
Partitioning cographs into forests and
independent sets

by

Anurag Sanyal

B.Tech., Indian Institute of Technology Jodhpur, 2018

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

c© Anurag Sanyal 2020
SIMON FRASER UNIVERSITY

Summer 2020

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Anurag Sanyal

Degree: Master of Science (Computing Science)

Title: Partitioning cographs into forests and independent
sets

Examining Committee: Chair: Joseph Peters
Professor

Pavol Hell
Senior Supervisor
Professor

Binay Bhattacharya
Supervisor
Professor

César Hernández Cruz
External Examiner
Associate Professor
Department of Mathematics, Faculty of Science
National Autonomous University of México

Date Defended: August 4, 2020

ii

Abstract

To determine the chromatic number of a graph, we seek to partition the vertices into
minimum number of independent sets. Similarly, for arboricity, we seek to partition the
vertices into minimum number of sets, each of which induces a forest. Both problems seek
to partition the vertices into sets that induce a sparse subgraph, and both are NP-hard in
general and can be solved in polynomial time on cographs. In this thesis, we consider a mixed
problem, where a graph is partitioned into p forests and q independent sets. It is known
that for each p and q, the partition problem has a finite complete set of minimal cograph
obstructions. For the cases where p = 0 or p = 1, a minimal obstruction characterization of
(p, q)-partitionability of cographs was previously known. However, it was also known that
the number of minimal obstructions grows exponentially with p. We consider the next case
of p = 2 and q = 1, and provide a complete list of minimal cograph obstructions. We also
provide polynomial time certifying algorithms for the cases p = 1 for any q, and p = 2 and
q = 1.

We also consider a vertex deletion version of the partition problem. Here, r vertices are
allowed to be deleted so that the remaining graph admits a partition into p forests and q
independent sets. For this problem, we provide a complete list of minimal cograph obstruc-
tions when p = q = r = 1, and p = r = 1, q = 2.

Keywords: Vertex arboricity; chromatic number; partition problems; cographs

iii

Dedication

Dedicated to my parents and my little sister Preeti.

iv

Acknowledgements

I would like to thank Dr. Pavol Hell and Dr. César Hernández Cruz for their patience,
encouragement, support and guidance throughout my Masters.

I am equally thankful to my friends Archit, Dhruv, Daval, Mansi for their support and
friendship.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Figures viii

1 Background and Literature 1
1.1 Definitions . 1
1.2 Decision problems and tractability . 3

1.2.1 NP-completeness and the classes P and NP 4
1.3 Restricted graph classes . 6
1.4 Colouring and related partition problems 11
1.5 Partition problems and restricted classes of graphs 14

1.5.1 Graph colouring . 14
1.5.2 Cocolouring . 16
1.5.3 H-colouring . 17
1.5.4 M -partition . 18

1.6 Clique-width and cographs . 19
1.7 Summary of our results . 21

2 (p,q)-partition 22
2.1 Background and previous results . 22
2.2 The (2, 1)-partition problem . 24

2.2.1 The list of minimal obstructions . 25
2.2.2 The completeness of the list . 28
2.2.3 Algorithms for (p, q)-partition in cographs 33

vi

3 (p,q,r)-partition 49
3.1 Introduction . 49
3.2 The (1, 1, 1)-partition problem . 51

3.2.1 The list of minimal obstructions . 51
3.2.2 The completeness of the lists . 54

3.3 The (1, 2, 1)-partition problem . 56
3.3.1 The list of minimal obstructions . 56
3.3.2 The completeness of the lists . 60

3.4 Concluding remarks . 66

Bibliography 67

vii

List of Figures

Figure 1.1 The configuration (p∗K2), the dotted edges are forbidden edges, the
edges that are neither there nor forbidden are optional. 16

Figure 1.2 Matrices M1 and M2 respectively. 18

Figure 2.1 The family A2. 23
Figure 2.2 An illustration of the case 2(d): one forest is indicated by large filled

circles, the other forest by double circles, the remainder is independent 32

viii

Chapter 1

Background and Literature

1.1 Definitions

A graph G = (V,E) consists of a set of vertices V and a set of edges E, where E ⊆ V × V .
The vertex set of a graph G is denoted by V (G) and its edge set by E(G). If e = uv is an
edge, then u and v are called the endpoints of the edge e. If u and v are endpoints of an
edge, they are called adjacent vertices and u is neighbour of v, and v is a neighbour of u.
The degree of a vertex v is the number of vertices adjacent to v.
A loop is an edge whose endpoints are equal. A simple graph is a graph having no loops. A
directed graph is a graph D = (V,A) with vertex set V (D) and arcs A(D), where each arc
is a set of ordered pairs of vertices. Following standard usage, we write vw for the ordered
pair (v, w). The arc vw is directed from v to w.

Definition 1. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆
E(G). The notation H ⊆ G denotes the subgraph relation between two graphs, and we say
G contains H or H is a subgraph of G.

Definition 2. The subgraph H of a graph G is said to be induced if for any two vertices
u and v ∈ V (H), u and v are adjacent in H if and only if u and v are adjacent in G. For
any set S ⊂ V (G), we denote by G[S] the subgraph induced by S in G.

For a graph G and a vertex v ∈ V (G), we denote by G − v the graph obtained by
removing the vertex v from G.

Definition 3. The complement G of a graph G is the graph with the same vertex set V (G)
and an edge e = uv ∈ E(G) if and only if e = uv 6∈ E(G).

Definition 4. A complete graph is a graph with all possible edges, i.e., all pairs of distinct
vertices are adjacent.

A clique, C, in a graph G = (V,E) is a subset of the vertices, C ⊆ V (G), such that
the subgraph induced by C in G is a complete graph. The clique number of G, denoted by
ω(G), is the size of the largest complete subgraph of G.

1

Definition 5. An independent set in G is a set of vertices such that no two of which are
adjacent.

We denote by α(G), the size of the largest independent set in G.
The clique cover number of G, denoted by k(G), is the smallest number of complete

subgraphs needed to cover the vertices of G.

Definition 6. A bipartite graph is a graph such that the vertex set V (G) can be partitioned
into two independent sets X and Y . The sets X and Y are called parts of the bipartition.

A complete bipartite graph V (G) = (X,Y) is a bipartite graph with parts X and Y

where edge e = uv ∈ E(G) if and only if u and v lie in different parts.
A path in a graph G is a sequence of distinct vertices P = {v1, v2, ..., vn} such that

vivi+1 ∈ E(G) for all i ∈ {1, 2, ..., n− 1}. The integer n is the length of the path. A walk in
a graph G is defined similarly except the vertices need not be distinct.

A cycle in a graph G is a sequence of vertices C = {v1, v2, ..., vn} such that v1 = vn and
vivi+1 ∈ E(G) for all i ∈ {1, 2, ..., n− 1}, where n is the length of the cycle.

Definition 7. The girth of a graph is defined as the length of the shortest cycle in G.

A graph G is said to be connected if for any two vertices u and v in the vertex set, there
exists a path P in G with u and v as the endpoints of P. A graph that is not connected is
said to be disconnected.

Definition 8. Colouring a graph G is an assignment of labels to the vertices of a graph so
that for each edge e = uv ∈ E(G), the vertices u and v have different labels.

The label received by a vertex is the colour of that vertex. A colouring that uses at
most k colours is called a k-colouring. Alternatively, one can also visualize a k-colouring as
a partition of the vertex set of G into k independent sets. For any graph on n vertices, it is
possible to assign a colouring with n labels where each vertex gets a different label. Thus,
every graph on n vertices is n-colourable.

The chromatic number of G, denoted by χ(G), is the smallest number of colours k so
that G has a k-colouring, or equivalently, the smallest number of independent sets needed
to cover the vertices of G.

We introduce the following notations for undirected graphs:
Kn is the complete graph on n vertices.
Kr,s denotes the complete bipartite graph where |X| = r and |Y | = s.
Pn is a simple graph on n vertices with vertex set V = {0, 1, 2, .., n− 1} such that vivj ∈ E
if and only if either i = j + 1 or i = j − 1 .
Cn is a simple graph on n vertices with vertex set V = {0, 1, 2, .., n− 1} such that vivj ∈ E
if and only if either i = (j + 1) or (j − 1) modulo n.

2

The intersection of a clique and an independent set in a graph G can be at most one.
Hence, ω(G) ≤ χ(G) and α(G) ≤ k(G). These equalities are dual to one another since ω(G)
= α(G) and k(G) = χ(G).

Definition 9. Consider a class of graphs G, a minimal obstruction to G is a graph H such
that H 6∈ G, and H − v ∈ G for every vertex v ∈ V (H).

Definition 10. Consider a class of graphs G, a set F of minimal obstructions to G is
complete if every graph not in G contains an induced subgraph from F .

Definition 11. Consider a class of graphs F , a graph G is said to be F-free, if G does not
contain any member of F as an induced subgraph.

1.2 Decision problems and tractability

Many problems in computer science can be posed as decision problems: problems that have
a simple "yes" or "no" answer. This is in contrast to optimization problems, in which each
feasible (i.e., "legal") solution has an associated value, and we wish to find a feasible solution
with the best value. The optimization problems can be further divided into maximization
problems, in which the objective is to find the largest "legal" value of a given parameter
and minimization problems. In a minimization problem, the objective is to find the smallest
legal value of a certain parameter. For example, in a problem we will call Max-Independent
set, we are given an undirected graph G, and the objective is to find the largest set of
independent vertices.

We can convert an optimization problem into a decision problem as follows: fix a bound
on the parameter we aim to optimize and then for that fixed parameter we ask does there
exists a feasible solution of size at least k (for maximization problems) or at most k (for
minimization problems)? For example, a decision problem related to the Max-Independent
set is the independent set problem.

Definition 12. The independent set problem
Input: An undirected graph G = (V,E), integer k
Question: Does G contain an independent set of size at least k?

A decision problem is classified as decidable if there exists a terminating algorithm that
correctly determines the answer for any given input. Problems that are not decidable are
called undecidable. The halting problem is an example of an undecidable problem. The
objective is to determine from the description of an arbitrary computer program and an
input, whether the program will ever terminate or not.

3

In this class of decidable problems, the problems that can be computed using a similar
amount of computational resources are grouped in a complexity class. The resources could
be the time required to finish the computation or the space available for computation.
Decidable problems are distinguished on the basis of whether they can be solved efficiently
or not. Informally, the class of problems for which there exists an algorithm that runs in
polynomial time, i.e., in time O(nk), for some fixed k, (with respect to some notion of the
size n of the input) are said to be efficient and are grouped in a complexity class called P.

There are decidable problems that are not in P, i.e., can not be solved in time O(nk)
for any k [41]. There are also decidable problems about which it is not known if they are in
P or not in P. A subclass of these problems plays an important role in literature, the class
of so-called NP-complete problems.

In the next section, we formally define the notions of a problem, of solving the problem,
of the size of the input, of the class NP, and of NP-complete problems.

1.2.1 NP-completeness and the classes P and NP

Before we can formally define the complexity classes P and NP, we need a few notions from
formal-language theory. Informally, we encode everything in Boolean strings, strings of 0’s
and 1’s. For a decision problem, we construct a language of finite strings over 0’s and 1’s.
A finite string in the language represents an instance of our decision problem. Using these
constructs, we define what it means for an algorithm to solve a problem.

Formally, an alphabet
∑

is a finite set of symbols. A language L is defined as a set of
strings that can be constructed from the alphabets in

∑
. We define

∑∗ as the language of
all finite strings that can be constructed over

∑
. It can be observed that for any language

L over
∑
, L ⊆

∑∗.
Consider

∑
= {0, 1}, given an instance I of a decision problem S, we encode I into a

boolean string; the length of this string is defined as the input size. The language L of the
decision problem S consists of all strings which represent an encoding of an instance I of
S in

∑∗. An algorithm A accepts a string x ∈
∑∗ if A takes x as an input and outputs 1

and rejects if the output is 0. The set of all strings accepted by A is the language accepted
by A. The algorithm decides the language L if for all strings x ∈ L, A accepts x, and for
all strings x 6∈ L, A rejects x. There exists an algorithm that solves S if there exists an
algorithm that decides the language L of S.

The class P consists of problems for which there exists an algorithm A that decides their
language L in polynomial time. More specifically, they are problems that can be solved in
time O(nk), for some constant k, where n is the size of the input. Algorithm A is called a
polynomial time algorithm. In the language-theoretic framework we define P as follows.

Definition 13. The complexity class P is the class of problems for which there exists a
polynomial time algorithm that decides the corresponding language L ⊆

∑∗.
4

The class NP consists of those problems for which given a "certificate" of a solution,
we can verify the certificate in polynomial time, i.e., the "yes" instances can be verified in
polynomial time. Consider the independent set problem defined above. For a given instance
of the independent set problem, we have an undirected graph G = (V,E) and an integer k,
a certificate would be a set S ⊆ V of vertices such that |S| = k. Since checking if the set S
is edgeless takes polynomial time, the independent set problem belongs to the class NP.

Definition 14. A language L belongs to NP if there exist a polynomial time algorithm A

and a constant c such that L = {x ∈ {0, 1}∗: there exists a certificate y with y = O(|x|c)
such that A(x, y) = 1}.

We say that A accepts L in polynomial time. Any problem in P is also in NP, since if a
problem is in P, then we can solve it in polynomial time without needing the certificate. A
problem is NP-complete if it is in NP and is as "hard" as any other problem in NP. Thus,
NP-complete consists of the hardest problems in class NP. To show that a decision problem
is no harder or easier than another decision problem, we use transformation procedures
called reductions, and they have the following characteristics:

• The transformation takes polynomial time.

• "yes"-instances are mapped to "yes"-instances and "no"-instances are mapped to "no"-
instances.

We say that a language L1 of a decision problem is polynomial time reducible to L2, written
L1 ≤p L2 if there exists a polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ L1 if and only if f(x) ∈ L2.

Definition 15. A language L ⊆ {0, 1}∗ is NP-complete if :

• L ∈ NP.

• L′ ≤p L for every L′ ∈ NP.

If a language satisfies only the second property, we say that L is NP-hard. We now define
the following problem.

Definition 16. The boolean satisfiability problem
Input: A boolean formula F (x1, x2, ..., xn).
Question: Does F evaluate to true?

The first problem that was proven NP-complete was the boolean satisfiability prob-
lem [11]. Furthermore, 21 basic problems known as Karp’s 21 problems, were proven NP-
complete [50], including the independent set problem defined above and the following prob-
lems defined below.

5

Definition 17. The k-clique problem
Input: An directed graph G = (V,E) and an integer k.
Question: Does G contain a clique of size k?

The k-colouring problem we discussed in 1.1 was also proved NP-complete in [50].
A literal in a boolean formula is an occurrence of a variable or its negation. A boolean

formula is in conjunctive normal form (CNF) if it is expressed as an AND of clauses, each
of which is the OR of one or more literals. A boolean formula is in 3-conjunctive normal
form (3-CNF) if each clause has exactly three distinct literals. A formula φ is satisfiable if
there exists a truth assignment such that φ evaluates to true.

Definition 18. The 3-CNF satisfiability problem
Input: A formula φ in 3-CNF.
Output: Is φ satisfiable?

1.3 Restricted graph classes

As discussed above, the colouring problem is NP-complete on the general class of graphs.
However, if we restrict the class of graphs, it is possible to obtain efficient algorithms for
the colouring problem as well as many other similar problems. In this section, we discuss
the various classes of graphs on which these kinds of problems can be efficiently solved.
In section 1.6, we also a large class of important graph classes of bounded tree-width and
bounded clique-width on which these problems can be solved in linear time.

In this section, we focus on other graph classes, including the class of planar graphs and
the class of perfect graphs and its subclasses.

Definition 19. A graph is planar if it can be embedded in the plane without edges crossing
each other.

The edges, faces and vertices of a planar graph are related by Euler’s formula as follows.

Theorem 1. (Euler’s Formula [64])
If a connected planar graph G has exactly n vertices, e edges, and f faces, then n−e+f = 2.

To understand the next result, we first define the subdivisions of a graph. A subdivision
of a graph is a graph obtained from it by replacing edges with pairwise internally vertex-
disjoint paths.

Theorem 2. (Kuratowski’s theorem [52])
A graph is planar if and only if it does not contain a subdivision of K5 or K3,3.

There are many linear time algorithms to test planarity, e.g.,[47, 5].

Theorem 3. ([47, 5]) Planar graphs can be recognized in linear time.

6

Next, we consider the class of perfect graphs.

Definition 20. A graph G is a perfect graph if the chromatic number of every induced
subgraph of G equals the size of the largest clique in the subgraph.

The following result is known as the perfect graph theorem.

Theorem 4. ([55]) For an undirected graph G, the following statements are equivalent:

1. ω(G[A]) = χ(G[A]) (for all A ⊆ V).

2. α(G[A]) = k(G[A]) (for all A ⊆ V).

3. ω(G[A]).α(G([A]) ≥ |V (G)| (for all A ⊆ V).

Corollary 5. A graph G is perfect if and only if its complement G is perfect.

The strong perfect graph theorem [9] provides a minimal obstruction characterization
of perfect graphs.

Theorem 6. ([9]) A graph G is perfect if and only if G and G contain no induced odd
cycles.

Next, we consider various subclasses of perfect graphs. The first subclass that we study
is the class of chordal graphs. A chord in a cycle C = {v1, v2, ..., vn} is an edge that connects
any two non-consecutive vertices vi, vj in the cycle.

Definition 21. A graph G is a chordal graph if every cycle of length greater than three has
a chord.

Theorem 7. ([2] and [37]) Chordal graphs are perfect.

Chordal graphs are characterized by the possession of a perfect elimination ordering.
An ordering α of G is a bijection α : V → {1, 2, .., n}. For 1 ≤ i ≤ n, we define Li to be

the set of vertices with labels greater than i− 1.

Li := {vi, vi+1, .., vn}.

Definition 22. A simplicial vertex of a graph G is a vertex v such that the neighbours of
v induce a clique in G.

The ordering α is a perfect elimination ordering if, for 1 ≤ i ≤ n, the vertex vi is
simplicial in the graph G[Li].

Theorem 8. ([31]) A graph G is chordal if and only if G has a perfect elimination ordering.

7

An algorithm called the maximum cardinality search (MCS) [61] for chordal graphs
orders the vertices in reverse order beginning with an arbitrary vertex v ∈ V for which
it sets α(v) = n. At each step, the algorithm selects an unlabelled vertex u as the next
vertex such that u is adjacent to the largest number of labelled vertices, with ties broken
arbitrarily. The MCS algorithm runs in O(|V | + |E|) time and can be used to recognize
chordal graphs as demonstrated by the next theorem.

Theorem 9. ([60]) An undirected graph G = (V,E) is chordal if and only if the ordering
produced by the MCS algorithm is a perfect elimination ordering.

Testing whether an ordering of the vertices is a perfect vertex elimination scheme can
be implemented to run in O(|V |+ |E|) time [34].

Corollary 10. Chordal graphs can be recognized in polynomial time.

Next, we present a subclass of perfect graphs called comparability graphs. The class of
comparability graphs include all bipartite graphs.

Definition 23. An orientation of an undirected graph G = (V,E) is a directed graph
D = (V,A) such that V (G) = V (D) and for each edge uv ∈ E, either uv ∈ A or vu ∈ A.

Definition 24. A transitive orientation of a graph G is an orientation D such that V (D) =
V (G), and whenever xy ∈ A(D) and yz ∈ A(D) are arcs in D, then G must contain an
edge xz which is oriented from x to z in D. A simple graph G is a comparability graph if
it has a transitive orientation.

