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Abstract 

A goal of sustainable forest management using digital soil mapping (DSM) is to ensure 

that current and future generations have the best soil information so they can use forest 

resources wisely. This goal can be achieved using new technologies of generating digital 

soil maps and high-resolution light detection and ranging (LiDAR) data. Uncertainty in 

digital soil maps can be quantified using quantile regression (QR). The overall objective 

of this study is to generate several digital soil maps using different machine learning 

(ML) methods for forest management purposes and use a QR method to estimate their 

uncertainty. The study area is the Eagle Hill Forest (95 km2), located west of Kamloops, 

BC, Canada. Five soil properties were mapped and locations with soil erosion, 

displacement, and compaction and puddling hazards were displayed on maps and 

discussed. 90% prediction interval (PI) maps were produced and the performance of the 

QR method in uncertainty quantification of different ML models was illustrated by 

producing Prediction Interval Coverage Probability (PICP) plots.  

Keywords:  Digital soil mapping; LiDAR; Quantile regression; Machine learning; 

Prediction interval 
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Chapter 1.  
 
Introduction 

Sustainable forest management can be defined as the practice of preserving and 

improving forest health, while creating environmental, economic, social and cultural 

opportunities for present and future generations (Franc et al., 2001). Regarding this 

definition, considerable agreement has been made to ensure that forests of all types are 

well managed in ways that are environmentally sensitive, socially aware and 

economically viable (Wallis et al., 1997). Another objective of sustainable forest 

management is in sustaining spatial complexity or variability across a range of spatial 

scales (Franklin and Forman, 1987). Spatial complexity in forested systems refers to the 

range of forest age classes, the size of patches in each class and the variation in 

overstory and understory structure and floristics. These patterns of spatial variation are 

directly related to environmental changes in terrain morphometry, aspect, elevation and 

soil type (Austin et al., 1990). With respect to the goals of forest management, in the last 

few decades process based forest growth models have been developed; however, they 

have not been very successful regarding the complexity of a forest system and 

difficulties in experimenting with large, long-lived plants such as trees (Battaglia and 

Sands, 1998). The principal goal for making the forest growth models have been to 

predict the volume growth yield of the forests. In other words the goal has been to 

estimate the forest productivity (Vanclay, 1988).  

Forest productivity can be defined as the merchantable yield of an individual 

stand, and for a group of stands that comprises the forest. Forest productivity is the 

result of integration of environmental factors which include soil, climate, species 

composition and stocking, and stand history. Stand history includes disturbances such 

as fire, logging, insects or disease (Nyland, 1992). Productive forests depend on the soil, 

whereby soil disturbance or the depletion of soil nutrients can be associated with 

declines in productivity; hence information on the soils will facilitate sustainable soil 

management. (YuSheng et al., 2000).  Forest soil productivity can be affected by factors 

such as wind and water erosion (Burger, 2009), and soil properties such as soil texture,  

pH, and thickness (Bontemps and Bouriaud, 2014; Tan et al., 2005) and thus, forest soil 
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information is very important for sustainable forest management. However, in many 

areas soil information at local scale is not readily available because conventional soil 

maps have been produced at small and mostly national scales (Ghaderi et al., 2019; 

Kempen et al., 2015).  

To solve the problems of conventional soil maps having high production costs, 

limited accuracy and precision, and problems related to map scale, DSM appeared in 

1978  (Kempen et al., 2012; McBratney et al., 2003a; Minasny and McBratney, 2016). 

DSM is based on the SCORPAN-SSPFe (soil spatial prediction function with spatially 

autocorrelated errors) concept. The SCORPAN model is a reformulation of Jenny’s soil 

formation factors (Jenny, 1941) that describes the relationships between soil and other 

environmental factors and is used to establish a soil spatial prediction function 

(McBratney et al., 2003a).  In DSM, quantitative prediction methods, such as machine 

learning (ML) methods, are used to correlate ancillary variables and soil properties. 

Examples of ML techniques may include random forest (RF), artificial neural network, 

and Cubist decision tree (McBratney et al., 2003a). The ML techniques sometimes are 

used as independent platforms for modelling, and sometimes they are hybridized with 

geostatistical modelling methods such as regression kriging (Odeha et al., 1994). 

Within the SCORPAN model, topographic data is most commonly used 

(McBratney et al., 2003a) due to its wide availability and strong correlation with soil 

properties. This data comes in the form of digital elevation models (DEMs), which can be 

derived from satellite or other remotely sensed data such as Light Detection and 

Ranging (LiDAR) data (Boettinger et al., 2008; Shi et al., 2012a). Demands for LiDAR-

based DEMs have increased recently because the LiDAR data is acquired at extremely 

fine spatial resolutions and with a high level of accuracy (Shi et al., 2012a). High-

resolution LiDAR DEMs can provide an opportunity to produce accurate, local scale 

maps. Using LiDAR data in precision agriculture is common (Hämmerle and Höfle, 2014; 

Höfle, 2014; Koenig et al., 2015); however, it has less commonly been used for DSM in 

forest systems over large areas. One reason can be the high soil variability and complex 

topography of forested areas that makes it often difficult to obtain calibration and 

validation data in forests.  

Digital soil maps are associated with substantial uncertainty that should be 

quantified (Vaysse and Lagacherie, 2017). The errors may happen in measurements 
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that will contribute to uncertainty in predictions (Arrouays et al., 2014b). Uncertainty in 

model output can be due to three sources including uncertainties in the model structure, 

model parameters, and model inputs (Minasny and McBratney, 2002). Even though 

international standards for DSM products necessitate the inclusion of uncertainty 

assessment for each soil property prediction (Arrouays et al., 2014a), such evaluations 

are not always applied (Arrouays et al., 2017). Different methods are used for 

uncertainty quantification. Some of these methods include empirical uncertainty 

quantification methods (Malone et al., 2017) bootstrapping (Malone et al., 2017), Monte 

Carlo method, Bayesian method (Solomatine and Shrestha, 2009), and quantile 

regression forest (QRF) (Meinshausen, 2006). QR which selects the quantiles from 

model outputs and finds a linear relationship among them is a novel method in DSM and 

will be tested in this thesis (Koenker and Hallock, 2001). 

Due to the need for improved soil information to support forest productivity 

assessments and the increasing availability of LiDAR elevation data in forested areas, 

the application of DSM techniques using LiDAR and uncertainty assessments of the 

results should be further evaluated in forested areas. Therefore, the overarching goal of 

this thesis is to investigate the usefulness of LiDAR-derived DEMs for DSM and digital 

soil maps for sustainable forest management and to quantify uncertainty in digital soil 

maps using a novel method in DSM using QR.  

