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Abstract 

Learning to move in novel situations is a complex process. We need to continually 

learn the changing situations and determine the best way to move. Optimization is a widely 

accepted framework for this process. However, little is known about algorithms used by 

the nervous system to perform this optimization. Our lab recently found evidence that 

people can continuously optimize energy during walking. My goal in this thesis is to identify 

principles of optimization, particularly energy optimization in walking, that govern our 

choice of movement in novel situations. I used two novel walking tasks for this purpose. 

For the first task, I designed, built, and tested a mechatronic system that can quickly, 

accurately, and precisely apply forces to a user’s torso. It changes the relationship 

between a walking gait and its associated energetic cost—cost landscape—to shift the 

energy optimal walking gait. Participants shift their gait towards the new optimum in these 

landscapes. In my second project, I aimed to understand how the nervous system 

identifies when to initiate optimization. I used my system to create cost landscapes of three 

different cost gradients. I found that experiencing a steeper cost gradient through natural 

variability is not sufficient to cue the nervous system to initiate optimization. For my third 

and fourth projects, I used the task of split-belt walking. I collaborated with another 

research group to analyse the mechanics and energetics of walking with different step 

lengths on a split-belt treadmill. I found that people can harness energy from a split-belt 

treadmill by placing their leading leg further forward on the fast belt, and that there may 

be an energy optimal gait. In my fourth project, I used computer modelling to identify that 

there may exist an energy optimal gait due to the trade-off between the cost of swinging 

the leg and the cost of redirecting the body center of mass when transitioning from step to 

step. Together, these projects develop a new system and a new approach to understand 

energy optimization in walking. They uncover principles governing the initiation of this 

process and our ability to benefit from it. 

 

Keywords:  energy optimization; motor learning; mechatronic system; cost gradient; 

split-belt treadmill; dynamic walking  
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Glossary 

Assistive device A device that can provide assistance to its user in the 
form of adding mechanical energy, reducing mechanical 
energy required to perform a task or reducing metabolic 
energy required to perform a task. 

Control policy A rule or mapping that specifies what motor command to 
execute for a given state of the body 

Cost function/ objective 
function 

A weighted sum of the various costs associated with a 
movement. The two terms are used interchangeably 
throughout the thesis. 

Cost landscape Throughout the thesis, this is used to refer to the 
relationship between walking with different step 
frequencies and the costs associated with them. In 
Chapter 3, it is sometimes used to refer to a more general 
relationship between different control policies and the 
costs associated with them. 

de novo or skill learning The process where the nervous system has to learn a 
new mapping between its actions and the task goal. 

Energetic cost Primarily used to mean the metabolic energetic cost 
measured as metabolic power in Chapters 2-4. In 
Chapter 5, it is used to refer to an estimate of metabolic 
power. It is used interchangeably with metabolic power 
and metabolic energy. 

Error-based learning The process of learning the appropriate motor commands 
in a novel situation that involves updating the forward 
model. 

Fast belt The treadmill belt that is moving faster of the two in a 
split-belt treadmill. 

Fast leg/ limb The leg that is contacting the fast belt during split-belt 
treadmill walking. 

Forward model A model used by the nervous system to depict the 
mapping between motor commands and actions. 

Motor adaptation In the Introduction (Chapter 1), I present the 
neuroscience definition—a process where the nervous 
system has to recalibrate its forward model in a novel 
situation. In the remainder of the thesis, I use it to mean 
the general process of learning to move in a novel 
situation and use it interchangeably with “optimization”.  

Motor control  The process of planning a movement by the nervous 
system.  



xii 

Novel situation A situation where there is a change to the body, the 
environment, or the task objective necessitating the 
nervous system to learn whether a change is required to 
its movement. 

Optimization The computational process of selecting a movement in a 
novel situation by minimizing a cost function. 

Prediction Recall of a previously learned control policy for a 
situation. It is quick but requires prior experience with the 
situation. 

Reinforcement learning A set of optimization algorithms that are adaptive to 
changing situations whose properties are incompletely 
known. 

Reward-based learning The process of learning how to move in novel situations 
by maximizing a reward function or minimizing a cost 
function. 

Reward-prediction error The error between the nervous system’s prediction of the 
reward associated with an action and the measured 
reward received from that action. 

Sensorimotor prediction 
error 

The error between the nervous system’s prediction of the 
mapping between motor commands and actions, and the 
measured actions produced by the motor commands. 

Slow belt The treadmill belt that is moving slower of the two in a 
split-belt treadmill. 

Slow leg/ limb The leg that is contacting the slow belt during split-belt 
treadmill walking. 

Step-to-step transition 
cost 

The energetic cost involved in the transition from step-to-
step due to contacting the ground, in steady-state walking 
at a constant speed. 

Swing cost The energetic cost involved in swinging the leg during 
walking. 

Use-dependant learning The process of learning a movement along the task-
redundant dimension. This term is only used in the 
Introduction (Chapter 1). 
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Chapter 1.  
 
Introduction 

Humans are adept at successfully performing movements in a variety of situations. 

This is quite impressive considering the complexity involved in performing even everyday 

movements. Let us consider one such task of walking down a partially flooded street. In 

most cases, we can walk through without even getting our shoes wet. To achieve this, our 

nervous system needs to integrate the physics of the road and the potholes, the dynamics 

of the water in the potholes, dynamics of our body, our clothes and shoes, our sensory 

systems and the noise in their measurements, the algorithms that govern our movement, 

and the objectives or motivations that govern our behaviour. Given this breadth and 

complexity, the question of how humans control movement is a research topic spanning 

multiple scientific disciplines. In this introduction, I will provide a brief consolidated 

summary of the topic as it applies to this thesis. I will gradually increase focus on the 

concepts related to the algorithms governing our movement, which is the primary focus of 

this thesis. 

Our current understanding of motor control is derived from the combination of 

many theories. Our primary machinery for movement is the skeletal muscle (1). It consists 

of bundles of fascicles which themselves are made up of bundles of muscle fibres (1). A 

single skeletal muscle fibre consists of many myofibrils, each of which is made up of 

repeating cylindrical units called sarcomeres (1,2). A sarcomere is the smallest functional 

unit of a muscle (1,2). It is made of thick and thin filaments that extend from the z-disc. 

Each of these filaments are made of proteins that are the fundamental contractile 

machinery of the skeletal muscle (1,2). Huxley’s sliding filament theory about how they 

function from the 1950s is still widely used though further advances have been made to 

the theory (3). Briefly, the thick filament is made up of myosin molecules while the thin 

filament consists of proteins called actin, tropomyosin and troponin. The myosins have a 

globular head that can sit in a cocked position by using energy from ATP and converting 

it to ADP. The actins have a binding site that is covered by the troponin-tropomyosin 

complex. However, an action potential delivered by a motor neuron along the surface of 

the muscle fibre can allow Ca2+ ions to enter and bind to the troponin, leading to a 
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conformational change to the troponin-tropomyosin complex, exposing the binding site on 

the actin. The cocked myosin head can then bind to this site, releasing the ADP. It can 

then form a crossbridge that pulls on the thin filaments, causing an overlap between the 

filaments, shortening the length of the muscle and producing force. The myosin head will 

have to bind with ATP again to detach and go back to the cocked position. This is the 

process of active force production by the muscle (1). The motor neuron that delivers the 

action potential to the muscle fibre has its nucleus in the spinal cord or brain stem (1). A 

single motor neuron can innervate multiple muscle fibres (1). The motor neuron together 

with all its muscle fibres is called a motor unit and represents the simplest pathway of the 

nervous system’s control of muscles. 

The total force produced by the muscle depends on more than just active force. It 

depends on the number of cross-bridges which are responsible for the active force 

production, force produced by a single cross-bridge which in part depends on the length 

of the muscle, the velocity of the muscle, and the force from the non-contractile elements 

in the muscle such as the connective filaments, connective tissue and collagen 

surrounding the muscle fibres (1). It is possible for the nervous system to control certain 

movements, without continuous control of active force production. For example, walking 

downhill can be largely explained using the passive dynamics of our body (4). Our muscles 

can also reject some perturbations from the environment using preflexes—immediate 

responses from a muscle due to its intrinsic force-length and force-velocity properties (5). 

Such passive dynamics-based control can be modulated by the nervous system but only 

by changing the muscle activation for the nominal task being performed, rather than in 

response to a stimulus (5). Such largely passive control can only sustain a limited set of 

movements. 

The simplest stimulus-based active control is a reflex. Sherrington proposed that 

a reflex is a stereotyped, involuntary response to a stimulus that activates receptors in the 

skin or muscles (6). However, for such a reflex, the neural control is contained within the 

spinal cord (1). More recent understanding of reflexes is that movements are performed 

through feedforward reflex pathways—a mechanism defined as our nervous systems’ use 

of voluntary control to combine and adapt multiple reflexes to perform a movement (1). 

This means that the activation of the muscle is still set according to the task being 

performed. However, a sensory input can elicit responses away from the site of the 

stimulus suggesting that supraspinal control is involved. For example, the reflex response 
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of one elbow extensor is affected by the task being performed by the other arm. Such 

reflexes can also be adapted to (7). While this provides useful insight into motor control, it 

does not sufficiently explain the specificity of control, particularly in response to a changing 

body and environment.  

Current theory of motor control combines feedforward and feedback mechanisms. 

This means that the nervous system uses a forward model of the environment and the 

body to predict motor commands that will perform the required movement. It 

simultaneously senses the environment and its body, comparing its prediction to its 

measurements and makes corrections to the required motor commands (8). Rather than 

solve for a set of independent motor commands, the nervous system solves for a control 

policy for a given task. Here, control policy is a rule or mapping that specifies what motor 

command to execute for a given state of the body (8–10). The nervous system then 

executes the motor commands to implement that policy. Figure 1.1 presents a simple 

schematic of this process. In this thesis, I aim to understand how the nervous system 

chooses a preferred control policy. 

 
Figure 1.1: Simple schematic representation of motor control 

 

1.1. Motor control in novel situations 

As we experience different situations, our nervous system uses different processes 

to select its preferred control policy. In a familiar situation, our nervous system has learnt 

its preferred control policy. This allows it to quickly implement the policy through prediction 

(11). In an unfamiliar situation, the nervous system must learn about the new situation and 
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select its preferred control policy for that situation. In some unfamiliar situations, the 

nervous system has to learn a new mapping between its actions and task goal and then 

identify the control policy it wants to use, known as de novo learning (9). An example is a 

situation where the keys on our keyboard are switched such that pressing “y” now types 

“n”. Some other unfamiliar situations may only change the relationship between motor 

commands and the expected actions, and thus require the nervous system to recalibrate 

its forward model—a process referred to as motor adaptation (9). For example, pressing 

“y” still types “y” but its location on the keyboard has changed. In other unfamiliar 

situations, there is no change to the control policy or the forward model and the nervous 

system needs to learn that its original control policy is still appropriate for the new situation. 

This might be the case if the keyboard is now replaced with a mechanical keyboard where 

we just need to press harder. These examples were chosen to provide a clear distinction 

between the tasks. However, in many tasks such a distinction may not be immediately 

apparent. An example is if the nervous system suddenly encounters a system that applies 

unpredictable forces to the torso. The classification mentioned here arises from 

neuroscience. In the next section, I discuss computational methods where these tasks are 

described through a single framework. Neither of these sections are meant to be an 

exhaustive review of the fields, but only meant to provide a foundation to understand the 

interdisciplinary projects in this thesis. The focus of the thesis is on how the nervous 

system solves for a control policy in unfamiliar situations. 

 
Figure 1.2: Schematic representation of motor control in novel situations 

Three processes broadly explain how the nervous system selects its movement in 

novel situations: error-based learning, use-dependant learning, and reward-based 
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learning (12). According to error-based learning, the nervous system learns the 

appropriate motor commands to a novel situation by updating its forward model to reflect 

the changes due to the novel situation. The sensorimotor system senses the motor 

command and outcome, and compares that to its prediction to evaluate a sensorimotor 

prediction error (Figure 1.2). This way it knows when a target is missed and by how much 

and can adapt its forward model accordingly. This form of learning states that the nervous 

system has already developed a control policy that it finds appropriate for the task. This is 

the form of learning that has traditionally been studied in laboratory settings. Such 

experiments typically include making reaching movements to a target while wearing prism 

goggles that shift the visual field, while receiving visually rotated feedback on a screen, or 

while force-fields are applied to perturb the arm dynamics (13–16). Importantly, for this 

form a learning, participants receive some form of sensory feedback about the movement 

of limb that is being adapted. 

A second form of learning is called use-dependent learning. A general use of this 

term refers to the changes in movement learnt simply through repetition irrespective of the 

goal of the task (12). Diedrichsen et al. developed a more specific usage (17). They refer 

to a process where a movement is biased by a previous movement but not along the task-

relevant dimension. They suggest that when a perturbation does not hinder the 

performance of a task, it may be beneficial to learn to move along the direction of the 

perturbation. This form of learning has typically been studied by modifying tasks that 

require the minimization of a sensorimotor error, such as reaching to a target and thus 

also states that the nervous system already has a preferred control policy for the task. In 

such tasks, error-based and use-based learning can occur in parallel. For example, when 

participants’ reach was constrained towards the right, they applied a force against that 

constraint. However, when the constraint was removed, after the effect of the error-based 

learning, participants showed a preference to move towards the right which was task-

redundant direction during the constrained task. 

Reward-based learning is based on the concept that the nervous system tries to 

maximize some reward without a prediction about how to move. In such tasks, the nervous 

system either does not know how to move in order to develop a sensorimotor prediction 

error, or does not receive or does not use the sensorimotor prediction error. Instead, the 

nervous system uses a signal about whether a certain movement was successful or not. 

Therefore, it does not know how exactly to alter its movement to obtain more reward and 
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may have to explore multiple options before arriving at one that maximizes its reward. This 

is useful for improving movements beyond achieving a specific goal. This process is 

typically used to understand learning a new skill where the nervous system has not even 

solved for a control policy, and hence cannot simply minimize a sensorimotor prediction 

error to achieve the goal of the task. Recent experiments have modified the original arm 

reaching paradigms such that the participants only receive feedback of the final results—

success or failure—rather than feedback of their limb movements. Some such studies 

pitted error-based learning and reward-based learning within the same task and found that 

both processes can occur independently in the same task and when they conflict, error-

based learning may take preference (16,18,19). In this thesis, I probe reward-based 

learning in novel situations. 

 

1.2. Computational methods for motor control in novel 
situations 

Computational methods serve as detailed and cohesive formulations of the 

processes of motor control in novel situations. A widely accepted framework for such 

computational methods is optimization—the nervous system selects a preferred 

movement that optimizes a certain cost function (20–22). Optimal control, derived from 

the field of control theory, has been quantitatively used in motor control at least since the 

early 1960s (23). The computational methods of optimal control have steadily improved to 

capture more aspects of observed motor behaviour. These improvements have been in 

the form of algorithmic changes to incorporate more realistic aspects of the body and the 

environment, and in the identification of appropriate cost functions. Section 1.3 provides 

a brief overview of the cost functions. A landmark improvement for optimal control 

methods was the development of the Optimal Feedback Control algorithm in early 2000. 

It has proved to be a unifying theory for how the nervous system optimally combines 

sensory inputs with forward models in the presence of noise and changing dynamics to 

determine an optimal control policy (20,24). This framework can combine the various 

forms of learning described earlier into a single cohesive optimization process.  

Motor adaptation is described as a minimization of sensorimotor prediction error 

through error-based learning of the new forward model. This presupposes that the original 
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control policy is still relevant in the new situation. The optimal control framework proposes 

that in the process of learning a new control policy in any new situation, the nervous 

system learns a new forward model and uses that to determine the control policy that 

minimizes a cost, or maximizes a reward as proposed by reward-based learning. 

However, the computational complexity of such an algorithm is extremely huge, causing 

it to be more generally accepted for motor control in a stationary situation than in novel 

situations (20,25,26). This complexity primarily arises from the need to develop an 

accurate forward model and use that to solve for an optimal policy—the algorithms are 

model-based (Figure 1.3). More recently, simpler optimal control algorithms that don’t 

require a comprehensive forward model, and whose cost functions can capture some of 

the dynamics related properties of the system, such as effort, stability and metabolic cost, 

have been able to accurately predict motor behaviour observed during learning (15,27). 

Incorporating optimal control methods into a framework that is adaptive to changing 

situations is an ongoing research problem. 

Reinforcement learning has provided a framework of computational methods that 

can describe behaviour when situations are continuously changing. Reinforcement 

learning is an optimal control method that is applied to a situation and task whose 

properties are incompletely known and may be changing. The distinguishing feature of 

reinforcement learning algorithms that allows this is that the algorithms solve for the 

optimal control policy by exploring the costs associated with different control policies (28). 

These algorithms are model-free (Figure 1.3). Through trial-and-error, they learn a value 

function—the total reward that can be obtained if a given control policy is implemented 

from the current state—and find the control policy with the optimal value. Reward-based 

learning is often used interchangeably with this computational method of learning since 

learning from only a success or failure feedback is model-free. However, there is also a 

class of reinforcement learning algorithms that are model based. Here, the value function 

is computed by developing a model of the system and the environment (29). Through 

these algorithms, the optimal control models described in the previous paragraph also 

naturally fit into the reinforcement learning framework. The results from the projects in this 

thesis do not necessitate a reinforcement learning algorithm. However, the development 

of hypotheses and design of projects have been based on the framework of model-free 

reinforcement learning. 
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Figure 1.3: Schematic representation of optimization in motor control in novel 

situations 

 

1.3. Neural implementation of computational methods 

Mechanisms in the human body are essential to validate computational methods 

as representations of human motor control. But understanding how the nervous system 

determines how to move in a novel situation through computational methods and through 

neural mechanisms requires contrasting knowledge and skillset. The projects in this thesis 

were not developed to probe the neural mechanisms, and do not directly depend on the 

pathways of a particular neural mechanism. Therefore, I only present a brief overview of 

relevant mechanisms that informed the relevance of the computational framework chosen 

for the projects in this thesis. Knowledge about neural mechanisms has developed through 

invasive recordings from animals, the study of motor behaviour in patients and more 

recently, with the development of brain imaging techniques, the study of motor behaviours 

in healthy humans. Such findings suggest that the control policy may reside in the motor 

cortex (10). I will use the neuroscience-developed classification of learning processes here 

since they better delineate the roles of different neural structures. 

It is widely accepted that the cerebellum is responsible for the sensory prediction 

error that is essential for model-based learning. The evidence for this has been gathered 

through studies on monkeys with cerebellar lesions, patients with cerebellar degeneration, 

and healthy participants (9). The evidence also spans multiple tasks including arm 
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reaching in with visuomotor rotation, arm reaching with force fields, and locomotion (30–

32). In patients with cerebellar degeneration it has been observed that they are unable to 

accurately predict the required motor commands when the dynamics of a task are 

altered—the patient could not adjust their grip force to account for a ball being dropped in 

a basket they were holding. More recently, brain imagining studies with healthy adults 

found a correlation between cerebellar activation and experiencing a sensory prediction 

error (33). Specifically, it is thought that the cerebellum is involved in the formation of a 

forward model as well as in learning through performance feedback in a task. This has 

been evidenced through the spiking of cerebellar Purkinje cells of monkeys both at the 

beginning of a reaching task, as well as at the end of the movement (34). It is thought that 

the cerebellum is more sensitive to large and abrupt perturbations and is involved in an 

implicit process (12,34,35). While evidence for the relationship between the cerebellum 

and forward model in robust, there isn’t a clear theory for the neural circuitry used for 

implementing the computations, particularly for using the forward model to solve for an 

optimal control policy. 

 The basal ganglia is the brain region primarily implicated in reward-based 

learning. Reward-based learning had its early roots in psychology. Thus, much of the 

neurophysiology is from the study of decision making in the presence of rewards. A 

particular algorithm of interest to psychology and neuroscience is temporal-difference 

reinforcement learning where learning occurs by comparing temporally successive 

estimates of reward. In psychology, it is used to explain the process of learning through 

reward-prediction. Pavlov’s conditioning and Law of Effect tell us that any action or 

stimulus accompanied with a pleasant consequence is likely to be repeated (36). This 

forms a prediction between action and reward. In the subsequent execution of the action, 

rewards that are better than predicted lead to a positive reward-prediction error and to 

improvement of action, while rewards that are worse lead to a negative reward-prediction 

error and thus stopping of the action. Rewards that lead to zero reward-prediction error 

continue the action but put an end to learning (37). Therefore, even though this form of 

learning does not necessitate a goal-directed sensorimotor prediction error similar to error-

based learning, it is driven by on an error. The reward-prediction error may be coded in 

the phasic activity of dopamine-producing neurons in mammals, delivering this signal 

throughout the brain (38). This was observed by recording the dopamine neurons from the 

brain of monkeys as they learnt to perform different actions to obtain rewards (37). The 
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axons of most dopamine neurons contact the axons in the basal ganglia. The primary 

input to the basal ganglia is the striatum and the output from the striatum connects with 

the cortex and other motor areas (37,38). It is proposed that this network allows the basal 

ganglia to influence movement and motor control in novel situations.  

Direct evidence of the role of basal ganglia in the control of movement in novel 

situations is expanding. Early studies of the basal ganglia were only related to learning a 

new skill. In a task of throwing when the visual field was reversed, a task thought to be 

primarily driven by reward-based learning, patients with damage to the basal ganglia were 

unable to learn the task (39). More recent measurements from the caudate nucleus, which 

is located in the striatum, suggest that it may be active during the early stages of error-

based learning tasks (34). Some functional MRI studies also implicate the basal ganglia 

in regulating kinematic properties such as movement velocity, amplitude and force 

duration (34). However, it is observed that patients with damage to the striatum can still 

learn to reduce the error in an error-based learning task (9). A unifying view is based on 

the observations that the output from the basal ganglia is inhibitory. This means that the 

basal ganglia primarily controls movement by choosing which movements are to be 

allowed. During tasks that require correcting of sensorimotor prediction error, regions of 

the striatum have been found to be deactivated. This is consistent with the hypothesis that 

error-based learning and reward-based learning work together, and with the findings that 

in the presence of errors, error-based learning may take preference. 

 

1.4. Cost functions for motor control in novel situations 

The cost function plays a major role in optimization but is not universally 

predetermined. The cost function can theoretically include an infinite number of terms. 

These may be energy, stability, time, accuracy, pain and many more. Some of these 

terms, particularly explicit costs such as pain and time can also be modelled as 

constraints, limiting the cost function to few terms. Importantly, we cannot directly observe 

the cost function used by our nervous systems. This uncertainty about the nervous 

system’s cost function, combined with the generality of optimization allows us to explain 

most motor actions by selecting the appropriate cost function. However, such an 

endeavour provides minimal insight into the nervous system’s motor control processes. 
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Therefore, it is important to form a hypothesis of the nervous system’s cost function a priori 

(10). Such hypotheses of cost functions are inherently influenced by the task being 

studied. Traditionally, motor adaptation has been studied in tasks of reaching to a target 

in the presence of visuomotor rotation or force fields. In such tasks, it’s been hypothesized 

that the cost function is a weighted sum of error and effort (15). Here, error is associated 

with kinematics where moving away from the baseline trajectory is perceived as a 

sensorimotor prediction error. Effort is a term representing the system dynamics and can 

be quantified in multiple ways such as mechanical energy, muscle activity, or metabolic 

energetic cost. The effort term is generalizable to different learning algorithms, while a 

kinematic error necessitates error-based learning. I will focus my review to terms in the 

cost function that can serve as rewards. 

Rewards can be broadly classified into primary and non-primary (37). Primary 

rewards relate to evolutionary fitness and reproduction. These are food or activities 

necessary to produce an offspring. All other rewards are non-primary rewards. In animal 

studies, food is often used as a reward and the learning can be framed as maximizing the 

cost function of food. Primary rewards work less well in human studies. Here, typical 

rewards include money or points for successfully completing a task. A cost function may 

be a combination of both these reward terms. In computational methods used to model 

these human studies, rewards refer to a broader set of terms that may be intrinsic to the 

task. One example is when the algorithm attempts to minimize the uncertainty in the 

forward model (40,41). Here the reward is the reduction of something unexpected. Other 

rewards include savings in joint torque, reduction of pain, reduction in time spent on a 

task, and increase in metabolic energy/ reduction in metabolic energy expenditure. Some 

of these, such as an increase in metabolic energy, act as a primary reward while others, 

such as reducing pain serve as a non-primary reward. I aim to identify general principles 

of motor adaptation by studying the optimization of a cost function where metabolic 

energetic cost is the significant contributor. 

