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Abstract

In this thesis, we examine player tracking data in basketball and soccer and explore statis-

tical methods and applications related to this type of data.

First, we present a method for nonparametric estimation of continuous-state Markov tran-
sition densities, using as our foundation a Poisson process representation of the joint input-
output space of the Markovian transitions. Representing transition densities with a non-
stationary point process allows the form of the transition density to vary rapidly over the
space, resulting in a very flexible estimator of the transition mechanism. A key feature of
this point process representation is that it allows the presence of spatial structure to inform
transition density estimation. We illustrate this by using our method to model ball move-
ment in the National Basketball Association, enabling us to capture the effects of spatial

features, such as the three point line, that impact transition density values.

Next, we consider a sports science application. Sports science has seen substantial benefit
from player tracking data, as high resolution coordinate data permits sports scientists to
have to-the-second estimates of external load metrics traditionally used to understand the
physical toll a game takes on an athlete. Unfortunately, this data is not widely available.
Algorithms have been developed that allow a traditional broadcast feed to be converted to
x-y coordinate data, making tracking data easier to acquire, but coordinates are available
for an athlete only when that player is within the camera frame. This leads to inaccuracies
in player load estimates, limiting the usefulness of this data for sports scientists. In this
research, we develop models that predict offscreen load metrics and demonstrate the viability

of broadcast-derived tracking data for understanding external load in soccer.

Finally, we address a tactics question in soccer. A key piece of information when evaluating a
matchup in soccer is understanding the formations utilized by the different teams. Multiple
researchers have developed methodology for learning these formations from tracking data,
but they do not work when faced with the heavy censoring inherent to broadcast tracking
data. We present an algorithm for aligning broadcast tracking data with the origin, and then
show how the aligned data can be used to learn formations, with performance comparable

to formations learned from the full tracking data.
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Chapter 1

Introduction

1.1 Background

Fans, coaches, analysts, and athletes have long used statistics in order to better understand
sports. Henry Chadwick is credited as the inventor of the box score in baseball, which was
first published over 150 years ago in Clipper magazine in 1859 (Pesca, 2009). This is the
first recorded example of using numerical summaries to describe the actions that occurred
in a game rather than simply the outcome. Baseball is particularly well-suited to this type
of analysis because much of the game consists of a series of discrete events between just
two players, the pitcher and the batter. Long before games could be televised, daily readers
of the newspaper were able to use this box score information to reconstruct much of the
action that actually occurred in the game. Although box scores exist for other sports, such
as basketball, hockey, and soccer, the continuous nature of these games and, in the case of
soccer and hockey, low number of scoring events, mean that simple counts fail to capture
crucial contextual factors impacting game outcomes and have inherently less value.
Moving beyond simple counts, event data (i.e., play-by-play data) adds more structure
to sports data by providing temporal sequencing information. Each observation typically
consists of an event, like a shot attempt, made goal, pass, or foul, the player (or players)
involved in the event, a timestamp, and in some cases, limited location information, such as
where a shot was taken from. This allows analysts to understand not just whether or not an
assist occurred, for example, but the exact sequence of events that led to a goal, and use a
model to understand how a given event impacts goal scoring. A variety of interesting research
has been done on event level data in sports, including calculating changes in expected
goals to evaluate the quality of passes in soccer (Bransen and Haaren, 2019; Power et al.,
2017), evaluating player efficiency in regards to decision making in basketball (Goldman
and Rao, 2011), and estimating per-down win probabilities in the National Football League
(Lock and Nettleton, 2014). Additional examples of research done on event data include
spatial models for shot chart data (Reich et al., 2006), building a basketball game simulator
by applying a Markov model to play-by-play data (Vracar et al., 2016), and estimating



player impacts on goal scoring in hockey with competing risk models (Thomas et al., 2013)
and deep reinforcement learning (Liu and Schulte, 2018). Also in hockey, Yu et al. (2019)
examined pace of play and its relationship with offensive outcomes such as shots on goal and
shooting percentage. Event based analysis in soccer includes constructing play sequences in
order to produce entropy maps and use them to characterize team behavior (Lucey et al.,
2013a), identifying unique patterns of passes and considering their relationship with player
success (Bekkers, 2017), and using deep reinforcement learning to value players and actions
(Liu et al., 2020). Fichman and O’Brien (2019) borrowed ideas from economics to show
how a Stackelberg equilibrium could be used to determine optimal shot selection strategies
and suggested that the three point shot would become even more popular in the National
Basketball Association, and Omidiran (2011) used play-by-play data and box score statistics
to develop a more accurate adjusted plus/minus model.

While event data provides significantly more contextual information than a box score, it
still lacks crucial information about what players were doing who were not directly involved
with the recorded event, or what players did in between events. For example, in basketball,
as a dangerous shooter like Klay Thompson of the Golden State Warriors moves around the
court, he can draw defensive attention away from his teammates, leading to more valuable
shot opportunities, without ever touching the ball. The need for data that better described
player behavior in these continuous settings led to the introduction of player tracking data
to the English Premier Football league by Prozone in the late 1990’s (Medeiros, 2017).
In this thesis, the term player tracking data refers to a stream of x-y coordinate data for
players in a game at a high temporal density, typically ranging from 10 to 30 observations
per second. This type of data can be generated using a wearable device via technologies like
GPS or radio telemetry, but the data examined in the following chapters is more narrowly
referred to as optical tracking data. Optical tracking data is typically generated by installing
multiple stationary cameras throughout an arena (see https://www.statsperform.com/
team-performance/basketball/ for an example) and using computer vision techniques to
convert the image in each video frame to a collection of player locations. Originally, Prozone
accomplished this using pixel classification techniques (Vandenbroucke et al., 2003) though
a vast literature exists on multi-object detection in multicamera settings (see (Wang, 2013;
Luo et al., 2017; Ren et al., 2010; Hamid et al., 2014; Ristani et al., 2016; Beetz et al., 2006;
Previtali et al., 2017) for just a handful of examples). In isolation these coordinate data
are not especially useful, but when coupled with event data, such as when a shot, pass,
or turnover occurs, these player locations provide valuable insight into how individual and
coordinated player actions impact game outcomes.

Both Gudmundsson and Horton (2016) and Goes et al. (2020) provide useful, in-depth
reviews of spatio-temporal analysis in team sports, but here we highlight some of the re-
search done with player tracking data in order to provide the reader with a sampling of the

kinds of questions being considered and methodologies being used to answer them. In some
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cases, the purpose of this research is simply to use the data to describe player behavior
and connect it to more generalized sport concepts. For example, tracking data was used
to develop shot charts and new defensive metrics for the National Basketball Association
(NBA) (Goldsberry, 2012; Goldsberry and Weiss, 2013); to identify player roles, classify for-
mations, and identify teams in soccer and field hockey Bialkowski et al. (2014); Lucey et al.
(2013b); Bialkowski et al. (2015); to estimate optimal defensive positioning in soccer using
deep imitation learning (Le et al., 2017); and to build a queryable database of basketball
plays by dividing player tracks into segments and treating them as words in a topic model
Miller and Bornn (2017). Other researchers have also sought to provide insight through a
combination of a queryable database and visualization, in American football using Bezier
curves and mixture models (Chu et al., 2019), in soccer by constructing descriptive features
(Andrienko et al., 2019), and also in basketball by treating player tracks as images and
applying a convolutional autoencoder to them (Nistala and Guttag, 2019).

Additional cases of descriptive analysis based on player tracking data abound. Low-
dimensional, interpretable, spatial basis functions for shooting in the NBA were learned
using non-negative matrix factorization (Miller et al., 2014). Neural network architectures
were applied to tracking data to identify events in hockey and teams in the NBA (Mehrasa
et al., 2017) and to classify play calls in basketball (Wang and Zemel, 2016). Also in bas-
ketball, conditional random fields with latent spatial factors and transformed coordinate
systems were used to perform one-step ahead prediction (Yue et al., 2015), the convex hull
created by players on the same team was examined to see how spacing changed based on
game phase and players present on the court (Metulini et al., 2018), and rebounding was de-
composed into three dimensions (positioning, hustle, and conversion) and used to compare
players (Maheswaran et al., 2014). Finally, ball possession sequences were used to construct
features and analyzed using principal components analysis to identify differences in perfor-
mance against top and bottom teams (Gongalves et al., 2019) and Gaussian mixture models
were applied to tracking data provided by the National Football League (NFL) to identify
defensive pass coverage types (Dutta et al., 2020).

In other cases, the primary purpose of this research is to determine how valuable certain
actions or players are. This includes the work of Cervone et al. (2016), who introduced the
concept of expected possession value (EPV) by using a stochastic process model to treat the
evolution of a basketball posession as a stock ticker, evaluating its expected value over time
and space. The EPV framework was adapted for soccer by introducing a convolutional neural
network on top of a pitch control model (Fernandez and Bornn, 2018) to determine the
likelihood that a particular action occurs (Ferndndez et al., 2019). EPV was also extended
to American Football using a long short-term memory (LSTM) neural network to account
for temporal relationships between events (Yurko et al., 2020). A nice feature of the EPV
framework is that it permits the evaluation of both individual actions, such as taking a shot

from a certain region of the court, or individual players. In a similar approach, a Markov



reward process was used to represent an entire soccer game and visual analytics were used
to illustrate how the value of various actions, such as a penalty kick or throw-in, changes
across the pitch (Zhao et al., 2019).

Beyond EPV or EPV-adjacent approaches, researchers have used player tracking data
to evaluate goalkeepers in soccer based on the probability an opponent scores (Yam, 2019);
included spatial effects within a generalized linear model to quantify and visualize how
teams in the English Premier League disrupt opposing teams’ offense (Bojinov and Bornn,
2016); and developed advanced defensive metrics in basketball with non-negative matrix
factorization and Bayesian hierarchical modelling (Franks et al., 2015). Additional examples
of using player tracking data as a tool for evaluation include predicting the probability a
pass is successful in soccer using player displacement variables (Kempe et al., 2018) and
a physics-based model (Spearman et al., 2017), and performing discrimant analysis on a
large number of spatiotemporal variables to see which best distinguish between all-star and

non-all-star caliber players in the NBA (Sampaio et al., 2015).

1.2 Thesis Structure

Rather than focus on a single area of statistics and present associated methodological or
theoretical developments, the work hereafter is united by its focus on player tracking data.
The current chapter serves as a brief introduction to player tracking data and Chapter 6
summarizes the thesis and provides some concluding remarks. Chapter 3 introduces the
idea of broadcast tracking data and presents several of the features that make it fertile
ground for future research. The remaining chapters all consist of original work. I served as
primary author for all chapters, wrote all the code, and generated all tables and figures. My
senior supervisor, Dr. Luke Bornn, helped with the development of the entire thesis. My

co-advisor, Dr. Derek Bingham, helped with the development of Chapters 2 and 4.

1.2.1 Overview of Chapter 2

This chapter is entitled “Constructing Flexible Markov Transition Models Through Condi-
tional Poisson Point Processes” and has been submitted to the Canadian Journal of Statis-
tics. In it we present a method for nonparametric estimation of continuous-state Markov
transition densities, relying on a Poisson process representation of the joint input-output
space of the Markovian transitions. Modeling a transition density as a point process creates
a general framework that admits a variety of implementations and includes some historical
methods for nonparametric transition density estimation as a special case. Representing
transition densities with a nonstationary point process allows the form of the transition
density to vary rapidly over the space, resulting in a very flexible estimator of the transition
mechanism. A key feature of this point process representation is that it allows the presence

of spatial structure to inform transition density estimation. We illustrate this by using our



method to model ball movement in the National Basketball Association, enabling us to
capture the effects of spatial features, such as the three point line, that impact transition

density values.

1.2.2 Overview of Chapter 4

This chapter is entitled “Estimating Locomotor Demands During Team Play From Broadcast-
Derived Tracking Data” and has been submitted to the International Journal of Sports Phys-
iology and Performance. Sports scientists use metrics, such as high speed running distance
or acceleration load, to monitor the physical stress of participating in athletic competition
and training on a player’s body. The data for these metrics is often collected with a wear-
able device, though optical tracking data can be used as well. In this chapter we build a
model to use broadcast-derived tracking data, which is heavily censored, to estimate these
external load metrics for players who are offscreen. We show that predictions on a hold-out
set are highly accurate, an important benchmark in establishing broadcast tracking data as

a useful source of data for sports scientists.

1.2.3 Overview of Chapter 5

This chapter is entitled “Identifying Soccer Formations in the Presence of Heavy Censoring,”
and it includes methodology for identifying soccer formations that is closely related to the
work of Shaw and Glickman (2019) and Bialkowski et al. (2014), but adapted to apply to
broadcast tracking data, which exhibits heavy censoring that their methods do not account
for. Specifically, we introduce an algorithm that relies on atomic configuration distance to
align partially observed camera frames. An additional advantage of this approach is that it is
always invariant to player permutation. Once aligned, we show how a finite mixture model
can be used to learn formations and compare formations learned from full multicamera

tracking data to those learned from broadcast tracking data.



Chapter 2

Constructing Flexible Markov
Transition Models Through
Conditional Poisson Point
Processes

2.1 Introduction

Discrete-time continuous-state Markov chains are used to model phenomena in a variety of
disciplines, including finance (Bauwens et al., 2006; De Gooijer and Zerom, 2000; Bollerslev,
1986; Engle, 1982), physical sciences (Tagle et al., 2019; Lau and McSharry, 2010), and
environmental science (Gloaguen et al., 2015; Patterson et al., 2008; Wiktorsson et al., 2004),
to name just a few. Frequently, the principal concern with this type of model is identifying
the underlying transition density, p(X¢|X;—1). One way to estimate p(X;X;—1) is with a
dynamic linear model (West and Harrison, 1997). In this approach, a relationship between
sequential elements in the Markov chain is modeled, typically of the form X; = AX; 1 +e.
Often ¢ is assumed to follow a N (0, 0%) distribution, though other distributions can be used.
As long as |A| < 1, such a model enforces weak stationarity, ensures a smooth transition
density, and offers a simple way to estimate p(X;|X;_1) even in regions where data is
sparse or completely unavailable. However, as data becomes increasingly nonlinear or non-
Gaussian, model specification and inference can be difficult. Nonparametric approaches have
a similar functional form, but rather than making any distributional assumptions about the
error term, it is assumed to be nonparametric and may vary as a function of X;_;.

A variety of nonparametric approaches have been developed to estimate transition densi-
ties, including delta sequences (Prakasa Rao, 1978), “look-ahead” density estimation (Hen-
derson and Glynn, 2001), and projection onto finite dimensional linear spaces (Lacour,
2008). Some of the earliest work in nonparametric estimation of the conditional transition
density p(X¢|X¢—1) was done by Roussas (1969), Rosenblatt (1970), and Yakowitz (1985,

1989), each demonstrating consistency of kernel density estimators for Markov transition



densities under increasingly weak conditions. They construct estimators for the conditional
transition density p(X;|X;—1) by taking the quotient of kernel density estimates for the joint
and marginal distributions, p(X;, X;—1) and p(X;). A more modern approach to transition
density estimation is the work of DeYoreo and Kottas (2017), who use a Bayesian non-
parametric mixture of bivariate normal distributions to estimate nonstationary transition
densities.