Proposition 11. ([34]) Comparability graphs are perfect.

Next, we consider the class of interval graphs.

Definition 25. An interval graph is an undirected graph where the vertices represent the
intervals on the real line, and two vertices form an edge if and only if their corresponding
intervals intersect.

The following theorem states the relationship between chordal graphs, comparability
graphs and interval graphs.

Theorem 12. ([33]) Let G be an undirected graph. The following statements are equivalent:

1. G is an interval graph.

2. G contains no chordless four cycles, and its complement G is a comparability graph.

3. The maximal cliques of G can be linearly ordered such that for every vertex v of G,
the maximal cliques containing v occur consecutively.

8

Definition 26. An astroidal triple is an independent set containing three vertices such that
any two vertices are joined by a path that avoids the neighbourhood of the third vertex.

Using the above definition, we describe the minimal obstruction characterization of
interval graphs.

Theorem 13. ([53]) An undirected graph G is an interval graph if and only if the following
two conditions are satisfied:

• G is a chordal graph.

• G contains no astroidal triple.

A clique matrix of a graph G is a matrix M , where the rows of M represent the vertices
of G, and the columns ofM represent the maximal cliques of the graph such thatM(i, j) = 1
if and only if vertex vi ∈ V (G) belongs to a maximal clique cj in G. Interval graphs have
consecutive 1’s property in the clique matrix.

Theorem 14. ([33]) A graph is an interval graph if and only if its maximal clique can
be linearly ordered such that for every vertex in the graph, the maximal cliques to which it
belongs occur consecutively in the linear order.

Using Theorem 13 and 14, a recognition algorithm for interval graphs can be developed
as follows. First, we test if the given graph G is chordal, which takes O(|V | + |E|) time,
as discussed earlier. If G is chordal, we test for the consecutive 1′s property of its clique
matrix. Booth and Leuker [5] proved that the above step takes O(|V |+ |E|) time.

Theorem 15. ([5]) Interval graphs can be recognized in linear time.

Several other linear time recognition algorithms are known for interval graphs, for ex-
ample, [51] and [12].

Next, we move our discussion to the class of split graphs.

Definition 27. A split graph is a graph in which the vertex set of G can be partitioned
into a disjoint clique and an independent set.

In general, the partition mentioned above is not unique for a split graph. Moreover, the
clique need not be a maximum clique, and the independent set need not be a maximum
independent set.

Since an independent set of G is a complete subgraph in the complement of G and vice
versa, split graphs are closed under taking the complement.

Theorem 16. An undirected graph G is a split graph if and only if its complement G is a
split graph.

The following is known for the class of split graphs.

9

Theorem 17. ([30]) Let G be an undirected graph. The following conditions are equivalent:

1. G is a split graph.

2. G and G are chordal graphs.

3. G contains no induced subgraph isomorphic to 2K2, C4, or C5.

A polynomial time recognition algorithm for split graphs can be developed using the
minimal obstruction characterization in Theorem 17 and can be found in [39].

Corollary 18. Split graphs can be recognized in polynomial time.

Authors in [45] provide a linear time algorithm for recognizing split graphs. Next, we
introduce our final subclass of perfect graphs, cographs. Cographs are one of the most
popular and intensively studied classes of perfect graphs. Since cographs are perfect, many
intractable problems can be solved in polynomial time on the class of cographs [34]. In this
thesis, our focus will be on the class of cographs and the various partition problems on
cographs.

Definition 28. A graph G is a cograph if it has no induced subgraph isomorphic to P4, the
path on four vertices.

There is also an equivalent recursive definition of cographs. First, we define two opera-
tions on cographs, which are the building blocks of the recursive definition.

Definition 29. The disjoint union of two graphs G1 = (V1, E1), G2 = (V2, E2) denoted by
G = (G1 + G2), is a graph G such that G has the vertex set V = V1 + V2 and the edge set
E = (E1 + E2).

Definition 30. The join of two graphs G1 = (V1, E1), G2 = (V2, E2) denoted by G =
(G1 ⊕ G2), is a graph G such that G has the vertex set V = (V1 + V2) and the edge set
E = (E1 + E2 + E12) , where E12 contains all edges e = uv, where u ∈ V1 and v ∈ V2.

Theorem 19. ([16]) A cograph is a graph that can be constructed recursively as follows:

• K1 is a cograph.

• If G and H are cographs, then G⊕H is a cograph.

• If G and H are cographs, G+H is a cograph.

From the above characterization of cographs, one can see that cographs are closed under
taking the complement.

Theorem 20. An undirected graph G is a cograph if and only if its complement G is a
cograph.

10

A unique tree representation of cographs is used to develop polynomial time algorithms
for problems such as isomorphism, clique determination and colouring. The rooted tree
representing the parse structure of a cograph is called a cotree of the cograph. The leaves of a
cotree are the vertices of the corresponding cograph, and each internal node represents either
the join operation or the disjoint union operation alternatively. The cotree for a particular
cograph thus constructed is unique up to a permutation of the children of the internal nodes.
This cotree representation of cographs can be used to determine the chromatic number of
cographs in polynomial time as follows:

• Initialize leaves of cotree with χ = 1.

• Perform the addition operation on join nodes, i.e., for a join node χ =
∑k

1 χi where
χi is the chromatic number of child i, and the join node has k children.

• Perform the max operation on disjoint union nodes, i.e., for a disjoint union node
χ = max(χ1, χ2, ..., χk) where χi is the chromatic number of child i, and the disjoint
union node has k children.

There also exist linear time algorithms to determine the chromatic number of cographs
in linear time [10]. Since cographs are perfect, this also calculates the clique number.

The cotree characterization can also be used to develop linear time recognition algorithm
for cographs. The linear time algorithm in [16] builds a cotree, starting from a single vertex
and adding a new vertex at each step of the computation. When a vertex x is added,
the cotree has to be updated using at most O(deg(x)) operations, which is far from being
obvious.

Theorem 21. ([16]) Cographs can be recognized in linear time.

Lastly, we discuss a result by Damaschke.

Definition 31. A property Π of graphs is hereditary if any induced subgraph of a graph
having property Π also has property Π.

For example, the class of cographs is a hereditary class of graphs since every induced
subgraph of a P4-free graph is also P4-free. Let C be a hereditary class of graphs, and FG
represents the minimal obstructions of a hereditary class G, i.e., G ∈ G if and only if there
is no F ∈ F with F ≤i G, where ≤i represents the induced subgraph relation.

Theorem 22. ([19]) For any hereditary property Π, the class of cographs has a finite
complete set of minimal obstructions.

1.4 Colouring and related partition problems

In this section, we study the graph colouring problem and various related problems. We
also discuss how various partition problems can be seen as an extension of the colouring
problem.

11

Graph colouring is one of the central problems in graph theory. As discussed in section
1.1, determining the chromatic number of a graph is NP-hard in general. Finding a k-
colouring is polynomial for k = 1, 2; however, it is NP-complete for k ≥ 3.

We have also seen earlier how the k-colouring problem can be seen as a partition problem
of the vertex set such that there is a restriction on the adjacencies of the vertices in each set,
i.e., there should be no edges between vertices in the same set. However, for vertices in two
different sets, there are no constraints on their adjacencies. Hence colouring, in essence, is a
partition problem with some constraints imposed on the parts. At this point, it is possible
to see that we can derive the following abstraction for the partition problems:

• The first objective is to divide the vertex set of a graph into pre-specified sets; for
example, in the case of k-colouring, the objective is to partition into k disjoint(possibly
empty) sets.

• Impose constraints on the relationship of vertices within each set; for example, all the
vertices in each set must be non-adjacent.

• Impose constraints on the relationship of vertices across sets; for example, in k-
colouring, the constraint is that there are no constraints; we refer to this as the "don’t
care" constraint.

Naturally, the question arises if interesting problems could be obtained by varying each
of the above constraints: for example, we could fix the size of each disjoint set or specify
the intersection between each set. We could fix the adjacency constraints within each set
differently, similarly, for the adjacency constraints across the sets. In the following discussion,
we analyze different problems that arise from this abstraction. The above abstraction will
remain a constant in all of the partition problems that we will discuss.

For a given partition problem, we are also interested in a minimal obstruction charac-
terization whenever possible.

The first problem that we discuss is the cocolouring problem: the objective here is also to
partition the vertex set into disjoint sets, but we change the adjacency constraints as follows.
Each set induces either an independent set or a clique. This problem has no constraints on
adjacencies across the sets.

Definition 32. Cocolouring of a graph G is an assignment of colours to the vertices of G
such that each colour class induces either an independent set or a clique in G.

Definition 33. The cochromatic number of G is the minimum number k for which such
an assignment is possible.

A (k, `)-cocolouring of a graph is a cocolouring where the objective is to partition the
vertex set into at most k independent sets and at most ` cliques. The case of (1, 1)-partition
thus corresponds to the class of split graphs, i.e., split graphs have cochromatic number 2.

12

Similarly, the case of (2, 0) for cocolouring corresponds to the class of bipartite graphs. The
cocolouring problem was originally studied in [54], and can be seen as a natural extension
of the colouring problem. Determining the cochromatic number of a graph is NP-hard in
general [40].

Now, if one allows for more generalization of the adjacency constraints, we obtain the
H-colouring problem. Here the objective is also partitioning the vertex set of a given graph
into disjoint sets, but another graph is used to model the adjacency constraints across sets
and within each set.

Let H be a fixed graph, whose vertices are referred to as colours.

Definition 34. An H-colouring of a graph G is an assignment of colours to the vertices of
G such that the adjacent vertices of G obtain adjacent colours.

For a fixed graph H, the decision problem here is, given an input graph G, is it possible
to H-colour G? An H-colouring of G also describes a homomorphism from G → H.

Definition 35. A homomorphism f : G→ H is a mapping f of V (G) to V (H) such that
f(g)f(g′) ∈ E(H) whenever gg′ ∈ E(G).

When H = Kn, an H-colouring of G is just an n-colouring of G. Hence, H-colouring
can also be seen as a generalization of the k-colouring problem.

Finally, we arrive at the M -partition problem, where a matrix is used to model the
adjacency constraints [28]. For each fixed {0, 1, ∗}-matrix M , the M -partition problem on
a given graph G, is the problem of finding a partition of V (G) that respects the constraints
specified by the matrix M .

Definition 36. An M -partition of a graph G is a partition of V (G) into parts V1, V2, ..., Vm

such that for distinct vertices u ∈ Vi, v ∈ Vj, we have uv ∈ E(G) if M(i, j) = 1, and
uv 6∈ E(G) if M(i, j) = 0. Note that we admit i = j; in particular, if M(i, i) = 0, the set Vi

is independent in G, and if M(i, i) = 1, it is a clique. Also note that * means no restriction.

The M -partition problem generalizes all partition problems that we have discussed pre-
viously. It is easy to see that M -partition problems include all homomorphism problems
(and hence all graph colouring problems). Indeed, if H is a graph, we let M be the adja-
cency matrix of H with 1’s replaced by *, then an M -partition of a graph G is precisely a
homomorphism of G to H.

In the list version of the M -partition problem, every vertex v has a list L(v) such that
v can only be assigned to a vertex in L(v). List versions also exist for k-colouring, and
H-colouring problems.

13

1.5 Partition problems and restricted classes of graphs

All the problems that we have introduced in the previous section are NP-complete on the
general class of graphs. In this section and also in section 1.6, we try and restrict the classes
of graphs and see whether efficient algorithms can be obtained.

1.5.1 Graph colouring

We begin our discussion with the colouring problem. Using a greedy strategy, where in some
ordering of the vertices, the next vertex is coloured with the smallest colour, we obtain a
colouring that uses at most ∆ + 1 colours, where ∆ is the maximum degree of any vertex
in the graph.

Proposition 23. For any graph G, χ(G) ≤ ∆(G) + 1.

This upper bound can be easily improved by sorting the vertices by their degree and
then applying the greedy colouring.

Proposition 24. ([63]) If a graph G has a degree sequence d1 ≥ d2... ≥ dn, then χ(G) ≤
1 +maxi(min{di, i− 1}).

The bound χ(G) ≤ 1 + ∆(G) can be improved further if a graph is not complete or does
not contain any odd cycles. The following result is known as the Brooks’ theorem.

Theorem 25. (Brooks’ theorem [7]) If G is a connected graph other than a complete graph
or an odd cycle, then χ(G) ≤ ∆(G).

It is trivial to see that any graph which contains a complete subgraph on k vertices
cannot be coloured with k colours. However, the opposite is not true as there exist triangle-
free graphs with an arbitrarily large chromatic number [57].

Theorem 26. ([57]) For any positive integer k, there exists a triangle-free graph with
chromatic number k.

Hence, the chromatic number of a graph can be arbitrarily larger than the size of the
largest clique in the graph. In general, it is also possible to have large girth and yet still
have an arbitrarily large chromatic number. We have the following result by Erdős.

Theorem 27. ([26]) For all k, l, there exists a graph G, with girth(G) > l and χ(G) > k.

We begin our discussion of the colouring problem on the restricted classes of graphs
that we have discussed earlier. We start with the class of planar graphs. First, we note
that Theorem 26 does not hold for planar graphs as the graphs that appear in the proof
of Theorem 26 are not planar. Using the Euler’s formula, we know that any planar graph
has at most 3n− 6 edges, such that a graph has a vertex of degree at most five. Since any
subgraph of a planar graph is also planar, an inductive proof proves that any planar graph
is six-colourable. Heawood improved the bound to five colours.

14

Theorem 28. (Five-colour theorem [42]) Every planar graph is five-colourable.

We know that planar graphs can not containK5 as an induced subgraph. So is it possible
to bound the chromatic number of a planar graph by at most four? The popular version
of this question was called the four-colour conjecture. Is it possible to colour all the maps
that can be drawn on a plane using at most four colours? The maps correspond to planar
graphs as follows. A region in the map is a vertex, and there is an edge between two vertices
if their corresponding regions share a boundary. The four-colour conjecture was proved in
1976 by Kenneth Appel and Wolfgang Haken.

The four-colour theorem states that any planar graph can be coloured using at most
four colours.

Theorem 29. (Four-Colour Theorem [1]) Every planar graph is four-colourable.

For triangle-free planar graphs, we have the following result by Grőtzsch [36].

Theorem 30. ([36]) Every triangle-free planar graph is three-colourable.

A three-colouring of triangle-free planar graphs can be found in linear time [24].
The k-colouring problem is polynomial on the class of perfect graphs. A perfect graph

is k-colourable if and only if it does not contain Kk as a subgraph. A polynomial time
algorithm for determining the chromatic number is known for perfect graphs, using the
ellipsoid method for linear programming [35]. However, no purely combinatorial algorithm
is known.

For chordal graphs, there exists an algorithm that correctly calculates the chromatic
number and all maximal cliques of a chordal graph G = (V,E) in O(|V |+ |E|) time using
the perfect elimination ordering of graph G. Recall that a graph is chordal if and only if it
has a perfect elimination ordering (Theorem 8). The following can be said about the graphs
that have a perfect elimination ordering.

Theorem 31. There is a polynomial time algorithm to solve the colouring problem on
graphs with perfect elimination ordering.

Proof. Suppose the graph G has a perfect elimination ordering as follows: {v1, v2, .., vn},
and let k denote the size of the largest clique in G. We enumerate the colours as 1, 2, ..,.
We begin with the first vertex in the perfect elimination ordering and assign it colour 1.
For every vertex vi, i > 1, we assign the smallest colour unused by the neighbours of vi

among v1, v2, .., vi−1. Each vertex vi is guaranteed to have most k neighbours in vi+1, , .., vn,
otherwise G has a clique of size k+ 1. Hence, every vertex can be assigned a colour between
1, 2, ..k. Hence, at most k colours are used in the algorithm. We know that χ(G) ≥ k. Hence,
the algorithm correctly determines the colouring of G. The colouring algorithm discussed
here runs in O(n) time.

15

Corollary 32. There exists a polynomial time algorithm that correctly determines the chro-
matic number on the class of chordal graphs.

Interval graphs are also characterized by the existence of a perfect elimination ordering,
as can be seen from Theorem 14. The ordering produced by Theorem 14 is actually a perfect
elimination ordering.

Corollary 33. There exists a polynomial time algorithm that correctly determines the chro-
matic number on the class of interval graphs.

From Theorem 17, we know that split graphs are chordal graphs, the complements of
which are also chordal.

Corollary 34. There exists a polynomial time algorithm that correctly determines the chro-
matic number on the class of split graphs.

1.5.2 Cocolouring

Recognizing (k, l)-partitionable graphs is NP-complete for k ≥ 3 or l ≥ 3. A polynomial
time recognition algorithm for the cases (2, 1) and (1, 2) follows from [28].

A minimal obstruction to (k, l)-cocolouring is a graph G such that the graph G does
not admit a (k, l)-partition, but any proper induced subgraph of G does. For the (k, `)-
cocolouring problem, a minimal obstruction characterization is known for cographs.

Theorem 35. ([22]) A cograph G is (k, `)-partitionable if and only if it does not contain
any (`+ 1)∗Kk+1 as an induced subgraph.

The graph (p∗Kr) is the configuration formed by p copies of a clique of size r with
forbidden edges between corresponding vertices in the cliques. Please see figure 1.1.

………..

Figure 1.1: The configuration (p∗K2), the dotted edges are forbidden edges, the edges that
are neither there nor forbidden are optional.

Theorem 36. ([23]) A maximum induced (k, `)-cocolourable subgraph can be computed in
time O((k3`+ k`3)n) in cographs defined by their cotree.

16

For chordal graphs, the minimal obstruction characterization and a polynomial time
recognition algorithm for the (k, `)-cocolouring problem is given in [45].

A set of subgraphs is independent if they are vertex disjoint with no edges joining any
two subgraphs. The following is known for the finite minimal obstruction characterization
of chordal graphs for the (k, `)-partition problem.

Theorem 37. ([45]) A chordal graph is (k, `)-partitionable if and only if it does not have
(`+ 1) independent copies of Kk+1.

We note that (`+ 1) independent copies of Kk+1 is just the configuration (`+ 1)∗Kk+1

with all optional edges missing. Let f(G, r) denote the maximum number of independent
copies of Kr in G, and by g(G, r) the minimum number of cliques of G, which meet all Kr

of G.

Theorem 38. ([45]) Let G be a chordal graph, and let r ≤ 1 be an integer. Then f(G, r) =
g(G, r).

Since k and ` are fixed, there are only polynomially many subgraphs of G with (` +
1)(k + 1) vertices. Hence, Theorem 38 gives a polynomial time recognition algorithm for
chordal (k, l)-partitionable graphs. The authors in [45] provide a O(m(n + m)) algorithm
for recognition of chordal (k, `)-partitionable graphs, where n is the number of vertices in
the graph and m is the number of edges. The case of k = 1 and ` = 1 corresponds to the
class of split graphs. For this case, the authors provide a more efficient algorithm that runs
in O(m+ n) time. For the cocolouring problem on cographs, the following is known.

Theorem 39. ([23]) A maximum induced (k, `)-cocolourable subgraph can be computed in
time O((`3k + `k3)n) in cographs defined by their cotree.

Theorem 40. ([23]) For any cograph G given by its cotree, a minimum cocolouring is
obtained by the greedy cocolouring algorithm in time O(n3/2).

1.5.3 H-colouring

For the H-colouring problem, the following dichotomy is known.

Theorem 41. ([46]) If H is bipartite, then the H-colouring problem is in P. If H is not
bipartite, then the H-colouring problem is NP-complete.

