connected triangulations of the plane whose 4-colouring complexes have an arbitrarily
large number of even components, as well as a number of 5-connected triangulations of the
plane whose 4-colouring complexes have at least two components in which all colourings
have the same parity.

In the later chapters of this thesis, we continue our study of the k-colouring complex,
discovering many new infinite families of graphs X for which Bk(Bk(X)) is isomorphic X.
We call these graphs reflexive graphs. Most notably, if G is a 3-edge-colourable, connected,
cubic (possibly including half-edges) outerplanar graph, we prove that L(G) is reflexive
if and only if G is triangle-free. In order to establish this result, we show how to reduce
questions about the reflexivity of a connected graph to questions about the reflexivity of
its 2-edge-connected components. Then we determine conditions under which subdividing
an edge preserves reflexivity. These two novel theorems are of independent interest. In
particular, we apply the latter theorem to prove that theta graphs have reflexive line graphs.

Keywords: colouring complex; graph colouring; edge-colouring; triangulation
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Chapter 1

Introduction

A graph homomorphism f : G→ H is a map from the vertex set of a graph G to the vertex
set of a graph H such that, for any u, v ∈ V (G), if u ∼ v, then f(u) ∼ f(v). Whenever there
exists a graph homomorphism f : G → Kk (where we label the vertices of the complete
graph Kk with distinct elements from {1, 2, . . . , k}) we say that the graph G is k-colourable.
Such a map f is commonly referred to as a k-colouring of G. The sets f−1(i) (1 ≤ i ≤ k)
are then termed the colour classes of f .

However, in this dissertation, we find it convenient to introduce non-standard definitions
for k-colourings and colour classes. For the purposes of the forthcoming definitions, we
permit a partition of a set to contain ∅, so we say that a partition of a set U is a collection
of pairwise disjoint subsets of U with union equal to U . With this clarification, we define a
k-colouring of a graph G to be a partition C of V (G) with |C| ≤ k, so that every member
of C is an independent set in G. Additionally, we require the technical condition that ∅ ∈ C
whenever |C| < k. The independent sets C ∈ C are termed the colour classes of the k-
colouring.

Observe that, for k-colourable graphs containing a (k − 1)-clique, these two interpre-
tations of a k-colouring can be reconciled in a natural way. In this case, a graph ho-
momorphism f : X → Kk induces a partition of V (X) into the k independent sets
{f−1(1), f−1(2), . . . , f−1(k)}. Meanwhile, given a partition C = {C1, C2, . . . , Ck} of V (G)
into k independent sets (where G contains a (k − 1)-clique) we can construct a graph ho-
momorphism f : G → Kk by taking f−1(1) = C1, f

−1(2) = C2, . . . , f
−1(k) = Ck. In this

thesis, one reason why we will often concern ourselves only with k-colourable graphs which
contain a (k−1)-clique is because we want our definition of a k-colouring to easily reconcile
with the usual definition in this way.

Now, given a fixed k-colouring f of a k-colourable graph G (whose colour classes are
{A1, A2, . . . , Ak}), we say that an AiAj-Kempe chain of f (i, j ∈ [k]) is a connected compo-
nent of G[Ai ∪ Aj ]. Swapping the two colours on a Kempe chain transforms one colouring
into a different colouring. This operation is called a Kempe change.
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By the late 19th century, some mathematicians suspected that a proof of the, at that
time, Four Colour Conjecture was likely to be found in determining the circumstances
under which a triangulation of the plane could be recoloured using Kempe changes [14, 38].
In 1879, Kempe presented an attempted proof of the Four Colour Theorem using Kempe
changes [28], which was thought to be correct until 1890, when Heawood found a planar
graph on 25 vertices for which Kempe’s argument did not work [26]. Heawood subsequently
used Kempe changes in order to establish the Five Colour Theorem.

Even long after the Four Colour Theorem was resolved in [1], recolouring methods using
Kempe changes remained an important and powerful tool in the study of colouring problems
[40]. In more recent times, building upon work of Mohar regarding the equivalence classes of
a graph’s colourings under the Kempe change relation [32], a large body of work on Kempe
equivalence classes has been completed [4, 5, 7, 9, 16, 30]. In this context, two colourings f
and g are said to be Kempe equivalent if g can be obtained from f through a sequence of
Kempe changes. Related work regarding reconfiguration graphs has concerned itself with
studying the graphs formed by colourings when one takes Kempe change as the adjacency
relation [36]. In this thesis, we examine an older, related construction, which W.T. Tutte
introduced in 1969 in order to study the recolourings of a graph [46].

The reader should note that the purpose of this chapter is to summarize our results and
review some of the history of the problems we are studying. Consequently, we will not prove
any results in this introduction, and many of the definitions presented will be restated more
formally in Chapters 2 and 3. In the event of any confusion this may cause, we refer the
reader to the Index of Definitions on page x, where all the basic definitions used in this
dissertation are referenced.

1.1 Parity of 4-Colourings

Tutte was interested in studying the recolourings of the faces of cubic graphs embedded in
the plane, as part of his investigation into the Four Colour Conjecture. We define a plane
graph to be a graph H equipped with an embedding in the plane. Every such plane graph
has a set of faces which we denote by F (H). A 4-colouring of the faces of a cubic plane
graph H is a partition of the faces of H into four disjoint sets A, B, C and D (called colour
classes) so that no two faces in the same colour class have an edge in common.

In [46], Tutte defined the colour complex of H to be the pure simplicial 3-complex K(H)
whose 3-simplices are the 4-colourings of the faces ofH. In this context, an AB-Kempe chain
of H is a maximal, connected region of H whose faces are coloured with A and B only.
He denoted the number of such AB-Kempe chains by p(A,B), in order to define (for any
4-colouring of faces f)

JA(f) = p(A,B) + p(A,C) + p(A,D)− p(B,C)− p(B,D)− p(C,D). (1.1)

2



Observing that, for a given 4-colouring of faces f , the parity of JA(f) equals the parity
of JX(f) (for each X ∈ {B,C,D}), Tutte chose to call a 4-colouring f an even 4-colouring
when JA(f) was even and called f an odd 4-colouring when JA(f) was odd.

Two 4-colourings in the same connected component of K(H) are easily seen to have the
same parity. Thus, parity could serve as an invariant, allowing Tutte to distinguish between
4-colourings of faces which could not be obtained from one another through a sequence of
recolourings, each of which fixed at least one colour class. However, the construction also
naturally motivated another question which would interest Tutte for much of his life. As
we find it more straightforward to study vertex colourings of planar triangulations, rather
than face colourings of cubic graphs, we will restate Tutte’s question in this form.

At first glance, there does not appear to be any reason why all colourings of the same
parity should lie in the same component of the colour complex, and yet, examining many
examples over a number of years, Tutte was unable to find any triangulation of the plane
whose colour complex had two components of the same parity. However, he was reluctant
to make this a conjecture, as, in his view, "the data are too few to justify a Conjecture."
Nonetheless, he asked: "If anyone knows of any case of two components of the same parity,
I would be glad to hear of it" [47].

1.2 Reflexive Graphs

Roughly a decade after Tutte first introduced the colouring complex, Fisk further elaborated
upon the simplicial complex’s structure in [20] (and later, at greater length, in [21, 22]).
Generalizing Tutte’s construction to k-colourings of pure (k − 1)-complexes, Fisk defined
the colouring functor B on the category of pure (k − 1)-complexes. As we prefer to avoid
a lengthy digression into category theory, and find it more convenient to examine graphs,
rather than pure (k − 1)-complexes, we will restate Fisk’s results here in terms of graphs
and graph homomorphisms.

Given a k-colourable graph G which contains a (k−1)-clique, we say that the k-colouring
complex Bk(G) is the graph which has the colour classes in all k-colourings of G as its
vertices. Two vertices A,B ∈ V (Bk(G)) are joined by an edge if A and B appear together
in a k-colouring of G. Adjacency in the k-colouring complex generalizes the notion of Kempe
equivalence, as two colourings f and g intersect in a vertex, if they share a common colour
class. See Chapter 2 for a more complete introduction to k-colouring complexes and their
properties.

In [20], Fisk showed that the k-colouring complex Bk(G) of a k-chromatic graph G,
where every edge of G lies in some k-clique, and G has no isolated vertices, is k-colourable.
As Bk(G) is k-colourable in this case, it is natural to consider the graph Bk(Bk(G)), which
we will denote by B2

k(G).

3



In his attempts to resolve the questions posed by Tutte, Fisk discovered a graph ho-
momorphism φG : G → B2

k(G). He defined φG(v) to be the set of all colour classes of G
containing the vertex v, and he showed that this function φG is a well-defined graph homo-
morphism whenever every edge of G lies in some k-clique, and G has no isolated vertices.
Graphs for which the homomorphism φG was an isomorphism he called reflexive.

The reader should note that the homomorphism φG (and B2
k(G)) can be defined for a

broader class of graphs. These formal definitions will be presented in Chapter 2. However,
as our purpose in this introduction is to discuss the history of the field and motivation for
our work, we will define terms more narrowly in this section.

In this setting, the 3-edge-colourings of planar cubic graphs arose rather naturally by
considering the inner duals of triangulations of the plane (inner duals are formally defined
in Section 4.3). We regard a 3-edge-colouring f of a graph G (with at least one edge) as
a partition {E1, E2, E3} of E(G) into three independent edge sets. Tutte had examined
the 4-colourings of planar triangulations, and, by the well-known colouring-flow duality
[37, 41, 45], the 4-colourings of planar triangulations are in one-to-one correspondence with
the 3-edge-colourings of their duals.

In [20, 21], Fisk showed that the line graphs of cubic trees and cubic cycles are reflexive.
By a cubic tree (cubic cycle) we refer to the cubic graph obtained by adding half-edges to
a tree (cycle) until all of its vertices have degree three. This result of Fisk appears to be an
interesting phenomenon, and one of our goals is to understand why reflexive graphs exist.

After resolving Tutte’s speculations regarding the 4-colouring complex, this dissertation
continues the work started by Fisk. Indeed, while it might appear surprising that reflexive
graphs exist at all, our research exhibits several, new, non-trivial, infinite families of reflexive
graphs.

Even so, we may only be looking at the tip of the iceberg. The real question that remains
open is why there are so many reflexive graphs (and why there are any at all). We do not
have an answer to this question, but we believe that this thesis takes some important, early
steps towards an answer.

As we will devote considerable energy to studying reflexive line graphs of cubic graphs,
we will introduce some new terminology for the sake of brevity. We say that a 3-edge-
colourable graph G is edge-reflexive if L(G) is a reflexive graph with respect to 3-colourings.
So, for example, we would say Fisk proved that the cubic trees and cubic cycles are edge-
reflexive.

1.3 Summary of Results

In this dissertation, we prove several new results about the structure of the 3-colouring
complexB3(X), whereX = L(G) is the line graph of a cubic graph, as well as the 4-colouring
complex B4(T ), where T is a near-triangulation of the plane. Our main contributions are

4



contained in Chapters 3 and 5, where we resolve Tutte’s speculations regarding the 4-
colouring complex and extend Fisk’s work on 3-colouring complexes in a number of ways.

The second chapter of this thesis is a gentle introduction to k-colouring complexes and
a review of the literature on this subject. We formally define notions related to k-colouring
complexes, and we also establish some important, basic properties of k-colouring complexes.

In the third chapter, we first reprove Tutte’s results on the parity of 4-colourings (in
particular, Tutte’s Second Parity Theorem, from [47]) in the context of vertex-colourings
of planar triangulations. We also define a homological version of parity due to Fisk [18],
and prove an analogue of Tutte’s Second Parity Theorem in this setting. Theorem 3.2.2
resolves Tutte’s speculations regarding the parity of a 4-colouring complex’s components
by exhibiting an infinite family of triangulations of the plane whose 4-colouring complexes
each have arbitrarily many components with even parity and arbitrarily many components
with odd parity. Subsequently, we strengthen this result by constructing an infinite fam-
ily of 4-connected triangulations whose 4-colouring complexes have arbitrarily many even
components (as well as one odd component) in Theorem 3.3.1. Finally, we address the 5-
connected case, giving examples of 5-connected triangulations of the plane whose 4-colouring
complexes have at least three components. We first published these results in [34].

In Chapter 4, we focus our attention on identifying a number of non-trivial, infinite
families of reflexive graphs. We begin by reproving Fisk’s classical result that the cubic
trees are edge-reflexive. Then we show precisely which ladders, circular ladders and Möbius
ladders are edge-reflexive. Finally, it is established that the suspension of an even cycle has
a reflexive 4-colouring complex, as do the members of another class of graphs closely related
to the wheel graphs.

Our main result in Chapter 5 is concerned with connected, cubic outerplanar graphs.
Note that a cubic outerplanar graph will always contain half-edges.

Theorem 1.3.1. Let G be a connected, cubic, outerplanar graph. Then G is edge-reflexive
if and only if it is triangle-free.

Additionally, the edge-reflexive theta graphs are classified, and the reflexive, non-planar
graph L(K3,3) is discussed, along with how subdividing edges ofK3,3 impacts edge-reflexivity.
In the process of establishing these results, new lemmas are proven, showing how to reduce
questions about the edge-reflexivity of a connected graph G to questions about the con-
nected graphs obtained from G by cutting all of its cut-edges, as well as conditions under
which subdividing an edge preserves edge-reflexivity. The results of this chapter were first
submitted for publication in [29].

Examining 3-colouring complexes of the line graphs of cubic graphs provides us with
useful insights into the realm of 4-colouring complexes in two different ways. Firstly, as there
is a bijection between the 4-colourings of planar triangulations and the 3-edge-colourings
of their associated dual cubic graphs (and they also have a similar Kempe structure) [41]
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we gain some insight into problems involving the 4-colouring complexes of planar triangu-
lations by studying the 3-colouring complexes of the line graphs of cubic graphs. Indeed,
we originally conjectured that the reflexive 4-colouring complexes we discuss in Chapter 4
are reflexive for this reason. A number of other structural results also generalize (with some
minor modifications) from the 3-colouring complexes of the line graphs of cubic graphs to
4-colouring complexes of planar triangulations.

Secondly, two 3-colourings of a graph are adjacent if and only if they are Kempe equiv-
alent. By contrast, two 4-colourings of a graph can also be adjacent in cases where they
only have one colour class in common. Thus, we can acquire some insight into the differ-
ences between the Kempe equivalence of 4-colourings and Tutte’s more general notion of
4-colouring adjacency by comparing the properties of these complexes in cases (such as the
3-edge-colourings of cubic graphs and 4-colourings of triangulations of the plane) where
their Kempe structures are very similar.

Our sixth chapter introduces the novel notion of very colourful graphs, which illustrates
the approach we discussed in the preceding paragraph. Very colourful graphs are computa-
tionally and theoretically useful in studying the 3-colouring complex of the line graph of a
cubic graph G. We show that the graph homomorphism φX is injective whenever X = L(G)
is very colourful, and we prove that all 3-colouring complexes of the line graphs of cubic
graphs are very colourful. This new idea also helps us to easily prove that cubic graphs (in
which each vertex is incident with at most one half-edge) with 1, 2 or 3 half-edges cannot be
edge-reflexive. However, not all of these results still apply in the context of the 4-colourings
of planar triangulations. The remainder of Chapter 6 is spent exploring the extent to which
properties of the very colourful line graphs of cubic graphs generalize to the 4-colouring
complexes of planar triangulations.

We conclude this thesis with a chapter summarizing a large number of open questions
and conjectures our inquiries into these relatively unexplored areas have uncovered.

6



Chapter 2

Colouring Complexes

This chapter is aimed at gently introducing the reader to k-colouring complexes. We present
definitions and basic results from the literature in our new notation, accompanied by simple
examples which are intended to clarify these concepts.

In the first section of this chapter, we formally define the k-colouring complex Bk(X) of
a graph X, explain the circumstances under which Bk(X) is k-colourable and discuss some
relevant notation and conventions. The second section of the chapter establishes when the
graph homomorphism φX : X → B2

k(X) (introduced by Fisk in [20]) exists. In particular,
we prove that φX is well-defined for near-triangulations of the plane, the line graphs of 3-
edge-colourable cubic graphs and k-colouring complexes. We also discuss the related “hat”
notation (originally due to Fisk) in this section, as well as basic definitions involving half-
edges.

Frequently, we can show that φX is a graph isomorphism. In this case, we say that the
graph X is reflexive. In the third section of this chapter, we introduce a number of basic
definitions and properties of φX , which are useful in proving whether this map is a graph
isomorphism or not. Subsequently, the final section of this chapter introduces a number of
less straightforward definitions and properties of the k-colouring complex, which we will
employ in proofs later in this dissertation.

Throughout the remainder of this chapter (and, indeed, this whole dissertation) we will
employ the standard terminology of graph theory, for which we refer the reader to Bondy and
Murty’s classic textbook [10]. We deviate from the standard terminology in two significant
ways. Firstly, when we refer to a graph, we will invariably mean a finite graph without
either loops or multi-edges, but we will often allow graphs to contain half-edges. Secondly,
we use a non-standard definition of a k-colouring. We will provide a detailed explanation of
these deviations in the next section.
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2.1 Colouring Complexes

For the purposes of the forthcoming definitions, we permit a partition of a set to contain
∅, so we say that a partition of a set U is a collection of pairwise disjoint subsets of U
with union equal to U . With this clarification, we define a k-colouring of a graph X to
be a partition C of V (X) with |C| ≤ k, so that every member of C is an independent set
in X. Additionally, we require the technical condition that ∅ ∈ C whenever |C| < k. The
independent sets C ∈ C are termed the colour classes of the k-colouring.

Definition 2.1.1. The k-colouring complex Bk(X) is the graph whose vertices are the
colour classes in all k-colourings of X. Two vertices C,D ∈ V (Bk(X)) are joined by an edge
if C and D appear together in a k-colouring of X.

At times (in particular, in chapters 3 and 6) we will also find it useful to think of a k-
colouring as a graph homomorphism f : X → Kk, where we label the vertices of the complete
graph Kk with distinct elements from {1, 2, . . . , k}. Recall that a graph homomorphism
f : X → Y is a map from the vertex set of a graphX to the vertex set of a graph Y such that,
for any u, v ∈ V (X), if u ∼ v, then f(u) ∼ f(v). The graph homomorphism f : X → Kk

induces a partition of V (X) into the k independent sets {f−1(1), f−1(2), . . . , f−1(k)}. This
partition reconciles this view of a k-colouring with our original definition.

Throughout this dissertation, in order to avoid confusion, we will refer to vertices and
edges of a graph X with lower case letters, such as u or v. Sets of vertices and edges in X (in
particular, colour classes of X) will be identified with capital letters at the beginning of the
alphabet like A, B and C. Colourings (or edge-colourings) of X will usually be denoted by
f or g. Sets of vertices in Bk(X) (in particular, colour classes of Bk(X)) will be represented
by capital letters at the beginning of the alphabet, written in script. For example, we might
denote a colour class of Bk(X) by A. Colourings of the k-colouring complex Bk(X) will
be denoted by lower case Greek letters (usually χ). As the vertices of Bk(X) are colour
classes of X, we represent the colour class A ⊆ V (X) with the same symbol as the vertex
A ∈ V (Bk(X)). Similarly, we will frequently use the symbolA ⊆ V (Bk(X)) to also represent
a vertex A ∈ V (B2

k(X)).
Finally, we will sometimes find it convenient to discuss when two k-colourings f and g

have a colour class in common. In this case, we will say that the two colourings f and g

are adjacent (f ∼ g). Taking the transitive closure of this adjacency relation, we say that
two k-colourings are connected if they lie in the same equivalence class of the transitive
closure. The reader should observe that the adjacency of colourings generalizes the notion
of a Kempe change, while the notion of two colourings being connected generalizes the
idea (introduced by Mohar in [32]) of Kempe equivalence. Of course, we also observe that
connected colourings lie in the same connected component of the k-colouring complex.

Now, it is easy to see that the graph Bk(X) is k-colourable under a fairly simple condi-
tion.
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Lemma 2.1.2 (Fisk [18]). Let X be a k-colourable graph which contains some (k−1)-clique.
Then Bk(X) is k-colourable.

Proof. Let Q be some (k − 1)-clique of X which has vertices {q1, q2, . . . , qk−1}, and let Cqi

be the set of all the colour classes in k-colourings of X which contain the vertex qi. We
claim that {Cqi : i ∈ [k − 1]} ∪ {(V (Bk(X)) \ ∪k−1

i=1 Cqi)} is a k-colouring of Bk(X). Each
vertex of Bk(X) must be a colour class of X containing either exactly one of the vertices
qi or none of them, so the aforementioned set partitions the vertices of Bk(X). Moreover,
no two colour classes of X in Cqi may be adjacent in Bk(X) (since each contains qi) and no
two colour classes of X in {(V (Bk(X)) \ ∪k−1

i=1 Cqi)} may be adjacent in Bk(X) (since every
k-colouring of X contains at most one such colour class).

As an aside, we note that the condition in Lemma 2.1.2 that X must contain a (k− 1)-
clique is necessary, as the 4-colouring complex of the 2-regular 4-cycle is not 4-colourable.

Now, let us discuss a few classes of k-colouring complexes which will be relevant to
our work. As we mentioned earlier, we allow for the possibility that a graph may contain
half-edges. Half-edges are edges which are only incident with one vertex and contribute one
to the degree of this vertex. In particular, a cubic graph G is a graph all of whose vertices
have degree three. Notice that we can treat every graph of maximum degree three as a cubic
graph by adding half-edges to the vertices of smaller degrees. With this understanding, we
will in particular speak of cubic paths, cubic cycles and cubic trees. We refer to Figure 2.1
for some examples.

Figure 2.1: Cubic vertex, cubic 4-cycle and a cubic tree with their line graphs.

Additionally, we will often discuss the line graph of a graph G which contains half-edges.
Thus, we define the line graph L(G) of G as the graph which has as its vertex set the edge
set of G (this includes all the half-edges of G). Two vertices of L(G) are adjacent in L(G)
if and only if their corresponding edges (in G) are incident with a common vertex.

Finally, when we say that T is a planar near-triangulation, we mean that T is a trian-
gulation of some disk embedded in the plane.
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When X is a 3-chromatic line graph of a cubic graph (which may contain half-edges) or a
3-chromatic 3-colouring complex, X contains a 2-clique, so the graph B3(X) is 3-colourable
by Lemma 2.1.2. Similarly, if X is either a planar near-triangulation or a 4-chromatic
4-colouring complex, then X contains a 3-clique, so the graph B4(X) is 4-colourable. Con-
sequently, in these cases, as Bk(X) is k-colourable, we can consider its k-colouring complex
B2

k(X) := Bk(Bk(X)).

2.2 The Homomorphism φX

Whenever the graph X contains a (k − 1)-clique, we can define the k-colouring complex
B2

k(X) := Bk(Bk(X)) by Lemma 2.1.2. Surprisingly, Fisk established in [20] that there
exists a graph homomorphism φX : X → B2

k(X) under only slightly stricter conditions.

Definition 2.2.1. Let X be a k-colourable graph which contains a (k−1)-clique. Then the
mapping φX : V (X)→ V (B2

k(X)) is defined as follows:

φX(v) = {C ∈ V (Bk(X)) | v ∈ C} (v ∈ V (X)).

Lemma 2.2.2 (Fisk [20]). Let X be a k-colourable graph without isolated vertices in which
each edge is contained in a k-clique. Then the map φX : X → B2

k(X) is a graph homomor-
phism.

Proof. The argument that Bk(X) is k-colourable employed in the proof of Lemma 2.1.2
also establishes that φX maps k-cliques to k-cliques. Consequently, as each edge of X is
contained in a k-clique, the map φX is a graph homomorphism.

In fact, we can establish slightly more. Let X be a k-colourable graph in which every
edge of X is contained in a (k− 1)-clique. We can transform X into a k-colourable graph in
which every edge of X is contained in a k-clique in the following way. For each (k−1)-clique
Q of X which is not contained in a k-clique, add a new vertex uQ to the clique Q in order
to make it a k-clique. Observe that this new graph has precisely the same k-colourings as
the original graph X.

Fisk defined the graph X̂ as the graph obtained from applying the operation described
above to the graph X. Furthermore, he observed that Bk(X) ∼= Bk(X̂). The isomorphism
ψ : Bk(X̂)→ Bk(X) takes each vertex of Bk(X̂) (colour class of X̂) to its restriction to X.
The corollary below follows immediately from said observation.

Lemma 2.2.3. Let X be a k-colourable graph without isolated vertices in which each edge
is contained in a (k−1)-clique. Then the map φX : X → B2

k(X) is a graph homomorphism.

In fact, this is best possible. To see that Lemma 2.2.3 cannot be improved, consider the
graph X drawn in Figure 2.2 and its 4-colouring complex B4(X).
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a b

c d

e f

Figure 2.2: A graph X for which φX(e) and φX(f) do not appear together as colour
classes in a 4-colouring of B4(X).

Observe that {a}, {c}, {d} ∈ V (B4(X)). Moreover, the following 4-colourings of X ap-
pear as copies of K4 in B4(X): {{c}, {d}, {a, f}, {b, e}}, {{c}, {a}, {b, f}, {d, e}} and {{d},
{a}, {b, e}, {c, f}}. Thus, a triangle {a}{c}{d} exists in the complement of φX(e) ∪ φX(f),
so φX(e) and φX(f) are not adjacent in B2

4(X).
For our purposes, it is important to note here that (by Lemma 2.2.3) the map φX : X →

B2
k(X) is a well-defined graph homomorphism whenever X is the line graph of a 3-edge-

colourable cubic graph and k = 3. Similarly, φX is a well-defined homomorphism when X
is a near-triangulation of the plane and k = 4. As we will employ these facts throughout
this dissertation, we will state them formally as corollaries of Lemma 2.2.3.

Corollary 2.2.4. Let X be the line graph of a 3-edge-colourable cubic graph. Then the map
φX : X → B2

3(X) is a graph homomorphism.

Corollary 2.2.5. Let T be a near-triangulation of the plane, and consider the 4-colourings
of T . Then the map φT : T → B2

4(T ) is a graph homomorphism.