We propose a general framework for transition density estimation that is specifically
targeted at estimating transition densities with distinct spatial effects. The key idea in our

methodology is that the set of sequential observations in a Markov chain
S = {(Xt—laXt> = 1,,T}

can be treated as a realization from a Poisson point process. There are two features that
make this framework a valuable contribution to the work of nonparametric transition den-
sity estimation. First, using a nonstationary process results in a flexible representation of the
transition mechanism. Because of this, the degree to which transition densities for neighbor-
ing X;_; values impact one another can vary over the domain, resulting in certain regions
of the domain where all conditional transition densities have similar forms and other re-
gions where the transition densities appear entirely different. The second feature, related to
the first, is that point processes provide a natural mechanism to explicitly account for the
effects of spatial features. Because these features often induce nonstationarity in the point
process, we can use that to adjust for their resulting impact on transition density estimates.
Applications where spatial features impact transition densities are the primary use case we
imagine for this methodology.

Related to our framework is the topic of nonparametric density estimation, in particular
the use of Poisson processes for density estimation. Brown et al. (2004) use Le Cam’s
distance to explicitly demonstrate asymptotic equivalency of density estimation and Poisson
processes for a moderately smooth target density f. Low and Zhou (2007) expand on this
work by weakening the smoothness condition required for density estimation and Poisson
processes to be asymptotically equivalent. However, this existing research relies on the
assumption that data are independent and identically distributed, and thus does not apply
to dependent data, a gap we fill with this work. In this research, we demonstrate equivalency
between transition densities and Poisson processes, but rather than providing an argument
based on any particular distance metric, we show that the Markov likelihood is equivalent
to the likelihood for a conditional point process.

The remainder of this paper is structured as follows: Section 2.2 provides a pedagog-
ical motivating example. Section 2.3 illustrates the connection between a Markov model’s
transition mechanism and a Poisson point process and outlines how we take advantage of it

to estimate transition densities. Section 2.4 illustrates key features of this approach using



simulated data and Section 2.5 presents an application where point processes are used to
model ball movement in the National Basketball Association (NBA). Finally, Section 2.6

provides our concluding remarks.

2.2 Illustrative Example

Consider the transition density f(x;|z;—1) of a stationary, continuous Markov chain {X,},
t =0,...,T with values concentrated in some finite region D C R, F > 0, that we assume,
without loss of generality, to be the interval [0, 1]. In addition to the conditional transition
density, denote the marginal density for the chain as f(z) and the joint density of (41, x¢)
as f(x,y) so that f(x¢|zi—1) = f(xi—1,2¢)/f(xi—1). A naive way to analyze these data is
to partition [0, 1] into K intervals A; = [0,h), Ay = [h,2h),..., Ax = [(K — 1)h, 1] where
h =1/K and calculate the transition probabilities

pij =P (X € Aj| X1 € Ay) = /Av /A‘ f(a(c;:g);) dzdy (2.1)

f
for all j,i =1,..., K, stored in the transition probability matrix P = (p;;). The maximum
likelihood estimate for p;; is p;j; = N;j/Nj., where N;; is the number of transitions from state
A;to Ajand N;. = Zszl N;;. With these probabilities, the transition density can be approx-
imated using the histogram estimator f,, (z¢|z;—1) = YK, ZJKZI %]l(xt_l € Al (xy € Aj).
Clearly, as K — oo (and by implication h — 0), p;; = 0 for the majority of i and j even
though the associated p;; are nonzero. Thus, in order to improve the performance of the
histogram estimator some kind of smoothing is necessary. One way to deal with this is to
follow the recommendation of Leonard (1973) and smooth the histogram by assuming that
neighboring bins are correlated via an autoregressive process.

Continuing with the nomenclature from above, let

K
nij = log (pij) + log (Z exp (mg))

g=1

so that p;; = ;Xp% Using a Bayesian model allows us to induce autocorrelation
> g1 &xP(Mig)
by assuming a multivariate normal prior on 1; = (1;1,M2,.-.,nikx) with mean p and

covariance X. For a first order autoregressive (AR(1)) process, the jkth element of the

. .. 2 pli—kl . . . .
covariance matrix is equal to Uflp Jpg , with |p| < 1. Equivalently, we could write this in the

more familiar dynamic linear model formulation

Mij = PNij—1 + €,

with € ~ N(0,02). An interesting feature of a discrete AR(1) process is that as the difference

in sampling locations goes to zero (or in our case, as h — 0), it becomes an Ornstein-
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Uhlenbeck (OU) process, defined

J

§0) =0 [ e (-AG -~ ) duls), 22)
— 0o

where A > 0, 0 > 0, and w is a standard Wiener process. If (2.2) is sampled at points an

equal distance T apart, the resulting sequence is equivalent to (2.2), with

o2 = % (1 —exp(—2A7)) and p = exp(—A7). Therefore, as K — oo, probabilities governed

e
by an AR(1) process become densities governed by an OU process (Arratia et al., 2014).
This relationship is significant because it demonstrates a clear connection between the
definition of a correlation structure on discrete transition probabilities and continuous tran-
sition densities with smoothness governed by a stochastic process. Critically, we are applying
this autoregressive process to the transition probabilities themselves rather than the data.
It is important to recognize that we are not trying to sample the data at a more fine-grained
level; rather, our intent is to estimate the transition probabilities at a higher resolution. A
relationship such as the one detailed between a discrete first order autoregressive model and
an Ornstein-Uhlenbeck process allows us to estimate transition probabilities at any reso-
lution we desire by adjusting the size of the states Aq,..., Ax. However, the relationship
described above is only inducing correlation across the columns of the transition probability
matrix, not the rows. While it is possible to smooth over both rows and columns by using a
Gaussian prior on 9 = (11, ..., MK, 721, - - - s 2K 031, - - - , N K ) With an appropriate covari-
ance matrix, such as a conditionally autoregressive prior (Besag, 1974), to our knowledge
such a model does not provide the clear theoretical relationship to a continuous stochastic
process present in the previous case where correlation is induced across a single dimension.
In this work we borrow strength across the rows and columns of the transition ma-
trix P by reparameterizing the Markov model as a Poisson point process in the combined
input/output space. As in the AR(1)-OU case, we will take advantage of a relationship
between assumptions about the structure of discrete states and a stochastic process that
allows us to easily step between completely continuous or discrete states of any resolution.
In the next section we detail three relationships that provide intuition for why Poisson
processes can be used to model transition densities: first, equivalence between the likelihood
for a Markov model and the multinomial distribution; second, the multinomial-Poisson
transformation; and third, the connection between the Poisson distribution and a Poisson

point process.

2.3 Moving from a Markov chain to a Poisson point process

2.3.1 Multinomial representation of Markov chain

Consider the setup outlined at the beginning of Section 2.2. For sake of simplicity, we con-

tinue to assume that the chain {X;} is univariate on the interval [0, 1] but note that the



following arguments easily extend to higher dimensional chains. Let the transition proba-
bilities p;; be defined as in (2.1) and let N;; = Zthl 1 [zi—1 € Aj, x € Aj]. Given the initial

observation X, the conditional likelihood for the Markov chain is

T K K
Nij
L(P)=]]P(Xi€ Aj|Xi1 € A) =[] [ i
t=1 i=1j=1
which is proportional to the product of K independent multinomial likelihoods (Rajarshi,
2013). Therefore, we can estimate transition probabilities by assuming that transitions

from state i are realizations of a multinomial(N;., p;1,. .., pix) distribution for all i, where
Ni. =YK Ny

2.3.2 Multinomial-Poisson transformation

Suppose y = (y1,...,yn) are independent Poisson random variables with means A =
(A, -, ). The joint distribution of y factorizes into the product of a multinomial dis-

tribution and a Poisson distribution over n = Zj]\il Y, i.e.,

M
fly) = H f(y;) = Poisson (n|A) Multinomial (y|a, n) .

i=1
Here A = Zj]\il Ajand a = (a1, ..., ap) where a; = A/ Z;-w:l Aj. Birch (1963) showed that
under the constraint n = A, the maximum likelihood estimate for a is equivalent whether
we maximize over the multinomial density or the product of independent Poisson densities
(see also Palmgren (1981); Baker (1994)). The connection to modeling Markov transitions
follows directly; if we assume N;; ~ Poisson ()\;;) then we can estimate the underlying

transition probabilities by letting p;; = Ai;/ ZjK:1 Aij-

2.3.3 Poisson point process

Our review of Poisson point processes is necessarily brief, but the interested reader is di-
rected to Mgller and Waagepetersen (2004) or Banerjee et al. (2015) for a more thorough

exposition. The likelihood for the Poisson point process is

L(A(s),s € D;s1,...,8,) = HA(si) exp (—A(D)), (2.3)

where A(-) is the point process intensity and A(D) = [, A(s)ds. Suppose we partition D
into a series of discrete regions By, ..., Bys. Conditional on the intensity function, if two

regions By and By are disjoint, then N(B;) and N(B;) are independent Poisson random
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variables. Due to this property, it follows that the likelihood over this partition is:
[T exp (—ABm) (ABw)YE [N (Byn)!.

As the partition grows increasingly fine, N(B,,) = 1 or 0, depending on whether or not
there is an observation in By,, and in the limit we reach (2.3) (Banerjee et al., 2015).

To illustrate the connection to Markov transition density estimation, let (z;—1,z:) be
successive elements of our Markov chain for arbitrary ¢. To estimate the conditional transi-

tion density we would set
A(l‘tfl,l‘t)
Tixyq) = ———— 2.4
Pkt = TR g e 24

which is a valid density. This becomes clear when we consider that intensity functions can
be written as A(-) = 0f(-), where § = A(D) is the expected number of points observed in
D and f(-) is a density function, so that

A((zi—1, 1)) 0f@i-1,20) _ fl@-1,20)

JA((z-1,€))dE B Jof(xi—1,6)dE B f(w1)

Comparing (2.4) with the transition probability estimation outlined in Subsection 2.3.2, we
can see that this is simply the continuous extension of \;;/ 231'(21 Aij-

Note that estimation of the point process intensity frequently necessitates discretization
of the space for computational reasons. There is an interesting duality between discrete
representations of the density created by binning the space and low-rank computational
methods, both of which result in a coarsening of the transition surface. The benefit of the
continuous representation we have described is that it allows the user to leverage all existing
work for modeling point processes nonparametrically, making any potential coarsening a
choice made according to the preference of the modeler rather than something intrinsically
built-in to the method.

2.3.4 Model Choice and Inference

In summary, we have created a general framework wherein one can estimate continuous
Markov transition densities in two steps: first, assume that sequential elements of the
Markov chain (X;_1, X;) are realizations from a Poisson point process (note that X;_;
and Xy can be real or vector valued) and estimate the corresponding point process intensity
function A((Xy—1,X})). Second, calculate the conditional transition density for fixed X;_;
as p(X¢|Xi—1) = A((Xe—1,X1))/ J A((X¢—1,€))dE. Because our estimate of the transition
density is a valid density, variates from it can be easily simulated using any method that
allows for sampling from a nonstandard distribution, i.e., rejection sampling (von Neumann,
1951). At this point, it is also worth emphasizing that Poisson processes are only fit over

a fixed region. In the basketball application below, selecting this region is trivial since the
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transition space is restricted to the basketball court. In cases where there is no obvious spa-
tial boundary, we suggest simply using the range of the observed data, which is reasonable
for chains that are stationary and concentrated within some finite region.

A key attribute of using Poisson processes to estimate transition densities is that the in-
tensity function can be estimated using any method appropriate for Poisson point processes.
As a result, one contribution of this paper is that our framework includes the transition
density estimators of Roussas (1969) and Rosenblatt (1970) as a special case. To see this,
consider the Poisson point process kernel density estimator introduced by Diggle (1985). He

proposes to estimate the intensity function by

1
po(s)

As)

m
Ky(s —si),
i=1

where Kj(-) is a kernel function with bandwidth b (for recommendations on selection of
this bandwidth parameter see Diggle (2014), pg.86-87), and py(s) is an edge correction that
scales the intensity function to integrate to the appropriate count. If py(s) is replaced by n,
then ]\(S) is equivalent to the joint density estimator used by Roussas (1969) and Rosenblatt
(1970). When the conditional transition density is estimated by taking the quotient of the
joint and marginal densities (or intensities) the scaling constants, whether p,(s) or n, cancel
out so that the point process estimator and traditional kernel density estimator for the
transition density are equivalent.

The fact that a kernel density estimator of the transition density is a Poisson process
estimator as well serves to illustrate a significant feature of this framework. Namely, one
can increase flexibility in the form of p(X;|X;—1) by modeling the transition density with
a nonstationary Poisson process. The kernel density approach pioneered by Roussas and
Rosenblatt is an example of using an isotropic stationary point process to model the condi-
tional transition density, because the correlation strength (as determined by the bandwidth)
is the same throughout the domain and is independent of direction. As a result, although
this nonparametric estimate does allow the transition density to vary as a function of X;_1,
it forces it to evolve smoothly at a constant rate. Alternatively, if a nonstationary process
is used to model the transition density then the rate at which the transition density evolves
as a function of X;_; can vary over the input space, allowing the potential for neighboring
X;_1 values to produce conditional transition densities with radically different shapes.

In the following sections we demonstrate the use of several different estimators for Pois-
son point processes, including this kernel estimator. An additional point process model we
implement is the log Gaussian Cox process, which allows us to account for additional struc-
tural information and covariates when estimating the intensity function. Simply put, a log
Gaussian Cox process is a Poisson point process with A(s) = exp(Z(s)), where Z(s) is a
Gaussian process (for a fuller treatment see Mgller and Waagepetersen (2004)). It is possible

to account for structural information in the process by regressing the mean of Z(s) on rele-
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vant covariates or through modeling choices related to the covariance function. Particularly,
the log Gaussian Cox process allows us to increase the flexibility of A(X;_1, X¢) by using
a nonstationary model for Z(s) (Risser and Turek (2019) provide an overview of several
prominent methods for nonstationary Gaussian processes). For the examples in Section 2.4,
we fit both stationary and nonstationary log Gaussian Cox processes through integrated
nested Laplace approximation (INLA) (Rue et al., 2009; Lindgren and Rue, 2015). For
the application in Section 2.5 we model the transition density with a nonstationary log
Gaussian Cox process by combining dimension expansion (Bornn et al., 2012) with process

convolutions (Higdon et al., 1998).