I have four reasons for selecting metabolic energetic cost as the significant term in 

the cost function. First, minimizing energy expenditure is a universal objective from an 

evolutionary perspective (42). Second, preferences in a variety of movements such as 

walking and running gaits, frequency of bench stepping, bicycle seat height while riding, 

and arm trajectories in reaching movements have been observed to be at or near the 

optimum of the measured energetic curve for humans (42–44). It is important to note here 



12 

that this is not to mean that energetic cost is the primary contributor to the objective 

function for all tasks. Rather, the significant role energetic cost plays in varied motor tasks 

allows us to use it as a tool in probing motor adaptation. To this end, the third reason in 

support of energetic cost as the primary term in the cost function is that principles learnt 

through studying energy optimization can translate to the optimization of other cost 

functions as well, such as the role of increased variability leading to improvements in motor 

adaptations and skill learning (45,46). Finally, savings in metabolic energetic cost can 

serve as a primary physiological reward to be used in the neural computations of reward-

prediction error. 

While there is plenty of evidence for the prevalence of metabolic energetic cost in 

the cost function, how it affects movement in novel situations is still poorly understood. 

One reason for this is that the time scales of metabolic energy optimization are unclear. 

That natural preferences support energy optimality could mean that developmental time 

scales are necessary for energy optimization. In support of shorter timescales, recent 

experiments have shown that adaptations in arm reaching and walking tasks correlate 

with reductions in metabolic power (44,47). A recent study showed that preferred reaching 

movements in new situations can also be modelled using a cost function that combines 

metabolic energy and rewards from stimuli (48). However, most computational methods 

use reward terms that represent effort or mechanical work rather than metabolic energy. 

Thus, there is limited knowledge about algorithms of metabolic energetic cost minimization 

when learning motor control in novel situations. 

Algorithms involved in minimizing metabolic energetic cost can also inform 

improvements to quality of life. In the pursuit of fundamental mechanisms, it is important 

to address the generalizability of hypotheses. However, many tasks can benefit 

particularly from the reduction in energetic costs associated with them, even if the inherent 

cost function associated with those tasks may not prioritize energetic cost. For example, 

irrespective of whether energetic cost is the primary contributor to the cost function for 

walking in older adults, there is an obvious benefit to making the task energetically 

cheaper for the individuals. Understanding the algorithms used by the nervous system to 

obtain savings in metabolic energetic costs can help us develop techniques to achieve 

this in tasks where it is beneficial. 
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1.5. Implementation of energy minimization 

There is some evidence that the human nervous system is equipped to implement 

energy optimization. The first step for this process would be to sense metabolic energetic 

cost. There are three candidate options for this. The blood gas chemoreceptors sensitive 

to oxygen and carbon dioxide are hypothesized to regulate ventilation (49). An increase 

in ventilation correlates with an increase in energetic cost since the body needs to use 

oxygen to generate energy to meet the increased energy demands (50). These receptors 

are present in the medulla oblongata and carotid bodies (51,52). They could help the 

nervous system sense a quantity representative of whole-body energy expenditure, similar 

to the indirect calorimetry systems we use in our experiments. Our lab tested the role of 

these sensors in energy optimization by attempting to trick the body into adapting to a gait 

that increased the oxygen sensed by these sensors (53). However, participants did not 

adapt suggesting that the body may have some other means to sense metabolic energetic 

cost. Another candidate mechanism for sensing metabolic energetic cost is through group 

III and group IV afferents from muscles. These are known to increase ventilation when 

stimulated and decrease ventilation when chemically suppressed (54,55). Their role has 

not been directly tested in the process of energy optimization and it is an interesting open 

question. Finally, it is possible that the nervous system senses energetic cost through 

some proxies of muscle mechanical work. This would require a computation involving 

muscle force, length and velocity. Mechanisms for sensing these have been established 

through muscle spindles and Golgi tendon organs (56). These are proprioceptive 

receptors and suppressing feedback from them has been found to change aspects of gait 

and recent studies have found some evidence of their role in energy optimization of gait 

(57,57). 

The sensed metabolic energetic cost needs a mechanism to affect energy 

optimization. I hypothesize that metabolic energetic cost acts a primary physiological 

reward in the reward-prediction error mechanism. A common and primary reward that is 

used in experiments is food. But what makes food a primary reward is the consequences 

of digesting the food. The typical experiments with food as reward show learning times 

faster than the time it takes to digest food. However, this is because the animal has already 

learnt that some aspect of the food such as taste predicts reward. When rats were given 

neutral flavour food with varying glucose load, they learnt flavour preferences proportional 
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to the glucose load (58). Thus, the actual primary reward is the end product of the 

metabolism of food. Metabolic energy is one of those end products. Even if metabolic 

energy is not directly the primary reward, all consequences of digesting food can directly 

serve as proxies for metabolic energy. This reward still needs to be sensed by the brain 

to elicit firing of dopamine neurons in the striatum. Our nervous systems do not have any 

known reward receptors that directly sense reward (37). Rather the nervous system is 

known to be able to use signals from multiple chemical and mechanical receptors as 

reward signals (37). The exact chemical pathway used to transmit these signals is still 

unknown. 

 

1.6. Energy minimization in human walking 

Preferences in human walking are strongly predicted by metabolic energetic cost 

minimization. Humans typically prefer to walk in ways that are close to the measured 

energetic cost minimum (59). Studies in experimental and non-experimental settings have 

observed that the choice of walking speed, step frequency, step length, step width, toe-

clearance, and starting and stopping, all coincide with the energetic minimum or are quite 

close to it (60–68). There are also walking tasks such as walking downhill or walking 

barefoot where preferences do not coincide with the metabolic energy minimum (69,70). 

However, these preferences do not fall far away from the metabolic energy minimum. This 

suggests that metabolic energetic cost is a significant contributor to the cost function of 

human walking but may be outweighed in certain situations. 

The study of motor adaptation in walking has traditionally focused on minimizing 

the sensorimotor prediction error. The study of motor adaptation gathered momentum in 

locomotion only after the field had adopted arm reaching as a candidate task and identified 

the process of error-based learning. Early adaptation tasks in walking included walking in 

the presence of force fields or resistances applied to the legs, similar to the force-fields 

applied in arm reaching experiments, and identified features of sensorimotor prediction 

error in walking (71,72). A second walking task, unlike that used in arm reaching, is split-

belt treadmill walking. This has also been used in understanding how the nervous system 

minimizes sensorimotor prediction error and has been the source of many insights into the 

role of the cerebellum in this process (73,74). However, just as in arm reaching, 
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minimization of sensorimotor prediction error is unlikely to be the only contributor to motor 

adaptation.   

Recent work from our lab has provided direct evidence of metabolic energetic cost 

minimization in novel walking situations. Selinger and Abram, in separate experiments, 

manipulated the energetic costs associated with participants’ walking step frequency and 

step width respectively (75,76). These manipulations shifted the energy optimum away 

from the original optimum. In these situations, participants now preferred a walking step 

frequency or step width that minimized the new measured energetic cost curve. The 

process of adaptation provides evidence that our nervous system uses a local search 

strategy in arriving at the energy optimal gait. This can be computationally modelled using 

a simple reinforcement learning algorithm (45). My projects in this thesis develop on these 

findings. 

 

1.7. Two walking tasks 

I use two different walking tasks to understand the energy optimization process. In 

both tasks, I measure walking gait to infer the control policy and measure metabolic 

energetic cost to represent the cost function. 

The first task is walking on a treadmill while a mechatronic system applies 

controlled fore-aft forces to the hip. I built this system to further probe the results from 

Selinger et al. that was performed using a knee exoskeleton (75). Selinger manipulated 

the energetics of treadmill walking to observe participants adapt to the new energy 

optimum. However, this exoskeleton system was limited in its ability to probe the motor 

adaptation process further. It was only able to penalize its users—increase the energetic 

costs of gaits relative to natural. It was also limited in the range of penalties it could provide 

(13% to 41%) and the maximum cost gradient (0.93%) it could provide. In contrast, fore-

aft forces to the hip can change the energetic cost of walking from -50% to more than 

+250%. Despite the application of forces, such a task feels safe and natural. Studies have 

found that forces to the torso can psychologically and biomechanically simulate walking 

on slopes and even climbing stairs (77,78). The energetics of walking with torso forces is 

also proportional to the energetics of walking on slopes (79). However, unlike slopes, 
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forces can be changed quickly and accurately while targeting the energetic consequences 

of small portions of gait. Note that the comparison between walking on inclines and walking 

with forces applied to the torso presented here is only to explain that the latter task does 

not feel unsafe or strange for the participants. The two tasks are not identical and differ in 

the work required at different stages of the gait cycle (80). However, these differences do 

not affect the hypotheses or the results presented in this thesis using the mechatronic 

system. I use this system to probe the algorithms underlying energy optimization during 

walking, particularly what features of a novel situation cue the nervous system to adapt. 

The second task presented in this thesis is walking on a split-belt treadmill. A split-

belt treadmill is a treadmill with two belts that can individually move at different speeds. A 

user typically walks with one foot on each belt. This is a useful adaptation paradigm and 

historically has been used to understand error-based learning—how the nervous system 

minimizes sensorimotor prediction error of step length when each foot moves at a different 

speed (74). In such adaptations, the stance time remains asymmetric even after 

adaptation. In fact, the temporal and spatial adaptation processes are thought to be 

distinct but not always mutually exclusive during split-belt walking (81). Therefore, it is 

unclear what error signal is actually being minimized as the sensorimotor prediction error. 

Recent studies have observed that metabolic energetic cost and mechanical work reduce 

with adaptation to split-belt treadmill walking, and these reductions may be possible due 

to the unique nature of walking on two belts of different speeds (82–85). In the projects in 

this thesis, I build on these results and probe the hypothesis that the observed adaptations 

to split-belt treadmill walking can be explained through a more unifying framework of 

energy optimization. I present direct evidence that the split-belt treadmill can be 

characterized as an assistive device than can provide energy to its users, making energy 

a significant factor in the task. I use experiments to measure mechanical work and 

metabolic energetic cost of walking on a split-belt treadmill and different step length 

asymmetries. I also use computer modelling to establish how different contributors to the 

energetic cost of walking affect walking on a split-belt treadmill. 

Both these systems have a broader application as systems that can assist walking. 

The systems can provide energy that the user can learn to use. While the fore-aft force 

control system is designed for this purpose, the ability of the split-belt treadmill to provide 

energy was only recently hypothesized (85). I directly tested the hypothesis in the third 

project of this thesis. Both these tasks are used in rehabilitation and gait training. Here, 
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split-belt walking is an established fixture while walking with torso forces is new but 

promising (74,80,86,87). I use the fore-aft force control system for only one project in this 

thesis, but it can be programmed to be used in multiple ways relevant to public needs. For 

example, it can be programmed to provide a constant assistive force during walking to be 

used as an exercise device for people with gait impairments. Similarly, the identification 

of energy minimization in split-belt walking paves the way for identifying learning 

mechanisms in a system that is already well-integrated into patient treatments. 

 

1.8. Aims 

Learning to move in novel situations is a complex process. Our nervous systems 

can do this by solving for a control policy that minimizes a cost function in the novel 

situation. One of the processes that is used to solve for a control policy is reward-based 

learning which states that the nervous system selects the control policy that maximizes a 

reward. Reductions in metabolic energetic cost expenditure is a primary physiological 

reward of movements. While there is a lot of evidence for preferred movements being 

energy optimal, the role of energetic cost in the process of learning movements in 

response to novel situations and the algorithms involved in the process are unknown. My 

objective in this thesis is to probe the role and process of energy optimization in identifying 

an optimal control policy in novel situations. Our lab recently identified that adaptations to 

novel walking situations can occur through energy optimization. Given this finding and the 

significant contribution of metabolic energetic cost to walking in familiar situations, I use 

adaptation of walking in two novel situations as candidate tasks for understanding energy 

optimization. 

My objective while working on this thesis was also to advance my skills as a 

scientist to enable me to continue the pursuit of principles that govern human movement. 

This is reflected in the thesis as it journeys through mechatronics, computational 

neuroscience, mechanics and energetics, and rigid-body dynamics. 

Aim 1: Design, build and test a mechatronic system to study energy 
optimization in humans. To study the process of optimization, I need a system that can 

reshape the energetic cost landscape such that the person’s originally preferred gait is 
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now sub-optimal. This allows me to observe the gait behavior executed by the nervous 

system in the process of finding the new optimal gait in any new landscape. I designed a 

system to reshape the landscape using fore-aft forces applied near the user’s center of 

mass as a function of their walking step frequency. I built it to apply quick, accurate, and 

precise forces at each new measured walking step. I validated its effectiveness for 

studying energy optimization by introducing participants to a cost landscape, created with 

this system, in which participants have been known to re-optimize their gait within a few 

minutes. 

Aim 2: Determine whether a steeper cost gradient causes the nervous 
system to initiate energy optimization in novel situations. When our nervous system 

encounters a novel situation, it has to learn whether the existing preferred control policy 

is optimal or not before it searches for a new policy. Without this knowledge, our nervous 

system may prefer to, perhaps erroneously, exploit the previous preferred control policy. 

This is reflected in the observation that our nervous systems do not always adapt to novel 

tasks. However, changing some aspects of the same task can allow the nervous system 

to initiate adaptation. The algorithm involved in this initiation is still unknown. In my second 

study, I used my fore-aft force control system to test whether a feature of a novel task, 

specifically the cost gradient, can allow the nervous system to initiate adaptation. I 

introduce participants to cost landscapes with increasing cost gradients and measure 

adaptation of their walking step frequency. 

Aim 3: Determine the biomechanics and energetics of split-belt walking. 
When walking on a split-belt treadmill, participants typically adapt their step lengths to be 

symmetric. This means that the distance measured between the heels of the two feet—

step length—is equal for two consecutive steps. This is traditionally explained as a process 

of minimizing a sensorimotor prediction error since, when walking over ground, people 

typically prefer equal step lengths for all steps. In this project, I collaborate with a research 

group at University of Southern California to determine the biomechanics and energetics 

of different step length choices during split belt walking. We hypothesized that the step 

lengths participants adapt to are also step lengths with a lower energetic cost suggesting 

that the adaptation can also be explained as a process of reducing energetic cost. 

Aim 4: Develop a computer model to determine the energetic contributors to 
the energy optimal gait in split-belt walking. Measurements of metabolic energetic cost 
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from participants reveals that there is an energy optimal step length asymmetry when 

walking on a split-belt treadmill. Step length asymmetry is a measure of the relationship 

between two consecutive step lengths. However, it is unknown what factors contribute to 

this relationship between step length asymmetry and energetic cost or why there should 

be a minimum. In over ground walking, computer models have identified that the cost of 

step-to-step transition and the cost to swing the leg are the two primary contributors to 

energetic cost that trade-off to give rise to the preferred walking gait. In this project I 

develop a dynamic walking computer model to test whether the same trade-off leads to 

the observed energy optimal step length asymmetry in split-belt walking. 

Together, these projects develop a new system and a new approach for studying 

motor adaptation through walking. The results uncover fundamental principles of these 

adaptation processes. 
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Chapter 2.  
 
A mechatronic system for studying energy 
optimization during walking 

2.1. Abstract 

A general principle of human movement is that our nervous system is able to learn 

optimal coordination strategies. However, how our nervous system performs this 

optimization is not well understood. Here we design, build, and test a mechatronic system 

to probe the algorithms underlying optimization of energetic cost in walking. The system 

applies controlled fore-aft forces to a hip-belt worn by a user, decreasing their energetic 

cost by pulling forward or increasing it by pulling backward. The system controls the forces, 

and thus energetic cost, as a function of how the user is moving. In testing, we found that 

the system can quickly, accurately, and precisely apply target forces within a walking step. 

We next controlled the forces as a function of the user’s step frequency and found that we 

could predictably reshape their energetic cost landscape. Finally, we tested whether users 

adapted their walking in response to the new cost landscapes created by our system and 

found that users shifted their step frequency towards the new energetic minima. Our 

system design appears to be effective for reshaping energetic cost landscapes in human 

walking to study how the nervous system optimizes movement. 
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2.2. Introduction 

Optimization is perhaps our most general principle of coordination. That is, people 

prefer to move in ways that minimize a cost function (20,88). A cost function is a weighted 

sum of one or more variables related to the movement, with the particular variables and 

their weights depending upon the task (20,22,48,89–94). For example, the cost function 

in reaching to a target is often modelled as a weighted sum of error and effort (15,48). One 

way to study optimization is to determine if the predicted cost minimum correlates with 

people’s preferences. Using reaching tasks as an example again, minimizing the sum of 

the variance about the target and squared muscle activations can explain people’s 

preferred arm trajectories (15). While preferences suggest that the nervous system is 

concerned with optimizing coordination, preferences alone don’t provide insight into how 

it is accomplished. To study the nervous system’s optimization algorithms, it is useful to 

manipulate the nervous system’s cost function and determine whether, and how, people 

respond. This is best accomplished in tasks where the cost function is well established, 

easy to manipulate, and directly measurable. 

Walking is a well-suited task to study the nervous system’s optimization 

mechanisms. It has been well established that people typically prefer to walk in ways that 

minimize metabolic energetic cost (42,60,63,64,95–97). For example, at every given 

speed, people choose to walk at the step frequency that minimizes their energy use 

(96,97). In addition to the many studies demonstrating preferences for energy minimal 

gaits in familiar conditions, recent research from our lab by Selinger et al. found direct 

evidence that the nervous system can continuously adapt these preferences to optimize 

energy during walking (75). Selinger et al. used a knee exoskeleton to manipulate a user’s 

cost landscape by penalizing certain step frequencies, shifting the energy minimum away 

from the originally preferred step frequency.  We use cost landscape to refer to the 

relationship between a gait parameter and its resulting metabolic energetic cost. Using 

such purposeful manipulation, Selinger et al. demonstrated that the nervous system could 

continuously optimize movements to converge on the new energy minimal gait within 

minutes (75). Thus, energy optimization in walking is a useful model system because the 

nervous system’s cost function is unambiguous, we can measure the cost directly, we can 

directly manipulate the values returned by the cost function to study how the nervous 
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system solves it, and the time course of optimization can be rapid enough that we can 

study it in a single experimental session.  

This prior exoskeleton system allowed us to observe continuous optimization, but 

it was limited in its ability to probe the underlying mechanisms. The exoskeletons could 

only penalize users, and not reward them by decreasing their cost below their normal 

values. The range of penalties were limited to between 13% and 41% of the user’s original 

cost minimum, achieving a maximum gradient of 0.93% change in energetic cost for every 

1% change in step frequency. In contrast, an ideal system would be able to precisely and 

rapidly prescribe cost landscapes of any shape. Such control over the shape of the cost 

landscape would allow both steeper and shallower cost gradients to study how the 

nervous system detects cost savings through its movement variability (16,46,98), the 

creation of complex cost landscapes to study the nervous system’s optimization 

algorithms (20,25), and the lowering of energetic cost to study whether the nervous system 

differentially values energetic penalties and rewards (99,100). Applying new costs rapidly 

is also important because the nervous system’s association of a particular coordination 

pattern with its resulting energetic cost may depend upon the delay between the 

movement and its energetic consequence (101,102). A quick system can always be 

slowed down to study the effects of delayed costs, but an inherently slow system cannot 

be sped up. 

Here we present a new mechatronic system designed to probe optimization 

mechanisms during walking. Based on data-driven simulations, the system uses 

controlled horizontal fore-aft forces applied near the center of mass of the user to change 

energetic cost landscapes. This system can generate a wide range of cost gradients 

because energetic costs during walking depend strongly on horizontal forces (103). It can 

also provide both energetic penalties with backward forces and energetic rewards with 

forward forces. It uses a series elastic actuator to apply these controlled forces precisely 

and rapidly (104). In the following sections, we first develop the high-level design using 

simulations that leverage literature data and then describe the construction of the system. 

Next, we evaluate system performance including a) how well it controls forces, b) how well 

the measured energetic costs match the predictions generated during design, and c) how 

users adapt their walking in response to new cost landscapes created by our system. 
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2.3. System Design 

 We designed a system to manipulate the energetic cost of human walking. We 

achieve this by applying controlled horizontal fore-aft forces to the user as a function of 

one or more measured gait parameters. In this paper, we use a single parameter, step 

frequency, for ease of comparison with prior work (75,96,103). For an individual walking 

at a constant speed, there is an energetic cost associated with each step frequency, with 

the minimal cost occurring at their preferred step frequency. We term this their originally 

preferred step frequency. Our system applies a backward or forward pulling force at each 

measured step frequency. Thus, the final energetic cost experienced by the user is the 

sum of the energetic cost associated with that step frequency and the energetic penalty 

(or reward) from the applied force. This new association between step frequency and 

energetic cost is the new cost landscape. In this manner, we can shift the energetic 

optimum higher or lower than the originally preferred step frequency. We then measure 

users’ preferred step frequency in the new cost landscape to determine their new preferred 

step frequency. 

As a first test of our design, we simulated the system’s effect on a user’s energetic 

cost. We used literature data of the energetic cost associated with various walking step 

frequencies when no force is applied, where step frequency is measured as percent of the 

individual’s preferred step frequency (96). We also used literature data for the energetic 

cost of walking at the preferred step frequency while a range of forces are applied, where 

the forces are measured as percent body weight of the individual (103). We then combined 

these two data sets to obtain the energetic cost of walking at various step frequencies 

over a range of applied horizontal forces. Constraining the range of step frequencies to 

±15% of preferred, and the range of horizontal forces to ±15% of body weight, we 

estimated that our system could vary a user’s energetic cost of walking from -45% to 

+230% relative to their original energetic minimum. 

Based on these initial simulations, we built a mechatronic system to apply rapid, 

accurate, and precise forces as a function of the user’s measured step frequency (Figure 

2.1). In this system, users walk on a single-belt treadmill (Trackmaster TMX425C, Full 

Vision Inc., Kansas, USA) while wearing a hip-belt (Osprey Isoform4 CM) that places them 

in a closed loop with the actuator. The hip-belt is tailored with extended belt loops in the 

front and back to which we attach long inextensible nylon cables. The long lengths (~409 
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cm in front and ~197 cm in back) help ensure that the forces on the user remain nearly 

purely in the fore-aft direction despite the within-stride vertical and medio-lateral 

movements of the center of mass during walking. These cables pass through nylon pulleys 

with bearings (McMaster-Carr Nylon Pulley 3434T16) on either end and meet the actuator 

located behind the user (Figure 2.1). We use light weight pulleys with low friction bearings 

to ensure low reflected inertia and minimal loss of forces during transmission. We use a 

series elastic actuator designed by Yobotics to produce the required force [29]. It consists 

of a 70 Watt brushless DC motor (BN23-23PM-03LH, Moog Inc.) that rotates a custom 

molded lead ball screw to maintain a set of four compression springs (McMaster-Carr 

Compression Spring 9434K147; spring stiffness = 33 lbs./in) at the required compression 

as determined by the commanded force. We measure the actual compression of the 

springs using a linear optical encoder (LIN-120-32, US Digital, Vancouver, WA, USA) and 

maintain their position with a proportional-integral controller implemented with a motor 

driver (Accelnet panel ACP-090-36, Copley Controls) that commands the motor using a 

15 kHz center-weighted pulse-width-modulated signal. The required spring compression 

is commanded to the motor driver from a real-time controller (ds1103, dSPACE GmbH, 

Paderborn, Germany). 

 
Figure 2.1: Mechatronic system 
An actuator pulls backwards or forwards on a walking user via long tensioned cables attached to a 
hip belt. The cables are routed through pulleys, so that they attach on either side of the same linear 
actuator. Backward forces provide an energetic penalty, raising the cost of walking relative to 
normal. Moderate forward forces provide an energetic reward, lowering energetic cost. Force 
transducers between the cables and belt measure the forces applied to the user. Step frequency 
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is measured from IMUs attached to the feet. Output forces from the motor are controlled using real-
time custom designed control hardware and motor driver. Metabolic energetic cost is measured 
using indirect gas calorimetry.  

This real-time controller measures step frequency, performs online calculations, 

and sends the resulting force commands to the motor driver. It is built in Simulink 

(Mathworks, NA, USA), and once compiled, runs at 1 kHz on the controller hardware. The 

controller receives analog signals from inertial measurement units (IMU) placed near the 

heel of each foot and estimates the step frequency by identifying foot ground contact 

events using characteristic zero crossings in angular velocity. To reduce error, it filters the 

analog signals using a 10 Hz, 2nd order low-pass Butterworth filter and requires that 

consecutive zero-crossings arise from alternate feet. The implementation of this condition 

requires the controller to divide this value by two to obtain step frequency. It passes this 

step frequency through a control function that determines the force to be commanded 

depending on whether we want to reward or penalize the measured step frequency and 

by how much. We then use a pre-determined calibration function to estimate the spring 

compression required to produce the commanded force. The calibration function was 

obtained by measuring force output for a range of commanded spring compressions. 

Finally, the controller commands the estimated spring compression to the motor driver. 