The following example illustrates some of the concepts which we have discussed in this
section. In particular, we emphasize how the ‘hat’ construction which was used in order to
establish Lemma 2.2.3 applies to 4-colourings of near-triangulations of the plane.
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{y}

{u,w}

{v, x}

∅

{w}
{u}

{x}
{v}

{{y}}

{{v, x}, {x}}

{{u,w}, {w}}

{{u}, {v}, ∅}

{{u,w}, {u}}

{{v, x}, {v}}

{{v}, {w}, ∅}

{{w}, {x}, ∅}

{{u}, {x}, ∅}

u v

wx

y

X B4(X)

B2
4(X)

Figure 2.3: Graphs X, B4(X) and B2
4(X). The graph B2

4(X̂) is isomorphic to B2
4(X), and

so X̂ ∼= B2
4(X̂).

Recall from earlier in this section that B4(X̂) ∼= B4(X), and observe that X̂ ∼= B2
4(X)

for this example. Thus, X̂ ∼= B2
4(X̂). Indeed, it is easy to see that this isomorphism is given

by φX̂ .
First, notice that (as Corollary 2.2.3 established) since every edge of X is contained in

a triangle, the map φX : X → B2
4(X) is a graph homomorphism which maps the triangle

uvy to the triangle φX(u)φX(v)φX(y) in B2
4(X). This triangle is contained in the 4-clique

{{{u,w}, {u}}, {{v, x}, {v}}, {{y}}, {{w}, {x}, ∅} in B2
4(X). This 4-clique of B2

4(X) is also
a 4-colouring of B4(X), so we can apply the inverse of the isomorphism ψ : B4(X̂)→ B4(X)
to these colour classes in order to obtain a 4-colouring of B4(X̂). The isomorphism ψ takes
each vertex of B4(X̂) (colour class of X̂) to its restriction to X. Consequently, φX̂(u), φX̂(v)
and φX̂(y) are three colour classes in a 4-colouring of B4(X̂), together with the colour class
of B4(X̂) which consists of all colour classes of X̂ (vertices of B4(X̂)) which do not contain
any of u, v or y. Now, observe that the colour classes of X̂ which do not contain any of
u, v or y are precisely the colour classes of X̂ containing the vertex z, which is added by
the ‘hat’ operation to the triangle uvy. Thus, the remaining colour class of B4(X̂) is φX̂(z).
So, the 4-colouring of B4(X̂) obtained by applying ψ−1 to φX(u), φX(v), φX(y) and the
colour class of B4(X) which consists of all colour classes of X (vertices of B4(X)) which do
not contain any of u, v or y is of the form {φX̂(u), φX̂(v), φX̂(y), φX̂(z)}. By symmetry, it
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follows that each of the four 4-cliques of B2
4(X̂) may be obtained by applying φX̂ to each of

the four 4-cliques in X̂. Therefore, the isomorphism between X̂ and B2
4(X̂) is given by φX̂ .

Of course, while this example illustrates how the homomorphism φX can be an isomor-
phism and the intricacies of the ‘hat’ operation, it does not suggest an approach to proving
that φX is an isomorphism for larger classes of graphs (which is our real interest). We will
discuss how to begin developing such an approach in the next section.

2.3 Colourful and Reflexive Graphs

We say that a graph X is colourful (for k-colourings) if, for any two vertices x and y, there
exists a k-colouring which has x and y in different colour classes. Furthermore, we say that
a k-edge-colourable graph G is edge-colourful if X = L(G) is a colourful graph.

So, for example, if we consider the 3-edge-colourings of any 2-regular cycle Cn, we can
easily see that Cn is edge-colourful. In order to prove that Cn is edge-colourful, it suffices to
show that, for each pair of edges a, b ∈ E(Cn), there exists a 3-edge-colouring f of Cn such
that f(a) 6= f(b). So, colour the edge a with the colour 3 and all other edges with colours
1 and 2. This is a colouring f of Cn such that f(a) 6= f(b). As we chose a and b arbitrarily,
it follows that Cn is edge-colourful.

That X must be colourful is a necessary and sufficient condition for the map φX to be
an injection.

Observation 2.3.1. Let X be a k-colourable graph which contains some (k − 1)-clique.
Then X is colourful for k-colourings if and only if the mapping φX is injective.

Also, in order for X to be a 3-colouring complex or 4-colouring complex (which is
necessary for a 3-chromatic graph X to satisfy X ∼= B2

3(X) or for a 4-chromatic graph X
to satisfy X ∼= B2

4(X)) the following structural conditions must be satisfied.

Lemma 2.3.2. Let X be a 3-chromatic graph with no isolated vertices. Then any triangle
in B3(X) must represent a 3-colouring of X. Consequently, each edge of B3(X) is contained
in precisely one triangle.

Proof. Suppose, for a contradiction, that B3(X) contains a triangle C1C2C3 which does not
represent a 3-colouring of X. Each edge of C1C2C3 must be in a 3-colouring of X. For each
i 6= j in {1, 2, 3}, let Cij = V (X) \ (Ci ∪Cj) be the third colour class in a 3-colouring of X
which contains Ci and Cj .

Now, C1 ∩ C2 = C2 ∩ C3 = C3 ∩ C1 = ∅. Hence, C1 ⊆ C23, C2 ⊆ C31 and C3 ⊆ C12. So,
let H = V (X) \ (C1 ∪ C2 ∪ C3). Then C12 = V (X) \ (C1 ∪ C2) = C3 ∪ H, C23 = C1 ∪ H
and C31 = C2 ∪H. If H = ∅, then C12 = C3 and C1C2C3 is a 3-colouring of X, which is a
contradiction.

Consequently, we may assume that H 6= ∅. Then there exists a vertex v ∈ H, which
has some neighbour u /∈ H (since X has no isolated vertices, and H is an independent set).
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Without loss of generality, suppose that u ∈ C1. Then, as C1 ⊆ C23, u, v ∈ C23. However,
this is a contradiction, since u and v are neighbours, while C23 is an independent set.

Lemma 2.3.3. Let Y be a 4-chromatic graph, and suppose that every vertex of Y is con-
tained in a triangle. Then any subgraph of B4(Y ) which is isomorphic to K4 must represent
a 4-colouring of Y .

Proof. For a contradiction, suppose that B4(Y ) contains a 4-clique {C1, C2, C3, C4} which
is isomorphic to K4 and does not represent a 4-colouring of Y . Observe that each edge
of B4(Y ) must be in some 4-clique Z of B4(Y ) which corresponds to a 4-colouring of Y ,
as all the edges of B4(Y ) are derived from 4-colourings of Y . If the subgraph Z contains
exactly three vertices Ci, Cj and Ck from {C1, C2, C3, C4}, we call its remaining vertex Aijk.
Meanwhile, when Z contains only two vertices Ci and Cj from {C1, C2, C3, C4}, we call its
remaining two vertices Aij and Bij .

Let l,m ∈ {1, 2, 3, 4}. Any vertex Aijk such that l /∈ {i, j, k} satisfies Cl ⊆ Aijk. Similarly,
any pair of vertices Aij and Bij such that l,m /∈ {i, j} satisfy Cl ∪Cm ⊆ Aij ∪Bij . Now, let
H = (C1 ∪C2 ∪C3 ∪C4)c. Then (whenever these sets are defined) Aijk = V (Y ) \ (Ci ∪Cj ∪
Ck) = Cl ∪H, where {l} = {1, 2, 3, 4} \ {i, j, k}. Likewise, Aij ∪ Bij = V (Y ) \ (Ci ∪ Cj) =
Cl ∪ Cm ∪H, where {l,m} = {1, 2, 3, 4} \ {i, j}.

Now, if H = ∅, then {C1, C2, C3, C4} is a 4-colouring of Y , contradicting our initial
assumption. Consequently, we may assume that H 6= ∅. Thus, we may assume that there
exists some vertex v ∈ H. Moreover, v is in some triangle uvw of Y .

We now consider two cases.

Case 1: there is a 4-colouring of Y of the form {Ci, Cj , Ck, Aijk}. We are given that
v ∈ H, and that v is in some triangle uvw of Y . Thus, u,w /∈ Cl ⊆ Aijk, where {l} =
{1, 2, 3, 4} \ {i, j, k}. Without loss of generality, suppose that u ∈ Ci. Then either w ∈ Cj

or w ∈ Ck. So, without loss of generality, suppose that w ∈ Cj . However, as the edge ClCk

of B4(Y ) must be in some 4-clique Z of B4(Y ) which corresponds to a 4-colouring of Y ,
either Cj ⊆ Aikl, Ci ⊆ Ajkl or Ci ∪Cj ⊆ Akl ∪Bkl, where {l} = {1, 2, 3, 4} \ {i, j, k}. In the
first case, v, w ∈ Aikl, contradicting the fact that Aikl is an independent set. In the second
case, u, v ∈ Ajkl, contradicting the fact that Ajkl is an independent set. In the third case,
u, v, w ∈ Akl ∪ Bkl, which is impossible, as a triangle cannot be contained in the union of
two independent sets.

Case 2: there is no 4-colouring of Y of the form {Ci, Cj , Ck, Aijk}. Thus, all 4-colourings
of Y are of the form {Ci, Cj , Aij , Bij}, for some choice of i, j ∈ {1, 2, 3, 4}. Fix some choice
of {i, j, k, l} = {1, 2, 3, 4}. As v ∈ H and uvw is a triangle of Y , we know that either u or w
must be contained in Ci ∪ Cj . Without loss of generality, suppose that u ∈ Ci. Note that
Ci ⊆ Ajk ∪ Bjk, Ci ⊆ Ajl ∪ Bjl and Ci ⊆ Akl ∪ Bkl. Thus, uvw is a triangle in Ajk ∪ Bjk

(a contradiction) unless w /∈ Ajk ∪Bjk. Similarly, w /∈ Ajl ∪Bjl and w /∈ Akl ∪Bkl. Hence,
w /∈ (Ajk ∪Bjk) ∪ (Ajl ∪Bjl) ∪ (Akl ∪Bkl) = C1 ∪ C2 ∪ C3 ∪ C4 ∪H, a contradiction.
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When the graph homomorphism φX : X → B2
k(X) is an isomorphism, we say that the

graph X is reflexive with respect to k-colourings (or simply reflexive, if k is clear from
the context). Furthermore, we say that a k-edge-colourable graph G is edge-reflexive with
respect to k-edge-colourings if X = L(G) is a reflexive graph with respect to k-colourings.
In the event that G is a cubic graph, we can derive a simple necessary condition from
Observation 2.3.1.

Lemma 2.3.4. A cubic graph G containing a triangle is not edge-colourful with respect to
3-edge-colourings. Consequently, it is not edge-reflexive with respect to 3-edge-colourings.

Proof. Let {a, b, c} be the vertex set of a triangle in G, and let e be the third edge incident
with the vertex a. Then the edges e and bc have the same colour in every 3-edge-colouring of
G. Consequently, by Observation 2.3.1, the map φL(G) : L(G)→ B2

3(L(G)) is not injective.

The trivial direction of Theorem 1.3.1 follows from Lemma 2.3.4. In order to establish
the non-trivial direction of this theorem (and similar results about reflexivity) we have
invested considerable effort in devising tools which can be used to prove that graphs are
reflexive. The next section of this chapter will define and explain many of these tools.

2.4 Tools for Proving Reflexivity

Throughout the remainder of this dissertation, we will frequently discuss vertices of B2
k(X),

which are also colour classes of Bk(X). In order to distinguish these vertices from vertices
of X (which are denoted by lower case letters) or vertices of Bk(X) (which are denoted by
upper case letters) we will refer to these vertices with upper case letters in script font. For
example, we might refer to a triangle in B2

k(X) as the triangle ABC.
Now, in order to establish that the graph homomorphism φX is an isomorphism, we will

find it convenient to first show that φX is an injective homomorphism. Then we count the
number of k-cliques of B2

k(X) (for k-colourings). The following lemmas establish that this
approach is acceptable for 3-colourings of the line graphs of cubic graphs and 4-colourings
of near-triangulations of the plane (in which every maximal clique has been made into a
4-clique using the “hat” operation).

Lemma 2.4.1. Let X and Y be k-chromatic graphs such that every edge of X or Y lies in
some k-clique, and so that X and Y have no isolated vertices. Furthermore, suppose that
φ : X → Y is an injective homomorphism, and that X and Y contain the same number of
k-cliques. Then φ is an isomorphism.

Proof. By the injectivity of the graph homomorphism φ, the set {φ(Q) : Q is a k-clique of
X} is a set of k-cliques in Y that is the same size as the set of k-cliques in X. If there is a
vertex or edge of Y which is not contained in {φ(Q) : Q is a k-clique of X}, then, as each

15



edge of Y lies in some k-clique, and Y has no isolated vertices, there is some k-clique of Y
which is not contained in {φ(Q) : Q is a k-clique of X}. However, this contradicts the fact
that X and Y have the same number of k-cliques, so φ must be surjective.

It remains to establish that φ(x) ∼ φ(y)⇒ x ∼ y, for any φ(x), φ(y) ∈ V (Y ) (since φ is
surjective). If φ(x) ∼ φ(y), then φ(x)φ(y) is an edge of Y in some k-clique Q′ of Y. Now, as
X and Y have the same number of k-cliques, and φ is an injective graph homomorphism,
φ maps k-cliques to k-cliques. As a consequence of this fact, xy ∈ E(X), as required.

Of course, there are considerable practical challenges in determining the number of k-
cliques in B2

k(X), but we have found that a significant amount of progress can be made by
working in this direction. We organize our approach using the following two lemmas.

Lemma 2.4.2. Let G be a 3-edge-colourable, cubic, edge-colourful graph of order n, and let
X = L(G). The following statements are equivalent:

(i) G is edge-reflexive with respect to 3-edge-colourings.

(ii) B3(X) has precisely n 3-colourings.

(iii) For every 3-colouring {A,B, C} of B3(X), there is a vertex in G with incident edges
e, f, g such that {A,B, C} = {φX(e), φX(f), φX(g)}.

Proof. As argued in the proof of Lemma 2.1.2, all partitions of V (B3(X)) of the form {φX(e),
φX(f), φX(g)} are 3-colourings of B3(X). This shows that (ii) and (iii) are equivalent.

Next, by Observation 2.3.1, φX : X → B2
3(X) is injective, and every triangle in X

corresponds to a vertex of G by Lemma 2.3.4. Thus X has precisely n triangles. As B3(X)
has no isolated vertices, every triangle in B2

3(X) must represent a 3-colouring of B3(X) by
Lemma 2.3.2, so (ii) is equivalent to the statement that B2

3(X) has precisely n triangles.
By Lemma 2.4.1, this yields the equivalence of (i) and (ii).

Lemma 2.4.3. Let X be a 4-colourable, colourful near-triangulation of the plane such that
all maximal cliques of X are 4-cliques. Furthermore, suppose that X contains n 4-cliques.
Then the following statements are equivalent:

(i) X is reflexive with respect to 4-colourings.

(ii) B4(X) has precisely n 4-colourings.

(iii) For every 4-colouring {A,B, C,D} of B4(X), there is a 4-clique in X with vertices
a, b, c, d such that {A,B, C,D} = {φX(a), φX(b), φX(c), φX(d)}.

Proof. As argued in the proof of Lemma 2.1.2, whenever {a, b, c, d} is a clique of X,
{φX(a), φX(b), φX(c), φX(d)} is a 4-colouring of B4(X). This shows that (ii) and (iii) are
equivalent.
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Next, by Observation 2.3.1, φX : X → B2
4(X) is injective. As every vertex of B4(X) is

contained in a triangle, every 4-clique in B2
4(X) must represent a 4-colouring of B4(X) by

Lemma 2.3.3, so (ii) is equivalent to the statement that B2
4(X) has precisely n 4-cliques.

By Lemma 2.4.1, this yields the equivalence of (i) and (ii).

It remains to explain how we plan on counting the colourings of the graph Bk(X).
Our main tool in this endeavour is the notion of clustering, which was inspired by Fisk’s
proof that cubic trees are edge-reflexive in [21]. Clustering the vertices of the graph Bk(X)
involves partitioning the vertices of Bk(X). We denote by Cx1x2...xt the set of colour classes
of X (vertices of Bk(X)) which contain the vertices x1, x2, . . . , xt. In other words,

Cx1x2...xt =
t⋂

i=1
φX(xi).

These sets Cx1x2...xt will be referred to as clusters.
For example, suppose that G is the cubic path on five consecutive vertices u, v, w, x

and y (as shown in Figure 2.4). Let the three edges incident with x be denoted by a = wx,
b, c = xy, and let the three edges incident with y be denoted by c = xy, d, e. Finally, let
X = L(G).

u v w x

y

a
b c

d e

Figure 2.4: The cubic path on five vertices

Now, we can partition the vertices of B3(X) into the five clusters Cad, Cbe, Cc, Cae and
Cbd. Each cluster corresponds to one of the five colour classes which occur among all the
3-edge-colourings of the cubic edge on the vertices x and y.

In these terms, observe that the 3-colourings of X fall into two types, as indicated in
Figure 2.5. We will say that a 3-colouring of X in which a and d are in the same colour class
is a type 1 colouring of X. Similarly, a 3-colouring of X in which a and d are in different
colour classes will be called a type 2 colouring of X. The subgraph of B3(X) consisting of
all the triangles of B3(X) (3-colourings of X) of type i ∈ {1, 2} will be denoted by Ti. Notice
that Ti contains only those vertices of B3(X) that appear as colour classes in Ti. Thus, Ti is
obtained from the induced subgraph on the three clusters by removing the isolated vertices
(which must participate in triangles of some neighbouring Tj , but not in Ti itself). We say
that Ti and Tj are neighbouring subgraphs when Ti and Tj have some cluster in common.
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We will also denote the subgraph of Ti induced by the union of the two adjacent clusters
Cx1...xt and Cw1...ws by Cx1...xtCw1...ws .

Cc

Cad

Cbe

Cae

Cbd

T1 T2

Figure 2.5: The 3-colouring complex B3(X)

Each cluster is an independent set in B3(X), and there is a natural homomorphism
from B3(X) to B3(X[{a, b, c, d, e}]) given by restricting X to the vertex set {a, b, c, d, e} of
X (ie. each colour class C of X is mapped to C ∩ {a, b, c, d, e}). Moreover, it is not hard
to see that each subgraph Ti is isomorphic to B3(L(G[{u, v, w, x}])). We will prove this
observation formally in Chapter 4. Consequently, if we know the number of 3-colourings
of B3(L(G[{u, v, w, x}])) (as is the case, for example, when we know that G[{u, v, w, x}]
is edge-reflexive) then we can count the number of 3-colourings of B3(X) by counting the
extensions of 3-colourings of B3(L(G[{u, v, w, x}])) using the cluster graph.

In order to count these extensions of colourings, we require a few useful lemmas. The
remainder of this section is focused on outlining these results.

First, however, we will require one more set of definitions. Suppose that S ⊆ V (X),
and that we have a 3-colouring f = {A,B,C} of X[S]. A colouring {A′, B′, C ′} of X is an
extension of the colouring f if A ⊆ A′, B ⊆ B′, and C ⊆ C ′ (or some permutation of the
colour classes satisfies the same inclusion relations). If v is a vertex and for every extension
of f , v is in the colour class containing the same colour class in f , then we say that the
colour of v is determined by f (or that the colouring f determines the colour of v). If the
colours of all vertices are determined by f and f has an extension, we say that f determines
the extension (or that f extends uniquely to X).

Lemma 2.4.4. Let F be a graph with a 3-colouring whose colour classes are A, B and C.
Suppose that F has no isolated vertices, that every edge of F is contained in exactly one
triangle, and that F [B ∪ C] is connected. Then any 3-colouring of F that uses at least two
colours on A is determined by its restriction to A.

Proof. Let x0 and y be two vertices of A which have different colours, and let v, w ∈ B be
neighbours of x0 and y, respectively. Let P = v1v2 . . . vn be a path in F [B ∪C] with v1 = v

and vn = w. For each i ∈ [n−1], let xi ∈ A be the common neighbour of vi and vi+1 (which
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exists, since every edge of F is contained in a unique triangle). Relabel y as xn. Let j ∈ [n]
be such that xj and xj−1 have different colours. Such an index exists because x0 and xn

have different colours. Then vj is adjacent to both of these vertices, and hence its colour is
determined. Relabel vj as z.

Now let u be any vertex in B∪C. Let Q = u1u2 . . . um be a path in F [B∪C] with z = u1

and u = um. The colour of u1 is determined, and whenever the colour of ui is determined,
so is the colour of ui+1 (since it is in a triangle with ui and a vertex of A, both of whose
colours are determined). By induction the colour of u = um is determined. Since u was
arbitrary, the entire colouring is determined.

So, for example, if we could prove that the subgraph CaeCbd of B3(X) was connected, then
any 3-colouring of T1∪T2 which used at least two colours on Cc∩T2 would be determined by
its restriction to T1 ∪ (Cc ∩T2). In cases where one colour was used on Cc ∩T2, a 3-colouring
of T1 ∪ (Cc ∩ T2) would extend in two ways to T1 ∪ T2.

Consequently, provided we can prove that CaeCbd is connected, Lemma 2.4.4 is a reliable
tool which will help us count extensions of colourings. We can use the following lemma to
show CaeCbd is connected.

Lemma 2.4.5. Let X be a graph that is reflexive for 3-colourings. If v is a vertex of
degree d in X, then d = 2t, where t is the number of components of the bipartite graph
B3(X)− φX(v).

Proof. As X is reflexive, the set φX(v) is a colour class in a 3-colouring of B3(X). Since
B3(B3(X)) is isomorphic to X, the number of 3-colourings of B3(X) that have φX(v) as
one of their colour classes is equal to d/2 (each colouring contributes 2 towards the degree
by Lemma 2.3.2). Thus, d/2 is equal to the number of 2-colourings of B3(X) − φX(v). In
particular, this subgraph is bipartite, and it is clear that the number of 2-colourings is equal
to 2t−1. Thus, d = 2 · 2t−1 = 2t.

Of course, a similar result also holds for 4-colourings.

Lemma 2.4.6. Let X be a graph that is reflexive for 4-colourings. If uv is an edge whose
endpoints have d common neighbours in X (excluding u and v), then d = 2t, where t is the
number of components of the bipartite graph B4(X)− (φX(u) ∪ φX(v)).

Proof. Since X is reflexive, the set φX(u)∪ φX(v) is the union of a pair of colour classes in
a 4-colouring of B4(X). Since B4(B4(X)) is isomorphic to X, the number of 4-colourings
of B4(X) that have φX(u) and φX(v) as two of their colour classes is equal to d/2 (each
colouring contributes 2 towards the number of neighbours by Lemma 2.3.3). Thus, d/2
is equal to the number of 2-colourings of B4(X) − (φX(u) ∪ φX(v)). In particular, this
subgraph is bipartite, and it is clear that the number of 2-colourings is equal to 2t−1. Thus,
d = 2 · 2t−1 = 2t.
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With these results in hand, we are now in a much better position to study reflexive
colouring complexes. If the graph G[{u, v, w, x}] is an edge-reflexive graph, then the vertex
c of L(G[{u, v, w, x}]) is a vertex of degree 2 = 21 in a reflexive graph for 3-colourings. Thus,
by Lemma 2.4.5 (since T1 and T2 are each isomorphic copies of B3(L(G[{u, v, w, x}]))) both
CaeCbd and CadCbe must be bipartite and connected subgraphs of B3(X).

More generally, we can now easily establish results like Observation 2.4.7. This easy
result is intended to illustrate how we use will use the results we established earlier in order
to prove more difficult theorems in chapters 4, 5, and 6.

Observation 2.4.7. Let G be a 3-edge-colourable, edge-reflexive, cubic graph, which con-
tains at least one half-edge. Then the 3-colouring complex B3(L(G)) is connected.

Proof. Let X := L(G), and let e ∈ E(G) be some half-edge in G. The vertex e ∈ V (X)
has degree 2. Thus, as X is reflexive, by Lemma 2.4.5 (which applies, since G is a 3-edge-
colourable, cubic graph) it follows that B3(X) − φX(e) consists of exactly one bipartite
component. Now, since B3(X)−φX(e) is connected, φX(e) is an independent set of B3(X),
and each vertex of B3(X) is in some triangle (by definition of B3(X)) it follows that B3(X)
must be connected.

2.5 Concluding Remarks

In this chapter, we have reviewed much of the literature which dealt with colouring com-
plexes, taking care to rigorously redefine the notions Fisk and Tutte introduced for simplicial
complexes in terms of graphs. The colouring complex Bk(X) has been defined for a graph
X, as has been the special homomorphism φX : X → B2

k(X) which Fisk introduced. We
have also explained when these constructions are well-defined.

Finally, we discussed some properties of colouring complexes and reflexive colouring
complexes (those for which φX is a graph isomorphism). In particular, we introduced the
idea of partitioning Bk(X) into clusters, established lemmas which are used to interpret
the structure of Bk(X) in terms of clusters, and discussed how studying extensions of
colourings using the cluster graph allows us to count the colourings of Bk(X). These are
the foundational tools used in almost all our proofs of reflexivity. Consequently, we will
make considerable use of these ideas in chapters 4, 5 and 6 of this dissertation.
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Chapter 3

Even and Odd Colourings

In [46], Tutte introduced even and odd 4-colourings of faces. Subsequently, in [47], he refor-
mulated this definition in terms of 4-colourings of the vertices of planar triangulations. As
we noted in the introduction, we find this second definition more useful for our purposes,
so we dispense with discussing 4-colourings of faces. Moreover, as Tutte’s colour complex
K(T ) is a special case of the 4-colouring complex B4(T ), which we defined in Chapter 2,
we find it productive to restate his work in terms of 4-colouring complexes.

In [46], Tutte established that all 4-colourings in a particular connected component of
the 4-colouring complex B4(T ) (where T is a triangulation of the plane) must have the
same parity, and he devised a way to efficiently compute this parity. However, in his long
study of parity and the 4-colouring complex, Tutte never encountered a triangulation of the
plane whose 4-colouring complex had two components of the same parity. This experience
motivated him to ask whether such triangulations could be found at all [47]. In this chapter,
we answer Tutte’s question in the affirmative.

