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Abstract

Autonomous systems operating in close proximity with each other to cover a specified
area has many potential applications, but coordination and safety are two fundamental
challenges. For coordination, we propose a locally asymptotically stable distributed coverage
controller for moving compact domains for two types of vehicles with second order dynamics
(double integrator and fixed-wing aircraft) with bounded input forces. This control policy
is based on artificial potentials and consensus forces designed to promote desired vehicle-
domain and inter-vehicle separations and relative velocities. We prove that certain coverage
configurations are locally asymptotically stable. For safety, we establish minimal energy
conditions for collision free motion and we utilize Hamilton-Jacobi (HJ) reachability theory
for pairwise collision avoidance. Rather than computing numerical solutions of the associated
HJ partial differential equation, we derive an analytical solution for the double integrator
vehicle. We demonstrate our approach in several numerical simulations involving convex
and non-convex moving domains.

Keywords: Autonomous robots; swarm intelligence; decentralized control; Hamilton-Jacobi
reachability; artificial potentials; coverage control.
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Chapter 1

Introduction

Autonomous systems have great potential to positively impact society. However, these sys-
tems still largely operate in controlled environments in the absence of other agents. Au-
tonomous systems cooperating in close proximity with each other has the potential to im-
prove efficiency. Specifically, in this thesis we consider the problem of controlling multiple
autonomous systems to cover a desired possibly moving area in a decentralized and safe
manner. More precisely, two key challenges need to be addressed: coordination and safety.

In coverage control problems, the objective is to deploy agents within a target area, or
domain such that they can achieve an optimal sensing of the domain of interest. A common
approach to the coverage problem is by means of Voronoi diagrams ([14, 23]), where the
goal is to minimize a coverage functional that involves a tessellation of the domain and the
locations of vehicles within the tesselation. This results in a high-dimensional optimization
problem that has to be solved in real time. In our approach we achieve coverage (alternative
terminologies are balanced or anti-consensus configurations) through swarming by artificial
potentials (see [30, 39] and also, the recent review by [13]). In a related problem, artificial
potentials have been used for containment of follower agents within the convex hull of leaders
([38, 6]).

Reachability analysis as a safety verification tool has been studied extensively in the past
several decades ([2, 22, 12]). In particular, Hamilton-Jacobi (HJ) reachability ([43, 11]) has
seen success in applications such as collision avoidance ([24, 10]), air traffic management ([34,
9]), and emergency landing ([1]). HJ reachability analysis is based on dynamic programming,
and involves solving an HJ partial differential equation (PDE) to compute a backward
reachable set (BRS) representing the set of states from which danger is inevitable. Safety
can therefore be guaranteed, despite the worst-case actions of another agent, by using the
derived optimal controller when the system state is on the boundary of the BRS.

Before introducing the specific safe domain coverage problem of interest, we review
some of the existing aggregation models, some useful mathematical tools like the LaSalle
invariance principle and the concept of signed distance to given domains, and the basic
Hamilton-Jacobi reachability theory for addressing pairwise collision avoidance.
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1.1 Aggregation models

In this section we introduce some mathematical models for aggregation and collective motion
of similar agents; These are also called swarming models. We first describe one model based
on self-propelling forces and attraction-repulsion interactions, and then another describing
individuals movement alignment. In both cases we comment on the effects of the inclusion
of leaders.

1.1.1 Self-propelling, Attraction-Repulsion Model

Consider a group of N agents (e.g. vehicles, particles or biological individuals) with positions
p1, · · · , pN ∈ Rn. With the equation of motion for the i-th individual:

ṗi = vi, v̇i = avvi −
N∑
j 6=i
∇VI (‖pij‖) , (1.1)

where av is a constant, pij := pi − pj , is the difference in position between the i-th and
j-th individuals, and VI is an inter-agent potential that models the repulsion and attraction
interactions between agents.

The term associated to av models either self-propulsion of individuals when av is positive
or friction when it is negative. Some variants of this model also include extra friction forces
following the Rayleigh’s law in an effort to compensate the self-propulsion when av is positive
[19], this balance makes the agents reach asymptotic speeds, without influencing velocity
orientation. Although the inter-individual interactions are simple, the emergent formations
of these type of models can be complex, showing very inspiring self-organizing patterns like
rings, clumps of flocks, single and double mills, as shown in Figure 1.1.

The attractive and repulsive interactions between agents are defined as the gradient of
a inter-agent potential VI : Rn → R that measures the artificial potential energy associated
to two vehicles based on their relative distances. Some choices of this are the Morse or
generalized Lennard-Jones potentials:

VM
I (x) = 1

N

(
−CAe−x/lA + CRe

−x/lR
)

; V LJ
I (x) = 1

N

(
−CA
xβ

+ CR
xδ

)
. (1.2)

When choosing one of these potentials, the accelerations are defined in terms of the
negative of its gradient as in Equation (1.1). This implies that the positive and negative signs
in front of each term determine if they are repulsive or attractive interactions respectively.
The positive constants CA and CR indicate the strength of these attractive and repulsive
forces. On the other hand, the lA and lR parameters determine the rate of decay of these
forces in the case of the Morse potential.
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(a) Clumps (b) Mill (c) Double mill

Figure 1.1: Some swarm emergent behaviors of the self-propelling, friction and attraction-
repulsion model. The individuals move in: (a) Clumps within which the agents align their
velocities forming flocks. (b) Mills, a concentric formation rotating in the same direction.
And (c) Double Mills, two mills rotating in opposite directions. Figures (b) and (c) adapted
by permission from Springer [7] c© (2010). Figure (a) adapted by permission from [19] c©
(2006).

Inclusion of Leaders

An artificial leader (or just leader) is a virtual point of reference that interacts with other
agents and represents group objectives. These interactions based on artificial potentials are
used to modify the group formation and direct its motion [30, 36].

An extension of the dynamics for the i-th agent (1.1) in presence of one leader is de-
scribed by the model

ṗi = vi, v̇i = avvi −
N∑
j 6=i
∇VI (‖pij‖)−∇Vh (‖hi‖) , (1.3)

where hi is the difference in position between the i-th individual and the leader, and Vh

is an artificial potential describing the spatial interaction between agents and the leader.
Morse or generalized Lennard-Jones potentials (Equation (1.2)) are possible choices for this
type of potential.

When av is negative, the total energy of system (potential plus kinetic) can be used as
Lyapunov function to show that under certain potentials the model (1.3) leads to locally
stable dynamics [30].

1.1.2 Cucker-Smale Model

The Cucker-Smale model describes movement alignment between individuals. This model
adjusts an agent heading based on the weighted average of the relative velocities respect to
the others. The strength of the contribution of a neighbor in the alignment depends on its
relative distance, the closer the stronger.

3



Consider a group of N individuals with positions p1, · · · , pN , and velocities v1, · · · , vN ,
the equation of motion for the i-th agent is the following:

ṗi = vi, v̇i = −
N∑
i=1

fal (‖pij‖) vij (1.4)

where pij := pi−pj and vij := vi−vj , are the position and velocity differences between the i-
th and j-th agents respectively, and fal (x) is a non-negative function called communication
rate between agents. Some choices of this function in the literature are the Cucker-Smale
and the Vicsek comunication rates [16, 42] respectively:

fCSal (x) = 1
N

1
(1 + s2)β

, β ≥ 0; fVal (x) =


1
N , if ‖x‖ ≤ R

0, if ‖x‖ > R.
(1.5)

In [26], the authors propose the two Lyapunov functions from the kinetic and potential
energies given by:

E± = ‖v‖ ±
∫ ‖p(t)‖
‖p0‖

fal (s) ds.

This is used to show that for initial conditions with small energy the system (1.4) leads to
cohesive groups of individuals with same velocity called flocks.

Inclusion of Leaders

The Cucker-Smale model (1.4) can be described from a more general perspective in terms
of the set of neighbors affecting the i-th agent, denoted by Ni, as:

ṗi = vi, v̇i = −
∑
j∈Ni

fal (‖pij‖) vij . (1.6)

The concept of leadership in this model is inspired by the emergent leadership in biolog-
ical systems, where the leaders guide and promote certain group objectives. The leadership
relations between individuals can be hierarchical [40], where the command is shared in dif-
ferent levels, or rooted [25, 31], where the hierarchy is fully dropped and the command is
taken only by one individual.

From the perspective of the rooted leadership, the i-th agent, denoted by Qi, is a leader
if Ni = ∅ and Qi ∈ Nj for every other j. In other words, if it is not affected by any agent,
but affects all of them. Note that as the leader does not experience any interaction, it has
not acceleration and therefore its velocity remains constant through time.

The authors in [25] show that for strong enough communication rates between individ-
uals, the agents asymptotically tend to reach a translational motion with constant velocity
matching the leader’s velocity.
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The Cucker-Smale model can be generalized to describe the cone of vision phenomena or
partial visual perception [7] in several contexts (e.g. [20, 21]). Some variants of the Cucker-
Smale model also include attractive and repulsive forces to guarantee collision avoidance
[17, 41, 37] or flocking in the presence of obstacles [36].

1.2 LaSalle Invariance Principle

An useful tool to determine the stability of an autonomous system

ẋ = X (x) , (1.7)

satisfying the necessary conditions for existence and uniqueness of their solutions, is the
LaSalle invariance principle.

Lemma 1.2.1 (LaSalle Invariance principle [29].). Let K be a compact set with the property
that every solution of (1.7) which starts in K remains for all future times in K. Suppose
there is a scalar function Φ (x) which has continuous first partial derivatives in K and is
such that Φ̇ (x) ≤ 0 in K. Let E be the set of all points in K where Φ̇ (x) = 0. Let M be
the largest invariant set in E. Then every solution starting in K approaches M as t→∞.

This widely used principle in the multi-agent literature (see [30, 36, 14]) will be funda-
mental later in our study to show stability of the resultant collective behaviors.

1.3 Signed Distance

An oriented measure of how far a point x is from a given domain Ω is the signed distance,
defined by

b (x) =


min
xp∈∂Ω

‖x− xp‖ , ifx /∈ Ω

− min
xp∈∂Ω

‖x− xp‖ , ifx ∈ Ω.