We designed the controller to accept inputs from a MATLAB 2013b (Mathworks, NA, USA) 

script for parameters such as the user’s mass. We use dSPACE ControlDesk 5.2 

(dSPACE GmbH, Paderborn, Germany) to monitor and record the data. 

We also use the dSPACE board to monitor and record the forces and the signals 

required to calculate energetic cost measures. We calculate the actual net force applied 

to the user as the sum of forces measured by the two load cells (LCM201, Omega 

Engineering) attached to the cables at the front and back of the user’s hip-belt. The forces 

are transmitted as analog signals to the dSPACE board where they are filtered using a 30 

Hz, 2nd order low-pass Butterworth filter. To calculate energetic cost, the dSPACE board 

records from oxygen, carbon dioxide, and flow sensors, mounted on the mask worn by the 

user (Vmax Encore Metabolic Cart, Viasys, Pennsylvania, USA). 
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2.4. System Performance 

 We evaluated system performance at four levels. First, we considered open loop 

control of constant forces when there is no user present in the system. Second, we 

tested open loop control of constant forces while a user walked in the system. Third, we 

closed the force control loop using our controller and evaluated the control of forces 

when the commanded force changed with each walking step. Finally, we measured the 

effect of the system on the user’s energetic cost and gait adaptation. All walking trials 

were at a constant speed of 1.25 m-s-1. All protocols with human users were approved 

by the Simon Fraser University’s Office of Research Ethics, and all users gave their 

written, informed consent before participation. 

2.4.1. Open-loop force control 

We first evaluated open-loop force control performance to determine whether our 

system could change between target forces within a walking step. We measured this 

responsiveness as rise time—time taken for the measured force to reach 90% of the way 

towards a new commanded value from an original commanded value. To accomplish this, 

we replaced the hip-belt with a wooden plank attached rigidly to the treadmill frame. We 

measured the force applied on the plank when we manually commanded step changes in 

force between 0N and either -49 N or +49 N. We repeated each step change 20 times, 

and each step lasted 4 seconds. We choose these force levels to match 10% of the body 

weight of our primary system tester, who weighs 490 N (body mass=50 kg, acceleration 

due to gravity=9.81 m-s-2). By design, the magnitude of these step changes is 

conservatively large—when under closed-loop control, users would normally not make a 

large step-to-step adjustment in step frequency, and thus would not experience a step-to-

step change in force as large as we tested here. We found an average rise time of 85 ms. 

Even assuming a high walking step frequency where each step takes only 400 ms, this 

easily allows for force changes within a single walking step (105) (Figure 2.2). 
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Figure 2.2: Open loop force control - responsiveness 
Time taken for the measured force (red) to reach a new commanded value from an original 
commanded value (black). Data shown here were averaged over 20 step changes. Each step was 
a change of 10% body weight—the original commanded value was always 0 N while the final value 
was ±10% body weight (body mass=50kg; acceleration due to gravity=9.81 m-s-2). 

We next evaluated the system’s accuracy and precision in applying the 

commanded force to a walking user. We quantified accuracy as the steady state error 

between the commanded force and the measured force and precision as the steady state 

variability in force about the steady state force. We measured the force applied to our 

system tester as they walked at their self-selected step frequency for two six-minute trials. 

During this time, we manually commanded step changes in force between 0N and ±10% 

body weight (body mass=50 kg, acceleration due to gravity=9.81 m-s-2). Importantly, the 

force commands were in open-loop—they did not depend upon the user’s step frequency. 

Each condition lasted one minute, and each non-zero force was preceded by the zero 

force condition. We allowed 35 seconds for the self-selected step frequency to approach 

steady state (106,107) and performed our analyses on the remaining 25 seconds. We first 

averaged the force over each step, obtaining a single force value per step, and then 

averaged this value over the 25 seconds. We determined steady state error as the 

difference between this averaged force and the commanded force for that condition. We 

found that our system can match a commanded force with an average steady state error 

of 0.13% body weight (Figure 2.3). The average steady state variability for this user was 

0.39% body weight when calculated between steps (root-mean-squared error). The force 

variability within a step was considerably higher at 2.64% body weight. We were not 

concerned about the magnitude of this within-step variability since our controller is 
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designed to manipulate the energetic cost only at each new step since it applies force as 

a function of step frequency. Similarly, the exoskeleton of Selinger et al. (75) had 

considerable within step variability in the torque it applied to the knee. Because the applied 

horizontal forces affect energetic cost, any inaccuracies or imprecision in applied forces 

will result in inaccuracies and imprecision in the cost landscapes created by our system. 

Based on our modelling during system design and the identified force control performance 

described here, we predict steady state energetic cost errors of ~1.3% and steady state 

energetic cost variability of ~3.8%, relative to the average minimum energetic cost of 

regular walking (96). One consequence of this step-to-step energetic cost variability is that 

it is necessary to average over several walking steps to accurately estimate the steady 

state energetic cost generated by the controlled forces. This is not a major practical 

concern for the experimenter as the significantly greater variability in breath-to-breath 

measures of energetic cost (108) normally requires averaging energetic cost over 2-3 

minutes, or about 200-300 steps. 

 
Figure 2.3: Open loop force control - accuracy and precision 
The measured force (red) has a steady-state-error of 0.13% body weight when averaged over a 
step. The RMS error is 2.64% body weight within a step and 0.39% body weight when the force is 
averaged over a step. Data were collected from one user (body mass=50 kg; acceleration due to 
gravity=9.81 m-s-2) walking at 1.25 m-s-1 while attached to our system, with a constant force being 
commanded (black). 
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2.4.2. Closed-loop force control 

At the third level of evaluation, we applied the forces to a walking user as a function 

of their step frequency. We only evaluated precision at this level because there was no 

steady state force—the commanded force depended on the user’s execution of step 

frequency. We measured the net force applied to one user as they matched an audio 

metronome that played seven frequencies spanning ±15% of their originally preferred step 

frequency. Each step frequency condition lasted one minute, and the measured net force 

was first averaged over a step, and then over the last 25 seconds of that condition. We 

repeated this with two control functions where a control function defines the relationship 

between measured step frequency (sf) and commanded force (F): 

𝐹	 = 𝑓(𝑠𝑓)	 (2.1) 

Both control functions were linear with zero offset, but one had a slope (k) of +1 

thereby penalizing low step frequencies, while the other was -1 penalizing high step 

frequencies: 

𝐹 = 𝑘 ∙ 𝑠𝑓,			𝑘 = +1,−1	 (2.2) 

We averaged the steady state variability, calculated as root-mean-squared error, 

across all 14 trials and found it to be 0.59% body weight (user’s body mass=50 kg, 

acceleration due to gravity=9.81 m-s-2) (Figure 2.4). This results in a predicted steady state 

energetic cost variability of ~5.7%, which, as described in the previous paragraph, is not 

of practical concern for the experimenter when estimating steady state energetic cost. 
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Figure 2.4: Closed loop force control 
Measured force averaged over each step (dots) as a function of step frequency while walking at 
1.25 m-s-1 for a single trial by a single user. The user matched an audio metronome played at seven 
different step frequencies ranging from -15% to +15%. Red and blue lines illustrate that we used 
these forces to create two different cost landscapes—one that penalized low step frequencies (red), 
and the other that penalized high step frequencies (blue). 

2.4.3. Effect on energetic cost 

In the fourth level of evaluation, we created a new energetic cost landscape with 

our system and compared it to our predictions. Specifically, we measured how the 

metabolic energetic cost changed for one user as they walked in the system with a 

controller that commanded a force as a function of their step frequency. We tested the 

same two control functions described above. We designed them to create very steep cost 

landscapes that shifted the cost landscape minimum in different directions. First, we 

measured the user’s resting energetic cost during a 5-minute standing trial. Next, the user 

walked on the treadmill without the hip-belt, and unattached to the cables, for 12 minutes. 

We averaged the step frequency over the last three minutes to determine their originally 

preferred step frequency. Then, for each control function, the user walked at seven step 

frequencies spanning ±15% of their originally preferred step frequency. We enforced the 

step frequencies using a metronome and presented them in random order. To determine 

energetic cost, we measured the volume of oxygen consumed and volume of carbon 

dioxide produced using a respiratory gas analysis system (Vmax Encore Metabolic Cart, 

Viasys, Pennsylvania, USA). We divided these volumes by the measurement period to 

determine the rate of oxygen consumption (𝑉̇!!) and carbon dioxide production (𝑉̇"!!). We 

applied the standard Brockway equation (109) to obtain the gross metabolic power: 
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𝑃#$%,'()** = 416.48
𝑊	𝑠
𝑚𝑙	𝑂+

𝑉̇!!< + 44.48
𝑊	𝑠

𝑚𝑙	𝐶𝑂+
	 𝑉̇"!!< (2.3) 

We define metabolic energetic cost as the energy used per unit time normalized 

for the person’s body mass (W/kg). This user’s body mass was 66 kg. Each trial lasted 

five minutes of which we allowed the first three minutes for the respiratory gases to reach 

steady state (110) and performed our analyses on the remaining two-minute measurement 

period. To compare with the user’s original cost of walking on a treadmill, we also 

measured their energetic cost at the same step frequencies while they walked on the 

treadmill without wearing the hip-belt or being attached to the cables. We subtracted the 

user’s resting energetic cost for each condition and present here the net energetic cost. 

In accordance with our predictions, we could manipulate this users’ energetic cost of 

walking by as much as -49% to +230% of their original minimum (Figure 2.5). This is more 

than a 5-fold increase in the magnitude of applied penalty when compared to our 

exoskeletons, and unlike with our exoskeletons, our current system can provide an 

energetic reward by lowering cost. 

 
Figure 2.5: Simulated vs measured energetic costs 
Metabolic cost measures (dots) for a single trial by a single user walking at 1.25 m-s-1, when force 
changed as a function of step frequency as shown in Figure 2.4. Grey curves illustrate the original 
cost landscape of the user while the red and blue curves illustrate cost landscapes that penalized 
low and high step frequencies respectively. Light colored curves illustrate our predicted results from 
simulations, and dark colored curves illustrate quadratic fits to measured data. 

2.4.4. Adaptation to new cost landscapes 

Next, we evaluated the ability of the nervous system to adapt gait towards the 

minima of new cost landscapes created by our system. Since different people’s nervous 

system can adapt differently, we used group analysis rather than single-subject analysis 

for the remaining tests. To do so, we closely matched the cost landscapes and protocol 
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used in our prior exoskeleton experiment, as that design was sufficient to generate 

continuous energy optimization during walking (75). We used the following control function 

designed to penalize high step frequencies and shift the new cost landscape minimum to 

step frequencies lower than originally preferred: 

𝐹 = ?−0.07 ∙ 𝑠𝑓 − 1.49, 𝑠𝑓 ≤ −5
−0.19 ∙ 𝑠𝑓 − 1.98, 𝑠𝑓 > −5	 (2.4) 

However, while prior studies parameterized the change in step frequency as 

percent deviation from the originally preferred step frequency, here we used step-to-step 

variability in step frequency, measured in standard deviations (SD). This allows us to 

understand the shift in preferred step frequency relative to the probability of it occurring 

by random chance. A 1SD shift was nevertheless comparable to a 1% shift as we found 

that the average standard deviation of our participants was 1.04%±0.12% (N=20). One 

concern is whether the application of these forces might cause people to change their 

preferred walking step frequency independent of the control. We suspect that this is not 

the case for two reasons. First, our system is biomechanically similar to walking on inclines 

(e.g. (77)) and the literature shows no clear relationship between preferred walking step 

frequency and incline (e.g. (111)). Second, we performed a pilot study of the effect of 

applied horizontal forces on preferred step frequency using 13 participants and found no 

relationship (data not presented here). 

Each participant completed three protocols on the same day (N=8; female=3; 

male=5; mass=67±8 kg; height=172±6 cm). The purpose of the first protocol was to 

quantify each participant’s originally preferred step frequency, as well as the variability 

about the preferred step frequency (Figure 2.6A). To accomplish this, each participant 

walked on the treadmill without the hip-belt for 12 minutes. To parameterize step 

frequency in future trials, we calculated the average and standard deviation of step 

frequency during the last three minutes. 
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Figure 2.6: Experimental protocol 
A) and B) represent average measures from 8 participants while C) is from a single representative 
participant since the order of the metronome frequencies was different for each participant. A) 
Average originally preferred step frequency in the original landscape. B) Participants’ average step 
frequency time series during the protocol when we tested for gait adaptation. When the controller 
came on (green bar at the bottom) participants walked in a new cost landscape (Figure 2.7) created 
by our system. Following the first five minutes of self-selected step frequency, they matched an 
audio metronome (orange bar) that either held them at a high step frequency (higher cost) or low 
step frequency (lower cost) relative to their originally preferred step frequency (black line) in the 
new cost landscape. C) Step frequency time series from a single representative participant during 
the third protocol when we measured their new cost landscape. Participants matched seven audio 
frequencies (orange bar) when walking in the new cost landscape (Figure 2.7) while we measured 
their energetic cost. 

The purpose of the second protocol was to determine the step frequency that 

participants preferred in the new cost landscape (Figure 2.6B). To accomplish this, 

participants wore the hip-belt and walked continuously for 47 minutes while attached to 

our system. In the first 30 seconds, no force was applied, allowing the treadmill to reach 

the prescribed speed, and the participants to approach their originally preferred step 

frequency. Over the following 60 seconds, the force was slowly ramped up to match the 

force that participants experience at their originally preferred step frequency in the new 

cost landscape. This ensured that participants were not perturbed by a sudden force when 

we engaged the controller. The force was then held constant for 30 seconds, following 

which we engaged the controller, placing participants in the new cost landscape. 

Participants then alternated between periods of walking with a self-selected step 

frequency and walking to an audio metronome played at a prescribed frequency, with each 
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period lasting five minutes. The metronome frequency alternated between +5SD and -

10SD, to allow the participant to experience both higher and lower energetic costs relative 

to the cost of walking at their originally preferred step frequency in the new cost landscape. 

In our instructions to the participants we said, “when you hear the metronome please try 

to match it but otherwise you may walk however you like”. We determined participants’ 

new preferred step frequency in this new cost landscape as the average self-selected step 

frequency over the final three minutes of this protocol. 

The purpose of the third protocol was to quantify the new cost landscape 

experienced by each participant (Figure 2.6C). This was necessary since our hypothesis 

of observing adaptation towards the new energy optimum is conditional upon the new cost 

landscape having an energy optimum different from the original cost landscape. We first 

measured the energetic cost of standing still for six minutes for each participant. Next, 

participants walked in the system while under the same control function with the same 

force ramp up as described earlier. Participants matched seven step frequencies (-15SD, 

-10SD, -5SD, -2.5SD, 0SD, +5SD, and +10SD) produced by an audio metronome and 

played in random order. We measured each condition for six minutes. This was a minute 

longer than what we did with the previous control function (Eqn. 3) because we designed 

this cost landscape to be shallower. An extra minute of measurement provided us with 

more breath-by-breath samples of the energetic cost associated with each measured step 

frequency, and thus greater confidence in our cost estimates for each condition for each 

user. We subtracted resting energetic cost from each walking condition to obtain net 

energetic cost. Importantly, this was always the last trial that each participant performed, 

to ensure that it did not influence their gait adaptation. 

Before analyzing our results, we tried to ensure that we had collected data from 

sufficient number of participants to effectively test for adaptation. We were primarily 

concerned with two issues. The first issue was that participants vary in the amount they 

shift their preferred step frequency in response to new energetic cost landscapes—the 

larger the variability, the greater the number of participants required to confidently detect 

a significant shift. To estimate the required number, we first needed to estimate the 

between-participant variability in self-selected step frequencies in new cost landscapes. 

To accomplish this, we conducted a pilot study with seven participants in a new cost 

landscape and found that the variability between participants in their self-selected step 

frequencies was 1.6SD. Using a power analysis for a one-tailed t-test, we determined that 
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eight participants were required to detect a reduction of 2SD in their new preferred step 

frequency relative to their originally preferred step frequency (𝛽 > 0.90, 𝛼 < 0.05). 

The second issue was that individuals have different energetic responses to the 

same applied forces resulting in cost landscapes that vary between individuals. This 

variability, when combined with a control function designed to create small changes to the 

original cost landscape, results in some new cost landscapes that do not shift the new 

minimum cost to lower step frequencies. And we can only test the effectiveness of our 

system in causing adaptation to lower step frequencies when the new cost landscapes 

have a new energetic minimum at a lower step frequency. We operationalized this 

constraint by requiring that an individual’s new cost landscape meet three criteria—the 

cost at the new minimum, -2.5SD, and -10SD should all be more than 3SD lower than the 

cost measured at the originally preferred step frequency. We calculate this 3SD value from 

the variability in breath-to-breath energetic cost measured during the last three minutes of 

walking at 0SD. The first condition ensures that the new minimum provides a cost saving 

to the nervous system; the second ensures that there is a cost gradient at the originally 

preferred step frequency to direct the nervous system towards the new minimum; the third 

ensures that the nervous system experiences a cost saving during the metronome-

enforced experience period. We performed a preliminary analysis of the cost landscapes 

of our first eight participants and estimated that we would need to collect from a total of 20 

participants to have eight that met all three criteria. After collecting from 20 participants, 

we screened them to determine that they did not hit the end ranges of our actuator, 

consistently matched the commanded step frequencies when we measured their cost 

landscape and had cost landscapes that met our defined criteria. Eight participants met 

these conditions. Importantly, we screened for these conditions prior to testing for gait 

adaptation in order to not bias our results towards a positive finding. Our subsequent 

analysis is of these eight participants. During the manuscript revision process, we were 

asked by reviewers to consider the behavior of all 20 participants. We found the same 

general patterns. 

Finally, we determined the step frequency that minimized energetic cost in the new 

cost landscape, and whether our participants adapted towards this new minimum. To 

determine the step frequency that minimized cost, we used a linear mixed effects model 

to fit a quadratic relationship between step frequency and energetic cost to our 

measurements from all eight participants (112). We chose this method, over fitting each 
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participant’s costs individually, because breath by breath measures of energetic cost are 

quite variable, and this variability can dominate the differences in actual energetic cost 

between different step frequencies, causing noise to dominate when fitting individual cost 

landscapes. This method yields a value for confidence in the location of this minimum. We 

used Monte Carlo simulations to determine the 95% confidence interval in this location. 

We resampled with replacement from the residuals of the linear mixed effects model and 

added it back to the average fit from the model. Each resampling yielded one simulated 

energetic cost for one step frequency for one simulated participant. We obtained 56 (8 

participants by 7 step frequencies) such values to simulate one experiment and used a 

mixed effects model to fit these simulated values. We simulated 1000 such experiments 

and determined the location of the minimum in each case. We found that the average 

energetic minimum at -5.7 SD would have reduced the cost of walking by 6.1%, and the 

95% CI of the location of the minimum spanned from -6.8 SD to -4.8SD (Figure 2.7). To 

compare, in the study by Selinger et al. with the exoskeletons, we observed energy 

optimization in new cost landscapes where the energetic minimum reduced the cost by 

8.1% ± 7.0% (mean±SD) (75). Using a one-tailed paired Student’s t-test, we found that in 

our new cost landscape, participants shifted their preferred step frequency away from their 

originally preferred step frequency and towards the energetic minimum by an average of 

-1.27 SD (p=0.005) (Figure 2.6B). This reduced their average energetic cost by 3.4%. We 

found similar patterns when we performed the same analyses including all 20 

participants—a significant shift of the preferred step frequency towards the energetic 

minimum. The 20 participants shifted by an average of -0.69 SD (p=0.025) which reduced 

their average cost by 0.5%. We suspect the more modest shift in step frequency and cost, 

and larger p-value, is due to some of the participants having smaller changes in their cost 

landscape in response to our system’s manipulation, as well as not consistently matching 

the commanded step frequency when we measured their cost landscape, and hitting the 

end ranges of our actuator. 
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Figure 2.7: New cost landscape 
The new cost landscape shifts the energy optimal step frequency lower than participants’ originally 
preferred step frequency (0 SD). On left, we averaged the participants’ measured step frequency 
and energetic cost for each commanded step frequency condition (blue dots with error bar 
indicating one standard deviation). The blue curve represents a quadratic fit to these measured 
data, while the red line represents the cost landscape predicted by the control function in Eqn. 4. 
On right, each dot represents the steady-state energetic cost measured from a participant at the 
step frequency that they executed. Each color corresponds to one participant. The blue curve 
illustrates a 2nd order linear mixed effects model of these data. The shaded region illustrates the 
95%CI of the model, while the blue square at the bottom denotes the minimum predicted by the 
model, and the 95% CI of this minimum obtained using the Monte Carlo simulations. The green 
square denotes the average and 95% CI of participants’ new preferred step frequency in the new 
cost landscape. This reduced their energetic cost by 3.4% relative to the cost at 0 SD. Left-hand y-
axis values are normalized to the average energetic cost of 4.07 W/kg measured at 0 SD. 

 

2.5. Discussion 

 Our system meets our performance requirements for studying energy optimization 

during walking. It can apply a large range of forces within the duration of a typical walking 

step. These forces are applied accurately and precisely even when the commanded force 

changes as a function of the user’s walking step frequency. These features together allow 

us to manipulate the energetic costs associated with every walking step. The system can 

apply forces that both reward and penalize the energetic cost of walking, relative to the 

user’s original cost landscape. We can also predict the average energetic cost landscape 

that the system creates for users for a given control function. The new cost landscapes 

created by our system caused users to adapt their walking gait towards the new energetic 

minimum, reducing their energetic cost by 3.4%. Interestingly, most users did not fully 
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converge on the new optimum, which would have reduced their energetic cost by an 

additional 2.7% on average. 

We considered two explanations for this incomplete energy optimization. One 

explanation is that the nervous system is optimizing a weighted function of the originally 

preferred and executed step frequency, and the most recently executed step frequency 

(113). However, our adaptation protocol required participants to walk at both high and low 

frequencies for the same duration, and participants only adapted to lower step 

frequencies, towards the new energetic minimum. A second candidate explanation for the 

incomplete energy optimization is that the optimization process is slow, particularly in our 

system. One factor that can slow optimization is measurement noise—the greater the 

variability in energetic cost, the greater the challenge for the nervous system to detect its 

gradient and assess the direction of the energetic minimum. This effect is especially 

pronounced near the minimum where the gradient is typically shallow, yet the noise is 

unchanged. The force variability in our system contributes to a noisy energetic cost 

gradient. For one user, we measured a between-step force variability of ~0.6% body 

weight resulting in a steady state energetic cost variability of ~6%. To confidently detect 

the gradient in the presence of this variability, the nervous system may need to average 

cost over longer periods of time, much like we do in our experimental methods, thus 

slowing down optimization. Indeed, learning tasks such as walking on a split-belt treadmill, 

crawling on hands and knees, and ergometer rowing can continue across many days of 

exposure (43,82,114,115). 

Our system may be modified to reduce this force variability. We studied this in pilot 

experiments by first using closed-loop control of the forces applied to the torso, as 

measured with the force transducers, rather than the original design of maintaining a 

constant spring compression. We used proportional-integral-derivative control to drive the 

error between measured force and the commanded within-step force to zero. This 

appeared to successfully reduce the within and between step force variability, but we 

found that the controller gains were highly user-sensitive and required tuning specifically 

for each user. The tuning process required users to walk for ~10 minutes some of which 

time was spent feeling perturbed. This had several undesirable consequences including 

that users felt less safe in our system, that the nervous system had to discriminate 

between many different controllers in learning how to adapt, and that users were no longer 

naïve to the presence of a relationship between step frequency and the applied system 
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forces. It is possible that these limitations may be overcome, but we decided to continue 

with the original approach at the possible expense of incomplete optimization. An 

alternative to closed-loop force control is to add compliance in series with the forward and 

backward pulling cables. We piloted this with three users and found them to adapt 

between 1SD and 3SD towards the new minimum, similar to the magnitude of adaptation 

we found in our original group of participants. While we suspect that the speed and 

completeness of optimization may increase with reduced force variability, we do not think 

it is necessary to eliminate it entirely. This is because not only was it present in the study 

by Selinger et al. where we did observe what appeared to be complete energy 

optimization, but such variability is also characteristic of everyday walking. 