1.1. Theoretical Background and Methods 

1.1.1. DSM and SCORPAN 

In the late 20th century, McBratney et al. (2003) introduced the generic framework 

of digital sol mapping, called the SCORPAN-SSPFe (soil spatial prediction function with 

spatially autocorrelated errors) model to predict soil properties and measure errors. The 

SCORPAN model is particularly relevant for those places where soil resource 

information is limited. It is based on the seven predictive factors described in Equation 1 

as follows:  

𝑆𝑐 = 𝑓(𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛) 𝑜𝑟  𝑆𝑎  =  𝑓(𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛)                 (1) 

In Equation 1 Sc is soil classes, and Sa is soil attribute. The factor s refers to soil 

conventional information such as legacy data or expert knowledge. The factor n stands 
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for space, spatial or geographic position. The other factors are a generalization of 

Jenny's (1994) five factors. Jenny’s famous equation which was intended as a 

mechanistic model for soil development is: S= f(c,o,r,p,t,…). In this equation, S- stands 

for soil, c- (sometimes cl) represents climate, o- organisms including humans, r- relief or 

topography, including terrain attributes and classes, p- parent material including lithology 

and t- time factor (Jenny, 1994). DSM, based on the SCORPAN theoretical concept, 

involves the following steps: 

1) Defining soil attribute(s) of interest and deciding on the resolution and 
block size 

2) Assembling data layers 

3) Specifying spatial decomposition of data layers 

4) Sampling data to obtain sampling sites 

5) Conducting GPS field sampling and laboratory analysis to obtain soil 
class or property data 

6) Fitting quantitative relationships with autocorrelated errors 

7) Predicting a digital map 

8) Conducting field sampling and laboratory analysis for corroboration 
and quality testing 

9) If necessary, simplifying the legend or decreasing resolution 
(McBratney et al., 2003b) 

1.1.2. Light Detection and Ranging (LiDAR) 

LiDAR is an active, remote sensing technology that uses a laser beam to 

measure distances. In this method a laser beam is emitted to a target object and the 

reflection of the beam is recorded. Then the distance is measured based on the product 

of the speed of light and the travel time of the reflected beam (Wehr and Lohr, 1999). By 

developing and advancing global positioning systems (GPS) in the late 20th century, the 

application of LiDAR increased (Lim et al., 2003). Since then it has been used in flood 

risk mapping (McArdle et al., 1999), terrain modelling (Kraus and Pfeifer, 1998), and 

land cover classification (Schreier et al., 1985).  
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A DEM is a raster dataset that consists of a matrix of pixels and represents the 

surface of an area (ESRI, 2019). Exceptional accuracy, and spatial resolution and the 

capability of scanning high density patterns provides the opportunity of producing high 

quality DEMs with LiDAR (Liu, 2008; Lohr, 1998). A great number of covariates that can 

be used as inputs to DSM can be derived from DEMs (Lagacherie, 2008). LiDAR DEMs 

have been used in modelling soils. For instance, Greve et al. (2012) used DSM methods 

to quantify the relationship between soil texture and different environmental covariates in 

Denmark. They derived their topographic indices from LiDAR data. Fink and Drohan 

(2016) used LiDAR derived terrain indices to predict hydric soils in Pennsylvania, USA 

and to improve their soil survey mapping. Although LiDAR derived DEMs have been 

used for modelling in hydrology, geology and ecology in forested areas and in precision 

agriculture (Bässler et al., 2011; Galzki et al., 2011; James et al., 2007), only a few 

studies have investigated the capability of LiDAR derived DEMs in modelling forest soils.  

1.1.3. Machine Learning (ML)   

Machine learning uses the theory of statistics to learn from training data or past 

experience to make a model. The model can be predictive to make predictions in the 

future or descriptive to gain knowledge from data, or both. Learning refers to the 

execution of a computer program to optimize the parameters of the model using the 

training data or past experience (Alpaydin, 2020). RF, cubist decision tree, k Nearest 

Neighbors (kNN) and support vector machine (SVM) are examples of ML methods and 

are used in this study.     

RF is a non-parametric technique in which many ensembles of trees and 

classifiers are generated. Each tree in an ensemble grows based on the realization of a 

random vector. RF employs bagging which is a popular classification tree and ML 

method in which the trees are constructed independently using a bootstrap sample of 

the dataset. Bagging or bootstrap aggregation is used to reduce the variance of an 

estimated prediction function (Breiman 1996). After constructing the trees, RF predicts 

on new data by combining the predictions of the trees (Liaw and Wiener, 2014). For 

example, Grimm et al. (2008) used RF to predict the spatial distribution of soil organic 

carbon on Barro Colorado Island. Another example for using RF in DSM is in a study by 

Wiesmeier et al. (2011) in which they used RF to model the spatial distribution of soil 
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organic carbon, total carbon, total nitrogen and total sulphur in a semi-arid catchment in 

Inner Mongolia, Northern China.  

Cubist decision tree is a model tree which is used to generate rule-based 

predictive models. It has been developed from C4.5 and M5 model trees (Quinlan, 

2014). A Cubist tree is grown where there are intermediate linear models in leaves, and 

terminal nodes of the tree and can capture both linear and hierarchical relationships 

between the variables. The tree and the linear model is finally adjusted to reduce the 

absolute error (Minasny and McBratney, 2008). It is a data partitioning algorithm that 

mines non-linear relationships in data (Malone et al., 2017). For example, Ma et al. 

(2017) used the Cubist decision tree algorithm to model and map various soil properties 

such as soil texture and pH in eastern China using legacy data and available covariates. 

In another example Pouladi et al. (2019) used some modelling approaches including 

Cubist decision tree to predict soil organic matter in Denmark.  

kNN is a ML method that classifies training data points based on closest training 

data in the environmental covariate space (Subburayalu and Slater, 2013). In this 

method a dataset is explored for k closest soil attributes based on similarity in feature 

space. To implement this, the similarity distance to the target soil is measured using 

Euclidean distance after normalization and rescaling of the soil attribute data in the 

dataset. Normalization and rescaling are done to ensure that the soil attribute values 

receive equal weights (Taghizadeh-Mehrjardi et al., 2016). kNN have been used in many 

DSM studies; for example, Mansuy et al. (2014) used kNN to generate continuous 

national maps for selected soil variables such as carbon, nitrogen and soil texture for the 

Canadian managed forest landbase. In another example, Taghizadeh-Mehrjardi et al. 

(2016) used several data mining techniques including kNN to map soil organic carbon 

and vertical variations down to 1 m depth in a semi-arid region in Kurdistan Province in 

Iran.  

Support vector machine (SVM) is a non-parametric learning algorithm that is 

mostly used in pattern recognition and classification problems in remote sensing. SVM 

approximates a function that assigns a value to each input sample by constructing a 

hyperplane (Mountrakis et al., 2011). The hyperplane separates the dataset into discrete 

predefined classes that are consistent with the training dataset. The optimal separation 

hyperplane is used as a decision boundary to minimize misclassifications. Then the 
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model separates the simulation data under the same configurations (Zhu and Blumberg, 

2002). In one example Ballabio (2009) used SVM to map several soil properties such as 

organic carbon content and extractable Al concentration in the B horizon in mountainous 

areas of Northern Italy.  