If ∇b (x) exists, then there exists a unique P∂Ω (x) ∈ ∂Ω, called the projection of x on
∂Ω, such that

b (x) =

‖P∂Ω (x)− x‖ , ifx /∈ Ω

−‖P∂Ω (x)− x‖ , ifx ∈ Ω
(1.8)

and

∇b (x) = x− P∂Ω (x)
b (x) . (1.9)

Notice that the existence of ∇b (x) requires the uniqueness of the projection of x on ∂Ω.

5



1.4 Hamilton-Jacobi Reachability

Consider the two-player differential game described by the joint system

ż (t) = f (z (t) , u (t) , d (t)) (1.10)

z (0) = x,

where z ∈ Rn is the joint state of the players, u ∈ U is the control input of Player 1
(hereafter referred to as “control”) and d ∈ D is the control input of Player 2 (hereafter
referred to as “disturbance”) .

We assume f : Rn × U × D → Rn is uniformly continuous, bounded, and Lipschitz
continuous in z for fixed u and d, and u (·) ∈ U , d (·) ∈ D are measurable functions. Under
these assumptions we can guarantee the dynamical system (1.10) has a unique solution.

In this differential game, the goal of player 2 (the disturbance) is to drive the system
into some target set using only non-anticipative strategies [43], while player 1 (the control)
aims to drive the system away from it.

We introduce the time-to-reach problem as follows.
(Time-to-reach) Find the time to reach a target set Γ from any initial state x, in a

scenario where player 1 maximizes the time, while player 2 minimizes the time. Player 2 is
restricted to using non-anticipative strategies, with knowledge of player 1’s current and past
decisions. Such a time is denoted by φ (x).

Following [43], the time to reach a closed target set Γ with compact boundary, given
u (·) and d (·) is defined as

Tx [u, d] = min {t| z (t) ∈ Γ} ,

and the set of non-anticipative strategies as

Θ = {θ : U → D| u (τ) = û (τ) ∀τ ≤ t ⇒

θ [u] (τ) = θ [û] (τ) ∀τ ≤ t}.

Given the above definitions, the Time-to-reach problem is equivalent to the differential
game problem as follows:

φ (x) = min
θ∈Θ

max
u∈U

Tx [u, θ [u]] .

The collection of all the states that are reachable in a finite time is the capturability set
R∗ = {x ∈ Rn| φ (x) < +∞}.
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Applying the dynamic programming principle, as done in [3], we can obtain φ as the
viscosity solution for the following stationary HJ PDE:

min
u∈U

max
d∈D

{−∇φ (z) · f (z, u, d)− 1} = 0, inR∗\Γ (1.11)

φ (z) = 0, onΓ.

A function is a solution for this HJ PDE in the viscosity sense if it satisfies the following
definition.

Definition 1.4.1 (Viscosity solution [4]). A continuous function φ is called a viscosity
solution of the stationary HJ PDE (1.11) if:

(i) φ = 0 on Γ, and

(ii) for any v ∈ C1 (R∗), if x is a local maximum point for φ− v, then

min
u∈U

max
d∈D

{−∇v (x) · f (x, u, d)− 1} < 0,

and

(iii) for any v ∈ C1 (R∗), if x is a local minimum point for φ− v, then

min
u∈U

max
d∈D

{−∇v (x) · f (x, u, d)− 1} > 0.

Any φ satisfying (ii) is called a viscosity subsolution of (1.11) whereas, if (iii) holds, it is a
viscosity supersolution.

Previously, this PDE has typically been solved using finite difference methods such as
the Lax-Friedrichs method [43].

From the solution φ (x) we can obtain the control input for optimal avoidance, i.e. the
evader’s control to maximize the time to collision assuming worst possible disturbance, as

u∗ (z) = arg min
u∈U

max
d∈D
{−∇φ (z) · f (z, u, d)− 1} . (1.12)

1.5 Contributions

We develop a new approach to self-collective coordination of autonomous agents/vehicles
that aim to reach and cover a moving target domain. We consider two types of vehicle
dynamics in the horizontal plane (to be defined formally later) which differ in the nature of
the allowed control actions. The first one is the double integrator dynamics, which allows
the controller specify the x and y accelerations at any time; among others, it is a simplified
model for quadcopter drones. The second type is the planar fixed-wing aircraft dynamics,
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for which the control inputs are the vehicle acceleration and its turn rate; those are natural
models for cars, bicycles or planes.

The main factors that we consider in our approach are: i) reach and spread over the
target domain without having set a priori the coverage configuration and the final state of
each vehicle, ii) have a distributed control of vehicles, that allows for self-organization and
intelligence to emerge at the group level, and (iii) guarantee collision-avoidance throughout
the coordination process.

In this aim, we consider a control system that includes both a coverage and a safety
controller. The coverage controller is designed to bring the vehicles inside and spread them
over the target domain, as well as to align their velocities with those of their neighbors
and the moving domain, while the second guarantees collision avoidance of vehicles. In
particular, the coverage controller uses two types of artificial potentials and two velocity
alignment terms resembling the Cucker-Smale model with single leader. One potential is for
inter-individual forces which are designed to achieve a certain desired inter-vehicle spacing as
in [30]. Such controller enables emergent self-collective behaviour of the vehicles, similar to
the highly coordinated motions observed in biological groups (e.g., flocks of birds, schools of
fish); see [5]. The other artificial potential is used for vehicle-target forces by which vehicles
reach the target and cover it. The Cucker-Smale terms promote the vehicles to match the
velocity of the target domain, which acts as leader.

We emphasize that the coverage controller proposed here (which also includes the ap-
proach to the target) is done through agent swarming; there is no leader and no order among
the agents. This feature offers robustness to the controller, as it does not have to rely on
the well functioning of each individual agent. Self-collective and cooperative behaviour in
systems of interacting agents have been of central interest in physics and biology literature
(see [42, 15, 19, 16, 21]). A collaborative robot search and target location (without coverage)
based on a swarming model was done in [32].

Our vehicle models are second-order, in the sense that agents are implicitly or explicitly
controlled through their acceleration; this is to be contrasted with first-order models, where
the control inputs are the agents’ velocities. We set a priori bounds on the control forces,
making our controller more realistic than previous approaches, where infinite forces were
needed to guarantee collision avoidance ([30, 28]). For an illustration, we show in Figure
1.2 the initial and final states for a simulation using our controller for N = 10 vehicles that
cover a moving triangular domain.

The safety controller for vehicles with double integrator dynamics is derived from HJ
reachability analysis. Unlike the typical approach of numerically solving an associated
Hamilton-Jacobi-Isaacs (HJI) PDE, we derive the analytical solution to the PDE to elimi-
nate numerical errors and computation bounds. While multi-vehicle collision avoidance is in
general intractable, for vehicles with the double integrator dynamics we observe drastically
reduced collision rate by just considering pairwise interactions.
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(a) (b) (c)

Figure 1.2: Ten vehicles covering and following a moving triangular domain. Vehicles start
in linear formation.

Summarizing, our contributions in this thesis are:

1. We propose a self-collective coordination model for coverage of moving compact do-
mains by vehicles with double integrator dynamics based on existing aggregations
models between particles with the novel addition of interaction forces between parti-
cles and the target domain, as if the domain were acting as a leader. We validate the
results of our approach through numerical simulations.

2. We integrate the HJ reachability analysis in the aggregation model to guarantee pair-
wise collision avoidance in the case of bounded accelerations for vehicles with double
integrator dynamics. We obtain an analytical solution for the resulting PDE, elimi-
nating the numerical errors and computational constraints typical of the numerical
solutions.

3. We also propose a methodology for coverage of moving domains by vehicle with pla-
nar fixed-wing aircraft dynamics based on an original transformation and tresholding
mechanism of our double integrator coverage control policy. We verify that we obtain
successful results through numerical simulations.

The work mentioned in contributions 1 and 2 when considering static domains was in-
cluded in the already accepted conference paper [8], written in collaboration with Professors
Razvan Fetecau and Mo Chen. The code implementing all the numerical simulations in this
thesis is available at https://github.com/juandados/self-propelling.

The rest of this thesis is organized as follows. In Chapter 2, we present a control algorithm
solving the safe coverage problem for static domains in the case of vehicles with double
integrator dynamics, as well as theoretical results in stability and collision avoidance verified
by numerical simulations. In Chapter 3 we generalize the proposed control policy to one
able to deal with moving domains following inertial trajectories. We study its stability and
safety properties, while presenting three simulation scenarios illustrating the technique. In
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Chapter 4, we formulate a control algorithm for coverage of domains moving along inertial
paths for vehicles with fixed-wing aircraft dynamics. We revisit the simulation scenarios in
Chapter 3 to illustrate the results. Finally, we make concluding remarks and discussion of
the open problems and potential future directions of research.
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Chapter 2

Coverage of a static domain

2.1 Problem formulation

We consider a group of N vehicles, each of them denoted as Qi, i = 1, . . . , N , with the
double integrator dynamics described by

ṗi = vi, v̇i = ui; ‖vi‖ ≤ vmax, ‖ui‖ ≤ umax. (2.1)

Here, pi = (pi,x, pi,y) and vi = (vi,x, vi,y) are the position and velocity of Qi respectively,
and ui = (ui,x, ui,y) is the control force applied to this mobile agent.

We consider a vehicle safe if there is no other vehicle closer than a predefined collision
radius cr, in other words, if

‖pi − pj‖ > cr, for any j 6= i. (2.2)

In this thesis we are interested in a certain configuration of the group of agents with
respect to the domain Ω. Specifically, we adopt the following definitions.

Definition 2.1.1 (r-Subcover). A group of agents is an r-subcover for a compact domain
Ω ⊆ R2 if:

1. The distance between any two vehicles is at least r.

2. The signed distance from any vehicle to Ω is less than equal to − r
2 .

Definition 2.1.2 (r-Cover). An r-subcover for Ω is an r-cover for Ω if its size is maximal
(i.e., no larger number of agents can be an r-subcover for Ω).

The r-subcover definition is closely related to finding a way to pack circular objects of
radius r

2 inside of a container with shape Ω. Having an r-cover implies the container is full
and there is no room for more of such objects.
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The following safe domain coverage problem is of main interest to our work in this
chapter.

Safe-domain-coverage by vehicles with double integrator dynamics: Consider
a compact domain Ω in the plane and N vehicles each with dynamics described by (2.1),
starting from safe initial conditions. Find the maximal r > 0 and a control policy that leads
to a stable steady state which is an r-cover for Ω, while satisfying the safety condition (2.2)
at any time.

