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Abstract
In densely populated urban centers, planning optimized capacity for the
fifth-generation (5G) and beyond wireless networks is a challenging task. In this paper,
we propose a mathematical framework for the planning capacity of a 5G and beyond
wireless networks. We considered a single-hop wireless network consists of base
stations (BSs), relay stations (RSs), and user equipment (UEs). Wireless network planning
(WNP) should decide the placement of BSs and RSs to the candidate sites and decide
the possible connections among them and their further connections to UEs. The
objective of the planning is to minimize the hardware and operational cost while
planning capacity of a 5G and beyond wireless networks. The formulated WNP is an
integer programming problem. Finding an optimal solution by using exhaustive search
is not practical due to the demand for high computing resources. As a practical
approach, a new population-based meta-heuristic algorithm is proposed to find a high-
quality solution. The proposed discrete fireworks algorithm (DFWA) uses an ensemble of
local search methods: insert, swap, and interchange. The performance of the proposed
DFWA is compared against the low-complexity biogeography-based optimization
(LC-BBO), the discrete artificial bee colony (DABC), and the genetic algorithm (GA).
Simulation results and statistical tests demonstrate that the proposed algorithm can
comparatively find good-quality solutions with moderate computing resources.

Keywords: Fifth generation and beyond wireless networks, Swarm intelligence,
Fireworks algorithm, Ensemble of local search methods

1 Introduction
The vision of the fifth-generation (5G) and beyond wireless networks is to integrate multi
Radio Access Technology (RAT) under one system to perform efficient network oper-
ations (Fig. 1) [1–3]. Such integration is likely to offer many technologies to users to
maximize their Quality of Experience (QoE), simultaneously. Recently, the integration of
various RATs is a significant focus of the research community. For this purpose, third-
generation partnership project (3GPP) and IEEE define RAT types such as LTE (E-UTRA)
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Fig. 1 Illustration of 5G and beyond wireless network

and the Wireless LAN 802.11 family of standards that are widely adopted for mobile and
wireless access. The most notable change comes from cellular data rates that are com-
parable to current WiFi systems. Such Cellular-to-WiFi offloading is a significant shift
towards true integration of both families of technology [1–3].
Mainly, the limitations of the fourth generation (4G) are the challenges of the 5G and

beyond wireless networks. A few small changes are made to improve the previous gen-
erations; however, it is not enough to fulfill the goals of the 5G and beyond wireless
networks. The plight of the current cellular network and scale of the future needs are
compelling designers of 5G and beyond wireless networks to set reasonably higher goals.
For example, existing data rates are 1 GB/s for slow or stationary devices, or 100 Mb/s
for mobile devices; however, 5G and beyond wireless networks goal is to achieve a 10
GB/s or higher data rates. Such facts and realities trigger a significant change in the
entire architecture of a cellular system supporting seamless user experience [4]. The 5G
and beyond wireless network designers face challenging demands such as more capac-
ity, higher data rates, lower latency, better connectivity for a massive number of users,
lesser cost and energy, and more importantly improved quality of experience (QoE). To
meet such challenging demands, researchers are investigating to incorporate a massive
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MIMO, enable device-to-device (D2D) communication, reduce the protocol overhead,
implement heterogeneous cell architecture, allow network function virtualization, install
content caching, and improve the range of spectrum for a typical 5G and beyond wireless
network [4].
The seamless planning of the 5G and beyond wireless networks is a one-time activ-

ity before a system is initially installed. Therefore, we aim to incorporate only necessary
high-level network details in our proposed 5G and beyond wireless network model to
keep its design simple. However, heterogeneity is one of themain characteristics of the 5G
and beyond wireless networks, which means various wireless network technologies work
in tandem with robust software and hardware implementation. Although, several other
choices are available to define the link-rate between two wirelessly communicating nodes
[5–11]; however, for the simplicity and to incorporate only necessary high-level network
details, we use path loss as a criterion of variation for data rates between a wireless link of
two communicating nodes. A rationale behind using the path loss as a data rate variation
criterion is to cater to the heterogeneous and multi-RAT characteristics of the 5G and
beyond wireless networks. Typically, the goal of WNP is to minimize the overall system
operating cost. Such cost includes the BSs costs, RSs costs, installation, and operational
cost of a network. Here, path loss is included as an operational cost among each commu-
nicating link. Also, we incorporate the practical network constraints such as maximum
load on BSs and RSs.
The model presented in this paper allows single-hop communication only because this

model is specifically used to plan the capacity of a network in the densely populated
urban/commercial centers. The proposed model can be used only for planning 5G and
beyond wireless networks from scratch. This work aims to devise a methodology to plan
simultaneous BSs and RSs locations for the 5G and beyond wireless networks.

1.1 Contributions

In this paper, we propose a relatively new swarm intelligence-based algorithm to solve the
proposed WNP plan. Following are the main contributions of this paper:

1. Two equivalent integer programming problems are formulated for the 5G and
beyond wireless network planning:

• 5G and beyond wireless network planning as a binary search space.
• 5G and beyond wireless network planning as an integer search space.

2. The proposed planning problem is solved by a discrete fireworks algorithm
(DFWA) using ensemble of local search methods: “swap,” “interchange,” and
“insert.”

• A repair algorithm is proposed to repair the illegal candidate solutions.
• A T test is conducted to statistically analyse the performance of the proposed

algorithm.

In the rest of the paper, the existing work related to planning is discussed in Section 2, and
the systemmodel and mathematical framework are presented in Section 3. The proposed
Firework-based algorithm is discussed in Section 4, and its computational complexity is
presented in Section 5. The simulation results are discussed in Section 6, and finally, the
paper is concluded in Section 7.
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2 Related work
Conventionally, there are two types of WNP: by coverage and by capacity. Here, multiple
RSs can be deployed between user equipment (UE) and a BS while planning the coverage
of the 5G and beyond wireless network. In contrast, only a single RS can be deployed
between a UE and a BS to enhance the capacity of a network. In literature, various models
for the coverage of the 5G and beyond wireless network is presented [6, 7, 12]. In this
paper, we discuss capacity planning for wireless networks.
Deploying an RS within the serving area of a BS can increase network throughput, how-