The following is also known for the H-colouring problem.

Theorem 42. ([43]) If H has no edges, then the H-colouring problem has a finite com-
plete set of minimal obstructions. Otherwise, the H-colouring problem has infinitely many
minimal obstructions.

A single minimal obstruction characterization is known for the class of perfect graphs for
the H-colouring problem: a perfect graph is H-colourable if and only if it does not contain
a clique of size one greater than the chromatic number of H.

17

1.5.4 M-partition

The k-colouring problem and the (k, `)-cocolouring problem can be modelled asM -partition
problems. For example, the three-colouring problem and the (2, 2)-cocolouring problem cor-
respond to the following matrices M1, M2, respectively (Please see Figure 1.2).

Figure 1.2: Matrices M1 and M2 respectively.

Theorem 43. ([29]) When asterisks are absent in M , the size of all minimal obstructions
to M -partitions is bounded.

For general matrices, the following dichotomy is known regarding theM -partition prob-
lem on small patterns.

Theorem 44. ([29]) Let the pattern M be a symmetric {0, 1, ∗}-matrix of size at most
four, with a {0, 1}-diagonal. If M contains, as a principal submatrix, the pattern of three-
colouring, or its complement, then the M -partition problem is NP-complete. Otherwise, the
M-partition problem is polynomial time solvable.

In general, it is not known for which matrices the M -partition problem is polynomial
time solvable, and for which matrices the problem is NP-complete.

For the class of split graphs, the following is known.

Theorem 45. ([59]) For any matrix M , the M -partition problem has a finite complete set
of minimal split obstructions.

Thus, all M -partition problems for split graphs are polynomial time solvable.
TheM -partition problem is also polynomial time solvable on the class of interval graphs.

Theorem 46. ([62]) For all patterns M , the list version of the M -partition problem is
polynomial time solvable on the class of interval graphs.

On the other hand, it is not known for which matrices, there are finite minimal interval
graph obstructions and for which matrices the number of obstructions are infinite.

For the class of chordal graphs, the following is known regarding the M -partition prob-
lem.

18

Theorem 47. ([27]) For an m ×m matrix M such that m < 5, the M -partition problem
is known to be polynomial on the class of chordal graphs.

Theorem 48. ([27]) For matrices M such that m < 4, M has a finite complete set of
minimal split obstructions, except for two matrices, which have infinitely many minimal
chordal obstructions.

Theorem 49. Any minimal M -obstruction cograph G has at most O(8m/
√
m) vertices.

Hence, the M -partition problem has a finite complete set of minimal cograph obstruc-
tions [20, 27], and thus, the M partition problem is polynomial on the class of cographs.

Theorem 50. ([27]) There exists a matrix M for which the M -partition problem has a
cograph minimal obstruction with m2/4 vertices.

1.6 Clique-width and cographs

A graph can also be considered as a logical structure. Hence, many properties of graphs are
definable in first-order logic and second-order logic. In this section, we study a fragment
of second-order logic called Monadic Second Order (MSO) logic and study its variations
MSO1 and MSO2. In first-order logic, formulas over graphs are built up from atomic
formulas E(x, y) and x = y using boolean connectives such as negation ¬, conjunction ∧,
disjunction ∨, logical implication⇒, and logical bi-implication⇔. The formula E(x, y) rep-
resents the adjacency structure of the given graph, x = y denotes the equality relation, and
the variables x, y range over the vertices of the graph. In MSO, we have additional atomic
formulas X(x), for set variables X and existential quantification and universal quantifica-
tion is permitted over set variables. In MSO1, quantification is permitted only over sets of
vertices, whereas in MSO2 quantification is permitted over sets of edges as well as sets of
vertices. The followingMSO1 formula defines the property of three-colourabilty of a graph.
∃X1, X2, X3 (Part(X1, X2, X3))∧x, y(E(x, y)∧¬(x = y)⇒ ¬(x ∈ X1∧y ∈ X1)∧¬(x ∈

X2 ∧ y ∈ X2) ∧ ¬(x ∈ X3 ∧ y ∈ X3)).
The formula Part(X1, X2, X3) expresses that X1, X2, X3 partition the vertex set, and

is written as follows:
∀x ∈ V (G)((x ∈ X1 ∨X2 ∨X3) ∧ (¬(x ∈ X1 ∧ x ∈ X2)) ∧ (¬(x ∈ X2 ∧ x ∈ X3)) ∧ (¬(x ∈
X1) ∧ (x ∈ X3))).

Other examples ofMSO1 graph properties include k-colourability, (k, l)-partitionability
as well as the (p, q)-partitionability that we will study in the next chapter. Next, we define
the terms tree-width of a graph and clique-width of a graph. The tree-width of a graph
denotes the size of the largest vertex set in a tree-decomposition of a graph.

Definition 37. The tree-decomposition of a graph G = (V,E) is a pair X,T , where X =
{X1, X2, ..., Xn} is a family of subsets of V (G), and T is a tree such that:

19

• X1 ∪X2 ∪ ... ∪Xn = V (G).

• For every edge v, w ∈ E(G) of a graph, there exists a subset X1 that contains both v
and w.

• If Xi, Xj both contain a vertex v, then every node Xk of tree T in the path from Xi to
Xj in the tree T contains the vertex v. That is, nodes containing v induce a connected
graph in T .

Definition 38. The width of a tree decomposition is maxi∈{1,2,..n} |Xi| − 1, and the tree-
width of a graph G is the minimum width of a tree decomposition of G.

When the width is fixed, the tree compositions can be computed in linear time [3].

Definition 39. Clique-width of a graph G is defined as the minimum number of labels
required to construct G using following the four operations:

• Creation of a new vertex with label i, (denoted i(v)).

• The disjoint union of two graphs G and H, i.e., G+H.

• Adding an edge between each vertex with label i and label j, (denoted ηij).

• Renaming label i to j, (denoted pi−→j).

Any graph can be obtained using the above four operations. For example, the following
expression defines a four cycle on vertices {a, b, d, c}, such that: η12(p4−→2(p3−→1(1(a)+2(b)+
3(c) + 4(d)))). An expression using the above four operations that use at most k labels is
called a k-expression defining a graph. Thus, the clique-width of a graph G is the minimum
k for which a k-expression exists that defines G. It is known that graphs with tree-width at
most k have clique-width at most 3.2k−1 [15]. Hence, any graph that has bounded tree-width
also has bounded clique-width.

A large class of optimization problems can be solved efficiently using dynamic program-
ming on graphs with bounded tree-width [4, 6]. In fact, for many problems, linear time
algorithms can be obtained on graphs with bounded tree-width. Specifically, Courcelle’s
Theorem [17] states that problems of bounded tree-width that can be defined in MSO2

can be solved in linear time. Moreover, the theorem also states that problems of bounded
clique-width that can be defined in MSO1 can be solved in linear time.

In this thesis, our focus is on cographs and partition problems on cographs. It is known
that cographs are exactly the graphs with clique-width at most two [18]. Hence, cographs
are graphs with bounded clique-width.

The various partition problems we discussed earlier, for example, the k-colourability
problem, (k, l)-partitionability, and the (p, q)-partitionabilty problems that we will study in
the next chapter can be defined inMSO1. Since cographs have bounded clique-width, these

20

problems can be solved in linear time on cographs. Hence, the partition problems that we
discuss in this thesis can be solved in linear time on cographs.

1.7 Summary of our results

In this thesis, we study a partition problem where a cograph is to be partitioned into p
forests and q independent sets, called the (p, q)-partition problem.

In Chapter 2, after summarizing known previous results, we present new results for
p = 2 and q = 1, describing all the minimal obstructions to (2, 1)-partition, see Theorem
53, cf. also [44]. There are 9 minimal obstructions in total. We address the open question
of whether a uniform description of minimal obstructions is possible for (2, q)-partitions for
any q ≥ 0. We then transform the proof of completeness of various cases with the following
running times: O(m+qn) for (1, q)-partitions q ≥ 0, or O(qn) if the cotree is given, O(m+n)
or O(n) if the cotree is given for (2, 0)-partition and (2, 1)-partition problems.

The (p, q)-partition problem can be defined using MSO1, and from the above discus-
sion, we know that there exists a linear time algorithm for the problem of (p, q)-partition on
cographs using Courcelle’s Theorem. However, a certifying algorithm provides a certificate
for both a positive outcome - a (p, q)-partition and a negative outcome - a minimal obstruc-
tion. This is useful for example, it provides the ability to test a particular implementation
of the partitioning algorithm by either finding such a partition or providing a certificate(a
minimal obstruction) in case no such partition exists. (Similar certifying algorithms are also
described for earlier known results.)

In Chapter 3, we expand the problem to a relaxed problem in which we seek a partition
into p forests and q independent sets, after at most r vertices have been deleted. We solve
the problem for p = 1, q = 1, r = 1, and p = 1, q = 2, r = 1, describing all the minimal
cograph obstructions to these partition problems, see Theorem 63 and Theorem 69.

21

Chapter 2

(p,q)-partition

2.1 Background and previous results

The vertex-arboricity of a graph G is the minimum integer p such that the vertices of G can
be partitioned into p parts, each of which induces a forest. It is, in general, NP-complete
to decide if a graph G has arboricity less than or equal to a fixed p, p ≥ 2 [38]. This is a
situation analogous to the chromatic number of G, which is the minimum integer q such
that the graph G is q-colourable for q ≥ 3 [32]. In the previous chapter, we discussed a
polynomial time algorithm to determine the chromatic number of cographs. This can be
done in a very similar fashion for vertex-arboricity. The authors in [21] have studied, for
cographs, a blended problem, whereby a graph is partitioned into p parts inducing forests
and q parts that are independent sets (and more general partitions). Each of these problems
can be efficiently solved in the class of cographs, and in fact, characterized by a finite number
of minimal cograph obstructions. This parallels the situation for a similar blended problem
studied earlier, where a cograph G is to be partitioned into k independent sets and ` cliques
[23, 22].

It follows from Theorem 22 that each of these problems has a characterization by a
finite set of minimal cograph obstructions. Here a minimal cograph obstruction is a cograph
G that does not admit a required partition, but each proper induced subgraph of G does
admit such a partition. Thus a cograph admits a required partition if and only if it does
not contain an induced subgraph isomorphic to a minimal cograph obstruction.

Minimal cograph obstructions for partition into k independent sets and ` cliques were
described in [23, 25, 27, 22]; as discussed in the last chapter, the obstructions have (k +
1)(`+ 1) vertices and admit a partition into k + 1 independent sets of size `+ 1 as well as
a partition into `+ 1 cliques of size k + 1.

Minimal cograph obstructions for partition into p forests and q independent sets were
investigated in [21]. Consider first the special case of q = 0, that is partitions into forests
(arboricity). Since cographs are perfect, there are two minimal cograph obstructions for
being a forest, i.e., admitting a partition with p = 1: these are the cycles C3 and C4.

22

For partitions into p = 2 forests, there turn out to be exactly seven minimal cograph
obstructions, forming the family A2 depicted in Figure 1.

Theorem 51. ([21]) A cograph has (2, 0)-partition if and only if it is A2-free.

(a) K5 (b) 3K3 (c) 2K2 ⊕ (K1 + K2)

(d) 2
(
2K2

)
⊕ K3 (e) 2K3 ⊕ K2

(f) 3K2 + K1 (g)
(
2K2 + K3

)
⊕ K2

Figure 2.1: The family A2.

Each of these obstructions has a natural generalization to minimal cograph obstruc-
tion for partition into p forests. For example, K5 generalizes to K2p+1, 3K3 generalizes to
(p+ 1)Kp+1, and so on. These seven generalizations form a family Ap, given by an explicit
uniform description in [21]. They are all minimal cograph obstructions to partition into p
forests. Nevertheless, it turns out that there are in general, many additional minimal co-
graph obstructions, and in fact, the number of minimal cograph obstructions for partition
to p forests grows exponentially with p [21].

There is, however, a class of partition problems in which minimal cograph obstructions
can be uniformly described. This is the class of problems generalizing the problem of inde-
pendent vertex feedback set [21]. A q-colourable vertex feedback set of a graph G is a set

23

V of vertices such that G \ V admits a q-colouring. Thus a graph admits a q-colourable
vertex-feedback set if and only if it has a partition into p = 1 forest and q independent
sets. It is shown in [21] that there are precisely two minimal cograph obstructions for such
a partition, namely Kq+3 and (q + 2)K2. (Note that for q = 0 we again obtain C3 and C4

as the minimal cograph obstructions to being a forest.) This family describes all minimal
cograph obstructions for partitions into p = 1 forest and q of independent sets, uniformly
for all values of q.

Theorem 52. ([21]) Let q be a non-negative integer. A cograph G has a (1, q)-partition if
and only if it is {Kq+3, (q + 2)K2}-free.

Proof. Since the cographs Kq+3 and (q + 2)K2} do not admit a (1, q)-partition, any graph
G that has a (1, q)-partition does not contain Kq+3 and (q + 2)K2 as an induced subgraph.

Hence, we now prove that ifG is {Kq+3, (q + 2)K2}-free, thenG admits a (1, q)-partition.
We proceed by induction on q. For the base case of q = 0, observe that if G does not contain
K3 and (q + 2)K2 as an induced subgraph, then G is a forest. Therefore, G admits a (1, 0)-
partition. For the induction step, we assume that the result holds for all q ≤ k, and we will
prove for q = k + 1. Assume that G is {Kk+4, (k + 3)K2}-free. Without loss of generality,
we assume that G is connected. As cographs are perfect, and G is Kk+4-free, we find a
(k+ 3)-colouring of G. If one of the colour classes contains at most one vertex, say vertex v,
then we obtain a (1, q)-partition as follows. We take a star at v along with one of the colour
classes; the remaining (q + 1) colour classes form the independent sets of the desire (1, q)-
partition. Hence, we may assume that each colour consists of at least two vertices. Since G
is connected, using the cotree structure of cograph G, we obtain cographs G1, G2, ..., Gl so
that G = ⊕l

i=1Gi. Hence,
∑l

i=1 χ(Gi) = k + 3. There exists a j ∈ {1, 2, ..., l} such that Gj

is χ(Gj)K2-free. Otherwise, G contains (k + 3)K2 as an induced subgraph. Let k′ = χ(Gj),
observe that k′ ≥ 2 since each colour class contains at least two vertices, and Gj is χ(Gj)K2-
free. Since Gj is {Kk′+1, (k′)K2}-free, Gj admits a (1, k′ − 2)-partition. Also, note that the
cograph G\V (Gj) can be coloured using at most (k+3−k′) colours. A (k+3−k′) colouring
of G\V (Gj) together with the (1, k′−2)-partition of Gj yields a (1, k+1)-partition of G.

As mentioned above, there is only one minimal cograph obstruction for partitions into
(p = 0 forests and) an arbitrary number q of independent sets, namely Kq+1, which is
again a family uniformly described for all values of q. This motivates the natural question
of whether there are other values of p for which such uniformity is possible.

2.2 The (2, 1)-partition problem

In this chapter, we investigate the first open case of p = 2. In order to address the question
of possible uniform description, we explicitly describe all minimal cograph obstructions for
partition into p = 2 forests and q = 1 independent set. Each member of the family A2

24

again has a natural generalization as an obstruction for such a partition. For example, K5

generalizes to K6, because an independent set will take only one vertex and the remaining
K5 cannot be partitioned into two forests. Similarly, 3K3 = K3,3,3 generalizes to K3,3,3,3,
3K2 +K1 = K2,2,2 ⊕ K1 generalizes to K2,2,2,2 ⊕ K1, 2K2 ⊕ (K1 + K2) = K2,2 ⊕ K1,2

generalizes to K2,2,2 ⊕ K1,2, and so on. Below, we present a complete set F1 of minimal
cograph obstructions for partition into p = 2 forests and q = 1 independent set.

Theorem 53. A cograph has a (2, 1)-partition if and only if it does not contain an induced
subgraph from F1.

The family F1 contains nine cographs, and while most of them can be interpreted as
generalizations of members of A2, some appear to be definitely new. In particular, the last
member, 9, of the family F1, does not seem to arise from any member of the family A2

in any obvious fashion. Thus the evidence suggests that a uniform description of minimal
cograph obstructions for all (2, q)-partitions seems unlikely.

The reference [21] presents a linear time dynamic programming algorithm to decide
whether an input cograph G admits a (2, 1)-partition (or any other (p, q)-partition). As an
application of our result, we will present, in Algorithm 3, page 36, a certifying algorithm for
the negative outcome (i.e., a non-partitionable cograph G) by finding an actual forbidden
induced subgraph.

2.2.1 The list of minimal obstructions

For brevity, we call a partition of a graph G into p forests and q independent sets, a (p, q)-
partition of G. Thus, in the remainder of this chapter, we describe all minimal cograph
obstructions for (2, 1)-partition.

We introduce the family of cographs F1. The members of the family are:

1. K6

2. K3,3,3,3

3. K2,2,2 ⊕K1,2

4. K2,2,2,2 ⊕K1

5. 2K3 ⊕K2,2

6. (K2,2 +K3)⊕K2,2

7. 2K2,2 ⊕K3,3

8. 2K2,2 ⊕ 2K2,2

9. (K4 +K3,3,3)⊕K2

25

Lemma 54. Each graph in F1 is a minimal cograph obstruction to (2, 1)-partition.

Proof. It is clear from their descriptions that each graph in the F1 family is a cograph. We
claim that each of these graphs is a minimal obstruction for (2, 1)-partition.

Consider first K6: it does not have a (2, 1)-partition, because any forest in K6 can have
at most two vertices, and hence two forests can have at most four vertices. This leaves at
least two vertices, but no two vertices in K6 form an independent set. Moreover, when a
vertex is removed we have K5, which has an obvious (2, 1)-partition where each forest is
one edge and the independent set is a single vertex. Therefore K6 is a minimal obstruction.

For G = K3,3,3,3, we observe that any induced forest in G has at most four vertices,
and this happens only when the forest is a tree. Thus two forests can cover at most eight
vertices, and since K3,3,3,3 has no independent set of size four, it does not have a (2, 1)-
partition. When a vertex is removed, we obtain K2,3,3,3, where we can take one independent
set consisting of a part with three vertices, and cover the vertices of the remaining two parts
of size three by stars centered at the remaining two two vertices. Hence K3,3,3,3 is also a
minimal obstruction.

The proof for most of the remaining obstructions follows a similar approach, and we
skip the details (which are included in the last section). We do include the proof for the last
two obstructions on our list, which are more interesting.

Consider the graph 2K2,2 ⊕ 2K2,2 from 8. Any independent set must be on one side
of the join, and include at most four vertices. The remaining vertices contain an induced
2
(
2K2

)
⊕K3, which is one of the obstructions for (2, 0)-partition from Figure 2.1. When

a vertex is deleted, we obtain the graph ((K1,2 + K2,2) ⊕ 2K2,2), which has the following
(2, 1)-partition: one independent set of four vertices on the bigger side of the join, one forest
consisting of 2K1,2 on the smaller side of the join, and one forest which is a star on five
vertices. Thus 2K2,2 ⊕K2,2 is indeed a minimal cograph obstruction for (2, 1)-partition.