In Section 3.1, we review results of Tutte and Fisk related to the parity of 4-colourings
and introduce some relevant terminology. In particular, we reprove Tutte’s Second Parity
Theorem (and Fisk’s variant of this theorem for triangulations of surfaces) which provide a
more efficient way of computing the parity of a 4-colouring. In Section 3.2, we prove that
there are infinitely many triangulations of the plane T such that B4(T ) has more than
k components of even parity and more than k components of odd parity, where k ∈ N.
This argument not only resolves Tutte’s question, but goes considerably further. In the
third section of this chapter, we consider the 4-connected version of Tutte’s question. Here,
we find a 4-connected triangulation of the plane which has 2k even components, for each
k ∈ N. Finally, in Section 3.4, we answer the 5-connected variant of Tutte’s question through
computation, though, in that case, we only find examples of 5-connected triangulations of
the plane with three or four connected components. We also introduce a new conjecture
based upon our results, suggesting a direction for future work.
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3.1 Parity Theorems

Two similar notions of a colouring’s parity have been introduced (the first by Tutte in [46]
and the second by Fisk in [18]). In this section, we will show how each of these quantities may
be efficiently computed (using parity theorems) and how to reconcile the two definitions. As
we noted in the introduction, we will reinterpret Tutte’s original results in terms of vertex
colourings of planar triangulations (rather than face-colourings of cubic graphs) since we
find this formulation more convenient.

We denote by p(A,B) the number of AB-Kempe chains in a planar triangulation T .
Observe that one can derive 2p(A,B)−1−1 new unlabelled colourings of T from a 4-colouring
f by taking an arbitrary subset of AB-Kempe chains and performing a Kempe change on
each AB-Kempe chain in the subset.

Given this definition, Tutte defined

JA(f) = p(A,B) + p(A,C) + p(A,D)− p(B,C)− p(B,D)− p(C,D). (3.1)

For a given 4-colouring f , the parity of JA(f) equals the parity of JX(f), for each X ∈
{B,C,D}. This observation motivated Tutte to call a 4-colouring f an even 4-colouring if
JA(f) is even and to call f an odd 4-colouring if JA(f) is odd.

Tutte’s Second Parity Theorem (which he first referred to by this name in [47]) gives
us another way of computing the parity of a 4-colouring, which is often more convenient.
Moreover, it establishes that every colouring in the same connected component of B4(T )
has the same parity whenever T is a triangulation of the plane. In order to state this result,
we will denote by deg(A) the sum of the degrees of all the vertices in the colour class A.

Theorem 3.1.1 (Tutte [46]). Let T be a triangulation of the plane with n vertices and A
a colour class of its 4-colouring f . Then

JA(f) = 2|A| − deg(A) + n− 3. (3.2)

Proof. Euler’s Formula establishes that T has t = 2n − 4 triangular faces. Additionally,
we observe that the edges of the dual graph T ∗ of T which correspond to AB-edges and
CD-edges form a perfect matching in T ∗. Thus,

e(A,B) + e(C,D) = t

2 = n− 2. (3.3)

Now, let us consider the subgraph T [A∪B] and its faces in the plane. Since it has |A|+|B|
vertices, e(A,B) edges and p(A,B) components, we can obtain from Euler’s Formula that
it has precisely e(A,B) − (|A| + |B| − p(A,B)) + 1 faces. Each of these faces contains
exactly one CD-Kempe chain (as T is a triangulation) so we conclude that p(C,D) =
e(A,B)− (|A|+ |B| − p(A,B)) + 1. By exchanging the roles of AB and CD, we obtain the
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expression p(A,B) = e(C,D)− (|C|+ |D| − p(C,D)) + 1. Combining these two equations,
using the fact that |A|+ |B|+ |C|+ |D| = n, and using (3.3), we then find that

p(A,B)− p(C,D) = |A|+ |B| − e(A,B)− 1. (3.4)

Finally, by using the same equations for p(A,C)−p(B,D) and p(A,D)−p(B,C), and then
taking their sum, we obtain

JA(f) = 3|A|+ |B|+ |C|+ |D| − (e(A,B) + e(A,C) + e(A,D))− 3

= 2|A| − deg(A) + n− 3.

This completes the proof.

The following corollary then immediately follows from the equation (3.2).

Corollary 3.1.2. If f and g are two 4-colourings of T with a common colour class A, then
JA(f) = JA(g).

For triangulations of general surfaces, we do not obtain quite so strong a result as Corol-
lary 3.1.2. However, Fisk’s analogous parity theorem still establishes that all 4-colourings
within the same component of B4(T ) will have the same parity. A good reference for those
unfamiliar with the study of graphs on surfaces is [35].

Given a triangulation T of an orientable surface with one of its orientations fixed, we
can view a 4-colouring f of T as a simplicial mapping onto the boundary of the tetrahedron,
which will be denoted by K4. For each triangle Ti,j,l of K4, we consider the facial triangles
in T that are mapped onto Ti,j,l in such a way that their orientation is preserved and those
facial triangles whose orientation is reversed. Let t+ijl (t−ijl) be the number of triangular faces
in T which are mapped onto Ti,j,l with positive (negative) orientation. Then the value

deg(f) = t+ijl − t
−
ijl

is independent of the choice of the i, j and l and is called the (homology) degree of the
mapping f : T → K4. Of course, modulo 2, deg(f) is equal to the t+ijl + t−ijl, which is the
number of triangular faces of T with colours i, j and l.

If T is a triangulation of a non-orientable surface, then we cannot define the values of
t+ijl and t

−
ijl, but we can still define deg(f). In this case, we will say that deg(f) is defined

to be the number of triangular faces of T with colours i, j and l modulo 2. This value is
also independent of the choice of i, j and l.

Now, reinterpreting Tutte in the context of higher genus surfaces, we first define the
Euler genus of a surface triangulation T to be equal to twice the genus, if it is orientable,
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and to be equal to the crosscap number of the surface if it is non-orientable. We then define

JA(f) = 2|A| − deg(A) + n− 3 + g,

where n = |V (T )| and g is the Euler genus of T . This definition leads to the following
theorem, which reconciles Tutte’s notion of parity with the more recent definition due to
Fisk.

Theorem 3.1.3. Let T be a triangulation of a surface of Euler genus g with n = |V (T )|
vertices. If f is a 4-colouring of T and A is one of its colour classes, then

JA(f) ≡ deg(f) + n− 3 + g (mod 2).

Consequently, the homology degree deg(f) has the same parity as deg(A).

Proof. We may assume that the colour class A corresponds to the colour 4. We let T123

correspond to the triangle of K4 representing the other three colours of the 4-colouring.
Then the number of triangles of T coloured with these three colours t123 ≡ deg(f) (mod 2).
On the other hand,

deg(A) =
∑
v∈A

deg(v) = t124 + t134 + t234 = |F (T )| − t123,

where F (T ) denotes the set of triangular faces of T . Since T is a triangulation, Euler’s
Formula implies that |F (T )| = 2

3 |E(T )| = 2n− 4− 2g. Thus,

JA(f) = 2|A| − deg(A) + n− 3 + g

= 2|A|+ t123 − |F (T )|+ n− 3 + g

≡ t123 + n− 3 + g (mod 2)

≡ deg(f) + n− 3 + g (mod 2).

In order to illustrate these definitions and parity theorems, we present the following
example.

We can compute the parity of the triangulation’s 4-colourings in three different ways.
In Figure 3.2, we have computed the 4-colouring complex B4(T ) of the triangulation

T in Figure 3.1. See Definition 2.1.1 for the formal definition of the 4-colouring complex.
Computing the 4-colouring complex in this way allows us to see the quantities p(A,B)
(where A and B are colour classes in some 4-colouring of T ) at a glance.
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v1 v2

v3

v4 v5

v6v7

v8

Figure 3.1: A triangulation
of the plane T

{v3, v8}

{v5, v7}

{v3, v4} {v2, v8}

{v1, v6}

{v2, v4}

{v1, v8}

{v4, v6} {v3, v5}

{v2, v7}

Figure 3.2: Its 4-colouring
complex B4(T )

Firstly, for the 4-colouring f given by {{v1, v6}, {v5, v7}, {v3, v4}, {v2, v8}}, Tutte’s orig-
inal definition of the invariant J{v1,v6}(f) gives that

J{v1,v6}(f) = p({v1, v6}, {v5, v7}) + p({v1, v6}, {v3, v4}) + p({v1, v6}, {v2, v8})

− p({v5, v7}, {v3, v4})− p({v5, v7}, {v2, v8})− p({v3, v4}, {v2, v8})

= 1 + 1 + 1− 1− 1− 2

= −1.

Thus, f is an odd colouring. Through similar computations, we find that the 4-colouring
in the rightmost component of B4(T ) is an even colouring, agreeing with Tutte’s observa-
tion that most small examples seem to have B4(T ) with either a single component or two
components of differing parities.

A less cumbersome approach is to use the Second Parity Theorem. Using the colour
class A = {{v1, v6}} again, we compute

JA(f) = 2|A| − deg(A) + n− 3

= 2× 2− (5 + 5) + 8− 3

= −1.

As expected, this agrees with our earlier computation.
Fisk’s approach merely requires that we count the number of triangular faces of T

coloured with three particular colours (say colours 1, 2 and 3). So, for example, using the
4-colouring represented by the rightmost tetrahedron in our drawing of B4(T ) to colour T ,
we obtain the colouring illustrated in Figure 3.3.

There are 3 triangular faces coloured with 1, 2 and 3 (each ordered counterclockwise)
so deg(f) = 3. Consequently,

JA(f) ≡ 3 + 8− 3 + 0 (mod 2)

≡ 0.
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42

1

Figure 3.3: A 4-coloured
triangulation of the plane

Thus, as expected, this 4-colouring has even parity, while the other two colourings have odd
parity by similar computations.

3.2 3-Connected Triangulations of the Plane

As any triangulation T of the plane such that B4(T ) has at least three components would
resolve Tutte’s question, it might seem surprising that he struggled with this problem. After
all, there are many well known triangulations of the plane with many Kempe components.
For example, the icosahedron, pictured in Figure 3.4, has ten 4-colourings each of which
cannot be obtained from any other through Kempe changes. However, each of these 4-
colourings can be obtained from any other by a sequence of changes in the 4-colouring of T ,
each of which fixes a single colour class. Thus, B4(T ) is actually connected when we take T
to be the icosahedron.

Figure 3.4: The icosahedron

Computation shows that there are no triangulations of the plane T on eleven or fewer
vertices such that B4(T ) has two components of the same parity. Consequently, the smallest
examples answering Tutte’s question in the affirmative are two triangulations of the plane
on twelve vertices. Their 4-colouring complexes each have three components, from which it
follows that two of these components must have the same parity. These triangulations are
drawn in Figure 3.5.

We will now determine the 4-colouring complex of Example 1, and show that it has
three connected components (the argument for Example 2 is similar).

Theorem 3.2.1. The 4-colouring complex of the first example T given in Figure 3.5(a) is
the graph drawn in Figure 3.6.
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(a) Example 1
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(b) Example 2

Figure 3.5: Triangulations whose 4-colouring complexes have three components. The
half-edges sticking out form the edges 9-11 and 10-12, respectively.

Proof. We need to determine all the 4-colourings f of T . We start by precolouring the 4-
cycle with vertices labelled 5, 6, 7 and 8. Up to relabelling, this 4-cycle can be precoloured
in 4 ways:

(a) f(5) = 1, f(6) = 2, f(7) = 3, f(8) = 4.
(b) f(5) = 1, f(6) = 2, f(7) = 1, f(8) = 2.
(c) f(5) = 1, f(6) = 2, f(7) = 1, f(8) = 3.
(d) f(5) = 1, f(6) = 2, f(7) = 3, f(8) = 2.

We consider these cases separately.
(a) Suppose that f(1) = 3. Then f(4) = 2, f(3) = 1 and f(2) = 4. Alternatively, if

f(1) = 4, then f(2) = 1, f(3) = 2 and f(4) = 3. Now, observe that T is symmetric about
the precoloured 4-cycle. Thus, there are exactly two ways of colouring the exterior of this
4-cycle. Consequently, we find that there are exactly four colourings satisfying (a). These
4-colourings are given by:
{{3, 5, 11}, {4, 6, 10}, {1, 7, 9}, {2, 8, 12}}, {{3, 5, 12}, {4, 6, 11}, {1, 7, 10}, {2, 8, 9}},
{{2, 5, 11}, {3, 6, 10}, {4, 7, 9}, {1, 8, 12}}, {{2, 5, 12}, {3, 6, 11}, {4, 7, 10}, {1, 8, 9}}.

(b) We may assume that f(1) = 3. In this case, f(2) = 4, and so vertex 3 has no available
colour. Consequently, no 4-colourings of T satisfy (b).

(c) If f(1) = 3, then f(2) = 4, and so f(3) = 2. Thus, f(4) = 4. On the other hand,
when f(1) = 4, then f(2) = 3. Consequently, f(3) = 2, and vertex 4 cannot be coloured.
Hence, this colouring does not occur. Thus, we find that there is exactly one 4-colouring
satisfying (c): {{5, 7}, {3, 6, 11}, {1, 8, 9}, {2, 4, 10, 12}}.

(d) This case is mirror-symmetric to (c). Thus, we obtain exactly one 4-colouring satis-
fying (d): {{3, 5, 11}, {6, 8}, {1, 7, 9}, {2, 4, 10, 12}}.
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The six colourings of T clearly result in the colouring complex exhibited in Figure
3.6.

{3, 5, 11}

{4, 6, 10}

{1, 7, 9}

{2, 8, 12}

{3, 5, 12}

{4, 6, 11}

{1, 7, 10}{2, 8, 9} {2, 5, 11}

{3, 6, 10}

{4, 7, 9}

{1, 8, 12}

{2, 5, 12}

{3, 6, 11}

{4, 7, 10}

{1, 8, 9}

{5, 7}

{2, 4, 10, 12}

{6, 8}

Figure 3.6: The colouring complex B4(T )
for Example 1

The 4-colouring complex B4(T ) from Theorem 3.2.1 certainly has three components, two
of which have even parity, while the third one has odd parity. This provides the affirmative
answer to Tutte’s question we sought. The triangulation shown in Figure 3.5(b) is not
isomorphic to the previous example (as the triangulation given in Example 1 has two degree
5 vertices with two common neighbours of degree 6, while the triangulation presented in
Example 2 does not) but their colouring complexes are isomorphic.

Using the triangulation T in Example 1, we can now easily construct infinitely many
examples by successively adding vertices to a triangle in T . For example, consider the
triangle 123 in T . If we add vertex 123 in the centre of this triangle, and join it to vertices
1, 2 and 3 by edges, then we obtain a new triangulation T ′ of the plane such that B4(T ) ∼=
B4(T ′). As we can repeat this procedure indefinitely, this approach yields infinitely many
examples of graphs which have two components with even parity.

Indeed, with a bit more effort, we can obtain a stronger result in this direction.

Theorem 3.2.2. Let k ∈ N. Then there are infinitely many triangulations T of the plane
such that B4(T ) has more than k components with even colourings and more than k com-
ponents with odd colourings.

This theorem follows directly from Theorem 3.2.1 and Lemma 3.2.3. However, stating
Lemma 3.2.3 requires some additional notation.

Let T and T ′ be triangulations of surfaces of Euler genus g1 and g2, respectively. Let
T1 = xyz (T2 = x′y′z′) be a face in T (T ′). By identifying x with x′, y with y′, and z with
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z′, we obtain a new triangulation T 4 T ′ with |V (T )|+ |V (T ′)| − 3 vertices and with Euler
genus g1 + g2. Any 4-colouring of T 4 T ′ induces a 4-colouring f on T and a 4-colouring f ′

on T ′. We then use f4f ′ to denote the colouring of T 4T ′. This yields a bijection between
colourings of T 4 T ′ and pairs (f, f ′) of colourings of T and T ′.

Lemma 3.2.3. (a) If two 4-colourings f4f ′ and h4h′ of T4T ′ are adjacent in B4(T4T ′),
then f ∼ h in B4(T ) and f ′ ∼ h′ in B4(T ′). Conversely, if f ∼ h in B4(T ) and f ′ ∼ h′ in
B4(T ′), then f 4 f ′ ∼ h4 f ′ ∼ h4 h′ in B4(T 4 T ′).
(b) If A is a colour class, then JA(f 4 f ′) = JA∩V (T )(f) + JA∩V (T ′)(f ′).

Proof. (a) By definition, f 4 f ′ ∼ h4 h′ means that f 4 f ′ and h4 h′ have a colour class
in common, say A. Thus, A ∩ V (T ) is a colour class that is common to f and h, so f ∼ h.
Similarly, f ′ ∼ h′.

Conversely, if f ∼ h and f ′ ∼ h′, then f shares some colour class A with h, so f 4 f ′ ∼
h4 f ′. By a similar argument, h4 f ′ ∼ h4 h′, as required.

(b) Consider the colour class A of f 4 f ′ which is disjoint from the new triangle in T
we created by identifying vertices in T and T ′. We write AT for A ∩ V (T ) and AT ′ for
A ∩ V (T ′). Then:

JAT
(f) = 2|AT | − degT (AT ) + n1 − 3 + g1,

JAT ′ (f ′) = 2|AT ′ | − degT ′(AT ′) + n2 − 3 + g2.

Now, as AT and AT ′ are disjoint, deg(A) = degT (AT ) + degT ′(AT ′). Consequently, we
can compute JA(f 4 f ′):

JA(f 4 f ′) = 2|A| − deg(A) + (n1 + n2 − 3)− 3 + (g1 + g2)

= 2(|AT |+ |AT ′ |)− degT (AT )− degT ′(AT ′) + (n1 − 3 + g1) + (n2 − 3 + g2)

= JAT
(f) + JAT ′ (f ′).

When the colour class A contains one of the identified vertices, the calculation is the
same, except that |A| = |AT |+ |AT ′ | − 1 and deg(A) = degT (AT ) + degT ′(AT ′)− 2, which
has the same result.

3.3 4-Connected Triangulations of the Plane

In the previous section, we found small triangulations of the plane whose 4-colouring com-
plexes have three components, two of which have even parity. We then established in
Lemma 3.2.3 that, using repeated identification over a triangle, we can construct trian-
gulations of the plane which have an arbitrarily large number of even components and an
arbitrarily large number of odd components. However, identification over a triangle pro-
duces triangulations with 3-separators. Thus, one might reasonably ask whether or not
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4-connected triangulations of the plane may be found whose 4-colouring complexes have an
arbitrarily large number of components of the same parity. In this section, we answer this
question by constructing 4-connected triangulations of the plane with an arbitrarily large
number of even components.

Our construction begins by considering the two triangulations Q1 and Q′1 in Figure 3.5.
These are the smallest examples in two infinite families of 4-connected triangulations of
the plane. We define Q0, Q1, Q2, . . . as follows. To obtain Qk we take k + 2 nested 4-cycles
Di = aibicidi (i = 0, 1, . . . , k + 1). We connect Di with Di+1 (i = 0, 1, . . . , k) as shown in
Figure 3.7. To obtain Qk, we add the edges a0c0 and ak+1ck+1. We also define Q′k, which is
obtained in the same way, except that we add the edge bk+1dk+1 instead of ak+1ck+1.

a0 b0

c0d0

a1
b1

a2
b2

a3

c3

b3

d3

c1
d1

c2
d2

Figure 3.7: Nested 4-cycles D0, D1, D2, D3. To obtain Q2, we add the edges a0c0 and a3c3.

Theorem 3.3.1. The 4-colouring complex of the 4-connected triangulation Qk (and that
of Q′k) has 2k + 1 connected components. One of them corresponds to 2k+1 odd colourings,
and each of the other 2k components corresponds to a single even 4-colouring.

Proof. We say that a 4-colouring of Qk is of type I if it uses all four colours on D0 and of
type II if it uses only 3 colours on D0. As a0b0c0 is a triangle in Qk, any type II colouring f
must satisfy f(b0) = f(d0) (and f(a0) 6= f(c0)). As we saw in the proof of Theorem 3.2.1,
if Di is 4-coloured with four distinct colours, then this 4-colouring extends to Di+1 in two
different ways, and both extensions use four distinct colours on Di+1. Similarly, we observe
that if Di is 3-coloured, then this 3-colouring extends in two different ways to a 3-colouring
of Di+1. We can also see this by directly examining the extensions of colourings from Di

to Di+1, as shown in Figure 3.8. Of course, as we note in Figure 3.8, when i = k, only one
3-colouring of Di will extend to a 3-colouring of Di+1. This implies that Qk has precisely
2k+1 4-colourings of type I and has precisely 2k 4-colourings of type II.

Now, consider two type I 4-colourings f and g of Qk which have a common colour class.
In this case, the 4-colouring of Di+1 is uniquely determined by the 4-colouring of Di for
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Extensions of type I 4-colourings from Di to Di+1
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Extensions of type II 4-colourings from Di to Di+1

Figure 3.8: The extensions of partial colourings from Di to Di+1. Observe that when two
opposite vertices in Di+1 are joined by an edge, only one of the type II extensions exists.

each i, so f and g must be identical colourings. In 4-colourings of type I, all colour classes
have a vertex in each Di. A 4-colouring of Qk of type II has two colour classes that meet
every Di, while the other two colour classes have two vertices in every second 4-cycle Di.
Hence, if a colour class of a type II 4-colouring coincides with a colour class of a type I
4-colouring, then the colour class corresponds to exactly one 4-colouring of type I and one
4-colouring of type II. In this way, each 4-colouring of type II has two colour classes that
coincide with two colour classes of a 4-colouring of type I, and this is a 1-1 correspondence.
The 4-colourings f of type I under this correspondence are precisely those for which either
{f(b1), f(d1)} = {f(bk+1), f(dk+1)} (if k is even) or {f(b0), f(d0)} = {f(bk+1), f(dk+1)} (if
k is odd). All of the colourings fulfilling this condition are of odd parity and of even degree
deg(f) (by Theorem 3.1.1, since the only vertices of odd degree are a0, c0, ak+1 and ck+1).

There are 2k 4-colourings of type I which fulfill the condition we described in the pre-
vious paragraph. Consequently, 2k 4-colourings of type I remain which do not fulfill this
condition. We will establish that each such colouring forms a separate component in B4(Qk).
In particular, deleting any colour class C which contains exactly one vertex from each of
the nested 4-cycles Di results in a subgraph Rk of Qk which can be conveniently described.
Upon deletion of a colour class from a type I 4-colouring, the 4-cycles Di and Di+1 must
be coloured in one of the two ways shown in Figure 3.9 (up to relabelling).

f(d0) = 2 f(c0) = 3 f(b0) = 4

f(a1) = 2

f(d0) = 2 f(c0) = 3 f(b0) = 4

f(b1) = 2f(a1) = 3f(d1) = 4f(d1) = 3f(c1) = 4

Figure 3.9: D0 and D1 after deleting a colour class from a type I colouring (up to
relabelling)

So, each successive subgraph of Rk induced on Di and Di+1 can be thought of as one
additional rung of a three vertex ladder, as well as a cross on either the left part of the ladder
or the right part of the ladder. Thus, in order to construct Rk, we begin with a three vertex
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wide ladder, as drawn in Figure 3.10. Then we add either the pair of edges uivi+1 and ui+1vi

or vi+1wi and viwi+1 for each i ∈ [k]. Finally, we may choose to add u0w0 or uk+1wk+1 to
complete Rk. Now, if we added at least one of u0w0 and uk+1wk+1 in completing Rk, then
Rk is uniquely 3-colourable. Otherwise, Rk has two 3-colourings. Observe that there are
2k+1 ways of choosing an Rk with two 3-colourings (at each level, we may choose whether
to have a left or right cross) representing the 2k+1 colour classes of type I which are also
of type II. Thus, excluding the colour classes in these 2k colourings of type I, which are
Kempe-equivalent to colourings of type II, there remain 2k+2 colour classes of type I which
have uniquely 3-colourable complements in Qk. Having uniquely 3-colourable complements
in Qk implies that these colour classes only appear in one 4-colouring of Qk. Consequently,
excluding the 2k+2 colour classes in 4-colourings which are Kempe equivalent to colourings
of type II, we obtain 2k+2 colour classes in the 2k remaining 4-colourings of type I, each of
which then forms a separate component in the colouring complex B4(Qk). Observe that all
such colourings have even parity (odd homology degree).

u0 v0 w0

u1

u2

v1 w1

v2 w2

uk

uk+1

vk

vk+1

wk

wk+1

Figure 3.10: A three vertex wide ladder. To obtain Rk, we add either uivi+1 and ui+1vi or
vi+1wi and viwi+1 for each i. Then we may add u0w0 or uk+1wk+1.

Finally, we prove that all colourings of type II (together with their mates of type I) form
a single component in B4(Qk). To see this, observe that two colourings of type II with a
common colour class that intersects each 4-cycle Di must be identical. However, if they have
a common colour class containing b0 and d0, then there are two ways to colour each Di with
i odd, so there are 2t colourings of type II with the same colour class, where t = b(k+1)/2c.
Meanwhile, if they share a colour class containing a1 and c1, or b1 and d1, then the same
holds with t = bk/2c.

In conclusion, B4(Qk) has one large component containing all 2k+1 odd 4-colourings, as
well as 2k other components, each of which corresponds to a single even 4-colouring that is
of type I.

A similar argument applies for Q′k.
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3.4 Concluding Remarks

At present, we have not found a 5-connected triangulation of the plane whose 4-colouring
complex has a large number of components. However, we have found some 5-connected
examples whose 4-colouring complexes have more than one component of the same parity.
The three smallest triangulations of this kind are illustrated in Figure 3.11. These are
triangulations of the plane on 20 vertices, and their minimality follows from a lengthy
computation we performed on 5-connected triangulations with at most 23 vertices.
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Figure 3.11: Three 5-connected triangulations on 20 vertices. Each one is represented by
two triangulated octagons. In order to obtain the full graph from each pair of subgraphs,

identify the vertices on the outer cycle according to their labelling.

The 4-colouring complex of our first example has three components, two odd and one
even. The second example’s 4-colouring complex has three even components and one odd
component. Our final example’s 4-colouring complex has two even components and one odd
component. There are also 6 non-isomorphic 5-connected examples on 21 vertices, 33 on 22
vertices and 66 on 23 vertices. Unfortunately, we do not have an infinite family. Of course,
by Euler’s Formula and the handshake lemma, we cannot have a 6-connected triangulation
of the plane, preventing us from continuing further in searching for examples with higher
connectivity.