ever, this deployment raises the overall hardware cost. The authors present a deployment
algorithm for an IEEE 802.16j network. In [9], a three-phase RS deployment algorithm
is proposed. The first phase aims to construct several promising zones where an RS can
be deployed. An RS deployment in each zone will improve the transmission rate from
a subscriber station (SS) to a BS. In the second phase, larger zones are constructed by
combining several smaller zones to reduce the number of deployed RSs. When all the
RSs are deployed in promising zones, the results show that the transmission delay and
the hardware cost is reduced by using the proposed algorithm. In [8], RS location plan-
ning is formulated for capacity gains in the IEEE 802.16j network transparent mode. The
RS locations are determined from a given set of candidate RS sites, and the optimization
problem is solved by the interference aware algorithm. An integer programming prob-
lem is addressed to determine BS and RS locations that will enhance network capacity at
a minimal cost. A similar problem for the simultaneous BS/RS problem is formulated to
determine BS and RS locations to minimize the operational and hardware cost [10, 11].
In [5], a 4G/5G heterogeneous network (HetNet) is proposed for small cells (SCs) with

additional feature of fault-tolerance. SCs are intended to increase network capacity and
to extend network coverage (i.e., multi-hop) for better spectrum efficiency. An expanded
approach is adopted to avoid nonlinearity in the mathematical model of a network. In [1],
two infrastructure-aware planning strategies are proposed for SCs and fiber back-haul.
These strategies include joint design (JD) for the costminimization of SCs with fiber back-
haul and traditional design (TD) based on a two-step optimization approach. The relative
performance of these two strategies is compared.
In [6], a 5G network model is presented to deploy infrastructure with machine type

communication. The goal of this research is to plan 5G infrastructure with the best
coverage under various constraints. The formulated problem is multi-objective integer
programming problem, and heuristic algorithms are presented to solve this challenging
optimization problem. In contrast, a mixed integer linear programming (MILP) prob-
lem for the 5G network is formulated in [13]. The goal of the optimization problem is to
maximize operating profit of the proposed 5G network. The problem is solved using the
CPLEX software package. Note that CPLEX software package is presented by the IBM
and this software package implements optimizers based on the simplex algorithms [14].
The multi-tenancy model is used in the fifth generation of mobile networks in which

diverse operators share the same wireless infrastructure. To achieve such goals [15], small
cells (SCs) offer network providers more flexible, scalable, and cost-effective solutions
compared to the macro-cell deployments. The authors proposed a framework for cell
planning in multi-tenant SC networks that is evaluated considering the deployment of a
new tenant, where different sets of planning specifications are tested. Similarly, in [16],
a framework for automated cell planning in multi-tenant SC networks is investigated.
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By taking advantage of the available network data, a set of detailed planning specifica-
tions over time and space domains are generated to meet the improved capacity by each
tenant. Then, the network infrastructure and configuration are updated by using an algo-
rithm that considers different actions such as adding/removing channels and adding or
relocating SC.
In [17], nomadic nodes (NNs) enabled 5G network deployment is proposed to provide

demand-driven service, which not only increases the network capacity and extends the
cell coverage, but also reduces network energy consumption. The 5G network benefits
from location information, which is used in wireless network design and optimization.
Several challenges can be addressed by using location information such as an increase in
data traffic, accommodate an additional number of devices, robustness in mission-critical
services, reduction in total energy consumption, and improvement in latency [18]. Relia-
bility and latency are some of the sensitive issues that need to be considered during node
deployment in the 5G networks. To ensure network reliability and latency, key resources
such as computing, network, and storage need to be brought at the edge of the 5G net-
work. In [19], such a key scenario is taken into consideration to achieve robustness and
cost-effectiveness while planning the capacity of the 5G network.
The objective of the 5G and beyond wireless network planning is to minimize infras-

tructure (BSs and RSs) and operational costs. The proposed network plan is to enhance
the capacity of the network in densely populated urban centers. This work has two dis-
tinctions when compared against exiting work. First, two types of mathematical problem
formulations are presented with the goal of reducing the number of constraints checks
during implementation, which may help to further explore mathematical aspects of the
problem. Second, a new fireworks algorithm with ensemble of local search methods is
presented to solve the planning problem.

3 Systemmodel andmathematical framework
The model of the proposed 5G and beyond wireless network with the aim of capacity
planning is shown in (Fig. 2). The proposed network is comprised of three types of nodes:
user equipment (UE), relay stations (RSs), and base stations (BSs). In this section, the
system model of the proposed 5G and beyond wireless network is briefly discussed.

Fig. 2 Planning capacity model for the formulated wireless network
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3.1 Systemmodel

In the proposed 5G and beyond wireless network, a UE can be a subscriber or a group of
subscribers with certain data traffic demand. A UE can be connected to a BS directly or
communicated to a BS via an RS subject to fulfill its traffic demand. UEs may or may not
be battery powered. A UE cannot communicate through more than one RS or more than
one BS or both. An RS is used to relay data from a BS to UE subject to fulfill the given
constraints. Here, we only consider data traffic in the downlink direction in the proposed
network model. RS is not directly connected to the Internet. However, a BS is directly
connected to the Internet and has reasonable computing power. An RS has less computing
power as compared to a BS. Moreover, one or more RSs can be connected to a BS.

3.2 Problem formulation

The objective of the 5G and beyond wireless network planning is to minimize the over-
all cost (hardware, operational) of network functioning in the presence of users’ traffic
demand. Symbols used in this paper are described in Table 1. The decision variables xBTb,t ,
xRTr,t and xBRb,r represent connection among the corresponding nodes. The yBb and yRr deci-
sion variables indicate whether the BS b and the RS r are deployed at the corresponding
candidate sites. Parameters cBb and cRr indicate the cost of the BS and RS sites. The lBRb,r ,
lRTr,t , lBTb,t ,m

BR
b,r ,m

RT
r,t ,mBT

b,t denote path loss and upper-bound (i.e., channel capacity) on the
possible information flow-rate associated with the links (b, r), (r, t) and (b, t) respectively.
Note that uTt denotes the traffic demand of a user equipment t.

3.2.1 Cost function

Low hardware and operational costs are part of the objective in the proposed planning
to develop a 5G and beyond wireless network. Total hardware expenses include the cost
of deployed BSs and deployed RSs at their respective selected sites. UEs can communi-
cate to a deployed BS directly or indirectly via a deployed RS, and a deployed RS must
communicate to a deployed BS. Communication among 5G and beyond wireless net-
work nodes (UE, BS, RS) occurs at a lower cost when nodes are in close proximity. Cost
function consists of two parts, i.e., hardware cost and operational cost. Total cost of the
proposed planning problem is the weighted sum of the hardware and operational costs. In
communication among distant nodes, more power is consumed, the quality of the com-
munication may be degraded, and the wireless links might be impaired due to path loss.
Therefore, we incorporate path loss as an operational cost for each communicating link
(i.e., user equipment (UE)-BS, UE-RS, RS-BS). The cost function and constraints for the
5G and beyond wireless network planning are as follows:

Minimize W1

(∑
b∈B

cBb .y
B
b +

∑
r∈R

cRr .yRr

)
+

W2

(∑
b∈B

∑
t∈T

lBTb,t .x
BT
b,t +

∑
r∈R

∑
t∈T

lRTr,t .xRTr,t +
∑
b∈B

∑
r∈R

lBRb,r .x
BR
b,r

)
(1)

such that:



Ali et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:185 Page 7 of 24

Table 1 Notations used in 5G and beyond wireless network planning

Symbol Definition

B Set of base stations (BSs) sites.