The controller we design and present below has two components. First, each vehicle in
the group evolves according to a coverage controller that consists in interaction forces with
the rest of the vehicles and with the boundary of the target domain, as well as in braking
forces in the current direction of motion. Second, a safety controller, based on Hamilton-
Jacobi reachability theory, activates when two vehicles come within an unsafe region with
respect to each other. The desired distance r is built into the coverage controller by means of
artificial potentials. For certain setups we prove that our proposed coverage control strategy
is asymptotically stable, which leads to an r-cover for the domain when this is admissible.

2.2 Coverage controller

Define pij := pi−pj , and denote by P∂Ω (pi) the closest point of ∂Ω to pi (i.e., the projection
of pi on ∂Ω). Also, define hi := pi − P∂Ω (pi), and denote by [[hi]] the signed distance of pi
from ∂Ω; see Figure 2.1.

The proposed control force is given as

ui =−
N∑
j 6=i

fI (‖pij‖)
pij
‖pij‖

− fh ([[hi]])
hi

[[hi]]
+ fvi

(‖vi‖)
vi
‖vi‖

, (2.3)

where the three terms in the right-hand-side represent inter-vehicle, vehicle-domain, and
braking forces, respectively. We assume each vehicle is able to measure its distance to
the target domain, its speed, as well as its position relative to other vehicles. Figure 2.1
illustrates the control forces for two generic vehicles located at pi and pj . Shown there are
the unit vectors in the directions of the inter-vehicle and vehicle-domain forces (yellow and
blue arrows, respectively), along with the resultant that gives the overall control force (red
arrows). Note that due to the nonsmoothness of the boundary, different points may have
different types of projections: pi projects on the foot of the perpendicular to ∂Ω, while pj
projects on a corner point of ∂Ω.

We assume the following forms for the functions fI , fh and fvi that appear in the various
control forces in Equation (2.3). Figure 2.2 shows the inter-vehicle force fI and the vehicle-
domain force fh. Note that fI(r) is negative for r < rd, and zero otherwise. This means that
for two vehicles within distance 0 < r < rd from each other, their inter-vehicle interactions
are repulsive, while two vehicles at distance larger than rd apart do not interact at all. The
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Figure 2.1: Illustration of control forces acting on two vehicles located at pi and pj .

vehicle-domain force fh(r) is zero for r < − rd
2 , and positive for r > − rd

2 . For a vehicle
i outside the target domain, i.e., with [[hi]] > 0, this results in an attractive interaction
force toward ∂Ω. On the other hand, for a vehicle inside the domain, where [[hi]] < 0, one
distinguishes two cases: i) the vehicle is within distance rd

2 to the boundary, in which case
it experiences a repulsive force from it, or ii) the vehicle is more than distance rd

2 from
the boundary, in which case it does not interact with the boundary at all. Finally, we take
fvi(‖vi‖) to be negative to result in a braking force; a specific form of fvi will be chosen
below for analytical considerations (see Equation (2.8)).

An important ingredient of our controller is that one can associate a Lyapunov function
to it and hence, investigate analytically the stability of its solutions. We address these
considerations now.

Lemma 2.2.1. The vehicle-domain force −fh ([[hi]]) hi
[[hi]] and the inter-vehicle force

−fI (‖pij‖) pij

‖pij‖ are conservative.

Proof. Let us consider the potential

Vh (pi) =
∫ [[hi]]

− rd
2

fh (s) ds,

which satisfies

∇iVh (pi) = fh ([[hi]])∇([[hi]]) = fh ([[hi]])
hi

[[hi]]
.

where we have used the identity ∇([[hi]]) = hi
[[hi]] (see Theorem 5.1(iii) in [18]).
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Figure 2.2: Inter-vehicle and vehicle-domain control forces.

Similarly, it can be shown that the inter-vehicle force is the negative gradient of the
potential

VI (pij) =
∫ ‖pij‖

rd

fI (s) ds.

The potentials corresponding to the interaction forces from Figure 2.2 are shown in
Figure 2.3. Their explicit expressions are given by:

VI(x) =


aI
2 (‖x‖ − rd)2 for ‖x‖ < rd,

0 for ‖x‖ ≥ rd,
(2.4)

and

Vh(x) =

0 for [[x− P∂Ωx]] ≤ − rd
2 ,

ah
2 ([[x− P∂Ωx]] + rd

2 )2 for [[x− P∂Ωx]] > − rd
2 ,

(2.5)

where aI > 0 is the slope of the function fI on [0, rd] and ah > 0 is the slope of the
function fh on

[
− rd

2 ,∞
)
. Note that as aI and ah are positive, both potentials VI and Vh are

non-negative.
By Lemma 2.2.1, the control given in Equation (2.3) becomes

ui =
N∑
j 6=i
−∇iVI (pij)−∇iVh (pi) + fvi (‖vi‖)

vi
‖vi‖

. (2.6)

Asymptotic behaviour of the controlled system. Consider the following candidate
for a Lyapunov function, consisting in kinetic plus (artificial) potential energy:

Φ = 1
2

N∑
i=1

(
ṗi · ṗi +

N∑
j 6=i
VI (pij) + 2Vh (pi)

)
. (2.7)
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Figure 2.3: Inter-vehicle and vehicle-domain potentials.

Note that each term in Φ is non-negative, and Φ reaches its absolute minimum value when
the vehicles are totally stopped. Also, at the global minimum Φ = 0, the equilibrium
configuration is an rd-subcover of Ω; in particular, all vehicles are inside the target domain.

The derivative of Φ with respect to time can be calculated as:

Φ̇ =
N∑
i=1
ṗi ·

(
ui +

N∑
j 6=i
∇iVI (pij) +∇iVh (pi)

)

=
N∑
i=1
ṗi · fvi (‖vi‖)

vi
‖vi‖

=
N∑
i=1
fvi (‖vi‖) ‖vi‖ ,

where we used the dynamics (2.1) and equation (2.6). Thus, if we choose

fvi(‖vi‖) = −av,i ‖vi‖ , with av,i > 0, i = 1, . . . , N, (2.8)

then Φ̇ is negative semidefinite and equal to zero if and only if ṗi = 0 for all i (i.e., all
vehicles are at equilibrium).

We first use the Lyapunov function to show that the group of vehicles remain within a
compact set through time evolution. The key idea is that the vehicle-domain potential Vh
is confining the vehicles, and keeps them as a group, as opposed to having them disperse in
space [36].

Proposition 2.2.2. Solutions of (2.1), with control law given by (2.6) and (2.8), remain
cohesive through time, i.e., there exists an R > 0 such that ‖pi(t)‖ ≤ R for all i and t ≥ 0.

Proof. Using that the kinetic energy and the potential VI are non-negative, and Φ given by
(2.7) is non-increasing, we have:

N∑
i=1

Vh (pi(t)) ≤ Φ(t) ≤ Φ(0).
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To show boundedness of pi we only need to consider the case pi /∈ Ω, as otherwise the
vehicles are inside the compact set Ω. Using the expression (2.5) for Vh, we then find:

ah
2

N∑
i=1

(
‖pi(t)− P∂Ωpi(t)‖+ rd

2

)2
≤ Φ(0).

This shows that the distances from pi(t) to the domain Ω remain bounded by
√

2Φ(0)
ah

when
pi /∈ Ω, therefore, there exists R > 0 such that ‖pi(t)‖ ≤ R, for all i and t ≥ 0.

Remark 2.2.3. From LaSalle Invariance Principle we can conclude that the controlled
system approaches asymptotically an equilibrium configuration. By the expressions (2.6) of
the control force and (2.7) of the Lyapunov function, these are equilibria that are critical
points of the artificial potential energy 1

2
∑N
i=1

(∑N
j 6=iVI (pij) + 2Vh (pi)

)
. We expect that any

critical point other than the local minima (e.g., saddles or local maxima) are unstable [36],
and hence, almost every solution of the system will approach asymptotically a local minimum
of the potential energy.

For certain simple setups (e.g., a square number of vehicles in a square domain – see
Figure 2.5b, or a triangular number of vehicles in a triangular domain), the rd-covers are
isolated equilibria. Hence, together with the fact that such equilibria are global minimizers
for Φ, their local asymptotic stability can be inferred. The formal result is given by the
following proposition.

Proposition 2.2.4. Consider a group of N vehicles with dynamics defined by (2.1), and
the control law given by (2.6) and (2.8). Let the equilibrium of interest be of the form ṗi = 0,
‖pij‖ ≥ rd and [[hi]] ≤ − rd

2 for i, j = 1, · · · , N (see Definitions 2.1.1 and 2.1.2), and assume
that this equilibrium configuration is isolated. Also assume that there is a neighborhood about
the equilibrium in which the control law remains smooth. Then, the equilibrium is a global
minimum of the sum of all the artificial potentials and is locally asymptotically stable.

Proof. This follows from the LaSalle invariance principle and the arguments made above.

Choosing an adequate rd when solving the safe-domain-coverage problem leads us to
a nonlinear optimization problem (see [33]) which can be difficult in itself. Our heuristic
approach for picking this parameter relies on the premise that any vehicle is covering roughly
the same square area, i.e.,

rd =

√
Area (Ω)

N
. (2.9)

Note that (2.9) gives the exact formula for the maximal radius when both the number of
vehicles and the domain are square, making the rd-covers isolated equilibria, a key assump-
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tion in Proposition 2.2.4. Also, this particular choice for rd leads to the desired cover for
several domains with regular geometries (see Section 2.5).

2.3 Collision avoidance

An important component of our study is the guarantee that vehicles do not collide through
the time evolution. In our context this means that vehicles do not come closer than the
collision radius cr (see condition (2.2)). For small initial energies, collision avoidance can
be shown directly, using the decay of the Lyapunov function (2.7). For general cases, we
introduce a safety controller based on HJ reachability analysis.

Small initial energy. For initial data with small energy Φ we can show that no vehicle
collisions can occur. Specifically, the following result hold.

Proposition 2.3.1. Consider a target domain Ω and a group of N vehicles with dynamics
defined by (2.1) and (2.6) (see also (2.8)). Assume the energy Φ(0) of the initial configuration
satisfies

Φ(0) <
∫ cr

rd

fI(s) ds = aI
2 (cr − rd)2.