2.4 Application to Simulated Data

In this section we briefly consider two simulated data sets. The first is 7' = 1000 steps of a

first order autoregressive Markov chain with
Xi| Xy ~ N(PXt—h 02)7

where we set p = 0.9 and 0 = 0.15. We compare three different methods for transition
density estimation applied to this data: a mixture model, a log Gaussian Cox process, and
a kernel density estimator. Note that the the latter two methods are both implementations
of the point process approach. The mixture model was implemented by constructing a
Bayesian model according to the specifications in DeYoreo and Kottas (2017) on which
Markov Chain Monte Carlo was run until convergence, after which 250 posterior draws
were used to construct estimates. Details for fitting the kernel density estimate are fairly
straightforward (see Venables and Ripley (2010) for reference). Various bandwidth selectors
for the kernel density estimates were considered, but the one that minimized the pointwise
mean square error between the density estimates and true densities was the normal reference
bandwidth (Silverman, 1986) so that is used throughout this section.

In order to fit the log Gaussian Cox process, we rely on INLA. Simpson et al. (2015)
demonstrated convergence for INLA when used to model log Gaussian Cox processes, mak-
ing it a suitable method for this application. The latent Gaussian surface Z(s) is ap-
proximated using a stochastic partial differential equation which is equivalent to fitting
a Gaussian process with a Matérn covariance function (Lindgren et al., 2011). We fix the
smoothness, «, of the covariance function at o = 2 and use a joint penalized complexity
prior (Simpson et al., 2017) on the range, ¢, and variance, 52, parameters of the covariance
function. For this simulated dataset, we specify the hyperparameters of the penalized com-
plexity prior indirectly by stipulating that the probability that ¢ < 0.01 and the probability
that 62 > 10 both equal 0.05. For this application there is no clear spatial boundary, so

we define the domain for the point process to be the square formed by (—w,w) x (—w,w),
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Figure 2.1: Estimates for the true conditional transition surface (left) for the first simulated
data set from the various methods. The mixture model estimate is nearly identical to the
true surface, while the log Gaussian Cox process provides a more accurate estimate than
the kernel density method.

Method RMSE Coverage
Mixture model 0.17 99.5%
Log Gaussian Cox process 0.29 95.7%
Kernel density estimate 0.45 70.9%

Table 2.1: Pointwise RMSE and coverage values for each of the four methods when estimat-
ing the transition density for the first order autoregressive model.

where w = max(|z¢|) + 0.1. We fit the model using the R-INLA package, available at
http://www.r-inla.org (Martins et al., 2013).

These methods can be compared visually by examining Figure 2.1, which depicts es-
timates of the true transition density for each approach at 10 different values of X;_1. In
addition to visual inspection, we perform a numerical comparison by considering the collec-
tion of points included in the intersection of a 200 x 200 lattice with the convex hull created
by the generated data, and calculating the pointwise root mean squared error (RMSE)
and coverage for pointwise 95% uncertainty intervals at each of these locations. Because the
mixture model and log Gaussian Cox process are fit using Bayesian methods, these intervals
are estimated from posterior draws. We obtain uncertainty estimates for the kernel density
estimates via a stationary bootstrap for dependent data (Politis and Romano, 1994; Politis
and White, 2004) and follow the recommendation of Hall (1992) and undersmooth in order
to reduce the impact of bias on the bootstrapped variance estimates. RMSE and coverage
values for this first example are given in Table 2.1.

In the next example we demonstrate one way that this approach can explicitly account
for spatial structure. Suppose that we have a Markov chain on the unit interval where the
conditional transition density is dependent not only on the previous value, but also on where

in the interval the origin value lies. Specifically, let the transition density be the piecewise
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Method RMSE Coverage
Mixture model 0.29 86.9%
Log Gaussian Cox process 0.17 88.0%
Kernel density estimate 0.28 90.8%

Table 2.2: Pointwise RMSE and coverage values for each method when estimating the
piecewise transition density.

function

0.3Njo,1)(ze|ze-1,02) + 0.TNjg 1) (w241 +0.5,0%), @41 < 0.5

f(@e|lzi—1) = ) ) :
0.5No,11(t|we—1,0%) + 0.5N 17 (¢|w4-1 — 0.5,0%), 241 > 0.5

Here Njg 1j(+) represents the normal distribution, truncated to the interval [0, 1]. Figure 2.3
depicts the true conditional transition density surface for this chain, clearly illustrating the
piecewise nature by the distinct boundary across the center of surface. The boundary in
this example is somewhat contrived, but Section 2.5 provides a real-world illustration of
how spatial features can impact transition densities. The log Gaussian Cox process allows
us to account for the boundary by enforcing a border constraint at X;—; = 0.5 (in this
case, through the construction of the basis functions used in the integrated nested Laplace
approximation). We use the same estimation setup as in the previous example, though for
the kernel density estimate the normal reference bandwidth is replaced with the bandwidth
estimator of Sheather and Jones (1991), as it improved estimates. Plotted estimates are
depicted in Figures 2.2 and 2.3, with RMSE and coverage values provided in Table 2.2.

In the first example, the mixture model has the lowest RMSE and nearly perfect cover-
age, followed by the log Gaussian Cox process, which has an RMSE almost twice as large
but with comparable coverage. Figure 2.1 reveals that at the boundaries of the observed
data, the point process estimators fare poorly, with the kernel density failing to even cap-
ture the origin location. However, as seen in Table 2.2, the second example demonstrates a
case where the point process estimators perform much better. The kernel density estimate
has equivalent RMSE and slightly better coverage than the mixture model. By explicitly
accounting for the boundary at X;_; = 0.5 in the log Gaussian Cox process, we achieve an
RMSE that is almost half that of the mixture model or kernel density estimate. Of particu-
lar interest is how the various estimators perform near this boundary. Figure 2.4 shows that
the log Gaussian Cox process is able to successfully capture the change in direction of the
conditional transition density on either side of the boundary, whereas the other two methods

appear to average across the boundary and do not accurately estimate either density.
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Figure 2.2: Plots of conditional transition densities for a Markov chain with a boundary
at X;_1 = 0.5. The true conditional transition density from which the data was generated
(upper left), mixture model (upper right), log Gaussian Cox process (lower left), and kernel
density (lower right) estimates of the transition density surface.
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Figure 2.3: Full conditional transition surface estimates for a Markov chain with a boundary
at Xy_1 = 0.5. Clearly the log Gaussian Cox process estimate captures the effect of the
boundary.

17



95% Uncertainty Bounds for p(X; | X,_; = 0.4975)

Mixture model LGCP KDE

T T T T T T T T T
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
X4

95% Uncertainty Bounds for p(X; | X,_; = 0.5025)

Mixture model LGCP KDE

T T T T T T T T T T T
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
X4

Figure 2.4: Uncertainty estimates for the conditional densities on either side of the boundary
at Xy;_1 = 0.5. Because we can explicitly account for the boundary using a nonstationary
Gaussian process, the log Gaussian Cox process estimate is able to capture the change in
form of the transition density.
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2.5 Modeling Ball Movement in the National Basketball As-
sociation

The National Basketball Association (NBA) collects two dimensional coordinate data for
the ball and all 10 players on the court at a rate of 25 measurements per second. Event
data is recorded in addition to location information, indicating when an action such as a
dribble, pass, or shot occurs. Our aim is to use this data to better understand how each
team moves the ball around the court and to identify differences between teams.

We analyze data from all 1230 regular season games for the 2014-15 NBA season, thinned
so we only use ball locations where a pass is recorded, leaving us with 504,429 transitions.
The movement of the ball during each possession is assumed to be a first-order Markov
chain with shots, fouls, and turnovers serving as absorbing states. By considering each pass
in terms of its origin and destination locations, we can model this as a four dimensional
nonstationary log Gaussian Cox process (one dimension for each z and y location in the
origin and destination) using a process convolution model (Higdon et al., 1998). The key
idea for a process convolution model is that the latent Gaussian process Z(s) can be replaced
with a basis function expansion that relies on a smoothing kernel. In this analysis, we use a
truncated normal kernel because a compact kernel creates a sparse matrix of kernel weights,
increasing computational feasibility. In order to further improve computational performance,
we assume that the covariance function is separable in the origin and destination dimensions,
and divide the court into 1.5x 1.5 foot squares, resulting in n = 1088 grid cells and n? origin-
destination grid cell combinations. This grid cell size is somewhat arbitrary, but provides
a good balance between computational feasibility and a high level of resolution for the
transition surface. In order to calculate the process convolution weights, we place k = 50
kernel locations in a hexagonal grid over the court region, resulting in k2 kernel locations
in the origin-destination space.

In addition to the nonstationarity in X;_1 captured by the process convolution model, we
also account for a systematic discontinuity induced by the three point line. In basketball, if
a player makes a shot while standing behind this line, the made basket is worth three points
instead of two. As such, we anticipate transitions to the area directly behind the three point
line to occur with higher probability than transitions to the area directly in front of the
three point line. We account for the effect of this line by adding a latent dimension to each
pass location that is 0 if the ball is in front of the line and z if the ball is behind it (Bornn
et al., 2012).! The ability to easily include this “basketball-intelligent” information highlights
an advantage of point process transition density estimation over alternative methods. We

determine the value of z and the standard deviation for the truncated normal kernel via

!Because we are working with ball locations rather than player locations, and a player can be standing
behind the line even if the ball is not, we dilate the locations outwards from the hoop a small amount to
account for this discrepancy.
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grid search, using the out-of-sample log-likelihood as our objective. For the two teams we
consider in this section, the Cleveland Cavaliers and Golden State Warriors, the optimal
values for z were 5.5 and 4 feet, respectively. The estimated standard deviation for the
kernel is 7.

Figure 2.5 shows transition density surfaces for the 2014-15 Cleveland Cavaliers and
Golden State Warriors from three different locations on the court. Because we cannot visu-
alize a four dimensional surface, we examine the surface conditioned on a specific transition
origin location, indicated in the plots by the white dot (an interactive transition surface is
available in the supplementary materials). Note the clear demarcation at the three point
line as a result of the latent dimension expansion. There are some clear differences, but in
order to compare the surfaces more easily, we subtract the surface for Golden State from
the surface for Cleveland so that positive values indicate higher transition density for the
Cavaliers and vice versa. The difference surface for one location is depicted in Figure 2.6.
The majority of the locations in the plot have values of nearly zero, indicating negligible
difference in transitions to those locations. However, examination of the difference surface
shows that the Cavaliers have a higher probability of passing the ball beyond the three
point line than the Warriors. At first glance, these differences may appear small enough to
be inconsequential, but this is primarily because the normalization is occurring over such
a large area. If we integrate this surface over the region beyond the discontinuity we get
0.164, which can be interpreted as, “for every 100 possessions that start at the white circle
the Cavaliers pass it beyond the three point line approximately 16 more possessions than
the Warriors.” The nature of basketball is such that a few points per one hundred posses-
sions often means the difference between winning and losing, making this a consequential

difference.

2.6 Discussion

In this paper we have shown that Markov transitions can be accurately represented using
conditional Poisson point processes. By presenting a general framework rather than a spe-
cific algorithm, there is significant flexibility in regards to implementation, allowing users to
estimate transition densities using the point process model that best suits the application
at hand. Additionally, nonstationary Poisson point processes result in flexible transition
density estimators and provide a natural mechanism to leverage available spatial structure,
as demonstrated by the three point line in our basketball application. Finally, a key ad-
vantage of this method is its conceptual simplicity. The linkage between Markov transition
densities and Poisson point processes is clear and relatively easy to understand, making this
approach straightforward to use in practice.

There are some promising opportunities for future research. Currently our method as-

sumes that transition densities are temporally homogeneous, an assumption which will often
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Figure 2.5: Transition density surfaces for the Cleveland Cavaliers (top row) and Golden
State Warriors (bottom row), originating at three different locations indicated by the white
dots. Note the clear demarcation just in front of the three point line induced by the dimen-
sion expansion.
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Figure 2.6: Difference surface between the Cleveland Cavaliers and Golden State Warriors.
This is calculated by subtracting the surface for the Warriors from the surface for the
Cavaliers, so negative values indicate areas for which the Warriors have higher transition
densities, while positive values indicate areas where the Cavaliers have higher transition
densities.
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be violated. More work needs to be done to adapt this method to account for time-varying
transitions. Another avenue for future research is scalability; representing transitions as a
point process requires doubling the dimensionality of the transition space. We successfully
fit a four dimensional point process in this paper, but applying this method in six dimensions
and beyond poses an interesting challenge.

This methodology should be immediately impactful in any area of research where non-
parametric estimation of transition densities is of interest, and will be of particular value in
contexts with complex spatial domains, such as ecology or sports. Extending the connec-
tion between nonparametric density estimation and point processes to include dependent
data was hitherto unexplored and the ease with which spatial features can be accounted for

presents an exciting development in this area.
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Chapter 3

Broadcast Tracking Data

The previous chapter introduced a technique for analyzing tracking data in which complete
player tracks were observed. Because this data is generated by installing multiple cameras
in an arena and converting the uninterrupted video to coordinate data, we refer to it as
multicamera tracking data. The subsequent chapters present analyses of coordinate data
which is generated by converting a traditional broadcast video feed, like the one you would
see if you were to watch a basketball game on ESPN, for example, to player locations. To
differentiate this type of tracking data from multicamera tracking data, we refer to it simply
as broadcast (and occasionally broadcast-derived) tracking data.

Broadcast tracking data will never have the fidelity that multicamera tracking data can
provide, but despite that shortcoming, it has two features that make it an exciting area of
research. The first is availability. Because broadcast tracking data can be generated from a
traditional video feed, it can be produced for leagues and organizations that cannot afford
the multi-camera installation currently required to produce tracking data. The second is that
the techniques used to generate broadcast tracking data can be used to process historical
video. Sports fans and analysts love to compare the stars of today to hall of fame athletes
from the past, and having access to historical tracking data would provide a fascinating
angle to these ongoing debates. Fan interest aspect aside, historical tracking data could
potentially provide new insight into why certain players, tactics, or strategies were effective

in the past, and create new opportunity for analysts and executives.

3.1 Generating Broadcast Tracking Data

In general, the process to produce player tracking data from broadcast video consists of
four steps: first, video segmentation; second, construction of a homography, or isomorphic
mapping, between the locations in the video and the locations on the playing field; third,
detection of players and construction of tracks; and finally, player identification and linking

of players across the entire game. For a thorough review of generating tracking data from
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soccer video, we recommend Manafifard et al. (2017). Here, we provide a brief overview of

how researchers have approached each of these problems in the following subsections.