R Set of relay stations (RSs) sites.

T Set of User Equipment (UE) or users.

(b, r) Denotes link between BS b and RS r.

(b, t) Denotes link between BS b and UE t.

(r, t) Denotes link between RS r and UE t.

cBb Denotes BS cost at BS site b.

cRr Denotes RS cost at RS site r.

lBRb,r Denotes path loss associated with link (b, r).

lBTb,t Denotes path loss associated with link (b, t).

lRTr,t Denotes path loss associated with link (r, t).

mBR
b,r Represents upper bound (e.g., channel capacity) on the possible information

flow rate associated with the link (b, r).

mBT
b,t Represents upper bound (e.g., channel capacity) on the possible information

flow rate associated with the link (b, t).

mRT
r,t Represents upper bound (e.g., channel capacity) on the possible information

flow rate associated with the link (r, t).

uTt Denotes traffic demand of UE t.

C1 and Denotes the maximum capacity (in bits per second) for each

C2 Deployed BS and RS, respectively.

W1 and Weight parameters for two terms of objective function.

W2

yBb Denotes binary decision variables that determine

whether a BS b is deployed at BS site.

yRr Denotes binary decision variables that determine

whether a RS r is deployed at RS site.

xBRb,r Binary decision variables that denotes whether a connection

is established on corresponding links (b, r).

xBTb,t Binary decision variables that denotes whether a connection

is established on corresponding links (b, t).

xRTr,t Binary decision variables that denotes whether a connection

is established on corresponding links (r, t).

3.2.2 Topology constraints

∑
b∈B

xBRb,r ≤ yRr ,∀r ∈ R. (2)

xBTb,t ≤ yBb ,∀b ∈ B,∀t ∈ T . (3)

xBRb,R ≤ yBb ,∀b ∈ B,∀r ∈ R. (4)

xRTr,t ≤ yRr ,∀r ∈ R,∀t ∈ T . (5)

∑
b∈B

xBTb,t +
∑
r∈R

xRTr,t = 1,∀t ∈ T . (6)
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3.2.3 Flow constraints

The flow f BTb,t is a function of binary decision variable and is defined as follows:

f BTb,t

(
xBTb,t

)
=

{
1 if xBTb,t = 0,
uTt if xBTb,t = 1.

For each existing BS-UE connection (i.e., xBTb,t =1), the flow value f BTb,t must be within the
maximum capacitymBT

b,t as follows:

f BTb,t

(
xBTb,t

)
≤ mBT

b,t ,∀b ∈ B,∀t ∈ T . (7)

The flow f RTr,t is a function of binary decision variable and is defined as follows:

f RTr,t

(
xRTr,t

)
=

{
1 if xRTr,t = 0,
uTt if xRTr,t = 1.

For each existing RS-UE connection (i.e., xRTr,t =1), the flow value f RTr,t must be within the
maximum capacitymRT

r,t as follows:

f RTr,t

(
xRTr,t

)
≤ mRT

r,t ,∀r ∈ R,∀t ∈ T . (8)

The flow f BRb,r is a function of binary decision variables xBRb,r , x
RT
r,t and is defined as follows:

f BRb,r

(
xBRb,r , x

RT
r,t

)
=

{ ∑
t∈T uTt .xRTr,t if xBRb,r = 1,

0 if xBRb,r = 0.

For each existing BS-RS connection (i.e., xBRb,r =1), the flow value f BRb,r must be within the
maximum capacitymBR

b,r as follows:

f BRb,r

(
xBRb,r , x

RT
r,t

)
≤ mBR

b,r ,∀b ∈ B,∀r ∈ R. (9)

3.2.4 Load constraints

∑
r∈R

f BRb,r

(
xBRb,r , x

RT
r,t

)
+

∑
t∈T

f BTb,t

(
xBTb,t

)
≤ C1,∀b ∈ B. (10)

∑
t∈T

f RTr,t

(
xRTr,t

)
≤ C2,∀r ∈ R. (11)

∑
b∈B

f BTb,t

(
xBTb,t

)
+

∑
r∈R

f RTr,t

(
xRTr,t

)
= uTt ,∀t ∈ T . (12)

In the cost function given in Eq. (1), the first term represents the used hardware and
installation costs of a BS and an RS, respectively. As communication between nearby
nodes (UE, BS, RS) is more promising with respect to the cost and clarity than communi-
cation between distant nodes. A second term is used in Eq. (1) to incorporate the notion
of nearby communication. The second term in (1) presents the path loss of each estab-
lished communication link between communicating nodes. Here,W1 andW2 are weight
parameters for the first and second terms, respectively, as shown in Eq. (1). The topol-
ogy constraint (2) ensures that each RS, if deployed, is connected to one BS only, and
constraints (3) – (4) define that every UE and RS can be connected only to a deployed
BS. Constraint (5) confirms that every UE is connected to a deployed RS. Constraint (6)
ensures that each UE is either connected to a BS or an RS, but not both. Constraints (7) –
(9) ensure that the flow value on links (b, r), (b, t), (r, t) is within maximum capacity. Con-
straints (10) and (11) confirm that the load on each deployed BS and RS does not exceed
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the corresponding maximum load. Finally, (12) guarantees that every UE has enough flow
through either a BS or an RS.