Then, no vehicle collision can occur for all t ≥ 0.

Proof. Suppose by contradiction that there is a time t∗ at which vehicles k and l are at
collision radius from each other, that is, ‖pk(t∗)−pl(t∗)‖ = cr. Given that VI is non-negative,
the inter-vehicle potential energy at the collision time can be bounded below as:

1
2

N∑
i=1

N∑
j 6=i
VI (pij(t∗)) ≥ VI(pk(t∗)− pl(t∗)) =

∫ cr

rd

fI(s) ds.

On the other hand, using that the kinetic energy and the potential Vh are non-negative, we
have:

1
2

N∑
i=1

N∑
j 6=i
VI (pij(t∗)) ≤ Φ(t∗) ≤ Φ(0).

By combining the two sets of inequalities above one finds Φ(0) ≥
∫ cr
rd
fI(s) ds, which con-

tradicts the assumption on the initial energy Φ(0).

The result above can be generalized as follows.

Proposition 2.3.2. Consider a target domain Ω and a group of N vehicles with dynamics
defined by (2.1), (2.6) and (2.8). Assume the energy Φ(0) of the initial configuration satisfies

Φ(0) < (k + 1)
∫ cr

rd

fI(s) ds,

17



for some k ∈ Z+. Then, at most k distinct pairs of vehicles could be possibly unsafe (k = 0
guarantees a safe motion) for all t ≥ 0.

Proof. The proof follows closely the proof of Proposition 2.3.1. Assume by contradiction
that k+ 1 pairs of vehicles collide at time t∗, it means their relative distances are less than
cr. Then, on one hand, following the argument in Proposition 2.3.1, we have:

1
2

N∑
i=1

N∑
j 6=i
VI (pij(t∗)) ≥ (k + 1)

∫ cr

rd

fI(s) ds,

where we use the fact that VI(pij) is a non-increasing radial function.
On the other hand,

1
2

N∑
i=1

N∑
j 6=i
VI (pij(t∗)) ≤ Φ(t∗) ≤ Φ(0),

leading to a contradiction.

Note that the two last results assume that the control law (2.6) is applied as it is, it
does not take into account the input force constrains in (2.1). The following HJ reachability
analysis deals with the input force bounds to guarantee pairwise safety.

Collision avoidance via Hamilton-Jacobi theory. To guarantee pairwise collision
avoidance for general configurations (when Proposition 2.3.2 does not apply), we design a
safety controller based on HJ reachability analysis.

Consider the dynamics between two vehicles Qi, Qj defined in terms of their relative
states

pr,x = pi,x − pj,x, vr,x = vi,x − vj,x,

pr,y = pi,y − pj,y, vr,x = vi,x − vj,x,

where the vehicle Qi is the evader, located at the origin, and Qj is the pursuer, the latter
being considered as the model disturbance. In this case the relative dynamical system is
given by

ṗr,x = vr,x v̇r,x = ui,x − uj,x,

ṗr,y = vr,y v̇r,y = ui,y − uj,y, (2.10)

with ‖ui‖,‖uj‖ ≤ umax, where ui = (ui,x, ui,y) and uj = (uj,x, uj,y) are the control inputs of
the agents Qi and Qj , respectively. From the perspective of agent Qi, the control inputs of
Qj , uj = (uj,x, uj,y), are treated as worst-case disturbance.

According to (2.2), the unsafe states are described by the target set Γ =
{
z : p2

r,x + p2
r,y ≤ c2

r

}
.
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Figure 2.4: Geometric illustration for solving HJI PDE (1.11). Here cp represents the collision
point.

Consider ψ (z) as the time it takes for the solution of the dynamical system (2.10),
with starting point z = (pr,x, vr,x, pr,y, vr,y) in R∗ \ Γ, to reach Γ when the disturbance and
control inputs are optimal. As the two vehicles have the same capabilities we make the
educated guess that the optimal non-anticipative strategy for the pursuer is copying the
evader accelerations, having so a zero relative acceleration. This implies that the relative
velocity will remain constant vr through time.

If pr and vr are such that a collision can occur, there exist a collision point cp, see
Figure 2.4. This will be one of the intersection points of the line crossing through pr

with direction parallel to vr and the circle of radius cr centered at the origin. To get the
collision time we replace the coordinates of cp from the perspective of the line, namely
cp = (pr,x + ψ (z) vr,x, pr,y + ψ (z) vr,y), into the canonical equation of the circle.

Using the above geometric argument one can show that this time is the minimum of the
two solutions of the following quadratic equation:(

v2
r,x + v2

r,y

)
ψ2 (z) + 2 (pr,xvr,x + pr,yvr,y)ψ (z) (2.11)

+
(
p2
r,x + p2

r,y − c2
r

)
= 0.

Let us verify first that the minimum of the two solutions satisfies indeed the HJI PDE
(1.11).

Proposition 2.3.3. Consider the function ψ (z) defined as

ψ (z) := − (pr,xvr,x + pr,yvr,y)−
√

∆
v2
r,x + v2

r,y

in R∗ \ Γ,

where
∆ = (pr,xvr,x + pr,yvr,y)2 −

(
v2
r,x + v2

r,y

) (
p2
r,x + p2

r,y − c2
r

)
.
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Also define ψ (z) to be 0 on Γ. Then ψ (z) satisfies equation (1.11).

Proof. For z ∈ R∗ \ Γ, ψ (z) is the minimum solution of the quadratic equation (2.11). By
using implicit differentiation on (2.11) one can show

∂ψ

∂pr,x
= − vr,xψ (z) + pr,x(

v2
r,x + v2

r,y

)
ψ (z) + (pr,xvr,x + pr,yvr,y)

∂ψ

∂pr,y
= − vr,yψ (z) + pr,y(

v2
r,x + v2

r,y

)
ψ (z) + (pr,xvr,x + pr,yvr,y)

.

To put system (2.10) in the general form (1.10) from Section 1.4, let z = (pr,x, pr,y, vr,x, vr,y),
u = (ux, uy) := (ui,x, ui,y), d = (dx, dy) := (uj,x, uj,y), and let f (z, u, d) represent the right-
hand-side of (2.10). Then,

min
u∈U

max
d∈D
{−∇ψ (z) · f (z, u, d)− 1}

= min
u∈U

max
d∈D

{
−∂ψ (z)
∂pr,x

vr,x −
∂ψ (z)
∂vr,x

(ux − dx)

−∂ψ (z)
∂pr,y

vr,y −
∂ψ (z)
∂vr,y

(uy − dy)− 1
}

= −
(
∂ψ (z)
∂pr,x

vr,x + ∂ψ (z)
∂pr,y

vr,y

)
− 1

= (vr,xψ (z) + pr,x) vr,x + (vr,yψ (z) + pr,y) vr,y(
v2
r,x + v2

r,y

)
ψ (z) + (pr,xvr,x + pr,yvr,y)

− 1 = 0,

where we have used the fact that ψ (z) is differentiable in R∗ \ Γ and that the minimum
and maximum in the second equal sign are attained at

u∗ = d∗ = umax

(
∂ψ(z)
∂vr,x

, ∂ψ(z)
∂vr,y

)
∥∥∥∂ψ(z)
∂vr,x

, ∂ψ(z)
∂vr,y

∥∥∥ , (2.12)

and therefore cancel out.
For z ∈ Γ the equation (1.11) is satisfied by the definition of ψ.

Note that we have found a differentiable function satisfying the HJI PDE (2.11) inR∗\Γ.
It can be shown that under these conditions this is a solution in the viscosity sense (see [4]
Prop 1.3.).
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Similarly as before, by implicit differentiation of (2.11) one can also show

∂ψ

∂vr,x
= −vr,xψ2 (z)− pr,xψ (z)(

v2
r,x + v2

r,y

)
ψ (z) + (pr,xvr,x + pr,yvr,y)

(2.13a)

∂ψ

∂vr,y
= −vr,yψ2 (z)− pr,yψ (z)(

v2
r,x + v2

r,y

)
ψ (z) + (pr,xvr,x + pr,yvr,y)

. (2.13b)

Now, by using (2.12) we can derive a closed expression for the optimal avoidance con-
troller. Note that to use this pairwise avoidance strategy we require each vehicle to know
its speed and position relative to the other vehicles.

For applications using the static HJI PDE (1.11) or similar equations, the solution is
commonly approximated via finite difference methods such as the one presented in [43];
however, using an analytic solution leads to two main advantages. First, refinements in the
resolution when using uniform grid point spacing may require a large amount of memory
and long computational times that scale very poorly. Second, these methods are only able
to compute the solution in a bounded domain. Having an analytical solution allows us to
have the best possible resolution in an unbounded domain. Practically, this allows us to
predict and react to possible collisions arbitrarily far into the future.

2.4 Overall control logic

We have presented two controllers. First, a controller based on virtual potentials which leads
to coverage, but without taking into consideration safety; and second, a safety controller
that guarantees pairwise collision avoidance. The main objective of this section is to describe
how to switch between these two controllers.

We will consider that vehicle Qi is in potential conflict with vehicle Qj if the time to
collision ψ (zi) (time to reach Γ), given the relative current state zi, is less than or equal
to a specified time horizon tsafety. In other words, a danger is defined when a vehicle is
susceptible to collision in the next tsafety seconds. In such a case Qi must use the safety
controller, otherwise, the coverage controller is used.

In the case that a vehicle detects more than one conflict, it will apply the control policy
of the first conflict detected at that particular time. Algorithm 1 describes the overall control
logic for every vehicle Qi.

In Algorithm 1, lines 6 and 7 can be obtained from equations (2.13a), (2.13b) and (2.12)
(also note the normalization step in line 14), while line 12 comes from the explicit coverage
control (2.3).

Remark 2.4.1. It is clear that thresholding the force (Algorithm 1 line 14) the theoretical
guarantees may not necessary hold anymore. However, when close to the desired operation

21



Input: State xi of a vehicle Qi; states {xj}j 6=i of other vehicles {Qj}j 6=i; a
domain Ω to cover.

Parameter: A time horizon for safety check tsafety;
Output: A control ui for Qi.