For G = K2,2,2⊕K1,2, we note that any subgraph of G on at least four vertices contains
an induced cycle. Hence, one forest in the partition can cover at most three vertices and
two forest can cover at most six vertices, and since G has no independent set of size three,
K2,2,2 ⊕K1,2 is an obstruction. For H = K1,2,2 ⊕K1,2, one of the two forests will be K1,2,
and removing another forest on three vertices, the remainder is an independent set on two
vertices, yielding a required (2, 1)-partition. For H = K2,2,2 ⊕K2, take one of the vertices
of K2 with one of the parts in K2,2,2 to obtain one forest. We obtain the other forest in
similar way and the remainder is just an independent set of size two. Hence, K2,2,2 ⊕K1,2

is a minimal obstruction.
To prove that G = K2,2,2,2 ⊕K1, is an obstruction, note that any forest must be a tree

and hence can have at most three vertices. Two forests can cover at most six vertices, and
the remaining three vertices will contain an edge, and hence not be independent. To prove
that G is indeed minimal, note that both H1 = K2,2,2,2 and H2 = K1,2,2,2 ⊕ K1 have a

26

(2, 1)-partition in which each forest is a tree on three vertices and the independent set has
two vertices.

For G = 2K3 ⊕ K2,2, one of the two forests can cover at most four vertices and the
other forest can cover at most three vertices. Hence, two forests can cover at most seven
vertices and there is no independent set of size at least three in G. Hence, G does not have
a (2, 1)-partition. Now we will show that H1 = (K2 +K3) +⊕K2,2 and 2K3 ⊕K1,2 have a
(2, 1)-partition. For H1, the partition consists of one forest that is 2K2 and has four vertices.
The other forest is a tree on three vertices and the remainder is just an independent set
on two vertices. In H2, the first forest consists of the middle vertex in K1,2 along with one
vertex in the each of the K3. The other forest has four vertices consisting of 2K2 each. The
remainder is an independent set on two vertices. Thus G = 2K3 ⊕K2,2 is indeed minimal.

Similarly, for G = (K2,2 +K3)⊕K2,2, one of the two forests in G can have at most five
vertices, and then the other forest can have at most three vertices. The remainder will have
at least 3 vertices. Since G does not have an independent set of size three, G does not have
a (2, 1)-partition. We will prove that all the graphs obtained from deleting one vertex from
G have a (2, 1)-partition. That is, H1 = (K1,2 +K3)⊕K2,2, H2 = (K2,2 +K2)⊕K2,2 and
H3 = (K2,2 +K3)⊕K1,2, each have a (2, 1)-partition. For the graph H1, the partition has
one forest on five vertices consisting of K1,2 and K2,, and the other forest is just a K1,2,
leaving an independent set on two vertices.

For G = 2K2,2 ⊕K3,3, two forests can cover at most ten vertices . Either there is only
one forest on six vertices and the other forest then can have at most four vertices, or one
can obtain two forest on five vertices each. There is no independent set on four vertices.,
so G does not admit a (2, 1)-partition. To see that G is indeed minimal, note that both
H1 = (K2,2 +K1,2)⊕K3,3 and H2 = 2K2,2 ⊕K2,3 have a (2, 1)-partition. For H1 one such
partition has one forest consisting of two copies of K1,2 and other forest is a K1,3, leaving
an independent set of three vertices. For H2, a partition can be obtained with two forests
which are stars on five vertices each, and the remainder is just an independent set on three
vertices.

Finally, we prove that the graph (K4 + K3,3,3) ⊕K2 is a minimal cograph obstruction
for (2, 1)-partition. We consider what an independent set S must contain in order for none
of the minimal cograph obstructions for (2, 0)-partition (from Figure 1) to remain after S
is removed. Note that our graph contains K2,3,3,3, while in Figure 1 there is both a K3,3,3

and a K1,2,2,2. Moreover, when S is removed there must not remain a copy of K5. To
satisfy just these restrictions, S must contain one vertex of the K4, and three vertices of
one entire part of the K3,3,3. Since this is a maximal independent set, S must be this set;
but then its removal results in a graph containing an induced

(
2K2 +K3

)
⊕K2 (the last

graph in Figure 1). It remains to partition the graphs resulting from deleting a vertex from
(K4 + K3,3,3) ⊕ K2. If a vertex in the K4 is deleted, then we obtain a (2, 1)-partition by
taking the independent set S as above, and two stars centered at the two vertices of the

27

K2, each involving one 3-vertex part of the K3,3,3 and one vertex of the K4. If a vertex of
the K2 is deleted, we can take again the independent set S, one forest consisting of an edge
from the K4 and one part of the K3,3,3, and one star centered at the other vertex of the K2.
If a vertex v in the K3,3,3 is deleted, we can take for the independent set the vertices in the
K2, and partition the remaining vertices into two forests each consisting of one edge of the
K4 and one star on four vertices.

2.2.2 The completeness of the list

We now provide a proof for the Theorem 53, i.e., the list of minimal cograph obstructions
for (2, 1)-partition given in Lemma 67 is complete.

Proof. Let G be a cograph. It is easy to see that a disconnected cograph G admits a (2, 1)-
partition if and only if each connected component of G admits a (2, 1)-partition. Thus we
may assume G is a connected cograph which does not contain an induced subgraph from
F1, and proceed to prove it has a (2, 1)-partition.

For brevity, we shall say that a graph is F -free if it does not contain F as an induced
subgraph, and F1-free, if it doesn’t contain any member of the family F1 as an induced
subgraph.

Since G is connected, there exist cographs G1 and G2 such that G = G1 ⊕ G2. If G1

and G2 are forests, then G trivially has a (2, 1)-partition. So, at least one of G1, G2 must
contain an induced cycle. Without loss of generality, assume that at least G1 has an induced
cycle; since G1 is a cograph, the only cycles possible are C3 or C4.

1. Assume G1 is C3-free. In this case G1 has an induced C4; moreover, G1 is a
bipartite graph. We will take a concrete bipartition and refer to (X,Y) as the parts. If G2

is a forest, then we have a trivial (2, 1)-partition with two independent sets and a forest.
Thus we may assume that G2 also has a cycle. We have the following two subcases.

(a) Both G1 and G2 are C3-free. This implies that both cographs G1 and G2 are
bipartite, and each has an induced C4. BothG1 andG2 cannot have more than one connected
component with C4 because G is 2K2,2⊕2K2,2-free. Hence without loss of generality we may
assume that G2 has exactly one component, say A, with a C4, and the other components
are trees. Note that A must be a complete bipartite graph since G2 has no induced P4. The
graph G1 must also contain at least one connected component, say B, which is a complete
bipartite graph. If G1 has other components with an induced C4, then one of the parts of
A in G2 has exactly two vertices, because G is 2K2,2 ⊕ K3,3-free. If the other connected
components of G1 are trees, then one of the subgraphs A or B has a bipartition with one of
the parts having exactly two vertices, since G is K3,3,3,3-free. In either case, we can obtain a
(2, 1)-partition of G as follows. Suppose the connected component A of the graph G2 has a
bipartition (X,Y), where X has exactly two vertices. The first forest is obtained by taking
one vertex from X, the entire other part Y , and the remaining tree components of G2. Since

28

graph G1 is also bipartite, another forest can be obtained by taking one of the parts of G1

and the remaining vertex in X. The remaining vertices form an independent set in G1.
(b) G1 is C3-free but G2 contains a C3. Since G1 contains a K2,2 and since G is

2K3 ⊕K2,2-free and (K2,2 + K3) ⊕K2,2-free, there is exactly one component of G2 with a
C3, and the other components of G2 are forests. Let the set (v1, v2, v3) induce a C3 in G2,
and let B be the component of G2 containing it. Since B is a connected cograph, we have
B = B1 ⊕ B2 for cographs B1, B2. The component B cannot contain an induced K4 and
hence none of the graphs B1 and B2 have a C3. So, we assume without loss of generality
that v1, v2 ∈ V (B1), and v3 ∈ V (B2); moreover, B2 must be an independent set since G is
K6-free. If B2 has at least two elements, then B1 must be a K2, since G is K2,2,2⊕K1,2-free
and K2,2,2,2⊕K1-free. Hence either B1 is a K2 or B2 is a K1. We construct a (2, 1)-partition
in both the cases.

When B1 = K2, then taking one of the parts of the bipartite graph G1 along with one
vertex in B1 we obtain one first forest in our partition. To construct the second forest we
include B2 along with the remaining vertex in B1 and the remaining tree components of
G2. The remainder in G1 is the independent set in the partition.

When B2 consists of a single vertex, then taking this vertex with one of the parts of the
bipartite graph G1 yields the first forest in the partition. The remaining parts of G2 form
a forest which becomes the second forest in the partition. The remaining part of G1 is our
independent set in the (2, 1)-partition.

This concludes the first case.
2. Assume that G1 contains C3. Without loss of generality we can assume that G2 is

a forest as otherwise we have a K6, or a situation symmetric to the case 1(b). We consider
several possible cases, noting that in all the cases where G2 has at least one edge, G1 does
not contain K4, since G is K6-free.

(a) Suppose first that G2 has at least three vertices and at least one edge.
Consider a copy of C3 on v1, v2, v3 in G1, and the component B of G1 containing it. Since
B is a connected cograph, we have B = B1 ⊕ B2 for cographs B1 , B2. Since B does
not contain a K4, neither B1 nor B2 can contain a C3. So, we assume without loss of
generality that v1, v2 ∈ V (B1), and v3 ∈ V (B2); moreover, B2 is an independent set. If
B1 has an induced C4, then B2 will be just a single vertex because G is K2,2,2 ⊕K1,2-free
and K2,2,2,2 ⊕K1-free. (Note that G2 contains a copy of K1,2 or K1,2.) In conclusion, each
component B = B1 ⊕ B2 of G1 which contains a C3 either has a single vertex in B2 and a
bipartite B1, or an independent set B2 and a forest B1. Each component of G1 without a
C3 is bipartite.

We find a (2, 1)-partition of the graph G as follows. One forest will be formed by the
vertices in G2. We partition G1 into a forest and an independent set; it suffices to partition
each component B of G1 separately. A component B = B1⊕B2 with C3 which has a single
vertex v in B2 yields a star centered at v and using one part of the bipartition of B1, with

29

the other part of the bipartition yielding an independent set. In a component B = B1⊕B2

with C3 where B2 is an independent set and B1 is a forest, we trivially have a desired
partition. Finally, each remaining component B is bipartite and one part can be taken as a
forest and the other part as an independent set.

(b) Assume G2 has exactly two vertices, which are adjacent. Since G1 does not
contain K4, it is is three colourable. One of the colour classes along with one vertex of G2

forms one forest of the partition. Another colour class with the other vertex of G2 yields
another forest. The remainder is a single colour class which forms the independent set of
the partition.

(c) Assume G2 has exactly two vertices, which are not adjacent. If G1 does not
contain an induced K4, we obtain a partition of G as in case 2(b); so we assume that G1

has a K4. Note that we may take G2 for the independent set of a (2, 1)-partition, and it
remains to find a partition of G1 into two forests (a (2, 0)-partition). Clearly, it suffices to
find such a partition for each component B of G1 separately.

Note that while at least one component of G1 has a K4, there could be other components
B of G1 without a K4. Such components B must have a (2, 0)-partition because otherwise
G1 contains a minimal cograph obstruction for (2, 0)-partition from the family A2, and
adding the independent set G2 would yield a member of F1. (This can be easily seen by
comparing the two families.)

Now we consider components B = B1 ⊕B2 of G1 which do contain a K4.
Suppose first that both B1, B2 are bipartite. Note that both B1 and B2 cannot contain

an induced a C4 since G is K2,2,2,2⊕K1-free. If both B1 and B2 are forests, then we have a
trivial partition of B into two forests. Hence, say B1, has a C4 and B2 is a forest. In fact,
B2 must be just an edge, say uv, because G is K2,2,2,2 ⊕K1-free and K2,2,2 ⊕K1,2-free. In
this case a (2, 0)-partition of B is formed by taking one star centered at u with one part of
the bipartition of B1, and one star centered at v with the other part of B1.

Thus we may assume that one of B1, B2, say B1, contains a C3. Since G is K6-free, B
is K5-free, and so B2 must an independent set. Now we further consider each component
D = D1 ⊕D2 of B1. At least one such component D′ must contain a C3, but there could
also be bipartite components D; all must be K4-free.

If B2 has at least two vertices, then exactly one component, namely D′, of B1 has a
cycle (specifically a C3). Bipartite components D cannot have a cycle (i.e., a C4), because
G is (K3 +K2,2)⊕K2,2-free. Moreover no other component D 6= D′ can have a C3, because
G is 2K3 ⊕ K2,2-free. Hence if B2 has at least two vertices then all the components D of
B1, other than D′, are forests.

Suppose that v1, v2, v3 form a C3 in D. Since D = D1 ⊕ D2 is K4-free, neither of the
graphs D1, D2 has a C3. So we may assume v1, v2 ∈ V (D1) and v3 ∈ V (D2); moreover we
may assume D1 is a bipartite graph and D2 is an independent set.

30

If the bipartite graph D1 contains a C4, then both D2 and B2 must consist of a single
vertex because G is K2,2,2,2 ⊕K1-free.

If D1 is a forest with more than the two vertices v1, v2, then it contains an induced K1,2

or K1,2. Therefore, at least one of D2, B2 must be a single vertex, since G is K2,2,2,2⊕K1-free
and K2,2,2 ⊕K1,2-free.

Otherwise D1 is just the edge v1v2.
Finally, if there is no C3 in D, i.e., D is bipartite, then D1 is an independent set.
We now describe a (2, 0)-partition of B = B1∪B2. Recall that B2 is an independent set,

and B1 consists of components D = D1⊕D2 where each D2 is an independent set and each
D1 is bipartite, with the following four possibilities: (i) D1 contains a C4, in which case D2,
as well as B2, has a single vertex; (ii) D1 is a forest of more than two vertices, in which
case D2 or B2 has a single vertex; (iii) D1 is an edge v1v2; or (iv) D1 is an independent set.
Moreover, in cases (ii - iv), if B2 has more than one vertex, then all but one component D
of B1 are forests.

We first describe a (2, 0)-partition of B = B1 ∪B2 when B2 has at least two vertices. In
this case, there is one component D′ = D′1 ⊕D′2 of B1 with D′1 a forest with one or more
vertices (cases (ii, iii)), and all other components D of B are forests themselves. We obtain
a (2, 0)-partition of G1 as follows. If D′1 is just an edge, say xy, the first forest consists
of a star centred at the vertex x covering the independent set D′2, along with the rest of
the forest components of B′1. The second forest is a star centred at the remaining vertex v
covering the independent set B2. If D′1 has at least two vertices, then D′2 is a single vertex
u, and we can take D′1 together with all other components D as one forest; the other forest
will be the star centered at u and covering B2.

Now consider a component B = B1 ∪ B2 of G1 when B2 has a single vertex, say v. We
put together one forest for a (2, 0)-partition of B from the following forests in the various
components D = D1 ⊕D2 of B. From components D of type (i) we take the star centered
at the single vertex of D2 and covering one part of the bipartition of D1; from components
D of type (ii-iv) we take the forests D1. The other forest for a (2, 0)-partition of B will be
formed by a star centered at v and covering all the remaining vertices. (These are the other
parts of all D1 for components of type (i), as well as all D2 for components of type (ii-iv);
note that this is an independent set of vertices.)

(d) Finally, we assume that G2 is just a single vertex, say v. The proof here is
similar to the case 2(c), except that in the case (i), when D1 contains an induced C4, we
can only claim that B2 or D2 is a single vertex, and in the case (ii), when D1 is a forest
with more than two vertices, we cannot claim anything about the size of B2 or D2.

Nevertheless, there is a (2, 1)-partition of the entire G. (Since G2 is a single vertex v,
we may use v to form a star for the forests of the partition, and we no longer use G2 as
the independent set.) Before describing the partition, recall that G consists of a vertex v
adjacent to all other vertices, and G \ v has components B = B1 ⊕B2 of two kinds, either

31

2

G
2

v

G
1

...

...

B’
2

B
2

...

...

...

...

z

w

B

B’

...

...

...

...

D
1

...

D

Figure 2.2: An illustration of the case 2(d): one forest is indicated by large filled circles, the
other forest by double circles, the remainder is independent

B2 is a single vertex, or B2 is an independent set with at least two vertices. For components
B′ = B′1⊕B′2 of the first kind (where B′2 is a single vertex w), we only note that B′1 consists
of bipartite components D. For the components B of the second kind (where B2 is a larger
independent set), we distinguish components D′ = D′1⊕D′2 in which D′2 consists of a single
vertex z, and other components D = D1⊕D2 where D2 is a larger independent set and D1

is a forest. We now describe the first forest of a (2, 1)-partition of G. It is a star centered at
v and covering the sets D2 of all components D of B′1 for the components B′ of the first kind
(where B′2 is a single vertex), as well as the sets B2 of all components B of the second kind.
The second forest of the partition contains, for each component B′ of the first kind (where
B′2 is a single vertex w), a star centered at w and covering all first parts of the bipartitions
of all D1 of the components D of B′1. It also contains, for each component B of the second
kind, and each component D′ in which D′2 consists of a single vertex z, a star centered at z
and covering the first part of the bipartition of D′1, and containing D1 for each component
D in which D1 is a forest. The remaining vertices are easily seen to form an independent
set which we take for the desired (2, 1)-partition of G. This verifies the completeness of the
lists and hence proves Theorem 53.

32

2.2.3 Algorithms for (p, q)-partition in cographs

Before we discuss the certifying algorithms for the (p, q)-partition problems that we have
discussed so far, we briefly define the (p, q, r)-partition problem. A detailed discussion of the
(p, q, r)-partition problem is done in the next chapter. A (p, q, r)-partition is a generalization
of the (p, q)-partition where r vertices are allowed to be deleted such that the resulting graph
admits a (p, q)-partition. In [21], a polynomial time algorithm was given, which for a given
graph G and an integer w, generates all the triples (p, q, r) such that G admits a (p, q, r)-
partition, and p + q + r ≤ w. For a triple T = (p, q, r), we define the weight of a triple
w = (p+ q + r).

Theorem 55. ([21]) Given a cograph G = (V,E) and |V | ≤ n, the list of all the triples T
with weight(T) ≤ w such that G admits a T -partition can be obtained in time O(nw7).

However, Theorem 55 does not identify a minimal obstruction if G does not admit a
required partition. Of course, if one knows all the minimal obstructions and there are only
finitely many of them, then they can be found in polynomial time. For example, consider the
case of (1, q)-partition, the minimal obstructions are Kq+3 and (q + 2)K2, and by examining
all n2q subsets, we can determine if either is present. However, we present a more efficient
algorithm based on the cotree structure of the cographs.

We convert the proof of Theorem 52 into a certifying algorithm as follows. For a (1, q)-
partition, the proof starts with the assumption that graph G is {Kq+3, (q + 2)K2}-free.
Hence, in the certifying algorithm, we first test if G contains an induced Kq+3. If yes, we
have identified the obstruction, and no such partition is possible. Otherwise, G is (q + 2)-
colourable. In the proof, we consider next if there exists a colour class with at most one
vertex in a (q + 2)-colouring of G. Hence, in the next step of the algorithm we call a rou-
tine that returns with a (q+ 2)-colouring of G and we check the number of vertices in each
colour class. If we find a colour class with a single vertex, we return with a (1, q)-partition as
dictated in the proof. Otherwise, the next step of the proof involves identifying a cograph
Gj in the family of cographs {Gi}li=1, where G = ⊕l

i=1Gi so that Gj is (χ(Gj))K2-free.
Correspondingly, in the certifying algorithm, we iterate on the children of the root node,
determining the chromatic number of each child node and checking the conditions stated in
the proof. If such a node exists, we find a minimum colouring of that node; we also recur-
sively construct a partition of the remaining graph to construct the required (1, q)-partition.
If no such node exists, we identify the minimum obstruction (q + 2)K2.