1.1.4. k-fold Cross Validation 

In k-fold cross validation the training data is split into k smaller mutually exclusive 

subsets. Then the model is trained using k-1 of the folds as training data. Following that, 

the model is validated on the remaining fold of the data, and the process is repeated for 

all k folds. The performance measure then is reported for the average of the values 

computed across all folds (Kohavi, 2001; Yadav and Shukla, 2016).   

1.1.5. Uncertainty Estimation  

Existing Methods 

DSM uses statistical methods to relate soil observations to environmental 

covariates, and if there are errors in the sampling or the sample locations, these errors 

will be incorporated into the model (Cressie and Kornak, 2003). Another source of 

uncertainty is the quality of environmental covariates used in DSM. The covariates from 

various sources can contribute errors to DSM because of their different acquisition 

scales, resolutions, or age (Lagacherie and Holmes, 1997). These errors should be 

quantified otherwise they will lead to poor DSM results (Arrouays et al., 2014b). 

International standards require 90% PI uncertainty quantification (Arrouays et al., 

2014a), but even with the increased use of ML methods in DSM, quantification of 

uncertainty is relatively uncommon among digital soil mappers (Arrouays et al., 2017; 

Minasny and McBratney, 2002).  

Although geostatistical methods have been used for uncertainty quantification in 

DSM (Mueller and Pierce, 2003; Wu et al., 2009; Zhao and Shi, 2010), methods used for 

measuring uncertainty in ML methods require further development and their use is quite 

novel (Vaysse and Lagacherie, 2017). Methods that have been used to quantify 

uncertainty in DSM may include: bootstrapping, empirical uncertainty quantification 

through data partitioning and cross validation, empirical uncertainty quantification 

through fuzzy clustering and cross validation, Bayesian and Monte Carlo methods, and 
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QRF (Malone et al., 2017; Meinshausen, 2006; Solomatine and Shrestha, 2009). All 

these methods have limitations. Bootstrapping depends on computational capabilities 

when this method is applied to big datasets because in this method many map 

realizations need to be predicted and stored in a database. Empirical uncertainty 

quantification methods are calculated from distributions of model errors and such 

predictions are not spatially uniform while also varying for different landscape situations 

(Malone et al., 2017). Bayesian and Monte Carlo methods (Solomatine and Shrestha, 

2009) measure only certain sources of error and QRF can be used for RF only 

(Meinshausen, 2006).  

Quantile Regression  

Currently, there is not a comprehensive uncertainty assessment method that 

could be used with all ML methods; however, this knowledge gap could possibly be filled 

using a QR method (Koenker and Hallock, 2001). Unlike an ordinary linear regression, 

QR estimates the quantiles of a data distribution. While an ordinary linear regression 

model gives a picture of the central mean, the QR gives us a more complete picture of 

the conditional data distribution. An advantage of QR is that it is not sensitive to outliers 

(Hunter and Lange, 2000). Chamberlain (1996) developed two empirical applications of 

QR techniques. The first application was about the changes in the returns to schooling 

from 1979 to 1987 and the second application was about a union relative wage effect in 

1987. In both cases the goal was to provide a more detailed description of the 

conditional distribution of wages. Other studies were conducted related to problems in 

labour markets such as studies by Fitzenberger (2012) in Germany and Schultz and 

Mwabu (1998) in South Africa. Rahmati et al. (2019) used QR along with ML methods in 

hydrology. They sought detailed descriptions of ML outputs to estimate uncertainty in ML 

models by calculating quantiles from certain portions of the model output.  We believe 

the QR method can help soil scientists quantify uncertainty easily and extensively in their 

model predictions by the generic DSM framework to produce more reliable digital soil 

maps.  

The QR method is further elaborated here. A linear quantile regression is similar 

to a simple linear regression function. In a simple regression function, to find the 

regression equation the square residual is minimized to construct the least square 

residual line (McGrew and Monroe, 2009; Schneider et al., 2010). Therefore, the goal in 
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a simple linear regression is to solve Equation 2 when the random sample dependent 

variables are {𝑦1, 𝑦2, . . . , 𝑦𝑛}.  

𝑚𝑖𝑛
𝜇 ∈ 𝑅

 ∑ (𝑦𝑖 − 𝜇)2𝑛
𝑖=1                                                             (2) 

In Equation 1, y is the response variable. i is the number of the variable. The 

character μ is the mean of response variables or in statistics it is referred to as 

unconditional population mean that is an element of the real values (R), and finally n is 

the last number of the variable (Koenker and Hallock, 2001; McGrew and Monroe, 

2009). In Equation 1, μ can be replaced by a parametric function 𝜇(𝜒, 𝛽) that predicts a 

value y using a covariate x in equation 3.  

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝑝

 ∑ (𝑦𝑖 − 𝜇(𝑥𝑖 , 𝛽))2 𝑛
𝑖=1                                                  (3) 

In Equation 3, the parametric function  𝜇(𝜒, 𝛽) uses the independent variables to 

predict the dependent variables (Koenker and Hallock, 2001). This is called an 

unconditional regression function.  

Unlike an unconditional regression function, in QR, a conditional relationship is 

sought between predictors and dependent variables Ε(𝑌|𝑥). In QR, if dependent 

variables are called y and independent variables are called x, only desired quantiles of x 

are selected, and the linear model is established between y and x. For every quantile τ, 

a linear relationship between the predicted value, y, and the real observed value, x is 

assumed (Equation 4).  

𝑦 =  𝛼𝜏 𝑥 +  𝑏𝜏 ,                                                                    (4) 

where 𝛼𝜏  and  𝑏𝜏 are the parameters of the linear regression. These parameters are 

found by minimizing the sum of residuals of the portion that we are looking for. This is 

quite similar to a simple linear regression except for the condition that is enforced 

(Equation 5) (Dogulu et al., 2015b). 

𝑚𝑖𝑛 ∑ 𝜌𝜏(𝑦𝑗 − (𝛼𝜏𝑥𝑗 + 𝑏𝜏))𝐽
𝑗=1                                                 (5) 

The letter j is the number of variables, and J is the total number of variables. 

Therefore, the variables are x1, x2, x3, …, xJ. The parameter 𝜌𝜏 is called the quantile 
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regression function for the quantile τ. The quantile regression function is defined as in 

Equation 7 (Dogulu et al., 2015b).  