3.3 Redefining decision variables

In the wireless network planning problem R, B, and T denote sets RS sites, BS sites, and
UE, respectively. The proposed network planning problem has an integer domain, and we
can define a candidate solution as a vector of non-negative integers as follows:

X = (T1,T2,T3, ...T|T |,R1,R2,R3, ...,R|R|) (13)

where |T | and |R| are the cardinalities of sets T and R.
Note that in X, Tt represents the ith UE connected to some BS b or RS r , and Rr

represents the rth RS that can be connected to some BS b. Here, Rr is zero when the rth
RS is not deployed. In X, each UE can be connected to anyone BS or RS. Therefore, in
the candidate solution, we represent BS, followed by RS in consecutive orders of positive
integers. Suppose, we have |B| BSs and |R| RSs sites in a candidate solution X; then, in the
candidate solution X representations for BSs sites are 1, 2, . . . , |B| and representations for
RS sites are 1 + |B|, 2 + |B|, 3 + |B|, . . . , |R| + |B|.
In X, integer variable Tt , t = 1, 2, . . . , |T | takes a value in set {1, 2, . . . , |B| + |R|}, where

element 1, 2, 3, . . . , |B| represents the BS sites, and |B| + 1, |B| + 2, |B| + 3, . . . ,
|B| + |R| represents the RS sites. Integer variable Tt indicates UE t is connected to a BS or
a RS site. Tt=i if i ≤ |B| indicates that UE t is connected to a base station site i and a base
station is installed at the base station site i. Tt=i if i>|B| indicates that UE t is connected to
relay station site i− |B| and the relay station is deployed at site i− |B|. Integer variableRr
takes a value in 0, 1, 2, . . . , |B|. Here,Rr=0 indicates that a relay is not installed (deployed)
at relay site r. Moreover, Rr=0 also indicates the RS is not connected to any UE or any
BS; hence RS is not deployed. Rr=b, if 1 ≤ b ≤ |B| indicates that a relay is installed
(deployed) at relay site r and that the relay site is connected to a base station at site b.
The same also indicates that BS site b should have a base station installed (or deployed).
Both Tt andRr variables decide whether there is a BS in BS site b. The parameters of the
WNP problem are the same before and after encoding, except a small adjustment for the
experimentation. Now, we reformulate the WNP problem using variable X; the indices
are used: t = 1, 2, . . . , |T |, r = 1, 2, . . . , |R|, and b = 1, 2, . . . , |B|.
For example, consider three BS sites i.e., B = {1, 2, 3}, three RSs sites, i.e., R = {1, 2, 3},

and four UEs, i.e., T = {1, 2, 3, 4}, the candidate solution X = (1, 4, 2, 5, 1, 2, 0). In X, we
represent three BS sites 1, 2, and 3 and three RS sites as 1 + |B| (i.e., 4), 2 + |B| (i.e.,
5), and 3 + |B| (i.e., 6), where |B|=3 is the cardinality of set B. Here in X, the first four
indices represent UE (connected to some BS or RS) and the last three indices represent
RS sites (connected to some BS). Clearly, T1 is connected to BS 1, T2 is connected to RS 1
(4 = 3 + |B|), T3 is connected to BS 2, T4 is connected to RS 2 (5 = 2 + |B|), andR1,R2
are connected to BS 1 and BS 2, respectively. Further, from X note that no BS is deployed
at BS site 3 because no component of X is associated with 3. Similarly, no RS is deployed
at RS site R3 because no UE t is connected to RS R3 (i.e., 3 + |B| = 6) and R3 is not
connected to any BS.
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3.4 Problem reformulation

3.4.1 Cost function

We reformulate the plan for the WNP problem using the encoded vector X. The cost
function of the WNP is used to minimize the overall cost of the network. Reformulations
of the cost function and constraints for the WNP are given as follows:
Let αB

b represents whether a BS is in X:

αB
b =

{
1

∑
{i:1≤i≤|T |+|R|∧Xi=b} Xi ≥ 1,

0 Otherwise.

Let βR
r represent whether a RS is in X:

βR
r =

{
1

∑
{t:1≤t≤|T |∧Xt=r+|B|} Xt ≥ 1 + |B|,

0 Otherwise.

Minimize W1

(∑
b∈B

cBb .α
B
b +

∑
r∈R

cRr .βR
r

)
+ W2

⎛
⎝∑

b∈B

∑
{t:1≤t≤|T |∧Xt=b}

lBTb,t +

∑
r∈R

∑
{t:1≤t≤|T |∧Xt=r+|B|}

lRTr,t +
∑
b∈B

∑
{t:1+|T |≤t≤|R|+|T |∧Xr=b}

lBRb,r

⎞
⎠ (14)

such that:

3.4.2 Topology constraints

Making use of the topology constraints (2) – (6) from the formulation and to
reduce the number of variables, we define a vector of non-negative integers X =
(T1,T2,T3, ...T|T |,R1,R2,R3, ...,R|R|), where |T | and |R| are the cardinalities of sets T
and R. Constraints (2) – (6) are implicitly enforced in the vector X.

3.4.3 Flow constraints

The flow f BTb,t is a function of decision variable X and is defined as follows:

f BTb,t (X) =
{
uTt if Xt = b,∀b = 1, 2, ...|B|,∀t = 1, 2, ...|T |
0 Otherwise.

For each connection between a BS and a UE, the flow value f BTb,t must be within the
maximum capacitymBT

b,t as follows:

f BTb,t (X) ≤ mBT
b,t ,∀b = 1, 2, ...|B|,∀t = 1, 2, ...|T |. (15)

The flow f RTr,t is a function of decision variable X and is defined as follows:

f RTr,t (X) =
{
uTt if Xt = r + |B|,∀r = 1, 2, ...|R|,∀t = 1, 2, ...|T |
0 Otherwise.

For each connection between a RS and a UE, the flow value f RTr,t must be within the
maximum capacitymRT

r,t as follows:

f RTr,t (X) ≤ mRT
r,t ,∀r = 1, 2, ...|R|,∀t = 1, 2, ...|T |. (16)
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The flow f BRb,r is a function of decision variables X, and is defined as follows:

f BRb,r (X) =

⎧⎪⎨
⎪⎩

∑|T |
t=1 f

RT
r,t (X), if Xj = b, j = r + |T |,

∀b = 1, 2, ...|B|,∀r = 1, 2, ...|R|
0, Otherwise

For each existing connection between a BS and an RS, the flow value f BRb,r must be within
the maximum capacitymBR

b,r as follows:

f BRb,r (X) ≤ mBR
b,r ,∀b = 1, 2, ...|B|,∀r = 1, 2, ...|R|. (17)

3.4.4 Load constraints

|T |∑
t=1

f BTb,t (X) +
|R|∑
r=1

f BRb,r (X) ≤ C1,∀b = 1, 2, ...|B|. (18)

|T |∑
t=1

f RTr,t (X) ≤ C2,∀r = 1, 2, ...|R|. (19)

|B|∑
b=1

f BTb,t (X) +
|R|∑
r=1

f RTr,t (X) = uTt ,∀t = 1, 2, ...|T |. (20)