A second candidate explanation for incomplete optimization in our system is that 

it may be manipulating contributors to the nervous system’s cost function other than simply 

energetic cost. Our system applies physical forces to a user that change as a function of 

how they walk. It seems possible, if not likely, that our system changes the stability of 

walking along with energetic cost. We noted in the introduction that the nervous system’s 

cost function can be the weighted sum of one or more variables, with the particular 

variables and their weights depending upon the task. If stability normally contributes to the 

nervous system’s cost function during walking, or if the nervous system increases the 

contribution of stability to the cost function when walking in our system, the minimum of 

this cost function may not necessarily coincide with the minimum of our new energetic 

cost landscape—it may even be located at the step frequencies to which our participants 

adapted. Consistent with the possible contribution of stability to the cost function, pilot 

testing found that in steeper cost landscapes, the step to step changes in forces are 

perceptible and make walking uncomfortable. This means that while we can create cost 

landscapes of a wide range of gradients, and quickly apply these cost changes within a 

walking step, we may be required to trade-off between these two factors. We explored this 

in pilot experiments by designing a steep cost landscape but averaging step frequency 

over multiple steps before inputting into the control function that calculates the required 

force command. Since steep cost landscapes require large force changes between steps, 

the averaging reduces the effect these force changes have on stability by applying them 

over multiple steps. This may be an advantage to the nervous system for optimization as 

there are larger steady-state differences in energetic cost between steady-state step 

frequencies. Or, it may instead be a disadvantage as the nervous system may find it more 
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difficult to associate variability in step frequency with the resulting changes in energetic 

cost. Thus, for the larger experiment we presented here, we chose to average step 

frequency only over a single stride and keep the cost landscape relatively shallow. We did 

design and pilot a cost landscape three times steeper than the one used here where the 

step frequencies were more heavily filtered through a three step mean filter. We tested 

two users and found that they were not noticeably uncomfortable with the force changes 

and shifted their step frequency by ~2SD towards the new minimum. This could be studied 

more systematically and is worth future research. 

Were we to build our system again, there are several things that we would change. 

First, we would consider using a different actuator. As described above, the series elastic 

actuator provided sufficient control of forces. But it was expensive, often required 

maintenance, and it had limited travel—participants were restricted in the distance they 

could travel on the treadmill. Due to this last limitation, we had to disqualify several pilot 

subjects who hit the limits while walking. We would replace the series-elastic actuator with 

a rotary motor, which would provide the system with unlimited travel. In our new design, 

the motor is housed off-board allowing one to use large, high-powered motors with high 

performance control of applied forces (116). We suspect that this would allow us better 

control of the forces within and between steps. Second, we found that it was important to 

ensure a high degree of user comfort in the system. Towards this end, we would now 

prefer to use a wider and longer treadmill. This would help the user feel more comfortable 

when walking with potentially perturbing forces applied to them.  

Our system, in its present form, can manipulate the energetic costs of walking in 

real-time. We focused on studying the performance of our device in healthy users who 

experienced shallow and simple cost landscapes that only penalized gait. Our system can 

also reduce the energetic cost of walking by as much as 50%, allowing future studies to 

determine if the nervous system treats energetic rewards and penalties differently. The 

ability to create cost landscapes of various shapes will help study the nervous system’s 

optimization algorithms, including if they are speeded up by steeper cost gradients. Finally, 

reshaping cost landscapes may allow the nervous system’s internal drive for reducing 

energetic cost to aid gait rehabilitation in patients recovering from injuries and disorders 

(87). 



41 

Chapter 3.  
 
Increasing the gradient of energetic cost does not 
initiate adaptation in human walking 

3.1. Abstract 

When in a new situation, the nervous system may benefit from adapting its control 

policy. In determining whether or not to initiate this adaptation, the nervous system may 

rely on some features of the new situation. Here we tested whether one such feature is 

salient cost savings. We changed cost saliency by manipulating the gradient of 

participants’ energetic cost landscape during walking. We hypothesized that steeper 

gradients would cause participants to spontaneously adapt their step frequency to lower 

costs. To manipulate the gradient, a mechatronic system applied controlled fore-aft forces 

to the waist of participants as a function of their step frequency as they walked on a 

treadmill. These forces increased the energetic cost of walking at high step frequencies 

and reduced it at low step frequencies. We successfully created three cost landscapes of 

increasing gradients, where the natural variability in participants’ step frequency provided 

cost changes of 3.6% (shallow), 7.2% (intermediate) and 10.2% (steep). Participants did 

not spontaneously initiate adaptation in response to any of the gradients. Using 

metronome-guided walking—a previously established protocol for eliciting initiation of 

adaptation—participants next experienced a step frequency with a lower cost. Participants 

then adapted by -1.41±0.81 (p=0.007) normalized units away from their originally 

preferred step frequency obtaining cost savings of 4.80±3.12%. That participants would 

adapt under some conditions, but not in response to steeper cost gradients, suggests that 

the nervous system does not solely rely on the gradient of energetic cost to initiate 

adaptation in novel situations. 
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3.2. Introduction 

 We routinely perform movements in a variety of situations. This includes handling 

of different-sized objects, walking on uneven terrain, or running with fatiguing muscles. 

Some of these situations are familiar, and for these situations, our nervous system may 

have already learned an optimal, or near-optimal, control policy (12,18,24). In the task of 

walking on a treadmill, for example, people can rapidly select the step frequency that 

minimizes energetic cost for each new walking speed (106,107). But in novel situations, 

the nervous system hasn’t had the experience to determine whether an existing policy 

remains optimal, or if a new policy would be better (12,24). To determine this, the nervous 

system must adapt the existing policy and experience the outcome (12,26). This 

adaptation is beneficial only when there is a new optimal solution, the presence of which 

the nervous system does not know in advance. If the old policy remains the optimal policy, 

then the act of adapting to new policies is itself sub-optimal—the nervous system would 

benefit most by exploiting its existing control policy (38). In this paper, we aim to identify 

a feature of novel situations that cues the human nervous system to initiate adaptation of 

its control policy. 

Our nervous systems do not always initiate adaptation in novel situations. In 

reaching experiments, people typically initiate adaptation when presented with a force-

field that creates a novel relationship between cost and control policy (12,14). However, 

when this is followed by another force-field that creates a different novel relationship, the 

nervous system reverts to erroneously exploiting its original control policy (12,117). Similar 

interference to adaptation is also observed in studies that create novel situations using 

visuomotor rotations or reversals (9). In walking tasks, exoskeletons designed to improve 

walking economy can underperform partly because people are unable to adapt their gait 

to take full advantage of the benefits that the exoskeleton can offer (118–120). In split-belt 

walking, people do not adapt their step lengths back to baseline when the speeds of the 

two belts are changed gradually (121). However, in all of these tasks, the nervous system 

can and does adapt when certain modifications are made to the novel situations 

(9,24,74,75,120). This suggests that the nervous system relies on particular features of 

the novel situations to determine if and when to initiate adaptation.  

One potential feature used by the nervous system to initiate adaptation is salient 

cost savings. Here we use cost savings to refer to an improvement in the nervous system’s 
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objective function. This may be decreased energetic cost, increased stability, increased 

accuracy, or some combination of these and other contributors to the objective function. 

Saliency refers to how clear it is to the nervous system that cost savings can be gained, 

and how it should adapt its control policy to gain the savings. As illustrated in Figure 3.1, 

saliency depends on at least three factors. First, execution variability about the nominal 

policy—due to either imperfect execution, purposeful exploration, or guidance by an 

external input—allows the nervous system to experience a greater range of cost savings 

if they exist (Figure 3.1B). Second, measurement noise decreases the ability of the 

nervous system to discern the presence of cost savings (Figure 3.1C). Third, for any given 

execution variability and measurement noise, an increase in the gradient of the cost 

landscape increases the ability of the nervous system to discern a cost savings (Figure 

3.1D). If cost savings are not salient—be it due to any combination of shallow cost 

gradient, high measurement noise, or low execution variability—the nervous system may 

choose to exploit its current control policy because whether it should adapt, and if so how 

it should adapt, is simply not clear. 
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Figure 3.1: Conceptual representation of how the nervous system might detect 

cost savings from a cost landscape 
A) The nervous system is introduced to a novel situation where the relationship between the control 
policy and cost has changed (black to grey curve) such that the original optimal policy is no longer 
optimal. With exact execution and measurement, the nervous system cannot detect any cost 
savings in the new landscape. B) Execution variability—illustrated by the horizontally aligned 
Gaussian distribution—allows the nervous system to exactly experience the lower costs relative to 
the original policy, making the energetic cost savings salient C) The presence of measurement 
noise—illustrated by the two vertically-aligned Gaussian distributions centered on the means of the 
two cost measurements—can reduce saliency by reducing the probability that the nervous system 
can detect a cost savings. In this example, the cost measurement means are close, and the cost 
measurement noise distributions are wide resulting in a low probability that the nervous system will 
detect a cost savings for the given execution variability. D) An increased gradient can increase the 
probability of detecting cost savings and thus increase the saliency of a cost landscape for the 
same execution variability and measurement noise. 

Recent studies in walking support the premise that the nervous system relies on 

salient cost savings to initiate adaptation. One of the primary real-time objectives of the 

nervous system during walking is to minimize energetic cost (45,75,76,122). In one of our 

recent studies, we used robotic exoskeletons to reshape the energetic cost landscape of 

treadmill walking. Here cost landscape refers to the relationship between step frequency 
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and metabolic energetic cost. We reshaped the cost landscape to shift the optimal step 

frequency to step frequencies lower than normally preferred. Upon their first experience 

with the new cost landscape, only some participants spontaneously initiated adaptation to 

the new optimal step frequency. These spontaneous initiators had greater step frequency 

variability than the non-spontaneous initiators who persisted walking at the previous 

optimal step frequency. This suggests that the naturally higher variability increased the 

saliency of the cost savings to the nervous system which led to the initiation of adaptation. 

We were also able to prompt the non-spontaneous initiators to initiate adaptation by 

providing them with experience with step frequencies that resulted in a lower energetic 

cost. One interpretation of this result is that the experience increased the saliency of the 

energetic cost savings for the nervous system causing it to initiate further exploration. 

Counter to these findings, we did not find that increased gait variability was sufficient to 

initiate adaptation in a subsequent study on over ground walking (119). When compared 

to our treadmill studies, changes in cost in this over ground study were due not only to 

changes in step frequency, but also speed and terrain. We suspect that the nervous 

system did not initiate adaptation within the duration of this over ground experiment 

because the added dimensionality increased the complexity of the credit assignment 

problem making it difficult for the nervous system to determine which energetic changes 

could be attributed to its control, and which were due to the differences in terrain.  

In the present study, we aimed to test whether the saliency of energetic cost 

savings is a feature that the nervous system uses to initiate adaptation in human walking. 

To accomplish this, rather than manipulate measurement noise or movement variability, 

we changed saliency by manipulating the gradient of the energetic cost landscape. We 

manipulated the gradient using a mechatronic system that applied controlled fore-aft 

forces to the waist of participants as they walked on a treadmill. These applied forces were 

a function of participants’ step frequency and acted to increase energetic cost at high step 

frequencies and reduce it at low step frequencies. By making the forces a function of only 

step frequency and keeping the walking speed constant, we aimed to only affect the 

gradient of the step frequency cost landscape, indirectly signaling to the nervous system 

how it should adapt its control policy to obtain cost savings. We increased the gradient of 

the cost landscape about participants’ originally preferred step frequency by increasing 

the magnitude of force change that the system provided for a given change in step 
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frequency. We hypothesized that increasing the gradient of the cost landscape will cause 

participants to spontaneously initiate adaptation of their step frequency. 

3.3. Methods 

3.3.1. Experimental Design 

 We manipulated cost landscapes using our recently developed mechatronic 

system (Figure 3.2A). We describe this system in detail in our earlier paper (122). Briefly, 

it manipulates a participant’s original cost landscape by applying fore-aft forces to their 

waist while they walk on a treadmill. The controller specifies the forces as a function of the 

participant’s step frequency. Backward forces increase the energetic cost associated with 

the executed step frequency, relative to normal, while moderate forward forces decrease 

the energetic cost (103). The system uses inertial measurement units placed on 

participants’ feet to detect ground contact events, and this signal is processed by a real-

time controller to determine the participants’ executed step frequency, defined as the 

inverse of the time elapsed between left and right foot ground contact events. We provide 

the controller with a control function that defines the relationship it has to maintain between 

the measured step frequency and the applied force. Based on this control function and 

the measured step frequency, the controller commands the required force for each new 

step to an actuator via a motor driver. The force applied by the actuator is transmitted to 

the participants through long tensioned cables that are attached to a hip belt, and we 

monitor that force using force transducers in-line with the front and back cables. 

 
Figure 3.2: Mechatronic system and cost landscapes used in the experiment 
A) Participants walked in a mechatronic system that applied controlled fore-aft forces as a function 
of their walking step frequency. Backward forces provided an energetic penalty, raising the cost of 
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walking relative to normal. Moderate forward forces provided an energetic reward, lowering 
energetic cost. B) Using simulations, we predicted that participants would experience cost 
landscapes with gradients of 1.4 (shallow), 2.8 (intermediate), and 4.2 (steep) percentage change 
in cost per unit change in step frequency, about their originally preferred step frequency (0). 

We tested participants’ behavior in cost landscapes of three different gradients (Fig 

3.2B). Using data from literature, we can predict for an average participant the energetic 

cost associated with each step frequency when walking without any external force (96), 

as well as the energetic cost of walking when a range of fore-aft forces are applied but at 

a fixed step frequency (103). We combined these relationships and used them to design 

three control functions—shallow, intermediate, and steep—that created cost landscapes 

of three different gradients. 

𝐹*,-..)/ = ?−0.07 ∙ 𝑠𝑓 − 1.36, 𝑠𝑓 ≤ −5
−0.19 ∙ 𝑠𝑓 − 1.98, 𝑠𝑓 > −5	 (3.1) 

𝐹01%$(#$20-%$ = ?−0.07 ∙ 𝑠𝑓 − 0.40, 𝑠𝑓 ≤ −5
−0.39 ∙ 𝑠𝑓 − 1.98, 𝑠𝑓 > −5	 (3.2) 

𝐹*%$$3 = ?−0.07 ∙ 𝑠𝑓 + 0.56, 𝑠𝑓 ≤ −5
−0.58 ∙ 𝑠𝑓 − 1.98, 𝑠𝑓 > −5	 (3.3) 

Here, 𝑠𝑓 is a normalized step frequency and is dimensionless. To perform this 

normalization, we first measured the average step frequency originally preferred by each 

participant during a baseline trial (c.f. Experimental Protocol), as well as the standard 

deviation in step frequency about this average preferred step frequency. We then 

calculated the normalized step frequency for each step in the subsequent trials by 

subtracting the average originally preferred step frequency from each step’s measured 

step frequency and then dividing by the standard deviation about the originally preferred 

step frequency. This normalization controls for the differences between participants in their 

step frequency variability, which is normally one of the contributors to the saliency of cost 

savings. It also forces measured step frequencies that are equal to the originally preferred 

step frequency to evaluate to 0. We normalized the forces applied to a participant by their 

body weight. In equations 1-3, the intercepts, slopes, and the forces all have units of 

percent body weight (𝑠𝑓 is dimensionless). We designed these control functions to 

generate new cost landscapes with cost gradients of 1.4, 2.8, and 4.2 about the originally 

preferred step frequency. These gradients have units of percent change in energetic cost 

for a unit change in normalized step frequency. For example, were a participant walking 
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in the intermediate gradient condition to choose a step frequency 1 normalized unit lower 

than their originally preferred step frequency, the participant will experience a 2.8% 

reduction in energetic cost relative to what they experienced at the originally preferred 

step frequency. For comparison, the cost landscape used in Selinger’s study roughly 

corresponds to the shallowest gradient we use here (45,75). To experience a cost gradient 

as steep as our steepest, one would have to walk at a step frequency roughly 7.5% higher 

than their preferred step frequency in their original cost landscape (96). Finally, we 

designed all the new cost landscapes to have the same cost at the originally preferred 

step frequency. This helped ensure that when we changed the cost landscape, 

participants only experienced the gradient change, without experiencing any change in 

the average steady-state cost. Since different nervous systems can respond differently to 

our control functions, each participant may not experience exactly the cost landscape that 

we aimed to create. However, our prior results show that, on average, we are able to 

accurately create our designed cost landscapes (122). 

3.3.2. Experimental Protocol 

 We collected data from 11 participants (5 females, 6 males; mean±SD; Age: 24±3 

years; Height: 167±11 cm; Mass: 68±11 kg). All participants were healthy and had no 

known history of cardiopulmonary or gait impairments. The study protocol was approved 

by the Simon Fraser University Research Ethics Board and all participants gave written 

informed consent before participation. To determine the sample size necessary to 

evaluate our hypothesis, we first performed pilot experiments and estimated that we can 

expect a group standard deviation of 1.01 steps per minute. We then performed a power 

analysis for a one-tailed Students’ t-test to detect an average change of 1 normalized unit 

in step frequency (α = 0.05, 1-β = 0.90). 

Each participant completed four periods of walking on the same day (Figure 3.3). 

Prior to the beginning of these four experimental periods, all participants spent ~10 

minutes habituating to walking on our treadmill at a speed of 1.25 m·s-1. During this 

habituation, we instructed them to walk with both short and long steps. They were not 

attached to the mechatronic system. This was followed by the first period of the experiment 

where participants walked for 9 minutes while attached to the mechatronic system. We 

used data from this period to quantify the characteristics of their baseline walking step 
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frequency. During this time, the system controlled for a target applied force of 0 N (Figure 

3.3A). We calculated the average and standard deviation of their step frequency from the 

6th to 9th minute to parameterize the step frequency in future trials. We refer to this average 

as the originally preferred step frequency and the standard deviation as original step 

frequency variability. 

 
Figure 3.3: Experimental protocol 
Step frequency measured from a representative participant during the different walking periods. 
Each participant completed four periods of walking in a single day. A) First, they walked for 9 
minutes as the system controlled for a force of 0 N to be applied to their waist. We used this baseline 
period to estimate their average original preferred step frequency and original step frequency 
variability. B) Then participants walked for 5 minutes each in the shallow and steep gradients to 
test for spontaneous adaptation. C) In the third period, participants walked in an intermediate 
gradient. We used this condition to test for both spontaneous adaptation to an intermediate gradient 
and adaptation after enforced experience with a low cost. D) Finally, we measured the actual 
gradients experienced by participants in each the cost landscapes. 

In the second period, we tested whether participants would spontaneously initiate 

adaptation in the shallow and steep gradients (Figure 3.3B). They experienced 0 N for the 

first 30 s to allow them to reach a steady-state step frequency (107). We programmed the 

system to ramp up the force over the next minute (minute 0.5 to 1.5) to the force that would 

be applied at the participants’ originally preferred step frequency in the new cost 

landscapes. This ensured that participants were not perturbed by a sudden change in 

force when the cost landscape changed. This force was held constant for 30 s (minute 1.5 

to 2; shallow pre-spontaneous). The controller then engaged the control function for the 

shallow gradient, and participants walked at a self-selected step frequency for 5 minutes 

(minute 2 to 7; shallow spontaneous). Then the controller switched to the steep gradient. 

Once again, we ensured that participants were not perturbed during the cost landscape 
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transition by using a limit on the rate at which the force could change for 30 s (minute 7 to 

7.5). Participants then self-selected their step frequency for five minutes (minute 7.5 to 

12.5; steep spontaneous). To avoid fatigue, we then provided a break of 5-10 minutes 

before beginning the third period. For each participant, we averaged their self-selected 

step frequency over the last 30 s of walking in each gradient to determine their 

spontaneous adaptation in that gradient (shallow spontaneous: minute 6.5 to 7; steep 

spontaneous: minute 12 to 12.5). 

We used the third period to test for adaptation in an intermediate gradient (Figure 

3.3C). The first part of this period served as a sort of Goldilocks test in the event that the 

shallow and steep gradients were both perceived as extreme by the nervous system (123). 

Similar to the second period, the force was ramped up in the first two minutes to prevent 

perturbing forces. The controller then engaged the control function for the intermediate 

gradient, and participants self-selected their step frequency for 5 minutes (minute 2 to 7; 

intermediate spontaneous). One possible outcome of our experiment was that participants 

would not spontaneously adapt in any of the gradients. With this outcome, we would not 

be able to distinguish between the possibility that participants will adapt but not 

spontaneously, and the possibility that participants won’t adapt at all in our system with 

our experimental paradigm. Therefore, the next part of this experimental period was to 

verify whether adaptation was possible at all. Prior work has shown that experiencing a 

lower cost in a new cost landscape is sufficient to cause the nervous system to initiate 

adaptation (45). Using this principle, we next required participants to match their step 

frequency to an audio metronome that played a frequency -10 normalized units away from 

their originally preferred step frequency. According to our designed cost landscape, we 

expected this step frequency to provide a cost savings of 12.5% relative to the cost at 0. 

After five minutes of matching the metronome (minute 7 to 12; intermediate metronome 

guided), the metronome was turned off and participants self-selected their step frequency 

for another five minutes (minute 12 to 17; intermediate post-experience). Once again, we 

averaged each participant’s step frequency during the last 30 s of each condition to 

determine their preferred step frequency in that condition (intermediate spontaneous: 

minute 6.5 to 7; intermediate post-experience: minute 16.5 to 17). 

The purpose of the fourth period was to measure the actual energetic cost 

experienced by the participants in each of the new cost landscapes (cost mapping; Figure 

3.3D). During this period, participants were also instrumented with a respiratory gas 
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analysis system (Vmax Encore Metabolic Cart, Viasys, Pennsylvania, USA). They spent 

the first six minutes standing still while we measured their resting metabolic rate (minute 

0 to 6). They then started walking while the mechatronic system maintained a force of 0 

N to allow them to reach a steady-state gait (minute 6 to 7). Following this, participants 

walked at specific walking conditions chosen to allow us to estimate the gradient about 

the originally preferred step frequency in each of the cost landscapes, and also to estimate 

if the experience low period indeed allowed participants to experience a lower cost. 

Participants walked in 10 conditions total: step frequencies of 0, -5, and +5 in shallow, 

intermediate and steep gradients, and -10 in only the intermediate gradient. We enforced 

this by instructing participants to match an audio metronome that played these 

frequencies. We programmed the controller to present these conditions in a random order 

to each participant, to prevent any order effects on these metabolic energy measures. To 

determine energetic cost, we measured the total volume of oxygen consumed and volume 

of carbon dioxide produced in the last three minutes of each condition, and divided them 

by the duration over which they were measured, to obtain the steady state average rates 

of oxygen consumption (𝑉̇!!) and carbon dioxide production (𝑉̇"!!). We then estimated the 

metabolic rate using the following equation (109,124,125): 

𝑃#$%,'()** = 416.48
𝑊	𝑠
𝑚𝑙	𝑂+

𝑉̇!!< + 44.48
𝑊	𝑠

𝑚𝑙	𝐶𝑂+
	 𝑉̇"!!< (3.4) 

We subtracted resting metabolic power for each participant and present net 

energetic cost as the energy used per unit time normalized for the person’s body mass. It 

has the units W·kg-1. 

3.3.3. Data Analysis 

 We first determined the average gradients and metronome-guided cost that 

participants experienced in each cost landscape. We used MATLAB’s fitlm command to 

find the best linear fit through the energetic costs at -5, 0, +5 normalized step frequencies 

for each participant, in each cost landscape. We define the cost landscape gradient for 

each participant as the slope of this fit. We also used a one-tailed paired Students’ t-test 

to determine whether the cost at a step frequency of –10, where we held participants 

during the intermediate metronome guided condition, is lower than the cost at a step 

frequency of 0 in the intermediate gradient. 
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We evaluated whether participants spontaneously initiated adaptation in response 

to steeper gradients. We first compared the preferred step frequency in the shallow 

gradient with the originally preferred step frequency using a one-tailed Student’s t-test. 

We found that these values were indeed different, but we did not attribute this shift in 

preferred step frequency to an adaptation in response to a new cost gradient (c.f. Results). 

To determine if there was any additional changes in preferred step frequency in the 

steeper gradients, we then compared the average step frequencies during the 

spontaneous adaptation periods in the intermediate and steep gradient to the same period 

in the shallow gradient. 

We also determined whether participants initiated adaptation after enforced 

experience with a low cost. We used a one-tailed paired Students t-test to determine 

whether participants’ preferred step frequency after the intermediate metronome guided 

condition was significantly lower than the average step frequency 30 s prior to the 

experience with low cost. The step frequency in this 30s prior to the experience 

corresponds to the spontaneous adaptation in the intermediate gradient, allowing us to 

determine whether the metronome guided experience generated adaptation that did not 

occur spontaneously. 