A name for the residual is first selected: 

𝜀𝑗  =  𝑦𝑗  −  (𝛼𝜏𝜒𝑗 + 𝑏𝜏)                                  (6) 

Then, the QR function is written as follows: 

𝜌𝜏(𝜀𝑗)  =  {
(𝜏 − 1). 𝜀𝑗          𝜀𝑗 ≤ 0 

𝜏. 𝜀𝑗                 𝜀𝑗 > 0
                             (7) 

1.2. Research Rationale and Objectives  

Three pivotal topics will be investigated and discussed in this thesis: using digital 

soil maps for forest management, using LiDAR to generate fine-resolution digital soil 

maps, and estimating uncertainty using QR to evaluate the reliability of digital soil maps. 

A primary purpose of producing digital soil maps was to reduce costs and increase 

accuracy of soil maps compared to conventional methods (Yang et al., 2011; Zhu et al., 

2001). We believe digital soil maps not only can serve as a new approach to reduce cost 

and increase accuracy over large areas, but also can be used at local scales to help 

forest managers utilize and preserve valuable forest soils much more effectively. One 

question that many forest managers ask is how digital soil maps can contribute to 

improved forest management. Secondly, forest managers would like to know how 

accurate and reliable digital soil maps are. It would be very beneficial to develop 

moderately fast methods to measure prediction accuracy and uncertainty of digital soil 

maps. I discuss how digital soil maps can be used for sustainable forest management in 

Chapter 2 and then in Chapter 3, I present a new and novel approach in DSM called QR 

for measuring uncertainty easily and extensively. Therefore, this thesis is composed of 

two phases:      

In the first phase of the study RF, as a regression method, will be used to map 5 

soil properties: soil thickness, depth to carbonates, soil pH, coarse fragment content and 

clay content. The covariates used in this phase were derived from a LiDAR DEM 

originally prepared at one-meter resolution. The total covariate numbers were 16, three 

of which were categorical covariates. The other 13 covariates have been turned into 
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different resolutions and the final covariates have been transferred to 3 m resolution 

rasters. Objectives of phase one of this study are:  

1. to produce soil maps using RF for the five soil properties using LiDAR 
derived covariates; 

2. to validate soil property predictions using the k-fold cross validation 
method;  

3. to discuss and illustrate how these maps are useful for forest 
management. 

In phase two of this study, a new uncertainty quantification method in soil science 

called QR will be used. To do so, first, four ML methods will be used to map three soil 

properties: soil thickness, depth to carbonates, and soil pH. Then, the model prediction 

output will be used as QR input to generate uncertainty maps. Finally, uncertainty 

quantification and model performance will be assessed using PICP graphs and mean 

prediction interval (MPI) bar-charts. The objectives of phase two of this study are:  

1. To develop a framework for producing local estimates of uncertainty 
by coupling ML models with quantile regression 

2. To demonstrate the coupling using a variety of ML techniques for a 
case study 

3. To evaluate the uncertainty estimations using metrics such as MPI 
and PICP 

In this study several soil properties are predicted by fitting quantitative 

relationships. The statistical quantitative relationships used in this study are ML methods 

including RF, Cubist decision tree, kNN and SVM. The errors and model accuracy are 

measured using the k-fold cross validation method and uncertainty of the four ML 

methods are quantified using the QR method.  

1.3. Thesis Structure 

The thesis is divided into four chapters. Chapter 1 provides an: introduction, 

including a description of the context of the study, theoretical background and methods 

and research rationale and objectives. The methods section describes DSM and 

SCORPAN, LiDAR, ML methods, cross validation, and QR as an uncertainty estimation 

method.  
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In Chapter 2, soil properties were predicted using RF and their prediction results 

were validated using a nested 10-fold cross validation with 20 repeats. The soil 

properties that have been mapped are, soil thickness, depth to carbonates, soil pH, 

coarse fragment content and clay content. Chapter 2 presents a generic mapping 

framework in which the usefulness of digital soil maps in forest management are 

discussed. First, the digital soil maps produced for the soil properties are discussed in 

terms of data distribution and validation. Then, the usefulness of the high-resolution 

maps produced using high-resolution LiDAR data for soil hazard assessment is 

discussed.  

Chapter 3 focuses on uncertainty estimation. In this chapter soil properties were 

modeled using RF, Cubist decision tree, kNN and SVM. The modelling results were 

validated using a nested 10-fold cross validation with 20 repeats. Property maps were 

produced using the four ML methods for 3 soil properties including soil thickness, depth 

to carbonates, and soil pH. The validation results of models produced using the 4 ML 

methods were compared. Then, to quantify the uncertainty, QR uncertainty methods 

were used to generate uncertainty maps and then they were compared in the uncertainty 

maps. Moreover, uncertainty predictions in QR using four ML methods were assessed 

using prediction interval coverage probability (PICP) plots and mean prediction intervals 

(MPI).  

Finally, in Chapter 4 the overall thesis conclusions are discussed including a brief 

description of the background knowledge and the results obtained in Chapters 2 and 3. 

In the last part of the conclusion chapter, the challenges in this research and future 

possible research have been described.   
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Chapter 2.  
 
Exploring the Novel Use of Soil and LiDAR-derived 
Terrain Information to Support Forest Management 

2.1. Abstract 

The goal of sustainable forest management is to conserve biological diversity 

and maintain forest ecosystem productivity. LiDAR can be used to collect information for 

forest inventories, biomass monitoring and ecosystem modelling. Development of new 

digital mapping technologies has increased our ability to monitor soil properties and 

changes within them. To generate digital soil maps, a numerical model is used to relate 

field soil observations and environmental variables to make new predictions for all areas 

to be mapped. High-resolution topographic data derived from LiDAR have been used for 

mapping non-forested regions. However, there are only a few instances in which LiDAR 

derived DEMs have been used for mapping forest soils over large areas. The objectives 

of this study are 1) to produce digital soil maps for five soil properties: soil thickness, 

depth to carbonates, soil pH, coarse fragment content and soil clay content; 2) to 

validate model predictions using the k-fold cross validation method; and 3) to discuss 

and illustrate how these maps can be useful for forest management and soil degradation 

prevention. The study area is the Eagle Hill Forest located west of Kamloops, British 

Columbia (BC), Canada (95 km2). Covariates were derived from 1 m resolution LiDAR 

data. RF model was used to predict five soil property and maps were produced. A 

nested 10-fold cross validation with 20 repeats was conducted to estimate the accuracy 

of maps. The best validation results were obtained for modelling soil thickness with R2 of 

0.35 and concordance of 0.47. The soil maps for individual properties can be used 

directly in forest management or can be used to prepare interpretive maps such as maps 

of compaction and puddling hazards.1 

 
1 A version of the following chapter will be submitted to a peer reviewed journal for publication under 
the co-authorship of Chuck E. Bulmer, Margaret G. Schmidt, Brandon Heung, and William Bethel 
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2.2. Introduction  

Depletion of forest resources in the early years of the 20th century caused the 

forestry community to focus on management activities starting in the 1960s (Nyland, 

1992). World leaders met at the United Nation Conference on Environment and 

Development (UNCED) in 1992 in Rio de Janeiro to develop a nonbinding statement of 

forest principles. National policymakers in many countries now are committed to 

conserve biodiversity, forest productivity and the growth of forests in the long-term. 