33

Algorithm 1 A certifying algorithm for (1, q)-partition of cograph H
1: procedure Partition(1, q;H)
2: forest1 = {}, ind_set1 = {},..., ind_setq = {}
3: For each connected component G of H proceed as follows:
4: if q == 0 then
5: if |V (G)| == 1 then
6: Return the following partition of G:
7: forest1 = forest1 + V (G)

8: Test if G contains K3 or K2,2

9: if G contains K3 or K2,2 then
10: No (1, 0)-partition exists
11: else
12: Return the following partition:
13: forest1 = forest1 + V (G)

14: Test if G contains Kq+3

15: if Kq+3 found then
16: No (1, q)-partition exists
17: else
18: (X1, X2, ...X

′
q) = colour G with (q + 2) colours

19: if |X1| ≤ 1 or |X2| ≤ 1... or |X ′q| ≤ 1 then
20: Xk = set containing at most one vertex
21: Return the following partition of G:
22: forest1 = (X1 ⊕Xk), ind_set1 = X2, ind_set2 = X3,

23: |X1| ≥ 2, |X2| ≥ 2, ... |Xq| ≥ 2
24: From cotree of G identify cographs G1, G2, .., G`

25: such that G = ⊕`
i=1Gi

26: Find minimum colouring of each of G1, G2, ..., G`

27: χ(Gi) = chromatic number of Gi

28: for i = 1 to ` do
29: if Gi does not contain χ(Gi)K2 then
30: k = χ(Gi)
31: (forest1, ind_set′1, ind_set′2, ...) = PARTITION(1, k − 2;Gi)
32: (X1, X2, ...,)= colour graph G \ V (Gi) using (q + 2− k) colours
33: Return the following partition of G:
34: forest1 = forest1, ind_set1 = ind_set′1, ind_set2 = ind_set′2, ...,

ind_setk−1 = X1, ...

35: Gi contains χ(Gi)K2 for all i = 1, 2, .., l
36: Found (q + 2)K2, so conclude the algorithm, no (1, q)-partition exists

34

Before the certifying algorithm, we implement a pre-processing procedure that has the
following two steps.

1. Compute the cotree of cograph H.

2. For each node in the cotree of H, compute the clique number of the graph induced at
that node, and the largest s such that the graph induced at that node in the cotree
contains sK2.

The cotree of a cograph can be constructed in time O(m + n) [14]. The second step of
the pre-processing can be implemented to run in time O(n) as follows.

• Initialize leaves of cotree with s = 0 and k = 1.

• Perform the addition operation on join nodes, i.e., for a join node s =
∑l

1 si, where si

is the largest siK2 at child i, and the join node has l children. Similarly, k =
∑l

1 ki.

• Perform the max operation on disjoint union nodes, i.e., for a disjoint union node
s = max(s1, s2, ..., sl), where si is the largest siK2 at child i, and the disjoint union
node has l children. Similarly, k = max(k1, k2, ..., kl).

Theorem 56. The pre-processing procedure runs in time O(m+ n).

We now analyze the running time of the recursive Algorithm 1. Let T (n, q) denote the
maximum time for PARTITION(1, q;H) over graphs H with n vertices. To implement line
3, we only have to check if the cotree node for G has maximum k greater than or equal to
q+ 3, and hence, this can be done in constant time after the pre-processing step. For line 7,
we compute a (q + 2)-colouring, which must exist if there is no Kq+3. Using the algorithm
of [10], such a colouring can be computed in time O(n) since the cotree is given. Once a
colouring with the minimum number of colours is obtained, we can check if each colour
class has at least two vertices in time O(n). Lines 9-11 can be executed in constant time.
The subgraphs G1, ..., Gl in lines 13-14 can be obtained from the cotree in time O(n). Let
ni denote the number of vertices in subgraph Gi. Lines 15 take O(n) time since a minimum
colouring of Gi can be found in O(ni) time, and O(n1) + O(n2) + ... + O(nl) = O(n).
Line 16 also takes time O(n) as the maximum k for the node Gi can be obtained from the
pre-processing. Now, for the loop from lines 17-23, observe that although the number of
iterations of the loop can be n, at most one recursive call is made in the entire execution
of the loop. This is because a cograph that is {Kk−1, kK2}-free is guaranteed to have a
(1, k − 2)-partition by Theorem 52. The if condition in line 18 can be tested in constant
time after the pre-processing. The colouring required in line 21 has already been computed
in line 15. Line 24 of the algorithm takes constant time after the pre-processing. Hence,
T (n, q) satisfies the following equality.

35

T (n, q) = T (ni, k − 2) +O(n).

Here, ni denotes the number of vertices in subgraph Gi, k is the chromatic number of graph
Gi. For a connected cograph G on n vertices where n ≥ 2, we know that G = ⊕l

i=1Gi, where
l ≥ 2. Hence, χ(G) =

∑l
i=1 χ(Gi) and therefore χ(Gi) < χ(G). That is, k < (q + 2) and

hence, k − 2 < q − 1. We now claim the following inequality.

T (n, q) ≤ T (n, q − 1) +O(n).

For the base case of q = 0, we need to check if the graph contains a K3 or K2,2 which can
be checked in constant time from the s and k values computed in pre-processing. Otherwise,
the graph is a forest and the vertex set of the graph is a (1, 0)-partition itself. Hence, the
(1, 0)-partition can be computed in constant time. Hence, we conclude that T (n) = O(qn),
and the entire procedure takes O(m+ qn) time.

Theorem 57. Algorithm 1 can be implemented in time O(m + qn), or time O(qn) if the
cotree of H is given.

For Algorithm 2, we perform the same pre-processing we did above. The following op-
erations are the building blocks of Algorithm 2.

1. Testing if a cograph G has a cycle.

2. Finding the number of components of G that have a three cycle.

3. Finding the number of components of G that have a four cycle.

4. For a cograph G, identify subgraphs G1, G2 such that G = G1 ⊕G2.

5. Finding a bipartition (X,Y) for a bipartite graph G.

6. Testing if G contains a K4, K5 or K6.

7. Testing if G contains a K2,2,2,2 or a K3,3,3,3.

8. Finding a three-colouring of a cograph G.

9. Finding number of vertices and edges in a component H.

All of the above operations can be done in time O(n) once the cotree is known. A cograph
G contains a three-cycle if and only if the largest clique size which we already computed
in pre-processing is greater than two. Similarly, G contains a four-cycle if and only if the
largest s computed in the pre-processing is greater than one. Finding the subgraphs G1

and G2 is trivial by reading the children of the node corresponding to G in the cotree.
A bipartition of G is a two-colouring of G which can be found in O(n) time. Similarly,
the three-colouring of a cograph G in 8 can be found in O(n) time. Similarly, steps 5, 6

36

and 7 can be computed in either in O(n) time once the cotree is known, or have already
been computed in the pre-processing stage. Hence, the cotree with the largest s and clique
size for each node computed in the pre-processing settles most of the steps required. The
algorithm applies these elementary operations in the if-else blocks. Hence, we conclude that
the certifying algorithm takes O(m+ n) time.

Theorem 58. Algorithm 2 can be implemented in time O(m+n), or time O(n) if the cotree
of H is given.

37

Algorithm 2 A certifying algorithm for (2, 1)-partition of cograph H
1: procedure Partition(2, 1;H)
2: For each connected component G of H proceed as follows
3: From cotree of G, identify cographs G1, G2 such that G = G1 ⊕G2.
4: if both G1 and G2 are acyclic then
5: Return the partition: forest1 = G1, forest2 = G2

6: else if one of G1, G2, say G1, contains a cycle then
7: if both G1 and G2 are C3-free then
8: G1 is a bipartite graph (X,Y) that contains a K2,2

9: if G2 is acyclic then
10: Return the following partition:
11: forest1 = G1, forest2 = G2

12: else
13: Ensure G2 has a connected component that contains a C4

14: Find number of components in G1 and G2 that are not acyclic
15: if both G1 and G2 contain at least two components that contain C4 then
16: Found 2K2,2 ⊕ 2K2,2, no (2, 1)-partition exists.
17: else
18: G2 contains exactly one component A = (X ′, Y ′) that has a four cycle
19: if |X ′| = 2 or |Y ′| = 2 then
20: X ′ = part with exactly two vertices
21: {u, v} = V (X ′)
22: Return the following (2, 1)partition:
23: forest1 = X ′ ⊕ u, forest2 = Y ′ ⊕ v, ind_set = Y

24: else if |X| = 2 or |Y | = 2 then
25: X = part with exactly two vertices
26: {u, v} = V (X)
27: Return the following (2, 1)partition:
28: forest1 = X ′ ⊕ u, forest2 = Y ′ ⊕ v, ind_set = Y

29: else
30: Found K3,3,3,3, no (2, 1)-partition exists.

31: else if G1 is C3-free but G2 contains a C3 then
32: G1 is a bipartite graph that contains a K2,2

33: G1 has bipartition (X,Y)
34: k1 = number of components of G1 that have C4

35: k2 = number of components of G2 that have C4

38

36: if k1 ≥ 1 then
37: Found (K2,2 +K3)⊕K2,2, no (2, 1)-partition exists
38: else if k2 ≥ 2 then
39: Found 2K3 ⊕K2,2, no (2, 1)-partition exists
40: else
41: G2 has a component B containing C3, other components of G2 are forests
42: B = B1 ⊕B2

43: if num_edges(B1) ≥ 1 and num_edges(B2) ≥ 1 then
44: Found K6, no (2, 1)-partition exists
45: else
46: B1 = component of B with edges
47: if |B2| ≥ 2 and |B1| ≥ 3 then
48: if e1 ≥ 3 then
49: Found K2,2,2,2 ⊕K1, no (2, 1)-partition exists
50: else
51: Found K2,2,2 ⊕K1,2, no (2, 1)-partition exists.

52: else if |B2| ≥ 2 and |B1| = 2 then
53: B1 = K2, V (B1) = (u, v)
54: Return the following (2, 1)-partition:
55: forest1 = X ⊕ u
56: forest2 = (B2 ⊕ v) + acyclic components of G2

57: ind_set = Y

58: else
59: |B2| = 1, V (B2) = w

60: Return the following (2, 1)-partition:
61: forest1 = X ⊕ w, forest2 = acyclic components of G2

62: ind_set = Y

63: else if G1 contains a C3 then
64: if G2 contains a C3 then
65: Found K6, no (2, 1)-partition exists

66: e = no of edges in G2

67: if |G2| ≥ 3 and e ≥ 1 then
68: if G1 has a K4 then
69: Found K6, no (2, 1)-partition exists

39

70: for all components B of G1 containing a C3 do
71: if num_edges(B1) ≥ 1 and num_edges(B2) ≥ 1 then
72: Found K6, no (2, 1)-partition exists

73: B2 = the component of B which is edgeless
74: if B1 contains a C4 then
75: if |B2| ≥ 2 then
76: Either K2,2,2,2 ⊕K1 or K2,2,2 ⊕K1,2 found, no
77: (2, 1)-partition exists
78: else
79: |B2| = 1, {u} = V (B2)
80: B1 is complete-bipartite with bipartition (X,Y)
81: Partition B as follows: forest1 = forest1 +X ⊕ u
82: ind_set = ind_set+ Y

83: else
84: Partition B as follows:
85: forest1 = forest1 +B1

86: ind_set = ind_set+B2

87: Return the following (2, 1)-partition:
88: forest1, forest2 =acyclic components of G1, ind_set
89:

90: else if |G2| = 2 and edges(G2) = 1 then
91: if G1 has a K4 then
92: Found K6, no (2, 1)-partition exists

93: (A,B,C) = Find_three_colouring(G1)
94: {u, v} = V (G2)
95: Return the following (2, 1)-partition:
96: forest1 = A⊕ u, forest2 = B ⊕ v, ind_set = C

97: else if |G2| = 2 and num_edges(G2) = 0 then
98: if G1 does not contain K4 then
99: go to 70
100: else
101: for all components B of G1 containing a K4 do
102: B = B1 ⊕B2

103: if both B1 and B2 are bipartite then
104: if both B1 and B2 contain C4 then
105: Found K2,2,2,2 ⊕K1, no (2, 1)-partition exists

40

106: else if both B1 and B2 are acyclic then
107: Partition B as follows:
108: forest1 = forest1 +B1, forest2 = forest2 +B2

109: else
110: B1 = component of B that has C4

111: B2 = component of B that is a forest
112: if edges(B2) ≥ 2 then
113: Either K2,2,2,2 oplusK1 or K2,2,2 ⊕K1,2 found, no
114: (2, 1)-partition exists

115: {u, v} = V (B2)
116: B1 has bipartition (X,Y)
117: Partition B as follows:
118: forest1 = forest1 +X ⊕ u
119: forest2 = forest2 + Y ⊕ v
120: else
121: One of B1, B2 contains a C3

122: B1 = the component containing C3

123: if edges(B2) ≥ 1 then
124: Found K6, no (2, 1)-partition occurs

125: B2 is edgeless
126: if |B2| ≥ 2 then
127: if no of components containing a cycle ≥ 2 then
128: Either (K2,2 +K3)⊕K2,2 or 2K3 ⊕K2,2 occurs,
129: No (2, 1)-partition

130: Exactly one component of B1 contains a cycle
131: D = component of B1 containing C3

132: Other components,D′ of B1 are forests
133: D = D1 ⊕D2

134: if edges(D1) ≥ 0) and edges(D2) ≥ 0 then
135: Found K6, no (2, 1)-partition

136: D2 = the edgeless component of D
137: if D1 contains a cycle then
138: Either K2,2,2,2 ⊕K1 or K6, no (2, 1)-partition

41

139: D1 is a forest
140: if |D1| ≥ 3 then
141: if |D2| ≥ 2 then
142: Either K2,2,2,2 ⊕K1 or K2,2,2 ⊕K1,2 occurs,
143: no (2, 1)-partition

144: |D2| = 1, {v} = D2

145: Partition B as follows:
146: forest1 = forest1 +D1+ acyclic components of B1

147: forest2 = forest2 + (B2 ⊕ v)
148: else
149: {x, y} = V (D1)
150: Partition B as follows:
151: forest1 = forest1 + (D2 ⊕ x)+ acyclic components of

B1

152: forest2 = forest2 + (B2 ⊕ y)

153: else
154: |B2| = 1, {v} = V (B2)
155: if D1 is not bipartite then
156: Found K6, no (2, 1)-partition

157: if D1 is a forest then
158: go to 139
159: D1 has a four cycle
160: D1 has bipartition (X,Y)
161: if |D2| ≥ 2 then
162: Found K2,2,2,2 ⊕K1, no (2, 1)-partition

163: {w} = V (D2)
164: Partition B as follows:
165: forest1 = forest1 + (X ⊕ v)
166: forest2 = fores2 + (Y ⊕ w)

167: else
168: G1 contains C3 and |G2| = 1
169: {v} = V (G2)
170: if G1 does not contain K4 then
171: go to 70

42

172: else
173: for all components B of G1 containing K4 do
174: B = B1 ⊕B2

175: if both B1 and B2 are bipartite then
176: go to 103
177: else
178: One of B1, B2 contains a cycle
179: B1 = the component containing C3

180: if edges(B2 ≥ 1) then
181: Found K6, no (2, 1)-partition

182: B2 is edgeless
183: for all components D of B1 containing C3 do
184: D = components of B1 containing a three-cycle
185: D = D1 ⊕D2

186: if edges(D1) ≥ 0) and edges(D2) ≥ 0 then
187: Found K6, no (2, 1)-partition

188: D2 = the edgeless component of D
189: if D1 is not bipartite then
190: K6 found, no (2, 1)-partition found.

191: D1 is bipartite with bipartition (X,Y)

192: if |B2| ≥ 2 then
193: if D1 contains four cycle then
194: if |D2| ≥ 2 then
195: Found K2,2,2,2 ⊕K1, no (2, 1)-partition

196: {z} = V (D2)
197: Partition B as follows:
198: forest1 = forest1 + (B2 ⊕ v)
199: forest2 = forest2 + (X ⊕ z)
200: ind_set = ind_set+ Y

201: else
202: D1 is a forest
203: Partition B as follows:
204: forest1 = forest1 + (B2 ⊕ v)
205: forest2 = forest2 + (D1)
206: ind_set = ind_set+D2

43

207: else
208: |B2| = 1, {w} = V (B2)
209: Partition B as follows:
210: forest1 = forest1 + (D2 ⊕ w)
211: forest2 = forest2 + (X ⊕ v)
212: ind_set = ind_set+ Y

44

For another illustration, we give a certifying algorithm for the (2, 0)-partition, which
can be obtained similarly by converting the proof of Theorem 51 from [21]. For the (2, 0)-
partition algorithm, a similar analysis holds except that the algorithm is entirely composed
of if-else constructs and there are no for loops as above. The algorithm also needs to test
for induced P3 for a cograph G. This can be done in constant time after the pre-processing
procedure. Any graph with s at least two contains a P3, and also a connected cograph where
the largest s = 1 also contains a P3. Also in line 66, the algorithms ask to compute a (1, 1)-
partition. Finding a (1, 1)-partition takes time O(n) since we have already constructed the
cotree. Hence, Algorithm 3 runs in O(m+ n) time.

Theorem 59. Algorithm 3 can be implemented in time O(m + n), or time O(n) once the
cotree is known.

45

Algorithm 3 A certifying algorithm for (2, 0)-partition of cograph H
1: procedure Partition(2, 0;H)
2: For each connected component G of H proceed as follows:
3: Construct cotree of G, find G1, G2 such that G = G1 ⊕G2.
4: if both G1 and G2 are acyclic then
5: Return the following partition:
6: forest1 = G1, forest2 = G2

7: else if G1 contains a cycle, switch G1, G2 if necessary then
8: if both G1 and G2 are C3-free then
9: if G2 contains a P3 then

10: Found K2,2,2 ⊕K1, no (2, 0)-partition exists

11: if |V (G2)| ≥ 3 then
12: if G2 has an edge then
13: Found K2,2 ⊕ (K1 +K2), no (2, 0)-partition exists
14: else
15: G2 is an independent set
16: if no of components of G1 that contains a C4 ≥ 2 then
17: Found 2K2,2 ⊕K3

18: Construct bipartition (X,Y) for component of G1 that contains a K2,2

19: if |X| ≥ 3 and |Y | ≥ 3 then
20: Found K3,3,3, no (2, 0)-partition exists

21: X = has at most two vertices, switch X,Y if necessary
22: {u, v} = X

23: Return the following partition:
24: forest1 = G2 ⊕ u, forest2 = (Y ⊕ v)+ acyclic components of G1

25: else
26: {u, v} = V (G2)
27: Construct bipartition (X,Y) for component of G1

28: Return the following partition:
29: forest1 = X ⊕ u, forest2 = Y ⊕ v
30: else if G1 is C3-free, G2 contains a C3 then
31: Found K5, no (2, 0)-partition exists

46

32: else if G1 contains a C3 then
33: if G2 has an edge then
34: Found K5, no (2, 1)-partition occurs

35: G2 is an independent set
36: if |V (G2)| ≥ 2 then
37: if no of components of G1 that have a cycle then
38: Found 2K3 ⊕K2 or (K3 +K2,2)⊕K2

39: No (2, 0)-partition exists

40: B = component of G1 contains K3

41: Construct cotree for B, since B is connected this cotree
42: identifies B1 and B2, B = B1 ⊕B2

43: if both B1 and B2 have edges then
44: Found K5, no (2, 1)-partition occurs

45: B2 = cograph which is an independent set
46: Switch B1, B2 if necessary
47: if |B2| ≥ 2 then
48: if B1 has a P3 then
49: Found K2,2,2 ⊕K1, no (2, 0)-partition exists
50: else if B1 contains (K1 +K2) then
51: Found K2,2 ⊕ (K1 +K2), no (2, 0)-partition exists
52: else
53: B1 has a single edge, {u, v} = V (B1)
54: Return the following partition:
55: forest1 = G2 ⊕ u, forest2 = B2 ⊕ v + acyclic components of G1

56: else
57: B2 has a single vertex, {v} = V (B2)
58: if B1 contains a cycle then
59: Found K5 or K2,2,2 ⊕K1, no (2, 0)-partition occurs

60: Return the following partition:
61: forest1 = G2 ⊕ v, forest2 = B1 + acyclic components of G1

47

62: else
63: G2 has a single vertex, {v} = V (G2)
64: if G1 contains a K4 or K2,2,2 then
65: Found K5 or K2,2,2 ⊕K1, no (2, 0)-partition occurs

66: (forest1, IS1) = Find(1, 1)-partition of G1

67: Return the following partition:
68: forest1 = forest1, forest2 = (IS1 ⊕ v)

48

Chapter 3

(p,q,r)-partition

3.1 Introduction

In chapter 1, we observed that many "hard" problems like graph-colouring, vertex cover, in-
dependent set etc. can be solved in polynomial time for several restricted graph classes. The
techniques and results used for a given graph class C can sometimes be applied to related
graph classes if they differ only to a small degree. In this chapter, we extend our charac-
terization results of (p, q)-partitionable cographs to the class of graphs "closely" related to
(p, q)-partitionable cographs.