In the conditions where we observed adaptation, we characterized the rate of 

adaptation. We did so because a preferred step frequency can arise from fast predictive 

processes that can occur over a few seconds or optimization processes that can occur 

over tens or hundreds of seconds (107). As described in the introduction, we are interested 

in the slow process since it is indicative of the nervous system learning to adapt its policy 

to a novel situation. We modelled each participant’s adaptation of step frequency over 

time as a two-process exponential. We first averaged the step frequency during the last 

30 s prior to the beginning of the condition of interest, and the step frequency during the 

last 30 s of the condition. If these two averages were different, we normalized the step 

frequency data during that condition such that the average step frequency of the 30 s prior 

to the condition evaluated to 0, and the average of the last 30 s evaluated to 1. We then 

used least squares regression implemented through MATLAB’s fitnlm function to model 

these data as the sum of two exponentials (107). We used the time constants from this 

model to estimate the duration of the optimization process. 
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3.4. Results 

 We were successful in creating cost landscapes of different gradients. We found 

that participants on average experienced a shallow gradient of 0.07±0.03 W·kg-1 

(mean±SD), an intermediate gradient of 0.14±0.03 W·kg-1, and a steep gradient of 

0.20±0.04 W·kg-1 (Figure 3.4). This is calculated as the change in energetic cost per 

normalized unit of step frequency. We use 1 standard deviation of participants’ preferred 

step frequency in their original cost landscape, to normalize the measured step frequency. 

This means that participants experience the reported gradient through a variability of 0.5 

standard deviations higher and lower than their originally preferred step frequency. Thus, 

1 standard deviation higher and lower than their originally preferred step frequency, which 

accounts for 68% of their steps, would have allowed participants to experience a change 

in energetic cost of 3.6%, 7.2%, and 10.2% in the shallow, intermediate, and steep 

gradients, respectively. We also found that when participants in the intermediate gradient 

were held -10 normalized step frequencies lower than their originally preferred step 

frequency, they experienced an average cost savings of 8.1%±9.1% relative to the cost at 

the originally preferred step frequency (p=0.006). 
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Figure 3.4: Cost landscapes measured from participants 
A) Shallow B) intermediate and C) steep gradients. Each filled circle represents one measurement 
from one participant. Thin, lighter lines are linear fits to each participant’s cost measurements. Data 
points and best-fit lines from a given participant is presented in a single colour. Thick lines are the 
average of these linear fits. D) On average the gradients are increasing from shallow to steep. The 
filled circles represent the average cost measures at the commanded step frequencies, and the 
error bars represent the 95% CI of the same. 

Participants did not spontaneously initiate adaptation in response to steeper cost 

gradients. In the second period, participants first experienced the shallow cost landscape, 

and then the steep cost landscape. They walked freely at their self-selected step 

frequency for 5 min in both cost landscapes. The average step frequency from the last 30 

seconds of the shallow period was lower than the original preferred step frequency (-

0.69±0.82 vs. 0; p = 0.01). However, this step frequency was indistinguishable from the 

average step frequency preferred by participants during the 30 s prior to the beginning of 

the shallow gradient (Figure 3.5: Shallow pre-spontaneous vs Shallow spontaneous; -

0.69±0.82 vs. -1.02±0.64; p = 0.33). Therefore, we do not interpret this to be an initiation 

of adaptation towards the optimal policy. When the system switched from the shallow 

landscape to the steep landscape, participants still did not initiate adaptation, and 

preferred a step frequency (Figure 3.5: Steep spontaneous; -0.76±0.99) that was 

indistinguishable from that preferred in the shallow cost landscape (Figure 3.5: Shallow 
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spontaneous; -0.69±0.82; p = 0.40). Our goldilocks test with the intermediate gradient also 

resulted in preferred step frequencies that were indistinguishable from that preferred in 

the shallow landscape (Figure 3.5: Shallow spontaneous vs Intermediate spontaneous; -

0.69±0.82 vs. -0.74±0.82; p = 0.43). 

Participants did, however, initiate adaptation after enforced experience with a 

lower cost. We allowed participants to self-select their step frequency after matching a 

metronome that held them at a step frequency that had a cost lower than the cost at 0 in 

the intermediate cost landscape. On average, participants adapted by -1.41±0.81 towards 

the new cost minimum (Figure 3.5: Intermediate post-experience). This adaptation was to 

step frequencies significantly lower than that spontaneously preferred in the intermediate 

gradient (p=0.007). It led to an average cost savings of 4.80±3.12% relative to the cost at 

0. We found that the time course of the change in step frequency of most participants was 

captured well with a two-process exponential model (RMSE=0.16±0.08; R-

squared=0.36±0.21). The time constant of the fast process was 4.4±2.5 s while that of the 

slow process was 190.2±209 s. We interpret the presence of this slow process as 

evidence that the nervous system indeed initiated adaptation in response to the enforced 

experience with a lower cost gait. 

 
Figure 3.5: Average adaptation in each cost landscape 
Average spontaneous adaptation in the shallow gradient was indistinguishable from participants’ 
preferred step frequency just prior to the beginning of the shallow cost landscape (shallow pre-
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spontaneous vs shallow spontaneous). The spontaneous adaptation in all gradients were also 
indistinguishable from each other after five minutes of walking (shallow, intermediate, steep 
spontaneous). However, after experience with a lower cost in the intermediate gradient, participants 
preferred to walk at a significantly lower step frequency (intermediate post-experience). 

 

3.5. Discussion 

 Contrary to our hypothesis, steeper gradients did not lead to spontaneous 

initiation of adaptation. This null finding is not because our methods were unsuccessful in 

creating gradients of increasing steepness. We used our cost mapping trials to verify that 

the participants did indeed experience three different gradients—the intermediate and 

steep gradients were about 2-fold and 3-fold the shallow gradient, respectively. The lack 

of initiation also does not appear to be a consequence of the rapid exposure to multiple 

gradient conditions preventing the nervous system from attempting any adaptation. We 

verified this by leveraging results from previous studies that found that adaptation can be 

initiated by guiding the nervous system to experience a cost lower than the cost at the 

originally preferred step frequency (45). We did the same here and found that participants 

could indeed initiate adaptation in the intermediate landscape after such experience, 

despite the intermediate landscape being the third landscape experienced by participants. 

When considered together, these results suggest that either the nervous system does not 

use salient cost savings to initiate adaptation, or that the cost savings were not salient to 

the nervous system in our experiment. 

For savings to be salient, the nervous system needs to both detect that cost 

savings can be gained and determine how it should adapt its control policy to gain the 

savings. Depending upon how the nervous system senses energetic cost, it may be 

challenging for the nervous system to detect cost savings from the cost landscape 

gradient. For example, one possible candidate sensory system for estimating energetic 

cost involves the ergoreceptors that are sensitive to the slow build-up, or slow reduction, 

of muscle metabolic by-products (54,126,127). This build-up creates a sensory response 

that is an integration of the effect of many steps, rather than one that closely follows the 

step-to-step changes in energetic cost. It will be more difficult for the nervous system to 

detect a gradient in cost landscape from the step-to-step variability in energetic cost when 

using this mechanism because integration has the effect of decreasing the sensed 
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gradient, perhaps even to zero if the build-up is particularly slow. This, or a similar 

integrative sensing mechanism, may be why metronome-guided experience is effective at 

initiating adaptation—the metronome holds participants at a lower cost for many steps 

allowing time for integration. However, some participants in some conditions are able to 

use the step-to-step variability in energetic cost to spontaneously initiate adaptation (45). 

This suggests that if a slow sensing system does indeed play a role in estimating energetic 

cost, it is not the only contributing system. 

Another possibility for the lack of initiation of adaptation is that the gradients 

allowed participants’ nervous systems to sense the presence of cost savings but not how 

to adapt their control policy to obtain those savings. That is, the nervous system has 

difficulty with credit assignment in our experiment (128). We manipulated the cost gradient 

associated with only one gait parameter—step frequency—to allow the nervous system to 

detect an increase in cost savings and detect the gait parameter to adapt to obtain those 

savings. But when walking in our system, we suspect that it is not clear to most participants 

that the backward force depends on any aspect of their gait, including their step frequency. 

It appears to be challenging for the nervous system to identify salient cost savings using 

the structure of natural variability in gait to determine the gradient of a cost landscape—a 

finding consistent with our earlier experiment studying adaptation in over ground walking 

(119). Metronome-guided experience of step frequencies with lower cost may provide the 

nervous system with an explicit association between the cost savings and the changes to 

control policy that provide those cost savings. Similarly, reaching experiments have found 

that presenting participants with multiple different force-fields interferes with learning, but 

that such interference can be overcome with certain contextual cues such as follow 

through movements or cues that associate a change in the optimal control policy with 

another change such as spatial location of movement (129,130). Differences in contextual 

clues might explain why it was easier for the nervous system to identify that there was a 

relationship between step frequency and the changes to knee torque for some participants 

in our previous experiment than with step frequency and torso forces in the present 

experiment (45). This interpretation is consistent with recent study in visuomotor 

adaptation that found that implicit and explicit learning work together to improve adaptation 

(131). 

While we designed our custom-built equipment and our protocol to meet the 

requirement for energetic cost saliency, our experiment nevertheless had limitations. 
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Towards this requirement, the maximum cost savings that participants experienced from 

their variability in step frequency, relative to the cost at their originally preferred step 

frequency, was 5.1% in the steep gradient. In contrast, participants experienced cost 

savings of 8.2% during their metronome-guided lower cost experience in the intermediate 

gradient. This suggests that even the steep gradient may not have allowed participants to 

experience a large enough cost savings. However, we suspect this is not the case 

because in our previous study with the shallow gradient, participants initiated adaptation 

after experiencing cost savings of only 3.5% through similar metronome-guided walking 

(122). This earlier cost savings was smaller than that experienced by our current 

participants in the steep gradient condition suggesting that the currently experienced cost 

savings, at least in the steep gradient condition, were sufficiently large for the nervous 

system to detect.  

A second limitation is that our experimental design resulted in participants 

preferring step frequencies slightly lower than the original preferred step frequencies in all 

gradient conditions (Figure 3.5). We do not interpret these shifts as evidence of the 

initiation of energetic cost optimization in response to new cost landscapes. Our rationale 

is that participants were already walking at a shifted step frequency during the 30 s prior 

to the beginning of each new cost landscape (shallow: -1.02±0.64, intermediate: -

0.25±0.63, steep: -0.62±0.54). Why is step frequency shifted lower than the baseline 

measures both before and during the experience with the new cost landscapes? One 

possible explanation is that we may not have provided a long enough baseline period for 

participants to settle into their preferred step frequency. However, others have found that 

two minutes of walking is sufficient for stride frequency to reach steady state—we provided 

9 minutes (132,133). A second possible explanation for the presence of these shifts may 

be the net backward force that participants experienced both immediately before and 

during the cost landscape, but not during the baseline phase when the net force was zero. 

Our system slowly ramped up the backward force to that which participants would 

experience in the new cost landscapes at their originally preferred step frequency. The 

force was then held constant for 30 s before the controller switched to the new cost 

landscapes, and our step frequency estimate prior to the beginning of the new cost 

landscape is from this constant-force period. However, concerned about the possible role 

of net backward force on step frequency, we performed pilot experiments prior to our 

reported experiments and found no relationship. In support of our pilot results, a recent 
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study also found that backward forces do not have an effect on stride period (80). 

Furthermore, walking uphill, which is biomechanically similar to experiencing a net 

backward force, also results in step frequencies that are not significantly different from 

walking on level (111). Further research will be required to understand why we observed 

this consistent shift in step frequency. 

After metronome-guided experience, our participants did not converge on the 

energy minimal step frequency. To determine the location of the cost minimum, and the 

magnitude of cost savings obtainable at the minimum, we fit a quadratic relationship to the 

costs measured in the intermediate gradient condition during cost mapping. From this 

relationship, we estimate that, on average, participants could have obtained a cost savings 

of 10.8% if they had shifted their step frequency -6.1 normalized units away from their 

originally preferred step frequency. Yet we found that participants only adapted their step 

frequency by -1.4±0.8 to obtain a cost savings of only 4.83±3.61%. This might suggest to 

some that energetic cost savings do not play a role in the adaptation of step frequency in 

the cost landscapes we used. We suspect that this is not the case since participants did 

adapt after experience with a lower energetic cost. A candidate explanation is that the 

nervous system seeks to minimize an objective function that is a combination of energetic 

cost, stability, accuracy and other contributors (76). The minimum of this combined cost 

function may coincide with the final preferred step frequency and not with the energetic 

cost minimum. 

In conclusion, the nervous system does not solely rely on the gradient of energetic 

cost to initiate adaptation in novel situations. As we and others have previously found, 

explicit experience with more optimal movements can assist with the initiation of 

adaptation. A better understanding of the interplay between implicit and explicit experience 

for the nervous system to initiate adaptation when the saliency of cost savings is not 

apparent may help improve rehabilitation for those recovering from injuries, help coaches 

speed up training with new techniques, or aid scientists looking to study adaptation in 

complex novel environments. 
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Chapter 4.  
 
Taking advantage of external mechanical work to 
reduce metabolic cost: the mechanics and 
energetics of split-belt treadmill walking  

4.1. Abstract 

In everyday tasks such as walking and running, we often exploit the work 

performed by external sources to reduce effort. For example, when walking downhill we 

allow the acceleration due to gravity to compensate for the loss of velocity incurred from 

the leading leg’s contact with the ground. Recent research has focused on designing 

assistive devices capable of performing mechanical work to reduce the work performed 

by muscles and improve walking function. The success of these devices relies on the user 

learning to take advantage of this external assistance. Although adaptation is central to 

this process, the study of adaptation is often done using approaches that seem to have 

little in common with the use of external assistance. We show in 16 young, healthy 

participants that a common approach for studying adaptation, split-belt treadmill walking, 

can be understood from a perspective in which people learn to take advantage of 

mechanical work performed by the treadmill. Initially, during split-belt walking, people step 

further forward on the slow belt than the fast belt which we measure as a negative step 

length asymmetry, but this asymmetry is reduced with practice. We demonstrate that 

reductions in asymmetry allow people to extract positive work from the treadmill, reduce 

the positive work performed by the legs, and reduce metabolic cost. We also show that 

walking with positive step length asymmetries, defined by longer steps on the fast belt, 

minimizes metabolic cost, and people choose this pattern after guided experience of a 

wide range of asymmetries. Our results suggest that split-belt adaptation can be 

interpreted as a process by which people learn to take advantage of mechanical work 

performed by an external device to improve economy. 
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4.2. Introduction 

The neuromotor system can learn to take advantage of external energetic 

assistance to produce and sustain motion. In everyday tasks such as walking and running, 

we often exploit the passive dynamics that arise from the interaction between the body 

and gravity to reduce the need for muscle force (4,134). External assistance of our motion 

is restricted to gravity in common tasks such as in downhill walking (70). In more skilled 

tasks such as wave surfing, we learn to harvest the assistance of waves and in wind 

surfing we learn to harvest the assistance of the wind. The ability of the neuromotor system 

to harness energy is critical if we are to take advantage of assistance from devices like 

powered prostheses and exoskeletons. Specifically, exoskeletons for the lower limbs are 

often designed to reduce muscular work, reduce effort, and increase endurance during 

walking (135–137). These devices commonly use powered actuators (118,138–144), 

designed to reduce metabolic cost by performing mechanical work that would otherwise 

need to be generated by muscles. However, the degree to which these assistive devices 

reduce metabolic cost depends not only on the amount of work performed by the device, 

but also on the individual's ability to exploit adaptive learning processes to take advantage 

of the external assistance (120).  

Although learning is key to maximizing the benefits from external assistance, the 

study of locomotor learning is often done in contexts that do not seem to have much in 

common with the study of assistive devices. For example, much of the work on adaptive 

locomotor learning uses a split-belt treadmill paradigm where individuals walk on a 

treadmill with two belts that move at different speeds (145–147). Upon initial exposure to 

walking with the belts moving at different speeds, the distance between the feet at leading 

limb heel-strike—referred to here and in the split-belt literature as step length—becomes 

asymmetric. The step at foot strike on the slow belt becomes longer than the step length 

at foot-strike on the fast belt, because the fast belt pulls the leg into a more extended 

position. This asymmetry in step lengths is gradually reduced over the course of 10 to 15 

minutes (145) and is accompanied by a reduction in positive mechanical work performed 

by the legs (83) and a reduction in metabolic cost (82). By convention, positive mechanical 

work refers to the work performed by a muscle while shortening—when the force applied 

by the muscle and displacement of the object that the force is acting on are in the same 

direction. The gradual reduction in step length asymmetry occurs in parallel with an 
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increase in step time asymmetry (82), while stance times remains asymmetric throughout 

the entire split-belt walking period (145). A potential explanation for these observations is 

that individuals may adapt their gait during split-belt walking to minimize metabolic cost 

(75,82).  

Here we use principles from mechanics and experimental evidence to illustrate 

that, like exoskeletons, split-belt treadmills can provide assistance during walking. As we 

detail in the Theory and Predictions section, gaining assistance in the form of net 

mechanical work on the person from the treadmill is unique to the split-belt treadmill and 

is not possible on a normal “tied-belt” treadmill, or when walking over ground. Walking at 

a constant speed in any of these situations requires that the person generates braking 

and propulsive impulses that are balanced throughout the gait cycle. On a split belt 

treadmill, however, people can choose how to distribute braking and propulsion between 

the two belts to take advantage of the difference in belt speeds. If the forces and work 

generated by the legs are redistributed properly, the work performed by the treadmill on 

the person could be used to reduce the positive work required by the person’s muscles 

and ultimately reduce metabolic cost.  

Split-belt treadmills provide a unique approach to study how to gain advantage of 

external assistance, as individuals could reduce the energetic cost of walking by stepping 

further forward on to the fast belt relative to the slow belt (85,148). As we describe in 

Theory and Predictions, this pattern would generate a larger braking force on the fast belt, 

which would be balanced by more propulsive force applied to the slow belt. Because of 

the difference in belt speeds, this results in net negative work performed by the person on 

the belts, and net positive work performed by the belts on the person. It is not guaranteed 

that the person benefits from this positive treadmill work—they may dissipate it by 

performing additional negative work. But it is also possible that they allow the positive work 

from the belts to assist walking by increasing their mechanical energy, reducing the 

positive mechanical work required from their muscles, and reducing their metabolic cost. 

This can only occur if individuals learn to take advantage of the treadmill work by reducing 

positive muscle work. Selgrade et al. showed that in the traditionally observed adaptation 

to step length symmetry is characterized by an exploitation of positive work from the 

treadmill (85). Here, we show that it is this change of coordination—of placing the leading 

leg further forward on the fast belt relative to the slow belt—that allows individuals to take 
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advantage of the resulting positive work performed by the treadmill and reduce metabolic 

cost. 

4.2.1. Theory and Predictions 

Here we consider three walking conditions: overground walking, walking on side-

by-side treadmills with belts “tied” to move at the same speed, and walking on side-by-

side treadmills with belts “split” to move at different speeds. In overground walking, the 

ground is level and the person walks at a constant average speed relative to the ground. 

In the two treadmill cases, the treadmills are level and the person keeps the same average 

position on the treadmills equating to zero average speed relative to the stationary ground. 

Here, the reference frame is fixed to the ground, yet the arguments hold for other reference 

frames, as long as they are not accelerating and as long as one does not switch between 

reference frames. In the treadmill conditions, we consider three systems: the person, the 

left belt, and the right belt. The left and right belts move at the same speed in the tied-belt 

condition, and at different speeds in the split-belt condition. In the overground walking 

condition, the ground has zero speed resulting in only two systems: the person and the 

ground. In all of the above walking conditions, the following two constraints must be 

fulfilled. 

C1. The sum of the external forces acting on the person must be zero on average. 

Otherwise, there would be net acceleration or net vertical displacement violating 

the requirements of steady-state speed and level walking.  

C2. The net mechanical work on the person must be zero on average. Otherwise, there 

would be a net gain in kinetic or potential energy, again violating the steady-state 

speed and level walking requirements. Importantly, these two constraints taken 

together do not mean that external forces (e.g. treadmill forces) cannot perform 

net mechanical work on the person. Indeed, they could perform net negative or net 

positive work while still summing to zero net system acceleration as long as forces 

internal to the person system (e.g. muscle forces) perform the opposite amount of 

work.  

These constraints affect the three walking conditions in different ways. For 

overground walking, they mean that the work performed by the person must be zero on 
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average. This is because the ground cannot perform work on the person—relative to the 

ground-fixed reference frame, there is no displacement at the ground point of force 

application and thus the person must perform no net work (C2). Performing no net work 

can be accomplished by performing zero work, but more likely it is accomplished with 

equal amounts of positive and negative work. We consider the person as a point mass 

body with legs that are massless pistons that generate forces on the ground (or treadmill 

belts as in Figure 4.1A & B) and equal but opposite forces on the point mass. In this model, 

all the work performed by the person is performed by the legs. In overground walking, the 

legs can perform both positive and negative work as long as they sum to zero.  
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Figure 4.1: Conceptual representation of calculating mechanical work done during 

split-belt walking 
A. We model the person as a point mass body with massless legs that can extend or compress. B. 
Free-body diagram of the person and treadmill systems. Blue represents the leg on the slow belt 
and red represents the leg on the fast belt when the belt velocities are split. Large open arrows 
represent forces, line arrows represent velocities. C. Power generated by the treadmill on the legs. 
We use the individual limbs method to calculate the power generated by the treadmill on each leg 
during a stride (not shown). Dashed arrows represent velocities rotated by 90 degrees to facilitate 
visualization of the power generated by the treadmill. The positive power generated by the treadmill 
on the legs is visualized with open rectangles above the point of force application, and negative 
power with closed rectangles below the point of force application. D. Power generated by the 
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treadmill on the legs. During tied belt walking, the positive power generated by the treadmill on the 
legs is always equal to the negative power generated within a stride, at all step length asymmetries 
(SLA). This is true even though the total power generated during the long step is greater than that 
generated during the short step, at asymmetric step lengths. We can observe this through the 
rectangles shown to the right of each condition, where the sum of the top open rectangles always 
equals the sum of the bottom closed rectangles. However, when walking on split-belt treadmill, we 
see that at positive step length asymmetries (bottom row), the treadmill generates net positive 
power on the legs during the long step that is greater than the net negative power it generates 
during the short step. This leads to a net positive power on the person over the stride. 

The constraints explained above also require the person to perform zero net work 

during tied-belt treadmill walking. Unlike overground walking, the person performs work 

on the belts during treadmill walking when considered from a ground-fixed reference 

frame. At heel contact, for example, the force exerted by the leading leg opposes the belt 

velocity at the point of contact (Figure 4.1B). Since the velocity at the point of force 

application only has a fore-aft component, the power generated by the treadmill on the leg 

is the dot product of the horizontal fore-aft force from the treadmill and the treadmill 

velocity. It is positive when the force and velocity are in the same direction, and negative 

when the two are opposite. At heel contact, this force will perform negative work on the 

belt. The belt does not slow down because its motor simultaneously does an equal amount 

of positive work on the belt. The reaction force of the belt on the person is equal and 

opposite to the force of the person on the belt (Figure 4.1B), but the velocity of the point 

of force application is the same—when a person does negative work on a belt, the belt 

does an equal amount of positive work on the person (Figure 4.1C). 

When the belts are moving at the same speed, as is the case for the tied-belt 

condition, the positive and negative work done by the person on the belts, and that done 

by the belts on the person, both must sum to zero. This is because of the constraint that 

the external forces must sum to be zero on average (C1). Since the belt speeds are equal, 

balancing forces also means balancing the work done by the person on the belts, and by 

the belts on the person. Thus, a person walking on tied belts cannot benefit from net work 

performed by the belts on the person—it will always sum to zero (Figure 4.1D).  

In split-belt walking, the belts can do net work on the person, and the work done 

by the person does not need to sum to zero. The external forces acting on the person 

must still average zero (C1), and the net work on the person must also average zero (C2). 

This zero net work may be accomplished with net positive or negative work by the person 

and net negative or positive work by the treadmills (Figure 4.1D). For example, the 
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person’s leg on the fast belt might provide net propulsive force on the fast belt resulting in 

net positive fast leg work, and then the person’s slow leg might provide an equal amount 

of net braking force on the slow belt to bring the average horizontal force to zero. However, 

because of the differences in belt speeds, this braking force would require the slow leg to 

perform less net negative work on the slow belt than the net positive work that the fast leg 

had to perform on the fast belt for the same magnitude horizontal force. Together, the 

person’s legs would perform net positive work on the belts, and consequently, the belts 

would perform net negative work on the person. Alternatively, if the fast leg was 

responsible for more of the braking, and the slow leg for more of the propulsion, the person 

would perform net negative work and the person would gain net positive work from the 

treadmill belts. This hypothesis is supported by observations by Selgrade et al. that the 

center of mass has a net backward displacement during the fast step over the course of 

split-belt walking where participants adapt to step length symmetry by placing the leading 

leg further forward on the fast belt (85). 