3.1.1 Video Segmentation

In order to simplify processing of broadcast video, it is necessary to divide video for an entire
game into single unbroken camera shots. The process by which this is done is referred to as
segmentation. Breaks in the video can occur when a highlight is shown, or when commercials
occur, necessitating segmentation. Methods for detecting these breaks generally consist of
quantifying how many pixels have changed from one frame to the next. It is possible to
look at pairwise changes of individual pixels and specify a boundary if the total pairwise
changes exceed some threshold, but this approach fails to account for objects moving within
the camera window and is prone to producing false positives. A more robust approach is to
consider changes in summaries for each frame, such as histograms of red, blue, and green
(RGB) color channel values for each image in the sequence (Zhang et al., 1993; Hanjalic,
2002). Because different camera shots in a soccer game can have similar histogram profiles
due to the dominance of the green pitch, Ekin et al. (2003) introduced an adaptive threshold
for determining segment boundaries based on the zoom level of the camera shot. Lu et al.
(2013b) employed a hidden Markov model with Gaussian mixture emission densities, where
each observation is the RGB histogram for the frame, in order to detect camera transitions
in basketball.

3.1.2 Homography Construction

Mapping player locations to coordinates in Euclidean space requires a one-to-one mapping
from points in the broadcast video to locations on the court or pitch that accounts for cam-
era angle and the size of the camera window. We refer to this mapping as a homography.
With static cameras, the homography can be calculated using a camera calibration algo-
rithm (Zhang, 2000), but the ability of a broadcast camera to tilt, zoom, and pan means that
such approaches do not apply. As a result, homography estimation with broadcast video
typically involves matching templates on the court or field with their known Euclidean
quantities. For example, in basketball Hu et al. (2011) used pixel detection, filtering, and
quadrangle candidate generation to identify the four intersecting lines that make up the free
throw lane and map that to the actual dimensions of the court. Also in basketball, Lu et al.
(2013b) constructed a homography by filtering out players and spectators, computing edges
(meaning lines in the image, not boundaries of the camera window) in the frame using a
Canny detector (Canny, 1986), and matching those edges to a model of the court using an
Iterated Closest Points algorithm (Zhang, 1994). Other examples of homography construc-
tion in sports include Hess and Fern (2007), who used locally distinct feature recognition to

map a football field model to video, and Gupta et al. (2011), who constructed a homography
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for hockey data by minimizing residual error between ellipses and lines on the rink and a
projected model.

Both of the following two chapters deal with broadcast tracking data in soccer. Soccer
has a couple of distinct attributes that make homography estimation uniquely challenging.
First, pitch dimensions are not uniform from field to field, and so a unique homography has
to be estimated for every stadium. Second, there are fewer distinctive markings on a soccer
pitch than a basketball court, football field, or hockey rink, and so, particularly if the camera
is zoomed in, players can be isolated in a green field with no markings, making alignment
with a pitch model difficult and heavily reliant on past or future orientations. Despite these
challenges, much work has been done in this area, with homographies constructed based on
marks for the penalty boxes (Yu et al., 2007), by using fast refinement of poor homographies
Hadian and Kasaei (2015), and by taking advantage of the fixed nature of the broadcast
camera in soccer and using a random forest to estimate the pan/tilt angle based on two
different points. Another recent innovation is the work of Cuevas et al. (2020), who separate
unwanted edge data from the relevant pitch information, use a probabilistic decision tree to
classify pitch lines and use them to calculate camera tilt, and validate hypotheses connecting

the image points with the key points in the model to determine accuracy.

3.1.3 Player Detection and Tracking

After establishing a homography, the next step is to detect players and estimate tracks
within each video segment. Because players frequently overlap, any successful method must
be robust to occlusion. A multitude of methods exist for player detection in a multicamera
setting (Baysal and Duygulu, 2016; Liu et al., 2013) but we highlight some specific meth-
ods used for broadcast tracks. Some authors use a tracking by detection approach, which
includes using the Deformable Part Model (Felzenszwalb et al., 2008) to detect players in
conjunction with either particle filtering (Lu et al., 2013a) or a logistic team classifier and
linear location model (Lu et al., 2013b) to create tracks. Another approach is a multiple
object adaptation of the CamShift algorithm (Hu et al., 2011), which identifies players by
calculating centroids based on a color probablity distribution. Liu et al. (2009) used Haar
cascades to detect players, clustering of color histograms for the detected regions to deter-
mine team membership, and then associated tracks with detected player locations over time
using a Bayesian model. Recent developments in multi-person pose estimation (Igbal et al.,

2017) have also made it viable for player tracking in sports (Bridgeman et al., 2019).

3.1.4 Player Identification

Having generated player tracks, the next task is to link tracks for each video segment
across the entire game by associating them with players. Player identification is challenging
because identifying features, such as jersey numbers, are frequently covered or at a bad angle.

Additionally, the resolution of broadcast video is typically lower than is available with a
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multicamera approach, so facial recognition techniques are not feasible (Bertini et al., 2005;
Ballan et al., 2007). A common approach is to use optical character recognition to identify
numbers on player jerseys (Lu et al., 2013a; Gerke et al., 2015; Li et al., 2018), sometimes
augmented with additional information such as location within a spatial constellation (Gerke
et al., 2017). Moving away from simple number detection, a method that considers all player
features is outlined by Lu et al. (2013b), who treat a combination of visual features as weak
learners, and combine them with temporal smoothing and a per-frame uniqueness constraint
within a conditional random field to estimate player identities. Relatedly, convolutional
neural networks can be used to identify players based on their entire bodies (Senocak et al.,
2018; Lu et al., 2018), though these generally classify frame by frame and fail to take

advantage of valuable temporal information.

3.2 Research on Broadcast Tracking Data

Companies like Sportlogiq and SkillCorner are actively working to provide broadcast track-
ing data as a commercial product. However, to date the majority of research on broadcast
tracking data has dealt with its production rather than its analysis and so there is a signifi-
cant need to prove that this type of data is valuable and can produce meaningful and valid
results. The main feature that prevents existing methods for multicamera tracking data
from being applied directly to broadcast tracking data is the issue of censoring, illustrated
in Figure 3.2. Put simply, players can leave and exit the camera window, resulting in dis-
continous player tracks and a variable number of players on screen. Additionally, consistent
player identification across these discontinuous tracks is often unreliable. Consequently, as
new methods for tracking data are developed they must be able to account for missingness
and its effects.

In the following two chapters, we present some applications related to broadcast-derived
tracking data. In Chapter 4, we consider a sports science application of load metric estima-
tion. Load metrics are quantities that sports scientists monitor to manage strain and stress
on athletes. We show that broadcast estimates of these values are highly accurate, despite
the high degree of censoring. In Chapter 5, we address a more tactical question and show

that broadcast tracking data can be used to effectively estimate soccer formations.
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Censoring induced by the camera window in a single frame of broadcast tracking data
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Figure 3.1: A single frame of data from a game. Multicamera tracking data would consist
of all player locations (represented by both the filled and hollow circles) whereas broadcast

tracking data would include only the locations within the camera window represented by
the filled circles.
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Chapter 4

Estimating Locomotor Demands
During Team Play From
Broadcast-Derived Tracking Data

4.1 Introduction

In order to reduce fatigue, prevent injury, and improve performance, sports scientists seek
to monitor the physical impact that participation in training and competition has on an
athlete. A number of different metrics, broadly referred to as load metrics, have been used to
try and quantify the intensity of a given activity for an athlete. These metrics consist of two
general categories: internal and external. Halson (2014) defines internal load as “the relative
physiological and psychological stress imposed” on an athlete. Internal load measures are not
treated in this work and we make no further note of them other than to mention that they
exist and include, for example, individual reporting of perceived exertion, heart-rate-derived
training impulse, and summated-heart-rate-zones (Borresen and Lambert, 2008; McLaren
et al., 2018). External load is defined as “the work completed by the athlete, measured
independently of his or her internal characteristics” (Halson, 2014). Metrics in this category
include distance measures (both total distance over a training session or match and distance
traveled stratified by intensity of the activity) (Coutts and Duffield, 2010; Rampinini et al.,
2009; Dalen et al., 2016; McLaren et al., 2018) and acceleration-derived measures (Dalen
et al., 2016; Delaney et al., 2016; McLaren et al., 2018; Nicolella et al., 2018; Boyd et al.,
2011). Existing methods for capturing external load metrics consist of an athlete wearing
a device, whether that be a global positioning system (GPS) (Sykes et al., 2013; Mullen
et al., 2019) or local positioning system (LPS) tracker (Vazquez-Guerrero et al., 2019), or
an accelerometer (Boyd et al., 2011), which can give accurate readings of instantaneous
velocity and acceleration. However, it is not always possible for an athlete to wear such a
device, and so multiple camera semiautomatic video tracking systems have been used as an

alternative means to capture measures of external load (Gregson et al., 2010).
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Initially introduced in soccer by ProZone in 1999 (Medeiros, 2017), multicamera optical
tracking data has spread across a variety of sports, providing detailed location data for
players multiple times per second. Much work has been done to demonstrate the validity
and reliability of this type of data, beginning with Valter et al. (2006), who showed that
video tracking data accurately represented velocities in a variety of controlled tests. Related
work compared GPS, LPS, and video tracking systems and provided calibration equations
between them, finding that optical tracking data tended to slightly overestimate distances
relative to the other two and that data accuracy was impacted by both player velocities and
varying pitch sizes (Buchheit et al., 2014). Other studies have corroborated the tendency of
video tracking data to have slightly higher error than GPS or LPS systems when measuring
velocities and accelerations (Linke et al., 2018; Pons et al., 2019), though Pons et al. (2019)
also showed that errors for video tracking estimates from match play were well within
an acceptable range for practical usage and Linke et al. (2018) showed that location and
distance estimates from video tracking data were more accurate than those from GPS
systems. More recent work has shown that later generation video tracking systems have a
high degree of accuracy (Linke et al., 2020). Video tracking data has been used for motion
analysis (Carling et al., 2008), and in particular has been used to examine high intensity
activity (Di Salvo et al., 2009) and match to match variability of high-speed activities
(Gregson et al., 2010) in the English Premier League. Broadly, tracking data is useful for
sports scientists because it can be used to derive metrics related to distance, speed, and
acceleration that serve as a proxy for the stress placed on a player’s body as a result of
their athletic performance. This source of data is most useful for match play, where data
produced by wearable devices may not be available, whether due to league rules or player
cooperativeness.

However, despite the distinct advantages provided by multicamera optical tracking data
two issues remain: exclusivity and sparsity. This data is exclusive because obtaining it
requires installation of expensive hardware and paying large licensing fees, restricting its
availability to only the most elite leagues. The data is sparse in the sense that it has
become widespread only in recent years, preventing historical comparison. As a result, any
ability to draw conclusions about load metrics and their relationship to health outcomes
is limited. Broadcast-derived tracking data has the capacity to overcome both of these
problems because it allows locations to be extracted from regular broadcast video using
computer vision techniques (Lu et al., 2013b). This eliminates the need to install special
cameras and has the potential to provide x-y coordinate data for any game with a video
feed. Currently companies such as Sportlogiq (2020) and SkillCorner (2020) are actively
working to develop commercial products based on this technology and this type of data is
something we expect to become broadly available in the near future.

Despite its clear value, broadcast-derived tracking data comes with one glaring issue:

location data is only available for a player as long as they are observed within the camera
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frame. Our purpose in this paper is to assess the viability of broadcast-derived tracking
data for estimation of a variety of external load metrics commonly used across sports.
Specifically, our focus is on estimating load metrics during the time that a given player
is offscreen. We do this by using games for which complete multicamera tracking data is
available, and manually censoring observations to emulate the broadcast-derived tracking
data. It is important to note that the purpose of this work is not to establish the validity of
broadcast-derived tracking data in the sense of Pons et al. (2019); Valter et al. (2006); Linke
et al. (2020) and others. Rather we assume that the player locations are accurate when they
are observed and seek to assess the impact of the censoring inherent to broadcast tracking
data. Approaching the problem in this way allows us to establish a ground truth, answering
definitively, given that the broadcast tracks are accurate, whether or not broadcast-derived

tracking data can be used to assess external load.

4.2 Data

Our data comes from 18 home games played by Chelsea FC in the 2014-15 English Premier
League and includes information for 248 players (this number does not include goalkeepers,
which are excluded from our analysis). The data contains complete location data for all
players in each game at a frequency of 10 measurements per second, providing a continuous
sequence of locations for each player, which we refer to as a track. Additionally, the data
includes event information, which consists of the location and description of actions such
as a touch, pass or tackle.

In order to emulate the broadcast-derived tracking data while retaining true offscreen
values, a camera track is simulated by linearly interpolating between event locations and
a 40 x 40 meter window is centered on the camera track. Player locations outside of the
window are treated as unobserved, and metrics calculated from these censored tracks are the
values predicted in this paper. Each time a player track transverses the edge of the camera
window, the multicamera track is split into a new segment, referred to as a subtrack, and
assigned a unique ID. This process results in 149,680 subtracks generated from an original
820 tracks, giving an average of 8315.6 (4/- 411.9) subtracks per game from a median of
45.5 (range=44-47) original player tracks per game. The median subtrack length is 17.0 m
(range=0.0-830.1 m) with a median time of 8.1 s (range=0.1-556.7 s). Subtrack information
is augmented by player position information scraped from transfermarkt.com, with each
player classified as either a defender (n = 85), midfielder (n = 85), or forward (n = 78).

Figure 4.1 shows how the distributions of total time and total distance vary depending
on whether or not players are onscreen. Defenders have the least variable distributions
and also tend to spend the most time offscreen. Distributions for forwards and midfielders
have larger variance and both exhibit some bimodality, though this is primarily driven by

player substitutions. Midfielders travel the most distance and spend the most time onscreen,
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Censored vs. Observed Distributions of Total Time
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Figure 4.1: Distributions of total time and total distance for the observed and censored
portions of each match.

followed by forwards. Generally, this figure shows that a player may spend anywhere from

a quarter to as much as nearly two thirds of their play time offscreen.

4.2.1 Player load metrics

The suite of external load metrics considered in this work were selected because of their use
throughout the literature (see, for example, Varley and Aughey (2013); Gabbett and Ullah
(2012); Dwyer and Gabbett (2012); Johnston et al. (2014); Dalen et al. (2016); Borresen
and Lambert (2008); McLaren et al. (2018)). Because definitions of load metrics may vary
depending on the author, specific definitions for the metrics considered in this manuscript
are provided in Table 4.1. Note that although this work is limited to predictions for the eight
load metrics outlined in Table 4.1 that they fall into the three broad categories of distance,
velocity, and acceleration derived measures. In general, any external load metric that falls
into one of these categories can be calculated from broadcast-derived tracking data, though
prediction accuracy for specific censored metrics should be assessed individually.
Exploratory analysis of this data and the calculated metrics reveals two patterns worth
highlighting. The first is that there is a very strong correlation between the amount of
censored playing time in a game and most of the censored load metrics, as shown in Figure
4.2 for total acceleration. When keepers are removed from the data, the values for Pearson’s

correlation coefficient between elapsed time for a censored subtrack and most of the other
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metrics range between 0.596 and 0.998, the exceptions being peak velocity and acceleration
density. This suggests that in many cases fairly good estimates can be obtained by simply
regressing the metric on censored subtrack time. The second pattern becomes clear if we
assume that the censored data is missing completely at random (MCAR) (Rubin, 1974); that
is, we assume that there is no relationship between the pattern of missingness and the values
of the observed and censored load metrics. To illustrate, consider total distance (though the
following relationship holds for the other player metrics). Under this assumption, the ratio of
observed distance, D, to censored distance, D, is equivalent to the ratio between observed

time, T,, and censored time T, or in mathematical notation,

D. 1.
D, T,
This in turn implies that we can estimate D. by setting D, = Do%. Because we are

simply scaling the observed metric value by the ratio of censored to observed time, we
refer to this as a scaling estimator. Despite its appealing simplicity, examination of the
residuals, shown for four of the metrics in Figure 4.3, reveals that the assumption that
data is MCAR is incorrect. We see that residuals become increasingly negative (censored
values are overestimated) as the amount of censoring increases for most of the metrics, with
the exception being the amount of time spent in the slowest velocity band. The systematic
differences between player movement on- and off-camera demonstrated in these plots can

be summarized simply as “players move faster when on camera.”