However, there is another interesting question about parity we can ask. If the 4-colouring
complex of a triangulation of the plane has at least two components, must it have one
component of even parity and one component of odd parity? Based on a large number of
computations, we formulate the following conjecture.
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Conjecture 3.4.1. Suppose that T is a triangulation of the plane, and that its 4-colouring
complex B4(T ) has at least two components. Then B4(T ) has a component of even parity
and a component of odd parity.

These remaining questions inspired by Tutte, together with our interest in the structure
of the colourings of a graph, serve as motivation for our further examination of the k-
colouring complex. We pursue this topic at more length in the next three chapters.
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Chapter 4

Reflexive Graphs

While Tutte motivated and defined the 4-colouring complex [46], it was Fisk who first
examined the structure of the more general k-colouring complex in [20], and then, later,
greatly expanded on this work in [21]. In Chapter 2, we reiterated Fisk’s argument that the
k-colouring complex of a graph X must be k-colourable (whenever X contains a (k − 1)-
clique) in the proof of Lemma 2.1.2. A similar argument in the proof of Lemma 2.2.3 showed
that we could recursively define Bi

k(X) as the k-colourable graph Bk(Bi−1
k (X)) (where i ≥ 2)

and define a graph homomorphism φX : X → B2
k(X) (whenever each edge of X is contained

in a (k − 1)-clique and X has no isolated vertices). The graph homomorphism φX maps a
vertex v ∈ V (X) to {C ∈ V (Bk(X)) | v ∈ C}. Recall that we call graphs for which this
homomorphism is injective colourful graphs (equivalently, a graph X is colourful if, for any
two vertices x, y ∈ V (X), there exists a k-colouring of X which colours x and y differently),
and we say that a graph X is reflexive (for k-colourings) whenever φX is an isomorphism.

In this chapter, we will focus our attention on identifying a number of non-trivial fami-
lies of 4-chromatic, reflexive, near-triangulations of the plane, and 3-edge-colourable, edge-
reflexive, cubic graphs. Our proofs will rely heavily on the methods we discussed in Chapter
2, and we will extend these methods even further in Chapter 5.

In Section 4.1, we reprove Fisk’s result that the cubic trees are edge-reflexive. This
proof also serves as an introduction to using clustering in order to prove reflexivity results
(see Section 2.4 for the definition of clustering), a method which we will employ regularly
in Chapter 5. Then, in Section 4.2, we use our new insight into cubic trees (and cubic
cycles) to quickly determine the edge-reflexive ladders, circular ladders and Möbius ladders,
identifying two new classes of reflexive graphs. These classes of graphs are formally defined
in Section 4.2. It is particularly notable that the even circular ladders are edge-reflexive, as
this is a class of cubic graphs without any half-edges. Finally, in Section 4.3, we consider
the edge-reflexive graphs we found in Section 4.2 as the inner duals of near-triangulations
of the plane. As a result, we discover two new classes of reflexive, 4-chromatic, planar near-
triangulations. We conclude this section with a brief discussion of the relation between
3-edge-colouring cubic graphs and 4-colouring near-triangulations of the plane, which gives
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some insight into why results regarding the 3-colouring complexes of the line graphs of cubic
graphs sometimes generalize to the 4-colouring complexes of planar, near-triangulations.

4.1 Cubic Trees

In this section, we will always assume that a graph G is a cubic graph which may contain
half-edges.

Our main focus will be on reiterating Fisk’s argument (presented in [21]) that the cubic
trees are edge-reflexive with respect to 3-edge-colourings. We will be somewhat pedantic
in giving this argument, as we are employing clustering in a proof for the first time here,
and we would like the reader to understand this approach, in preparation for more difficult
clustering arguments in Chapter 5.

Theorem 4.1.1 (Fisk [21]). Suppose that G is a cubic tree. Then G is edge-reflexive with
respect to 3-edge-colourings.

Proof. Let X := L(G). We wish to show that a graph G of order n is edge-reflexive (where
n ∈ N). By Lemma 2.4.2, in order to accomplish this goal, it suffices to establish that G is
edge-colourful, and that B3(X) has precisely n 3-colourings.

We will prove both that G is edge-colourful and that B3(X) has exactly n 3-colourings
by separate induction arguments. In each case, the underlying graphs on which we perform
induction are the same.

A cubic tree on one vertex is a single vertex with three half-edges. Its one 3-colouring
colours all three edges of G with different colours, so G is edge-colourful for n = 1. The line
graph of the cubic tree on one vertex is the complete graph on three vertices. As B3(K3) is
also the complete graph on three vertices, B3(K3) has only one 3-colouring. This establishes
that B3(X) has precisely n 3-colourings for n = 1.

For n ≥ 2, the graph obtained from G by removing the half-edges from E(G) is a tree
on at least two vertices. Thus, this graph has a leaf vertex v with a unique neighbour u.
Let e be the edge of G which joins u and v, and let f1 and f2 be the other two edges of G
which are incident with v. The result of deleting v from G and then adding a half-edge e
incident with the vertex u is a cubic tree on n− 1 vertices. We will call this graph H, and
we also denote the line graph of H by Y . By our induction hypotheses, H is edge-colourful,
and B3(Y ) has precisely n − 1 3-colourings. The following claim completes the first of our
two induction arguments.

Claim 1: If H is edge-colourful, then G is edge-colourful. Thus, by induction, G is edge-
colourful for all n ≥ 1.

Proof: As H is edge-colourful, it immediately follows that for any pair of distinct edges
a, b ∈ V (G) \ {e, f1, f2}, there exists a 3-edge-colouring of G in which a and b are coloured
differently. Similarly, as H is edge-colourful, for any a ∈ V (G) \ {e, f1, f2}, there exists a
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3-edge-colouring of G which colours a and e differently. Finally, by performing a Kempe
change on the vertices f1 and f2 (if needed) we can arrange that any a, b ∈ V (G)\{e, f1, f2}
is coloured differently from f1 (or, respectively, f2). This establishes our claim.

It remains to prove that B3(X) has precisely n 3-colourings whenever B3(Y ) has pre-
cisely n− 1 3-colourings. We employ clustering in order to establish this claim.

Notice that we can partition the vertices of B3(X) into the five clusters shown in Figure
4.1. In this figure, we denote the neighbours of e which were present in L(H) by e1 and
e2. Recall from Section 2.4 that we denote by Cx1x2...xt the set of colour classes of X which
contain the vertices x1, x2 . . . xt ∈ {e, f1, f2, e1, e2}. In other words,

Cx1x2...xt =
t⋂

i=1
φX(xi).

Observe that, for every 3-edge-colouring of G, we can perform a Kempe change on
{f1, f2} that swaps the colours on f1 and f2, while fixing the colour of all other edges.
Immediately, it follows that every colour class of X (vertex of B3(X)) in Ce will have an
adjacent colour class of X (vertex of B3(X)) in each of the other four clusters. Thus, as in
Section 2.4, we may observe that the 3-colourings of X fall into two types, as indicated in
Figure 4.1.

The subgraph of B3(X) consisting of all the triangles of B3(X) (3-colourings of X) of
type i ∈ {1, 2} will be denoted by Ti. We will also denote the subgraph of Ti induced by the
union of the two adjacent clusters Cx1...xt and Cw1...ws by Cx1...xtCw1...ws .

Ce

Ce2f1

Ce1f2

Ce2f2

Ce1f1

T1 T2

Figure 4.1: Partitioning B3(X) for a cubic tree

Claim 2: T1 and T2 are each isomorphic to B3(Y ). Under this isomorphism, Ce is mapped
onto φY (e).

Proof: Consider the map ψ : T1 → B3(Y ) which takes a colour class C ofX to its intersection
with V (Y ). As every colouring c of Y extends uniquely to a colouring c′ of X with c′(e1) =
c′(f2), ψ is a bijection. Moreover, this unique extension also establishes that ψ is a graph
homomorphism, since it follows that ABC is a triangle in T1 if and only if ψ(A)ψ(B)ψ(C) is
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a 3-colouring of Y . The argument showing that the map ψ : T2 → B3(Y ) is an isomorphism
is similar. Thus, Claim 2 is proven.

As the vertex e of Y has degree 2, and Y is reflexive, it follows from Lemma 2.4.5
that B3(Y ) − φY (e) has precisely one bipartite component. Thus, by Claim 2, Ce1f2Ce2f1

is a bipartite and connected subgraph of T1, while Ce1f1Ce2f2 is a bipartite and connected
subgraph of T2.

Now, let χ be a 3-colouring of B3(X). We will say that a colouring χ is constant on a
set S of vertices if S is contained in a colour class of the colouring. We consider two cases.

Case 1: χ is constant on Ce ∩ T1. We claim that χ is constant on the whole cluster Ce.
So, consider a triangle ABC in T2. This triangle represents a 3-colouring c of X in which
c(e1) = c(f1) and c(e2) = c(f2). By performing a Kempe change on {f1, f2}, the 3-colouring
ABC in T2 is transformed into a 3-colouring A′B′C ′ in T1 in which the colour class of
A′B′C ′ containing e is unchanged. Thus, as each colour class A ∈ Ce ∩ T2 is also a colour
class A′ ∈ Ce ∩ T1, χ is constant on the whole cluster Ce.

As χ is constant on Ce, Ce1f2Ce2f1 is a bipartite and connected subgraph of T1 and
Ce1f1Ce2f2 is a bipartite and connected subgraph of T2, it immediately follows that χ is
constant on each of the five clusters of B3(X). There are two such colourings of B3(X),
compared to one such colouring of B3(Y ).

Case 2: χ is not constant on Ce ∩ T1. In this case, by Lemma 2.4.4, χ is completely
determined on T1 by its restriction to Ce ∩ T1. As performing a Kempe change on {f1, f2}
transforms any 3-colouring of X in T2 into a 3-colouring in T1, χ is also determined and
non-constant on Ce ∩ T2. Thus, by Lemma 2.4.4, χ is completely determined on T2.

Consequently, the colouring χ of B3(X) is completely determined by its restriction to
T1, which is isomorphic to B3(Y ) by Claim 2. Each such colouring of B3(X) is uniquely
determined by a colouring of B3(Y ) which is not constant on some cluster of B3(X). Since
one colouring of B3(Y ) corresponds to Case 1, we get one fewer colourings than in Case 1,
so we obtain one less colouring than the number of colourings of B3(Y ) in this case.

Thus, in total, B3(X) has one more 3-colouring than B3(Y ) had. As B3(Y ) had (n−1) 3-
colourings by our induction hypothesis, it follows that B3(X) has n 3-colourings, as required.
Hence, by Lemma 2.4.2, G is edge-reflexive.

Using a similar approach, Fisk also proved that the cubic cycles are edge-reflexive in
[20]. Rather than reiterating his proof here, we will prove a stronger result in Chapter 5
(Lemma 5.3.4) from which this result follows as a Corollary.

Corollary 4.1.2 (Fisk [20]). Suppose that Cn is a cubic cycle on n vertices, where n ≥ 4.
Then Cn is edge-reflexive with respect to 3-edge-colourings.
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4.2 More Classes of Edge-Reflexive Graphs

Of course, the edge-reflexive graphs would not be a very interesting object of study if the
cubic trees and cubic cycles were the only classes of edge-reflexive graphs. Fortunately, it is
easy to construct additional, non-trivial classes. The ladders and even circular ladders are
two such classes of edge-reflexive cubic graphs.

The n-ladder Ln is the cubic graph of order 2n which is obtained by adding half-edges
to the Cartesian product of a path on n vertices (not a cubic path) and K2 until each vertex
of Ln has degree three. The circular n-ladder CLn is the cubic graph of order 2n which is
obtained by taking the Cartesian product of a 2-regular n-cycle and K2.

Theorem 4.2.1. For every n ≥ 2, the ladder Ln is edge-reflexive with respect to 3-edge-
colourings.

Proof. Let A0 and B0 be the colour classes in a 2-edge-colouring of the first 2-regular n-path
P0 in Ln, and let A1 and B1 be the corresponding colour classes in a 2-edge-colouring of the
second 2-regular n-path P1 in Ln. Also, let M be the perfect matching in Ln which consists
of all the edges joining these two paths.

There are two 3-edge-colourings of Ln for whichM is a colour class: {A0∪A1, B0∪B1,M}
and {A0∪B1, B0∪A1,M}. We will call the latter colouring themixed colouring. Furthermore,
any other 3-edge-colouring {A,B,C} of the cubic n-path P0 ∪M (where the edges in M

are treated as half-edges) for which M is not a colour class extends uniquely to a 3-edge-
colouring of Ln by adding to each colour class all the edges in the path P1 which are copies of
the edges of P0 in that colour class. This reasoning establishes that B3(L(Ln)) is isomorphic
to B3(L(P )) with one added triangle corresponding to the mixed colouring (where P is the
cubic path on n vertices). The additional triangle shares the colour class M with the rest
of the colouring complex.

We can easily prove that Ln is edge-colourful. A given edge e0 ∈ E(P0) is coloured
differently from any edge e1 ∈ E(P1) in one of the colourings for which M is a colour class.
Of course, in such a colouring, e0 is also not coloured the same colour as any edge inM . We
can also choose to colour e0 differently from every other edge in P0, and extend this 3-edge-
colouring uniquely to Ln. By symmetry, we can also arrange for a given edge e1 ∈ E(P1) to
be coloured differently from any other given edge in Ln. Finally, if a, b ∈ M , then we can
construct a 3-edge-colouring in which a and b are coloured differently by taking the edges
incident with a in P0 to be coloured with colours 1 and 2 in a 3-edge-colouring of P0 in
which only one pair of incident edges is coloured with colours 1 and 2. This 3-edge-colouring
extends uniquely to Ln, and colours a differently from each other edge in M . Thus, Ln is
edge-colourful.

Consequently, it suffices to show (by Lemma 2.4.2) that B3(L(Ln)) has precisely 2n 3-
colourings. Since the cubic n-path P is edge-reflexive (by Theorem 4.1.1) B3(L(P )) has pre-
cisely n 3-colourings. Each such 3-colouring extends in two ways to the whole of B3(L(Ln)),
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since we have two ways to colour the vertices of B3(L(Ln)) (colour classes of L(Ln)) A0∪B1

and B0 ∪ A1 which correspond to the mixed colouring. Thus, B3(L(Ln)) has precisely 2n
3-colourings, as required.

The circular ladders are a more interesting case, as they have no half-edges. Unfortu-
nately, the odd circular ladders are not edge-colourful. In any 3-edge-colouring of CL2n+1

(n ≥ 1) each pair of the corresponding cycle edges in the Cartesian product is coloured
identically. Thus, B3(CL2n+1) is isomorphic to B3(L(C2n+1), where C2n+1 is the cubic
(2n+ 1)-cycle. However, even circular ladders are different.

Theorem 4.2.2. For every even n ≥ 4, the even circular ladder CLn is edge-reflexive with
respect to 3-edge-colourings.

Proof. Let A0 and B0 be the perfect matchings of the first 2-regular n-cycle C ′0 in CLn, and
let A1 and B1 be the corresponding perfect matchings of the second 2-regular n-cycle C ′1
in CLn. Also, let M be the perfect matching in CLn which consists of all the edges joining
these two cycles.

There are two 3-edge-colourings of CLn for which M is a colour class: {A0 ∪ A1, B0 ∪
B1,M} and {A0 ∪ B1, B0 ∪ A1,M}. We will call the latter colouring the mixed colouring.
Furthermore, any other 3-edge-colouring {A,B,C} of the cubic n-cycle C ′0 ∪M (where the
edges in M are treated as half-edges) for which M is not a colour class extends uniquely to
a 3-edge-colouring of CLn by adding to each colour class all the edges in the cycle C ′1 which
are copies of the edges of C ′0 in that colour class. This reasoning establishes that B3(L(CLn))
is isomorphic to B3(L(Cn)) with one added triangle corresponding to the mixed colouring
(where Cn is the cubic cycle on n vertices). The additional triangle shares the colour class
M with the rest of the colouring complex.

We can easily prove that CLn is edge-colourful. A given edge e0 ∈ E(C ′0) is coloured
differently from any edge e1 ∈ E(C ′1) in one of the colourings for which M is a colour class.
Of course, in such a colouring, e0 is also not coloured the same colour as any edge inM . We
can also choose to colour e0 differently from every other edge in C ′0, and extend this 3-edge-
colouring uniquely to CLn. By symmetry, we can also arrange for a given edge e1 ∈ E(C ′1)
to be coloured differently from any other given edge in CLn. Finally, if a, b ∈ M , then we
can construct a 3-edge-colouring in which a and b are coloured differently by taking the
edges incident with a in C ′0 to be coloured with colours 1 and 2 in a 3-edge-colouring of
C ′0 in which only one pair of incident edges is coloured with colours 1 and 2. This 3-edge-
colouring extends uniquely to CLn, and colours a differently from each other edge in M .
Thus, CLn is edge-colourful.

Consequently, it suffices to show (by Lemma 2.4.2) that B3(L(CLn)) has precisely 2n
3-colourings. Since the cubic n-cycle Cn is edge-reflexive (by Corollary 4.1.2) B3(L(Cn))
has precisely n 3-colourings. Each such 3-colouring extends in two ways to the whole of
B3(L(CLn)), since we have two ways to colour the vertices of B3(L(CLn)) (colour classes
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of L(CLn)) A0∪B1 and B0∪A1 which correspond to the mixed colouring. Thus, B3(L(CLn))
has precisely 2n 3-colourings, as required.

The Möbius ladders are a family of cubic graphs closely related to the circular ladders,
so we might hope that some class of Möbius ladders would be edge-reflexive. We say that a
graph Mn is a Möbius ladder if it is constructed from the circular ladder CLn of order 2n
(where the first 2-regular n-cycle C ′0 is on vertices x1, x2, . . . , xn and the second 2-regular
n-cycle C ′1 is on vertices y1, y2, . . . , yn) by deleting the edges xnx1 and yny1 from CLn and
then replacing them with the edges x1yn and xny1. Unfortunately, there are no edge-reflexive
Möbius ladders.

Theorem 4.2.3. Let n ≥ 4. Then the Möbius ladder Mn is not edge-reflexive with respect
to 3-edge-colourings.

Proof. We divide this argument into two cases.

Case 1: n is even. In this case, all the vertices ofMn lie on a 4k-cycle C ′4k, where n = 2k.
Now, suppose that we are given a 3-edge-colouring c of Mn. Without loss of generality, we
may say that c(x1x2) = 1 and c(x2x3) = 2. Now, observe that the edge y1y2 is incident with
the edge x2y2, which satisfies c(x2y2) = 3. Thus, c colours y1y2 with either 1 or 2.

If c(y1y2) = 2, then c(xixi+1) 6= c(yiyi+1) for each i ∈ {1, 2, . . . , 2k}, so each edge xiyi

must be coloured with colour 3. However, in that case, the colours 1 and 2 must alternate
on C ′4k, from which it follows that c(y1y2) = 1, a contradiction. Thus, c(y1y2) = 1, so Mn is
not edge-colourful.

Case 2: n is odd. In this case, all the vertices of Mn lie on a (4k+ 2)-cycle C ′4k+2, where
n = 2k + 1. We can prove that Mn is edge-colourful. However, B3(L(Mn)) has too many
3-colourings for Mn to be edge-reflexive. In order to illustrate these facts, we will first list
the 3-edge-colourings of Mn.

Let M denote the perfect matching consisting of all edges of the form xiyi, A1 denote
{xixi+1 : i is odd} ∪ {x2k+1y1}, A2 denote {xixi+1 : i is even}, B1 denote {yiyi+1 : i is
odd}∪{y2k+1x1}, and B2 denote {yiyi+1 : i is even}. There is one 2-colouring of A1∪A2, and
this colouring uniquely extends to the 3-edge-colouring ofMn given by {A1∪B2, A2∪B1,M}.
Deleting any one of these three colour classes from Mn results in a Hamiltonian cycle, so
this colouring is represented by an isolated triangle in B3(L(Mn)). Otherwise, A1∪A2 is not
2-coloured. In this case, if x1x2 and x2k+1y1 are coloured differently, then the 3-colouring on
A1 ∪A2 uniquely extends to a 3-edge-colouring of Mn in which edges of the form yiyi+1 are
coloured the same colour as their counterparts of the form xixi+1 (and y2n+1x1 is coloured
the same colour as x2k+1y1). There are no valid 3-edge-colourings of Mn for which x1x2

and x2k+1y1 are coloured the same colour (unless A1 ∪ A2 is 2-coloured, a case which we
considered previously). Consequently, the 3-edge-colourings of L(Mn) for which A1∪A2 are
not 2-coloured are represented in B3(L(Mn)) by a copy of B3(L(Cn)) (where Cn is the odd,
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cubic cycle, corresponding in Mn to the edges of A1 ∪A2 ∪M , where we treat the edges of
M as half-edges and require that x1x2 and x2k+1y1 must be coloured differently).

Now, the edge x1x2 is coloured differently from the edge y1y2 in the 3-edge-colouring of
Mn given by {A1 ∪ B2, A2 ∪ B1,M}. Moreover, as Cn is edge-colourful by Corollary 4.1.2,
there is a 3-edge-colouring of Mn in which A1 ∪ A2 is not 2-coloured which colours x1x2

differently from any other given edge of Mn, except for the edge y1y2. Thus, by symmetry,
for any pair of edges e1 ∈ A1 ∪ A2 ∪ B1 ∪ B2 and e2 ∈ E(Mn), there exists a 3-edge-
colouring of Mn which colours e1 and e2 different colours. By a similar argument (applying
Corollary 4.1.2 again) any pair of distinct edges e1, e2 ∈M are coloured differently in some
3-edge-colouring of Mn. Consequently, Mn is edge-colourful.

Now, by Corollary 4.1.2, B3(L(Mn)) has 6n 3-colourings (since we can extend each 3-
colouring of the copy of B3(L(Cn)) in B3(L(Mn)) to B3(L(Mn)) in six ways). However, if
Mn were edge-reflexive, then, according to Lemma 2.4.2, B3(L(Mn)) would need to have
exactly 2n 3-colourings. Thus, as B3(L(Mn)) has too many 3-colourings, Mn is not edge-
reflexive.

4.3 Dual Graphs

We define the inner dual T ? of a planar, near-triangulation T as follows. Each triangular
face s of T is represented by a vertex s in T ?. Two vertices s, t ∈ V (T ?) are adjacent in T ?

if their corresponding faces in T share an edge. Finally, if a triangular face s of T shares an
edge with the outer face of T , then s ∈ V (T ?) is incident with a half-edge.

Additionally, given a graph G and vertex v /∈ V (G), we say that the join of G with the
vertex v is the graph on the vertex set V (G)∪{v} which contains all the edges of G, as well
as edges joining v to every other vertex in V (G). Given a graph G, the suspension of G is
the graph on the vertex set V (G)∪ {x, y} (where x, y /∈ V (G)) which contains all the edges
of G, as well as edges joining x to every other vertex in V (G) and edges joining y to every
other vertex in V (G). The wheel graph Wk is the graph formed from the cubic k-cycle Ck

by making all the half-edges of Ck incident with a single new vertex.

Observation 4.3.1. The inner dual W ?
k of the wheel graph Wk is isomorphic to the cubic

k-cycle Ck.

Observation 4.3.2. Let SC2k denote the suspension of the 2-regular 2k-cycle C ′2k. Then
the inner dual SC?

2k of the triangulation of the plane graph SC2k is isomorphic to the even
circular ladder CL2k.

Surprisingly, the graphs Ŵk and ŜC2k are both reflexive 4-colouring complexes.

Theorem 4.3.3. The graph Ŵk (k ≥ 4) is a reflexive 4-colouring complex.
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Proof. The graph Ŵk contains k 4-cliques. Thus, by Lemma 2.4.3, it suffices to show that
Ŵk is colourful, and that B4(Ŵk) has precisely k 4-colourings.

We can construct Ŵk as the join of L(Ck) with a single central vertex w (where Ck is the
cubic k-cycle). Thus, the 4-colourings of Ŵk are uniquely determined by the 3-colourings
of L(Ck). In each such 4-colouring, the central vertex of the wheel (call it w) is the sole
vertex in one colour class of Ŵk, and the other three colour classes are colour classes in a
particular 3-colouring of L(Ck). Thus, B4(Ŵk) is isomorphic to the join of B3(L(Ck)) with
a single vertex {w}.

As L(Ck) is colourful (by Corollary 4.1.2) it immediately follows that Ŵk is colourful.
Moreover, by the same corollary, B4(Ŵk) has precisely k 4-colourings. Thus, Ŵk is reflexive.

Theorem 4.3.4. Let SC2k denote the suspension of the 2-regular 2k-cycle C ′2k (k ≥ 2).
Then ŜC2k is a reflexive 4-colouring complex.

Proof. The graph ŜC2k contains 4k 4-cliques. Thus, by Lemma 2.4.3, it suffices to show
that ŜC2k is colourful, and that B4(ŜC2k) has precisely 4k 4-colourings.

The graph ŜC2k can be constructed by taking the union of two copies of Ŵ2k, and then
identifying the outer 2k-cycles which bound the sole non-triangular face of each copy of
Ŵ2k. Given a 4-colouring f of the first copy of Ŵ2k, the colouring f extends uniquely to all
of ŜC2k, unless the bounding cycle of Ŵ2k is 2-coloured. In this case, the colouring extends
to all of ŜC2k in two ways. We call the extension where the two central vertices (one in each
copy of Ŵ2k) are coloured differently the mixed colouring. Thus, B4(ŜC2k) is the union of
an isomorphic copy of B4(Ŵk) and a copy of K4 representing the mixed-colouring, which
have two vertices (colour classes of ŜC2k) in common.

As Ŵ2k is colourful (by Theorem 4.3.3) it easily follows that ŜC2k is colourful. Moreover,
by the same theorem, B4(Ŵ2k) has 2k 4-colourings, and, as each 4-colouring of the copy of
B4(Ŵ2k) in B4(ŜC2k) extends in two ways to all of B4(ŜC2k), B4(ŜC2k) has precisely 4k
4-colourings.