Constraints (18) and (19) ensure that the load on each BS and RS does not exceed the
maximum load and (20) guarantees that every UE has enough flow, either through a BS
or an RS, but not both. Redefining the decision variables in the Section 3.3 enforce some
constraints of the planning problem implicitly, which reduces the number of constraints
checks during implementation. Therefore, second formulation has reduced number of
constraints checks.
The proposed WNP is a combinatorial integer space optimization problem, and to the

best of author’s knowledge, no known polynomial-time algorithm exists to solve such
problems. The exhaustive search requires high computing costs to find an optimal solu-
tion for such problems. A practical approach is to use approximate algorithms such as
evolutionary algorithms (EAs) to solve challenging problems in moderate computing
resources. Without any guarantee of an optimal solution, EAs can provide a high-quality
solution using moderate computing resources. Therefore, we propose a new swarm
intelligence-based EA, i.e., discrete fireworks algorithm (DFWA), with an ensemble of
local search to solve the formulated wireless network problem.

4 Swarm intelligence-based evolutionary algorithms
Like the biogeography-based optimization (BBO) [14, 20–23] and the discrete arti-
ficial bee colony (ABC) [23] algorithms, discrete Firework algorithm (DFWA) is a
swarm intelligence-based algorithm [24, 25]. Individuals in these population-based meta-
heuristics act as a simple agent and behave collectively in a decentralized, self-organized
manner. Individual agents in a typical swarm intelligence-based algorithm can communi-
cate either directly or indirectly with each other by acting in its local environment [26]. An
individual agent of a swarm follows straightforward rules; however, interactions between
such agents can be complex, causing global behavior that is far beyond the capability of
the individual agents.
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4.1 DFWAwith an ensemble of dynamic local search methods

Selecting a local search (LS) method for any evolutionary algorithm is a tedious task,
especially when uncertainty in the performance of the LS operators is expected [25]. In
the absence of experimental evidence and in the presence of variations in the performance
of LS methods, a dynamic ensemble of local search methods to avoid manual selection
of LS methods that might lead to unsatisfactory performance. Therefore, inspiring from
[25], we present a DFWA with an ensemble of dynamic LS methods (DFWA-with-Dy-
3-LS) and LS methods include in the ensemble are insert, interchange, and swap. These
LS methods are defined and discussed in [14, 25]. Like the DFWA [24], the DFWA-with-
Dy-3-LS algorithm has four parts: an explosion operator, a mutation operator, a repair
mechanism, and a selection strategy.

4.1.1 Explosion operator

In the DFWA-with-Dy-3-LS algorithm, the cost value and the control parameters deter-
mine the criteria of the explosion operator. The explosion operator uses LS methods with
two control parameters: explosion strength and explosion radius. The DFWA-with-Dy-
3-LS explosion operator determines the number of sparks and the radius of those sparks
in proportion to the cost value of fireworks.

Explosion strength: In the DFWA-with-Dy-3-LS, the explosion strength determines the
number of sparks that are generated by the explosion of a firework. The cost of a firework
and user-defined control parameters determine the number of sparks that are generated
by a firework. Like the DFWA, the DFWA-with-Dy-3-LS is designed in such a way that a
firework with a lower cost (good firework) generates more sparks around that firework. A
firework with a higher cost (bad firework) should generate fewer sparks around that fire-
work. The rationale behind generating more sparks around a good firework is to exploit
the low cost of the good firework, and a thorough search is conducted to find a better solu-
tion around the good firework. However, a bad firework should generate sparks that are
fewer in number and sparse in distribution to avoid unnecessary computing. The sparks
generated from the bad fireworks are used to explore the search space and to prevent the
algorithm from being trapped in a local minimum. The DFWA-with-Dy-3-LS computes
the number of sparks,si, for the ith firework, where i = 1, 2, . . . ,N .

si = round
(
Me × (ymax − f (Xi)) + ε∑N

i=1(ymax − f (Xi)) + ε

)
, i = 1, 2, ...N . (21)

where si is the number of sparks for the ith firework (for each of i = 1, 2, ...,N), ymax
is the maximum cost of the N fireworks in the current algorithm generation, f (Xi) rep-
resents the cost of the ith firework, Me is a constant that controls the total number of
sparks generated by N fireworks, and ε is a small constant used to avoid a division by
zero in (21).

Dynamically selecting an LS method from an ensemble of LS methods: In the DFWA-
with-Dy-3-LS, we propose a new criterion to dynamically select an LS method from an
ensemble of LS methods during DFWA operation. We denote three LS methods as a set
of integers ℘. For example, the set ℘ = {1, 2, 3} represents an ensemble of LS methods in
which elements of the set ℘ represent the three LS methods Op1=1, Op2=2, and Op3=3,
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as insert, interchange, and swap respectively. Initially, the DFWA-with-Dy-3-LS algorithm
randomly assigns an LSmethod from the set℘ to each of theN fireworks. In the first gen-
eration of the DFWA-with-Dy-3-LS, each firework generates, si, sparks using randomly
assigned LS methods, where i = 1, 2, . . . ,N , and the generated sparks are evaluated using
the cost function (14). In the second generation of the DFWA-with-Dy-3-LS, if there is no
improvement observed in the cost value of the sparks generated from the ith firework for
each of i = 1, 2, . . . ,N fireworks, then, the currently assigned LS method is replaced for
the ith firework in the next algorithm generation. The ith firework is randomly selected
from the remaining list of LS methods. For example, if ℘1, ℘2 and ℘3 are elements of set
℘ of the three LS methods, then ℘1 is associated with the X1 firework. In any DFWA-
with-Dy-3-LS generation, if there is no improvement observed in the sparks generated by
X1 firework, then ℘1 is replaced by randomly selecting an LS method from ℘2 and ℘3.
If the population of fireworks is N =10 in the DFWA-with-Dy-3-LS algorithm, then each
component of the integer vector ℘′ = (3, 3, 1, 2, 2, 3, 3, 1, 1, 1) represents the LS methods
associated with the corresponding fireworks. For example, in the population of N fire-
works, the first firework is associated with the third LS method, while the last firework is
associated with the first LS method.