4.3 Methods

The purpose of this work is to determine whether or not broadcast-derived tracking data
can be used to provide accurate estimates of external load metrics. This is accomplished by
dividing the 18 observed games into two groups: 361 player-match observations from the
first 13 games of the season are used as a training set to estimate model parameters and
138 player-match observations from the remaining 5 games serve as a test set on which the
accuracy of model predictions can be assessed. If these predictions are highly accurate, that
serves as evidence that broadcast tracking data is appropriate for load metric estimation.
Predictive accuracy is measured using root mean square predictive error (RMSPE),
defined RMSPE = /3" (y; — 9:)%/n, where §; is the predicted value for observation y; and
n is the total number of observations, and the coefficient of variation (CV), defined CV =
RMSPE/y, where y = > ; y;/n. The coefficient demonstrates how large the errors are
relative to the values themselves, giving an indication of how much the overall variance in
the data was reduced by the given model. In this application, the CV is useful because it
allows comparison of predictive accuracy across metrics rather than simply across models,

overcoming the wide range in magnitudes for the different load metrics.
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Table 4.1: External load metric definitions

Category

Metric

Definition

Distance

Velocity

Acceleration

Total distance

High speed distance

Very high speed distance

Time spent in velocity band [z, y)

Peak z-second velocity

Total Acceleration

Acceleration density

Time spent in acceleration band [z, y)

Sum of the distance travelled by
an athlete.

Sum of the distance travelled by
an athlete with speed between
3.5 and 5.7 m/s.

Sum of the distance travelled by
an athlete with speed greater
than 5.7 m/s.

Number of seconds spent with
velocity (m/s), v, in the inter-
val r < v < y. Intervals con-
sidered are [0, 3.5), [3.5,5.7), and
[5.7,00), based on the work of
Dwyer and Gabbett (2012).
Max velocity of average velocities
calculated over z = 1,3,5, and
10 second rolling windows.

Sum of the absolute values of ac-
celeration at 0.1 second intervals.
Mean acceleration.

Number of seconds spent with
acceleration (m/s?), a, in the
interval * < a < y. Inter-
vals considered are [0.65,1.46),
[1.46,2.77), and [2.77,00), based
on the work of Johnston et al.
(2014)
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Censored Time vs. Censored Acceleration
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Figure 4.2: Censored time versus censored total acceleration. Note that once keepers are re-

moved from the data, the relationship between censored time and censored total acceleration
is almost exactly linear.
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Scaled Estimator Residuals vs. Percent of Censored Data
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Figure 4.3: Residuals for the scaling estimator in Section 4.2.1 versus the percentage of data
that is censored. The scaling estimator consistently underestimates the amount of time spent
in the slowest velocity band, whereas it consistently overestimates values for the other load
metrics, resulting in negative residuals. This is clear evidence that the way players move on
camera differs systematically from how they move offscreen.
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4.3.1 Statistical Models

A variety of statistical models are considered in the following sections. As a baseline level

of comparison, a linear regression model for each load metric of the form

Yi = Bo + B11; + frx; + €

is used, where ¢ indexes the player-match combination, y; is the value of the censored metric
at the game level, T; is the amount of censored time for the game, x; is the value of the
observed metric at the game level, and ¢; is a normally distributed error term.

The next two models considered are regularized linear regression models of the form
yi = Xif + €,

where X; is a 1 X P design matrix for player-match i, § is a P x 1 vector of model parameters

and ¢; is a Gaussian error term. These are regularized because [ is estimated subject

to the elastic net penalty, 3 = argmin(|ly — X8||2 + X282 + A1l|8]l1), where A; and
B

Ao are tuning parameters that affect the degree to which the L; and Lo penalty terms,
respectively, impact parameter estimates (Hastie, Trevor, Tibshirani, Robert, Friedman,
2009). The design matrix, X;, for the first linear model consists of an intercept and main
effects for the variables included in Table 4.2, features such as total observed distance and
amount of time spent offscreen. The second linear model is similar to the first, but includes
all two-way interactions in addition to the main effects. The final model we consider is a
tree-based model, or random forest, which naturally accounts for nonlinear relationships
between the predictors and response (Breiman, 2001).

Conveniently, the regularized regression models and random forest can all be fit using
gradient boosting (Friedman, 2001) as implemented by the xgboost package (Chen and
Guestrin, 2016) in the statistical programming language R (R Core Team, 2019). Gradient
boosting is an ideal tool for this application for several reasons: it fits a model, then iterates,
fitting a model on the residuals of each previous model until no further improvements can
be made, then averages all of the models together, yielding very accurate predictions; it
performs automatic variable selection, permitting a “kitchen-sink” approach in which all
potential predictors can be considered for inclusion in the model; and finally, as implemented
in xgboost it is extremely fast, allowing models to be fit to a large amount of data in just
a short span of time.

These three different models (two linear, one random forest) are all fit at two different
levels. First, censored metric values are aggregated for each player-match observation and
then predicted. Second, values are predicted for each subtrack and subsequently aggregated
for each player-match. Models fit at these two different levels are referred to as game and

subtrack level models, respectively. A variety of predictors were constructed from the player
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tracks at both of these levels. For each subtrack, the x and y locations where the player left
and re-entered the camera window was recorded and the Euclidean distance and time elapsed
between them was calculated. Distance, velocity, and acceleration were calculated for each
0.1 second interval, and used to calculate the load metrics detailed in Table 4.1 as well as
average velocity and average absolute acceleration in the 2 second intervals preceding and
following each subtrack. The raw accelerations occasionally exhibit unrealistic values, with
some instantaneous accelerations greater than 50 m/s~2, so in order to reduce this noise the
accelerations were smoothed using a Nadaraya-Watson kernel smoother (Nadaraya, 1964;
Watson, 1964). Variables considered for prediction at the game level mostly consist of the
load metrics calculated for the observed portion of the game, but also include the total time
in seconds that a player was censored, percent of playing time a given player was censored,
and their average observed velocity. Player position is included as a predictor at both the
subtrack and game levels.

A summary of the predictors included in the various models is shown in Table 4.2. All
numeric variables were centered and scaled so that they have a mean of 0 and standard
deviation of 1, which, for the linear models, allows the relative significance of each predictor
in the model to be determined by comparing the size of its associated coefficient to the
other coefficients in the model.

Examination of the 18 games in the data reveals that 100% of the peak x-second velocity
values occur within the camera window, and as such, there is no need to try and estimate
these values for the censored tracks. While peak velocities may not always be observed
across all games, this suggests that any exceptions will be rare and so peak velocity is

omitted from the subsequent analysis.

4.4 Results

The full results for each of the predicted metrics at the subtrack and game levels are shown
in Tables 4.3 and 4.4, respectively. In all cases, estimating the player metrics at the subtrack
level and then aggregating to obtain game level estimates outperforms making predictions
purely at the game level, as seen in the lower RMSPE and CV values. For seven of the
eleven player load metrics under consideration, the linear model with interactions performs
the best, though the random forest has the lowest RMSPE and CV in three cases. Predicting
acceleration density is the only case where the linear model with no interactions results in
the best predictions.

CV wvalues are less than or equal to 0.10 for six of the eleven models, indicating a
significant reduction in standard error relative to the overall size of the response. The
largest CV is 0.31, for both very high speed distance and time in velocity band [5.7, c0), both
outcomes for which the nonlinear model performs the best. This result can be explained

by noting that the correlations of these two metrics with censored total time are 0.599
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Table 4.2: Model predictors. Inclusion for consideration in subtrack or game level models
is indicated by the x. All variables that begin with “observed” are measured at the game
level, so an x in the subtrack model column for “observed total acceleration” means that
the sum of the absolute value of accelerations for the entire game is used as a predictor

when estimating individual subtrack outcomes.

Predictor

Included at subtrack level

Included at game level

player position

offscreen time

censored total time

offscreen distance

observed total distance

average velocity in previous two seconds

average velocity in following two seconds

average absolute acceleration in previous two seconds
average absolute acceleration in following two seconds
observed average acceleration

observed total acceleration

observed average velocity

observed high speed distance

observed very high speed distance

observed time in velocity band [0, 3.5)

observed time in velocity band [3.5,5.7)

observed time in velocity band [5.7, c0)

observed time in acceleration band [0.65,1.46)
observed time in acceleration band [1.46,2.77)
observed time in acceleration band [2.77, c0)

b
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and 0.605, respectively, indicating that these predictions do not benefit from the strong
relationship with censored total time that the other metrics do. Considering the RMSPE
values themselves provides insight into just how well each metric is being predicted. For
example, despite its CV of 0.31, the RMSPE for time in velocity band [5.7, c0) is still only
6.4 seconds. The RMSPE for total distance is 183 meters, minimal error considering the
average censored distance traveled by players in each game is 3524 meters.

An examination of the residuals for a given response variable against the percent of data
that is censored, shown for total distance in Figure 4.4, is illuminating. Unsurprisingly, the
variability in the predictions increases with the amount of censored data, but in general
the predictions appear unbiased, and even when as much as 50% of the data is missing,
the range of the residuals being approximately (-500, 500) indicates a significant reduction
in variability when compared to the empirical standard deviation for the response of 1506
meters. Figure 4.4 also shows a clear demarcation in the amount of censoring across the
various positions, with defenders experiencing the most time off camera and midfielders
spending the most time within the camera frame.

Due to the nature of gradient boosting, the ability to interpret coefficient values is
limited, but a sense of the impact of certain predictors can be gained by taking the top five
covariates with either the greatest importance (for the random forest) or largest coefficients!
(for the linear models) for each model and tallying how frequently each is included. Offscreen
time is included as the first or second most significant variable in the models for all eleven
load metrics, a fact foreshadowed by the strong correlation noted in Section 4.2.1. Offscreen
distance and position are both top variables in eight of the eleven models, while the velocity
and acceleration entering and leaving the camera window are in the top five for four of the
models, primarily the distance metrics. All remaining predictors occur in the top five for

just three or fewer of the load metrics.

4.5 Conclusion

Broadcast-derived tracking data has the potential to greatly increase the amount of player
tracking data available, but concerns about the large amount of censoring inherent to this
data must be addressed in order to have confidence in its value for sports scientists. This
work has demonstrated the viability of this type of data when evaluating player load in
soccer. Because censored player load metrics are predicted using widely available machine
learning methods rather than a custom built solution, this type of modeling is accessible
and should be relatively easy to adopt in practice. Examination of RMSPE and CV values
shows that in general, predictions for the various load metrics are very accurate. Some of

the stratified metrics, i.e., time in velocity band [5.7, 00) and very high speed distance, have

'Recall that all variables were centered and scaled, making this a valid comparison.
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Residuals for Total Distance vs. Percent of Censored Data
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Figure 4.4: Residuals for total distance predictions versus percent of total data that is
censored.
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larger CV values due to the small amount of time players spend in these states, but the
RMSPE in these cases is still low enough for use in a practical setting.

As this type of data is adopted, one important consideration is how estimate accuracy
varies by position and across players. For example, when considering total distance, the
RMSPE for defenders, midfielders, and forwards is 216, 164, and 160, respectively. This
is driven primarily by differences in censoring rates, with forwards and midfielders being
censored just 43.4 and 35.4 percent of the time, versus 52.5 percent of the time for defenders.
Censoring rates also vary significantly from player to player, ranging from 19.7 to 60.04
percent of data censored. Accounting for differences in censoring can increase prediction
accuracy and improve the efficacy of using broadcast-derived tracking data for external

load metric estimation in soccer.

4.5.1 Future Work

There are two primary areas for future work. The first is to get a sufficiently large sample
of broadcast-derived tracking data and assess its validity for sports science applications,
as has been done for semiautomatic multiple camera video tracking systems. This paper
has demonstrated that if the locations are accurate, censoring can be overcome to estimate
load metrics. Further research needs to be done to determine whether or not the process to
produce broadcast tracking data introduces additional error beyond established multicamera
video tracking methods, and if so, how much. The second is to scale up the number of teams
considered beyond the 19 here and replicate the results of this manuscript. Because Buchheit
et al. (2014) indicated that pitch size impacted metric estimates, work needs to be done to
ensure that the conclusions drawn here are consistent across all stadiums in the Premier

League in addition to being consistent across multiple leagues.
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Table 4.3: RMSPE and CV for the base model and subtrack level models on each of the responses

Base model

Linear model

Linear model w/ int

Random forest

RMSPE CV  RMSPE CV  RMSPE CV  RMSPE CV
total distance (m) 288.2  0.08 202.0 0.06 188.3 0.05 183.0 0.05
high speed distance (m) 164.5  0.22 113.8  0.15 106.0 0.14 113.4 0.15
very high speed distance (m) 60.4 0.44 53.4  0.39 53.3 0.39 42.8 0.31
time in velocity band [0, 3.5) (s) 49.9  0.03 304  0.02 29.1 0.02 29.8 0.02
time in velocity band [3.5,5.7) (s) 37.8 0.22 26.4 0.15 24.5 0.14 26.4 0.15
time in velocity band [5.7,00) (s 8.8 0.43 79  0.38 7.9 0.38 6.4 0.31
total acceleration (m/s?) 2473 0.11 1448  0.07 1365 0.06 1366  0.06
acceleration density (m/s?) 0.140  0.12 0.113 0.10 0.129 0.11 0.119 0.11
time in acceleration band [0.65,1.46) (s) 349 0.06 25.8  0.05 25.7 0.05 29.5 0.05
time in acceleration band [1.46,2.77) (s) 45.3  0.13 30.6  0.09 27.8 0.08 29.5 0.05
time in acceleration band [2.77,00) (s) 36.5 0.22 215  0.13 20.9 0.13 22.3 0.13
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Table 4.4: RMSPE and CV for the base model and game level models on each of the responses