We consider the connection between these reflexive 4-colouring complexes and edge-
reflexive inner duals rather suggestive, although we have not been able to generalize the
relationship so far. On some level, one might expect there to exist some connection, stem-
ming from the following classical result (originally formulated by Tait in [41]). But there
are also differences between the colouring structures (and even the Kempe structures, as
we note in Corollary 4.3.6) of the 4-colourings of near-triangulations of the plane and the
3-edge-colourings of cubic graphs, which make such a precise relationship surprising.

Theorem 4.3.5. For any near-triangulation of the plane T , there is a bijection between
the 4-colourings of T and the 3-edge-colourings of its inner dual T ?.
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Proof. Consider a 4-colouring f of T with labels chosen from Z2×Z2. Now, we will attempt
to construct a 3-edge-colouring g of E(T ?) with labels (0, 1), (1, 0) and (1, 1) as follows. Each
full edge st ∈ E(T ?) crosses one edge uv ∈ E(T ). Thus, we may define g(st) = f(u) + f(v).
Similarly, a half-edge e ∈ E(T ?) crosses some full edge uv ∈ E(T ), so we may define
g(e) = f(u) + f(v). As f is a proper colouring, it immediately follows that this map is
well-defined. Moreover, if e1 and e2 are distinct edges incident with the vertex s of T ?,
then g(e1) = f(u) + f(v) and either g(e2) = f(u) + f(w) or g(e2) = f(v) + f(w). In these
equations, w is the third vertex in the triangle uvw of T . However, f(u)+f(v) 6= f(u)+f(w)
and f(u) + f(v) 6= f(v) + f(w), so g(e1) 6= g(e2). Consequently, g is a 3-edge colouring of
E(T ?).

Conversely, given a 3-edge-colouring g of E(T ?) with labels (0, 1), (1, 0) and (1, 1), pick
a vertex u ∈ V (T ), and define the map f : V (T )→ Z2×Z2 by the rule that f(v) is the sum
of the edges along a walk from u to v. Additionally, the map g? : E(T )→ Z2×Z2 \ {(0, 0)}
is given by g?(e) = g(e?), where e? is the edge corresponding to e in the dual graph T ?. The
following claim establishes that the map f is well-defined.
Claim 1: Let v1, e1, v2, e2, ..., vn be a closed walk in T . Then

∑n−1
i=1 g

?(ei) = (0, 0).
Proof: Without loss of generality, we may assume that the closed walks under consideration
have no repeated vertices, so assume that v1, , v2, ..., vn are distinct vertices. Certainly, our
claim holds for walks of length two, so we may also assume that the edges e1, e2, ..., en−1

form a cycle of length at least three in T . We will use C to denote this cycle.
Now, consider the set of faces F which are bounded by the cycle C. Each such face

is triangular, and g? colours each of the face’s edges with a different non-zero element of
Z2 × Z2. Thus, the sum of g? on the closed walk bounding each such triangular face is
zero. Now, sum g?(e) over all three of the edges in every face a ∈ F . Notice that this sum
equals

∑n−1
i=1 g

?(ei), as each edge which is not contained in C appears twice in the sum.
Additionally, observe that this sum is equal to zero, as the sum over each triangular face is
zero. Hence,

∑n−1
i=1 g

?(ei) = (0, 0), as required.
As f is well-defined, all that remains is to show that f is a proper 4-colouring. So, let

us consider adjacent vertices v, w ∈ V (T ). Constructing a closed walk containing u and
the edge vw, we see that f(v) + f(w) + g?(vw) = (0, 0). However, g?(vw) 6= (0, 0), so
f(v) + f(w) 6= (0, 0). Thus, f(v) 6= f(w), as required.

Corollary 4.3.6. Suppose that f is a 4-colouring of a planar near-triangulation T , and let
K be a Kempe chain of f . Then the edges {e?

i : ei has exactly one end in K} form a union
of Kempe chains in the dual colouring g of the inner dual graph T ?.

Proof. Firstly, we will compute how the values of the dual 3-edge-colouring g (as defined
in the proof of Theorem 4.3.5) are changed by performing the Kempe change K on a 4-
colouring f of T which has colours classes A, B, C and D. The value of g on an edge
e ∈ E(T ?) which crosses the edge uv ∈ E(T ) will be unchanged if uv is an edge between
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two vertices in the Kempe chain K or if neither u nor v are in the Kempe chain K. By
contrast, when u ∈ K and v /∈ K, the value of g on the edge st changes. If the Kempe chain
K consists of vertices coloured with the colours A and B, while u is initially coloured with
A and v is coloured with the colour C, then the value of g(e) changes from A+C to B+C.
It then follows from the proof of Theorem 4.3.5 that we can transform one 3-edge-colouring
of T ? into another 3-edge-colouring of T ? by changing the colours of the edges {e?

i : ei

has exactly one end in K} in the manner described above. It remains to show that this
transformation fixes some colour class of T ?. However, this follows immediately from the
fact that A + B = C + D in Z2 × Z2, together with the observation that none of A + C,
A+D, B + C or B +D equals A+B.

At this time, the we do not fully understand the relationship between inner duals and
reflexivity. However, we think that this is certainly a topic which merits further investigation.

4.4 Concluding Remarks

In this chapter, we have discussed a number of non-trivial, infinite families of reflexive
graphs. Some of these examples, like the line graphs of cubic trees and cubic cycles (see
Theorem 4.1.1 and Corollary 4.1.2) were previously known, while others are novel. In par-
ticular, we noted in Section 4.3 that the ladders and even circular ladders are edge-reflexive
with respect to 3-colourings, while the near-triangulations of the plane Ŵk (k ≥ 4) and ŜC2k

(k ≥ 2) are reflexive 4-colouring complexes. We also discussed an interesting connection be-
tween reflexive 4-colouring complexes and edge-reflexive inner duals of near-triangulations
of the plane in this section.

However, while it is of interest to list many non-trivial, infinite families of reflexive
graphs, the most important section of this chapter (in terms of our work) is the proof of
Theorem 4.1.1. Here, we drew the reader’s attention to the notion of clustering, and ex-
plained how examining clusters within a colouring complex could be used to prove that
graphs are reflexive. In Chapter 5, we will make improvements upon this method of clus-
tering, in order to establish stronger results.
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Chapter 5

Edge-Reflexive Outerplanar
Graphs

Throughout this chapter, we will assume that cubic graphs satisfy the hypotheses of Theo-
rem 1.3.1 below. We say that a graph G is outerplanar if there exists a planar drawing of G
in which every vertex of G appears on the unbounded face of the drawing. In this chapter,
we will focus our attention on classifying the edge-reflexive, cubic outerplanar graphs. Let
us remark that every cubic outerplanar graph contains half-edges. The 3-edge-colourability
of cubic outerplanar graphs was established by Fiorini in [17].

Theorem 1.3.1. Let G be a connected, cubic, outerplanar graph. Then X := L(G) is
reflexive if and only if G is triangle-free.

Proving Theorem 1.3.1 is an involved process. First, we must establish that G is never
edge-reflexive, if G contains a triangle. We will also discuss the complexities which arise
when G is not connected in Section 5.1. Subsequently, we prove that a 3-edge-colourable,
connected cubic graph is edge-reflexive if all the cubic graphs obtained by cutting all the
cut-edges of G are edge-reflexive. Note that Theorem 4.1.1 can be immediately derived as a
corollary of this result. Finally, we address the 2-edge-connected case using a constructive
proof.

In the process of establishing Theorem 1.3.1 we will also exhibit that (under certain
conditions) subdividing an edge in a cubic graph preserves edge-reflexivity. This result not
only implies Corollary 4.1.2 from the previous chapter, but also allows us to easily prove
that most of the cubic theta graphs are edge-reflexive (see Section 5.4 for the definition of
a cubic theta graph). However, it is not the case that subdividing edges always preserves
edge-reflexivity. In particular, though K3,3 is an edge-reflexive cubic graph, if we choose any
edge e ∈ E(K3,3) and subdivide that edge k times (where k ≥ 1) then the resulting graph
will not be edge-reflexive.

The main results of this chapter were submitted for publication in [29].
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5.1 Triangles and Disconnected Graphs

Recall from Chapter 2 that (by Lemma 2.3.4) a cubic graph G containing a triangle is
not edge-colourful. As a consequence, it is not edge-reflexive. This establishes the easier
direction of the chapter’s main theorem. Addressing graphs with more than one connected
component is more difficult, though we can make progress using an old result due to Fisk.
In order to state this result, we need to first define the categorical product of two graphs.
Given a pair of graphs X and Y , their categorical product X ×Y is the graph whose vertex
set is V (X) × V (Y ), and which satisfies (x, y) ∼ (x′, y′) if and only if x ∼ x′ and y ∼ y′,
where x, x′ ∈ V (X) and y, y′ ∈ V (Y ).

Theorem 5.1.1 (Fisk [20]). Let X and Y be graphs on disjoint vertex sets in which all
maximal cliques are triangles. Then the following graphs are isomorphic:
(a) B3(X ∪ Y ) ∼= B3(X)×B3(Y );
(b) if X and Y are also connected, then B3(X × Y ) ∼= B3(X) ∪B3(Y ).

Proof. (a) Observe that f is a 3-colouring of X ∪ Y if and only if the restriction of f to
X is a 3-colouring of X and the restriction of f to Y is a 3-colouring of Y . Thus, each
vertex of B3(X ∪Y ) is the disjoint union of a vertex of B3(X) with a vertex of B3(Y ). Such
unions are certainly in one-to-one correspondence with the elements of V (B3(X)×B3(Y )),
so it merely remains to show that two vertices C,D ∈ V (B3(X ∪ Y )) are adjacent if and
only if C ∩ V (X) ∼ D ∩ V (X) in B3(X) and C ∩ V (Y ) ∼ D ∩ V (Y ) in B3(Y ). However,
this is self-evident, as C and D will be in a 3-colouring of X ∪ Y together if and only if
their restrictions to each connected component of X ∪ Y are colour classes together in a
3-colouring of said connected component.

(b) The following claim is useful in establishing (b).

Claim 1: If f is a 3-colouring f : K3 × K3 → K3 then f is a projection onto one of the
factors of K3 ×K3 composed with an automorphism of K3.

Proof: Let v ∈ V (K3), and suppose that there are distinct pairs (u,w) and (x, y) of f−1(v)
such that u 6= x and w 6= y. Then (u,w) ∼ (x, y), contradicting the fact that f is a 3-
colouring. So, without loss of generality, we may assume that u = x and w 6= y. It follows
that all the first coordinates in f−1(v) are equal, as, otherwise, there would exist some other
element (r, s) of f−1(v) such that u 6= r. However, this implies that s = w and s = y, a
contradiction.

Having established that all the first coordinates of vertices in f−1(v) are equal, consider
the possibility that there exist vertices p, q ∈ V (K3) such that f−1(p) has all first coordinates
equal, while f−1(q) has all second coordinates equal. In this case, there exist vertices p′ and q′

such that f−1(p) = p′×K3 and f−1(q) = K3×q′. But then the vertex (p′, q′) belongs to both
f−1(p) and f−1(q), which cannot be the case, since f is a 3-colouring. Thus, by symmetry,
for every vertex v ∈ V (K3), there exists a vertex v′ such that f−1(v) = v′ ×K3. In other
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words, f is the projection onto the first factor of K3 ×K3, followed by the automorphism
which sends v to v′. This establishes the claim.

Now, suppose that we are given a 3-colouring f : X × Y → K3. Let R and S be
triangles of X and Y , respectively. Then f restricted to R × S is a projection (without
loss of generality) to the first factor. Now, suppose that R′ is a triangle meeting R in some
vertex v. As f restricted to v × S is a projection to the first factor, f is a projection onto
the first factor of R′ × S. Continuing in this way, since X and Y are connected graphs in
which all the maximal cliques are triangles, f is a projection to the first factor on all of
X × Y . Consequently, every 3-colouring of X × Y corresponds to either a 3-colouring of X
or a 3-colouring of Y , so B3(X × Y ) ∼= B3(X) ∪B3(Y ).

Let us note that the connectivity assumption in part (b) of Theorem 5.1.1 cannot be
omitted. In particular, consider the graph X consisting of the disjoint union of two copies
of L(K3,3). Equivalently, we can construct this graph as the product (K3 ∪ K3) × K3. In
this case, B3((K3 ∪K3)×K3) is isomorphic to four disjoint copies of L(K3,3). By contrast,
B3(K3 ∪K3) ∪B3(K3) is isomorphic to the disjoint union of K3 and one copy of L(K3,3).

Curiously, we also notice that B3(L(K3,3) ∪ L(K3,3)) ∼= L(K3,3) ∪ L(K3,3) ∪ L(K3,3) ∪
L(K3,3). Fisk observed that this property (that B3(X) ∼= X∪X) is shared by the line graph
of the Coxeter graph, though few other examples are known [20].

Corollary 5.1.2. Let X and Y be the line graphs of 3-edge-colourable cubic graphs G and
H, respectively, where G and H each contain at least one half-edge. Then the disjoint union
X ∪ Y is a reflexive graph with respect to 3-colourings if each of X and Y is reflexive.

Proof. The graphX∪Y is reflexive if and only if B3(B3(X∪Y )) ∼= X∪Y . By Theorem 5.1.1,
this is equivalent to asking that B3(B3(X)×B3(Y )) ∼= X ∪Y . Moreover, employing Obser-
vation 2.4.7, if X and Y are reflexive (and G and H each have at least one half-edge) then
B3(X) and B3(Y ) are connected graphs. Thus, B3(B3(X) × B3(Y )) ∼= B2

3(X) ∪ B2
3(Y ) by

Theorem 5.1.1. Thus, B2
3(X ∪ Y ) ∼= X ∪ Y , as required.

Unfortunately, the converse is not readily apparent. Worse, if either X or Y is not
reflexive, then we cannot apply Observation 2.4.7, so we cannot conclude that X ∪Y is not
reflexive. For these reasons, we restrict ourselves to considering connected, cubic outerplanar
graphs.

5.2 Cut-edges and Reflexivity

In this section, we will prove that a connected, cubic graph G is edge-reflexive whenever all
graphs obtained from G by cutting all cut-edges are edge-reflexive. This result will allow us
to restrict ourselves to merely studying 2-edge-connected, triangle-free, cubic outerplanar
graphs.
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Our approach to this proof is based on generalizing the proof of Theorem 4.1.1 from
Chapter 4. In that proof, given a half-edge in an edge-reflexive graph G, making said half
edge into a full edge joined to a new vertex (and adding half-edges in order to ensure the
result was cubic) preserved edge-reflexivity. We then applied induction in order to prove
that all cubic trees were reflexive. In Lemma 5.2.1, we show that, given a half-edge in an
edge-reflexive graph G, making said half edge into a full edge joined to an edge-reflexive
graph H also preserves edge-reflexivity. Then it follows by induction that we can reduce the
study of G to the study of the graphs obtained from G by cutting all its cut-edges.

Let G be a cubic graph with a cut-edge e joining vertices a and b. By cutting the edge e
we obtain two cubic graphs H and K which are obtained from G−e by adding a half-edge to
a and b, respectively. The added half-edge will be considered to be the same as the removed
edge e, so that we can consider E(H) ⊆ E(G), E(K) ⊆ E(G), and E(H) ∩ E(K) = {e}.

Lemma 5.2.1. Let G be a cubic graph with a cut-edge e. Let H and K be cubic graphs
obtained from G by cutting the edge e. If H and K are edge-reflexive, then G is edge-reflexive,
too.

Proof. We let X = L(H), Y = L(K), and X ′ = L(G). Let w and x be the neighbours
of e in X, and let y and z be the neighbours of e in Y . Before proceeding further, let us
first observe that since X and Y are reflexive, they are also colourful. This implies that X ′

is also colourful. Thus, φX′ is an injective homomorphism X ′ → B2
3(X ′), and therefore it

suffices to show that X ′ and B2
3(X ′) have the same number of triangles (by Lemma 2.4.2).

Triangles in X ′ correspond to vertices in V (G) = V (H) ∪ V (K), while the triangles in
B2

3(X ′) correspond to 3-colourings of B3(X ′).
Now, for any colour class C ∈ V (B3(X)), let FC be the set of colour classes of X ′ which

coincide with C on the vertices of X. If e ∈ C, we also write Fe
C to denote the same set of

colour classes. Observe that when e ∈ C and D ∈ FC , we have y, z /∈ D. On the other hand,
if e /∈ C then exactly one of y and z is in D. In this case, we partition FC into the subset Fy

C

consisting of colour classes which contain y, and the subset Fz
C of colour classes containing

z. We refer to the set Fe
C , or the sets Fy

C and Fz
C as the clusters of B3(X ′) corresponding

to C. Each cluster is an independent set in B3(X ′). We say that two clusters corresponding
to C,C ′ ∈ V (B3(X)) are adjacent if CC ′ ∈ E(B3(X)).

Claim 1: For any triangle ACD in B3(X) with e ∈ A, the induced subgraph of B3(X ′) on
Fe

A ∪ F
y
C ∪ Fz

D is isomorphic to B3(Y ). The same is true for Fe
A ∪ Fz

C ∪ F
y
D.

Proof: To prove the claim, consider the map ψ : Fe
A ∪ F

y
C ∪ Fz

D → B3(Y ) which takes a
colour class B of X ′ to the intersection of B with V (Y ). Since the restriction of B to V (X)
is identical to precisely one of A,C or D it is easy to see that ψ is injective. Further, we
can form a colour class of X ′ from any colour class of Y by combining it with one of A, C
and D, provided that they agree on containment of e. Hence ψ is surjective.
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It remains to show that, for B,B′ ∈ Fe
A∪F

y
C∪Fz

D, B is adjacent to B′ if and only if ψ(B)
is adjacent to ψ(B′). Suppose that B ∈ Fe

A and B′ ∈ Fy
C . If B and B′ are adjacent in B3(X ′)

then there is a colour class F ∈ B3(X ′) such that BB′F is a triangle in B3(X ′). Note that
F ∈ Fz

D. The image of this triangle under ψ is also a triangle (as ψ maps 3-colourings of X ′

to 3-colourings of Y ) and hence ψ(B) is adjacent to ψ(B′). On the other hand, if ψ(B) and
ψ(B′) are adjacent in B3(Y ), then there is a triangle ψ(B)ψ(B′)J ⊆ B3(Y ) since all edges
in B3(Y ) come from 3-colourings of Y . Now B,B′ and D ∪ J form a colouring of X ′, and
hence B and B′ are adjacent in B3(X ′). The proofs for the cases when B ∈ Fe

A, B
′ ∈ Fz

D

and B ∈ Fy
C , B

′ ∈ Fz
D are similar. This proves the claim.

Claim 2: Let ACD be a triangle in B3(X) with e ∈ A. Then the subgraph of B3(X ′) on
colour classes in Fz

D ∪ F
y
C is connected and bipartite, and is isomorphic to B3(Y )− φY (e).

Further, the graph B∗ obtained from B3(Y ) by deleting the edges of B3(Y ) − φY (e) is
connected and isomorphic to each of the bipartite graphs between Fe

A and FC , as well as
between Fe

A and Fy
C ∪ Fz

D.

Proof: B3(Y ) − φY (e) is connected by Lemma 2.4.5. Furthermore, every edge of B3(Y ) −
φY (e) is contained in a triangle in B3(Y ) using no other edge of B3(Y )− φY (e). Therefore,
B∗ is also connected since the edges of such triangles can be used in B∗ to replace any of
the removed the edges. Now, suppose that ACD is a triangle in B3(X), where e ∈ A. Then
the bipartite graph between Fz

D and Fy
C is isomorphic to B3(Y )−φY (e), while the bipartite

graphs between Fe
A and FC and between Fe

A and Fy
C ∪ Fz

D are each isomorphic to B∗, in
the latter case, by Claim 1. Hence both of these are also connected, establishing the claim.

As in the proof of Theorem 4.1.1, we say that a colouring is constant on a set S of
vertices if S is contained in a colour class of the colouring. If a colouring χ of B3(X ′) is
constant on each of Fy

C and Fz
C , we say that χ is near-constant on FC .

Claim 3: Let ACD be a triangle in B3(X), where e ∈ A, and let χ be a colouring of B3(X ′)
that is constant on one of FC or FD. Then χ is constant on each of Fe

A, FC and FD.

Proof: If χ is constant on FC , then Fe
A and FD form a connected bipartite graph (by Claim

2) on which χ uses only two colours. Therefore, χ is constant on each of Fe
A and FD. The

case where χ is constant on FD is similar. This proves the claim.

Claim 4: If χ is constant on Fe
A, then it is near-constant on FC and FD. If χ is near-constant

on one of FC and FD, then it is also near-constant on the other, together using only two
colours on FC ∪ FD, and is constant on Fe

A, using the third colour.

Proof: To prove the claim, we first observe that if χ is constant on Fe
A, then F

y
C and Fz

D form
a connected bipartite graph on which χ uses only two colours. Hence, χ is constant on each
of Fy

C and Fz
D (and, similarly, Fz

C and Fy
D). It follows immediately that χ is near-constant

on FC and FD.
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Suppose now that χ is near-constant on FC . By Claim 3, we may assume that χ is not
constant on FC , so it uses different colours on Fy

C and Fz
C . Then there is only one colour

left for the whole of Fe
A (noting from Claim 2 that every vertex of Fe

A is adjacent to some
vertex in each of Fy

C and Fz
C). So χ is constant on Fe

A, and hence near-constant on FD.
Again, the case where χ is near-constant on FD is similar. This completes the proof of the
claim.

Our next goal is to count all of the 3-colourings of B3(X ′). All such colourings are
partitioned into three classes.

Class 1: Colourings that are constant on FC for some C ∈ V (B3(X)) \ φX(e). By
Lemma 2.4.5, B3(X) − φX(e) is connected. This fact, repeatedly combined with Claim
3, implies that such a colouring χ is constant on Fe

A for every A ∈ φX(e). Note that
every colouring of B3(X) gives rise to a colouring of B3(X ′) in the obvious way: If D ∈
V (B2

3(X)) is a colour class in a colouring of B3(X), we let D′ =
⋃

D∈D FD ∈ V (B2
3(X ′)).

This correspondence yields a bijection between colourings of B3(X) and the colourings of
B3(X ′) that are of Class 1. In particular, the number of colourings of Class 1 is equal to
the number of triangles of X, since X is reflexive. Of course, this is equal to the number of
vertices of H.

Class 2: Colourings that are constant on Fe
A for some A ∈ φX(e), but not on FC for any

C ∈ V (B3(X))\φX(e). In this case, Claim 4 implies that any such colouring is near-constant
on FC for each C ∈ V (B3(X)) \ φX(e). Since B3(X) − φX(e) is connected, the same two
colours are used for every FC and the colour of each Fy

C and Fz
C are determined by the

choice of any one of them. We can therefore construct exactly one colouring of B3(X ′) in
this way.

Class 3: Colourings that are non-constant on each Fe
A, A ∈ φX(e). In this case, we will

show that any such colouring is completely determined by its restriction to an arbitrarily
chosen triangle of clusters Fe

A,F
y
C ,Fz

D. The vertices of these clusters can be coloured accord-
ing to any colouring of B3(Y ), except for the colouring in which the clusters are themselves
colour classes. Therefore, the number of colourings covered by this case is one less than the
number of triangles in Y .

Suppose now that χ is a colouring of B3(X ′) of class 3, and consider its restriction to
Fe

A∪F
y
C∪Fz

D. Our aim is to prove that this restriction determines χ. To see this, we employ
an inductive argument. First observe, by Lemma 2.4.4, that χ is determined on Fy

D and
Fz

C , since these clusters form a connected bipartite graph. Moreover, by Claim 4, neither
FC nor FD may be near-constant. Similarly, χ is determined on any clusters adjacent to
Fe

A. Again, by Lemma 2.4.4, noting that χ is not near-constant on FC , χ is also determined
on Fe

B for any B ∈ φX(e) which is adjacent to C, since the bipartite graph between Fe
B

and FF is connected, where F is the third vertex of the triangle in B3(X) containing B
and C. Similarly to the argument for Fe

A, χ is also determined on FF , and FF cannot be
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near-constant. Repeating this argument, since B3(X) is connected, we conclude that we
have uniquely determined the whole of the colouring χ.

By the preceding cases, in total, the number of colourings of B3(X ′), and therefore the
number of triangles in B2

3(X ′), is equal to the sum of the number of triangles of X and
Y . Since X ′ also has this many triangles, we conclude by Lemma 2.4.2 that the injection
φX′ : X ′ → B2

3(X ′) is in fact an isomorphism.

As a direct corollary of Lemma 5.2.1 we obtain Theorem 4.1.1. The lemma also enables
us to restrict ourselves to 2-edge-connected cubic graphs.

Corollary 5.2.2. Suppose that all graphs obtained from a connected, cubic graph G by
cutting all cut-edges of G are edge-reflexive. Then G is edge-reflexive.

5.3 2-Edge-Connected, Triangle-Free, Outerplanar Graphs

Corollary 5.2.2 shows that in order to prove Theorem 1.3.1, it suffices to prove the following.

Lemma 5.3.1. Every 2-edge-connected, cubic, triangle-free outerplanar graph is edge-reflexive.

We can show that any 2-edge-connected, triangle-free, cubic, outerplanar graph G can
be constructed from a cubic 4-cycle by repeatedly applying the following two operations:

1. Adding a 4-cycle: Given an edge e = v1v2 in a cubic graph H, incident with half-edges
e1 and e2 (respectively), as well as the full edges f1 and f2, add two new vertices v3, v4 and
form a 4-cycle v1v2v3v4, where e1 joins v1 and v4, e2 joins v2 and v3, and e3 joins v3 and
v4. Finally, add half-edges ev3 and ev4 incident with v3 and v4, respectively.

2. Subdividing an edge: Given an edge e = v1v2 in a cubic graph H, where v1 and v2

are incident with half-edges e1 and e2 (respectively), as well as with full edges f1 and f2,
subdivide the edge e into two edges e′ and e′′ by inserting a new vertex v. Then add a
half-edge g incident with v, in order to form a new cubic graph.

These two operations with the corresponding notation that will be used when speaking
about them are depicted in Figure 5.1.

The following lemma verifies our claim that any 2-edge-connected, triangle-free, cubic,
outerplanar graph G can be constructed from a cubic 4-cycle by repeatedly applying these
operations.