Explosion radius: The explosion radius is an integer value used to determine the
number of times a local search (LS) operator is applied to perturb one or more com-
ponents of the ith firework. The cost of the ith firework, for each of i = 1, 2, . . . ,N
fireworks, and control parameters are used to determine the number of times an LS
method is applied on that firework [25]. In the DFWA-with-Dy-3-LS, a firework with
a lower cost should generate sparks with a smaller radius around that firework, and a
firework with a higher cost function value should generate sparks with a larger radius
around that firework. The rationale behind generating sparks with a smaller radius is
to exploit the good firework, and a thorough search is conducted to find a better solu-
tion around the good firework. However, sparks generated from the bad fireworks with
larger radius explore the search space and prevent the algorithm from being trapped in a
local minimum. The DFWA-with-Dy-3-LS computes the explosion radius, si, for the ith
firework as:

Hi = round
(
â × (f (Xi) − ymin) + ε∑N

i=1((f (Xi) − ymin) + ε

)
, i = 1, 2, ...N . (22)

where Hi is the explosion radius associated with the ith firework (for each of i =
1, 2, ...,N), ymin is the minimum cost of the N fireworks in the current algorithm gen-
eration, f (Xi) represents the cost of the ith firework, â is a constant that controls the
maximum number of times an LS operator is imposed on Xi, and ε is a small constant
used to avoid a division by zero in (22).

4.1.2 Mutation operator

In the DFWA-with-Dy-3-LS, a modified mutation operator that uses the random inte-
ger function randi for the mutation is adopted. A set of fireworks Z for mutation
are selected from N fireworks to set up sparks with the mutation operator, where
|Z| < N and |Z| is the cardinality of set Z. One or more components of a fire-
work Xi ∈ Z are probabilistically selected with the user-determined probability
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mutateProb and replaced with the new component. The DFWA-with-Dy-3-LS gen-
erates one spark for each mutation spark Xi ∈ Z using the mutation operator as
follows:

X̂i
q = randi

(
Xmin
q ,Xmax

q

)
(23)

where X̂i
q is the component of a newly generated spark to replace Xi

q in the current algo-
rithm generation and Xmin

q and Xmax
q are lower and upper bounds of the search space in

dimension q.

4.1.3 Repair mechanism

The candidate solutions may become infeasible due to violation of rectangular or non-
rectangular constraints during the operation of evolutionary algorithms (EAs). These
infeasible solutions are useless for further evolution in any EA. Similarly, randomly
generated fireworks and sparks may fall in the infeasible space after executing the DFWA-
with-Dy-3-LS operations. Sparks in the infeasible space are considered illegal and are
useless for further algorithm operation. Therefore, illegal sparks need to be returned to
the feasible space. A candidate solution, as defined in (13) of the WNP, is illegal if it falls
outside the feasible space. Therefore, we proposed a repair algorithm for the WNP that
has non-rectangular constraints.

Repair algorithm: The pseudo-code for the repair algorithm is presented in Algorithm 1.
In the repair algorithm, a candidate solution, X in (13), that is generated randomly or
is evolved by an evolutionary procedure, may violate one or more constraints of the
optimization problem. Violation of any constraint makes the candidate solution illegal.
In the DFWA-with-Dy-3-LS, the legality of each randomly generated firework is verified
using the repair algorithm. Further, in each DFWA-with-Dy-3-LS generation, the legal-
ity of all the sparks generated using the explosion operation, and mutation operation is
verified using the repair algorithm.
Initially, we set the parameters cBb , c

R
r , lBRb,r , l

BT
b,t , l

RT
r,t , mBR

b,r , m
BT
b,t , m

RT
r,t , uTt , C1, C2, W1,

and W2 according to user-defined criteria. For each candidate solution, X in (13), of the
population, we compute f BRb,r , f

BT
b,t , f

RT
r,t and check that the flows associated with each link

do not exceed the maximum link capacity (i.e., mBT
b,t ,m

RT
r,t ,mBR

b,r ). We consider a link to be
illegal if it violates the maximum link capacity, i.e., f BTb,t > mBT

b,t , f
RT
r,t > mRT

r,t , f BRb,r > mBR
b,r .

We disconnect UE and RS from illegal links and reconnect them to legal corresponding
links, i.e., UE-BS, UE-RS, and RS-BS: f BTb,t < mBT

b,t , f
RT
r,t < mRT

r,t and f BRb,r < mBR
b,r . Next, we

compute the load for each BS and RS in X. We disconnect UE from overloaded BS and RS
and reconnect them to BS and RS subject to the load constraints C1, C2 and legal links
f BTb,t < mBT

b,t , f
RT
r,t < mRT

r,t .
Our proposed iterative process to repair the candidate solution X in (13) does not guar-

antee that each illegal solution has become a legal solution using limited computing. Here,
limited computing means that we are not exhaustively checking each UE-BS, UE-RS, and
RS-BS connection to verify its legality. If a candidate solution is not repairable within lim-
ited computing, we randomly generate a candidate solution X and check its legality. This
process of randomly generating a solution continues until we generate a legal candidate
solution.
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Algorithm 1: Repair algorithm pseudo code for the formulated WNP.
Input : Set the parameters cBb , c

R
r , lBRb,r , l

BT
b,t , l

RT
r,t ,mBR

b,r ,m
BT
b,t ,m

RT
r,t , uTt , C1, C2,W1, and

W2. ; A candidate solutions X.
Output: A legal candidate solutions X.

1 for check links feasibility in X do
2 Compute link flows among TP-RS, TP-BS, BS-RS links.
3 Disconnect an infeasible BS-RS link try to establish a feasible link between a

BS-RS.
4 Disconnect an infeasible BS-TP link and try to establish a feasible link between a

BS-TP/RS-TP.
5 Disconnect an infeasible RS-TP link and try to establish a feasible links between

a BS-TP/RS-TP.
6 Update the candidate solution X.
7 end
8 while links in X is still infeasible do
9 Randomly generate a candidate solution X.

10 Repeat steps 1 to 7.
11 end
12 Compute load on each BS and RS in X.
13 for load on each BS/RS in X do
14 if load on a BS/RS is infeasible then
15 Disconnect TPs from an overloaded BS/RSs and reconnect to an

underloaded BS/RS subject to maximum link capacity and maximum loads
on BSs and RSs.