Base model

Linear model

Linear model w/ int

Random forest

RMSPE CV RMSPE CV  RMSPE CV  RMSPE CvV
total distance (m) 288.2  0.08 257.0 0.08 267.1 0.08 286.5 0.08
high speed distance (m) 164.5  0.22 150.6  0.20 153.1 0.21 159.1 0.21
very high speed distance (m) 60.4  0.44 60.4  0.44 61.7 0.45 68.1 0.50
time in velocity band [0, 3.5) (s) 49.9  0.03 414 0.02 42.0 0.02 60.3 0.03
time in velocity band [3.5,5.7) (s) 37.8 0.22 34.8  0.20 35.2 0.20 37.5 0.22
time in velocity band [5.7,00) (s 8.8 043 9.0 043 9.1 0.44 9.91 0.48
total acceleration (m/s?) 2473 0.11 1748  0.08 1658 0.08 2227 0.10
acceleration density (m/s?) 0.140  0.12 0.126 0.11 0.140 0.12 0.156 0.14
time in acceleration band [0.65,1.46) (s) 349 0.06 25.7  0.05 274 0.05 38.1 0.07
time in acceleration band [1.46,2.77) (s) 453  0.13 32.3  0.09 31.7 0.09 40.4 0.12
time in acceleration band [2.77,00) (s) 36.5 0.22 26.7 0.16 25.3 0.15 29.2 0.17




Chapter 5

Identifying Soccer Formations in
the Presence of Heavy Censoring

5.1 Introduction

A significant tactical aspect of soccer is the arrangement of players on the pitch, commonly
referred to as a formation. A team’s formation impacts the way they move the ball towards
the opposing team’s goal and how they defend attacks. In soccer, each team fields 11 players:
1 keeper, and some mixture of defenders, midfielders, and forwards. Typically, the name of
a formation describes the position of the 10 non-keeper players, starting with the defenders.
For example, a 4-3-3 formation would consist of four defenders, three midfielders, and three
forwards. There are numerous named formations, but these names serve as broad categories
rather than rigid descriptions and there is a lot of individual variation in how a given
formation is implemented from team to team. As a simple illustration, in a 4-3-3, the full
backs can press forward, resulting in a curved back line, or hang back, producing a straight
back line instead. Identifying these formations requires knowledgable observers to watch
games and categorize teams, a time intensive task, and these categorizations frequently do
not capture the nuance just described. Learning formations directly from data can overcome
these limitations.

Optical tracking data has been used to identify soccer formations by a variety of re-
searchers. Generally, these approaches involve aggregating the relative locations of the 10
non-keeper players on each team in a careful way to learn how they are arranged. Exam-
ples include Wang et al. (2015), who used latent dirichlet allocation (Blei et al., 2003) on
match logs augmented with spatial analysis of pass locations to discern tactical patterns
used by soccer teams in La Liga; Bialkowski et al. (2014), who applied minimum entropy
data partitioning to each frame of tracking data to assign players to unique roles (i.e., po-
sitions within a formation) and then used agglomerative hierarchical clustering to classify
these collections of roles into formations; and Shaw and Glickman (2019), who also applied

hierarchical clustering to learn formations, but rather than assigning players to a role within
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each frame, averaged player locations over two minutes segments into observations and then
performed clustering on the averaged player locations.

These methods have all been used to identify formations from multicamera tracking
data, but they are not applicable when confronted with the heavy censoring intrinsic to
broadcast tracking data. The primary contribution of this work is to present a method that
extends automatic formation identification to tracking data even when a significant portion
of that data is missing. To illustrate, in the five games of broadcast tracking data considered
in this paper, the largest percentage of frames where all 10 outfield players were observed for
a team was just 8.48 percent. Consequently, at best more than 90 percent of observed frames
are missing at least one player location. This seemingly presents a substantial challenge,
but in the following sections an approach is detailed for carefully aligning each frame of
broadcast tracking data with the origin, allowing formations to be estimated and used to
classify new observations with performance comparable to that of models fit with the full
data.

In addition to addressing censoring, any method for classifying observed collections of
player locations into formations must address some further nuisance factors. First, players
can swap roles while maintaining the formation, so the method must account for player
permutation. Second, formations can contract and expand while roles maintain the same
relative position to each other, potentially leading to observations being categorized sepa-
rately despite being the same formation, so a suitable method must account for the scale

of the formation. These issues are also addressed in the following sections.

5.2 Data & Data Processing

The data in this paper comes from five games in a high level European soccer league for
which both multicamera tracking data and broadcast camera window information are avail-
able. The multicamera tracking data consists of z- and y-coordinate locations for the eleven
players on each team at a frequency of 24 frames per second, as well as team IDs, player
IDs, and possession information indicating whether a team is on offense or defense. Player
locations are transformed so that all teams are attacking from left to right. The camera
window is used to censor the multicamera data according to the broadcast pattern, creating
a set of “perfect” broadcast data. Simulating broadcast data in this way allows estimates
from the full multicamera tracking data to be meaningfully compared with estimates from

the broadcast tracking data to assess performance.

5.2.1 Frame Alignment

When using player locations to estimate and classify soccer formations, some notion of
centrality is needed in order to align frames so that player locations can be grouped into

formation roles. The approach taken in this paper is motivated by considering other pro-
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posed methods for doing so and detailing why they are inappropriate for broadcast tracking
data.

The simplest technique for frame alignment is to subtract the centroid for each frame
from the observed player locations. This works fairly well when all players are observed but
with the censoring introduced by the broadcast tracking data centroid estimates become
highly unstable. Calculating the centroid based on observed data and using it to center
each frame results in diffuse clusters of player locations, as seen in Figure 5.1c. This signif-
icantly increases the variance for role estimates and makes identifying formations difficult
or impossible.

An alternative approach, the one taken by Shaw and Glickman (2019), is to examine
all pairwise differences between observed players and average across some specified window.
Relying on pairwise differences allows us to center the data without worrying about the

effects of censoring or outliers. To see this, let

1 U1
S =

Irp Yp
be the P x 2 matrix of player locations for a given frame (P is equal to 10 for fully observed

frames) and s; = (x;,y;) be the zy coordinates for player i. The centroid for the frame is

calculated by taking the mean of each coordinate, that is,

5 — {;1951‘ Zip;lyi
rP P '

Obviously, s; —s; = (s; —d) — (s; — ) for all 4, j; i.e., the pairwise differences are unaffected
by translation.

In order to estimate roles using this alignment technique, it is necessary to be able to
easily translate between the location and difference spaces. This can be done by defining
a (P(P —1)/2) x P matrix, D, where each row consists of all zeroes except for a 1 in
column ¢ and a —1 in column j so that DS results in a (P(P — 1)/2) x 2 matrix of all
pairwise differences. D itself is not invertible, since it is not square, but by letting D~ be
the Moore-Penrose generalized inverse (Penrose, 1955) of D, then D and D~ can be used
to move between the difference and location spaces. Specifically, D~ DS will be a matrix in
the location space with the centroid at (0,0) and with equivalent pairwise differences to S.

Note that if D were applied individually to each frame and then immediately multiplied
by D, the lack of stability due to outliers and censoring would remain. This is overcome by
averaging the differences and then translating back to the location space after the potential

effect of any individual outlying observation or missing data has been decreased.
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Relying on average differences works well as long as players maintain their roles within
a formation, and equally important, are assigned the correct player ID in each segment.
Unfortunately this is not always the case. Figure 5.2 shows an example of a possession
sequence where players switch roles. In a possession where all players adhered perfectly to
their role in the formation, once the frames were aligned, there would be little or no overlap
between the tracks represented by the different colors in the left panel. In this possession,
the players represented by the light purple and green tracks and the player represented by
the dark purple and orange tracks exchanged roles. These kinds of switches are very common
and can occur dozens of times over the course of a match. Taking the average differences to
estimate role means results in the locations plotted in the top right panel of Figure 5.2. As
a result of the switching, the role estimates for the light purple and green players are nearly
identical and the estimates for the dark purple and orange players are contracted inwards.
Using a permutation based method instead (minimum entropy data partitioning, which is
introduced below) results in the more clearly defined roles shown in the lower right panel,
better capturing the true formation.

The issue of player switching is compounded when it comes to broadcast tracking data,
as accurate player identification from broadcast data is an open research problem. When a
player re-enters the camera window, there is a nonzero probability that they will be assigned
an ID incorrectly. Averaging player differences across frames can potentially collapse roles
together and lead to inaccurate representations of formations in aggregate. Depending on the
frequency of the permutation introduced by the broadcast video processing, these averages
may be completely meaningless.

In this work, we introduce a new approach to frame alignment that overcomes all of the
issues outlined above and works equally well for multicamera or broadcast tracking data.
Broadly, it relies on translating successive frames within a possession to minimize the atomic
configuration distance (ACD) (Ferré et al., 2015), using minimum entropy data partitioning
(MEDP) (Roberts et al., 1999) to estimate a role distribution for these translated frames,
and then centering all associated frames by moving the centroid of the role distribution to
the origin. Because ACD and MEDP are central to the rest of the work in this chapter,

background information on each of them is provided in the following sections.

5.2.2 Atomic Configuration Distance

Atomic configuration distance (ACD) is a permutation invariant distance measure with
roots in chemical physics originally developed to compare configurations of atoms (Ferré
et al., 2015), though it has also been used to compare configurations of players in basketball
and soccer (Miller and Bornn, 2020). It measures the distance between two collections of
points in RP, X = {z1,...,2n,} and Y = {y1,... ,YN, } by associating a density with each

collection of points and calculating the L? norm between the densities. More concretely,
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(a) Raw Multicamera Tracks (b) Centered Multicamera Tracks
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Figure 5.1: (a) Raw multicamera player tracks for one possession in a soccer match. (b)
Multicamera tracks centered by placing the centroid of each frame at (0,0). (c) Broadcast
tracks centered by placing the centroid of each frame at (0,0). (d) Broadcast tracks centered
by minimizing the atomic configuration distance and then placing the centroid of the pos-
session distribution means at (0,0). Simply centering the broadcast tracks (shown in panel
(¢)) results in poorly defined formation roles.
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Role estimates from average differences

Centered Multicamera Tracks

20
|

30
|

20
|

-10
1

10
1
-20
L

-20 -10 [ 10 20 30

Role estimates with permutation

20
|

0
I
[ ]

-10
I
[ J

-20
L

-30 -20 -10 0 10 20 -20 -10 0 10 20 30

Figure 5.2: The left panel shows centered multicamera tracks where multiple players switch
positions within the formation. A possession where no players switched would have very
little overlap between the different colors, but because the orange and dark purple and the
light purple and green players overlap, this is evidence they have switched roles. Calculat-
ing formation roles by averaging data (top right panel) collapses them together, whereas
using MEDP (bottom right panel) maintains distinct roles. Data is oriented so the team is
attacking from left to right.
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ACD is defined as
dN(X,Y) = |lpx (s, %) — py (s, D)[I3, (5.1)

where px(s,X) = Nir S Ne (s 24, %) is a kernel density estimator (KDE). Here ¢(-|m, X)
is a multivariate Gaﬁssian density function with mean m and covariance X, with ¥ serving
as a pre-specified multivariate bandwidth parameter.

Calculating (5.1) directly is computationally expensive because it involves an integral,
but it can be reduced to an easily computed function of pairwise differences. The basis for

this reduction is outlined here. Following Ferré et al. (2015), define the overlap integral

S(px,py) =/ L px(s,X)py (s, X)ds,

seR

which allows (5.1) to be rewritten as

vl Y) = [ (x(.2) = pr(s, 2)%s (52)
seR
= S(px,px) + S(py, py) — 25(px, py)- (5:3)

As shown in Miller and Bornn (2020), S(px, py) can be simplified to

S(ox.ov) = |

px (s, X)py (s, X)ds (5.4)
seRP

1 D/2 \Z|_1/2 Ny Ny 1, . | .

= (47T) N, N, ;;QXP (_4(%_%) (371_3/9)>~ (5.5)
The full derivation of this equality is provided in the appendix of Miller and Bornn (2020)
but for completeness a similar derivation is included at the end of this chapter.

Substituting (5.5) into (5.3) means that the ACD can be calculated without computing
any integrals, a key feature in making ACD useful. Reducing the overlap integral to a
function of all pairwise differences between X and Y means that evaluation of S(-,-) is both
simple and rapid, and consequently calculating d(®) is feasible even for a large number of
observations.

Conceptually, ACD can be thought of as representing a collection of points as an image
and assessing similarity on the image space rather than the location space. This results in two
key properties that make it ideal for frame alignment. The first is that IV, need not equal IV,
in order to calculate the distance, which is desirable since frames in the broadcast tracking
data exhibit a variable number of players. The second is that it is permutation invariant,
so collections of player locations can be compared without concern that the ordering of the

players will impact distance calculations.
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5.2.3 Minimum Entropy Data Partitioning

One way to consider formation estimation is as identifying the set of two dimensional
densities that is most likely given the observed collection of player locations. From this
perspective, the formation, or distribution for the whole team, is the density P(X = x)

defined by the linear combination

where P,(x) is a bivariate Gaussian representing the distribution for role n within the
distribution. Within a formation, roles should exhibit minimal overlap as players spread
out to fill the space, which is equivalent to minimizing overlap between each P, (x) and
P(x). Minimum entropy data partitioning (Roberts et al., 1999) is a method for estimating
the distributions under this constraint which relies on Kullback-Leibler (KL) divergence,
defined

KL(P||Q) = /P(x) log (gg;) da

for densities P and Q). Kullback-Leibler divergence is strictly positive and zero when densi-

ties perfectly overlap, so the distributions with minimal overlap can be found by maximizing

N
> KL(P[|P),
i=1

or equivalently, minimizing
N

V == KL(P,||P). (5.6)
=1

Roberts et al. (1999) shows that in this form, V' is equivalent to

/ H(z)P(2)dx,

where H(z) is the Shannon entropy, so that minimizing V' is equivalent to minimizing the
entropy over all data partitions, giving the method its name.

There is no closed form solution for (5.6), but Bialkowski et al. (2014) outlines an
approximate solution. First, role distributions are initialized by assuming that a player role
is constant through the match (or, as in this work, subset of frames) and estimating the
associated distribution. In practice, this assumption will likely be violated, but it generally
provides a sensible starting point. Then each frame is iterated through, and every player
is assigned a unique role within each frame. This is done by constructing a cost matrix C'
where C; j = —log(Pj(x;)), that is, role density P; evaluated at player location x;. If any of

the values of the cost matrix are negative, then C' := C'—min(C') to ensure that all costs are
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non-negative. After the costs are computed, C' is used in conjunction with the Hungarian
algorithm (Kuhn, 1955; Munkres, 1957) to permute the player locations to minimize the
total cost, and role densities are re-estimated with the permuted player locations. Estimation
and reassignment are repeated until no further permutation takes place.