Lemma 5.3.2. A 2-edge-connected, triangle-free, cubic, outerplanar graph G can be con-
structed from a cubic 4-cycle by repeatedly applying operations 1 and 2.

Proof. We proceed by induction on n = |V (G)|, where n ≥ 4. The base case is the cubic
4-cycle. Now, suppose that any 2-edge-connected, triangle-free, cubic, outerplanar graph H
which satisfies |V (H)| < n can be constructed from a cubic 4-cycle by repeatedly applying
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e1 e2

f2f1

v1 v2

H

e′

e1 e2

f2f1

v1 v2

G

e
e1 e2

f2f1

v1 v2

G

e′′

g

e3
ev4 ev3

v4 v3

Figure 5.1: Adding a 4-cycle and subdividing an edge

operations 1 and 2. Let G be a 2-edge-connected, triangle-free, cubic, outerplanar graph
such that |V (G)| = n.

Fix a planar drawing of G in which every vertex of G appears on the unbounded face of
the drawing. We will call the edges on the unbounded face of this drawing the outer edges
of G, and the other edges of G will be called the inner edges of G. For every inner edge
uv ∈ E(G), the endpoints of uv are a 2-separator.

Now, choose an inner edge uv so that the smallest component of G− {u, v} has as few
vertices as possible. As this smallest component is minimal, it cannot contain an inner edge,
so this smallest component is just a path P . The path P has at least three edges, since G
does not contain any triangles, multi-edges or loops. If G has exactly three edges uw, wx
and xv, then we can construct a 2-edge-connected, triangle-free, cubic, outerplanar graph
H ′ from G − wx by adding a half-edge to each of u and v. By our induction hypothesis,
H ′ can be constructed from a cubic 4-cycle by repeatedly applying operations 1 and 2, and
then G can be constructed from H ′ by adding a 4-cycle.

If G has at least four edges uu1, u1u2, ..., ukv, where k ≥ 3, then we can contract the
edge uk−1uk in order to obtain a graph H ′′ which can be constructed from a cubic 4-cycle
by repeatedly applying operations 1 and 2. Then, by subdividing the edge uk−2uk−1, we can
construct G from H ′′. Therefore, by induction, G can be constructed from a cubic 4-cycle
by repeatedly applying operations 1 and 2 for all |V (G)| = n ∈ N.

As a consequence of this lemma, in order to prove Lemma 5.3.1, it suffices to show that
operations 1 and 2 preserve edge-reflexivity.

Lemma 5.3.3. Operation 1 preserves edge-reflexivity.

Proof. Let G be the graph obtained from H by adding a 4-cycle, let X = L(G), Y = L(H),
and take all the vertex and edge labels of H, G, X and Y to be as we defined in Operation
1. Furthermore, assume that Y is reflexive. We have to show that the homomorphism
φX : X → B2

3(X) is an isomorphism. As before, we will establish that X is colourful and
then count the number of colourings of B3(X).
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Claim 1: The graph X is colourful.

Proof: We are given that Y is colourful. Since every 3-colouring of Y extends to X, it
immediately follows that, for any pair of vertices u, v ∈ V (X) \ {e3, ev3 , ev4}, there exists a
colouring of X in which u and v are coloured differently. Moreover, as there is a colouring of
Y which colours f1 and e2 differently, there is a colouring of X in which e1 and e2 have the
same colour. Now, by performing an {e3, ev3 , ev4} Kempe change, if needed, we can ensure
that for any u ∈ V (X)\{e3, ev3 , ev4} and v ∈ {e3, ev3 , ev4}, there exists a colouring in which
u and v are coloured differently. Finally, as there exists a colouring in Y which colours e1

and e2 differently, we can extend this colouring to X in order to obtain a colouring in which
ev3 and ev4 are coloured differently. This completes the claim.

Now, we partition the vertices of B3(X) into the seven clusters shown in Figure 5.2,
where (as we noted in chapters 2 and 4) we denote by Cx1x2...xt the set of colour classes of
X which contain the vertices x1, x2, . . . , xt ∈ {e, e1, e3, e2, f1, f2}. In other words,

Cx1x2...xt =
t⋂

i=1
φX(xi).

In Figure 5.2 we also have the clusters Cê3f1f2
and Cê3e, where ê3 indicates that the colour

classes in this cluster do not contain e3. Note that Ce3f1f2 ∪ Cê3f1f2
is a partition of Cf1f2 .

The 3-colourings of X fall into three types as indicated by triangles in Figure 5.2. The
subgraph of B3(X) consisting of all triangles of type i ∈ {1, 2, 3} will be denoted by Ti. Note
that Ti contains only those vertices from the corresponding three clusters that appear as
colour classes in Ti. Thus, Ti is obtained from the induced subgraph on the three clusters by
removing the isolated vertices (which must participate in colourings of the neighboring Tj ,
but not in Ti). We also denote the subgraph of Ti induced by the union of the two adjacent
clusters Cx1...xt and Cw1...ws by Cx1...xtCw1...ws .

Claim 2: T2 ∪ T3 is isomorphic to B3(Y ). Under this isomorphism, Cee3 is mapped onto
φY (e).

Proof: Consider the map ψ : T2 ∪ T3 → B3(Y ) which takes a colour class C of X to its
intersection with V (Y ). As every colouring c of Y extends uniquely to a colouring c′ of X
with c′(e) = c′(e3), ψ is a bijection. Moreover, this unique extension also establishes that
ψ is a graph homomorphism, since it follows that ABC is a colouring of X which lies in
T2 ∪ T3 if and only if ψ(A)ψ(B)ψ(C) is a colouring of Y . Thus, our claim is established.

Since Y is reflexive and e has degree 4 in Y , Lemma 2.4.5 shows that B3(Y )−φY (e) has
precisely two components. Hence, it follows from Claim 2 that Ce1f2Ce2f1 and Ce1e2Cê3f1f2

are bipartite and connected subgraphs of T2 ∪ T3.

Claim 3: T1 is isomorphic to T2 and Cê3eCe3f1f2 is isomorphic to Cee3Cê3f1f2
.
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Ce2f1
T1 T2 T3

Figure 5.2: Partitioning B3(X) into clusters

Proof: Note that the colourings of X forming T1 and T2 have e1 and e2 coloured the same.
Consider the map ψ : T2 → T1 which takes a colour class C ∈ V (T2) to the colour class of
X in T1 which results from performing a Kempe change on {e3, ev4 , ev3}. Observe that this
map is well-defined since ev3 and ev4 are coloured the same and hence the colours of e1 and
e2 remain the same. As ψ and ψ−1 are both invertible (as Kempe changes are reversible),
ψ is a bijection. Similarly, ψ is a graph homomorphism, since it follows from the existence
and reversibility of the Kempe change discussed that ABC is a triangle of T2 if and only if
ψ(A)ψ(B)ψ(C) is a triangle of T1. These observations confirm our claim.

Claim 4: Cê3f1f2
Cee3 is isomorphic to Cê3f1f2

Ce1e2 .

Proof: Consider the map ψ : T2 → T2 which takes a colour class C ∈ V (T2) to the colour
class of X in T2 which results from performing a Kempe change on {e, e1, e2, e3}. Observe
that this map is well-defined, as such a Kempe change always exists and leaves e1 and e2

the same colour, which remains different from the shared colour of e and e3. Also, f1 and
f2 remain the same colour, which is different from the colour of e3. As Kempe changes are
reversible, ψ is a bijection. Similarly, ψ is a graph homomorphism, since it follows from the
existence and reversibility of the Kempe change discussed that ABC is a colouring of T2 if
and only if ψ(A)ψ(B)ψ(C) is a colouring of T2.

Claim 4 implies that Cee3Cê3f1f2
is bipartite and connected. By Claim 3 it follows imme-

diately that Cê3eCe3f1f2 is bipartite and connected.
Now, let χ be a colouring of B3(X). Suppose first that χ is constant on Cee3 ∩ T2. We

claim that χ is constant on the whole cluster Cee3 . For a contradiction, suppose that this
claim is false. As χ is constant on Cee3 ∩T2, we know that χ is constant on all three clusters
of T2 (since Ce1e2Cê3f1f2

is bipartite and connected). Now, as Y is reflexive and T2 ∪ T3 is
isomorphic to B3(Y ) (by Claim 2), the colour class of T2 ∪ T3 ∼= B3(Y ) containing Cee3 ∩ T2

must be of the form φY (v), for some vertex v ∈ V (Y ). If v = e or v = e3, we are done, so we
may assume otherwise. As Cê3f1f2

and Ce1e2 ∩ T2 are both nonempty (since Y is colourful)
the colour class containing Cee3 ∩ T2 in B3(Y ) cannot be any of φY (f1), φY (f2), φY (e1),
φY (e2), φY (ev4) or φY (ev3). However, for any vertex v ∈ V (Y )\{e, e1, e3, e2, f1, f2, ev4 , ev3},
by Claim 4, if φY (v) ∩ Cee3 ∩ T2 6= ∅, then φY (v) ∩ Ce1e2 ∩ T2 6= ∅. But this contradicts the
fact that χ is constant on Cee3 ∩ T2, completing our claim.
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Consequently, if χ is constant on Cee3 ∩T2, then χ is constant on the whole cluster Cee3 ,
and hence, on all the clusters of B3(X). There are four such colourings of B3(X), compared
to two such colourings of B3(Y ).

Let us now consider the case when χ is not constant on Cee3 ∩ T2. In this case, by
Lemma 2.4.4 and Claim 4, χ is determined and non-constant on Ce1e2 ∩ T2 and determined
on Cê3f1f2

. By Claim 3 and Lemma 2.4.4, it then follows that χ is completely determined on
T1. Thus, the colouring χ of B3(X) is completely determined by its restriction to T2 ∪ T3,
which is isomorphic to B3(Y ). Each such colouring is determined uniquely by a colouring
of B3(Y ) which is not constant on some cluster of B3(X). Since two colourings of B3(Y )
correspond to case 1, we get two fewer colourings in case 2, so we obtain two less colourings
than the number of colourings of B3(Y ).

Thus, in total, B3(X) has two more colourings than B3(Y ) had, which is precisely the
number of additional triangles in X. Consequently, X ∼= B2

3(X), as required.

Lemma 5.3.4. Operation 2 preserves edge-reflexivity.

Proof. Again, let X = L(G), Y = L(H), and we assume that Y is reflexive. As in our
previous arguments, we will demonstrate that the homomorphism φX : X → B2

3(X) is an
isomorphism by proving that X is colourful and then counting the number of colourings of
B3(X). We also find it useful to define graphs He′ and He′′ as shown in Figure 5.3, as well
as their line graphs Xe′ and Xe′′ , respectively. Note that He′ and He′′ are both isomorphic
to H, but have some of their edges labelled differently. Through this labeling we can view
E(He′) and E(He′′) as subsets of E(G).

Figure 5.3 also shows the correspondence of 3-edge-colourings of He′ and He′′ with
certain 3-edge-colourings of G. Observe that He′ (He′′) has precisely the 3-edge colourings
of G in which the colour of e′ is equal to the colour of e2 (the colour of e′′ is equal to the
colour of e1) and He′ ∼= H ∼= He′′ .

G

f1 f2

e1 e2
g

e′ e′′ f1 f2

e2e′

e′′

f1 f2

e1
e′

e′′

He′′He′
χ(e′) = χ(e2) χ(e′′) = χ(e1)

Figure 5.3: Two graphs isomorphic to H whose 3-edge-colourings correspond to certain
subsets of the 3-edge-colourings of G

Claim 1: G is edge-colourful.

Proof: Let u, v ∈ V (X). We examine four cases.
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Case 1: If u, v /∈ {e′, e′′, e1, e2, g}, then a 3-colouring ce′ of Xe′ with ce′(u) 6= ce′(v) can
be extended to a colouring of X in which c(u) 6= c(v). As Xe′ is colourful, this establishes
case 1.

Case 2: u, v ∈ {e′, e′′, e1, e2, g}: As Xe′ is colourful, there exists a 3-edge colouring of G
with c(f1) 6= c(f2) and c(e′) = c(e2). Since c(e′) is different from c(f1) and c(f2), we have
that c(e′′) 6= c(e1), c(e1) 6= c(e2) and c(e2) 6= c(g). By the same argument on Xe′′ , we also
establish that there is a colouring distinguishing e′, e2 and e1, g.

Case 3: If u ∈ {e′, e′′, e1, e2} and v /∈ {e′, e′′, e1, e2, g}, then we may always arrange a
colouring of X in which c(f1) = c(f2), as Xe′ is colourful. In the event that c(u) = c(v),
we can then perform a Kempe change on the vertices of the set {e′, e′′, e1, e2} in order to
arrange for c(u) 6= c(v). This establishes case 3.

Case 4: u = g and v /∈ {e′, e′′, e1, e2, g}: In case 2, we showed that there is a 3-edge
colouring of G with c(e′) = c(f2). So, for each vertex v /∈ {g, e2} we can arrange for
c(g) 6= c(v) by performing a Kempe change on the path g, e′′, e2 (if needed). This completes
the claim.

Now, as X is colourful, it suffices to establish (by Lemma 2.4.2) that B3(X) has precisely
one more 3-colouring than B3(Y ). In order to prove this fact, we will again partition B3(X)
into clusters of the form Cab = φX(a) ∩ φX(b), where a, b ∈ V (X). We will consider the
partition into clusters as depicted in Figure 5.4.

T1

T2

T3

T4

Ce′e2

Ce′′e1Ce′f2

Ce′′f1

Ce1f2

Cf1f2

Ce2f1

Ce1e2

Figure 5.4: Partitioning B3(X) into clusters

As in the proof of Lemma 5.3.3, let Ti (1 ≤ i ≤ 4) be the subgraph of B3(X) on all
colour sets participating in 3-colourings of X whose edges are between the three clusters
of Ti, as shown in Figure 5.4. We will refer to the subgraph consisting of all the edges in
B3(X) joining the clusters Cuv and Cxy as the edge CuvCxy of our cluster partition. When
CuvCxy is nonempty, it is contained in precisely one of the subgraphs Ti, i ∈ {1, 2, 3, 4}.
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Claim 2: The following subgraphs of B3(X) are isomorphic: T1 ∪ T2 ∼= B3(Xe′) ∼= B3(Y ) ∼=
B3(Xe′′) ∼= T2 ∪ T3.

Proof: That B3(Xe′) ∼= B3(Y ) ∼= B3(Xe′′) follows immediately from their definitions. So,
it suffices to prove that the maps ψ1 : T1 ∪ T2 → B3(Xe′) and ψ2 : T2 ∪ T3 → B3(Xe′′),
each of which takes a colour class C of X to its restriction as indicated in Figure 5.3, are
isomorphisms. As these two arguments are identical, we will only establish the claim for the
map ψ1.

As every colouring c of Xe′ extends uniquely to a colouring of X and T1 ∪ T2 includes
the whole Ce′e2 , ψ1 is a bijection. Moreover, this unique extension also establishes that ψ1

is a graph homomorphism, since it follows that a colouring ABC of X is in T1 ∪ T2 if and
only if ψ1(A)ψ1(B)ψ1(C) is a colouring of Xe′ . Thus, Claim 2 is resolved.

Claim 3: The edges of the cluster partition in Figure 5.4 representing Ce1f2Ce′′f1 , Cf1f2Ce′′e1 ,
Ce′e2Cf1f2 and Ce′f2Ce2f1 all represent connected, bipartite subgraphs of B3(X). Moreover,
Cf1f2Ce′′e1

∼= Ce′e2Cf1f2 .

Proof: Recall that, by Claim 2, T1 ∪ T2 ∼= B3(Xe′) ∼= B3(Y ) ∼= B3(Xe′′) ∼= T2 ∪ T3. Notice
that the graph Xe′ is reflexive and e′ has degree 4 in Xe′ . Through the isomorphism T1 ∪
T2 ∼= B3(Xe′), φXe′ (e′) corresponds to the cluster Ce′e2 in T1 ∪ T2. Therefore, Ce1f2Ce′′f1 and
Cf1f2Ce′′e1 are bipartite and connected by Lemma 2.4.5. Similarly, as Xe′′ is reflexive and e′′

has degree 4 in Xe′′ , Ce′e2Cf1f2 and Ce′f2Ce2f1 are bipartite and connected.
Now, consider the map ψ : T2 → T2, which takes a colour class C ∈ V (T2) to the

colour class C ′ which results from performing a Kempe change on {e1, e
′, e′′, e2}. Observe

that this map is well-defined, as such a Kempe change always exists and leaves e1 and e′′

the same colour, which remains different from the shared colour of e′ and e2. Moreover, as
Kempe changes are reversible, ψ is a bijection, and ABC is a triangle in T2 if and only if
ψ(A)ψ(B)ψ(C) is a triangle in T2. Consequently, ψ is a graph isomorphism. It remains to
note that ψ maps Cf1f2Ce′′e1 onto Ce′e2Cf1f2 . This establishes Claim 3.

We will now discuss the structure of 3-colourings of B3(X). If we consider our cluster
partition as an 8-vertex graph, each 3-colouring of that graph determines a 3-colouring of
B3(X) in which each cluster is monochromatic (the colouring is constant on the cluster).
There are other 3-colourings of B3(X). To understand them, we first show that each such
colouring is determined by its restriction to certain subgraphs of B3(X).

Claim 4: For every 3-coloring of B3(X), its restriction to T1 ∪ T3 determines the colouring
on T4.

Proof: Observe that deleting either e′ and f2 or e′′ and f1 separates X into two components,
one of which only contains vertices in {e1, e2, e

′, e′′, g}. Consequently, we can obtain from
any colouring of X represented by a triangle in T4 a triangle in T1 through a Kempe change
on {e1, e

′, g} and a triangle in T3 through a Kempe change on {e2, e
′′, g}. This shows that
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Ce′′f1 = T1 ∩ T3 and Ce′f2 = T3 ∩ T4. Thus, the colouring of Ce′′f1 is determined by the
colouring of Ce′′f1 ∩T1, and the colouring of Ce′f2 is completely determined by the colouring
of Ce′f2 ∩ T3. Now, every vertex in Ce1e2 is in a triangle in T4 and hence also its colour is
determined.

Claim 5: If a colouring χ of X is constant on Ce′′e1 ∩ T2, then χ is constant on the whole
cluster Ce′′e1 . If χ is constant on Ce′e2 ∩ T2, then it is constant on Ce′e2 .

Proof: For a contradiction, suppose that this claim is false. If χ is constant on Ce′′e1 ∩ T2,
then (by Claim 3) it is constant on each of Ce′e2 ∩T2 and Cf1f2 . Now, as T2∪T3 ∼= B3(Xe′′) is
an isomorphic copy of the colouring complex of a reflexive graph, the colour class containing
Ce′′e1 ∩ T2 in B3(Xe′′) must be of the form φXe′′ (v), for some vertex v ∈ V (Xe′′). If v = e′′,
we are done, so we may assume otherwise. As Cf1f2 and Ce′e2 ∩ T2 are both nonempty
(since Xe′′ is colourful) the colour class containing Ce′′e1 ∩ T2 in B3(Xe′′) cannot be any of
φXe′′ (f1), φXe′′ (f2), φXe′′ (e′′), φXe′′ (e2) or φXe′′ (e′). However, when the vertex v ∈ V (Xe′′)\
{e2, e

′, e′′, f1, f2}, then φXe′′ (v) ∩ Ce′e2 ∩ T2 6= ∅ by Claim 3. But this contradicts the fact
that χ is constant on Ce′′e1 ∩ T2, completing our claim. The proof of the second statement
is the same.

Claim 6: The subgraphs of B3(X) corresponding to T4 and T3 are isomorphic, and Ce′′f1Ce′f2

is bipartite and connected.

Proof: As in the proof of Claim 4, we consider the map ψ : T4 → T3 induced on B3(X) by
performing a Kempe change in X on {g, e′′, e2}. This map is a bijection between T4 and T3.
Moreover, ABC is a triangle in T4 if and only if ψ(A)ψ(B)ψ(C) is a triangle in T3, so this
is indeed a graph isomorphism.

Claim 7: If a 3-colouring χ of B3(X) is non-constant on Ce′′e1 ∩T2, then the restriction of χ
to (Ce′′e1 ∩ T2) ∪ (Ce′f2 ∩ T3) determines χ on the whole of T3.

Proof: Suppose that A ∈ (Ce′′e1 ∩ T3) \ (Ce′′e1 ∩ T2). As T2 ∪ T3 ∼= B3(Xe′′) and B3(Xe′′) \
φXe′′ (e′) is bipartite and connected (by Lemma 2.4.5) there exists a path in Ce′′e1Ce2f1 from
A to some vertex D ∈ Ce′′e1 ∩ T2. Since D ∈ Ce′′e1 ∩ T2, its colour is determined. Since
the colouring on Ce′f2 ∩ T3 is determined, we conclude that χ is determined on the whole
path from D to A. Thus, the colour of A is determined. Now, as A was chosen arbitrarily,
it follows that the colouring is determined on Ce′′e1 ∩ T3, from which it follows that χ is
determined on all of T3. This proves the claim.

Claim 8: If a 3-colouring χ of B3(X) is non-constant on Ce′′e1 ∩T2, then the restriction of χ
to (Ce′′e1 ∩ T2) ∪ (Ce′′f1 ∩ T4) determines χ on the whole of T4.

Proof: Firstly, let A ∈ Ce′f2 be a vertex of B3(X) in a connected component K of Ce′f2Ce′′e1 .
Since e2 is a half-edge in Xe′′ and Xe′′ is reflexive, B3(Xe′′) \ φXe′′ (e2) is connected (by
Lemma 2.4.5). Thus, there exists a path from A to some vertex D ∈ Ce′′e1 ∩T2, which is also
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in the connected component K. Now, the colour class containing D in Xe′ is of the form
φXe′ (x), for some x ∈ V (Xe′) (because T1 ∪ T2 is isomorphic to B3(Xe′)). The vertex D is
also adjacent to some vertex D′ ∈ Ce′f2 , which is in turn adjacent (by the aforementioned
isomorphism between T3 and T4) to a vertex D′′ ∈ Ce′′f1 whose colour is determined.

If D and D′′ are coloured with the same colour, then they both belong to φXe′ (x).
Therefore, x ∈ D and x ∈ D′′. However, by Claim 6, unless x ∈ {g, e′′, e2}, x ∈ D implies
that x /∈ D′′. Meanwhile, if x ∈ {e′′, e2}, then it easily follows that χ is constant on Ce′′e1∩T2

(contradicting our original assumption). Finally, x cannot be equal to g. So, in each case,
we have a contradiction. Thus, D and D′′ must be coloured differently.

Since D and D′′ are coloured differently, the colour of D′ is determined. Consequently,
each connected componentK of Ce′f2Ce′′e1 must contain some vertex D′ ∈ Ce′f2 whose colour
is determined.

Now, we make an argument similar to that in the proof of Claim 7. Suppose that
A ∈ Ce′f2 . By using the isomorphism between T3 and T4, we see that, in the connected
component K ′ of Ce′f2Ce1e2 containing A, there is a path from A to some vertex D′ ∈ Ce′f2

whose colour is determined. Since the colour of D′ and the colours of vertices in Ce′′f1 ∩ T4

are determined, the neighbor of D′ on this path has its colour determined. By iterating this
argument, we conclude that all the vertices on this path have their colour determined. Now,
as A was chosen arbitrarily, it follows that the colouring is determined on Ce′f2 , from which
it follows that the colouring on all of T4 is determined. This proves the claim.

Now, consider an arbitrary 3-colouring χ of B3(X) and its restriction χ′ on T1 ∪ T2 ∼=
B3(Xe′). We consider two cases.

Firstly, if χ is constant on Ce′′e1 ∩ T2, then by Claim 3, χ is constant on each cluster of
T2. Thus, applying Claim 5 and then Claim 3 again, we observe that χ is constant on all the
clusters of T1, T2 and T3. It then follows from Claim 4 that χ is constant on every cluster
of B3(X). There are three such colourings, compared to two colourings χ′ of T1 ∪ T2 which
have this form.

Secondly, if χ is not constant on Ce′′e1∩T2, we need to show that χ is uniquely determined
on all of B3(X) by its restriction χ′ to T1 ∪ T2. So, we apply Claim 8. The 3-colouring χ
of B3(X) is determined and non-constant on Ce′′e1 ∩ T2, and determined on Ce′′f1 by the
3-colouring χ′ of T1 ∪ T2. Thus, the colouring is determined on T4. Consequently, the 3-
colouring is determined and non-constant on Ce′′e1 ∩ T2, and determined on Ce′f2 , so by
Claim 7, it is determined on T3.

Hence, all 3-colourings of T1∪T2 ∼= B3(Y ) uniquely extend to B3(X) (except in the case
when Ce′′f1 and Ce′′e1 are coloured identically, in which case the colouring extends in two
ways to B3(X)). This shows that B3(X) has precisely one more 3-colouring than B3(Y ), as
required.
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Proof of Lemma 5.3.1 and of Theorem 1.3.1. By Lemma 2.3.4, G cannot be edge-reflexive
if it contains a triangle. So let us assume that G is triangle-free. By applying Lemma 5.3.3
and Lemma 5.3.4 repeatedly, we can construct any 2-edge-connected, triangle-free, cubic,
outerplanar graph from a cubic 4-cycle (which is edge-reflexive). This establishes Lemma 5.3.1.
Then, taking this result together with Corollary 5.2.2, Theorem 1.3.1 follows immedi-
ately.

5.4 Subdivisions and Reflexive Theta Graphs

In Lemma 5.3.4 we showed that, under certain circumstances, the graph G, which we ob-
tained from an edge-reflexive cubic graph H by subdividing an edge e of H, is edge-reflexive.
However, there exist edge-reflexive graphs H where, regardless of how many times we sub-
divide one of its edges, the result will never be edge-reflexive. One such example is the
non-planar graph K3,3. We illustrate that K3,3 is edge-reflexive in Figure 5.5.

1 2

3

4 5

6

X

14

35 36

24

25

15

34

16 26

1626

B3(X)

{14, 15, 16} {24, 25, 26}

{34, 35, 36}

{14, 24, 34} {15, 25, 35}

{16, 26, 36}

B2
3(X)

Figure 5.5: The disjoint union of two triangles X, its 3-colouring complex B3(X) (drawn
in the projective plane) which is isomorphic to L(K3,3), and the graph B2

3(X). This shows
that K3,3 is edge-reflexive.