1 safe← True;
2 for j 6= i do
3 z ← xi − xj ;
4 if ψ (z) ≤ tsafety then
5 safe← False;
6 Uix = − vr,xψ2(z)+pr,xψ(z)

(v2
r,x+v2

r,y)ψ(z)+(pr,xvr,x+pr,yvr,y) ;

7 Uiy = − vr,yψ2(z)+pr,yψ(z)
(v2

r,x+v2
r,y)ψ(z)+(pr,xvr,x+pr,yvr,y) ;

8 break for
9 end

10 end
11 if safe then
12 (Uix, Uiy) = -

∑N
j 6=i fI (‖pij‖) pij

‖pij‖ -fh ([[hi]]) hi
[[hi]] + fvi (‖vi‖) vi

‖vi‖ ;
13 end
14 ui = umax

(Uix,Uiy)
‖(Uix,Uiy)‖ ;

15 return ui;
Algorithm 1: Overall control logic for a generic vehicle Qi.

point the coverage forces are small enough to not be thresholded and it is feasible to apply
the required control force, implying the theoretical results are locally valid.

2.5 Numerical simulations

In this section, we show numerical simulations with various domains using the coverage and
safety controllers discussed above.

Square domain. We first consider the problem in which several vehicles cover a square
domain. Here we present two strategies: while both of them use the coverage controller
described in Section 2.2, only the second strategy switches to the safety controller when
necessary, according to Section 2.4. In both cases 16 vehicles start from a horizontal line
setup outside of the target square domain, as shown in Figure 2.5a.

The left column of Figure 2.6 illustrates different time steps for the scenario when the
safety controller is not used, while the right column shows results in the presence of the
safety controller. The large coloured dots represent the position of the vehicles, the dashed
tails are past trajectories (shown for the previous 5 seconds), and the arrows indicate the
movement direction. Note however that we have not shown the arrows when the velocities
are very small, as the tails are more meaningful in this case.
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(a) (b)

Figure 2.5: Initial (a) and steady (b) states for covering a square domain, with a square
number of vehicles (N = 16).

At t = 0 (s) there are no contributions from the inter-vehicle forces or from the safety
controller as the vehicles are far from each other and the initial speed is zero. The only
contribution comes from the vehicle-domain forces, which pull the mobile agents toward
the interior of the square; see initial trajectory tails in Figures 2.6a and 2.6b. At t = 5 (s)
the vehicles without safety controller are more prone to collisions due to the symmetry of
the initial condition. The safety controller slows down some vehicles hence breaking this
symmetry, and allowing them to enter in the crowded area without collisions.

As the forces between vehicles and domain are piece-wise linear with respect to the
distance, they can be thought of as spring-like forces; in that respect, the presence of over-
shoots is expected, as shown in Figure 2.6c. However, Figure 2.6d indicates that in addition
to preventing collisions, the use of the safety controller reduces the overshoot considerably.

After t = 50 (s) both control strategies reach the steady state shown in Figure 2.5b.
We note however that the system with collision avoidance reaches the equilibrium faster,
as shown by Figures 2.6e and 2.6f.

A collision event starts when the distance between two vehicles is less than or equal to
the collision radius cr, and ends when the distance becomes greater than cr. The collision
event count for the square domain coverage with and without the safety controller, for
various number of vehicles, is shown in Table 2.1. It is noteworthy that in the absence of
the safety controller the collision count increases significantly with the number of vehicles,
while it remains zero or very low when the safety controller is used.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Square domain coverage at different time instants, without (left) and with (right)
safety controller, when N = 16, cr = 2 (m), vmax = 10 (m/s), umax = 3 (m/s2), tsafety =
5 (s), side length l = 20 (m), domain area A = l2 = 400 (m2) and rd =

√
A
N = 5 (m).

Vehicles start in a horizontal line configuration and reach a square grid steady state which
is an rd-cover of the domain (see Definition 2.1.2). The use of the safety controller reduces
both the collision count and the overshoot, and helps reach the steady state faster.
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Table 2.1: Square coverage collision count.

number of vehicles without avoidance with avoidance
9 8 0
16 51 0
25 146 2

Note that safety issues may arise when a vehicle needs to avoid two or more vehicles
at the same time. In this case the pairwise safety approach used in this thesis does not
guarantee collision avoidance. Guaranteed collision avoidance for more than two vehicles is
an unsolved problem, as explored for example in [10].
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Chapter 3

Coverage of a moving domain

3.1 Problem formulation

We consider in this section the coverage problem when the target domain moves with
prescribed constant velocity vd. Specifically, let Ω ⊆ R2 be a compact domain and define
Ωt = Ω+tvd, representing the moving domain at time t. Alternatively, if one sets an arbitrary
marker point pd (e.g., the centre of mass) in Ω, its motion is given by pd(t) = pd + tvd.

We are interested in covering the domain Ωt (see Definitions 2.1.1 and 2.1.2), which
changes through time. For this reason we want the vehicles to reach asymptotically, as
t → ∞, the velocity of the target domain, while maintaining a cohesive group through
dynamics. This is expressed by the concept of flocking [36, 16, 27].

Consider a group of N vehicles, each of them governed by the double integrator dynam-
ics, i.e.,

ṗi = vi, v̇i = ui, i = 1, . . . , N, (3.1)

with control ui to be specified later. We adapt below the definition of flocking from [26] to
the problem of moving target.

Definition 3.1.1 (Flocking with a moving target). A group of vehicles has a time-asymptotic
flocking with a target domain moving with constant velocity vd if its positions and velocities
{pi, vi} , i = 1, · · · , N satisfy the following two conditions:

1. The relative positions with respect to the marker point in the domain are uniformly
bounded in time (forming a group):

sup
0≤t<∞

N∑
i=1
‖pi (t)− pd (t)‖2 <∞.
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2. The relative velocities with respect to the moving domain go to zero asymptotically in
time (velocity alignment):

lim
t→+∞

N∑
i=1
‖vi (t)− vd‖2 = 0,

In this case, our safe domain coverage problem of interest is the following:

Safe-domain-coverage by vehicles with double integrator dynamics for moving
domains: Consider a compact domain Ωt that moves with constant velocity vd in the plane,
and N vehicles with dynamics described by (3.1), starting from safe initial conditions. Find
the maximal r > 0 and a control policy that leads to an r-cover for Ωt that flocks with the
moving target, while satisfying the safety condition (2.2) at any time.

3.2 Coverage controller with alignment

At first glance, one might think that the current coverage policy (2.3) can work well while
solving our latest problem of interest since the moving domain will always attract the
vehicles to its interior. However, as this approach encourages vehicles to be static, they
tend to lag behind the domain, reacting only when they are out of it. This suggests that
the vehicles require a mechanism to align their velocities with those of their neighbors and
the target domain.

Inspired by the Cucker-Smale model with rooted leadership (see 1.1.2), we propose the
control force with inclusion of inter-vehicle and vehicle-domain alignment forces given by:

ui = −
N∑
j 6=i

fI (‖pij‖)
pij
‖pij‖

− fh ([[hi]])
hi

[[hi]]
−

N∑
j 6=i

fal (‖pij‖) vij︸ ︷︷ ︸
inter-vehicle

− av (vi − vd) ,︸ ︷︷ ︸
vehicle-domain

(3.2)

Where we kept the notations from Chapter 2. i.e., set pij := pi−pj , vij := vi−vj , and denote
by P∂Ωt (pi) the projection of pi on ∂Ωt. Also, hi := pi − P∂Ωt (pi), and [[hi]] denotes the
signed distance of pi from ∂Ωt. In addition, fal is a non-negative communication function
and av is a positive constant.

The inter-vehicle alignment force controls the alignment of vehicle i’s velocity with the
velocities of the rest of the vehicles, and the extent to which such alignment occurs depends
on the relative distance ‖pij‖ between the interacting vehicles. For a communication function
fal that is non-increasing (this is a typical assumption in the literature [27, 26]), vehicles
align stronger with their neighbours, and less with vehicles that are further apart. The
results presented in this thesis correspond to a communication function in the form:

fal (‖pij‖) = Cale
−

‖pij ‖
lal ,
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where Cal and lal are constants associated to the alignment strength and alignment range,
respectively. This function was considered in [21] in the context of honeybee swarms.

The vehicle-domain alignment force drives the velocity of the vehicles to the domain’s
velocity vd. In this regard, the braking force in the static domain model (see (2.3) and (2.8))
can also be interpreted as an alignment force that brings the vehicles to a stop. Also, while
for simplicity we have taken a common constant av for all vehicles, the considerations that
follow apply to the more general alignment forces av,i(vi − vd), with av,i > 0.

By changing to relative coordinates with respect to the frame of the moving domain,
one can recover the case of a stationary domain (vd = 0). Indeed, change variables to:

p̃i := pi − tvd,

ṽi := vi − vd,
(3.3)

and note that the inter-vehicle positions and velocities are invariant to this change of coor-
dinates, that is,

p̃ij := p̃i − p̃j = pij ,

ṽij := ṽi − ṽj = vij .

Also, by translation, the distance to the target domain satisfies

hi = pi − P∂Ωt (pi) = (pi − tvd)− P∂Ωt−tvd
(pi − tvd) = p̃i − P∂Ω (p̃i) .

Hence, in the new variables, the signed distances [[h̃i]], where

h̃i := p̃i − P∂Ω (p̃i) , (3.4)

are with respect to the initial (fixed) domain Ω.
The observations above allow us to rewrite the control (3.2) in the new variables. We

find that in the moving coordinate frame the dynamics of the N vehicles is given by:

˙̃pi = ṽi, ˙̃vi = ũi, i = 1, . . . , N,

where

ũi = −
N∑
j 6=i

fI (‖p̃ij‖)
p̃ij
‖p̃ij‖

−
N∑
j 6=i

fal (‖p̃ij‖) ṽij − fh([[h̃i]])
h̃i

[[h̃i]]
− avṽi.

Note that this corresponds to the dynamics in the original variables for a stationary domain.
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3.3 Asymptotic behaviour

We first investigate the dynamics with control (3.2) for a stationary target (vd = 0). Using
the potentials introduced in (2.4) and (2.5), we write the control as:

ui = −
N∑
j 6=i
∇iVI (pij)−∇iVh (pi)−

N∑
j 6=i
fal(‖pij‖)(vi − vj)− avvi. (3.5)

Consider the same candidate for a Lyapunov function, consisting in kinetic plus (artifi-
cial) potential energy:

Φ = 1
2

N∑
i=1

(
ṗi · ṗi +

N∑
j 6=i
VI (pij) + 2Vh (pi)

)
.