16 Update the candidate solution X.
17 end
18 end
19 while load on BSs and RSs is still infeasible do
20 Randomly generate a candidate solution X.
21 Repeat steps 1 to 18.
22 end
23 return the feasible candidate solution X

4.1.4 Selection strategy

Each generation of the DFWA-with-Dy-3-LS produces a number of candidate solutions
greater than the N fireworks population. Therefore, after applying all the DFWA-with-
Dy-3-LS operators, a new N fireworks population needs to be selected from the current
candidate solutions. The DFWA-with-Dy-3-LS adopts the same elitism-random selec-
tion strategy as that adopted in the enhanced fireworks algorithm (EFWA) [24]. In the
DFWA-with-Dy-3-LS, first, the solution with the least cost value is selected, then (N −1)
candidate solutions are randomly selected from the remaining candidate solutions for
the next algorithm generation. The pseudo-code for the DFWA-with-Dy-3-LS is given in
Algorithm 2.
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Algorithm 2: DFWA-with-Dy-3-LS pseudo code for the WNP.
Input : Populations of N fireworks, sparkProb,mutateProb; set of integers; ℘

represents an ensemble of LS methods.
Output : The best solutions X found so far.
Initialization: Randomly generate population of N fireworks; Xi where

i = 1, 2, ...,N ; Randomly generate an integer vector ℘′ of size N ;
Empty set S1 for candidate solutions.

1 Check the legality of the N fireworks using the repair algorithm, as algorithm 1
pseudo code, and evaluate using the cost function in (14).

2 while stopping criteria not satisfied do
3 for each candidate solution X in population of size N do
4 Calculate si � using formula in equation (21)
5 for j ← 1 tosi do
6 Get a copy of firework to generate sparks Xj = Xi.
7 Select the ith local search method from the vector ℘′.
8 Calculate Hi � Hi is calculated using equation (22)
9 for k ← 1 toHi do

10 I mpose ith local search method (from ℘′) on Xj.
11 end
12 S1 = S1 ∪ X.
13 end
14 if no improvement is observed in the cost of the, si, sparks generated from

the ith firework, then the corresponding component of the ℘′ is replaced
with a randomly selected LS method from the rest of the LS methods.

15 end
16 Randomly select a set Z of fireworks for mutation from the population of the N

fireworks, where N>|Z|.
17 for each firework Xi ∈ Z do
18 Get a copy of firework to generate sparks Xj = Xi.
19 for q ← 1 tod do
20 if rand < mutateProb then
21 Update Xq

j using equation (23).
22 end
23 end
24 S1 = S1 ∪ X.
25 end
26 Check the legality of the S1 solutions using the repair algorithm, as algorithm 1

pseudo code, and evaluate using the cost function in (14).
27 Select the best solution and the (N − 1) solutions to make a new population of N

fireworks for next algorithm iteration.
28 return the best solution found so far.
29 end
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5 Computational complexity
Typically, the computational complexity of population-based evolutionary algorithms
(e.g., genetic algorithm (GA)) is analyzed in terms of the number of cost function eval-
uations [23, 27], as in our case (14). However, the computational complexity is highly
dependent on the coding efficiency. In our experimental algorithms, the low complexity
biogeography-based optimization (LC-BBO) [27], and the GA, the cost function evalua-
tions are equal to GN, where G is the total number of algorithm iterations and N is the
population size. As in the LC-BBO algorithm and the GA, the cost function is usually eval-
uated for a candidate solution at least once in an algorithm generation. However, the cost
function evaluation may be made more than once for a candidate solution; the cost func-
tion evaluation is made more than once in discrete artificial bee colony (DABC) [23] and
DFWA-with-Dy-3-LS.

5.1 DFWA-with-Dy-3-LS

Similar to the DABC algorithm [23], the DFWA-with-Dy-3-LS run cost function evalua-
tions more than once in one algorithm generation. Initially, in the DFWA-with-Dy-3-LS,
the population of N fireworks is evaluated using the cost function. Then, for each fire-
work i = 1, 2, . . . ,N , the number of sparks, si, generated using explosion operations is
evaluated using the cost function (14). We denote Me as the total number of sparks (or
candidate solutions) generated during the explosion operation as follows:

Me =
N∑
i=1

si. (24)

The DFWA-with-Dy-3-LS selects a set of Z fireworks for mutation from the N fire-
works to set up sparks by the mutation explosion, where |Z| < N and |Z| is the cardinality
of the setZ. For each firework formutation,Xi ∈ Z, the total number of |Z| sparks are gen-
erated and are evaluated using the cost function. Initially, the population of N fireworks
is evaluated using the cost function. Then, in each DFWA-with-Dy-3-LS generation, the
total number Me and |Z| sparks are evaluated using the cost function. Here, the total
number of cost function evaluations in one algorithm generation would be [14]:

N + G (Me + |Z|) . (25)

6 Results and discussions
6.1 Simulation setup

The simulation was run using MATLAB 2017 on i7 series processor with 8 GB of RAM.
For each problem instance, the experiment requires inputs such as number of BSs, num-
ber of RSs, and number of UEs. The experiment was conducted with eight different
problem instances. Problem specific parameters such as the number of BSs, RSs, and UEs
are shown in Table 2, and algorithm-specific parameters are shown in Table 3. The UE
demand is a real vector which is randomly generated in the interval [0.01 4.0]. The cost
for each installed BS and RS is set as BS = 25 and RS = 5. The real matrices represent-
ing the path loss for each link lBRb,r , l

BT
b,t and lRTr,t were randomly generated. The maximum

link rates mBR
b,r , m

BT
b,t and mRT

r,t for each existing link (i.e., xBRb,r = 1, xBTb,t = 1, and xRTr,t = 1) is
defined in Table 4. In this paper, we use discrete artificial bee colony (DABC) algorithm
from [23] and BBO’s low-complexity version (i.e., LC-BBO) is taken from [22].
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Table 2 List of problems

Problem
number

Number
of UEs

Number of BSs sites Number of RSs sites Number of objective
functions evaluations

1 100 10 20 1500

2 200 20 40 5000

3 300 24 50 8000

4 400 34 70 10000

5 500 40 80 12000

6 600 46 92 15000

7 700 50 100 18000

8 800 54 112 20000

6.2 Performance

The average cost of the WNP is plotted for the DFWA-with-Dy-3-LS, the LC-BBO algo-
rithm, the DABC algorithm, and GA in Fig. 3. The DFWA-with-Dy-3-LS algorithm
outperformed the LC-BBO, the discrete ABC algorithms, and the GA in terms of average
cost. On the other hand, the LC-BBO algorithm performs better in terms of average cost
against the discrete ABC algorithm and the GA, as shown in the Fig. 3. However, the GA
is the worst performer in terms of average cost against all the experimented algorithms,
as shown in the Fig. 3.
The standard deviation (Std.) for the genetic algorithms (GA) is smaller than the stan-

dard deviation of the LC-BBO, the discrete ABC, and the DFWA-with-Dy-3-LS. The
LC-BBO algorithm has a smaller Std. than the DFWA-with-Dy-3-LS algorithm. However,
DFWA-with-Dy-3-LS has a higher Std. than all the experimented algorithms (see Fig. 4).
The DFWA-with-Dy-3-LS algorithm consumed a higher average Matlab CPU time than
the LC-BBO, discrete ABC, and GA. The GA consumed the lowest average CPU time as
compared to all the experimented algorithms (see Fig. 5).