Sustainable forest management can be defined as the efforts to conserve biological 

diversity, and to maintain the health and productive capacity of forest ecosystems and 

their role in watersheds and the global carbon cycle. The goal is to ensure that forest 

resources will continue to exist at some acceptable levels for the benefit of current and 

future generations (Szaro et al., 2000). 

Technology and information systems have been important tools for sustainable 

forest management. To conduct successful forest management, scientists need to adopt 

a multidisciplinary approach that comprises the human research capability both to use 

the knowledge of the field that technology deals with and to improve analytical and 

decision making skills (Szaro et al., 2000). Moreover, an integration of training programs, 

networking, technology transfer and information management is necessary to build a 

significant research capacity. For this goal, forest simulation models that describe 

growth, succession, mortality, reproduction, and associated stand changes have been 

used (Peng, 2000; Vanclay, 1994). Remote sensing and airborne data can provide 

spatial information for forest management and ecosystem modelling. The data collected 

can be used to classify forested land cover and to track forest health, structure, biomass 

and natural disturbances (Wulder et al., 2004). The remote sensing and airborne data 

can also be used in agriculture, erosion monitoring and risk assessment, geomorphology 

and hydrology, and land use, and land cover mapping (Bahrawi et al., 2016; Henderson 

and Lewis, 1998; Natural Resources Canada, 2013).  

LiDAR is an airborne remote sensing technique that can be used in forest 

management (Dubayah and Drake, 2000). LiDAR works like radar; however, it uses a 

laser beam. It is an active remote sensing technology that uses laser pulses to measure 

distance between objects. LiDAR can be incorporated into an airborne scanning system 

that produces image-like coverage of surface height (Asner et al., 2012). LiDAR 
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technology has extensive applications in forestry. It can be used to collect information for 

forest inventories and biomass monitoring such as tree location within plots and tree 

height (Wulder et al., 2012). It also can be used to collect information for ecosystem 

modelling such as vertical forest stratification, gas exchange, and canopy carbon content 

(Dassot et al., 2011). LiDAR systems can provide direct measurement of the height of 

the canopy, the topography of the subcanopy and the vertical distribution of intercepted 

surfaces between the top of the canopy and the ground. From these direct 

measurements, other forest structural features, such as above-ground biomass, are 

modelled or inferred (Dubayah et al., 2000). Like other technologies, LiDAR technology 

also has some advantages and disadvantages. The limitations of LiDAR remote sensing 

are that it has a small footprint and like other remote sensing techniques, LiDAR is 

restricted by clouds and dense atmosphere haze. The other disadvantage of LiDAR 

technology is that few LiDAR datasets are available, and they are costly. The big 

strength of LiDAR remote sensing compared to satellite remote sensing is the ability to 

directly measure canopy height, subcanopy topography, and vertical distribution of 

intercepted surfaces (Dubayah and Drake, 2000). 

Successful forest management practices depend on the maintenance or the 

enhancement of forest productivity. One of the important variables in controlling above 

ground biomass productivity is forest soil (Ayma-Romay and Bown, 2019; Schoenholtz 

et al., 2000). Soil is a medium for growth of trees and a healthy soil can contribute to 

forest productivity (Weil and Brady, 2017). Foresters rely on knowledge of soil chemical 

and physical properties to assess the capacity of sites to support productive forests. Soil 

quality can be related to concepts such as the capacity of soil water retention, carbon 

sequestration, plant productivity, waste remediation and the capability to produce 

biomass (Schoenholtz et al., 2000). Furthermore, soil may provide an immediate sink of 

atmospheric CO2 with proper forest management (Bruce et al., 1999). Therefore, soil 

quality and productivity can be used as an indicator of sustainable forest management 

(Burger and Kelting, 1999).  Burger and Kelting (1999) have suggested 10-steps for soil 

quality monitoring and in step 7 they suggest evaluating the soil quality by using 

geostatistical techniques or some other type of spatial extrapolation to produce soil 

quality maps.  

A soil map is a representation of a soil attribute distribution that is used to convey 

soil information (Yaalon, 1989). Early soil maps were produced for the purpose of land 
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valuation and taxation and agronomic planning (Brevik and Hartemink, 2010). 

Conventional methods of soil map production continued until the end of the 20th century. 

Conventional soil mapping was expensive and legacy soil maps were based on soil 

surveyor’s conceptual mental models of landscapes. Moreover, legacy soil maps suffer 

from two major problems: lack of consistency and unknown accuracy (Yang et al., 2011; 

Zhu et al., 2001). Development of new technologies such as GPS, GIS, and remote 

sensing, and development of statistical and geostatistical techniques increased our 

ability to collect, analyze, and predict soil spatial information and properties. From the 

late 20th century  a new era of soil mapping called DSM appeared (Brevik et al., 2016; 

McBratney et al., 2003a; Minasny and McBratney, 2016). DSM is a subdiscipline of soil 

science in which a numerical model relates field soil observations and environmental 

variables to make new predictions for a mapping area (Minasny and McBratney, 2016). 

Since the emergence of DSM many national soil maps have been produced for forest 

soils (Baritz et al., 2010; Morisada et al., 2004; Yang et al., 2011) but most of them are 

coarse and would not be applicable for site scale forest management.  

In topographically varying areas, the success and accuracy of producing a good 

digital soil map depends on finding suitable digital elevation models (DEM) (Cavazzi et 

al., 2013). Many important model covariates such as hydrologic units, hillslope 

segments, slope gradient, aspect, flow networks, hillshade illumination and catchment 

boundaries can be derived from DEM rasters using GIS software. These covariates are 

used as independent variables in statistical models to predict soil properties in a DSM 

framework (MacMillan et al., 2004). DEMs can be derived from LiDAR data in forested 

and non-forested areas. The advantage of LiDAR derived DEMs is their accuracy and 

the small pixel size that is known as raster resolution (Haneberg et al., 2009; Liu, 2008).  

High-resolution topographic data derived from LiDAR has been used for soil 

mapping purposes in non-forested regions and in precision agriculture. For instance, Shi 

et al. (2012) conducted a comparison between high-resolution LiDAR based data and 

satellite data in a non-forested area in the northern Vermont, USA. Their study showed 

that LiDAR based data showed significantly better performance than a USGS-sourced 

DEM. Campbell et al. (2013) studied soil resistance to penetration for two study areas in 

Alberta, Canada. In their study DEM related covariates were derived from LiDAR data. 