Note that each term in Φ is non-negative, and Φ reaches its absolute minimum value when
the vehicles are totally stopped.

The derivative of Φ with respect to time can be calculated as:

Φ̇ =
N∑
i=1
ṗi ·

(
ui +

N∑
j 6=i
∇iVI (pij) +∇iVh (pi)

)

=
N∑
i=1
vi ·

(
−

N∑
j 6=i
fal(‖pij‖)(vi − vj)− avvi

)
. (3.6)

For the inter-vehicle alignment term, write

N∑
i=1
vi ·

N∑
j 6=i
fal(‖pij‖)(vi− vj) = 1

2

N∑
i=1
vi ·

N∑
j 6=i
fal(‖pij‖)(vi− vj) + 1

2

N∑
j=1

vj ·
N∑
i 6=j
fal(‖pji‖)(vj − vi),

where in the second term in the right-hand-side we simply renamed i ↔ j as indices of
summation. From there, use that ‖pij‖ = ‖pji‖ to get:

N∑
i=1
vi ·

N∑
j 6=i
fal(‖pij‖)(vi − vj) = 1

2

N∑
i=1

N∑
j 6=i
fal(‖pij‖)‖vi − vj‖2.

Hence, from (3.6), we find:

Φ̇ = −1
2

N∑
i=1

N∑
j 6=i
fal(‖pij‖)‖vi − vj‖2 − av

N∑
i=1
‖vi‖2.
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In the case of a target domain moving with velocity vd, one can change to relative
coordinates (3.3) as explained in Section 3.2, and set:

Φ = 1
2

N∑
i=1

(
˙̃pi · ˙̃pi +

N∑
j 6=i
VI (p̃ij) + 2Vh (p̃i)

)
. (3.7)

Then, by the calculations for the stationary target above,

Φ̇ = −1
2

N∑
i=1

N∑
j 6=i
fal(‖p̃ij‖)‖ṽi − ṽj‖2 − av

N∑
i=1
‖ṽi‖2

= −1
2

N∑
i=1

N∑
j 6=i
fal(‖pij‖)‖vi − vj‖2 − av

N∑
i=1
‖vi − vd‖2. (3.8)

Note that Φ̇ is negative semidefinite and equal to zero if and only if ṽi = 0 (or equivalently
vi = vd) for all i, i.e., when vehicles’ velocities are aligned with the velocity of the domain.
The construction of this Lyapunov function leads to the following flocking result.

Theorem 3.3.1 (Flocking with the moving target). Consider a target domain Ωt that
moves with constant velocity vd, and a group of N vehicles with smooth dynamics governed
by (3.1), with the control law given by (3.2). Then, the group of agents has a time-asymptotic
flocking with the moving target Ωt.

Proof. We have to check the conditions in Definition 3.1.1. For condition 1 (group cohesive-
ness) we will use relative coordinates p̃i and show that they remain within a compact set
through time evolution. Using that the kinetic energy and the potential VI are non-negative,
and Φ given by (3.7) is non-increasing, we have:

N∑
i=1

Vh (p̃i(t)) ≤ Φ(t) ≤ Φ(0).

Recall that in relative coordinates the distances to the target are with respect to the
fixed initial domain Ω (see (3.4)). To show boundedness of p̃i we only need to consider the
case p̃i /∈ Ω, or else the vehicles are inside the compact set Ω. Using the expression (2.5) for
Vh, we then find:

ah
2

N∑
i=1

(
‖p̃i(t)− P∂Ω p̃i(t)‖+ rd

2

)2
≤ Φ(0).

This shows that the distances from p̃i(t) to the domain Ω remain bounded by
√

2Φ(0)
ah

when
p̃i /∈ Ω, therefore, there exists R > 0 such that ‖p̃i(t)‖ ≤ R, for all i and t ≥ 0. In original
variables this writes as ‖pi(t)− pd(t)‖ ≤ R, for all i and t ≥ 0, showing condition 1.
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To show condition 2, we note that the velocities are also uniformly bounded in time.
Indeed, since the potentials VI and Vh are non-negative and Φ is non-increasing, we have:

N∑
i=1
‖ṽi(t)‖2 ≤ 2Φ(t) ≤ 2Φ(0).

Hence, the solutions (p̃i(t), ṽi(t)) of the relative system are confined within a compact set
through dynamics. By LaSalle Invariance Principle we can then conclude that the solutions
approach asymptotically the largest invariant set in {Φ̇ = 0}. Consequently, we infer from
(3.8) that as t → ∞, the vehicles’ velocities approach the velocity of the target domain,
which establishes condition 2 in Definition 3.1.1.

Remark 3.3.2. It has been inferred in the proof of Theorem 3.3.1 that solutions of the
relative system approach asymptotically critical points of Φ that satisfy ṽi = 0 for all i.
By the expressions (3.5) of the control force and (3.7) of the Lyapunov function, these
are equilibria that are critical points of the artificial potential energy

∑N
i=1

(∑N
j 6=iVI (p̃ij) +

2Vh (p̃i)
)
. As also noted in the stationary case (see Remark 2.2.3), we expect that almost

every solution of the relative system will approach asymptotically a local minimum of this
potential energy.

Most relevant to our study are the rd-covers discussed in Section 2, now in the context
of these configurations being equilibria in the moving frame of the target. At such relative
equilibria the potential energy vanishes, as any two vehicles are more than rd distance apart
and any vehicle is at a signed distance less than − rd

2 from Ω. Hence these equilibria in the
moving frame are global minimizers of the potential energy. In certain simple geometries
(e.g., a square number of vehicles in a square domain or a triangular number of vehicles in
a triangular domain), such equilibria are also isolated. These observations, together with
the Lyapunov function construction above and LaSalle Invariance Principe allows us to
establish the following local asymptotic result.

Proposition 3.3.3. Consider a target domain Ωt that moves with constant velocity vd, and
a group of N vehicles with dynamics defined by (3.1) and (3.2). Let the relative equilibrium
of interest be of the form ˙̃pi = 0, ‖p̃ij‖ ≥ rd and [[h̃i]] ≤ − rd

2 for i, j = 1, · · · , N (see
Definitions 2.1.1 and 2.1.2), and assume that this equilibrium configuration is isolated. Also
assume that there is a neighborhood about the equilibrium in which the control law remains
smooth. Then, the relative equilibrium is a global minimum of the sum of all the artificial
potentials and is locally asymptotically stable.

Remark 3.3.4. All considerations in this section apply to the case of zero inter-individual
alignment forces (fal = 0). In such case, by working in the moving frame of the domain,
the problem reduces in fact to the one studied in Chapter 2.
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As mentioned in Remark 2.4.1, the previous theoretical results only can be guaranteed
if the control force remains sufficiently small, in other words, if it is threshold free.

3.4 Numerical simulations

In this section, we show three numerical simulation scenarios for vehicles using the coverage
controller with velocity alignment we presented above. While the first two scenarios are
covered by the discussed theory, the last one illustrates how our strategy still leads to
appropriate final configurations even when the domain follows non-inertial trajectories. The
possible safety issues are addressed as described in Section 2.3.

Triangular domain. We consider the scenario in which an equilateral triangular domain
moving with constant velocity, vd =

(√
2

2 ,
√

2
2

)
, is covered by a triangular number of vehicles,

i.e. N = n(n+1)
2 , n ∈ N. At the start of the simulation the vehicles lie on a line outside the

domain. The evolution for a group of N = 10 agents, each of them using the coverage with
velocity alignment and pairwise safety strategies discussed above, is illustrated in Figures
3.1a - 3.1c. The tails represent the 15-second history of the vehicle positions.

We verified that not including the pairwise safety strategy increases the number of
collisions, going from zero collision to seven when not using it. In this particular case the
inclusion of the safety policy does not seem to benefit much how the system reaches the
desired coverage, compare Figure 3.1b vs. Figure 3.1e.

We also want to point out some of the effects we observed when using extreme velocity
alignment forces. This observations are hopefully useful while tuning parameters. Figure 3.2
shows the evolution of the vehicles when increasing the alignment constants Cal and av used
in the Figure 3.1 setup from 0.2 (m/s2) to 1.4 (m/s2), while keeping the other parameters
the same.

We note that strong alignments, i.e. large av or Cal values, may cause that the vehicles
spread slowly inside the domain, compare Figures 3.2a and 3.2b vs. Figure 3.1e. In addition,
very strong velocity alignments can make the systems more prone to not reaching the desired
formations.

On the other hand, weak alignments, i.e. small av and Cal values, cause undesired
overshoots, and slower asymptotic flocking. Therefore, it is important to maintain a good
balance between the strength of the alignment and coverage forces.

Non-convex domain. We now study the scenario in which vehicles cover and follow a
non-convex moving domain. While the domain preserves its shape, it moves with a constant
velocity vd =

(√
2

2 ,
√

2
2

)
. Different time instants of the simulation are shown in Figure 3.3,

where the tails represent the vehicle positions during the last 20 seconds of the simulation.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Vehicles covering and following a moving equilateral triangular domain, when
N = 10, cr = 2 (m), vmax = 10 (m/s), umax = 3 (m/s2), tsafety = 5 (s), aI = 1 (m/s2),
ah = 2 (m/s2), av = 0.2 (m/s2), Cal = 0.2 (m/s2), lal = 7.79 (m), vd =

(√
2

2 ,
√

2
2

)
(m/s),

domain area A = 292.28 (m2) and rd =
√

A
N = 5.4 (m). Vehicles start in linear formation.

(a)-(c) include collision avoidance controller, (d)-(f) do not.
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(a) Cal = 0.2 (m/s2), av = 1.4 (m/s2) (b) Cal = 1.4 (m/s2), av = 0.2 (m/s2)

Figure 3.2: Effects of strong velocity alignment for vehicles covering a moving equilateral
triangular domain, when N = 10, cr = 2 (m), vmax = 10 (m/s), umax = 3 (m/s2), tsafety =
5 (s), aI = 1 (m/s2), ah = 2 (m/s2), lal = 7.79 (m), vd =

(√
2

2 ,
√

2
2

)
(m/s), domain area

A = 292.28 (m2) and rd =
√

A
N = 5.4 (m). Vehicles start in linear formation and do not

include collision avoidance controller.