A property of a graph is a set of graphs. A graph G is said to be Π-graph if G ∈ Π.
A hereditary property Π is a property such that if G is a Π-graph, then every induced
subgraph of G is also a Π-graph. For a hereditary property, the "closeness" is defined in
terms of the modification needed for a given graph G such that the modified graph is a
Π-graph. The modifications allowed could be deletion or addition of vertices, deletion and
addition of edges. This is called as the Π-graph modification problem.

Definition 40. [8] Π(i, j, k)-graph modification problem for graph G = (V,E):
Find sets V ′ ⊆ V , E ⊆ E, E∗ ⊆ Ec such that the graph G − V ′ − E′ + E∗ is a Π-graph
where Ec = E(G), |V ′| ≤ i, |E′| ≤ j and |E∗| ≤ k.

The graph modification problem can also be seen as a generalization of the graph recog-
nition problem. An example of a modification problem is the vertex deletion problem. For a
given graph G, how many vertices should be removed from G such that the resulting graph
is a Π-graph? This is called the vertex deletion problem or the maximum induced subgraph
problem. The objective here is to minimize the number of vertices that should be removed.
For any non-trivial hereditary graph property, the vertex deletion problem was shown to
be NP-complete [65]. The edge deletion problem is defined analogously. The edge deletion
problem is sometimes also called the maximum subgraph problem.

In this chapter, we study a vertex deletion version of the (p, q)-partition problem we
discussed earlier, called the (p, q, r)-partition problem. For a given graph G, the minimum

49

number r such that G admits a (p, q, r)-partition, is the smallest number of vertices whose
deletion results in a graph that has a (p, q)-partition. The (p, q, r)-partition problem was
introduced in [21].

Definition 41. A (p, q, r)-partition of G is a partition (P,Q,R) of its vertex set such that
the subgraph induced on P has vertex-arboricity p, the subgraph induced on Q is q-colourable,
and |R| ≤ r.

We provide a minimal obstruction characterization of the (p, q, r)-partition problem for
the (1, 1, 1)-case and the (1, 2, 1)-case.

Several vertex deletion problems can also be posed as (p, q, r)-partition problems. For
example, consider the following vertex deletion problems.

Definition 42. The feedback vertex set of a graph G is a set of vertices that meets all the
cycles in the graph. If S is a feedback vertex set, then the graph G− S is acyclic.

The feedback vertex set problem is another example of the vertex deletion problem that
we discussed above. The optimization problem here is to find such a set of minimum cardi-
nality. In the weighted version, each vertex has a weight, and the objective is to minimize
the weight of the sum of the vertices in the feedback vertex set.

Proposition 60. The size of minimum feedback vertex set in a graph G is equal to the
minimum r such that the graph G admits a (1, 0, r)-partition.

The minimum vertex feedback set is a classical combinatorial optimization problem,
it was among Karp’s original 21 NP-complete problems [50], and it has attracted much
attention [49, 13, 66, 56].

Definition 43. The maximum q-colourable subgraph for a given graph G is the largest
induced subgraph of G that is q-colourable.

The problem here is determining the size of the maximum q-colourable subgraph for a
given graph G.

Proposition 61. For a given graph G = (V,E), let S be a maximum q-colourable subgraph
in G, for a fixed q. Let r be the smallest integer such that the graph G admits a (0, q, r)-
partition, then |S| = |V | − r.

The maximum q-colourable subgraph problem is NP-complete on general graphs, for
q ≥ 3 [65]. The problem is also NP-complete on split graphs [66] but can be solved in
polynomial time on interval graphs [58].

Definition 44. The vertex cover of a graph G is a set of vertices X such that G \X is an
independent set.

50

Proposition 62. The size of a minimum vertex cover in a graph is equal to the minimum
r such that the graph G admits a (0, 1, r)-partition.

Finding the minimum vertex cover is NP-complete for general graphs [50]. It is also
NP-hard on planar graphs where the maximum degree is restricted to four and for cubic
graphs [40].

3.2 The (1, 1, 1)-partition problem

For the (1, 1, 1)-partition problem, the objective is to obtain a (P,Q,R)-partition of the
vertex set V (G) such that P is a forest, Q is an independent set and |R| ≤ 1. In other
words, we are allowed to delete at most one vertex v such that G − v admits a (1, 1)-
partition. Below, we present complete sets F2 and F3 of minimal cograph obstruction for
the (1, 1, 1)-partition.

Theorem 63. A cograph admits a (1, 1, 1)-partition if and only if it is F2-free and F3-free.

3.2.1 The list of minimal obstructions

We introduce the family F2 of cographs. The members of the family are:

1. K5

2. K3,3,3

3. K2,2 ⊕K1,2

4. K2,2,2 ⊕K1

5. 2K3 ⊕K2

6. (K2,2 +K3)⊕K2

7. 2K2,2 ⊕K3

8. 2K2 ⊕ 2K2

The family F3 consists of the following disconnected cographs.

1. K4 +K4

2. K4 +K2,2,2

3. K2,2,2 +K2,2,2

Lemma 64. Each graph in F2 is a minimal obstruction to (1, 1, 1)-partition.

51

Proof. From their descriptions, one can see that graphs in F2 are obtained by repeated
applications of the disjoint union or the join operation on complete graphs or complete
bipartite graphs. Hence, each graph in F2 is a cograph.

For G = K5, observe that any forest in K5 can have at most two vertices. Any indepen-
dent set can cover at most one vertex. This leaves two vertices in the remainder, where only
one vertex can be assigned to the set R. Hence, K5 does not admit a (1, 1, 1)-partition. To
prove that K5 is a minimal obstruction, it is sufficient to note that the graph K4 admits a
(1, 1, 1)-partition. Assign one vertex of K4 to the set R; this leaves a K3 that can be covered
by a forest containing a single edge and an independent set that is just a single vertex.

For G = K3,3,3, any forest can cover at most four vertices. With the independent set
in any partition covering at most three vertices, the remainder would have at least two
vertices. Since only one vertex can be assigned to the set R, K3,3,3 is an obstruction. When
a vertex is deleted, we obtain the graph K2,3,3, which has the following (1, 1, 1)-partition.
Remove one vertex of the part with two vertices, the forest is a star at the other vertex and
covers four vertices. The remaining vertices form an independent set of size three.

For G = K2,2⊕K1,2, an independent set in G can have at most two vertices, and a forest
can have at most three vertices since any four vertices in G have a cycle. The remainder
contains at least two vertices, where the set R can have at most one vertex. Hence, G does
not admit a (1, 1, 1)-partition. To prove that G is a minimal obstruction, we need to prove
that the graphs H1 = K2,2,2, H2 = K1,2 ⊕K1,2 and H3 = K2,2 ⊕ K2 admit a (1, 1, 1)-
partition. For H1 = K2,2,2, assign one vertex of a part to the set R. A star on three vertices
covers the other vertex. An independent set of size two covers the remaining vertices. For
H2 = K1,2 ⊕K1,2, K1,2 can be considered as the forest in a (1, 1, 1)-partition. Removing
one vertex of the edge in K1,2 yields an independent set of size two. To obtain a partition in
H3 = K2,2⊕K2, assign one vertex of K2 to the set R. The forest is a star on three vertices,
and the remainder is just an independent set of size two.

Assume that G = K2,2,2⊕K1. Observe that any four vertices in G induce a cycle. Hence,
a forest in G contains at most three vertices. Similarly, observe that any independent set
has at most two vertices since any three vertices in G induce an edge. The remainder con-
tains at least two vertices, where the set R can have only one. Hence, G is an obstruction
to (1, 1, 1)-partition. We have already established that K2,2,2 admits a (1, 1, 1)-partition.
Hence, to establish that G is a minimal obstruction, it is sufficient to observe that the
graph K1,2,2 ⊕K1 admits the following (1, 1, 1)-partition. We take K1,2 as the forest in the
partition, the independent set has size two, and the set R contains the only vertex on one

52

side of the join.

For G = 2K3 ⊕K2, any forest can have at most four vertices. An independent set has
size at most two in G, leaving at least two vertices in the remainder. Hence, G does not
admit a (1, 1, 1)-partition. We will prove that all the graphs obtained from deleting one
vertex from G have a (1, 1, 1)-partition. That is H1 = (K2 +K3)⊕K2 and H2 = 2K3⊕K1,
each have a (1, 1, 1)-partition. For H1, a partition consists of a forest that is 2K2 and has
four vertices. The independent set consists of two vertices on one side of the join, and the
remaining vertex in H1 can be removed. For H2, the forest consists of the graph 2K2 and
has four vertices. The independent set contains two vertices, and the remainder is just a
vertex in the set R. Thus, G = 2K3 ⊕K2 is a minimal obstruction.

For G = 2K2,2⊕K3, observe that any independent set must lie entirely on one side of the
join. One side of the join contains two disjoint four cycles, which can not be partitioned into
a forest and a vertex. Hence, an independent set must lie on this side of the join; such a set
has at most four vertices. However, the remaining vertices contain an induced K4,3, which
can not be partitioned into a forest and a vertex. Therefore, G does not admit a (1, 1, 1)-
partition. To see that G is a minimal obstruction, note that both H1 = (K2,2 +K1,2)⊕K3

and H2 = 2K2,2 ⊕ K2 admit a (1, 1, 1)-partition. For H1, one such partition has a forest
consisting of two copies of K1,2, an independent set covering three vertices and the remain-
ing vertex in H1 is assigned to the set R. For H2 = 2K2,2 ⊕K2, a (1, 1, 1)-partition can be
obtained with a forest that is a star on five vertices, the independent set has size four, and
one vertex in the set R.

Assume that G = (K2,2 +K3)⊕K2. Any independent set must lie entirely on one side
of the join. Observe that one side of the join contains a disjoint four cycle and a three cycle,
which can not be partitioned into a forest and vertex. Hence, an independent set must lie on
this side of the join; such a set has at most three vertices. However, the remaining vertices
contain an induced (K2 +K2)⊕K2, which can not be partitioned into a forest and a vertex.
Therefore, G does not admit a (1, 1, 1)-partition. To prove that G is a minimal obstruction,
it is sufficient to provide a (1, 1, 1)-partition for the following graphs: H1 = (K1,2+K3)⊕K2,
H2 = (K2,2 +K2)⊕K2 and H3 = (K2,2 +K3)⊕K1. For H1 = (K1,2 +K3)⊕K2, we con-
struct a (1, 1, 1)-partition where we take (K1,2 +K2) as the forest, an independent set that
contains two vertices, and one vertex in the set R. A similar partition can be constructed
for H2. For H3, we remove the only vertex on one side of the join, we take (K1,2 + K2) as
the forest in the partition, and the remaining two vertices form the independent set in the
desired (1, 1, 1)-partition.

53

Finally, assume that G = 2K2 ⊕ 2K2. Any independent set in G covers at most two
vertices. A forest in G can have at most four vertices since any five vertices in G induce
a cycle. The remainder contains at least two vertices, where the set R can have only one.
Hence, G is an obstruction to a (1, 1, 1)-partition. The graph G is also a minimal obstruction
since 2K2 ⊕K1,2 admits the following partition. We remove a vertex from K1,2 to obtain
the independent set of the partition. The forest consists of two edges on one side of the join.

Lemma 65. Let G be a disconnected cograph. If G has at least two connected components
that do not admit a (1, 1, 0)-partition, then G does not admit a (1, 1, 1)-partition.

Lemma 66. Let H be a disconnected cograph. If H is a minimal obstruction to (1, 1, 1)-
partition, then H consists of exactly two connected components such that each component
is a minimal obstruction to (1, 1, 0)-partition.

Proof. Since H is a disconnected cograph, H consists of two or more connected components.
If none of the components are an obstruction to (1, 1, 0)-partition, H admits a (1, 1, 0)-
partition and hence admits a (1, 1, 1)-partition. Hence, at least one of the connected com-
ponents does not admit a (1, 1, 0)-partition. If exactly one connected component does not
admit a (1, 1, 0)-partition, then H is not minimal since a vertex v can be removed in H such
that H − v does not admit a (1, 1, 1)-partition.

Hence, H has at least two such components. Using Lemma 65, and the assumption that
H is minimal, H is a graph with exactly two connected components, both of which do not
admit a (1, 1, 0)-partition. If one of the connected components, say H1, is not a minimal
obstruction to (1, 1, 0)-partition, there exists an induced subgraph of H1, which is a minimal
obstruction to (1, 1, 0)-partition. This contradicts the assumption that H is minimal.

Lemma 67. Each graph in F3 is a minimal cograph obstruction to (1, 1, 1)-partition.

Proof. The (1, 1, 0)-partition has two minimal obstructions:K4 andK2,2,2. Lemma 65 estab-
lishes that the members of family F3 are indeed obstructions to (1, 1, 1)-partition. Lemma
66 guarantees the minimality of the obstructions.

3.2.2 The completeness of the lists

First, we prove that the list of minimal cograph obstructions for (1, 1, 1)-partition given in
Lemma 64 is complete for connected cographs.

Theorem 68. A connected cograph admits a (1, 1, 1)-partition if and only if it is F2-free.

54

Proof. Let G be a connected cograph; we assume that G is F2-free. We proceed to provide
a (1, 1, 1)-partition for G. As G is a connected cograph, there exist cographs G1 and G2

such that G = G1 ⊕G2.
1. Assume that both G1 and G2 are forests. A forest in a cograph is a collection of

stars. Hence, for cographs G1 and G2, each connected component is a star. Both G1 and G2

can not contain two stars as connected components since G does not contain 2K2⊕ 2K2 as
an induced subgraph. Hence, without loss of generality, it can be assumed that one of the
forests is a tree. Assume that G2 is a tree, we obtain a (1, 1, 1)-partition as follows. Consider
G1 as the forest in the partition, removing the centre vertex of the star G2, we obtain an
independent set, as required.

2. Suppose that exactly one of them, say G2, is a forest. Hence, G1 contains an
induced cycle. Since G1 is a cograph, the only cycles possible are C3 or C4.
(2.1) Assume that G1 is C3-free. The graph G1 must contain a C4. For the bipartite
graph G1, we fix a bipartition and refer to (X,Y) as the parts. We will prove that the graph
G2, in this case, is either a single edge or an independent set. Since G is (K2,2 ⊕ K1,2)-
free, G2 must be either a connected cograph or an independent set. Furthermore, as G
is (K2,2,2 ⊕ K1)-free, any tree G2 can have at most two vertices, i.e., G2 is an edge. If
|V (G2)| ≤ 2, a (1, 1, 1)-partition can be obtained as follows. The forest is a star at a vertex
in G2, any vertex that remains in G2 can be removed. The remainder forms an independent
set in the (1, 1, 1)-partition.

If |V (G2)| ≥ 3, then G2 must be an independent set, as we discussed above. Since G is
(2K2,2⊕K3)-free, exactly one connected component of G1 contains an induced cycle. Let A
be the connected component of G1 containing C4. Since A is a connected bipartite cograph,
A is a complete bipartite graph. We fix a bipartition (A1, A2). The graph G is K3,3,3-free;
hence, one of the parts of A, say A2, has at most two vertices. A (1, 1, 1)-partition can now
be obtained by removing one vertex of A2. The forest consists of a star at the remaining
vertex of A2 and the part A1, and the other tree components of G1, we take G2 as the
independent set of the partition.

(2.2) Assume that G1 contains a C3. Since G1 contains a C3 and G is K5-free, G2

must be an independent set. Consider a copy of C3 on {v1, v2, v3} in G1, and the component
B of G1 containing it. Since B is a connected cograph, we have B = B1 ⊕B2, for cographs
B1, B2. Since B does not contain a K4, neither B1 nor B2 can contain a C3. So, we assume
without loss of generality that v1, v2 ∈ V (B1), and v3 ∈ V (B2); moreover, B2 is an inde-
pendent set. We consider the following sub-cases here.

(2.2.1) Suppose that G2 has at least two vertices. The graph G2 is an independent
set, as we discussed above. Since G is {2K3 ⊕K2, (K2,2 +K3)⊕K2}-free and G2 contains
K2, exactly one connected component of G1, say B, contains an induced cycle.

55

If B2 has at least two vertices, from the assumption that G is (K2,2 ⊕ K1,2)-free, we
obtain that B1 is connected. Furthermore, as G is assumed to be (K2,2,2 ⊕ K1)-free, B1

must be a single edge, say uv. To obtain a (1, 1, 1)-partition, we remove one vertex in B1,
say u. The forest consists of a star at v and covering B2 and the remaining tree components
of G1. We take G2 as the independent set in the desired (1, 1, 1)-partition. If B2 consists of
a single vertex, say z, then B1 must be a forest since G is K2,2,2 ⊕K1-free. We remove the
vertex z, B1 along with the tree components of G1 forms the forest in the partition. We
take G2 as the independent set in the desired (1, 1, 1)-partition.

(2.2.2) Suppose that G2 consists of a single vertex w. From the assumption that
G is {K5,K2,2,2⊕K1}-free, we infer that G1 must be {K4,K2,2,2}-free, and admits a (1, 1)-
partition. We remove the vertex w to obtain a (1, 1, 1)-partition.

3. Assume that both G1 and G2 contain an induced cycle. We assert that this
case is not possible. Since (K3⊕K3) containsK5 as an induced subgraph, which is forbidden.
Similarly, (K2,2⊕K2,2) contains (K2,2,2⊕K1), and (K2,2⊕K3), which also contains aK5.

Finally, we prove the Theorem 63 we presented earlier.

Proof. Assume first that G is a disconnected cograph. Since G is F2-free by assumption,
each connected component of G admits a (1, 1, 1)-partition. As G is also F3-free, all the
components of G except for one must admit a (1, 1, 0)-partition. Hence, the graph G admits
a (1, 1, 1)-partition.