Based on these predictions and observations, a split-belt treadmill can be viewed 

as an assistive device—similar to an exoskeleton—where the person has to learn how to 

coordinate their legs to maximize the assistance from the motors and reduce the positive 

work generated. Positive muscle mechanical work is metabolically expensive relative to 

negative muscle mechanical work requiring roughly five times the ATP per Joule 

(149,150). To decrease the relatively expensive positive mechanical work, a person 

should decrease the propulsive forces generated by the fast leg on the fast belt by lifting 

off the fast belt with less hip extension, and instead rely on the slow leg to perform more 

propulsion for less positive work by lifting off at a larger hip extension angle and contacting 

at a smaller angle during heel strike. This effect will shorten the distance between the feet 

at slow-leg heel-strike (slow step length: SLSlow ) and lengthen the distance between the 

feet at fast-leg heel-strike (fast step length SLFast).  If we consider step length asymmetry 

as a measure of the difference between the fast step length and the slow step length, this 

change in coordination will shift asymmetry to more positive values.  

To summarize, we predict that as an individual adopts a more positive step length 

asymmetry, the split-belt treadmill will perform more positive work on the person, reducing 

the positive work required by their muscles. Because of the relative expense of positive 

work, we also predict a reduction in the metabolic cost of walking as step length 

asymmetry becomes more positive, consistent with the findings from previous adaptation 



68 

experiments (82). However, we do not attempt to predict the metabolically optimal step 

length asymmetry as positive muscle mechanical work is only one contributor to metabolic 

cost, and it is not clear how other contributors, such as the cost of step timing (151), the 

cost to swing the legs (152), or the cost of maintaining an upright posture (44), change 

with step length asymmetry. 

 

4.3. Materials and Methods 

4.3.1. Experimental Protocol 

Sixteen healthy participants (7 female, 9 male, age 27 +/- 3.5 years) completed 

our study. All experimental procedures were approved by the University of Southern 

California Institutional Review Board and each participant provided written informed 

consent before testing began. All aspects of the study conformed to the principles 

described in the Declaration of Helsinki.  

We used a biofeedback-based protocol to map the relationship between 

mechanical work, metabolic cost, and step length asymmetry during split-belt walking 

(Figure 4.2B). Participants first walked on an instrumented split-belt treadmill (Fully 

Instrumented Treadmill, Bertec Corporation, OH) with both belts at 1.0 m/s while we 

measured their baseline step lengths and metabolic cost. In the next trial, we introduced 

the visual feedback and participants walked with both belts at 1.0 m/s, while matching their 

step lengths to the visual targets (see below). For the next seven trials, we set the belt 

speeds to a 3:1 ratio, with the left belt at 1.5 m/s and the right belt at 0.5 m/s. Participants 

performed the split-belt trials with visual feedback providing target step length 

asymmetries of 0.00, +/- 0.05, +/- 0.10 and +/-0.15 (see below). These asymmetries were 

relative to each participant’s baseline and we presented these trials in random order. To 

determine whether mechanical work or energetic cost increased at extreme positive 

asymmetries, two participants performed two additional trials at asymmetries of +0.20 and 

+0.25. Each of these trials was six minutes in duration. 
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Figure 4.2: Experimental protocol and setup 
A) Detailed experimental protocol. We randomized the order of the split-belt trials during which 
feedback of step lengths was provided to obtain seven different levels of asymmetry. Two 
participants performed two additional trials for levels of 0.20 and 0.25 step length asymmetry. All 
participants performed the split-belt adaptation trial last. The adaptation trial was performed freely 
for 10 minutes, with no feedback of step length and no instructions; all other trials lasted six minutes 
with four-minute breaks in between. B) Experimental setup. Reflective markers were placed 
bilaterally on the lateral malleoli to measure step lengths in real time. Two additional markers were 
placed on left and right greater trochanters to measure hip width for the visual feedback. An 
overhead harness was used to prevent falls without providing body weight support. No handrail 
was provided. Metabolic cost was measured using expired gas analyses. C) Raw values of step 
length asymmetry for all walking trials for a representative participant. Average step length 
asymmetry was binned every 10s to illustrate performance in the time domain. D) Raw net 
metabolic power values measured for each walking trial for the participant in panel C. All values 
were baseline corrected to standing baseline. Data were averaged every three breaths for 
metabolic cost to reduce the number of data points for visualization purposes. The last three steady 
state minutes of the metabolic cost data in each trial were used for analyses. 

After the visual feedback trials, participants completed a 10-minute split-belt 

adaptation trial with no visual feedback of their step lengths and no explicit instructions of 

the step lengths they should maintain. The purpose of the final trial was to test whether 
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participants would converge towards the metabolically or mechanically optimal level of 

asymmetry observed during the previous split-belt trials. During all walking trials, 

participants wore a harness designed to prevent falls while providing no body weight 

support. Participants did not hold on to handrails during any portion of the trials. After each 

walking trial, participants sat down and rested for at least four minutes, and we visually 

inspected measured metabolic cost to ensure that it had returned to resting levels before 

beginning the next trial. 

For all feedback conditions, participants relied on a monitor located at eye-level in 

front of the treadmill to target the desired step length targets. We measured the position 

of ankle markers placed bilaterally on the lateral malleoli at 100 Hz using an 11 camera 

Qualisys Oqus camera system (QTM, Sweden) and the visual display was controlled by 

custom software written in Vizard (Worldviz, Santa Barbara, CA). A fourth-order low-pass 

digital Butterworth filter smoothed marker data using a cut-off frequency of 10 Hz. We 

defined peak fore-aft position of the filtered ankle marker trajectories as heel-strike, and 

step length as the distance between right and left ankle markers at this instance. The 

monitor displayed the ankle position for the intervals where the ground reaction forces 

were less than 20N (153), which corresponded to swing phase. At foot-strike, defined as 

the point when the ground reaction force exceeded 20N, the ankle marker disappeared 

from the visual feedback. We instructed participants to step such that the location of the 

ankle marker at heel-strike would match the top a vertical bar in the visual display (Figure 

4.2B). Participants targeted the left bar for the left leg and the right bar for the right leg. 

We constrained the sum of the step lengths to be equal to the baseline stride length 

(Equation 1), therefore participants adjusted the individual step lengths while maintaining 

stride length equal to that measured during the baseline trial. Note that the baseline speed 

was 1.0 m/s, which is the average of the individual belt speeds during the split-belt 

condition:  

𝑆𝐿4-*% +	𝑆𝐿*.)/ = 𝑆𝑡𝑟𝑖𝑑𝑒5-*$.01$ 	 (4.1) 

We constrained the desired stride length so that the desired step lengths would be 

fixed for a given level of step length asymmetry. To reinforce performance, the display 

provided participants with a score for each step at heel-strike, according to the following 

equation, rounded to the nearest integer:  
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𝑆𝑐𝑜𝑟𝑒 = 10 − 20 ∗ 𝑎𝑏𝑠 41 −
𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ

𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ<
	 (4.2) 

Participants only received a score if their step lengths were within eight standard 

deviations from the target. For example, for a representative participant, the average step 

length measured on the baseline trial was 560mm, thus, the achieved step length must be 

within 14 mm of the target to obtain a score of 10 on each side. For this same participant, 

the standard deviation was 17mm. If the step length was off-target by more than 136 mm, 

the participant did not receive a score. We verbally encouraged participants to obtain the 

maximum score of 10 points for all steps. Participants were successful at maintaining 

scores of above 8 points for each stride and maintaining each leg on its corresponding 

belt.  

The target step lengths were selected to correspond to different levels of step 

length asymmetry which, per convention (82,148), was defined as follows:  

𝑆𝑡𝑒𝑝	𝐿𝑒𝑛𝑔𝑡ℎ	𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 	
𝑆𝐿4-*% − 𝑆𝐿*.)/
𝑆𝐿4-*% + 𝑆𝐿*.)/

	 (4.3) 

Here SLfast is the step length at the instant the leading leg heel-strikes on the fast 

belt, and SLslow is the step length at the instant the leading leg heel-strikes on the slow 

belt. Negative values correspond to longer steps with the slow (right) leg and positive 

values correspond to longer steps with the fast (left) leg. We used the last 100 strides of 

each trial to obtain the average step length asymmetry. Participants’ baseline step length 

asymmetry ranged from -0.039 to 0.032, with a mean and standard deviation of 0.007 and 

0.018. 

There may be more direct methods to change leg coordination to gain positive 

work from the treadmill than manipulating step length asymmetry. We choose to use step 

length asymmetry for two reasons. First, prior research has shown that during split-belt 

walking, people increase fast step lengths by stepping further forward on the fast belt and 

decrease slow step length by lifting the trailing fast leg sooner, both during adaptation and 

when increasingly more positive asymmetries are enforced with visual feedback 

(145,148,154,155). Second, the literature on adapting to split-belts is primarily focused on 

considering adaptation as a process that minimizes step length asymmetry error (155,156) 

and keeping our manipulation in terms of step length asymmetry helps make clear that 
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there are alternative explanations for why the neuromotor system may adapt to reduce 

negative step length asymmetries. We anticipate that stepping further forward on the fast 

belt will lead to more braking force by the fast leg around heel-strike, and thus more 

positive work on the person by the belt. We also anticipate that short steps with the slow 

leg will be associated with reduced propulsive force generated by the fast leg around toe-

off, and thus less positive work generated by that leg. In addition, longer steps with the 

fast belt will also lead the slow leg to lift off at a greater hip angle, generating increased 

propulsion. 

4.3.2. Analysis 

We assessed metabolic cost by determining the rates of oxygen consumption (VO2) 

and carbon dioxide production (VCO2) using a TrueOne® 2400 system (Parvomedics, UT). 

The metabolic cart recorded data on a breath-by-breath basis and subsequently, we re-

sampled these data at a frequency of 0.1 Hz and averaged for smoothing in 10s bins. 

Since it takes approximately three minutes for oxygen consumption and carbon dioxide 

production by the body to reach steady-state in a task, we first identified the time point 

closest to the third minute of the trial (75) . We then measured the total VO2 consumed and 

the VCO2 produced from that time point onwards until the end of the trial, where the cost 

was at a steady state and when participants had already achieved a steady performance 

of the task. We then estimated the energy consumed during the last three minutes using 

the standard Brockway equation (109) as follows:  

𝐸#$%,'()** = 416.48
𝐽

𝑚𝑙	𝑂+
𝑉!! ⋅ 1000< + 44.48

𝐽
𝑚𝑙	𝐶𝑂+

	𝑉"!! ⋅ 1000< (4.4) 

From here, we dived Emet,gross by the exact duration (T) over which it was calculated 

to obtain an estimate of the gross metabolic rate Pmet,gross measured in Watts. Finally, we 

subtracted each participants’ standing metabolic rate from each walking trial. Thus, all 

metabolic rate values presented here are net metabolic rate. The addition of visual 

feedback during the second baseline trial increased metabolic rate by 11 +/- 11% 

compared to the cost of walking without feedback (p<0.001) despite there being no 

changes in step length asymmetry (p=0.359). We expect this added cost to remain 

constant for all trials that required visual feedback.  
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We estimated the mechanical work performed by the legs using an extension of 

the individual limbs method (83,157). This method approximates the legs as massless 

pistons and the entire body as a point mass acting at the center of mass (Figure 4.1A). 

We use a reference frame attached to the stationary ground—the belt speeds and center 

of mass velocity are relative to this reference frame. We measured individual leg ground 

reaction forces from the instrumented treadmill at 1,000 Hz and filtered this signal with 20 

Hz cut-off low-pass zero-lag digital Butterworth filter. We segmented the ground reaction 

forces into strides using a vertical ground reaction force threshold of 32N (83) to identify 

the beginning and end of each stride and performed the following analysis on a stride-by-

stride basis.  

We calculated the medio-lateral, fore-aft and vertical center of mass velocities by 

first calculating the center of mass accelerations as the sum of the forces acting on the 

body normalized for body mass (83,157). We estimated body mass as the average vertical 

force during the final 100 strides of the trial, divided by the acceleration due to gravity (9.81 

m/s2). We calculated center of mass velocities from the time integral of the center of mass 

accelerations. We determined the integration constants by requiring the average center of 

mass velocity over a stride to be zero in each direction because net movement in any 

direction must on average be small on a treadmill.  

The total mechanical power generated by each leg is composed of power 

generated by the leg on the body and the power generated by the leg on the treadmill’s 

belts. We define the mechanical power generated on the body by a leg as the dot product 

of the ground reaction force from that leg and the center of mass velocity. Similarly, we 

define the mechanical power generated by a leg on a belt as the dot product of the force 

generated by the leg on the belt, which is equal and opposite to the ground reaction force 

measured by the treadmill, and the velocity of the corresponding belt. The medio-lateral 

and vertical components of belt velocity are zero, and the fore-aft component is either -

0.5 m/s (slow belt), -1.5 m/s (fast belt), or -1.0 m/s (tied belts). For each leg, we then 

calculated the instantaneous sum of the two powers to obtain the total instantaneous 

mechanical power generated by that leg (Figure 4.1B). We calculate the instantaneous 

power generated by the slow and fast belts on the body as the dot product of the ground 

reaction force measured from that belt with that belt’s velocity. 
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To determine the total positive and negative work performed by a leg or a belt, we 

calculated the time integral of the positive or negative portion of its instantaneous power 

over the stride cycle (110). The net work performed by a leg or a belt is the time integral 

of the full instantaneous power over the stride cycle. We express all measures of work as 

work rates by dividing each measure by stride duration. As with step length asymmetry, 

measures of work rate for each trial are the average values over the last 100 strides.  

We converted the metabolic rate and mechanical work rate to dimensionless units 

to reduce variability between subjects. We divided each individual’s values by ml0.5g1.5 

here m is their body mass, l is their leg length and g is gravity (9.81 m/s^2). Thus, using 

the average body mass (75.4 kg) and average leg length (0.88 m) of our participants, all 

reported dimensionless values can be approximately redimensionalized to the average 

values in Watts by multiplying by 2.17 x 103. 

4.3.3. Statistical Analyses 

A participant’s mechanical work and metabolic cost depend not only on the 

conditions that we control but also on differences between individuals. Our purpose here 

is to test predictions about the former—we do not, for example, seek to explain the 

differences in metabolic cost between individuals for a given condition. Consequently, we 

used mixed-effect regression models that allowed individualized intercepts but shared a 

fixed dependence on the independent variables of interest These models captured the 

relationship between 1) measure of foot placement and step length asymmetry, 2) 

measures of mechanical work and step length asymmetry, 3) measures of mechanical 

work performed by the legs and the mechanical work performed by the treadmill, 4) 

metabolic power and mechanical work performed by the treadmill, and 5) metabolic power 

and step length asymmetry. Although the target levels of step length asymmetry were set 

at discrete values (0.00, +/-0.05, +/-0.10, +/-0.15), the actual step length asymmetry used 

in our regression models was a continuous variable since each participant’s actual 

performance differed from the target asymmetry. All models included a random intercept 

for each participant to account for unknown, subject-specific effects. We used a modified 

version of the marginal R2 for linear mixed effect models (158) to compute the variance 

explained by the fixed components of our linear models. We computed R2 as the ratio of 

the variance computed from the fixed effects and the sum of the variance from both the 

fixed effects and residuals from the regression model. We used this approach in lieu of 
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the conditional R2, which accounts for the variance explained by both the fixed and random 

effects, because we were only interested in quantifying the explanatory value of the fixed 

effects. To make our figures consistent with our statistical analysis approach, we removed 

the individualized intercepts from each participant’s data before generating each 

scatterplot. Lastly, we determined if participants plateaued at a step length asymmetry 

that differed from baseline during the adaptation period using a paired-samples t-test. We 

conducted all statistical analyses in Matlab R2017a (Mathworks, Natick, MA) and set 

statistical significance level to p < 0.05.  

 

4.4. Results 

4.4.1. Modulation of Foot Position to Achieve Target Step Length 
Asymmetry 

Participants modified the position of both the leading limb and the trailing limb at 

initial contact of the leading limb as they varied step length asymmetry throughout the 

experiment (Figure 4.3). As step length asymmetry became more positive, participants 

increased the length of their steps when stepping on the fast belt and decreased the length 

of their steps when stepping on the slow belt. To take longer steps on the fast belt, 

participants placed their leading foot farther forward on the fast belt (β = 243.4, 95% CI 

[212.2, 274.6], p=2.22e-29) and extended their trailing foot farther behind the body on the 

slow belt (β = -356.1, 95% CI [-385.1, -327.1], p=4.43e-46). To take shorter steps on the 

slow belt, participants placed the leading leg closer to the body (β = -348.5, 95% CI [-

385.3, -311.6], p=5.00e-36) but only made minor reductions in trailing limb extension on 

the fast belt (β = 85.4, 95% CI [56.5, 114.3], p=5.17e-8). 
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Figure 4.3: Distance from the leading and trailing foot to the center of mass at heel 

strike 
The x-axes show the achieved step length asymmetry for all participants. Positive values indicate 
that the foot is anterior to the center of mass while negative values indicate that the foot is posterior 
to the center of mass. Closed and open points correspond to the fast and slow limb, respectively. 
The distance between the leading and trailing feet at heel strike constitutes the step length. A) Fast 
step lengths. To increase the fast step length as asymmetry increased from negative to positive, 
participants increased both leading foot distance to the center of mass and trailing foot distance to 
the center of mass. B) Slow step lengths. To decrease the slow step length as asymmetry increased 
from negative to positive, participants primarily decreased the distance from the leading foot to the 
center of mass while maintaining a relatively consistent trailing foot position. 

4.4.2. Mechanical Work Performed by the Legs and the Treadmill 
Varies with Step Length Asymmetry 

Consistent with our hypothesis, participants transitioned from performing net 

positive work with the legs at negative step length asymmetries to performing net negative 

work at positive asymmetries. This change in work performed by the limbs can be 

appreciated by understanding how the mechanical power generated by each limb changes 

across levels of asymmetry. The fast leg transitioned from generating a large amount of 

positive power during push-off at -15% asymmetry to performing a large amount of 

negative work during weight acceptance at an asymmetry of +15% (Figure 4.4A). In 
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contrast, there were negligible changes in mechanical power in the slow leg across levels 

of asymmetry (Figure 4.4B). Overall, the amount of positive work performed by the legs 

decreased by ~13% between -15% and +15% step length asymmetry (Figure 4.5A, β = -

0.009, 95% CI [-0.013, -0.006], p=3.52e-7). In contrast, the amount of negative work 

performed by the legs increased by ~33% over the full range of step length asymmetries 

(Figure 4.5B, β = -0.019, 95% CI [-0.0220, -0.0151], p=7.59e-19). As a result of these 

combined changes, the legs ultimately performed more negative work than positive work 

at positive asymmetries (Figure 4.5C, β = -0.028, 95% CI [-0.029, -0.027], p=1.66e-67).  

 
Figure 4.4: Mechanical power generated by the legs 
Mechanical power generated by the A) fast leg, B) slow leg, C) fast belt, and D) slow belt throughout 
the stride cycle. The power generated by the treadmill belts represents the rate of mechanical work 
performed by each belt on the body. During the early portion of the stride cycle (~0-15%), the 
leading, fast leg generated a large peak negative peak in power while the trailing, slow leg 
generated a relatively smaller positive peak. This relationship reversed during the later portion of 
the stride cycle (~40-70% of the gait cycle) such that the fast leg generated a burst of positive 
power while the slow leg generated a smaller burst of negative power. Each trace is an average of 
all participants (n = 16). The stride cycle begins and ends at foot-strike of the fast limb. Blue, yellow, 
and red traces correspond to split-belt walking at step length asymmetries of -15%, 0%, and +15%, 
respectively. 

We predicted that the treadmill would act as an assistive device at positive step 

length asymmetries by performing net positive work on the body, and our observations 

were consistent with this prediction (Figure 4.4C). As asymmetry became more positive, 

there was a ~28% increase in the amount of positive work performed by the belts on the 

body (Figure 4.5D, β =0.016, 95% CI [0.014, 0.018], p=1.64e-29) and a ~15% decrease 



78 

in the amount of negative work performed by the belts on the body (Figure 4.5E, β =0.011, 

95% CI [0.010, 0.013], p=1.58e-23). Together, these changes resulted in a shift from the 

treadmill performing mostly negative work on the body and extracting energy from the 

person at negative asymmetries to performing mostly positive work on the body and 

adding energy to the person at positive asymmetries (Figure 4.5F, β =0.028, 95% CI 

[0.026, 0.029], p=4.76e-67).  

 
Figure 4.5: Average rate of work performed by the legs and the treadmill belts as a 

function of step length asymmetry 
A) Positive work performed by the legs, B) negative work performed by the legs, and C) total work 
performed by the legs. D) Positive work performed on the body by the treadmill, E) negative work 
performed on the body by the treadmill, and F) total work performed by the treadmill on the body. 
Work rate is expressed in dimensionless units on the left y-axis and in Watts on the right y-axis. 
Each data point represents a single trial for an individual participant and each color represents a 
different participant. 

The legs' shift toward performing net negative work at positive step length 

asymmetries was primarily driven by changes in the fast leg. Across participants, we 

observed both a ~30 % reduction in positive work (Figure 4.6A, β =0.010, 95% CI [-0.012, 

0.008], p=7.34e-17) and a ~36% increase in negative work performed by the fast leg 

(Figure 4.6C, β = -0.012, 95% CI [-0.014, -0.009], p=7.63e-14) at increasingly positive 

asymmetries. In contrast, there were no changes in positive work performed by the leg on 
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the slow belt (Figure 4.6B, p=0.53), but there was a ~21% increase in negative work by 

the slow leg at positive asymmetries (Figure 4.6D, β = -0.007, 95% CI [-0.010, -0.004], 

p=4e-5).  

As the treadmill performed increasingly more positive work on the body, there was 

a proportional reduction in positive work performed by the legs (Figure 4.7, β = -0.33, 95% 

CI [-0.43, -0.23], p=2.8e-9). The slope of this relationship suggests that participants 

exploited the work performed by the treadmill belts with an effectiveness of approximately 

33%. That is, for every 3 Joules of positive work performed by the belts on the person, the 

person reduced the positive work performed by the legs by about 1 Joule.  

 
Figure 4.6: Average rate of work performed by the individual legs across levels of 

step length asymmetry 
A) Positive work performed by the fast leg, B) positive work performed by the slow leg, C) negative 
work performed by the fast leg, and D) negative work performed by the slow leg. Work rate is 
expressed in dimensionless units on the left y-axis and in Watts on the right y-axis. Each data point 
represents a single trial for an individual participant and each color represents a different 
participant. 
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Figure 4.7: Relationship between the average rate of positive work performed by 

the legs and the average rate of work performed by the treadmill on the 
body 

Work rate is expressed in dimensionless units on the lower x-axis and the left y-axis and in Watts 
on the upper x-axis and right y-axis. Each data point represents a single trial for an individual 
participant and each color represents a different participant. 

4.4.3. Assistance Provided by the Treadmill Led to a Reduction in 
Metabolic Cost 

The assistance provided by the treadmill at positive step length asymmetries was 

not only associated with a reduction in positive work performed by the legs but was also 

associated with a reduction in metabolic cost (Figure 4.8A, β = -1.54, 95% CI [-2.07, -

1.02], p=5.34e-8). Since the assistance provided by the treadmill was associated with a 

reduction in positive work performed by the legs, we also found that metabolic power was 

strongly correlated with the total positive work performed by the legs (Figure 4.8B, β = 

0.105, 95% CI [0.091, -0.119], p=1.89e-27). The slope of this relationship suggests that 

positive work was performed at an efficiency of about 10%. Overall, by exploiting the 

assistance provided by the treadmills, participants achieved an approximately 14% 
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reduction (8 to 18% reduction, 95% CI) in metabolic cost relative to the most costly level 

of step length asymmetry (Figure 4.8C).  

 
Figure 4.8: Metabolic power, mechanical work, and asymmetry 
A) Metabolic power as a function of the rate of work performed by the treadmill on the body. B) 
Positive work rate versus metabolic power. C) Metabolic power as a function of step length 
asymmetry. Each data point represents a single trial for an individual participant. 

4.4.4. The Ability to Use Step Length Asymmetry to Exploit 
Assistance Provided by the Treadmill is Bounded 

Although the increase in positive work performed by the treadmill led to a reduction 

in metabolic cost, we also wanted to determine if this ability to exploit the work performed 

by the treadmill increased indefinitely or whether there was a specific level of asymmetry 

that minimized metabolic cost. Our results supported the existence of an energetically 

optimal level of step length asymmetry as a regression model including both linear and 

quadratic terms explained the relationship between metabolic cost and step length 

asymmetry better than a simple linear model (LRStat = 4.83, p=0.028, adjusted R2 = 0.27, 

Figure 4.8C). Bootstrap analyses indicated that the asymmetry that minimized metabolic 

cost had a 95% confidence interval of 0.06 and 0.38, which is consistent with our prediction 

that positive asymmetries minimize energetic cost.  