Initially, all the 9 vehicles lie on a line perpendicular to the movement direction of the target
domain, as shown by the tails of the vehicles in Figure 3.3a.

We distinguish two main behaviours: during a first phase of the simulation (Figures 3.3a
and 3.3b) the vehicles cover the domain approximately evenly, adopting the arrow shape,
while in a second phase (Figure 3.3c), a clearer domain-following behaviour is observed.
The oscillations of the two vehicles that are lagging behind are the effect of their proximity
to the corners. Indeed, as one of the line segments of the boundary wedge gets closer to the
vehicle near the corner, it pushes it towards the other segment of the wedge, a back-and-
forth motion that causes the zigzagging. These oscillations can be reduced by reinforcing
the velocity alignment.

Unlike the convex case, in non-convex domains the projection on the boundary for points
outside of the domain may not be unique; this is the case for instance of the green vehicle
in the middle of the initial setup – see start of the tails in Figure 3.3a. Although the chance
for a vehicle to lie in one of these states is extremely unlikely (the set of points where this
happens has zero measure), this fact may yield ambiguity in the definition of the domain-
vehicle force. We mitigate this issue by considering the contribution from only one of the
multiple projection points; consequently, the numerical time evolution may depend on the
chosen projection method.

Domain Moving in a Circle. Finally, we include the case of a target domain moving
with non-zero acceleration, more specifically, an equilateral triangular domain under trans-
lation and rotation. While the translation of its centre of mass describes a circular motion of
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(a) (b) (c)

Figure 3.3: Vehicles covering and following a moving, non-convex domain, when N = 9,
cr = 2 (m), vmax = 10 (m/s), umax = 3 (m/s2), tsafety = 5 (s), aI = 1 (m/s2), ah = 2 (m/s2),
av = 0.2 (m/s2), Cal = 0.1 (m/s2), lal = 7.21 (m), domain area A = 225 (m2) and rd =√

A
N = 5 (m). The vehicles start in linear formation, approach and cover the domain, while

following it. The vehicles lagging behind exhibit oscillations due to a bouncing effect in the
narrow corners.

radius 30 with constant angular velocity 2π
40 , the rotation aligns the heading of the half line

to be tangent to that circle, see Figure 3.4. Note that this non-inertial path plus rotation
is not covered by our previous theoretical results (Theorem 3.3.1 and Proposition 3.3.3).

The vehicles’ time evolution is illustrated in Figure 3.4, where the tails represent the
vehicles position during the last 20 seconds of the simulation. At the beginning, the N = 6
vehicles are in the line formation as shown by the beginning of the tails in Figure 3.4a.
As in previous simulations the vehicles try to reach the moving domain, this time rotating
around the domain circular path (Figures 3.4a and 3.4b). Then, the vehicles reach coverage
of the domain (Figure 3.4c) which is maintained by each vehicle by remaining in a circular
movement of constant radius (Figure 3.4d).

When a vehicle describes a uniform circular movement with angular velocity ω and ra-
dius r, its speed remains constant over time and is given by rω. Now, as the vehicles move
asymptotically along circles with different radii, we can conclude they have different veloc-
ities, it means this type of "flock" does not satisfy Def. 3.1.1. In contrast to the case when
the domain is moving along inertial paths, in this case each vehicle’s control force magni-
tude does not go asymptotically to zero, but instead, it tends to approach its centripetal
acceleration rω2.

35



(a) (b)

(c) (d)

Figure 3.4: Vehicles covering and following a non-zero acceleration triangular domain moving
over the path

(
30 cos

(
2π
40 t
)
, 30 sin

(
2π
40 t
))

, when N = 6, cr = 2 (m), vmax = 10 (m/s),
umax = 3 (m/s2), tsafety = 5 (s), aI = 10 (m/s2), ah = 10 (m/s2), av = 1 (m/s2), Cal =
1.2 (m/s2), lal = 10.06 (m), domain area A = 292.28 (m2) and rd =

√
A
N = 6.97 (m). The

vehicles start in linear formation, approach and cover the domain, while following it.
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Chapter 4

Planar Fixed-Wing Aircraft

4.1 Problem Formulation

In this chapter consider again the flocking coverage problem where the target domain moves
with prescribed constant velocity vd (see Definitions 2.1.1, 2.1.2 and 3.1.1). The difference
here is that instead of following the 2nd-order dynamics (3.1) each of the N vehicles is
governed by the planar fixed-wing aircraft dynamics

ṗi = si (cos (θi) , sin (θi)) ,
(
θ̇i, ṡi

)
= (ui,θ, ui,s) ;

0 < smin ≤ ‖ṗi‖ ≤ smax, |ui,θ| ≤ uθmax , |ui,s| ≤ usmax .

(4.1)

Here, θi is the heading angle, si is the vehicle speed and pi = (pi,x, pi,y) is the position
of the i-th agent. The variables ui,s and ui,θ are the acceleration and turn rate applied to
this vehicle respectively; these are the control inputs to be specified later. In addition to
the bounds for the controls, we also impose maximum and minimum speed limits, the last
being particularly relevant for aerial vehicles.

In this case, our safe domain coverage problem of interest is the following:

Safe-domain-coverage for moving domain by planar fixed-wing air-crafts: Con-
sider a compact domain Ωt that moves with constant velocity vd in the plane, and N vehicles
with dynamics described by (4.1), starting from safe initial conditions. Find the maximal
r > 0 and a control policy that leads to an r-cover for Ωt that flocks with the moving target,
while satisfying the safety condition (2.2) at any time.

4.2 Coverage Controller

Our purpose is to find expressions for each agent’s control law based on the proposed
coverage policy with inter-vehicle and vehicle-domain alignment forces (3.2), while satisfying
the constraints given in (4.1).
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By differentiation of the vehicle dynamics (4.1) with respect to time, one can find that
the acceleration in Cartesian coordinates of the i-th agent in terms of the control inputs are
as follows:(

¨pi,x
¨pi,y

)
= R (θi, si)

(
ui,θ

ui,s

)
; where R (θi, si) :=

(
−si sin (θi) cos (θi)
si cos (θi) sin (θi)

)
. (4.2)

This relation allows us to compute an expression for the vehicle control inputs in terms
of its acceleration in Cartesian coordinates whenever si 6= 0 as(

ui,θ

ui,s

)
= (R (θi, si))−1

(
¨pi,x
¨pi,y

)
. (4.3)

Using this correspondence, one can obtain the necessary controls (ui,θ, ui,s) to achieve
the same acceleration in Cartesian coordinates produced by the proposed control force (3.2)
as

(
ui,θ

ui,s

)
= (R (θi, si))−1

− N∑
j 6=i

fI (‖pij‖)
pij
‖pij‖

− fh ([[hi]])
hi

[[hi]]
−

N∑
j 6=i

fal (‖pij‖) vij − a (vi − vd)

 .

(4.4)
The changes of coordinates (4.2) and (4.3) guarantee that all the stability results in

Chapter 3 are still valid in the case of the planar fixed-wing aircraft model when no con-
straints are applied as long as none of the vehicles stop along their trajectories. This seems
to be a very plausible assumption in practice as the minimum speed is supposed to be
greater than zero.

Thresholding the Control Force While finding an admissible force satisfying the con-
straints for the double integrator model (3.1) is done by simply normalizing the vehicles
control input (3.2), obtaining a suitable fixed-wing control input satisfying the constraints
(4.1) is not as straightforward.

In order to obtain the appropriate planar fixed-wing aircraft control inputs we use the
relation (4.2), which allow us to represent the set of admissible accelerations from the
Cartesian perspective as

S (θi, si) =
{
R (θi, si)

(
uθ

us

)
:
(
uθ

us

)
∈ [−uθmax , uθmax ]× [−usmax , usmax ]

}
.

This set can be understood as a stretch and rotation of the rectangle containing the admis-
sible vehicle control inputs.

The input constraints certainly affect the magnitude of the vehicle acceleration, however,
we intend to preserve its direction. Let us define the Cartesian admissible force associated
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to the control (4.4) as

(
ûi,x

ûi,y

)
= sup

{
t ∈ R : tR (θi, si)

(
ui,θ

ui,s

)
∈ S (θi, si)

}
R (θi, si)

(
ui,θ

ui,s

)
,

i.e. the largest acceleration in the set of admissible accelerations in Cartesian coordinates
that is parallel to the desired acceleration, see Figure 4.1.

Finally, the thresholded fixed-wing aircraft control inputs can be obtained by using the
relation (4.2) as (

ûi,θ

ûi,s

)
= (R (θi, si))−1

(
ûi,x

ûi,y

)
,

or simply, (
ûi,θ

ûi,s

)
= sup

{
t ∈ R : tR (θi, si)

(
ui,θ

ui,s

)
∈ S (θi, si)

}(
ui,θ

ui,s

)
.

Figure 4.1: Thresholded fixed-wing aircraft control input ûi for vehicle with speed si
and heading θi computed from its set of admissible accelerations in Cartesian coordinates
S (θi, si) and a reference acceleration dvi

dt .

Some comments on collision avoidance. As mentioned above, the changes of coordi-
nates (4.2) and (4.3) guarantee that the unconstrained fixed-wing aircraft dynamics satisfy
the vehicles safety conditions when the initial energy is small enough, as established in
Proposition 2.3.1.
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On the other hand, as the set of control inputs and non-anticipative disturbances differ
from those in the double integrator dynamics, the collision avoidance via Hamilton-Jacobi
reachability for this type of vehicle requires a different study than the one carried out in Sec-
tion 2.3. Obtaining an analytical solution for the HJ PDE associated is much more difficult
and solving it numerically is computationally challenging. As it requires more attention, we
decide to exclude the collision avoidance controller in the following numerical simulations,
and consider it as part of our future work.

4.3 Numerical Simulations

In this section we revisit the simulation scenarios investigated in Section 3.4 and illustrate
how our control strategy leads to similar coverage configurations. We do not intend to
compare the systems evolution, as they are two distinct types of vehicles with different
capabilities. ,

Triangular domain. In the first scenario, we consider an equilateral triangular domain
moving with constant velocity, vd =

(√
2

2 ,
√

2
2

)
, which is covered by a triangular number

of vehicles. The minimum for vehicle’s speed is set at 0.5 (m/s), while the maximum is
10 (m/s). Each of the fixed-wing agents uses the coverage controller with velocity alignment
(4.4) discussed in Section 4.2.