In fact, there is a more general family.

Theorem 5.4.1. Suppose that G is an edge-reflexive cubic graph without half-edges. Then
no graph H which results from subdividing a single edge of G k times (k ≥ 1) is edge-
reflexive.

In the proof we will employ the well-known Parity Lemma.

Lemma 5.4.2 (Parity Lemma). Suppose that a cubic graph G is edge-coloured. Let n1, n2

and n3 be the number of half-edges of G in each of the three colour classes. Then n1, n2

and n3 are congruent modulo 2.
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Proof. The number of half-edges in a colour class is equal to the number n of vertices in
G, minus twice the number of full edges in the same colour class. Thus, n ≡ n1 ≡ n2 ≡ n3

(mod 2).

Proof of Theorem 5.4.1. Let the graph H be obtained from G by subdividing e = uv k ≥ 1
times. The Parity Lemma applied to the cubic graph H ′ obtained from H − e by adding
two half-edges shows that H is not 3-edge-colourable when k = 1 and that it is not edge-
colourful if k ≥ 2, since in every 3-edge-colouring of H ′, the half-edges are coloured the
same colour.

Theorem 5.4.1 shows that subdividing a single edge in K3,3 yields a graph that is not
edge-reflexive. Of course, this is still not the full story, as some subdivisions of K3,3 are
edge-reflexive. For example, using a computer, it can be shown that if we subdivide each
edge of K3,3 once, the resulting graph is edge-reflexive. At this time, we do not fully un-
derstand the relation between subdividing edges and edge-reflexivity. However, we can still
use Lemma 5.3.4 to help identify additional infinite families of edge-reflexive graphs. For
example, this lemma is instrumental in proving our next result.

We construct the cubic theta graph Tk,l,m (k, l,m ≥ 1) as follows. Begin with three
paths of lengths k, l andm, respectively. Label their vertices u0, u1, . . . , uk, v0, v1, . . . , vl and
w0, w1, . . . , wm. Then identify the vertices u0, v0 and w0, as well as the vertices uk, vl and
wm. Finally, add half-edges to make the graph cubic. Observe that Tk,l,m

∼= Tl,k,m
∼= Tk,m,l,

and hence we may assume that k ≤ l ≤ m.
A number of small theta graphs are not edge-reflexive. In particular, T1,1,m is not edge-

reflexive for anym ≥ 1 by the same argument as we used to prove Theorem 5.4.1. The graph
T1,2,m is not edge-reflexive for any m ≥ 1, since it contains a triangle. Additionally, using a
computer, we found that T2,2,2, T2,2,3, T2,2,4, T2,3,3, T2,3,4 and T3,3,3 are not edge-reflexive.
However, all other theta graphs are edge-reflexive.

Theorem 5.4.3. The cubic theta graphs T1,1,m, T1,2,m (m ≥ 1) T2,2,2, T2,2,3, T2,2,4, T2,3,3,
T2,3,4 and T3,3,3 are not edge-reflexive. All other cubic theta graphs are edge-reflexive.

Proof. As mentioned above, the graphs listed in the statement of the theorem are not edge-
reflexive. To show that all other cubic theta graphs are edge-reflexive, we have verified by
using a computer that T1,3,3, T2,2,5, T2,3,5, T2,4,4 and T3,3,4 are edge-reflexive. Since any other
cubic theta graph can be obtained from one of these by subdividing edges, Lemma 5.3.4
implies that they are all edge-reflexive.

5.5 Concluding Remarks

At this point, we have not only established that the triangle-free, connected, cubic, outer-
planar graphs are edge-reflexive, but have gone considerably further. That the cubic theta
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graphs are edge-reflexive shows us that internal vertices are not an insuperable obstacle to
edge-reflexivity for planar graphs. Moreover, the line graph of K3,3 is a non-planar reflexive
graph. We also proved in Theorem 4.2.2 that the even circular ladders (a class of graphs
without any half-edges) are edge-reflexive, while the cubic cycles Cn, where n ≥ 4 provide
us with examples of edge-reflexive graphs with n half-edges. Of course, the cubic vertex is
an edge-reflexive graph with three half-edges, and, by the Parity Lemma (Lemma 5.4.2) no
edge-reflexive cubic graph can have precisely 1 or 2 half-edges.

Perhaps even more importantly, Corollary 5.2.2 establishes that we may reduce the
study of a connected, edge-reflexive graph G to examining all the graphs obtained from
G by cutting all the cut-edges of G; and Lemma 5.3.4 establishes conditions under which
subdividing an edge of G preserves the edge-reflexivity of G. Together, these results offer
us a deeper understanding of just what can be said about the edge-reflexive cubic graphs,
while pointing us in the direction of future problems.

Are there circumstances under which subdividing every edge of an edge-reflexive graph
G preserves edge-reflexivity? Can we generalize our results on cubic theta graphs to graphs
where we identify the ends of four or more paths? This area remains wide-open, and, despite
making considerable advances, we have only scratched its surface.

63



Chapter 6

Very Colourful Graphs

In this chapter, we explore some differences between the 4-colouring complex of a near-
triangulation of the plane T and the 3-colouring complex of the line graph X of its inner
dual (a cubic graph) G. In Section 4.3, we observed that certain families of reflexive near-
triangulations of the plane correspond to families of edge-reflexive, 3-edge-colourable cubic
graphs through the inner dual operation. Moreover, as Theorem 4.3.5 illustrates, the inner
dual operation provides a natural correspondence between the 3-edge-colourings of cubic
graphs and the 4-colourings of planar near-triangulations. However, studying the 4-colouring
complexes of triangulations of the plane through the lens of the line graphs of cubic graphs
has some serious limitations.

Firstly, a pair of 4-colourings may be adjacent in B4(T ), despite there existing no se-
quence of Kempe changes transforming one of these 4-colourings into the other. Recall from
Chapter 2 that we say two colourings are adjacent if they share at least one colour class.
We have already seen a good example of this phenomenon in Figure 3.6. In Figure 3.6, the
4-colourings {{1, 7, 9}, {2, 4, 10, 12}, {3, 5, 11}, {6, 8}} and {{1, 8, 9}, {2, 4, 10, 12}, {3, 6, 11},
{5, 7}} share the colour class {2, 4, 10, 12}, so they are adjacent, but there is no Kempe
change transforming one of these colourings into the other colouring. Another good exam-
ple is the colouring complex of the Icosahedron, which is drawn in Figure 3.4. Its 4-colouring
complex is connected, but no pair of its ten 4-colourings are Kempe equivalent. By contrast,
connectedness in B3(X) (where X is the line graph of a cubic graph) is entirely determined
by the Kempe structure of X.

Further, we find it illuminating to examine the structure of very colourful graphs. We
say that a graph is very colourful (for k-colourings) if, for any pair of non-adjacent vertices
u, v ∈ V (G), there exists a k-colouring f of G such that f(u) = f(v). In Section 6.1, we
examine very colourful graphs for 3-colourings, while very colourful graphs for 4-colourings
are studied in Section 6.2. This property is useful in studying the 3-colouring complex of
the line graph of a cubic graph. We will establish that very colourful graphs are colourful
(for the line graphs of cubic graphs with no half-edges) while the converse is false. We also
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prove that, if X is the line graph of a cubic graph G, then the 3-colouring complex B3(X)
of X must be very colourful.

As checking that a graph is very colourful involves no more computation than checking
that a graph is colourful, while there are fewer very colourful graphs then colourful graphs,
this property is frequently useful in shortening lengthy computations. For a comparison of
the frequency of very colourful graphs to the frequency of colourful graphs, see Tables 6.1
and 6.2. There are also more theoretical applications, such as the short proof we will offer
that a 3-colouring complex which is also the line graph of a cubic graph (in which each
vertex is incident with at most one half-edge) cannot have 1, 2 or 3 half-edges.

Table 6.1: The frequency of colourful and very colourful graphs among the line graphs of
2-connected, triangle-free, cubic graphs G with no half edges

|V (G)| Very Colourful Colourful Number of Graphs
8 1 1 2
10 1 2 6
12 3 5 22
14 7 22 109
16 24 178 788
18 105 2649 7772
20 884 48045 97292

Table 6.2: The frequency of colourful and very colourful graphs among the line graphs of
2-connected, triangle-free, subcubic graphs without half-edges G

|V (G)| Very Colourful Colourful Number of Graphs
8 10 16 23
9 17 30 48
10 56 107 148
11 135 259 399
12 487 1023 1339
13 1538 3111 4395
14 6006 13134 16183

Unfortunately, in the context of triangulations of the plane, some of the results which
make the notion of a very colourful graph useful for 3-colouring complexes break down.
As a consequence, the notion of a very colourful graph has far less utility when studying
the 4-colouring complex of a planar near-triangulation. This difference concretely illustrates
the additional complexities which arise in moving from studying 3-colouring complexes to
examining 4-colouring complexes.
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6.1 Cubic Graphs and their Edge-Colourings

In this section, when we refer to a graph X = L(G), we mean the line graph of a cubic
graph G (which may contain half-edges). The name ‘very colourful’ was motivated by the
observation that the very colourful line graphs of cubic graphs are strictly contained within
the set of all colourful line graphs of cubic graphs (with one exception).

Theorem 6.1.1. Let G be a cubic graph with no half-edges. Moreover, suppose that G does
not contain the complete graph on four vertices as a subgraph. If X = L(G) is very colourful
with respect to 3-colourings, then X is colourful with respect to 3-colourings.

Proof. Fix an arbitrary edge a ∈ E(G). We will show that we can always arrange for a to
be coloured differently from any other non-incident edge b ∈ E(G) (obviously, a is coloured
differently from any other incident edge b in any 3-edge-colouring, so we don’t consider these
edges). Notice that b is incident with four edges, none of which are a. If a and some edge
incident with b (call it c) are not incident, then there is a 3-edge-colouring f of G which
colours a and c the same colour (since L(G) is very colourful). Thus, f(a) 6= f(b). As G
is cubic and has no multiedges, we can only have all four of the edges incident with b also
incident with a if G is isomorphic to the complete graph on four vertices.

This result naturally extends to cubic graphs with half-edges whenever G is triangle-free.

Theorem 6.1.2. Let G be a 3-edge-colourable, triangle-free, cubic graph. If X = L(G) is
very colourful, then X is colourful.

Proof. Again, we fix a ∈ E(G) and consider a non-incident edge b ∈ E(G). If a and some
neighbour of b (call it c) are not incident, then there is a 3-edge-colouring f of G such that
f(a) = f(c) (since L(G) is very colourful). Thus, f(a) 6= f(b), as required.

Otherwise, all of the neighbours of b must be incident with a. In the event that b is a full
edge, it immediately follows that each endpoint of b can have at most degree two (otherwise,
G would contain a triangle). If both endpoints have degree two, then a must be a full edge,
as the two edges incident with b cannot be incident (otherwise, G would contain a triangle).
In this case, as L(G) is very colourful, there exists a 3-edge-colouring of G which colours
the two edges incident with b the same colour. Otherwise, the single edge incident with b
clearly only has one colour, or b is incident with no other edges. Consequently, in each of
these three cases, we can arrange for edges a and b to be coloured differently by performing
a Kempe change (if needed) on {b} which fixes the colour of all the edges of G which are
incident with b (there are 0, 1 or 2 such edges).

When b is a half-edge, we see again that the endpoint of b must have degree at most two
(otherwise, a triangle or multiedge would be formed). As before, we can then change the
colour of b so that it differs from the colour of a through a Kempe change, if needed.
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Our claim that the set of very colourful line graphs of cubic graphs (without half-edges)
lies strictly within the set of colourful line graphs of cubic graphs (with one exception) can
now be established by exhibiting a cubic graph without any half-edges whose line graph is
colourful, but not very colourful. Such a graph is drawn in Figure 6.1, and this example
also shows that the containment in Theorem 6.1.2 is strict. The edges labelled 1 and 2
must be coloured differently in any 3-edge-colouring. This (and the claim that the graph
is edge-colourful) can be checked by listing each of the four unlabelled 3-edge-colourings of
the graph.

1

2

Figure 6.1: A cubic graph whose line graph is colourful, but not very colourful

We also note here that if a subcubic graph contains a triangle, then its line graph may be
very colourful without being colourful. A small example is drawn in Figure 6.2. The green
edges of this graph (which are labelled with 1 and 2) must be coloured the same colour in
any 3-edge-colouring. However, such graphs lie outside of our main area of interest.

2

1

Figure 6.2: A subcubic graph whose line graph is very colourful, but not colourful
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For our purpose, the most interesting class of very colourful graphs is certainly the set
of 3-colouring complexes outlined in our next result.

Theorem 6.1.3. Let X be a 3-colourable graph, where each edge of X is in at least one tri-
angle, and X has no isolated vertices. Then its 3-colouring complex B3(X) is very colourful.

Proof. We will prove the contrapositive. Suppose that there exists a pair of colour classes
C and D of some graph X (in which every edge is contained in some triangle and without
isolated vertices) such that C and D are coloured differently in all 3-colourings of B3(X) of
the form {φX(a), φX(b), φX(c)}, where a, b and c are vertices forming some triangle T of X.
By the same argument as we used in the proof of Lemma 2.1.2, {φX(a), φX(b), φX(c)} is a
3-colouring of B3(X) for each triangle abc of X. Thus, for each triangle T of X, exactly one
vertex in T must be in C and exactly one vertex in T must be in D. Hence, V (X)\(C∪D) is
an independent set (since each edge ofX is contained in a triangle) from which it follows that
{C,D, (C ∪D)c} is a 3-colouring of X. Consequently, C and D are adjacent in B3(X).

Fisk proved in [20] that a k-colouring complex Bk(X) (where each each edge of X is in
at least one k-clique, and X has no isolated vertices) is colourful, so perhaps Theorem 6.1.3
should not be a surprise.

Theorem 6.1.4 (Fisk [20]). Let X be a k-colourable graph, where each each edge of X is in
at least one k-clique, and X has no isolated vertices. Then the k-colouring complex Bk(X)
is a colourful graph.

Proof. Let C and D be distinct vertices of Bk(X) (that is to say, distinct colour classes of
X). As each vertex v ∈ V (X) is in some k-clique, C and D must differ on some vertex v in a
k-clique of X. As this is a k-clique, each of its vertices must be coloured a different colour, so
there exists some vertex uC ∈ C \D and some vertex uD ∈ D \C. Now, consider a k-clique
of X which contains uC . Call this clique q1q2 . . . qk. Then {φX(q1), φX(q2), . . . , φX(qk)} is a
k-colouring of Bk(X) which colours the vertices C and D differently.

One consequence of Theorem 6.1.4 is that, if Y = Bk(X) (where every edge of X is in
at least one k-clique, and X has no isolated vertices) then, by Observation 2.3.1, B2

k(Y )
contains an isomorphic copy of Y as a subgraph. Theorem 6.1.3 allows us to derive an
interesting strengthening of this result for 3-colouring complexes.

Corollary 6.1.5. Let Y = B3(X) be the 3-colouring complex of some graph X, where every
edge of X is in at least one triangle, and X has no isolated vertices. Then B2

3(Y ) contains
an isomorphic copy Y ′ of Y as an induced subgraph.

Proof. It suffices to establish that, for any two non-adjacent vertices x and y of Y , φY (x)∩
φY (y) 6= ∅, as it then follows that {φY (x), φY (y), A} cannot be a 3-colouring ofB3(Y ) for any
choice of A. In that case, since Y is colourful, B2

3(Y ) contains an isomorphic copy Y ′ of Y as a
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subgraph with vertices V (Y ′) = {φY (x) : x ∈ V (Y )} and edges {φY (x)φY (y) : xy ∈ E(Y )}.
Moreover, as φY (x) is not adjacent to φY (y) for any two non-adjacent vertices x and y of
Y , {φY (x)φY (y) : xy ∈ E(Y )} must be a complete listing of the edges of B2

3(Y )[V (Y ′)].
It remains to prove our initial claim. So, consider two non-adjacent vertices x and y

of Y . By Theorem 6.1.3, there exists some colouring c of Y such that c(x) = c(y). Hence,
φY (x) ∩ φY (y) 6= ∅, as required.

In light of Theorem 6.1.3 and Theorem 6.1.4, we can also characterize the 3-colouring
complexes Y = B3(X) (where every edge of X is in at least one triangle, and X has no
isolated vertices) as follows: if Y is such a 3-colouring complex, then, for any pair of vertices
u, v ∈ V (Y ), we may identify u and v or join u and v with an edge without increasing the
chromatic number. The following theorem is another straightforward consequence.

Theorem 6.1.6. Let G be a cubic graph in which each vertex is incident with at most one
half-edge. Moreover, suppose that G has either 1, 2 or 3 half-edges. Then Y = L(G) is not
the 3-colouring complex B3(X) of any graph X which has no isolated vertices, and in which
edge of X is in at least one triangle.

Proof. For a contradiction, suppose that the line graph Y = L(G) of some cubic graph G
with either 1, 2 or 3 half-edges is a 3-colouring complex Y = B3(X) for an X as described
in Theorem 6.1.6. By Lemma 2.1.2, G must be 3-edge-colourable. If G has only one half-
edge, then we saw in chapter 5 that G is not 3-edge colourable by the Parity Lemma
(Lemma 5.4.2), a contradiction.

If G has two half-edges u and v, then, again by the Parity Lemma, u and v must be
coloured the same colour in any 3-edge-colouring of G. Thus, G is not edge-colourful, so
L(G) is not the 3-colouring complex B3(X) of any graph X without isolated vertices, and
in which every edge of X is in at least one triangle, by Theorem 6.1.4. This is another
contradiction.

Finally, if G has three non-incident half-edges u, v and w, then, by the Parity Lemma, u,
v and w must each be coloured a different colour in any 3-edge-colouring of G. Consequently,
L(G) is not very colourful. By Theorem 6.1.3, it follows that L(G) is not the 3-colouring
complex B3(X) of any graph X without isolated vertices, and in which every edge of X is
in at least one triangle, so we obtain a contradiction in this last case as well.

6.2 Near-Triangulations of the Plane

We can obtain natural analogues of our results regarding very colourful line graphs of cubic
graphs and 3-colouring complexes in terms of near-triangulations of the plane and their
4-colouring complexes. In particular, we still find that the very colourful triangulations of
the plane must be colourful under fairly weak assumptions.
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Theorem 6.2.1. Let T be a near-triangulation of the plane. Moreover, suppose that for
every pair u, v ∈ V (T ), N(u) * N(v). If T is very colourful, then T is colourful.

Proof. Fix an arbitrary vertex v ∈ V (T ). We will show that we can always arrange for
v to be coloured differently from any other non-adjacent vertex u ∈ V (T ). Observe that
N(u) \N(v) 6= ∅, so we can choose a vertex w ∈ N(u) \N(v). As T is very colourful, there
exists a 4-colouring f of T which colours w and v identically, unless w ∈ N(v). However,
w /∈ N(v), so f colours u and v differently.

However, while we found that the 3-colouring complex of the line graph of a cubic graph
must be very colourful in Theorem 6.1.3, it is not the case that the 4-colouring complex
of a triangulation of the plane must be a very colourful graph. The smallest example of a
triangulation of the plane T such that B4(T ) is not very colourful is given below.

v1

v2

u1

u2

Figure 6.3: A triangulation of the plane T such that B4(T ) is not very colourful

By listing all the 4-colourings of B4(T ), it can be verified that {v1, v2} and {u1, u2} are
a pair of vertices of B4(T ) (colour classes of T ) which must be coloured differently in every
4-colouring of B4(T ). However, they are not adjacent in B4(T ), since T [V (T ) \ ({v1, v2} ∪
{u1, u2})] is a 5-cycle. Thus, B4(T ) is not very colourful.

As a consequence, the computational utility of this ‘very colourful’ notion is significantly
reduced when studying 4-colouring complexes. It is also not clear that there exist useful
4-colouring complex analogues of Corollary 6.1.5 or the characterization of 3-colouring com-
plexes which we used to prove Theorem 6.1.6.

6.3 Concluding Remarks

Evidently, while a useful notion in studying 3-colouring complexes, very colourful graphs
have considerably less utility when we examine 4-colouring complexes, even when we restrict
our attention to near-triangulations of the plane. In both of these cases, very colourful
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graphs must automatically be colourful under fairly weak assumptions. However, the fact
that 3-colouring complexes are very colourful under weak assumptions, which has both
computational and theoretical applications, does not extend to the 4-colouring complexes.
This challenge illustrates one of the many complexities in moving from the realm of 3-
colouring complexes, where adjacency is simply a matter of Kempe equivalence, to the
more difficult study of 4-colouring complexes.
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Chapter 7

Open Problems and Future
Research

7.1 Extensions of Tutte’s Question

There are a number of interesting generalizations of Tutte’s question (see Chapter 3 for
the details of Tutte’s original problem) which remain unaddressed in this thesis. Do there
exist 4-connected triangulations of the plane whose 4-colouring complexes have arbitrarily
many components of each parity? Do 5-connected triangulations of the plane exist whose 4-
colouring complexes have arbitrarily many components? Of course, there is also the specific
conjecture we discussed in Chapter 3 itself.

Conjecture 3.4.1. Suppose that T is a triangulation of the plane, and that its 4-colouring
complex B4(T ) has at least two components. Then B4(T ) has a component of even parity
and a component of odd parity.

We have checked this conjecture up to 13 vertices using SageMath. For the reader who
wishes to confirm this for themselves, a copy of our code is available in Appendix A.

Finally, it may be of interest to consider Tutte’s problem on surfaces of higher genus, such
as the torus. Are examples still relatively rare in this context, or are colouring complexes
with many components far more common?

7.2 Reflexive Graphs

Just as there remain many interesting problems relating to the number of connected com-
ponents of 4-colouring complexes, providing a characterization of the edge-reflexive cubic
graphs or the reflexive triangulations of the plane remains wide open. While we made some
progress in this direction in chapters 4, 5 and 6, even more questions remain unaddressed.
In this section, we first summarize these questions and some suggestive computational evi-
dence. Then we briefly discuss two other closely related problems Fisk raised in [20].
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In Section 5.4, we discussed how subdividing an edge in a cubic graph effected its edge-
reflexivity. Under certain circumstances, edge-reflexivity was preserved, but we also noted
that if we subdivide a single edge of K3,3, the result is not an edge-reflexive graph. However,
the result of subdividing each edge of K3,3 once is edge-reflexive (this can be checked with
a computer). Indeed, while the result of subdividing each edge of K4 once is not an edge-
reflexive graph, the results of performing this operation on each of the cubic graphs (with
no half-edges) on six vertices is edge-reflexive, as are the results of performing this operation
on each of the cubic graphs without half-edges on eight vertices. While not enough evidence
for a conjecture, this observation does suggest the following question.

Question 7.2.1. Suppose that G is a connected cubic graph with no half-edges and of order
at least 6. Let H be the graph which results from subdividing each edge of G once. Do there
exist any such graphs H which are not edge-reflexive?

Another class of potentially edge-reflexive cubic graphs we consider particularly inter-
esting are the fusenes (also known as hexagonal graphs). We say that G is a fusene if G is
a 2-connected plane graph, in which every interior face is a hexagon, all vertices of G have
degree three (after adding half-edges) and only vertices on the boundary of the outer face
are permitted to be incident with half-edges.

Question 7.2.2. Do there exist any fusenes that are not edge-reflexive?

We are not aware of any examples, and have confirmed that none exist with nine or fewer
hexagonal faces. Code for this lengthy computation is included in Appendix A. Given an
edge-reflexive fusene graph, we can often obtain an infinite family of edge-reflexive fusenes
by using the operation of adding a 4-cycle followed by two subdivisions. However, not all
fusenes are obtained in this way.

Finally, we provide a few interesting examples of edge-reflexive graphs which do not fit
into the classes we have described in the preceding paragraphs in hopes that they might
provide inspiration for additional research.

Figure 7.1: A variation on circular ladders, where the 4-cycles in the ladders are replaced
with 5-cycles. These three cubic graphs have reflexive line graphs.
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a1 a2

a3

a4a5

a6

b1 b2

b3

b4b5

b6

Figure 7.2: A cubic graph constructed by attaching three ladders to a pair of 6-cycles.
Many graphs G of this form satisfy L(G) ∼= B2

3(L(G)).

In fact, we suspect that the graph in Figure 7.2 is one of the smallest examples in an
infinite family of edge-reflexive cubic graphs with no half-edges. We will call a graph a theta
ladder TL(l,m, n) if it is constructed as follows. Begin with two 6-cycles a1a2a3a4a5a6 and
b1b2b3b4b5b6. Now, join the edge a1a2 to the edge b1b2 with a ladder of length l. Similarly,
the edges a3a4 and b3b4 are connected by a ladder of length m, while a5a6 and b5b6 are
connected by a ladder of length n. The example given in Figure 7.2 is the theta ladder
TL(3, 3, 5).

Using a computer, we have confirmed that TL(1, 1, 1), TL(1, 3, 3), TL(1, 3, 5), TL(1, 3, 7),
TL(1, 3, 9), TL(1, 5, 5), TL(1, 5, 7), TL(3, 3, 3), TL(3, 3, 5), TL(3, 3, 7) and TL(3, 5, 5) are
edge-reflexive. Those TL(l,m, n) for which at least one parameter is even and l+m+n ≤ 13
were found to not be edge-reflexive, and the same holds for TL(1, 1, 3) (the only odd-odd-
odd exception). Based on this evidence, we ask the following question.

Question 7.2.3. (a) Do there exist any theta ladder graphs TL(l,m, n), where l,m, n ≥ 3
are all odd, that are not edge-reflexive?

(b) Do there exist any theta ladder graphs TL(l,m, n), where l is even, that are edge-
reflexive?

Before proceeding onto other subjects, we note two variations on the notion of reflexivity
which were introduced by Fisk. Firstly, we will say that a graphX is self-dual if Bk(X) ∼= X.
Examples of graphs with this property appear rare, although the triangle and the line graph
of the cubic cycle C5 are examples of 3-colouring complexes with this property. Additionally,
Fisk noted that some graphs X had colouring complexes isomorphic to the disjoint union

74



of X with itself (ie. Bk(X) ∼= X ∪X). We noted that L(K3,3)∪L(K3,3) has this property in
Section 5.1. Another example (originally discovered by Fisk) is the line graph of the Coxeter
graph. Progress on either of these problems would be interesting.