They used best-fitted regression between cone index and depth-to-water index and 

elevation to map cone index. They showed that cone index increased with increasing 
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depth-to-water index. There are only a few instances in which LiDAR derived DEMs 

have been used in DSM in forested systems. In one example, Kristensen et al. (2015) 

combined LiDAR data with fine-scale spatial carbon data relating to vegetation and the 

soil surface to describe the spatial distribution of carbon pools within spruce stands in 

Norway. Other studies conducted using LiDAR derived DEMs in forested areas have 

been carried out by Lidberg et al. (2020), Li et al. (2016), and Niemi et al. (2017). The 

potential of LiDAR in assisting in mapping of forest soil properties and forested systems 

has not yet been extensively explored. One of the goals of this study is to fill the 

knowledge gap of forest soil mapping using LiDAR data.  

2.2.1. Soil Degradation Processes and DSM   

Forest soil quality is an important indicator of forest productivity (Schoenholtz et 

al. 2000; Ayma-Romay and Bown 2019) and better forest management entails providing 

support and information to prevent soils from being degraded or eroded. In BC, Canada, 

the sensitivity of soils in terms of degradation and erosion have been described as the 

result of three soil degrading processes including, soil erosion, soil displacement, and 

soil compaction and puddling (Lewis and Carr, 1993). Each of these soil degrading 

processes have their own definitions, controlling site factors, management 

considerations and hazard assessment keys (Lewis and Carr, 1993). Soil erosion can be 

defined as the removal of the productive soil surface by water and wind (Ratta and Lal, 

1998). Soil displacement can be defined as mechanical movement of soil that causes 

the exposure of unfavorable subsoils (Naghdi et al., 2009). Soil compaction is defined as 

the increase in soil bulk density because of rearrangement of soil particles caused by 

external forces (Sparks, 2012). Soil puddling is defined as the destruction of soil 

structure and reorientation of soil particles by running machinery on the soil when it is 

wet (Grigal, 2000) 

In forested areas in BC where logging is planned, hazards need to be assessed 

so that the logging plan can consider any special concerns for soil conservation and 

adjust accordingly. For example, forest managers can avoid running machinery on 

sensitive sites, or can operate in the winter when the ground is frozen and will not be 

compacted by heavy equipment. Currently, field observations of every site are required 

to evaluate these hazards, and this is expensive. DSM can potentially simplify the 

process and make it more efficient. Data required for performing a soil disturbance 
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hazard assessment include climate information, slope and terrain information, site 

hydrology information and soil information (Lewis and Carr, 1993). Climatic information 

includes biogeoclimatic subzone/variant information. Slope and terrain information 

includes slope gradient, slope length, presence of slope instability indicators, and 

presence of hummocky terrain. Site hydrology information includes gully spacing, soil 

moisture regime and depth to seepage. Soil information includes, forest floor depth, soil 

thickness, depth to carbonates, soil texture, coarse fragment content, depth to 

unfavorable subsoil, type of unfavorable subsoil and depth to water-restricting layer 

(Lewis and Carr, 1993).  

Digital soil assessment (DSA) and digital soil risk assessment (DSRA) are two 

new branches in DSM. The goal of DSA is to make quantitative models for soil attributes 

that are difficult to measure such as soil erosion, salinization and landslide susceptibility 

(Carré et al., 2007). Finke (2012) believes that DSM has reached its scientific maturity 

and that a shift can be made from DSM to digital function assessment. We believe that 

for each soil hazard assessment, a set of information is necessary; for example, for soil 

erosion, climate information, slope, depth to water restricting layer and coarse fragment 

content information is needed. For soil displacement hazard assessment, slope gradient, 

slope complexity, soil thickness, depth to carbonates and soil pH information is needed. 

For soil compaction assessment, clay content, coarse fragment content and moisture 

regime information is needed. The data for hazard assessment can be obtained from 

DEMs and from soil attribute maps produced using DSM methods. One of the objectives 

of this research is to introduce the advantages of using DSM and DEM-derived data for 

assessing soil degradation.  

Five soil attributes that can be used in soil degradation assessment are, soil 

thickness, depth to carbonates, soil pH, coarse fragment content and clay content. Soil 

thickness is defined as the thickness of the soil material from the top of the mineral soil 

to underlying bedrock. It includes the developed soil layers as well as unconsolidated C 

horizon material and represents all soil material that could potentially support plant roots, 

whether developed or not (Bonfatti et al., 2018; Weil and Brady, 2017). In many 

landscapes, soil thickness depends on the balance between soil formation and soil 

erosion (Dosseto et al., 2011). Soil erosion is mainly caused by water erosion and mass 

movement that is governed by topography. Therefore, soil thickness is highly correlated 

with slope angle, relative height, curvature, and compound topographic index (Gessler et 
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al., 2000). Soil inorganic carbon is a big part of the large terrestrial carbon pool in soil in 

dry climates and where soils develop in calcareous parent materials. The soil carbon 

pool contains organic and inorganic carbon (Zamanian et al., 2016). Soils containing 

appreciable amounts of calcium carbonate can make an unfavorable subsoil condition 

that limits the growing conditions which in turn will increase the erosion rate and 

hazardous condition of the soil. High pH in carbonate rich soils is an indicator of the 

unfavorable condition (Lewis and Carr, 1993) because it influences the availability of 

many soil nutrients such as calcium (Thomas, 1996; van den Driessche, 1984). It also 

influences the abundance of soil microbial taxa, fungi and bacteria (Rousk et al., 2010; 

Urbanová et al., 2015). 

Soil separates are classified based on their diameters. They are ordered in six 

levels of magnitude from boulders (1 m) to submicroscopic clays (<10-6 m). Particles with 

diameter over 2 mm are considered as coarse fragments and they are not part of the 

fine earth fraction. Clay particles are smaller than 0.002 mm. They have a great surface 

area which gives them the capacity to absorb water and other substances such as soil 

nutrients (Weil and Brady, 2017). Coarse fragment content and clay content are directly 

related to soil productivity, and it is one of the forest management challenges to identify 

forest lands that are most productive for tree growth in terms of coarse fragment content 

and clay content (Carmean, 1996). Coarse fragment content and texture of the upper 30 

cm of mineral soil can be used to assess soil compaction and puddling hazard (Curran 

et al., 2007). Soil with coarse fragment content of less than 70% and clay content of over 

20% can be considered as soil with very high risk of compaction and puddling (Lewis 

and Carr, 1993).  