Because broadcast tracking data does not contain a constant number of observed players
within each frame, entries in the cost matrix for missing players are set to the maximum
observed cost plus one. This adaptation ensures that all observed player locations will be

assigned to the “cheapest” role density while still permitting use of the Hungarian algorithm.

5.2.4 ACD Frame Alignment Algorithm

The alignment algorithm outlined in this section is the primary contribution of this pa-
per. This algorithm overcomes both player permutation effects and the lack of a stable
centroid within each frame caused by broadcast-induced censoring. At a high level, this is
accomplished through aligning frames within a possession sequence by minimizing the ACD
between them. After frames are aligned within a possession, MEDP is used to estimate a
role distribution for the sequence and the centroid of the role distribution is used to center
the aligned possession at the origin. Once all data has been centered at the origin, formation
estimation can proceed.

MEDP is used to center frames at the origin (rather than, for instance, using ACD to
align all frames in a match half) for two reasons. First, as long as all ten players are observed
at least once in the possession sequence, a role distribution can be estimated with ten role
means, even if no frame with all ten players is observed. As a result, centroid estimates
are generally reliable even in the presence of significant missing data. Second, ACD tends
to exhibit many local optima, and using it to try and align player locations that are not
already close to each other is unlikely to produce the correct alignment. Relying on the
centroid of the role distribution for centering instead bypasses this problem.

Before detailing the algorithm for aligning data for a complete game, it is instructive
to discuss an algorithm for aligning just two arbitrary frames. In order to align two frames
using ACD, define the function

f(8)X,Y) =d D (X, 6 +Y), (5.7)

where 0 is a matrix with all rows equal to (0,dy). This function is used to find 6 =
argming, s, cr f(0|X,Y) and then set Y* := Y + 4 so that X and Y* are aligned. Similarly,
define

g(KIX,Y) = d“D (X, k(Y = V) + ), (5.8)
where each row of Y is equal to the column means of Y, and use it to find

A

k= in g(k|X,Y).
arg min g(k|X,Y)
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In this case, the scaling factor k can either be a scalar or a 2-vector in order to scale the x
and y dimensions separately, if desired. Equations (5.7) and (5.8) can be used together in
an EM-like way to align X and Y by iterating translation and scaling until convergence.

Borrowing ideas from the algorithm to align two frames of broadcast tracking data,
an algorithm for aligning an entire match is presented in the rest of this section. In order
to prepare the broadcast tracking data for analysis, frames are divided into continuous
segments, =; = [Sj1, ..., 97|, where at least one player was observed in each frame, S;;, in
the sequence. In other words, if at any point the player tracks of all ten outfield players are
interrupted, whether that be because the broadcast cut away from on-pitch play to show a
highlight or because all the players were out of the camera window, that results in a new
Z;. For successive frames S;; and Sj;41 in Z; estimate &-t using (5.7), where &t denotes the
constants used to translate frame Sy; to align with frame S;;11. Previously it was noted that
(5.7) has many local optima. The negative effects of this are avoided by only estimating d;;
for successive frames. Because these frames are separated by only a fraction of a second,
the local optimum is generally the desired one.

After estimating the sequence (6;1,...,8;7—1) frame S;; can be translated so that it
aligns with S;7 by Szt = Sy + ZT ! d;;. Conceptually this creates a telescoping effect
where the first frame is translated by d8;; to align with the second frame, then the first
and second frames are both translated by d;0 to align with the third frame, and so on,
until frames 1 through 7' — 1 are all translated by d;7_1 to align with the final frame of
the sequence. The sum ZJ-T:_,JI d;; is not necessarily equivalent to arg mins, s, cr f(d]SiT, Sit)
but it is approximately equal and has the advantage of being fast to compute and avoiding
undesirable behavior driven by the local optima in (5.7) if one were to attempt to align Sj;
with S;7 directly.

After aligning all frames with the final frame, centering the translated sequence = _1 at
the origin simplifies estimation of the scaling parameters and provides a common point
for aligning all match data. Because individual frames are incompletely observed, simply
subtracting the means would be subject to the same centroid instability noted earlier.
Instead MEDP is applied to each EZ-A to estimate a canonical mean M; for the segment and
subtract its centroid from each SA MEDP is used to estimate the means rather than, for
example, finding the most central S5 7 in Z2 because it may be the case that all ten players
are not observed together in any frame, even though collectively they are all observed across
the sequence.

Once all the frames in EiA have been translated to the origin, a similar process can
be followed to scale the frames to align with each other. As before, successive frames are
aligned but this time (5.8) is applied to estimate scaling parameters (k;i,...,k;r—1), where
k;; represents the scaling factor used to align frame S;; with frame S;;11. Because the frames
are already centered at (0,0), Y in (5.8) is assumed to be 0 for all frames. Once (k;1, . .., k;7)
have been estimated, S5 7 can be scaled to align with S;7 by HT ! k;;. Care must
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Figure 5.3: Formation estimates for four different teams over an entire period in each game.
The top row shows estimates made from the full multicamera tracking data. The bottom
row shows formation estimates generated from the ACD aligned tracking data.

be taken to ensure that k;; does not shrink too much, as one way to minimize the distance
between two sets of points is to multiply them by a very small amount. One way to account
for this is to constrain k;; to fall within (0.9,1.1), which is reasonable because relative player
locations should not drastically contract or expand in just 1/24th of a second. If desired,
translation and scaling of the sequence can be alternated as in the case for alignment of a
single frame, though in the work shown in the rest of the chapter translation and scaling
were performed only once. Pseudocode summarizing the algorithm described in this section
is provided as Algorithm 1.

An example of a single possession aligned using this ACD method is shown in Figure
5.1d, which is encouragingly akin to the centered multicamera tracks shown in panel (b)
above it. At the aggregate level, a simple visual comparison of formations estimated from
the multicamera tracking data to ones estimated from the ACD aligned tracking data in

Figure 5.3 shows that they are remarkably similar.
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input : N arrays =; = [Si1, ..., S| of dimension 10 x 2 x T; containing continuous
segments of broadcast tracking data, and a pre-specified ACD bandwidth
parameter X

output: N arrays ZF of aligned broadcast tracking data centered at (0,0)

begin

fori=1,...,N do

/* First, each frame is aligned with the final frame in the
sequence by minimizing ACD, which overcomes the issue of
censoring. */

S, < Siy;

fort=1T,_1—1,...,1do
0t < argminger f(8|Sit41,5:) /* (f is defined in (5.7)) */;
S& < S+ Y1 iy

end

/* Next, a role distribution is estimated from the aligned frames
and the centroid of the role distribution means is used to
translate all frames in the sequence to the origin. Array
index notation is used to denote the taking of the mean of the
x- and y-coordinates. Using MEDP overcomes role switching
effects and produces a stable centroid even if no single frame
has all 10 players present. *x/

=2 [$5,...,84);

M; < Means of the role distribution estimated from EZ-A using MEDP. M; is a
10 X 2 matrix.;

My Srey Mk, 1]/10 ;

My <— legozl Mi[k’ 2]/103

Mg My
Ci—|:

My Ty,
for t=1, ..., T do
| SA e sA - C
end

/* Finally, each frame is scaled to align with the final frame in
the sequence. The scaling factor is estimated by minimizing
the ACD between successive frames. x/

T, SiATiQ

fort=1T;,—-1,...,1do
ki + argmingcp+ g(k[SZ, 1, S%) (g is defined in (5.8), though Y is

assumed to be zero since each frame is approximately centered at the

origin);
* A 17151 .
< Sip LIiZy kit
end
—% * * .
._,Z'F|:,L'1,...7 ZT1:|’
end
end

Algorithm 1: Pseudocode summarizing the algorithm in Section 5.2.4.
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5.2.5 Aggregating Frames

Once frames have been aligned using Algorithm 1, it is helpful to condense the number
of observations by averaging frames over some specified time window. Depending on the
provider, tracking data is typically available anywhere from 10 to 30 frames per second,
and this high temporal density results in strong correlation. Aggregating frames can reduce
computational burden by decreasing the number of observations to process while simulta-
neously improving the ability to detect specific formations, as the averages are less variable
than individual frames.

One way to approximate how large the aggregation window should be is to calculate
the effective sample size (ESS), Ny = W]\M (Gelman et al., 2013, Section 11.5),
where 1); is the autocorrelation of lag ¢ for x, and use that to determine how many frames
should be averaged together by setting the window size equal to Ncs¢/N (or equivalently
142372, ¥i(x)). Converting the frames onto the difference space and then calculating
the ESS for each difference sequence led to estimated window sizes ranging from 13 to 205
seconds, with a median of 36 seconds. In practice, clustering performance improved when
the averaging window was above 120 seconds, so although that is on the upper end of the
window sizes estimated via ESS, 120 second averaging windows are used throughout the
remainder of this paper.

A variety of additional steps were taken in order to render the data more suitable for
formation estimation. Possessions less than 5 seconds in length were removed from the data,
because it is unlikely a team is in formation as they transition from defense to offense and
back again. Further, averages do not span across periods or player substitutions, as generally
if a change in tactics is to occur, it is likely to be accompanied by one of these two events.
Finally, offensive and defensive possessions were averaged separately, as formations change
when the team is in or out of possession and combining them could potentially wipe out
meaningful distinctions.

There are several different ways to perform aggregation, two of which are compared in
this section. The first involves aggregating frames by taking average differences. That is,
each frame is multiplied by D, the average of the differences is calculated over 120 second
windows, and the averages are converted back to the location space using D~. This is
done for both the full multicamera data and the broadcast tracking data, though due to
the censoring, this approach has to be adapted for the broadcast data. Specifically, the
average is taken just from the observed data so each average difference has a different
denominator, which is denoted mathematically as X = (ny:ll SRR Zf\;ﬁ J%)’ where V;
is the total number of non-missing differences i. If a difference is not observed at all (i.e.,
N; = 0) within the averaging window, it is removed completely from the analysis, and then
all remaining observations are translated back to the location space. The second method

for aggregating is to estimate role means over the 120 second windows using MEDP and
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Figure 5.4: Examples of processed data with the three different approaches. Note that the
reduced data for the ACD aligned approach is compensated for somewhat by the clarity of
the observations.

treat the role means as the observations, which is the approach taken for the ACD aligned
broadcast data.

For the complete data, the 120 second window results in 480 observations from the five
games, whereas the censored data results in 422 observations. Because possessions in the
ACD alignment process are only retained if all ten players are observed in at least one

frame, the ACD aligned data is further reduced with just 195 observations.

5.2.6 Scaling

In Section 5.1, three nuisance factors were mentioned that need to be dealt with in order
to accurately estimate soccer formations. The first two, censoring and player permutation,
were addressed by the frame alignment algorithm in Section 5.2.4 and MEDP, respectively.
The last factor is scaling. This is important because two observations should be classified
as the same formation if the relative positions of the players within the formation are the
same, even if one observation is more contracted or expanded than the other. It is possible
to estimate a scaling parameter to address this, but in this work, contraction and expansion
is handled simply by scaling the data. In other words, all the x- and y-coordinates for a
match half are divided by the empirical standard deviation of the x- and y-coordinates,
respectively. Examples of the scaled data for each of the three approaches is shown for one

team on defense in Figure 5.4. Clearly, the 5-4-1 formation is discernible for all approaches.
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5.3 Methods

5.3.1 Clustering Observations

In order to identify general categories of formations, clustering is performed on the three
different sources of observations (full multicamera, average difference broadcast data, and
ACD aligned broadcast data) using a finite mixture model (McLachlan and Basford, 1988),

Wi f(2:]O).

=
M=

i=1k=1

For this application, x; is a 2P vector of player role means, averaged over a two minute win-
dow (P = 10, the number of non-keeper players on each time), wy, represents the weight for
each of K mixture components, and f(x;|O) is some distribution governed by parameters
Oy.. As with all finite mixture models, there are two additional considerations that must be
addressed: how to fit the model and how to choose the number of clusters.

The models in this paper are fit using expectation maximization (Dempster et al., 1977)
within a Bayesian framework. The mixture weights, wy, are assumed to follow a symmetric
Dirichlet distribution with concentration parameter ag = 50 in order to encourage obser-
vations to be evenly distributed among the K available mixture components. The mixture
distribution is assumed to be multivariate Gaussian with diagonal covariance. That is,
f¢18k) = N (Xi|pk, Zk), where the diagonal of ¥, is (02, ..., 0%, p) and all off-diagonal en-
tries are zero. The parameters of the mixture distribution, p; and U%i require priors, which
are assumed to be p;, ~ N(0, s2I) and o7 ~ Inv—x?(1p), where s> = 4 and 1y = 52. Setting
vy = 52 means the prior expected value for a,% is 0.02, which would be far too restrictive on
the data’s raw scale, but is reasonable after scaling.

There are numerous texts that detail how to fit a standard Gaussian mixture model
using expectation maximization (see, for example, Chapter 22 of Gelman et al. (2013),
Chapter 9.2.2 of Bishop (2006), or Chapter 8.5 of Hastie, Trevor, Tibshirani, Robert, Fried-
man (2009)) so those details are omitted here. However, as implemented for this research,
there are a couple of significant changes to the standard algorithm. First, the Hungarian
algorithm is used to account for the effects of player permutation, similar to how it is used
in MEDP. The cost that is minimized is the Euclidean distance between the player locations
in each observation and the mean in each mixture component. This reordering is performed
within each iteration of the expectation maximization implementation, so observations are
permuted to the closest available p; each time the means are updated.

The second change is an idea borrowed from Ghahramani and Jordan (1994), who
showed that incomplete observations could be included in a mixture model and just the
observed elements used to estimate assignment probabilities. Expectation maximization
works for mixture models by associating a latent indicator, I(z; = k), with each observation

that determines which mixture component it belongs to. The expected value of this indicator
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is calculated op )
p=1 N (@ipltirp, Ukp)

— K 2P :
o1 s N (@iplpiep, ng)

In order to adapt this assignment probability for partially observed observations, Ghahra-

g'ik: = P(zz = k)

(5.9)

mani and Jordan convert (5.9) to

I(Oi :1)
213 N(:L"L |/’Lkﬁ 702 ) ’
Zip =Pz = k) = p_l( = kp)

Zf:l ngl (N(x¢p|ugp, O-[gp))

ot (5.10)

where 0;), is a dummy variable that is 1 if the pth element of observation i is observed and
zero otherwise.

Because the observations being clustered in this paper are aggregated across partially
observed frames, weights are calculated as w; = (wj1,...,w;2p), where wj, = Zfl\il Onp
and assignment probabilities are calculated using (5.10) with wj, in place of the indicator
I(0ip = 1). Essentially, this means that if x;; is observed just once out of the 24%120 = 2880
total frames it is being averaged over, then it would only contribute 1/2880 of the amount
that a completely observed element of x; would to determining which formation it belongs to.
These weights also affect parameter estimation in the mixture distributions, and derivations
for these weighted estimates are included in the appendix.