Although metabolic cost generally decreased with increasingly positive 

asymmetries as is predicted in our model, experimentally we expected that metabolic cost 

would increase again at large positive asymmetries given biomechanical constraints 

associated with walking with extreme positive asymmetries. We confirmed this finding in 

two participants, who each completed two additional trials where they walked at target 

levels of 0.20 and 0.25 step length asymmetry. The metabolic cost for three out of four of 

these trials was 0.027 ± 0.022 greater than the minimum cost predicted from the 
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regression fit. These increases in metabolic cost at extreme positive asymmetries support 

the quadratic relationship that we determined in our analysis. 

4.4.5. Participants Chose Positive Step Length Asymmetries When 
Allowed to Freely Adapt 

Lastly, we found that participants chose to walk at a level of step length asymmetry 

near that which minimized metabolic cost when they were allowed to freely select their 

walking pattern. After experiencing a range of asymmetries during the cost mapping trials, 

participants tended to plateau at step length asymmetries that were more positive than 

their natural baseline asymmetry (Figure 4.9, mean: 0.028, 95% CI [0.0018, 0.0434], 

p=0.010) though they had shorter stride lengths during adaptation (95% CI [929 mm, 999 

mm]) than they did when walking at similar levels of asymmetry during the split-belt trials 

with visual feedback (95% CI [47, 93] mm shorter strides during adaptation, p= 1.03e-05). 

This positive step length asymmetry markedly differs from the behavior typically observed 

within a single session of adaptation where participants most often plateau at slightly 

negative asymmetries (115). In addition, there was no significant difference between the 

metabolic cost measured at the end of the adaptation trial (0.086, 95% CI [0.074, 0.10]) 

and the minimum predicted from the regression fit (0.096, p=0.12). 

 
Figure 4.9: Adaptation of step length asymmetry during the adaptation trial in the 

absence of visual feedback 
Participants consistently selected positive asymmetries near those which minimized metabolic cost 
during the cost mapping trials. The dark blue line represents the average asymmetry as a function 
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of stride number when averaged across all participants and the light blue area represents the 
standard deviation about this average. The final error represents the average ± standard deviation 
level of asymmetry at the end of the split-belt adaptation trial. The step length asymmetry achieved 
during the last 50 strides was significantly different from their baseline step length asymmetry 
(p=0.010). 

 

4.5. Discussion 

Learning to gain assistance from external sources is a general problem for the 

neuromotor system. We explored this problem using a split-belt treadmill paradigm to 

determine whether people learn to harness energy from the differences in belt speeds to 

reduce the metabolic cost of walking. People exploited the assistance provided by the 

treadmill by changing their step lengths such that the treadmill performed net positive work 

on the body, thereby allowing the legs to perform net negative work. This shift toward 

performance of negative work by the legs was associated with a reduction in metabolic 

cost which likely reflects the energetic benefits of negative work (159). Therefore, the 

reductions in asymmetry commonly observed during split-belt walking can be interpreted 

as a strategy generated by the neuromotor system to take advantage of the work 

performed by the treadmill to reduce energetic cost (82,148).  

Similar to using a powered exoskeleton, individuals can learn to coordinate their 

movement to maximize the assistance from the treadmill’s motors. We find that individuals 

use the assistance from the split-belt treadmill with an effectiveness of 33%, i.e. they 

reduce their positive work by 1 J for every 3 J of positive work done by the treadmill. While 

this is not a commonly reported metric in exoskeleton use, Sawicki and Ferris (142) used 

a similar metric to show that their ankle exoskeletons reduced joint mechanical power by 

41% relative to the mechanical power provided by their ankle exoskeleton—similar to our 

results. We focus on this metric because while the maximum effectiveness possible in 

powered exoskeletons may be system-dependant and hard to quantify, we can provide a 

reasoned estimate of the maximum possible effectiveness for split-belt treadmill walking. 

When the treadmill does positive work on the person, it applies a negative force on the 

person that has to be cancelled out by an equal positive propulsive force applied by the 

trailing leg on the treadmill. In applying this propulsive force, the trailing leg has to perform 

positive work on the treadmill. In fact, the minimum amount of positive work necessary 

depends on the ratio of the belt speeds. In our experiment, the fast belt moved three times 
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faster than the slow belt. Since work is the time integral of the dot product of force and 

velocity, this means that the trailing leg on the slow belt has to at least perform positive 

work that is roughly one third of the negative work performed by the leading leg on the fast 

belt. This means that the participants in our study could have at most achieved an 

effectiveness of ~67%. We only include the fast step in this calculation because any 

braking force on the slow belt, only further decreases this value.  

It is possible that individuals cannot, in practice, exploit the positive work from the 

treadmill to the degree we have suggested here. One strategy to improve effectiveness in 

split-belt walking is for individuals to use more positive step length asymmetries. However, 

the extreme positive asymmetries needed to maximize the positive work performed by the 

treadmill likely challenge anatomical constraints. In addition, even at less extreme positive 

asymmetries, an individual might choose to perform more positive work, and consequently 

also negative work, than necessary simply to feel safe in the new gait (70). We suspect 

that with practice and appropriate guidance, the effectiveness observed in our study can 

be improved from that observed here. This is one of the goals of our future research. 

The reduction in positive mechanical work we observed was accompanied by a 

reduction in metabolic cost of 14%. This reduction is comparable to that observed in 

powered lower-limb exoskeletons that can currently achieve reductions up to 17% (160). 

Both effectiveness and energetic benefits incurred as a result of learning to walk in lower-

limb exoskeletons are similar to that observed in split-belt walking. As described earlier, 

we suspect that people can be taught to improve their effectiveness and maximize 

energetic benefits in split-belt walking and when using powered exoskeletons. Because 

split-belt treadmills are becoming more common in biomechanics labs, split-belt walking 

could become a model experimental paradigm to understand how the human neuromotor 

system learns to walk in environments where it is possible to take advantage of external 

assistance. 

Traditionally, studies of split-belt adaptation have shown that after 10-20 minutes 

of adaptation, individuals converge to step length asymmetries near zero (82,145). This 

adaptation toward a step length asymmetry of zero is consistent with the hypothesis that 

step length asymmetry is treated as an error by the nervous system. In this hypothesis, 

the difference between expected and achieved sensory feedback during movement, 

known as sensory prediction error, drives motor adaptation (102,156,161). Reductions in 
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step length asymmetry are also consistent with the hypothesis that individuals converge 

towards habitual behaviors when exposed to novel environments (162,163). Based on this 

hypothesis, people adopt steps of equal length because this is the habitual pattern they 

use regularly. One challenge to both of these notions is that people adopt asymmetric step 

times in order to take steps of equal length (164) and thus, it is not immediately apparent 

why the nervous system would choose to reduce errors in step length but not in time. In 

addition, these asymmetries in step time could lead to sensory prediction errors and are 

non-habitual behaviors in the time domain. Further evidence that adaptation is not purely 

driven by sensory prediction errors related to step length asymmetry was provided by a 

recent study showing that sensory recalibration and motor recalibration have different 

timescales (115). In this study, the authors postulated that if we recalibrate motor 

commands in response to sensory prediction errors, then error perception is also updated 

(18). Therefore, if the same neural processes drive motor and perceptual recalibration 

during locomotor adaptation, they would change over a similar timescale. However, the 

authors found that motor and perceptual adaptation to differences in belt speeds occurred 

over different timescales and are likely independent of each other. The authors also found 

that after multiple days of adaptation, individuals plateau at positive step length 

asymmetries. These results, together with our findings that individuals adopt positive 

asymmetries after being exposed to the cost landscape, refute the idea that split-belt 

adaptation is explained by the nervous system's desire to minimize perceived errors in 

step length asymmetry or converge towards habitual behaviors. Instead, energy 

optimization explains both why people reduce step length asymmetry during single 

sessions of split-belt adaptation and why they adopt positive asymmetries when provided 

with more extensive experience. 

A logical follow-up question is, if energetic optimization is the goal of split-belt 

adaptation, why are positive asymmetries that minimize mechanical work and metabolic 

cost not observed during adaptation? One potential explanation is that the energetic 

savings for positive asymmetries are minor compared to the cost of symmetry, and this 

might impede the optimization process. Given that the confidence interval for the step 

length asymmetry associated with the lowest metabolic cost ranged from 6 to 38%, the 

energetic gradient might be too shallow for people to obtain meaningful energetic 

reductions from walking with positive asymmetries. In fact, our results show that the 

optimal step length asymmetry reduced metabolic cost by only 2% compared to symmetry. 
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Despite these small savings, after exposure to the step length asymmetry landscape, 

participants in our study plateaued at positive asymmetries during adaptation. This 

suggests that people may be willing to adjust how they walk for savings of less than 5% 

as reported in previous work (75).  

Alternatively, positive asymmetries may not have been observed during typical 

locomotor adaptation studies because energetic optimization occurs over a timescale that 

is longer than that commonly used in adaptation studies (44,165). To date, most locomotor 

adaptation studies have been performed using single session paradigms of 10 to 20 

minutes in duration (82,145). Thus, short, single bout studies may not provide enough time 

or experience for individuals to fine tune their steps lengths to achieve the more 

energetically optimal positive asymmetries. Consistent with the interpretation that energy 

optimization occurs over a longer timescale, people tend to reach positive asymmetries 

when allowed to adapt to a split-belt treadmill over multiple days (115). Surprisingly, the 

visual feedback in our experiment, which exposed participants to positive asymmetries, 

accelerated the convergence towards positive asymmetries in a single session to that 

which occurs during multi-day adaptation. The longer timescale for energetic optimization 

is further supported by work in the upper extremity, which shows that improvements in 

task performance and fine tuning of upper extremity muscle activation, occurred over a 

faster timescale than energy minimization (44,165). Overall, we conclude that the 

symmetric steps commonly observed at the conclusion of previous split-belt adaptation 

studies and the associated reductions in energetic cost (82,83), may be only a partial 

picture of a slower energetic optimization process that plateaus at positive asymmetries. 

One of the features of our study is that we constrained stride lengths to those 

measured during baseline with the belts tied at 1.0 m/s. Given this constraint, the 

metabolic optima that we found in this study is a local minimum for that specific stride 

length and may not be a global minimum. We imposed this constraint as it would not be 

practical to characterize the metabolic cost landscape across both the dimensions of step 

length asymmetry and stride length. Moreover, post-hoc analysis of data from a previous 

adaptation study (148) showed that there was no change in stride length during split-belt 

adaptation compared to baseline walking (p=0.389). Our constraint on stride length is 

particularly relevant given the results of the adaptation trial in the current study, where 

15/16 participants adapted to the split-belt treadmill using shorter stride lengths. Whether 
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optimization of stride length can further reduce positive work and metabolic cost during 

locomotor adaptation remains to be seen. 

In conclusion, the process by which people adapt to walking on a split-belt treadmill 

is just one example of a broad class of tasks in which the neuromotor system learns to 

exploit external assistance to improve economy. A common feature of these types of tasks 

is that the process of optimizing the use of assistance may proceed quite gradually in the 

absence of guided experience. Ultimately, understanding how best to guide people 

through a range of experiences capable of accelerating the learning and optimization 

process has important implications for maximizing the utility of assistive devices such as 

exoskeletons and prostheses.  
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Chapter 5.  
 
Energetic trade-off between step-to-step transition 
and limb swing costs explain preferred split belt 
walking gaits  

5.1. Abstract 

Split-belt treadmill walking is widely used to understand human gait adaptation. 

While the adaptation process is traditionally described as the minimization of a 

sensorimotor prediction error, there is growing evidence that the adaptation is also 

associated with a reduction in metabolic energetic cost. On a split-belt treadmill, 

participants can harness energy from the belt speed difference by placing their leading leg 

ahead on the fast belt, reducing their energetic cost of walking. However, this mechanism 

predicts that the further ahead the leg placement, the cheaper walking becomes. Contrary 

to this, the energy minimum in humans occurs at slightly positive asymmetries. Here, we 

used a computer model to test the hypothesis that this optimality arises due to a trade-off 

between the step-to-step transition cost and swing cost. We developed an 

anthropomorphic dynamic walking model that can walk on a dual-belt treadmill optimizing 

a weighted cost function of transition cost and swing cost. We first identified the weighting 

for the swing cost c by constraining the walker to match the empirical speed-step length 

relationship over ground. We then showed that while symmetric gaits are optimal during 

tied-belt walking, gaits with a small positive step length asymmetry are optimal during split-

belt walking. This optimality arises due to the trade-off between transition and swing cost, 

as the walker reduces its push-off on the fast belt while simultaneously harnessing more 

energy from the treadmill. A consequence of this trade-off is that the cost of walking with 

a belt speed difference is always higher than the cost of walking on a tied-belt treadmill at 

the slow speed. These results are consistent with experimental observations and provide 

insight into what contributes to the optimal split-belt walking gait. 
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5.2. Introduction 

Split-belt treadmills are widely used to understand fundamentals of human motor 

adaptation (73,74). Briefly, this involves walking on a treadmill that has two belts side by 

side, with one foot on each belt. In split-belt walking studies, participants first walk with 

both belts moving at the same speed and then the belt speeds are split. When this 

happens, participants need to adjust many aspects of their gait to continue stable walking 

on the treadmill (147). An often focussed upon aspect of gait in this adaptation process is 

step lengths. Step length is typically measured as the distance between the malleolus 

markers placed on each foot, when the leading leg is on the belt being specified. 

Immediately after the belts are split, participants take a small step on the belt with the 

faster speed and take a long step on the slow belt. Then, within minutes, participants adapt 

to execute steps of equal length on both belts (145). This adaptation is explained as the 

minimization of a sensorimotor prediction error—the nervous system expects its motor 

commands to produce steps of equal lengths while walking but the difference in belt 

speeds causes the commands to produce unequal step lengths (32). This is quantified 

using the metric of Step Length Asymmetry (SLA) given by: 

𝑆𝐿𝐴 =
𝑆𝐿4-*% − 𝑆𝐿*.)/
𝑆𝐿4-*% + 𝑆𝐿*.)/

5.1 

where SLfast and SLslow refer to the step lengths on the fast belt and slow belt 

respectively. SLtotal is the sum of the two step lengths. A gait with a step length asymmetry 

of zero is called symmetric and anything else is called asymmetric. While the adaptation 

process leads to symmetric steps lengths, other aspects of gait such as step times remain 

asymmetric. It is unclear why the nervous system might only target the sensorimotor 

prediction error in step lengths. An alternate hypothesis that has developed recently is that 

the adaptation might be a result of an energy minimization by the nervous system. Here, 

we use a computer model to understand how and why there might exist an energy optimal 

step length asymmetry in split-belt walking. 

Recent findings suggest that the energy optimal gait lies at a small positive step 

length asymmetry (84,166,167). These experiments found that if participants are allowed 

longer-than-traditional durations to walk on the split-belt treadmill, or if they can experience 

walking with a range of step length asymmetries, they adapt to slightly positive step length 
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asymmetries rather than symmetry. This adaptation results in a lower metabolic power 

expenditure than symmetry (84). In a previous study, we used conceptual predictions of 

the mechanics and energetics of different step lengths to explain this reduction in 

energetic cost (84). While walking, no net work is required to keep our body moving at a 

constant speed. However, in each step, when the leading leg contacts the ground, it 

performs negative work on the body resulting in energy loss. We then need to perform 

positive work to restore this lost energy.  When walking over ground, the ground cannot 

do work since it is stationary, and hence our legs only do work on our body. However, 

when walking on a treadmill, the legs do work on the treadmill rather than the body, and 

the treadmill does an equal and opposite work on the legs, thus keeping the net work of 

the system still zero. Work is measured as the time integral of the dot product of force and 

velocity. Therefore, when walking on a split-belt treadmill, the same force can do more 

work on the fast belt compared to the slow belt. The net force on the body has to be zero 

since it is moving at a constant velocity. However, a person can achieve this net zero force 

by applying a large force on the fast belt with the leading leg and an equally large and 

opposite force with the trailing leg on the slow belt. This allows the person to perform net 

negative work on the treadmill and causes the treadmill to perform net positive work on 

the person. The force applied by the legs on the treadmill in this manner is strongly 

dependent on the step length, with longer step lengths leading to larger force. Thus, with 

longer step lengths on the fast belt, people can harvest more energy from a split-belt 

treadmill. While this successfully predicts why participants move away from negative step 

lengths asymmetries, it also predicts that maximum energy savings can be obtained at an 

extreme positive asymmetry where the treadmill performs all the work. Metabolic power 

measurements from participants, on the other hand, suggest that the energetic optimum 

might lie at slightly positive asymmetries between 0.06 and 0.38 (84). Our simple 

conceptual model is missing some significant contributors to the energetic cost associated 

with different step length asymmetries that determine the energetic minimum. 

The energetics of over ground walking can be broadly captured using the 

contribution of two major costs (168). While no net work is performed on the body during 

constant velocity walking the body does perform positive and negative work within a step, 

as described earlier. The metabolic energy expenditure associated with this work is 

termed as the step-to-step transition cost (169). Our conceptual model roughly captured 

the contribution of this cost. The second cost is the cost of swinging the leg (152). The 
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forces involved in the swinging of the leg cannot perform any net work on the body since 

they are forces internal to the body. However, they do perform work on the body and that 

consumes metabolic energy. There is also some metabolic energy expenditure associated 

with the rate of production of muscle force. This cost predominantly affects swinging and 

not the step-to-step transitions since a swinging leg requires a periodic force as 

determined by the swing frequency. The swing cost is strongly dependent on the step 

frequency (170). When walking on a split-belt treadmill, the stance foot has to move at the 

velocity of the belt that it is contacting. This places a constraint on how quickly the swing 

leg has to move for the leading leg to land at a particular step length. We suspect that the 

increasing swing cost necessary to step further forward on the fast belt for a given slow 

belt speed trades off against the increasing benefit of placing the leading leg further 

forward. 

In this study, we use an inverted pendulum-based dynamic walking model to 

understand the role of transition cost and swing cost in split-belt walking. Inverted 

pendulum models get their name from their modelling of the stance leg as an inverted 

pendulum. Such models have been used widely and successfully to capture the 

fundamental mechanics and energetics of human walking (168,171–174). Here we use a 

version of such models where the swing leg is modelled as a regular pendulum. A spring 

connects this leg to the stance leg at the top, representing the torque generated by the 

muscles that cross the hip in a human. A physiological implementation of the spring might 

be through bursts of hip torques in opposite directions at the beginning and end of a step. 

Also in these models, the trailing leg of the inverted pendulum stance leg can apply push-

off impulses, representing the propulsion forces generated by humans. The 

Anthropomorphic Model is the simplest physically realistic inverted pendulum model of 

human walking (168). It has a point mass representing the torso, legs with distributed 

mass, and curved massless feet. We use the anthropomorphic model since it allows us to 

extend the hypothesis from our conceptual model to a physically realistic model with 

minimal addition of parameters.  

We modify the anthropomorphic walker to be able to walk on a treadmill that can 

have both belts moving at the same or different speeds. We first parameterize the walker 

by requiring it to reproduce over ground walking gait as obtained from empirical data and 

reproduced by previous anthropomorphic models. We then use this validated model to 

solve for walking gaits on a treadmill that has both belts moving at the same constant 
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speed. Walking over ground and walking on a tied-belt treadmill are mechanically and 

energetically similar, and only differ in the reference frames used to observe them (175). 

Therefore, this serves as another check on the model’s validity. We calculate the 

mechanics and energetics for the two conditions and demonstrate their similarity. We then 

split the belt speeds and solve for the optimal gait. We hypothesize that an 

anthropomorphic model that minimizes a combined cost of the step-to-step transition and 

leg swing finds that the optimal step length asymmetry is positive and comparable to the 

adaptation observed in humans. 

 

5.3. Dynamic walking model 

We adapted the over ground anthropomorphic walker to walk on a treadmill while 

keeping the original parameters. Our walker exists only in the sagittal plane and consists 

of a point mass m0 attached to the top of the stance leg with a weld joint that represents 

the torso and pelvis (Figure 5.1). The walker has two legs with distributed mass l1, l2, 

distributed mass m1, m2, and radius of gyration rgyr. Each leg has a massless curved foot 

with radius r. The parameter values for these are kept constant and listed in Table 5.1. 

The walker also consists of a spring with a tunable stiffness Khip between the swing leg 

and the stance leg. All quantities are expressed in dimensionless units using total mass 

M=m0+m1+m2, leg length L=l1=l2, and time t=sqrt(L/g) where g is the constant for 

acceleration due to gravity. 
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Figure 5.1: Anthropomorphic split-belt walker 
The anthropomorphic split-belt walker uses a hip spring and impulsive push-off from the trailing leg 
to move on a treadmill whose belts may be stationary, moving at equal speeds or at different 
speeds. 

 

Table 5.1:Fixed parameter values for the split belt walker 

Fixed parameters Values (non-dimensionalized) 

m0 0.68 

m1 0.16 

m2 0.16 

l1 1 

l2 1 

lc 0.645 

rgyr ^ 1
12

 

r 0.3 
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We use projected Newton-Euler equations to derive the equations for the system. 

Only one leg can contact the treadmill at any given time, eliminating double support. The 

stance leg can apply a push-off impulse immediately before the foot of the swing leg 

contacts the treadmill. When the foot of the swing leg, that is now the leading leg, contacts 

the treadmill, the trailing leg has already broken contact. The leading leg is then 

constrained to move at the velocity of the treadmill belt it contacted. This may be zero 

(over ground), same for both belts (tied-belt) or different for each belt (split-belt). We 

calculate the collision impulse to satisfy this constraint and recalculate the equations of 

motion with the leading leg as the stance leg. 

A gait cycle consists of two consecutive steps, known as a stride. We use ODE45 

in MATLAB 2019a (Mathworks, NA,USA) to simulate a step using 8 initial conditions: 

horizontal and vertical positions of the end point of the stance leg, stance leg angle 

measured from the vertical, swing leg angle measured from the stance leg, linear velocity 

of the end point of the stance leg in the horizontal and vertical directions, angular velocity 

of the stance leg, and angular velocity of the swing leg. We used the optimization algorithm 

to find the initial stance leg angle and position, as described later in the chapter. The swing 

leg angle and angular velocity is determined by the stance leg position and angle. Rather 

than use event detection algorithms to determine the foot contact with the belt, we set step 

time to be the simulation time for the integration. We solve for the step time by enforcing 

non-linear constraints, which is described in the next paragraph. At the end of a step, we 

calculate the push-off and collision dynamics, re-set the stance leg to be the leading leg 

and the swing leg to be the trailing leg, and run ODE45 again to simulate the next step.  

To be considered a successful stride, all simulations of a stride were subject to 

four non-linear constraints. The first constraint is to ensure a gait cycle—the angle and 

angular velocity of the stance and the swing legs at the end of a stride had to equal that 

at the beginning of the stride. The second constraint is dependent on the walking 

condition. When walking over ground—treadmill belt velocity set to zero—the average 

velocity of the point mass torso over a step had to match the desired walking speed. When 

walking on a treadmill, there was no constraint on the velocity of the point mass torso but 

the horizontal position of the foot of the leading leg at the end of the stride had to be the 

same as it was at the beginning of the stride. This ensured that the model remained at the 

same spot on the treadmill over a complete stride, which we refer to as station keeping. 

The third constraint was that the vertical position of the foot of the swing leg should be 
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zero—the feet should be on the ground—at the end of each step in the stride. This 

constraint serves the purpose of event detection by ensuring that the length of a 

simulation, which is our step time, is exactly until the foot of the leading leg contacts the 

ground. The fourth and final constraint is that the direction of the collision impulse should 

be positive—the ground cannot pull on the model. These constraints ensure that a gait 

cycle is representative of a human walking gait. However, multiple gaits can satisfy these 

constraints. 

 We search for the gait cycle that meets the above constraints and minimizes 

energetic cost. As described earlier, we are interested in the contribution of two costs to 

split-belt treadmill walking: step-to-step transition cost and swing cost. We estimate step-

to-step transition cost as the rate of positive mechanical work done by the walker in a 

stride. We calculate positive work as the difference in the walker’s total energy before and 

after push-off. We divide the work by step time to obtain positive work rate. For this 

calculation, we measure energy of the walker from the reference frame of the belt that is 

in contact with the foot. This may be stationary during over ground, moving at the same 

velocity for both steps during tied-belt, or moving at different velocities for each step during 

split-belt walking. To convert work to energetic cost, we multiply positive work rate by a 

factor of four which approximates metabolic power if muscles were operating at 25% 

efficiency (176). We calculate swing cost as the time rate of change of force generated by 

the spring in each step given as: 

𝑆𝑤𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 =
𝐾ℎ𝑖𝑝 ∙ 𝑝𝑒𝑎𝑘	𝑠𝑤𝑖𝑛𝑔	𝑎𝑛𝑔𝑙𝑒

𝑡*%$3
	 5.2 

We multiplied this value with a constant c to obtain a metabolic power equivalent. We sum 

these values for the two steps in a stride and obtain an objective function for each stride. 