2.2.2. Objectives of the Study 

The objectives of this study are: 1) to produce soil maps using RF for five soil 

properties: soil thickness, depth to carbonates, soil pH, coarse fragment content and soil 

clay content using LiDAR derived covariates; 2) to validate soil property predictions 

using the k-fold cross validation method; and 3) to discuss and illustrate how these maps 

are useful for assessment of soil degrading processes in forest management. 
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2.3. Methods  

2.3.1. Study Area 

The study area is the Eagle Hill Forest located west of Kamloops, BC, on the 

northern side of Kamloops Lake. The forest covers approximately 95 𝑘𝑚2 

between 50°46′ 49.9′′, −120°57′ 02.5′′ and 50°55′ 05′′, −120°46′ 36.7′′ geographic 

coordinates (Figure 2.1). The study area is delineated by Criss Creek in the northwest, 

Sedge Creek in the west, Kamloops Lake and Thompson River in the south, Sparks 

Creek and Lake in the north, and Red Lake in the northeast. Sabiston Creek and 

Sabiston Lake separate the area into two distinct uplands in the northeast and southwest 

with maximum elevation of 1452 m and 1389 m respectively (Figure 2.1). The elevation 

of the study area is between 545 m and 1455 m above sea level. The climate is semi-

arid due to being located in a rain shadow with annual precipitation of about 380 mm. 

The annual temperature in Kamloops is between “-10” in winter and about “30” degrees 

Celsius in summer (Canada, 2013).  

The study area is mostly in the interior Douglas-fir biogeoclimatic (BEC) zone, 

dry cool subzone and Thompson variant (IDFdk1) and very dry hot and Thompson 

variant (IDFxh2). There is also a small portion in the southern part of the study area that 

belongs to the ponderosa pine zone and very hot dry subzone (PPxh2) (Figure 2.2). The 

Interior Douglas fir zone (IDF) covers 5.5% of southern BC at mid-low elevations. The 

lower elevation ranges from 130 m to 900 m and the upper elevation ranges from 1200 

m to 1600 m. The most common tree species in this zone is Douglas fir (Pseudotsuga 

menziesii). However, at higher elevation, lodgepole pine (Pinus contorta) is widespread. 

In drier and hotter subzones such as IDFxh2 ponderosa pine (Pinus ponderosa) occurs. 

The minor species in this zone is trembling aspen (Populus tremuloides), which is also 

common in the IDFdk. Many other minor species restricted to specific areas include 

grand fir (Abies grandis), western white pine (Pinus monticola), Rocky Mountain juniper 

(Juniperus scopulorum), balsam popular (Populus balsamifera), choke cherry (Prunus 

virginiana), alders (Alnus) and willows (Salix). PP zone is the driest forest zone In BC 

and occurs below the moister and cooler IDF zone. It is close to the drier treeless 

grasslands of BG zone at lower elevation. Douglas-fir (Pseudotsuga menziesii), 

trembling aspen (Populus tremuloides),  and lodgepole pine (Pinus contorta)  tree 

species can be found in this zone (Faculty of Forestry, UBC, 2009; Roberta, 1948).   
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Several soil types occur in this study area; some of the most important ones are 

Tunkwa, Gisborne, Timber, and Glossey (Figure 2.2). Tunkwa soil covers most of 

IDFdk1 BEC subzone in this study area, and in Thompson and Fraser plateau 

physiographic regions that can be found between Kamloops Lake and Merritt, and north 

of Kamloops Lake and Thompson River. Tunkwa is described as a silt loam or loam and 

its pH is slightly alkaline. Parent material is composed of morainal deposits (till) that are 

associated with volcanic bedrock and generally are stony. This soil can be found at 

elevations ranging from 900 m to 1455 m in this study area (Figure 2.2) The common 

subgroup of soil is Orthic Gray Luvisol. Other less common soils such as degraded 

Eutric Brunisol, Brunisolic Gray Luvisol, Lithic Gray Luvisol, Orthic Black Chernozem, 

Orthic Dystric Brunisol and Orthic Sombric Brunisol can be found in this soil type (Young 

et al. 1992).       

 
Figure 2.1. The study area and water bodies and rivers. 

The IDFxh2 BEC subzone in the study area is covered mostly by the three other 

soils including Gisborne, Timber, and Glossey. All those three soils can be found in the 

Thompson and Fraser plateau physiographic region in the dry interior Douglas fir zone. 
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Gisborne covers the lands with elevation ranging from 800 m to 1200 m around the 

central Sabiston Creek and Lake (Figure 2.2) and one strip of land on the northern side 

of the study area with the same elevation range. The soil texture of Gisborne is gravelly 

to very gravelly sandy loam to sand, and the parent material of this soil is fluvioglacial. 

The most common soil subgroup is degraded Eutric Brunisol and less common soil 

subgroups are Orthic Humo-Ferric Podzol, degraded Dystric Brunisol, Orthic Dark Gray 

Chernozem and carbonated Black and Melanic Brunisol (Canada, 2013).  

Timber soils can be found mostly on the southeast, and north corners and partly 

on the west corner of the study area (Figure 2.2). The range of elevations are from 544 

m to 1200 m in this study area. Timber soil is moderately alkaline, and the texture of this 

soil can be silt loam and silty clay loam. It is slightly to moderately stony soil. The parent 

material of this soil is morainal deposits (till) that is associated with volcanic bedrock. 

The most common soil subgroups are degraded Eutric Brunisol and Lithic Eutric 

Brunisol. The less common soil subgroups are Orthic Brown, Orthic Gray Luvisol, Orthic 

Dark Gray Chernozem, Orthic Dark Brown Chernozem, Eutric Brunisol and Orthic 

Regosol (Young et al. 1992).   

Glossey soil can be found in some patches on the south and west sides at 

elevations ranging from 544 m to about 1000 m in the study area (Figure 2.2). This 

gravelly soil has soil texture of sandy loam and slit loam with overlaying sand or loamy 

sand. In terms of acidity it is neutral to basic and it occurs on fluvioglacial deposits 

derived mainly from volcanic bedrock. The most common soil subgroup found in this soil 

is degraded Eutric Brunisol, and less common soils that occur in this soil are Orthic 

Brown Chernozem, degraded Eutric Brunisol, Orthic Dark Gray Chernozem, carbonated 

Dark Brown Chernozem and Melanic Brunisol (Young et al., 1992). There are also three 

other soil types that cover very small areas and are not discussed here including 

Cavanaugh, Commonage, and Trapp lake. 
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Figure 2.2. Soil types and BEC subzones in the Eagle Hill Forest study area. 

2.3.2. DSM workflow 

The workflow for DSM in this study starts with integration of observation data 

values (dependent variables) collected at sample locations and their associated values 

from environmental covariates derived mainly from LiDAR data (independent variables) 

into a data table, referred to here as the full dataset in Figure 2.3. The full dataset 

consisting of all observation points for each attribute was used as input data into a 

statistical model, and parameter optimization was carried out using a 10-fold cross 

validation method. Then the fitted model was used to generate spatial predictions of soil 

patterns using the stack of environmental covariates as shown in step 2 of Figure 2.3.  