6.3 Performance significance of the DFWA-with-Dy-3-LS

A T test shows a significant difference in the performance of the DFWA-with-Dy-3-LS
algorithm, LC-BBO, discrete ABC, and genetic algorithm (GA). The null hypothesis H0
states that both algorithms produce the same average cost. Also, we performed the T test
of an alternative hypothesis H1, which states that the DFWA-with-Dy-3-LS produces a
lower average cost. Table 5 shows the p values of the T test for each problem instance
against each compared algorithm. The p values can be compared against the generally
acceptable level of significance α = 0.05 to decide whether hypothesis H1 is accepted. If

Table 3 Algorithm specific parameters

Algorithms Algorithm parameters Common parameters

GA Mutation Prob. = 0.01, Probability of

crossover = 0.9, Probability of selection = 0.5. Pop. size = 30

LC-BBO Immigration/Emigration rates

are taken from [20], Probability of

mutation = 0.01 Pop. size = 30

DABC Limit trial γ = 1.2 × Population size Pop. size = 30

DFWA and Si × LS methods are applied on each firework, Pop. of fireworks: 10

variants no. of mutation fireworks = 5,

Maximum no. of sparks = 40, Minimum no. of sparks = 2
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Table 4 Link rates

BS to RS link rates BS/RS to UE link rates

lBRb,r mBR
b,r mbps lBTb,t/l

RT
r,t mBT

b,t/m
RT
r,t mbps

≤0.2 20.0 ≤0.2 4.0

≤0.4 18.0 ≤0.4 3.5

≤0.6 16.0 ≤0.6 3.0

≤0.8 14.0 ≤0.8 2.0

≤0.9 12.0 ≤0.9 1.0

else 10.0 else 0.5

the average cost by the DFWA-with-Dy-3-LS is lower than any compared algorithm and
p ≤ α, then we conclude that there is a statistically significant difference between the
DFWA-with-Dy-3-LS and the other experimented algorithms. Otherwise, we conclude
that the observed difference is not statistically significant.
The DFWA-with-Dy-3-LS showed a lower average cost when compared to the other

experimented algorithms, and the p value was also lower than 0.05. Therefore, the perfor-
mance of the DFWA-with-Dy-3-LS was significantly better than the performance of the
LC-BBO algorithm, discrete ABC algorithm, and GA.

Fig. 3 Average cost for the experimented algorithms
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Fig. 4 Standard deviation (Std.) for the experimented algorithms

6.4 Performance analysis

A boxplot in Fig. 6 shows the comparative performance of the algorithms tested in the
formulated WNP problem. Although variability and consistency are observed among the
experimented algorithms, as shown in Fig. 6. For example, the DABC algorithm and the
GA have low variability in the depicted boxplots.
The better performance of the DFWA-with-Dy-3-LS is observed in all the experiments,

as the DFWA-with-Dy-3-LS achieves better average cost value as compared to the LC-
BBO algorithm, discrete ABC algorithm, and genetic algorithm. Using boxplots (in Fig. 6),
we can see the outliers (the red “+”) in the data set. For example, the DFWA-with-Dy-
3-LS, discrete ABC, and genetic algorithm data are symmetric, as shown in the Fig. 6.
However, left and right skewness is observed for the LC-BBO and the DFWA-with-Dy-3-
LS algorithms, respectively.

7 Conclusion and future work
In this paper, we propose a wireless network planning (WNP) for 5G and beyond net-
works as an integer programming problem with a single-hop configuration. This network
planning problem consists of three types of nodes: base stations (BSs), relay stations (RSs),
and user equipment (UE). A UE can communicate with a BS directly or via an RS. We use
path loss as a criterion of variation for data rates between a wireless link of two commu-
nicating nodes to cater to the heterogeneous and multi-RAT characteristics of the 5G and
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Fig. 5 Average CPU time (Sec.) for the experimented algorithms

beyond wireless network. The objective of this WNP was to minimize the overall hard-
ware and operating cost of the network. Finding an optimal solution using exhaustive
search was impractical due to the high computing demand. To the best of our knowledge,
no known polynomial-time algorithm exists to solve such computationally challenging
problems.
Due to performance differences in LS methods of the DFWA, randomly selecting an

LS method could result in an inefficient choice; therefore, we proposed a DFWA with an
ensemble of three dynamic LS methods (DFWA-with-Dy-3-LS). The DFWA-with-Dy-
3-LS considers performance as a metric to select LS method from ensemble during the

Table 5 T test for the formulated wireless network planning

Problem
number

p value for
DFWA-with-Dy-3-LS vs.
low-complexity BBO

p value for
DFWA-with-Dy-3-LS vs.
discrete ABC

p value for
DFWA-with-Dy-3-LS vs.
genetic algorithm

1 0.0001 0.0001 0.0001

2 0.0001 0.0001 0.0001

3 0.0001 0.0001 0.0001

4 0.0001 0.0001 0.0001

5 0.0001 0.0001 0.0001

6 0.0001 0.0001 0.0001

7 0.0001 0.0001 0.0001

8 0.0001 0.0001 0.0001
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Fig. 6 Boxplots for all instances with various configurations of RSs and BSs
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operation of the algorithm. We experimentally compared the performance of the pro-
posed DFWA-with-Dy-3-LS algorithm against the low-complexity BBO, discrete ABC,
and genetic algorithms. The DFWA-with-Dy-3-LS algorithm outperforms the other algo-
rithms in terms of the average cost of the network and is significantly better than the other
experimented algorithms.
Statistical analysis showed that the DFWA-with-Dy-3-LS algorithm performed signif-

icantly better than the low-complexity BBO, discrete ABC, and genetic algorithms. Our
experimental results also demonstrate that low average cost and low CPU time can be
used to select an appropriate algorithm for the planning of 5G and beyond wireless
networks.
We are planning to extend this work in different dimensions in the future. First, we

would like to prove/disprove NP-completeness of this mathematical problem. Second, we
would like to extend this work to implement some exact algorithms and their performance
would be compared with the current approximate algorithms. Third and final, we would
like to not only experiment DFWA with various local search methods individually but
would also like to expand the ensemble size.
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