3.3 The (1, 2, 1)-partition problem

The objective is to obtain a (P,Q,R)-partition of the vertex set V (G) such that P induces a
forest, Q can be partitioned into two independent sets, and |R| ≤ 1. In other words, we are
allowed to delete at most one vertex v such that G− v admits a (1, 2)-partition. Below, we
present families F4 and F5 of complete minimal cograph obstructions to (1, 2, 1)-partition.

Theorem 69. A cograph admits a (1, 2, 1)-partition if and only if it is F4-free and F5-free.

3.3.1 The list of minimal obstructions

We introduce two families of cographs F4 and F5. The members of the family F4 are:

1. K6

2. K3,3,3,3

3. K2,2,2 ⊕K1,2

4. K2,2,2,2 ⊕K1

56

5. 2K3 ⊕K2,2

6. (K2,2 +K3)⊕K2,2

7. 2K2,2 ⊕K3,3

8. 2K2,2 ⊕ 2K2,2

9. (K4 +K2,2,2)⊕K2

10. 2K3 ⊕ 2K2

11. 2K4 ⊕K2

12. (2K2 ⊕ 2K2)⊕K2

The family F5 consists of the following disconnected cographs.

1. K5 +K5

2. K5 +K2,2,2,2

3. K2,2,2,2 +K2,2,2,2

Lemma 70. Each graph in F4 is a minimal cograph obstruction to (1, 2, 1)-partition.

Proof. It is clear from their descriptions that each graph in the family F4 is a cograph. We
claim that each of these graphs is a minimal obstruction to (1, 2, 1)-partition.

Consider first G = K6: it does not have a (1, 2, 1)-partition because any forest in K6

can have at most two vertices. Observe that no two vertices in K6 form an independent set.
Hence, two independent sets can cover at most two vertices. The remainder has at least
two vertices, only one of which can be assigned to the set R. Hence, G is an obstruction to
(1, 2, 1)-partition. When a vertex is removed, we have K5, a (1, 2, 1)-partition can be con-
structed as follows. The forest is one edge, and each independent set is a single vertex. The
remainder is a vertex which is covered by the set R. Therefore, K6 is a minimal obstruction.

For G = K3,3,3,3, we observe that any forest can cover at most four vertices (any five
vertices in G induce a cycle). An independent set in G has size at most three. Hence, two
independent sets can cover at most six vertices. The remainder has at least two vertices, and
hence G does not admit a (1, 2, 1)-partition. When a vertex is removed, we obtain K2,3,3,3,
where two independent sets have size three each. The forest is a star on four vertices, leaving
one vertex in the set R. Therefore, K3,3,3,3 is a minimal obstruction.

For G = K2,2,2 ⊕ K1,2, we note that any induced subgraph on four or more vertices
contains an induced cycle. Hence, a forest in any partition can cover at most three ver-
tices. An independent set can have at most two vertices, and hence, two independent sets

57

can cover at most four vertices. The remainder contains at least two vertices. Therefore,
K2,2,2⊕K1,2 is an obstruction. The cograph G is also a minimal obstruction as the cographs
H1 = K1,2,2 ⊕K1,2 and H2 = K2,2,2 ⊕K2 admit a (1, 2, 1)-partition where the forest is a
tree on three vertices, each independent set has size two, and the set R contains one vertex.

For G = K2,2,2,2⊕K1, observe that any induced subgraph on four or more vertices con-
tains an induced cycle. Hence, any maximal forest in G has size three. Any three vertices
in G induce an edge, and hence an independent set can have at most two vertices. Two
independent sets have at most four vertices, and hence, the remainder contains at least two
vertices. To prove that G is minimal, note that both H1 = K2,2,2,2 and H2 = K1,2,2,2 ⊕K1

have a (1, 2, 1)-partition in which the forest is a tree on three vertices, each independent set
has size two, and the set R has one vertex.

For G = 2K3 ⊕K2,2, any forest has at most four vertices. Any independent set has size
at most two in G. Hence, two independent sets contain at most four vertices, leaving at
least two vertices in the remainder. Hence, G does not admit a (1, 2, 1)-partition. We will
prove that all the graphs obtained from deleting one vertex from G have a (1, 2, 1)-partition.
That is, H1 = (K2 + K3) ⊕K2,2 and H2 = 2K3 ⊕K1,2 have a (1, 2, 1)-partition. Both the
cographs have a (1, 2, 1)-partition where the forest consists of two edges and contains four
vertices. Each independent set has size two, and one vertex in the set R.

Suppose that G = (K2,2 + K3) ⊕ K2,2. Any independent set must lie entirely on one
side of the join. The bigger side of the join contains two disjoint cycles which can not be
partitioned into a forest and a vertex. Hence, at least one independent set must lie on this
side of the join, such a set can have at most three vertices. However, the remainder contains
an induced K2,2 ⊕ K1,2, which is an obstruction to (1, 1, 1)-partition. Therefore, G is an
obstruction to (1, 2, 1)-partition. To prove that G is a minimal obstruction, we provide a
(1, 2, 1)-partition for the following cographs:H1 = (K1,2+K3)⊕K2,2,H2 = (K2,2+K2)⊕K2,2

and H3 = (K2,2 + K3) ⊕K1,2. The cograph H1 admits a partition where the forest covers
five vertices and consists of a star on three vertices and an edge. Each independent set has
size two, and one vertex in the set R. The cograph H3 admits a similar (1, 2, 1)-partition
while the cograph H2 has a partition where the forest has five vertices. One independent
set has size two, while the other independent set has a single vertex. The set R contains
one vertex.

For G = 2K2,2⊕K3,3, any independent set in G must lie entirely on one side of the join.
One side of the join contains two disjoint four cycles that cannot be partitioned into a forest
and a vertex. Hence, at least one independent set must lie on this side of the join; such a set
has at most four vertices. However, the remainder contains an induced K3,3,3, which is an

58

obstruction to (1, 1, 1)-partition. Hence, G is an obstruction to (1, 2, 1)-partition. To see that
G is a minimal obstruction, note that both H1 = (K2,2 +K1,2)⊕K3,3 and H2 = 2K2,2⊕K2,3

have a (1, 2, 1)-partition. For H1 = (K2,2 + K1,2) ⊕ K3,3, one such partition has a forest
consisting of two copies of K1,2, the two independent sets have three vertices each, and the
set R has one vertex. For H2 = 2K2,2⊕K2,3, a partition can be obtained where the forest is
a star on five vertices, one independent set contains four vertices and the other independent
set contains three vertices, and one vertex is assigned to the set R.

Consider G = 2K2,2 ⊕ 2K2,2. Any independent set must lie entirely on one side of the
join. One side of the join contains two disjoint four cycles, which cannot be partitioned into
a forest and a vertex. Hence, at least one independent set must lie on this side of the join;
such a set has at most four vertices. However, the remaining vertices contain an induced
(K3)⊕2K2,2, which is an obstruction to (1, 1, 1)-partition. Therefore, G is an obstruction to
(1, 2, 1)-partition. Removing a vertex, we obtain the graph ((K1,2+K2,2)⊕2K2,2), which has
the following (1, 2, 1)-partition. Two independent sets containing four vertices each on the
bigger side of the join, forest consisting of 2K1,2 on the smaller side of the join, leaving one
vertex in the set R. Thus 2K2,2⊕K2,2 is a minimal cograph obstruction to (1, 2, 1)-partition.

To prove that G = (K4 +K2,2,2)⊕K2 is a minimal obstruction; we consider which vertex
v can be removed such that G − v admits a (1, 2, 0)-partition. Note that G contains two
copies of K5 and one copy of K2,2,2,2, both of which are an obstruction to (1, 2, 0)-partition.
Hence, there is no vertex in G such that its removal yields a {K5, K2,2,2,2}-free graph.
Therefore, G is an obstruction to (1,2,1)-partition. The cograph (K3 +K2,2,2)⊕K2 admits
a (1, 2, 1)-partition, where one independent set has size three, and the other independent
set covers two vertices. The forest has five vertices and consists of an edge and a star on
three vertices. This leaves a single vertex in the set R. The graph H2 = (K4 +K1,2,2)⊕K2

has a similar (1, 2, 1)-partition. Finally, for cograph H3 = (K4 + K2,2,2) ⊕ K1, we remove
the single vertex on one side of the join. The two independent sets have three vertices each,
and the forest has four vertices. Hence, G is a minimal obstruction.

For G = 2K3 ⊕ 2K2, any forest can cover at most four vertices. An independent set
has size at most two in G. Hence, two independent sets cover at most four vertices. The
remainder contains at least two vertices. Therefore, G does not admit a (1, 2, 1)-partition.
Now we will show that the cographs H1 = (K2 +K3)⊕ 2K2, and H2 = 2K3⊕K1,2 admit a
(1, 2, 1)-partition. For H1 = (K2 +K3)⊕ 2K2, the partition consists of a forest that is 2K2

and has four vertices. Each independent set has size two and |R| = 1. For H2 = 2K3⊕K1,2,
the forest consists of the 2K2 and has four vertices. Each independent set has two vertices,
and the set R contains one vertex. Therefore, G = 2K3 ⊕ 2K2 is a minimal obstruction.

59

To prove that G = 2K4 ⊕K2 is an obstruction, we consider which vertex v ∈ V (G) can
be removed such that G−v admits a (1, 2, 0)-partition. Hence, for some vertex v, G−v must
be {K5 , K2,2,2,2}-free. However, G contains four copies of K5. Hence, there is no vertex
in G such that its removal yields a K5-free graph; we conclude that G is an obstruction
to (1, 2, 1)-partition. For H1 = (K4 + K3) ⊕K2, we obtain a (1, 2, 1)-partition where each
independent set has size two. The forest has two edges and contains four vertices leaving
exactly one vertex in the set R. For the cograph H2 = 2K4 ⊕K1, remove the single vertex
on one side of the join. The forests has two edges and four vertices. Each independent set
has size two.

Suppose that G = (2K2 ⊕ 2K2) ⊕ K2. Since we know that H = 2K4 ⊕ K2 is an
obstruction to (1, 2, 1)-partition, G is also an obstruction since G contains H as a sub-
graph. The minimality of G follows from the fact that both H1 = (2K2 ⊕K1,2) ⊕K2 and
H2 = (2K2⊕ 2K2)⊕K1 admit a (1, 2, 1)-partition. For H2 = (2K2⊕ 2K2)⊕K1, we remove
the only vertex on one side of the join. Consider 2K2 as a forest of the partition. The re-
mainder can be partitioned into two independent sets. For H1 = (2K2⊕K1,2)⊕K2, remove
one vertex from the K2 of the K1,2. We take 2K2 as a forest in the partition, and each
independent set has two vertices.

3.3.2 The completeness of the lists

Let G be a connected cograph and assume that G does not admit a (1, 2, 0)-partition. If the
cograph G has a (1, 2, 1)-partition, then it is easy to see that there exists a vertex v such
that G− v has a (1, 2, 0)-partition.

From the discussion above, we can conclude that any disconnected cograph with two
or more components that do not admit a (1, 2, 0)-partition is an obstruction to (1, 2, 1)-
partition. More precisely, we have the following lemma.

Lemma 71. Let G be a disconnected cograph, if G has two or more connected components
which do not admit a (1, 2, 0)-partition, then G does not admit a (1, 2, 1)-partition.

Lemma 72. Let H be a disconnected cograph. If H is a minimal obstruction to (1, 2, 1)-
partition, then H contains exactly two connected components such that each component is
a minimal obstruction to (1, 2, 0)-partition.

Proof. Since H is a disconnected cograph, H consists of two or more connected components.
If none of the components is an obstruction to (1, 2, 0)-partition, the cograph H admits a
(1, 2, 0)-partition and hence admits a (1, 2, 1)-partition. Therefore, H contains at least one
connected component that does not admit a (1, 2, 0)-partition. If exactly one connected
component does not admit a (1, 2, 0)-partition, then H is not minimal since a vertex v can
be removed such that H − v also does not admit a (1, 2, 1)-partition.

60

Hence, H has at least two such components. Using Lemma 71, and the assumption that
H is minimal, H consists of exactly two connected components such that each component
does not admit a (1, 2, 0)-partition. If one of the connected components, say H1, is not
a minimal obstruction to (1, 2, 0)-partition, then there exists an induced subgraph of H1,
which is a minimal obstruction to (1, 2, 0)-partition. This contradicts the assumption that
H is minimal.

Lemma 73. Each graph in F5 is a minimal cograph obstruction to (1, 2, 1)-partition.

Proof. Since K5 and K2,2,2,2 are both minimal obstructions to (1, 2, 0)-partition, it follows
from Lemma 71 that the members of family F3 are an obstruction to (1,2,1)-partition.
Lemma 72 guarantees the minimality.

We now prove that the list of minimal cograph obstructions for (1, 2, 1)-partition given
in Lemma 70 is complete for connected cographs.

Theorem 74. A connected cograph admits a (1, 2, 1)-partition if and only if it is F4-free.

Proof. Let G be a connected cograph; we assume that G is F4-free. We proceed to provide
a (1, 2, 1)-partition for G. Since G is a connected cograph, there exist cographs G1 and G2

such that G = G1 ⊕G2.
1. Assume that both G1, G2 are forests. If G1 and G2 are forests, we obtain a

(1, 2, 1)-partition as follows. The graph G1 can be considered as the forest in the partition.
The graph G2 is a forest and can be partitioned into two independent sets.

2. Assume that exactly one of them, say G2, is a forest. Since the graph G1

contains an induced cycle, and the only cycles possible in a cograph are C3 and C4, we
consider the following subcases.

(2.1) Assume that G1 is C3-free. In this case, G1 is a bipartite graph that contains
a C4. As G2 is a forest, we have a trivial (1, 2, 1)-partition with two independent sets and
a forest.

(2.2) Assume that G1 contains a C3. We consider several possible cases, noting that
in all the cases, where G2 has at least one edge, G1 does not contain K4, since G is K6-free.

(2.2.1) Suppose that G2 has at least three vertices and at least one edge.
Consider a copy of C3 on {v1, v2, v3} in G1, and the component B of G1 containing it. Since
B is a connected cograph, there exist cographs B1, B2 such that B = B1 ⊕ B2. Since B
does not contain a K4, neither B1 nor B2 contains a K3. So, we assume without loss of
generality that v1, v2 ∈ V (B1), and v3 ∈ V (B2); moreover, B2 is an independent set. If B1

has an induced C4, then B2 must be a single vertex because G is K2,2,2 ⊕ K1,2-free and
K2,2,2,2⊕K1-free. (Note that G2 contains either a copy of K1,2 or K1,2) In conclusion, each
component B = B1 ⊕ B2 of G1, that contains a C3 either has a single vertex in B2 and a

61

bipartite B1, or an independent set B2 and a forest B1. Each component of G1 without a
C3 is bipartite.

Now, if G2 has exactly one connected component, i.e., G2 is a star, then let u be the
centre vertex of the star G2. We remove the vertex u so that we obtain G2 − u as one
independent set of the desired (1, 2, 1)-partition. We now partition G1 into a forest and
an independent set; it suffices to partition each component B of G1 separately. For the
components B = B1 ⊕B2 of G1 that contain C3 and a single vertex v′ in B2, we construct
a (1, 1)-partition as follows. Here, we obtain a star at v′ using one part of the bipartition
of B1. The other part of the bipartition yields an independent set. For the components,
B = B1 ⊕B2 with C3, where B2 is an independent set, and B1 is a forest; we already have
a desired (1, 1)-partition. Finally, each remaining component B that does not contain a C3

is bipartite, and we take one part as the forest and the other part as an independent set for
the desired (1, 1)-partition.

Hence, we assume that G2 has at least two connected components such that each compo-
nent has at least one edge. In that case, the graph G1 has exactly one connected component
B, which has C3. Otherwise, G contains 2K3 ⊕ 2K2 as an induced subgraph. If B2 has
exactly one vertex, say u

′ , we remove u′ from the graph and obtain a (1, 2, 0)-partition
as follows. From the bipartite graph G1 − u′, we obtain the two independent sets in the
partition, and we take G2 as the forest in the partition. If B2 has at least two vertices, B1 is
a forest. Moreover, B1 is a tree(star) because G is (2K2 ⊕K2 ⊕ 2K2)-free. Let B1 be a star
at v′. We remove v′, and from G1− v

′ , we obtain the two independent sets in the partition,
and we take G2 as the forest in the desired (1, 2, 1)-partition.

(2.2.2) Assume that G2 has exactly two vertices which are adjacent. Since G2

has an edge, G1 does not contain an induced K4 as G is K6-free. Therefore, G1 is three-
colourable. We take one of the colour classes along with one vertex of G2 as the forest of
our (1, 2, 1)-partition. The remaining two colour classes form the two independent sets of
the partition. The remainder is just a vertex in G2.

(2.2.3) Assume G2 has exactly two vertices which are not adjacent. If G1 does
not contain an induced K4, we obtain a partition of G as follows. Since G1 is K4-free, it is
three-colourable. We take one of the colour classes along with one vertex of G2 as the forest
of our (1, 2, 1)-partition. The remaining two colour classes form the two independent sets of
the partition. The remainder is just a vertex in G2.

Now we assume that G1 has a K4. Since G is (2K4 ⊕K2)-free, exactly one connected
component of G contains K4.

Note that while at most one component of G1 has aK4, there could be other components
B of G1 without a K4. Either B has (1, 1, 0)-partition or B contains a minimal cograph
obstruction to (1, 1, 0)-partition, i.e., B contains either K4 or K2,2,2 as an induced subgraph.
Since B does not contain K4, B must contain K2,2,2 as an induced subgraph. But then we

62

end up with (K4 +K2,2,2)⊕K2 from the family F4. Hence, the components of G1 that do
not contain K4 have a (1, 1, 0)-partition.

Now we consider component B of G that contains K4 as an induced subgraph. Since B
is a connected cograph, there exist cographs B1, B2 such that B = B1 ⊕B2.

Suppose first that both B1, B2 are bipartite. Note that both B1 and B2 cannot contain
an induced C4 since G is K2,2,2,2 ⊕ K1-free. If both B1 and B2 are forests, at least one
of the forests must be connected, i.e., a star since G is (2K2 ⊕ 2K2) ⊕ K2-free. Without
loss of generality, we may assume that B2 is a star. The (1, 2, 1)-partition, in this case,
is constructed as follows. We remove a vertex in B2 to obtain one independent set of the
(1, 2, 1)-partition. We take G2 as the other independent set, and B1 as the forest in the
partition.

Hence, we assume that B1 has a C4, and B2 is a forest. In fact, the graph B2 is just
an edge, say uv, since G is K2,2,2,2 ⊕K1-free and K2,2,2 ⊕K1,2-free. In this case, a (1, 2, 1)-
partition is obtained by removing the vertex u, we take one part of the bipartite graph
B1 as one independent set of the partition, G2 as the other independent set, and one star
formed at v with the other part of B1 as the forest in our (1, 2, 1)-partition.

Thus, we may assume that one of B1, B2, say B1, contains a C3. Since G is K6-free,
B should be K5-free. Hence, B2 must be an independent set. We further consider each
connected component D = D1⊕D2 of B1. At least one such component D′ must contain a
C3, but there could also be bipartite components D, as well as other components that have
a C3; all must be K4-free.

If B2 has at least two vertices, then exactly one component, namely D′, of B1 has a
cycle (specifically a C3). Bipartite components D cannot have a four cycle because G is
((K3 + K2,2) ⊕K2,2)-free. Moreover, no other component D 6= D′ can have a C3, because
G is (2K3 ⊕K2,2)-free. Hence, if B2 has at least two vertices, all the components D of B1,
other than D′, are trees.