The number of clusters to use is determined by examining the Akaike (AIC) and
Bayesian information criteria (BIC) (Akaike, 1974; Schwarz, 1978), in addition to con-
sidering the silhouettes for each model (Rousseeuw, 1987), a measure which compares the
average distance within and between clusters. A silhouette value (or width), s(7), for each
observation falls within (—1, 1), with values close to 1 indicating that an observation is closer
to the members of its assigned cluster than members of any other cluster. This corresponds
to well-defined clusters with little overlap, and so choosing the number of clusters with the

largest average silhouette width leads to the most well-defined formations.

5.3.2 Comparing Results

Once the models are fit, it is necessary to assess how well the formations learned from the
average difference and ACD aligned broadcast data correspond to the formations learned
from the multicamera tracking data. Visually, it is possible to compare the learned forma-
tions and get a general sense of how well they correspond. For a more statistically principled
method of comparison, the learned formation means are used to classify new observations
and see how accurately they predict. As a ground truth, the formation labels provided in
the match summaries for the 5 games in the dataset on https://www.premierleague.com are
used. Generally, it is not expected that learned formations directly correspond to labeled
formations. However, because the dataset in this work consists of only five games and seven

unique teams, each of which has a different labeled formation, this assumption is reasonable

60



for this specific case. Put another way, this method of assessment expects that observations
from the same team generally get classified into the same one or two learned formations.
The observations used for prediction are the 480 observations (240 for offense and 240
for defense) calculated using average differences on the full multicamera data. Values are
classified according to the calculated assignment probability in (5.9), assigning an observa-
tion to the formation with the highest probability. This is equivalent to using a Bayesian
classifier with a uniform prior over the mixture assignments. Because there are minor po-
tential differences due to scaling from the different data processing methods, observation
are aligned to each formation mean using the ACD alignment algorithm outlined in Section
5.2.4 prior to making a prediction. Classification accuracy is summarized by providing plots
showing the proportion of observations within each labeled formation that were assigned to

each of the learned formations.

5.4 Results

In order to select the number of formation categories, the Gaussian mixture model is fit
for a range of two to fifteen components, and because mixture models tend to exhibit
many local optima, it is fit ten times for each component amount. Figure 5.5 shows the
AIC and BIC values for offense and defense for each of the three approaches. There are
several patterns worth noting. First, AIC decreases monotonically in all plots making it
useless as a model selection criteria in this instance. This is likely because the diagonal
covariance specified is very flexible and the AIC penalty is insufficiently large to overcome
the corresponding increase in the log likelihood. Second, there is a significant loss in fidelity
when calculating average differences with the broadcast data, leading to BIC suggesting
that just two formations is the correct model. The ACD aligned data does not suffer from
this same issue. Based on the BIC values for the ACD aligned data and multicamera data,
K = 6 is selected for the number of offensive formations and K = 8 for the number of
defensive formations. Note that this may not be the optimal selection for all three data
sources, but the same number of mixture components are used across all three in order to
make comparison of the data processing methods easier.

Examination of the average silhouette widths in Figure 5.6 reveals two interesting pat-
terns. First is that the silhouette widths for the multicamera and ACD aligned data suggest
that six or seven is the correct number of defensive formations. The second is that the sil-
houette widths for the offense consistently decrease as the number of formations increases.
This indicates that the clusters are not particularly well-defined for offense, and indeed, es-
timation of offensive formations is consistently more challenging than defensive formations.

Due to the large number of formation estimates, plots for most of them are relegated to
Section 5.7, but for purposes of illustration the ACD aligned defense estimates are provided

in Figure 5.7. This plot shows 8 obvious formations, with, for example, clusters 1, 6, 7,
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Figure 5.7: Defensive formation estimates for observations generated from ACD aligned
tracking data using MEDP, with 1-o ellipses and classified observations, sorted by size of
each cluster.

and 4 clearly corresponding to the formations 4-4-2, 4-3-3, 5-4-1, and 3-5-2, respectively.
Considering the enormous amount of data missing from the broadcast tracks, the clarity of
these formations is quite remarkable.

Turning to comparison via prediction, consider the proportion of accurate predictions
shown in Figure 5.8. On offense, the 3-5-1-1 is consistently classified correctly for all three
methods. The ACD aligned data does a better job of separating out the 3-4-3, though it
does combine it with some observations from the 5-4-1, and it does a better job of isolating
the 4-2-3-1 than either of the other two approaches. The remaining labeled formations get
grouped together, likely due to the fact that they all share a 4 defender back line. However,
there is more discrimination between the 4-3-2-1, 4-3-3, and 4-4-1-1 with the two average
difference methods, suggesting that the ACD aligned formation means are not capturing
some features. The full multicamera data does the best job at detecting the 4-3-2-1 and 4-3-

3, while the average differenced broadcast tracking data isolates the 4-4-1 most consistently.
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Figure 5.8: Matrices showing the proportion of observations based on the official formations
listed on www.premierleague.com that correspond with each of the formation estimates.

Cluster consistency is much better when considering defense. Prediction performance
for the ACD aligned estimates in the lower right is comparable to prediction performance
for the full multicamera data, with the majority of observations in each named formation
being assigned to a separate cluster. This is much better than the averaged differences with
the broadcast tracking data, which combines the 4-3-2-1 and 4-3-3 formations into a single

cluster and does not have any coherent clustering for the 4-4-1-1 or 5-4-1.

5.5 Conclusion

In this work, an algorithm for aligning broadcast tracking data using atomic configuration
distance has been introduced. It has been demonstrated that data aligned by this algorithm
produces formation estimates comparable to those estimated from uncensored multicam-
era tracking data, despite the significant loss of data inherent to broadcast tracking data.
Aligning broadcast tracking data with ACD overcomes issues related to player permutation
and the inconsistent number of on-camera players, and is even robust to inaccurate player
identification. Although the ACD aligned estimates failed to capture two of the six offen-
sive formations, it collapsed them in an understandable way by combining three formations
with 4 defenders in the back line. The ACD aligned formation estimates successfully dis-
tinguished between the 7 labeled formations, consistently placing them in separate clusters.
These findings suggest that broadcast tracking data is viable for estimation of formations

and tactical analysis in soccer.
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5.5.1 Future Work

The most obvious avenue for future work is the retention of partially observed segments.
Currently, the alignment algorithm throws out any segment that does not contain all 10
players in at least one frame in the segment. This results in a significant reduction of data,
leaving us with less than 50% of the observations generated from the multicamera tracking
data. Research is actively being done on how to use ACD to align these partially observed

segments with the rest of the data so that data loss is less severe.

5.6 Derivations

5.6.1 ACD Derivation

S(ps, py) = /SeRD px(5,5)py (s, ) ds (5.11)
= o (@ieﬁ(w@)) (&jém&yj’z)) s (312)
— N;Ny /SERD ééqs(s;xi,z)qs(s;yj,z)ds (5.13)
= leNy é % / o 955 D535, E)ds (5.14)

where we use Fubini’s theorem to swap the sums and integral based on the fact that ¢ is

always nonnegative. We can expand out the integral to get

/ERD P(s; i, 2)p(s1y5, X)ds
N seRD(%)iD'E'il xp ( B %(S — i)' 87 (s - $i)) exp ( B %(S —y)S 7 (s — Z/j)>ds

= (2r) P3| /SERD exp (-~ %[(3 —2) S s =) + (s = 9y)'D 7 (s — yy)] ) ds.
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Considering just the contents of the exponent we get
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Plugging this into (5.14), we achieve
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O

5.6.2 Weighted EM Derivation

First we show the derivation for the posterior maximum for siz,. Note that because we have

assumed diagonal covariance we can use univariate estimates for each element of p,,.
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5.7 Estimated Formations

This section provides plots for all formation estimates from the three different sources of

data on both offense and defense.
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Figure 5.9: Offensive formation estimates for observations generated from multicamera
tracking data using average differences, with 1-o ellipses and classified observations, sorted

by size of each cluster.
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Chapter 6

Conclusion

In this work, we have done a thorough review of player tracking data in sports, developed
some new methods for its analysis, and shown examples of the kinds of questions that can be
asked and answered with this type of data. Of particular note is the overview of broadcast
tracking data in Chapter 3 and the demonstration of how it can be used despite its inherent
shortcomings to answer questions of interest in Chapters 4 and 5.

Chapter 2 leveraged the relationship between the multinomial and Poisson distributions
to show that Markov transition densities can be modelled as a Poisson intensity function.
This results in a highly flexible nonparametric approach to density estimation that also
allows for the incorporation of spatial features. Interestingly, some early methods for Markov
transition density estimation using kernel densities can be shown to be special cases of the
framework presented in this chapter. Crucially, representing transition densities in this
way allows great flexibility in how intensities are estimated, and kernel density estimators,
integrated nested Laplace approximation, and process convolutions were all used effectively
in this chapter. A simulation study was used to demonstrate that in cases where boundaries
impact transition densities, accounting for those boundaries by assuming a nonstationary
spatial covariance function for the intensity improves density estimates. Finally, movements
of the ball around the court in the NBA were modeled as a Markov process. Estimating the
transition density as a non-stationary Poisson process captured a discontinuity induced by
the three-point line and improved model fit.

Chapter 3 introduces broadcast tracking data and provides an overview of how it is pro-
duced, from segmentation of the broadcast video, to construction of an isomorphic mapping
between the video and the court, to conversion of players in video to z- and y-coordinates,
and identification of players across the game. Broadcast tracking data is an exciting devel-
opment in research with tracking data because it has the potential to greatly democratize
tracking data, possibly making it available for any sporting event that has been recorded
once the technology is further refined. Several companies are currently working to develop
commercial offerings for broadcast tracking data, but so far access to it has been limited,

meaning there is ample opportunity for new research. Broadcast tracking data exhibits
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unique features that make it an interesting area for research, primarily that players are in-
consistently observed and any analysis must account for a large amount of censoring. These
features prevent existing methods for tracking data from being directly applied, requiring
methodological innovation to be useful. Some examples of such innovation are shown in
Chapters 4 and 5.

Chapter 4 addresses whether or not broadcast tracking data can be used to understand
the impact that participation in an athletic event has on an athletes body. Without captur-
ing internal metrics, such as heart rate, our ability to do so is limited, but sports scientists
frequently use quantities such as total accelerations as a proxy measure for the physical
stress undergone by an athlete. These quantities, referred to as external load metrics, are
typically easily calculated from multicamera tracking data because players are continuously
observed. However, because of the large amount of missing data, the viability of broadcast
tracking data as a resource for sports scientists is called into question. In this chapter, a
suite of external load metrics were considered and censored values for them were predicted
using regularized linear regression models and random forests. The predicted quantities
were highly accurate, suggesting that broadcast tracking data is a useful resource for sports
scientists. Moreover, the methods that we use to provide these estimates do not require
a significant amount of technical customization, which means that they could be widely
adopted fairly easily.

Finally, Chapter 5 considers the problem of identifying soccer formations when the ma-
jority of data was only partially observed. Understanding what formation a team was using
is important tactical information, but the ability to do so at scale is limited by the human
factor of needing to watch games, so learning them directly from tracking data is a useful
development. Methods have been developed to learn formations from multicamera tracking
data but they break down due to the heavy censoring with broadcast tracking data. This
issue was overcome using atomic configuration distance and minimum entropy data parti-
tioning. Because atomic configuration distance is invariant to the number of players observed
and permutation of their roles within the formation, it is an ideal candidate for comparing
different frames of broadcast tracking data. Tracking data was aligned by minimizing this
distance, after which minimum entropy data partitioning was used to summarize windows
of observations. These in turn were clustered to learn general families of formations using
a Gaussian mixture model. When the learned formations were used to make predictions,
performance between the full multicamera tracking data and broadcast tracking data were
comparable, suggesting that broadcast tracking data can successfully be used for this task.

Although the applications in this thesis are all related to applications in sports, tracking
data is present in a broad range of applications, including ecology, security, transportation,
and the social sciences, among others. As people continue to carry smartphones with GPS
capability, this type of data will become increasingly common and understanding how to

analyze it properly will become increasingly valuable. The techniques demonstrated in this
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thesis represent just a small section of the available methods for tracking data, but they
have clear uses in other areas. Accounting for the effects of man-made barriers on peoples
movement through a subway station could be accounted for using the framework in Chapter
3. Being able to estimate characteristics of animal behavior between observations, as another
example, could be solved using an approach similar to that taken in Chapter 4. Similarly,
using atomic configuration distance to compare collections of locations and classifying them
based on their structure could be used in the physical sciences or to analyze the behavior

of groups of animals.

6.1 Future Work

There are clear opportunities to do further work based on the research presented in this
thesis. There is a clear link between Markov transition densities and Poisson intensities, but
the theoretical foundation can be further shorn up by providing, as one example, convergence
results. The Markov-Poisson approach can account for spatial non-stationarity but currently
assumes that transition densities are temporally homogeneous. Figuring out how to model
transition densities that vary temporally in addition to spatially would be an interesting
development. Additionally, the ability of the Markov-Poisson method to scale up needs to
be better understood. Because modeling a transition density with a Poisson process requires
doubling the dimension of the transition space, extending this method to movement in three
or more dimensions becomes computationally challenging. Similarly, currently the Markov-
Poisson relationship has only been used for first-order Markov chains. Adapting it for higher
order relationships is another interesting research question.

Broadly speaking, because academic work with broadcast tracking data has primarily
been focused on its production rather than its analysis, there are myriad opportunities
for future research. At the minimum, all methods that have already been developed for
multicamera tracking data need to be modified to account for censoring in order to also
apply to broadcast tracking data. More narrowly, focused on just the broadcast tracking
research in this thesis, the most obvious limitation is that the research was conducted on
multicamera tracking data that was censored artificially to mimic the missingness patterns of
broadcast tracking data. True broadcast tracking data introduces additional uncertainty and
the impact of that additional uncertainty needs to be assessed and understood, presenting
a valuable opportunity for further work.

Another obvious opportunity is increasing the scale of the work done in Chapters 4
and 5. Work needs to be done to ensure the conclusions reached for estimating censored
external load metrics hold when the number of teams or leagues is increased. In Chapter
5, only 5 games were available. Building a model to estimate the camera window based on

those five games and using that to produce additional simulated broadcast tracking data
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would provide more insight into how well formations are estimated when the number of
formations and amount of data is increased.

Finally, atomic configuration distance was used to align frames in the broadcast track-
ing data, but it could just as easily be used to measure the distance between observations
and perform agglomerative hierarchical clustering. Doing so could greatly simplify the clus-
tering process by avoiding the need to tune the mixture model and use the Hungarian
algorithm to permute players within the model. In particular, removing the permutation
step would significantly increase the computational speed at which clustering could be per-
formed. Comparing the results from this approach to the ones achieved via the approach

taken in Chapter 5 would be an interesting project.
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