The final objective function minimized by the optimization is given as: 

𝐶𝑜𝑠𝑡 = 4 ∙ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑤𝑜𝑟𝑘	𝑟𝑎𝑡𝑒 + 𝑐 ∙ 𝑆𝑤𝑖𝑛𝑔	𝑐𝑜𝑠𝑡	 5.3 

We used MATLAB’s fmincon function to solve for the optimal gait cycle that 

satisfied our constraints. We had 9 input parameters to the solver. The initial angle, 

horizontal and vertical position of the stance leg were used to find the initial conditions for 

the integration. The step times for the two steps in a stride served as the simulation time 

for each step. Finally, the push-off for each step and the spring stiffness for each step 
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were required to determine the kinematics of a step. This algorithm allowed us to set up 

all our constraints as non-linear and swap between optimizing an objective function or only 

solving for gaits that satisfied our constraints. The latter was useful to identify reasonable 

initial conditions for the optimizer, which is described later in the chapter. The details of 

the optimizer are provided in Table 5.2. 

Table 5.2: Properties of the optimizer used with the split-belt treadmill walker 

Optimizer properties Values 

Algorithms sqp 

Tolerance function 1e-9 

Constraint tolerance 1e-8 

Step tolerance 1e-10 

 

We used data from literature to determine the weighting c on the rate of swing cost. 

Kuo 2001 determines that the relationship between walking speeds and preferred step 

lengths, that are also the energy optimal step lengths, is given by: step length = speed0.42. 

We then searched through a range of values for c to determine which value, when our 

objective function is minimized, gives a gait that matches this speed-step length 

relationship, a process also used by Kuo to determine a similar weighting on swing cost 

for their Anthropomorphic model (Figure 5.2). We determined c to be 0.4326. This means 

that when walking at a given steady speed, the transition cost contributes about 10 times 

more than the swing cost to the total energetic cost of taking a step. 
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Figure 5.2: Speed - step length relationship for over ground walking 
We allowed the split-belt walker to find the energy optimal gait over ground when walking at a range 
of speeds. Black cross hairs show the results found by the walker. Black line shows the empirical 
relationship from literature, which was also found by the over ground anthropomorphic walker 
developed in Kuo 2001. 

We characterize a gait based on how a stride is powered, the step lengths, and 

energy required for the stride. A stride is powered from the push-off impulse and hip spring 

stiffness. Note that a spring is a conservative system and thus cannot do net work on the 

walker typically. However, since we allow the spring stiffness to change between steps 

here, the spring can do net work on the walker between the two steps. We report the push-

off impulse and spring stiffness for each step. We also report step length, and step length 

asymmetry to compare with the step length asymmetry measures observed in participants. 

Symmetry is defined as a gait where the step lengths of two consecutive steps are equal, 

same as in humans. We measure Step Length Asymmetry as given in Equation 5.1. We 

report energetics to compare the energetics of walking on a tied-belt and split-belt 

treadmill. 
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5.4. Tied-belt walking 

We validate the walker by comparing the over ground gait with the tied-belt 

treadmill gait. The energy optimal over ground walking gait is well established and should 

be equivalent to the energy optimal gait on a tied-belt treadmill. Therefore, we first verify 

that the addition of a treadmill belt produces accurate gait before splitting the belt speeds 

to study split-belt walking. To obtain initial conditions for the optimizer, we first solved for 

an over ground gait at each speed while constraining the step time to match the speed-

step length relationship from Kuo 2001. This required no objective function since a gait is 

fully constrained for a step time at a given speed. Figure 5.3 shows the solutions that the 

walker discovered for each speed. We then used these solutions as initial conditions to 

optimize for tied-belt gaits.  

We first compared the symmetric gaits in the over ground and treadmill conditions. 

The over ground walking gait for the anthropomorphic walker could only produce 

symmetric gait because it used a step as a gait cycle, rather than a stride as our walker 

here does. Therefore, we enforced symmetry in our walker. We constrained the step time, 

push-off impulse, and spring stiffness for the two steps within a stride be equal. Here, both 

belts moved backward at the same speed as the corresponding forward speed of the point 

mass in the over ground condition. We found that the symmetric tied-belt treadmill gaits 

are identical to the over ground gaits and consume the same energy (Figure 5.3). Similar 

to human walking, the increase in speed is due to an increase in step length and a 

decrease in step time. This is reflected in both push-off and spring stiffness increasing 

with increasing speed. Consequently, the cost also goes up steeply with walking speed. 

Note that this is cost per unit time, representative of metabolic power. 
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Figure 5.3: Gait parameters of symmetry-enforced energy optimal gait during over 

ground and tied-belt walking 
The push-off (top left), spring stiffness (top right), step length (bottom left), and cost (bottom right) 
for the energy optimal gait when symmetry was enforced during tied-belt walking was identical to 
those of over ground walking at corresponding speeds. 

We then removed the symmetry constraint to test whether symmetric gaits are 

energetically optimal. We allowed the step time, push-off impulse and spring stiffness for 

the two steps within a stride to be different. We started from the same initial conditions as 

we did when searching for symmetric gaits and searched for solutions. The solutions are 

nearly identical to the symmetric gait solutions (Figure 5.4). We suspect that the slight 

asymmetry found at some speeds is reflective of the optimizer’s tolerances since the 

asymmetry leads to very slight variations in energetic cost. 
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Figure 5.4: Gait parameters of energy optimal tied-belt walking when asymmetry is 

allowed 
When allowed to choose asymmetrical gaits during tied belt walking, the walker found that the 
symmetrical gaits were energy optimal. The push-off (top left), spring stiffness (top right), step 
length (bottom left), and cost (bottom right) for the energy optimal gait when asymmetry was 
allowed during tied-belt walking was identical to those when asymmetry was not allowed. 

 

5.5. Split-belt walking 

We solved for the optimal split-belt walking gait. We selected a slow belt speed of 

0.3 and initial conditions that matched the symmetric gait at that speed. We did not enforce 

symmetry—the solver was free to choose a different push-off force and hip spring stiffness 

for each step within the stride. We increased the belt speed difference by 0.01 up to 0.4. 

Note that the slow belt speed was always 0.3 and the fast belt speed increased to provide 
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the increased belt speed difference. We used the solution to one belt speed difference as 

the initial condition for the next. 

The optimal split-belt walking gait was one with a small positive step length 

asymmetry (Figure 5.5). As the belt speed difference increased, the required asymmetry 

became more positive. In our previous study, we measured that the average metabolic 

optimum of our participants had a 95% confidence interval of 0.06 and 0.38 (84). They 

were walking with a non-dimensional belt speed difference of 0.32. Our walker here 

predicts an energy optimal step length asymmetry for that belt speed difference to be 0.2, 

supporting our observations from participants.  

 
Figure 5.5: Effect of belt speed difference on step length and Step Length 

Asymmetry 
As the belt speed difference increases, the walker takes longer steps when the stance leg is on the 
slow belt leading (shown right) leading to more positive step length asymmetries (shown right). 
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The gait is symmetrically powered at the tied-belt speed and the asymmetry 

steadily increases with increase in belt speed difference (Figure 5.6). The push-off impulse 

by both feet go up with increasing belt speed difference but the push-off impulse on the 

fast leg increases more slowly. This is consistent with our hypothesis. As the fast belt 

speed increases, as it does with increase in belt speed difference, push-off on the fast belt 

leads to a larger power and hence larger mechanical work by the leg. Therefore, it is 

beneficial to reduce push-off on the fast belt. We also find that with increasing belt speed 

difference, the spring stiffness goes down when the stance leg is on the slow belt allowing 

the swing leg to reach further forward on to the fast belt to harness energy. 

 
Figure 5.6: Effect of belt speed difference on push-off impulse and spring stiffness 
With increase in belt speed difference, the walker pushes off less on the fast belt (right, red) allowing 
it to perform less push-off work. The walker simultaneously reduces the spring stiffness when the 
stance leg is on the slow belt (right, blue) allowing it to place the swing leg further forward on the 
fast belt and harness more energy. 
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The cost of the optimal gait increased with increasing belt speed difference (Figure 

5.7). Since the belt speed difference of zero is a condition where the belts are tied-at the 

slow belt speed, this means that walking on a split belt treadmill is always more expensive 

than walking on a treadmill tied at the slow belt speed. However, the cost at every belt 

speed difference was less than the cost of walking if both belts were tied at the 

corresponding fast belt speed. These results are consistent with experimental 

observations. 

 
Figure 5.7: Effect of belt speed difference on walking cost 
The cost of walking on a split-belt treadmill (black) is always higher that the cost of walking at only 
the slow belt speed (blue) but lower than the cost of walking only at the fast belt speed (red). 
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5.6. Discussion 

We developed a computer model of an anthropomorphic walker on a split-belt 

treadmill. It consists of a point-mass torso, two legs with distributed mass, and a curved 

massless foot at the end of each leg. It is powered by an impulsive push-off by the trailing 

leg and can vary its hip spring stiffness between two consecutive steps. These sources of 

power contribute to the energetic cost of walking as transition cost and swing cost, similar 

to over ground walking. The walker searched for gaits that minimized an objective function 

that was a weighted sum of the transition cost and swing cost. In agreement with empirical 

data and literature, the walker found that symmetrical gaits are the cheapest when walking 

on a treadmill where both belts are moving at the same speed. However, when the belt 

speeds were split such that one belt was faster than the other, the walker found that the 

optimal way to walk was to take a slightly longer step on the fast belt. This is a gait with a 

slightly positive step length asymmetry which is consistent with our observations from a 

previous study where we measured the metabolic power of walking at different step length 

asymmetries in participants (84). This step length asymmetry is obtained by both changing 

the push-off impulses to reduce work by the walker and changing the spring stiffness to 

increase work by the treadmill on the walker. The optimality is predicted by a trade-off 

between transition cost and swing cost, similar to over ground walking. Due to this trade-

off the cost of walking on a split-belt treadmill is always higher than the cost of walking on 

a treadmill that is tied at the slow belt speed. 

 The anthropomorphic split-belt walker can only make broad predictions about the 

energy optimal gait. Two features particularly could improve the applicability of our 

modelling results to human split-belt adaptation. Unlike humans, our model does not have 

a double support period. A double support period allows for the push-off to be spread out 

and therefore affects the push-off impulse required before heel-strike. This may have 

implications for the metabolic energetic cost (168,171). Such implications could be 

exaggerated in split-belt treadmill walking since work by the push-off force can be divided 

between two belts that have different velocities. This extra level of control may allow a 

walking person to find cheaper gaits for the same step length asymmetry. Second, the 

addition of a torso in over ground walking models has little effect on the overall gait. 

However, in split-belt walking larger step length asymmetries can lead to larger 

asymmetries in the lateral forces, causing the body to experience a torque about the 
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vertical axis. A torso may aid in countering this torque and the resulting metabolic cost 

may act as another trade-off in our objective function. 

The minimization of sensorimotor prediction error observed in split-belt walking 

studies may be a result of an energy optimization process. The hypothesis of sensory 

prediction error fits within the framework of an optimization process, as observed in upper 

limb adaptation experiments (40). Our walker here has no prediction of a normal walking 

gait in any of the conditions. However, when placed in a split-belt condition, it selects a 

step length asymmetry that is close to zero. Combined with recent results from our group 

that participants can overshoot symmetry with more experience walking on a split-belt 

treadmill, this suggests that the observed preferences to step length symmetry may be the 

result of a slow or incomplete energy optimization process. A recent study by Carly et al. 

found that people trade-off minimizing step length asymmetry when the push-off required 

to maintain a steady gait is altered using inclines and declines (177). This finding is 

consistent with the results of our walker and suggests that the energy optimization process 

may be speeded up by increasing the energetic penalty for not optimizing. The trade-off 

between transition cost and swing cost identified here can also inform our understanding 

of experimental results in split-belt walking. Adaptations to split-belt treadmill walking 

exhibit a differential learning for spatial and temporal parameters (164). Transition cost 

and swing cost contribute differentially to how far one can step and how quickly one can 

step (168,174). Extensions of our split-belt dynamic walker presented here can help us 

understand the cause of such differences. Our results here add support to the growing 

argument that the observed minimization of prediction error of step lengths, and other 

kinematic adaptations to walking on a split-belt treadmill may be a part of an energy 

minimization process by the nervous system. 
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Chapter 6.  
 
Discussion 

6.1. Summary 

In this thesis, I used two distinct walking tasks to understand the principles of 

energy optimization underlying human walking gait adaptations. I built a mechatronic 

system that can manipulate the metabolic energetic cost associated with different walking 

gaits from -50% to over +250% relative to the user’s normal cost of walking. Participants 

adapt their gait toward new energetic optima when walking in this system. I used this 

system to study adaptation to cost landscapes of varying steepness. I found that a steeper 

cost gradient in a novel situation is not sufficient for the nervous system to initiate 

adaptation. I also probed the role of metabolic energetic cost in split-belt gait adaptation. 

I showed through analysis of experimental data that the gait participants adapt to is 

characterized by a lower energetic cost because it allows participants to harness energy 

from the belt speed difference. I then used computer modelling to demonstrate that 

transition cost and swing cost trade-off in split-belt walking to give rise to the energy 

optimal walking gait. 

To understand how the nervous system adapts movement, we need to understand 

what objective, algorithms, and physical machinery drive the adaptation. In this thesis, I 

show that metabolic energetic cost serves as a significant objective in novel walking 

situations where it was not previously known to play a significant role. I then identify 

previously unknown principles governing the algorithms of energy optimization in these 

situations. In two separate walking tasks, participants and a computer model adapted their 

preferred walking gait to one that reduced energetic cost. I designed the first task to 

selectively manipulate the energetic cost associated with different walking gaits and found 

that participants adapted their gait to reduce their energetic cost of walking. In the second 

task, I evaluated the energetic cost associated with different walking gaits in the well-

established task of split-belt walking to show that participants adapt their gait to reduce 

their energetic cost of walking. In both these tasks, I identified significant principles of the 

energy optimization process. With the mechatronic system, I showed that in tasks where 

initiation of adaptation is not spontaneous, only increasing the cost gradient is insufficient 
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to initiate the adaptation process. On the other hand, in split-belt walking, participants 

always spontaneously initiate adaptation on exposure to a split-belt treadmill, do not adapt 

to the minimum in traditional experiments but can do so with more experience walking on 

the split-belt treadmill. Therefore, it is unclear how different features of a novel situation 

drive energy optimization. Towards understanding this process, I identified that two 

costs—transition cost and swing cost—primarily contribute to the energy minimal split-belt 

walking gait. 

 

6.2. General implications 

While the focus of in this thesis has been on energy optimization in walking, the 

results are broadly applicable. The mechatronic force control system can apply accurate 

and precise forces quickly. These forces may be constant or applied as a function of 

walking gait. Both these methods are being tested and used in improving mobility of 

patients (86,87,178). Small modifications to the system can allow the forces to be targeted 

to different regions of the body where such assistance may be required (87). The system 

can also be used to apply forces as a function of a different movement parameters, though 

modifications to sensors maybe necessary for detecting movement other than gait. Finally, 

the mechatronic system can also act to perturb movement. The control system affords 

easy access to changing proportional-integral-derivate gains. Thus, the system can 

quickly change from perturbing to rewarding, allowing researchers to study their trade-offs 

when learning to move in novel situations. 

Identifying features of a novel situation that allow spontaneous initiation of 

adaptation is relevant across motor tasks and objectives. Our nervous systems do not 

always initiate adaptation in novel situations. This is observed in a range of tasks such as 

walking with exoskeletons, split-belt treadmill walking with gradually changing speeds, and 

adaptations to force-fields and visuomotor rotations with interference (9,12,117–119,121). 

However, some changes to the same tasks allow the nervous system to initiate adaptation 

(9,24,74,75,120). This is a phenomenon observed beyond a laboratory setting, though 

harder to discern. A famous example is the Fosbury Flop where it was not evident that an 

improvement to the human high jump technique was possible, but when certain 

environmental changes made it evident, people quickly adapted their technique (179). The 
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hypothesis I tested was the role of cost gradient in initiating adaptation. In tasks where 

adaptation is initiated, a larger movement variability has been associated with faster 

learning (131). Variability is typically thought to be used by the nervous system to learn 

about the cost landscape and the cost gradient. A recent study directly tested this by 

providing participants with reward feedback that had different probabilities, in a reaching 

task, and found that steeper gradients led to faster learning (180). Thus, we have evidence 

across tasks that the cost gradient is used in adaptation but is insufficient to initiate 

adaptation. 

Principles of adaptation identified using split-belt walking have been successful in 

informing us about general motor adaptation. Split-belt treadmill walking has uncovered 

principles underlying the effect of conscious learning, effect of the interaction between 

information about the body and the environment, generalization of walking gait 

adaptations from treadmill to over ground, and the neural mechanisms of motor adaptation 

(73,74,121). These adaptations are generally thought to be the result of a minimization of 

a sensorimotor prediction error. This is supported by findings that damage to the 

cerebellum disrupts split-belt adaptation while damage to the other brain regions do not 

have a similar effect (73). In this thesis, I demonstrate that the split-belt walking gait is 

characterized by a reduction in metabolic energetic cost and identify a particular 

mechanism that participants can adopt to acquire energy from the treadmill belt speed 

difference. Participants can further use different strategies to use this energy and reduce 

their energetic cost of walking. I present evidence that participants also use such 

strategies and consequently reduce their energetic cost of split-belt treadmill walking—a 

result that corroborates observations in previous literature (47,85,181). My computer 

model supports the existence of an energy optimal gait similar to what participants find 

after sufficient experience with walking on the treadmill, by trading off energetic costs 

associated with swing and push-off. This gait is different from that traditionally observed 

in split-belt walking and that which has informed the previously mentioned impacts to 

general motor adaptation. Importantly, these results of energy minimization do not negate 

existing understanding of split-belt gait adaptations but rather place them in a larger, more 

unifying framework for understanding the different aspects of the adaptation. 
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6.3. Future Directions 

The results presented here definitely provide more questions than answers, as is 

the result of any scientific endeavour. This is highlighted by negative and positive results 

alike in this thesis. Both the evidence against the role of cost gradient in the initiation of 

adaptation and the evidence for energy minimization in split-belt walking open the floor for 

further research. 

The mechatronic force control system can be used to probe how metabolic energy 

affects human walking. The system is presently designed to apply forces to the user’s hip 

less than 120ms after toe-off. This limits the control available to the nervous system to 

manipulate its gait for the next step at which point, the force, and thus energetic cost, is 

manipulated again. We do not think this is a serious limitation for the projects presented 

here because the nervous system still has control over a step and through the duration of 

the experiments to adapt, and we do observe such an adaptation. Importantly, we were 

only interested in the high-level adaptation of step frequency to probe the process of 

energy optimization. However, localized forces to the feet, hip and legs have been shown 

to result in kinematic adaptations that differ at pre-swing and during swing (71,72). 

Understanding the effects of modulating when the force is applied in our system is an 

avenue worth investigating. Another aspect of the system design that can be examined is 

how quickly forces are applied as a function of gait. Physiological sensors that can rapidly 

detect energetic cost would benefit from rapid energetic cost changes to determine how 

to adapt and may find it difficult to attribute an energetic cost change to a gait parameter 

if the changes are slow or averaged over many steps. On the other hand, slower sensors 

may filter out rapid changes in energetic cost and find it harder to adapt to them. The 

mechatronic force control system can apply a force that changes step-to-step, is averaged 

across two or more steps, or is constant throughout. Experiments designed around this 

may shed light on the mechanism used by the nervous system to sense and process 

energetic cost during energy optimization of walking gait. 

The fundamental concept behind identifying cues used by the nervous system in 

the initiation of energy optimization is salient cost savings. The associated hypothesis is 

that the nervous system will initiate adaptation when it 1) senses that changing its 

movement can be beneficial, and 2) senses how it needs to change its movement to gain 

that benefit. Therefore, the lack of initiation of adaptation to steeper cost gradients can 
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mean two things: salient cost savings do not cue the nervous system to initiate adaptation 

in novel situations or the nervous system was unable to sense salient cost savings using 

the cost gradient. In the framework of optimization, the role of variability in adapting to 

novel motor tasks strongly suggest that the nervous system may use salient cost savings 

(16,46). A potential finding counter to this hypothesis may be that the nervous system 

does not adapt towards a salient cost saving if the nervous system’s previous experience 

suggests that the required adaptation is “too risky” (99,182). A study that can directly 

differentiate between the detection and use of such saliency would be quite beneficial to 

the field. One application of this would be in understanding whether the movement 

preferences of older adults is due to the inability of their nervous systems to detect salient 

cost savings or because equally salient cost savings are weighted less. 

An inability of the nervous system to sense salient cost savings using the cost 

gradient suggests two possibilities.  First is that the nervous system was unable to sense 

that cost savings were available at all. Second is that the nervous system was unable to 

sense how to adapt to obtain the cost savings. Both these hypotheses are described in 

Section 3.5. With regards to the first hypothesis, whether the nervous system is able to 

sense the energetic cost savings provided by the force changes depends on the nervous 

system’s mechanism of sensing energetic cost. Identifying the physiological sensors 

involved in sensing metabolic energetic cost would be a valuable discovery here. In the 

meantime, experiments aimed to determine the time required by the nervous system to 

sense a metabolic energetic cost change during a motor task would be valuable. 

Regarding the second hypothesis, I manipulated energetic cost as a function of only one 

gait parameter in the experiments presented in this thesis. Perhaps, an even more 

targeted manipulation such as manipulating energetic cost at the level of joint angles might 

aid in understanding how the nervous system senses how to adapt. An area where this 

could be tested would be in the use of exoskeletons—they can modulate control and 

provide context to the nervous system at the level of joints, while still manipulating 

energetic cost as a function of a high-level gait parameter. Even as more exoskeletons 

are being designed and manufactured, the mechanisms of human interaction with the 

devices is poorly understood. Identifying key principles of energy optimization during 

walking using exoskeletons can advance both fundamental and applied science.  

Understanding human motor adaptation is incomplete without understanding the 

environment of the adaptation. A split-belt treadmill where the belts are moving at different 
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speeds does not only place different velocity constraints on the feet but can also transfer 

energy to the walking person. Therefore, identifying mechanisms of harnessing this 

energy from the split-belt treadmill is beneficial to understanding split-belt gait adaptations. 

One approach to this is to understand observed adaptations in the context of this available 

energy. Another approach is to identify how best to harness this energy from the split-belt 

treadmill during walking. This latter approach is similar to learning how to use assistive 

devices and has several potential benefits. In chapter 4, we identify one mechanism to 

harness energy, that is to place the leading leg further ahead on the fast belt. Using such 

a gait, participants may theoretically be able to reduce 1 J of positive work they need to 

perform during walking for every 1.5 J of energy provided by the treadmill, when the two 

belt speeds are 1.5 ms-1 and 0.5 ms-1. There are likely many limitations to achieving this 

level of benefit in practice, one of which is addressed in Chapter 5. It may be valuable to 

identify such limitations and subsequently, strategies to overcome some of them. 

Energy optimization may be an objective in split-belt gait adaptations. Step-to-step 

transition cost and swing cost can explain energy-optimal and preferred gaits in steady-

state over ground walking (168). Their ability to also explain walking in a novel situation 

suggests that energy optimization may affect split-belt walking gait adaptations. The 

dynamic walking model presented in this thesis can perhaps be modified to include knees, 

a torso, and a double support period which may provide more realistic predictions of 

human behaviour. The model can be used to identify how these energetic costs contribute 

to split-belt walking gaits under different constraints such as belt speed differences, fixed 

foot placement, and fixed stance time (81). The dynamic walking model can only predict 

preferences, and not the adaptation process. An insightful next step for the model would 

be to embed it within a learning model—perhaps based on reinforcement learning—to 

identify mechanisms of the energy optimization process in split-belt gait adaptations. 

Finally, split-belt walking models and experiments can serve as a paradigm to study the 

earlier mentioned principles of sensing metabolic energetic cost, cost saliency, and the 

initiation of energy optimization in walking. 
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6.4. Conclusion 

The work in this thesis advances our knowledge of how we learn to walk in 

changing situations. I show that our walking gait is strongly affected by energy 

minimization using two different novel tasks. I develop a new system and a new approach 

to understand principles of energy optimization during walking gait adaptations. With the 

new system, I show that a steeper cost gradient may not be a sufficient cue for the nervous 

system to initiate optimization. With the new approach, I show that we should consider the 

split-belt treadmill’s ability to provide energy to walking users, which may explain the gait 

adaptations as an optimization of energetic cost. Both the force control system and the 

approach for identifying how one can harness energy from a split-belt treadmill, are 

applicable to studies beyond this thesis. At an applied level, understanding adaptation to 

the force control system and to a split-belt treadmill, and the systems themselves, can be 

useful in rehabilitation programs and gait training.  
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