Suppose that {v1, v2, v3} form a C3 in D′. Since D′ = D′1⊕D′2 is K4-free, neither of the
graphs D′1, D′2 have a C3. So we may assume v1, v2 ∈ V (D′1) and v3 ∈ V (D′2); moreover, we
may assume D′1 is a bipartite graph, and D′2 is an independent set.

If the bipartite graph D′1 contains a C4, then both D′2 and B2 must consist of a single
vertex because G is K2,2,2,2 ⊕K1-free.

If D′1 is a forest with more than two vertices, then it contains an induced K1,2 or K1,2.
Therefore, at least one of D′2, B2 must be a single vertex, since G is K2,2,2,2 ⊕K1-free and
K2,2,2 ⊕K1,2-free.

Otherwise, D′1 is just the edge v1v2.
Finally, for the components, D = D1 ⊕ D2 that do not contain a C3, D1 is just an

independent set.
To summarize the discussion, B2 is an independent set, and B1 consists of components

D = D1 ⊕ D2, where each D2 is an independent set and each D1 is bipartite, with the

63

following four possibilities: (i) D1 contains a C4, in which case D2, as well as B2, have a
single vertex; (ii) D1 is a forest with more than two vertices, in which case either D2 or B2

has a single vertex; (iii) D1 is an edge v1v2; or (iv) D1 is an independent set. Moreover, in
cases (ii - iv), if B2 has more than one vertex, all but one component D of B1 are trees.

We first describe a (1, 1, 1)-partition of B = B1 ⊕B2 when B2 has at least two vertices.
In this case, there is one component D′ = D′1⊕D′2 of B1 such that D′ has a C3. Here, D′1 is
a forest containing one or more vertices (cases (ii, iii)), and all other components D of B are
trees. We obtain a (1, 1, 1)-partition of G1 as follows. If D′1 is just an edge, say xy, we remove
the vertex y, and the forest consists of a star at x covering the independent set D′2, along
with the rest of the tree components of B1. The independent set of the partition consists of
B2. If D′1 has more than two vertices, then D′2 is a single vertex u, we remove u and take
D′1 together with all other components D as the forest; we take B2 as the independent set
in the partition.

Now consider a component B = B1 ⊕ B2 of G1, when B2 has a single vertex, say v.
To obtain a (1, 1, 1)-partition, we remove the vertex v, we put together one forest for a
(1, 1, 1)-partition of B from the following forests in the various components D = D1 ⊕D2

of B. From components D of type (i) we take the star centred at the single vertex of D2

and covering one part of the bipartition of D1; from components D of type (ii-iv) we take
the forest D1.

The remaining vertices in G1 form an independent set in the (1, 2, 1)-partition. (These
will be the remaining part of the bipartition of D1 in the first case and the independent set
D2 in the second case.)

(2.2.4) Finally, we assume that G2 is just a single vertex, say v. The proof here
is similar to the case (2.2.3), except that in the case (i) when D1 contains an induced C4,
we can only claim that either B2 or D2 is a single vertex, and in the case (ii) when D1

is a forest with more than two vertices, we cannot claim anything about the size of B2 or
D2. Also, we can no longer claim that at most one component of G1 has K4, there could
be multiple components of G1 that have K4 as an induced subgraph. Clearly, it suffices to
find a partition for each component B of G1 separately. Before describing the partition,
recall that G consists of a vertex v adjacent to all other vertices, and G−v has components
B = B1 ⊕B2 of two kinds, either B2 is a single vertex, or B2 is an independent set with at
least two vertices. For components B′ = B′1⊕B′2 of the first kind (where B′2 is a single vertex
w), we only note that B′1 consists of bipartite components D. For the components B of the
second kind (where B2 is a larger independent set), we distinguish componentsD′ = D′1⊕D′2
in which D′2 consists of a single vertex z, and other components D = D1 ⊕D2 where D2 is
a larger independent set and D1 is a forest. To obtain the required (1,2,1)-partition of G,
we remove the single vertex of G2, and we construct the forest of the partition as follows.
For the components B′ of the first kind (where B′2 is a single vertex w), it is a star centred
at w and covering the sets D2 of all components D of B′1. For the components B2 of the

64

second kind where D′2 consists of a single vertex z, the forest consists of a star centred at
z covering one part of the bipartition of D′1. Finally, for the components B2 where D′2 is
a larger independent set, we take D′1 as the forest of the partition. The remaining vertices
are easily seen to form two independent sets for the desired (1, 2, 1)-partition. (These will
be the two parts of the bipartite graph D′1, for the components of the first kind. For the
components of the second kind where D′2 is a single vertex, the two independent sets will
be the remaining part of the bipartite graph D′1 and B2. Finally, for the remaining case,
the two independent sets consist of B2 and D′2.)

3. Assume that none of the cographs G1, G2 are forests:
(3.1) Both G1 and G2 are C3-free. This implies that both cographs G1 and G2

are bipartite, and both have an induced C4. Both G1 and G2 cannot have more than
one connected component with C4 since G is (2K2,2 ⊕ 2K2,2)-free. Hence, without loss of
generality, we may assume that G2 has exactly one component, say A, with a C4, and the
other components are trees. Note that A must be a complete bipartite graph since G2 has no
induced P4. The graph G1 also contains connected component B such that B is a complete
bipartite graph. If G1 has other components with an induced C4, then one of the parts of
A in G2 has exactly two vertices, because G is 2K2,2 ⊕ K3,3-free. If the other connected
components of G1 are trees, then one of the subgraphs A or B has a bipartition with one of
the parts having exactly two vertices, since G is K3,3,3,3-free. In either case, we can obtain
a (1, 2, 1)-partition of G as follows. Suppose the connected component A of the graph G2

has a bipartition (X,Y), where X has exactly two vertices. We remove one vertex in X. To
construct the forest, we include Y along with the remaining vertex in X and the remaining
tree components of G2. From the bipartite graph G1, we obtain the two independent sets
in the desired (1, 2, 1)-partition.

(3.2) Let G1 is C3-free, but G2 contains a C3. Since G1 contains a K2,2, and since
G is (2K3 ⊕ K2,2)-free and ((K2,2 + K3) ⊕ K2,2)-free, there is exactly one component of
G2 with a C3, and other components of G2 are trees. Let the set {v1, v2, v3} induce a C3

in G2, and let B be the component of G2 containing it. Since B is a connected, there
exist cographs B1 and B2 such that B = B1 ⊕ B2. The component B cannot contain an
induced K4, and hence none of the graphs B1, B2 have a C3. So, we assume without loss
of generality that v1, v2 ∈ V (B1), and v3 ∈ V (B2); moreover, B2 must be an independent
set since G is K6-free. If B2 has at least two elements, then B1 must be a K2, since G is
(K2,2,2 ⊕ K1,2)-free and (K2,2,2,2 ⊕ K1)-free. Hence, either B1 is a K2 or B2 is a K1. We
construct a (1, 2, 1)-partition in both the cases as follows.

When B1 = K2, we remove one vertex of the K2. We obtain the forest for the partition
by taking a star formed by the remaining vertex in B1 and the independent set B2 along with
the remaining tree components of G2. The bipartite graph G1 yields the two independent
sets in the (1, 2, 1)-partition.

65

When B2 consists of a single vertex, say v, we remove this vertex. We take G2 − v as
the forest, and the two parts of the bipartite graph G1 yield the independent sets of the
(1, 2, 1)-partition. This concludes the proof.

We conclude with the proof of Theorem 69 we presented in section 3.3

Proof. Assume that G is a disconnected cograph. Since G is F2-free by assumption, every
connected component of G admits a (1, 2, 1)-partition. Since G is also F3-free, all compo-
nents ofG except for one admit a (1, 2, 0)-partition. Hence,G admits a (1, 2, 1)-partition.

3.4 Concluding remarks

In this thesis, we provide a complete list of minimal obstructions for the (p, q)-partition
for the case p = 2 and q = 1 on cographs. For the (p, q, r)-partition problem on cographs,
we were able to find a complete list of minimal obstructions for the (1, 1, 1) case, and the
(1, 2, 1) case. We also provided certifying algorithms for the partition problems that run in
O(m+qn) time for the (1, q)-partition problem, and O(m+n) time for the (2, 0) and (2, 1)-
partition problems. We were also able to conclude that a uniform description of minimal
obstructions does not exist for the case of p = 2, in contrast to the case of p = 1 for (1, q)-
partitions, where we have only two obstructions for any q ≥ 0. It would be interesting to see
whether similar completeness results and certifying algorithms can be obtained for the class
of P4-sparse graphs. A graph is P4 sparse if and only if any set of five vertices induce at
most one P4. The class of P4 sparse graphs contains all cographs and a similar unique tree
representation of P4 sparse graphs can be obtained [48]. Another line of investigation would
be to examine the (p, q)-partition problem and the (p, q, r)-partition problem on classes
of higher clique-width. As we previously discussed, cographs are exactly the graphs with
clique-width two, and hence, it would be interesting to see if similar minimal obstruction
characterization results can be obtained for classes of higher clique-width.

66

Bibliography

[1] Kenneth I Appel and Wolfgang Haken. Every planar map is four colorable, volume 98.
American Mathematical Soc., 1989.

[2] Claude Berge. The coloring problems in graph theory. 9:123–160, 1960.

[3] Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

[4] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theo-
retical Computer Science, 209(1):1 – 45, 1998.

[5] Kellogg S Booth and George S Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using pq-tree algorithms. Journal of computer
and system sciences, 13(3):335–379, 1976.

[6] Francesco Brioschi. On non-serial dynamic programming. J. Comb. Theory, Ser. A,
14(2):137–148, 1973.

[7] Rowland Leonard Brooks. On colouring the nodes of a network. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, volume 37, pages 194–197. Cambridge
University Press, 1941.

[8] Leizhen Cai. Fixed-parameter tractability of graph modification problems for heredi-
tary properties. Information Processing Letters, 58(4):171 – 176, 1996.

[9] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong
perfect graph theorem. Annals of mathematics, ISSN 0003-486X, Vol. 164, No 1, 2006,
pags. 51-229, 164, 01 2003.

[10] V. Chvátal, C. T. Hoàng, N. V. R. Mahadev, and D. De Werra. Four classes of perfectly
orderable graphs. Journal of Graph Theory, 11(4):481–495, 1987.

[11] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158,
New York, NY, USA, 1971. Association for Computing Machinery.

[12] Derek Corneil, Stephan Olariu, and Lorna Stewart. The lbfs structure and recognition
of interval graphs. SIAM J. Discrete Math., 23:1905–1953, 01 2009.

[13] Derek G Corneil and Jean Fonlupt. The complexity of generalized clique covering.
Discrete Applied Mathematics, 22(2):109–118, 1988.

67

[14] Derek G. Corneil, Yehoshua Perl, and Lorna K Stewart. A linear recognition algorithm
for cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

[15] Derek G. Corneil and Udi Rotics. On the relationship between clique-width and
treewidth. SIAM Journal on Computing, 34(4):825–847, 2005.

[16] D.G. Corneil, H. Lerchs, and L.Stewart Burlingham. Complement reducible graphs.
Discrete Applied Mathematics, 3(3):163 – 174, 1981.

[17] Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable opti-
mization problems on graphs of bounded clique-width. Theory of Computing Systems,
33(2):125–150, 2000.

[18] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs.
Discrete Applied Mathematics, 101(1):77 – 114, 2000.

[19] Peter Damaschke. Induced subgraphs and well-quasi-ordering. Journal of Graph The-
ory, 14(4):427–435, 1990.

[20] Dantas, Simone, de Figueiredo, Celina M.H., Gravier, Sylvain, and Klein, Sulamita.
Finding h-partitions efficiently. RAIRO-Theor. Inf. Appl., 39(1):133–144, 2005.

[21] Sebastián González Hermosillo de la Maza, Pavol Hell, César Hernández Cruz,
Seyyed Aliasghar Hosseini, and Payam Valadkhan. Vertex arboricity of cographs. 2019.

[22] Raquel de Souza Francisco, Sulamita Klein, and Loana Tito Nogueira. Characterizing
(k,l)–partitionable cographs. Electronic Notes in Discrete Mathematics, 22:277 – 280,
2005. 7th International Colloquium on Graph Theory.

[23] Marc Demange, Tınaz Ekim, and Dominique de Werra. Partitioning cographs into
cliques and stable sets. Discrete Optimization, 2(2):145 – 153, 2005.

[24] Zdenek Dvorak, Ken-ichi Kawarabayashi, and Robin Thomas. Three-coloring triangle-
free planar graphs in linear time. pages 1176–1182, 01 2009.

[25] Dennis D. A. Epple and Jing Huang. A note on the bichromatic numbers of graphs.
Journal of Graph Theory, 65(4):263–269, 2010.

[26] P Erdős and A Rényi. On random graphs I. Publ. math. debrecen, 6(290-297):18, 1959.

[27] Tomás Feder, Pavol Hell, and Winfried Hochstättler. Generalized Colourings (Matrix
Partitions) of Cographs, pages 149–167. Birkhäuser Basel, Basel, 2007.

[28] Tomas Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. Complexity of graph
partition problems. In Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing, STOC ’99, page 464–472, New York, NY, USA, 1999. Association
for Computing Machinery.

[29] Tomás Feder and Pavol Hell. On realizations of point determining graphs, and ob-
structions to full homomorphisms. Discrete Mathematics, 308(9):1639 – 1652, 2008.

[30] Stéphane Foldes and Peter L Hammer. Split graphs. Universität Bonn. Institut für
Ökonometrie und Operations Research, 1976.

68

[31] Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pacific
journal of mathematics, 15(3):835–855, 1965.

[32] Micheal R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman and Company, New York, 1979.

[33] P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of
interval graphs. Canadian Journal of Mathematics, 16:539–548, 1964.

[34] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57
of Annals of Discrete Mathematics. Elsevier Science, 2 edition, 2004.

[35] Martin Grötschel, László Lovász, and Alexander Schrijver. Stable Sets in Graphs, pages
272–303. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988.

[36] H. GROTZSCH. Ein dreifarbensatz fur dreikreisfreie netze auf der kugel. Wiss. Z.
Martin Luther Univ. Halle-Wittenberg, Math. Nat. Reihe, 8:109–120, 1959.

[37] András Hajnal and János Surányi. Über die auflösung von graphen in vollständige
teilgraphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math, 1:113–121, 1958.

[38] S. L. Hakimi and E. F. Schmeichel. A note on the vertex arboricity of a graph. SIAM
Journal on Discrete Mathematics, 2(1):64–67, 1989.

[39] PL Hammer and B Simeone. The splittance of a graph, univ. of waterloo, dept. of
combinatorics and optimization, res. Report CORR, pages 77–39, 1977.

[40] Juris Hartmanis. Computers and intractability: a guide to the theory of np-
completeness (michael r. garey and david s. johnson). Siam Review, 24(1):90, 1982.

[41] Juris Hartmanis and Richard E Stearns. On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society, 117:285–306, 1965.

[42] PJ Heawood. Map colour theorem’, quart. d. J. Math, 1890.

[43] Pavol Hell. Graph partitions with prescribed patterns. European Journal of Combina-
torics, 35:335 – 353, 2014. Selected Papers of EuroComb’11.

[44] Pavol Hell, César Hernández-Cruz, and Anurag Sanyal. Partitioning cographs into two
forests and one independent set. In Manoj Changat and Sandip Das, editors, Algorithms
and Discrete Applied Mathematics - 6th International Conference, CALDAM 2020,
Hyderabad, India, February 13-15, 2020, Proceedings, volume 12016 of Lecture Notes
in Computer Science, pages 15–27. Springer, 2020.

[45] Pavol Hell, Sulamita Klein, Loana Tito Nogueira, and Fábio Protti. Partitioning
chordal graphs into independent sets and cliques. Discrete Applied Mathematics,
141(1):185 – 194, 2004. Brazilian Symposium on Graphs, Algorithms and Combi-
natorics.

[46] Pavol Hell and Jaroslav Nešetřil. On the complexity of h-coloring. Journal of Combi-
natorial Theory, Series B, 48(1):92 – 110, 1990.

69

[47] J Hopcroft and R Tarjan. Efficient planarity testing journal of the association for
computing machinery. 1974.

[48] Beverly Jamison and Stephan Olariu. Recognizing $p_4 $-sparse graphs in linear time.
SIAM Journal on Computing, 21(2):381–406, 1992.

[49] Donald B Johnson. Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing, 4(1):77–84, 1975.

[50] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer
US, Boston, MA, 1972.

[51] Norbert Korte and Rolf Möhring. A simple linear -time algorithm to recognize interval
graphs. pages 1–16, 06 1986.

[52] Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta
mathematicae, 15(1):271–283, 1930.

[53] C Lekkeikerker and J Boland. Representation of a finite graph by a set of intervals on
the real line. Fundamenta Mathematicae, 51(1):45–64, 1962.

[54] Linda Lesniak and H Joseph Straight. The cochromatic number of a graph. Ars
Combinatoria, 3:39–46, 1977.

[55] László Lovász. A characterization of perfect graphs. Journal of Combinatorial Theory,
Series B, 13(2):95–98, 1972.

[56] Madhav V Marathe, R Ravi, and C Pandu Rangan. Generalized vertex covering in
interval graphs. Discrete Applied Mathematics, 39(1):87–93, 1992.

[57] Jan Mycielski. Sur le coloriage des graphs. Colloquium Mathematicae, 3(2):161–162,
1955.

[58] Giri Narasimhan and Rachel Manber. The Maximumk-Colorable Subgraph Problem.
PhD thesis, 1989. AAI8923342.

[59] Joseph G. Peters and Arthur L. Liestman. Partitions of generalized split graphs. 2012.

[60] ROSE DJ; TARJAN RE. Algorithmic aspects of vertex elimination on directed graphs.
S.I.A.M. J. APPL. MATH.; U.S.A.; DA. 1978; VOL. 34; NO 1; PP. 176-197; BIBL.
1 P. 1/2, 1978.

[61] Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hy-
pergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.

[62] Payam Valadkhan. List matrix partitions of special graphs. PhD thesis, Applied Sci-
ences: School of Computing Science, 2013.

[63] Dominic JA Welsh and Martin B Powell. An upper bound for the chromatic number of
a graph and its application to timetabling problems. The Computer Journal, 10(1):85–
86, 1967.

70

[64] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper
Saddle River, NJ, 1996.

[65] Mihalis Yannakakis. Node-and edge-deletion np-complete problems. In Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, page 253–264,
New York, NY, USA, 1978. Association for Computing Machinery.

[66] Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph problem
for chordal graphs. Information Processing Letters, 24(2):133–137, 1987.

71

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	Background and Literature
	Definitions
	Decision problems and tractability
	NP-completeness and the classes P and NP

	 Restricted graph classes
	Colouring and related partition problems
	Partition problems and restricted classes of graphs
	Graph colouring
	Cocolouring
	H-colouring
	M-partition

	Clique-width and cographs
	Summary of our results

	(p,q)-partition
	Background and previous results
	The (2,1)-partition problem
	The list of minimal obstructions
	The completeness of the list
	Algorithms for (p,q)-partition in cographs

	(p,q,r)-partition
	Introduction
	The (1,1,1)-partition problem
	The list of minimal obstructions
	The completeness of the lists

	The (1,2,1)-partition problem
	The list of minimal obstructions
	The completeness of the lists

	Concluding remarks

	Bibliography