Figure 4.2 shows three different time steps of the evolution of the vehicles. The tails
represent the last 15 seconds of the vehicles position history. At the start of the simulation
the N = 10 vehicles lie on a line outside the domain moving with the minimum allowed
speed and random headings, see Figure 4.2a.

At time t = 0 (s) the major acceleration effects are associated to the vehicle-domain
forces, which pull the agents to the domain. This causes that the vehicles not pointing
towards the domain accelerate less and lag with respect to the others, see Figure 4.2b. The
reason for this is that for low speed vehicles the threshold is more restrictive when the
acceleration direction does not agree with the movement direction, as illustrated by Figure
4.1.

As time goes on, the vehicles approach the domain (Figures 4.2b and 4.2c), and then
cover it by taking a triangular formation moving with constant velocity as expected, see
Figures 4.2d and 4.2e. In this particular case, the same coverage controller parameters used
for the double integrator vehicles seem to work well. However, it is not a rule of thumb, as
the thresholding strategies are very different.

We consider it remarkable that the system does not present collisions despite not having
any safety-oriented system. It suggests that the combination of inter-vehicle spatial and
alignment forces may be enough to guarantee safety under certain conditions, even when
thresholding the control inputs.
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(a) (b) (c)

(d) (e)

Figure 4.2: Vehicles with planar fixed-wing aircraft dynamics covering and following a
moving equilateral triangular domain, when N = 10, cr = 2 (m), smax = 10 (m/s),
smin = 0.5 (m/s), uθmax = π/2 (rad/s), usmax = 3 (m/s2), aI = 1 (m/s2), ah = 2 (m/s2),
av = 0.2 (m/s2), Cal = 0.2 (m/s2), lal = 7.79 (m), vd =

(√
2

2 ,
√

2
2

)
(m/s), domain area

A = 292.28 (m2) and rd =
√

A
N = 5.4 (m). Collision avoidance controller is not included.

The vehicles start in linear formation.
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(a) (b) (c)

Figure 4.3: Nine vehicles with planar fixed-wing aircraft dynamics covering and follow-
ing a moving, non-convex domain, cr = 2 (m), smax = 10 (m/s), smin = 0.5 (m/s),
uθmax = π/2 (m/s2), usmax = 3 (m/s2), aI = 5 (m/s2), ah = 2 (m/s2), av = 0.2 (m/s2),
Cal = 2 (m/s2), lal = 7.21 (m), domain area A = 225 (m2) and rd =

√
A
N = 5 (m). The

vehicles start in linear formation, approach and cover the domain, while following it. The
collision avoidance controller is not included. The vehicles lagging behind exhibit oscillations
due to a bouncing effect in the narrow corners.

Non-convex domain. In the second scenario a group of vehicles cover and follow a non-
convex domain moving with constant velocity vd =

(√
2

2 ,
√

2
2

)
. As above, the minimum

vehicle speed is set at 0.5 (m/s) and the maximum at 10 (m/s). Different time instants of
the simulation are shown in Figure 4.3, where the tails represent the last 20 seconds of the
vehicles position history. Initially, all the 9 fixed-wing agents lie on a line perpendicular to
the movement direction of the target domain, as shown by the tails of the vehicles in Figure
4.3a.

We can distinguish again the follow-cover (Figures 4.3a and 4.3b) and the flocking
around the domain (Figure 4.3c) behaviours. Similarly, we observe the oscillations of the
two vehicles that are lagging behind, due to their proximity to the corners.

When we use the same coverage controller parameters as in the double integrator sce-
nario, there are many collisions. In order to obtain a free collision movement we use two
strategies. On the one hand, we increase the inter-vehicle non-zero slope, aI , to promote
vehicles to stay apart. On the other hand, we increase the inter-vehicle velocity alignment
strength, Cal, which prevents nearby vehicles to move directly towards each other. Finally,
note that the agents slow down the spread inside the domain due to the strong velocity
alignment (Figure 4.3b).

Domain Moving in a Circle. Finally, we present the accelerated domain case, where
N = 6 vehicles cover an equilateral triangle whose center of mass follows an uniform circular
motion of radius 30 an angular velocity 2π

40 while rotates to align the half line heading to
be tangent to the circle described, see Figure 4.4. The agents time evolution is illustrated
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(a) (b) (c)

Figure 4.4: Vehicles with planar fixed-wing aircraft dynamics covering and following a non-
zero acceleration triangular domain moving over the path

(
30 cos

(
2π
40 t
)
, 30 sin

(
2π
40 t
))

, when
N = 6, cr = 2 (m), smin = 0.5 (m/s), smax = 10 (m/s), uθmax = π/2 (rad/s), usmax =
3 (m/s2), av = 1.2, lal = 3.679, Cal = 1.5, aI = 5, ah = 2.7, domain area A = 292.28 (m2)
and rd =

√
A
N = 6.97 (m). The vehicles start in a linear formation, approach and cover the

domain, while following it. The collision avoidance controller is not included.

in Figure 4.4, where the tails represent the vehicles position during the last 20 seconds of
the simulation.

The vehicles start in a line formation shown by the tails in Figure 4.4. They reach
the target domain and spread inside of it (Figures 4.4a and 4.4b). Once they cover the
domain, each of the fixed-wing agents follows a circular path of radius r and constant
angular velocity ω = 2π

40 (Figure 4.4c). Under this configuration the vehicles have reached
their terminal speed rω and do not require extra acceleration, i.e. us = 0, however they
should maintain a turn rate of uθ = ω.
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Chapter 5

Conclusion

5.1 Summary of Results

We proposed a method for multi-vehicle coordination which allows a swarm of vehicles to
cover moving compact planar shapes. Vehicles are modeled using two different second-order
dynamics (double integrator and planar fixed-wing aircraft) with bounded control inputs,
which is more realistic than the first-order models commonly used for coverage problems.

Coverage by vehicles with double integrator dynamics. The coverage controller
for vehicles with double integrator dynamics is based on artificial potentials and consensus
forces among vehicles, and between each vehicle and the moving domain of interest. The
safety controller is based on Hamilton-Jacobi reachability, which guarantees pairwise colli-
sion avoidance. Besides drastically reducing collision count, the safety controller also helps
break symmetries and lead to faster convergence to steady states.

Under the proposed control law we proved that: i) the vehicles remain cohesive around
the domain, Proposition 2.2.2, ii) the cover configurations of interest are locally stable
equilibrium points, Propositions 2.2.4 and 3.3.3, and (iii) the agents flock with the target,
Theorem 3.3.1. Regarding collision avoidance, we show that for small initial energy con-
figurations the non-thresholded control guarantees a collision free movement in the case of
inertial moving domains, Propositions 2.3.1 and 2.3.2. We also found an analytical closed
expression for the coverage controller based on HJ pairwise avoidance, Proposition 2.3.3.

Coverage by vehicles with planar fixed-wing aircraft dynamics. The control law
for vehicles with planar fixed-wing aircraft dynamics uses a transformation and tresholding
mechanism of the double integrator coverage control policy. The collision avoidance for this
type of vehicle was not implemented as the associated HJ-PDE is numerically challenging,
see future work for some more details.

Numerical simulations. We demonstrate the successful results of our coverage approach
for static and moving domains on four representative simulations scenarios involving: a
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static square and non-accelerated moving triangular and non-convex domains, in addition
to a triangular domain following a circular path. While the first three scenarios are covered
by our theoretical results the latter is not, however, it shows satisfactory results, suggesting
some generality of the proposed technique.

5.2 Future Work

Immediate future work includes parameter tuning to reduce oscillations in the vehicles’
movement, studying three-dimensional coverage, investigating geometrical properties of
steady states, investigating scenarios involving partial information, and implementing our
approach on robotic platforms.

Fixed-Wing Aircraft Pairwise Collision Avoidance

As mentioned in Chapter 4, the pairwise collision avoidance for the planar fixed-wing aircraft
type of vehicle requires a different analysis than the carried out in Section 2.3 and it was
not done as part of this thesis. We introduce here briefly the problem to resolve.

evader

pursuer

Figure 5.1: Relative coordinate system for pairwise collision avoidance in the fixed-wing
scenario. Figure adapted with the permission of authors from [35] c© [2005] IEEE.

As done in the double integrator case, we should consider the relative dynamics between
a pair of vehicles, where one acts as evader and the other as pursuer. Using as reference
the Figure 5.1, to obtain the relative dynamics we consider the evader fixed at the origin
facing the positive x1 axis. Here x1 is the projection of the vector connecting the vehicle’s
positions on the axis parallel to the evader’s heading, and x2 is its projection on the or-
thogonal direction, x3 represents the difference of the two agents headings while x4 and x5

represent the evader and pursuer speeds respectively. The pursuer’s speed, relative location
and heading as well as the evader’s speed are described by the following dynamical system
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ẋ = f (x, u, d) =



x5 cos (x3)− x4 + uθx2

x5 sin (x3)− uθx1

dθ − uθ
uv

dv


.

Here u := (uθ, us) and d := (dθ, ds), where uθ and us are the evader’s turn rate and
acceleration, and dθ, ds the pursuer’s ones and are treated as disturbances.

Applying the dynamic programming principle, we can obtain the time to reach φ as the
viscosity solution for the stationary HJ PDE:

min
u∈U

max
d∈D

{−∇φ (z) · f (z, u, d)− 1} = 0, inR∗\Γ (5.1)

φ (x) = 0, onΓ,

here Γ =
{
z : z2

1 + z2
2 ≤ c2

r

}
is now a five dimensional cylinder on the first two dimensions

of radius cr.
The challenges of solving numerically the HJ PDE (5.1) are two-fold. First, the memory

requirements to store the solution are large even for coarse resolutions, and second, the
computational time scale poorly as the grid size grows. This is particularly problematic
when the algorithm specifications are not optimized for the hardware architecture. In the
last regard, optimized_dp is a python toolbox for solving HJ PDEs which decouples the
algorithm from the hardware specifications obtaining faster executions. On the other hand,
as the numerical solution is stored in a five dimensional array, obtaining the adequate reso-
lution may require many gigabytes of RAM memory. We expect to alleviate this challenge
using the new toolbox in https://github.com/SFU-MARS/optimized_dp to incorporate
this analysis in our numerical simulations.
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