7.3 Very Colourful Graphs and Too Colourful Graphs

In Chapter 6, we saw that the notion of a very colourful graph appears to be an interesting
strengthening of the idea of a colourful graph, particularly in the context of 3-edge-colouring
cubic graphs. In particular, we know that 3-colouring complexes satisfying fairly weak con-
ditions have this property (by Theorem 6.1.3) so examining the very colourful line graphs
of cubic graphs more closely could lead us towards an interesting partial characterization
of the 3-colouring complexes. Perhaps unsurprisingly, it appears that the 2-connected, 3-
edge-colourable, subcubic graphs of large girth may have very colourful line graphs. One
notable example of such a graph is the famous Tutte-Coxeter graph (the smallest cubic
graph without half-edges of girth 8), which we can show has a very colourful line graph
using a computer.

Table 7.1: 2-connected, subcubic graphs without half-edges and
with girth > 6 which have very colourful line graphs

|V (G)| Number of all graphs Number of v.c. graphs
10 2 2
11 4 4
12 8 8
13 16 16
14 39 39
15 102 102
16 300 300

1 2 3

4
5

6

7 8 9

10

11 12 13

Figure 7.3: A 2-connected, subcubic graph of girth six which does not have a very
colourful line graph
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Conjecture 7.3.1. Suppose that G is a 2-connected, 3-edge-colourable, subcubic graph
(without half-edges) of girth at least seven. Then L(G) is very colourful.

Another approach to strengthening the notion of a colourful graph is to call a graph
X too colourful if, for any trio of distinct, non-adjacent vertices u, v, w ∈ V (X), there
exists a 3-colouring such that c(u) 6= c(v), c(u) 6= c(w) and c(v) 6= c(w). We assume here
that u, v, w ∈ V (X) are non-adjacent vertices, as, otherwise, it immediately follows that
X = L(G) will not have this property for any non-trivial line graph of a 3-edge-colourable
cubic graph. In particular, if G contains any full edge e = uv, u is incident with edges e1

and e2, and v is incident with edges, e3 and e4, then no 3-edge-colouring is possible which
satisfies c(e1) 6= c(e3) and c(e2) 6= c(e3).

Cubic graphs without half-edges on 14, 16 and 18 vertices exist whose line graphs are
too colourful. Of course, there are also simpler examples, if we relax the condition that our
graph has no half-edges. For instance, it is easy to show that the line graphs of subcubic
trees have this property.

Observation 7.3.1. Let G be a cubic tree with at least three edges which are pairwise
non-incident. Then X = L(G) is too colourful.

Proof. Select three pairwise non-incident edges u, v and w from G. As G is a tree, there
exists a unique path between each pair of these edges. Consider the longest of these paths.
Without loss of generality, assume that this path begins at u, reaches v and then ends at
w. Then we can colour u with colour 1, alternate between colours 1 and 2 until reaching
v, colour v with 3, alternate between colours 3 and 1 until reaching w, and then colour w
with 2. 3-colouring the remaining edges is trivial.

Furthermore, suppose that G is a 3-edge-colourable, connected, triangle-free cubic graph
with no half-edges. Under these conditions, if X = L(G) is too colourful, then X is also
very colourful.

Observation 7.3.2. Let G be a 3-edge-colourable, connected, cubic graph with girth at least
4. If X = L(G) is too colourful, then X is very colourful.

Proof. Fix an arbitrary edge a ∈ E(G). We want to show that we can always arrange for a
to be coloured the same colour as a given, non-incident edge b. As G is cubic, b is incident
with precisely four edges. Two of these edges (e1 and e2) are incident with the endpoint v
of b and the other two (f1 and f2) are incident with the endpoint u of b.

As G is triangle-free, at most one edge incident with each of u and v is incident with a.
Thus, there exist edges ei and fj (i, j ∈ {1, 2}) which are incident with b and not incident
with a. Moreover, ei and fj are not incident, since G is triangle-free. Consequently, as G
is too colourful (while a, ei and fj are pairwise not incident) there must be some 3-edge-
colouring of G in which a, ei and fj are each coloured different colours. It immediately
follows that a and b are coloured the same colour in this colouring.
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Unfortunately, at least among the line graphs of 3-edge-colourable cubic graphs without
half-edges, too colourful graphs are rare. We can easily show that a 3-edge-colourable cubic
graph G with no half-edges must be cyclically 4-edge-connected, in order for X = L(G) to
be too colourful. A graph G is said to be cyclically k-edge-connected if at least k edges must
be removed from G in order to disconnect G into two components, each containing a cycle.
Such a collection of edges is called a cyclic k-edge cut.

In order to prove this result, we need a version of the Parity Lemma for edge cuts. Let
U ⊆ V (G) and let δ(U) be the set of edges with precisely one endvertex in U (notice that
half-edges incident with vertices of U are in δ(U)). The set δ(U) is then called an edge cut
if U is a proper nonempty subset of V .

Lemma 7.3.3. Let G be a cubic graph which has been 3-edge-coloured. Let U ⊆ V (G), and
let δ(U) be the set of edges with precisely one endvertex in U . Let n1, n2 and n3 be the
number of edges of δ(U) which are contained in each of the three colour classes. Then n1,
n2 and n3 are congruent modulo 2.

Proof. Let Ci be the colour class containing ni edges from δ(U). Then the number of edges
in Ci ∩ δ(U) is equal to the number of vertices in U , minus twice the number of edges
of E(G) ∩ Ci which have both endvertices in U . Consequently, |U | ≡ n1 ≡ n2 ≡ n3

(mod 2).

Lemma 7.3.4. Let G be a 3-edge-colourable, connected, cubic graph with no half edges.
Furthermore, suppose that X = L(G) is too colourful. Then G is cyclically 4-edge-connected.

Proof. For a contradiction, suppose that G contains a cyclic k-edge cut. If k = 1, then the
existence of a 1-edge cut contradicts Lemma 7.3.3. If k = 2, then the two edges in the cut K
must be coloured the same colour by Lemma 7.3.3. As L(G) is too colourful, it follows that
every edge of G must be incident with one of those two edges. However, as G must also be
cubic, this does not leave enough freedom to construct any cycles in G−K. In particular,
it is not possible to construct a cubic cycle subject to the condition that every edge in the
cycle must be incident with k chosen vertices for k ≤ 2.

If k = 3, then the three edges in the cut K must each be coloured a different colour
by Lemma 7.3.3. Thus, L(G) is not very colourful, unless all three edges of K are pairwise
incident. However, the three edges in K cannot be pairwise incident, since G is cubic, and
each component of G − K must contain a cycle. So, by Observation 7.3.2, it follows that
G must contain a triangle abc. Let ea be the third edge incident with the vertex a. Then
the edges bc and ea must be coloured the same colour, so, provided there exists some edge
e ∈ E(G) which is not incident with either bc or ea, L(G) is not too colourful, a contradiction.
As G is cubic, a graph for which all edges e ∈ E(G) must be incident with either bc or ea

can have at most eight edges, but this is too few edges for a cyclic 3-edge cut to exist.
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If a graph G satisfying the hypotheses of Lemma 7.3.4 has a cyclic 4-edge cut K, then
either all edges of K must be in the same colour class, or two edges of K must be in
one colour class and two edges of K in another colour class by Lemma 7.3.3. In either
case, if K contains a matching of cardinality 3, it follows that L(G) is not too colourful,
a contradiction. However, if some edges of K are incident, then it might be possible to
construct a cyclic 4-edge cut.

Based upon an extensive computation (|V (G)| ≤ 20) it appears that the only 3-edge-
colourable, connected, cubic graphs without half-edges, whose line graphs are too colourful,
may be the cyclically 5-edge-connected, bicubic graphs. We feel that this problem merits
investigation.

Question 7.3.5. Suppose that G is a 3-edge-colourable, connected, cubic graph without half
edges. Furthermore, assume that X = L(G) is too colourful. Does it follow that G must be
a cyclically 5-edge-connected, bipartite graph?

78



Bibliography

[1] Kenneth I Appel and Wolfgang Haken. Every planar map is four colorable, volume 98.
American Mathematical Soc., 1989.

[2] Arash Asadi, Zdeněk Dvořák, Luke Postle, and Robin Thomas. Sub-exponentially many
3-colorings of triangle-free planar graphs. Journal of Combinatorial Theory, Series B,
103(6):706 – 712, 2013. URL: http://www.sciencedirect.com/science/article/
pii/S0095895613000634, doi:https://doi.org/10.1016/j.jctb.2013.09.001.

[3] Yves Aubry, Jean-Christophe Godin, and Olivier Togni. Free choosability of outerpla-
nar graphs. Graphs and Combinatorics, 32(3):851–859, 2016.

[4] Julie Beier, Janet Fierson, Ruth Haas, Heather M Russell, and Kara Shavo. Classifying
coloring graphs. Discrete Mathematics, 339(8):2100–2112, 2016.

[5] S.M. Belcastro and R. Haas. Counting edge-Kempe-equivalence classes for 3-edge-
colored cubic graphs. Discrete Mathematics, 325:77–84, 2014.

[6] S.M. Belcastro and R. Haas. Triangle-free uniquely 3-edge colorable cubic graphs.
ArXiv e-prints, August 2015. arXiv:1508.06934.

[7] S.M. Belcastro and R. Haas. Edge-kempe-equivalence graphs of class-1 regular graphs.
Australasian Journal of Combinatorics, 69:197–214, 01 2017.

[8] Norman Biggs. Pictures. In D.J.A. Welsh and D.R. Woodall, editors, Combinatorics:
proceedings of the Conference on Combinatorial Mathematics held at the Mathematical
Institute, Oxford., pages 1–17. Institute of Mathematics and its Applications, Southend-
on-Sea, 1972.

[9] Marthe Bonamy, Nicolas Bousquet, Carl Feghali, and Matthew Johnson. On a conjec-
ture of Mohar concerning Kempe equivalence of regular graphs. Journal of Combina-
torial Theory, Series B, 135:179–199, 2019.

[10] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer Publishing Company, Incor-
porated, 1st edition, 2008.

[11] Luis Cereceda, Jan Van Den Heuvel, and Matthew Johnson. Connectedness of the
graph of vertex-colourings. Discrete Mathematics, 308(5-6):913–919, 2008.

[12] V. Chvátal and J. Sichler. Chromatic automorphisms of graphs. Journal
of Combinatorial Theory, Series B, 14(3):209–215, 1973. URL: http://www.
sciencedirect.com/science/article/pii/009589567390004X, doi:https://doi.
org/10.1016/0095-8956(73)90004-X.

79

http://www.sciencedirect.com/science/article/pii/S0095895613000634
http://www.sciencedirect.com/science/article/pii/S0095895613000634
https://doi.org/https://doi.org/10.1016/j.jctb.2013.09.001
http://arxiv.org/abs/1508.06934
http://www.sciencedirect.com/science/article/pii/009589567390004X
http://www.sciencedirect.com/science/article/pii/009589567390004X
https://doi.org/https://doi.org/10.1016/0095-8956(73)90004-X
https://doi.org/https://doi.org/10.1016/0095-8956(73)90004-X


[13] Harold S.M. Coxeter. Self-dual configurations and regular graphs. Bulletin of the
American Mathematical Society, 56(5):413–455, 1950.

[14] Harold S.M. Coxeter. The four-color map problem, 1840-1890. The Mathematics
Teacher, 52(4):283–289, 1959.

[15] Blanche Descartes. Network-colourings. The Mathematical Gazette, 32(299):67–69,
1948. URL: http://www.jstor.org/stable/3610702.

[16] Carl Feghali, Matthew Johnson, and Daniël Paulusma. Kempe equivalence of colourings
of cubic graphs. Electronic notes in discrete mathematics, 49:243–249, 2015.

[17] Stanley Fiorini. On the chromatic index of outerplanar graphs. Jour-
nal of Combinatorial Theory, Series B, 18(1):35–38, 1975. URL: http://www.
sciencedirect.com/science/article/pii/009589567590060X, doi:https://doi.
org/10.1016/0095-8956(75)90060-X.

[18] Steve Fisk. Geometric coloring theory. Advances in Mathematics, 24(3):298–340, 1977.

[19] Steve Fisk. Variations on coloring, surfaces and higher-dimensional mani-
folds. Advances in Mathematics, 25(3):226–266, 1977. URL: http://www.
sciencedirect.com/science/article/pii/0001870877900755, doi:https://doi.
org/10.1016/0001-8708(77)90075-5.

[20] Steve Fisk. Cobordism and functoriality of colorings. Advances in Mathematics, 27:177–
211, 1980.

[21] Steve Fisk. Coloring Theories. American Mathematical Society, Providence, R.I., 1989.

[22] Steve Fisk, Daniel Abbw-Jackson, and Dan Kleitman. Helly-type theorems about sets.
Discrete Mathematics, 32(1):19–25, 1980.

[23] Andrew J Goodall, SD NOBLE, M Noy, et al. The tutte polynomial characterizes
simple outerplanar graphs. Combinatorics, Probability and Computing, 20(4):609–616,
2011.

[24] Harald Gropp. VI.7 configurations. In Charles J. Colburn and Jeffrey H. Dinitz,
editors, Handbook of Combinatorial Designs, Discrete Mathematics and its Applications
(Second ed.), pages 353–355. Chapman & Hall/CRC, Boca Raton, 2007.

[25] Jonathan L Gross and Jay Yellen. Graph theory and its applications. CRC press, 2005.

[26] P.J. Heawood. Map-colour theorem. Quarterly Journal of Mathematics, 24:332–339,
1890.

[27] Wilfried Imrich and Sandi Klavzar. Product graphs: structure and recognition. Wiley,
2000.

[28] Alfred B. Kempe. On the geographical problem of the four colours. American Journal
of Mathematics, 2(3):193–200, 1879.

[29] Fiachra Knox, Bojan Mohar, and Nathan Singer. Reflexive coloring complexes for
3-edge-colorings of cubic graphs. arXiv preprint arXiv:2004.06788, 2020.

80

http://www.jstor.org/stable/3610702
http://www.sciencedirect.com/science/article/pii/009589567590060X
http://www.sciencedirect.com/science/article/pii/009589567590060X
https://doi.org/https://doi.org/10.1016/0095-8956(75)90060-X
https://doi.org/https://doi.org/10.1016/0095-8956(75)90060-X
http://www.sciencedirect.com/science/article/pii/0001870877900755
http://www.sciencedirect.com/science/article/pii/0001870877900755
https://doi.org/https://doi.org/10.1016/0001-8708(77)90075-5
https://doi.org/https://doi.org/10.1016/0001-8708(77)90075-5


[30] Jessica McDonald, Bojan Mohar, and Diego Scheide. Kempe equivalence of edge-
colorings in subcubic and subquartic graphs. Journal of Graph theory, 70(2):226–239,
2012.

[31] Bojan Mohar. Akempic triangulations with 4 odd vertices. Discrete Mathematics,
54:23–29, 1985.

[32] Bojan Mohar. Kempe Equivalence of Colorings, pages 287–297. Birkhäuser Basel,
Basel, 2007. doi:10.1007/978-3-7643-7400-6_22.

[33] Bojan Mohar and Jesús Salas. A new Kempe invariant and the (non)-ergodicity of the
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Appendix A

Code

In this section, we provide the computer code used in a number of the computations dis-
cussed in this dissertation. These programs all use SageMath, a free, open-source mathe-
matics software system.

As we performed an extremely large number of similar computations in the course of our
research, this appendix will not provide the reader with a complete listing of all the programs
we have written. Instead, we aim to present enough examples that the reader can fill in the
missing details with a relatively modest effort.

In Section 3.4, we made the following conjecture based upon "a large number of computa-
tions." This conjecture was reiterated when we discussed directions for future research in
Chapter 7. There we noted that we had checked all triangulations of the plane on thirteen
or fewer vertices.

Conjecture 3.4.1. Suppose that T is a triangulation of the plane, and that its 4-colouring
complex B4(T ) has at least two components. Then B4(T ) has a component of even parity
and a component of odd parity.

The program written below checks all triangulations of the plane on thirteen vertices.

from sage.graphs.graph_coloring import all_graph_colorings
from sage.graphs.connectivity import connected_components_subgraphs

def B(G):
# A function which takes as input a graph G and returns its colouring
# complex B(G).

parts = []
# We create an empty list to store all the simplices of B(G).

for C in all_graph_colorings(G,4):
# We iterate over all the 4-colourings of G.

parts.append([(Set(C[k])) for k in C])
# For each 4-colouring, we append to our list of 3-simplices the set
# of its 4 colour classes.
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X = SimplicialComplex(parts)
# We construct a simplicial complex with the sets in parts as our facets.

X2 = X.graph()
# We take the 1-skeleton of X in order to obtain a graph.

return X2

r = 0
m = 0
n = 0
l = 0
# We set a number of variables to 0. We will use m to count the
# number of triangulations with B(T) connected, n for the number of
# triangulations where B(T) has two components and l for the number
# of triangulations where B(T) has at least 3 components. We use r to
# count the number of counterexamples where B(T) has two components.

for T in graphs.triangulations(13, minimum_degree=3, minimum_connectivity=3):
# For each triangulation T on 13 vertices, we compute its 4-colouring
# complex B(T).

B1 = B(T)
if B1.is_connected():

m += 1
# If B(T) is connected, increment m.

else:
if B1.connected_components_number() > 2:

l += 1
L = connected_components_subgraphs(B1)
L2 = []
for j in L:

v = j.vertices()[0]
degSum = 0
for i in v:

degSum = degSum + T.degree(i)
Par = 2 * v.cardinality() - degSum + T.order() - 3
L2.append(Par)

print(L2)
# If B(T) has at least three components, increment m, compute the parity
# of each component using Theorem 1.1.1, and then construct a list of
# these parities.

else:
n += 1
L = connected_components_subgraphs(B1)
L2 = []
for j in L:

v = j.vertices()[0]
degSum = 0
for i in v:
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degSum = degSum + T.degree(i)
Par = 2 * v.cardinality() - degSum + T.order() - 3
L2.append(Par)

s = sum(L2)
if is_even(s):

r+=1
print(L2)

# If B(T) has two components, use Theorem 1.1.1 to check for a
# counterexample. If there is a counterexample, increment r and
# list the parities of its components.

print "Done"
print(r)
print(l+n)
print(n+m+l)
# When the program has finished running, we print Done, the number of
# counterexamples T for which B(T) has two components, the number of
#T for which B(T) has at least two components and the total number of
#3-connected, planar triangulations T on thirteen vertices.

After a lengthy computation, this program outputs nine three element lists and ten four
element lists. Each element is a pair of integers with different parities. Then it outputs 0 (the
number of counterexamples found where B4(T ) has two components) 8796 (the number of
triangulations checked for which B4(T ) has at least two components) and 49566 (the total
number of 3-connected triangulations of the plane on thirteen vertices).

In order to determine which fusenes are edge-reflexive (as we discussed in Section 7.2) we
need to do a bit more work.

from sage.graphs.graph_coloring import all_graph_colorings

def B(G):
# A function which takes as input a graph G and returns its colouring
# complex B(G). This is the same function as in the previous
# example, except that we compute 3-colourings, rather
# than 4-colourings.

parts = []
for C in all_graph_colorings(G,3):

parts.append([(Set(C[k])) for k in C])
X = SimplicialComplex(parts)
X2 = X.graph()
X3 = X2.canonical_label()
return X3

def Hat(G):
# A function which takes as input a graph and returns a
# graph in which all edges of the original graph now appear in a
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# triangle.
k = Set(G.vertices()).cardinality()

# k is the cardinality of the vertex set of G.
for e in G.edges(labels=False):

# We iterate over each edge e of G.
A = Set(G.neighbors(e[0])).intersection(Set(G.neighbors(e[1])))

# Set A to be the common neighbours of the ends of the edge e.
if not A:

# If there are no such common neighbours, proceed.
G.add_vertex(name=k)
G.add_edge(e[0],k)
G.add_edge(k,e[1])

# Add a new vertex with a label which is unused in the canonical
# labelling, and then add two edges to make the new vertex a
# common neighbour of the ends of e.

k = k+1
# Now, increment k, so that we don’t repeat labels.

return G

n = 0
m = 0
# We set n and m equal to 0. The variable n will count
# the number of fusenes with a reflexive line graph, while m
# will count the number of fusenes which do not have a
# reflexive line graph.

for g in graphs.fusenes(9):
H = g.line_graph()
H2 = Hat(H)
G = H2.canonical_label()

# For each fusene g with 9 hexagonal faces, we take its line
# graph (using the hat operation to guarantee that every
# edge will be in a triangle). The graph G is the resulting graph,
# given a canonical labelling.

B1 = B(G)
B2 = B(B1)

# Now, we apply B twice, in order to construct $B^{2}(G)$.
A = G.clique_complex()
A2 = A.facets()
F1 = B2.clique_complex()
F2 = F1.facets()
if A2.cardinality() == F2.cardinality():

n += 1
else:

m += 1
# Now, we use the injectivity of the map \phi_{G}. As
# this map is injective, G is isomorphic to B^{2}(G)
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# if and only if these two graphs have the same
# number of triangles.

print("Done")
print(m)
print(n+m)
# When the program has finished running, we print Done, the
# number of fusenes which do not have reflexive line graphs,
# and then the total number of fusenes checked.

In the end, this program outputs 0 (the number of fusenes checked whose line graphs are
not reflexive) and 7036 (the total number of fusenes checked). This particular computation
checked all fusenes with nine hexagonal faces.

Finally, the following computation determines the frequency of colourful and very colourful
graphs among the line graphs of the 2-connected, cubic graphs G with sixteen vertices and
no half-edges. Similar computations yield the data we displayed in tables 6.1, 6.2 and 7.1.

from sage.graphs.graph_coloring import all_graph_colorings

def Hat(G):
# A function which takes as input a graph and returns a
# graph in which all edges of the original graph now appear in a
# triangle. This is the same function as in the previous example.

k = Set(G.vertices()).cardinality()
for e in G.edges(labels=False):

A = Set(G.neighbors(e[0])).intersection(Set(G.neighbors(e[1])))
if not A:

G.add_vertex(name=k)
G.add_edge(e[0],k)
G.add_edge(k,e[1])
k = k+1

return G

def getColourings(G):
# This function makes a list of all the 3-colourings of G, formatting that
# list so the colourings can be easily processed.

colourings = []
# We create an empty list to store all the 3-colourings of G.

for C in all_graph_colorings(G,3):
colourings.append([(Set(C[k])) for k in C])

# For each 3-colouring, we append it to our list of 3-colourings. The
# colouring is stored as a set of colour classes.

return colourings

def Colu(colourings,u):
# This function takes the list of 3-colourings outputted by the previous
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# function, as well as a vertex u of G. It returns the list of colour
# classes of G which contain u.

classes1 = set()
# We create an empty set to fill with colour classes

for D in colourings:
for A in D:

if u in A:
classes1.add(A)

classes2 = list(classes1)
# For each colour class A in each 3-colouring D of G, if u is in A, we add
# A to our set of colour classes. We then reprocess the resulting set as
# a list.

return classes2

def colourful(G):
# This function takes a graph G as input and returns either the string
# colourful, if G is colourful, or False, if G is not colourful.

vertices = G.vertices()
n = len(vertices)
x = 0
K = getColourings(G)
for u in vertices:

U = Colu(K,u)
# For each vertex u of G, we form a list U of all the colour classes
# containing u.

for v in vertices:
if (u != v):

m = 0
for i in range(len(U)):

if v not in U[i]:
m += 1

# For each vertex v of G, which is not equal to u, and colour class
# U[i] of G, if v is not in U[i], increment m

if m > 0:
x += 1

# If we found any colour class U[i] which contained u, but not v,
# then m > 0, so increment x.

if x == ((len(vertices)) ** 2) - n:
return "colourful"

else:
return False

# If every pair of distinct vertices have some colouring in which
# they are coloured differently, then we return the string
# colourful. Otherwise, we return False.

def veryColourful(G):
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# This function takes a graph G as input and returns either the string
# veryColourful, if G is very colourful, or False, if G is not very colourful.

vertices = G.vertices()
n = len(vertices)
x = 0
K = getColourings(G)
for u in vertices:

U = Colu(K,u)
# For each vertex u of G, we form a list U of all the colour classes
# containing u.

for v in vertices:
if (u != v) and (v not in G.neighbors(u)):

m1 = 0
for i in range(len(U)):

if v in U[i]:
m1 += 1

# For each vertex v of G, which is not in the closed neighbourhood
# of u, and colour class U[i] of G, if v is in U[i], increment m1.

if m1 == 0:
x += 1

# If no colour class U[i] contains v, then u and v are never coloured the
# same colour and m1 = 0, so we increment x.

if x == 0:
return "veryColourful"

else:
return False

# If x was ever incremented, then G is not very colourful and we return
# False. If x never incremented, then x is very colourful and we return
# the string veryColourful.

k = 0
m = 0
n = 0
# We set three variables equal to 0. The variable k will count
# the number of line graphs of 2-connected, cubic graphs which
# are colourful, n the number which are very colourful and
# m the number which are not very colourful.

for H in graphs.nauty_geng("16 -d3 -D3 -t -C -l"):
# Notice here that we consider only triangle-free graphs H, since
# H cannot contain a triangle if its line graph is colourful.

H2 = H.line_graph(labels = False)
G = Hat(H2)
G2 = G.canonical_label()

# We take a canonical labelling of the hat graph of the line graph
# of H. This graph is G2.
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if colourful(G2) == "colourful":
k += 1

if veryColourful(G2) == "veryColourful":
n += 1

else:
m += 1

# Finally, for each graph G2, we check whether or not it is colourful
# and whether or not it is very colourful.
print "Done"
print(k)
print(n)
print(n+m)
# Upon completion, this program prints the string Done, the number
# colourful graphs found, the number of very colourful graphs found
# and then the total number of graphs examined.

This program outputs 178, 24 and then 788. So, we conclude that there are 178 line graphs
of 2-connected, cubic graphs (without half-edges) G on sixteen vertices which are colourful,
as well as 24 which are very colourful. Both of these quantities are considerably smaller than
the 788 2-connected, triangle-free, cubic graphs (without half-edges) G which we counted.
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