24 

 
Figure 2.3. DSM workflow: the workflow was embedded in a cross-validation 

process where 10-folds of the data were created to tune the 
hyperparameters of the model, and the tuned model was used to 
generate a soil map.  

2.3.3. Soil Sampling in the Study Area and Data Acquisition  

In this study, five soil properties have been modelled: soil thickness, depth to 

carbonates, soil pH, coarse fragment content and clay content. Three different methods 

were used to identify sampling and observation points for the evaluation of these soil 

properties. The three approaches used were conditioned Latin Hypercube (cLH), 

random sampling on road cuts (RC) and opportunistic point (OP) locations. For depth to 

carbonates and soil thickness, points located using all three methods were used. 

Samples for determination of soil pH were only collected from the cLH and RC plots, as 

were observations of coarse fragments and collection of samples for clay content 
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determination. For soil thickness, depth to carbonates, and soil pH, data were collected 

at 410, 171, and 230 sites respectively. For coarse fragment and clay content 231 and 

233 sample points were used (Figure 2.4).  

Conditioned Latin Hypercube (cLH) Sampling  

The cLH sampling method, implemented in the R package “clhs”, was used to 

specify sampling locations. Sixteen environmental covariates were generated using a 

LiDAR DEM originally prepared at 1 m resolution and these were used to inform the 

sampling scheme. A constraint was added so that the locations for sampling were within 

200 m distance from roads. Within each of the two BEC subzones (Faculty of Forestry, 

UBC, 2009), 100 site locations were identified, and therefore, the total cLH sampling 

sites were 200. A 30 cm deep pit was dug in each cLH plot and 5 samples were 

collected: two samples from forest floor and 3 mineral soil samples from the depths of 0 

to 5 cm, 5 to 15 cm and 15 to 30 cm.   

Randomized Road Cut (RC) Sampling 

A spatial layer of the road network was converted to a polygon using a 5 m 

buffer, and 50 random RC sites were selected from the buffering zone. In each road cut 

plot, a 100 cm deep pit was dug, or a face was exposed, and 7 samples were collected 

from the pit or road cut: two samples from forest floor and 5 mineral soil samples from 

depths of 0-5, 5-15, 15-30, 30-60, and 60-100 cm. With the sampling constraints, 43 of 

the RC sampling sites were visited.   

Locations Recorded on a GPS device: Opportunistic Points (OP) 

Additional observations were recorded at sample points without previous plans 

based on surveyors’ decisions in the field. These were called opportunistic points (OP) 

and there were 237 of these sites. The coordinates of locations of those points were 

recorded on a GPS device. Most of the GPS sample points were on road cuts. Some 

other sample points at which depth to carbonates or soil thickness could be measured 

were also recorded.   
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Figure 2.4. Sampling sites for soil thickness, depth to carbonates and lab 
measured properties (soil pH, coarse fragment content and clay 
content) in the study area. 

2.3.4. Dependent Variables 

Soil Thickness  

Soil thickness was directly measured on RCs (Figure 2.6) where bedrock was 

visible and could be measured (Figure 2.5). At RC and OP sites where soil thickness 

exceeded the depth of visible soil in the road cut, an estimation of soil thickness was 

made based on the presence or absence of exposed bedrock and indicators of a shallow 

soil in the surrounding area, as well as elevation, slope percentage and position. Lack of 

exposed bedrock, lower elevation, and flat locations were signs of deeper soils. From 
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410 sites measured for thickness, 155 sites were cLH sites; 230 sites were OP sites; 

and 25 were RC sites. Bedrock outcrops were recorded at 56 of the OP sites based on 

visual inspection and assigned a depth of 0 to 20 cm.  

 
Figure 2.5. Soil thickness observed on a road cut. 

Depth to Carbonates 

Estimates of depth to carbonates in this study were mostly obtained from OP and 

RC sites, along with a small number from cLH sampling sites. From 171 points, 26 

points were cLH sites; 105 points were OP sites; and 40 points were RC sites. There 

were relatively few cLHS sites where depth to carbonates was recorded, because 

carbonated soils were not close to the soil surface (i.e. within 30 cm). In some places, 

considerable time was required to excavate and observe the presence of carbonates as 

deep as 200 cm of soil depth. At sample sites, while soils were excavated, 10% HCl was 

dropped down the soil profile and the depth where effervescence occurred was 

recorded. Where effervescence did not occur, we assumed that either the carbonated 

horizon did not exist, or it was deeper. To make the soil digital map for depth to 

carbonates we only used the sites in which we were certain about the depth to 

carbonates (171 sites). 



28 

Soil pH   

Soil pH data was collected from 230 sites. It was measured in water for samples 

from each designated depth: 0-5, 5-15, and 15-30 (Carter, 1993). From the total of 230 

points, 191 plots were cLHs sites and 39 were RC sites. The three pH values collected 

from each sampling site were weight averaged according to their sampling depth (0-5, 5-

15, 15-30 cm).  

Coarse Fragment Content  

Coarse fragment data were collected from a total of 231 sites including 192 cLH 

sites and 39 RC sites. Coarse fragment content measurement was conducted in two 

stages. In the first stage, volumetric content of coarse fragments larger than 10 mm in 

diameter was assessed in the field for the 0-30 cm depth by visual comparison to area 

percentage charts. Then samples were collected from 0-5 cm, 5-15 cm, and 15-30 cm. 

In the field, samples were passed through a 10 mm sieve with the <10 mm fraction being 

placed in plastic bags. The collected samples were transferred to the soil science lab 

and the second stage of coarse fragment content measurement was carried out by 

passing the samples through a 2 mm sieve. Following that, the coarse fragments on the 

sieve were weighed and coarse fragment content (2 mm – 10 mm) was calculated 

gravimetrically.  

To calculate the total coarse fragment content, the coarse fragment content 

measured in the field (field >10 mm) was summed with the coarse fragment content 

measured in the lab. For this goal, it was necessary to convert the lab coarse fragment 

measurements from a weight to a volume basis. If we name coarse fragments larger 

than 10 mm as CF>10, and coarse fragment content from the lab as fine coarse 

fragment (FCF) and consider bulk density as Db and particle density as Dp, we then can 

calculate the total coarse fragment content from equation 1:  

𝐶𝐹 > 10 +  (1 −  𝐶𝐹 > 10) ×
𝐹𝐶𝐹 𝐷𝑝⁄

(
𝐹𝐶𝐹

𝐷𝑝
 +(1−𝐹𝐶𝐹)) 𝐷𝑏⁄

                           (1) 

In this equation Dp was 2.65 and Db was estimated for each site. FCF consists 

of the coarse fragments less than 10 mm in diameter. The complexity of this equation 

can be explained if we consider equation 2. In Equation 2, (1-FCF) is the volume of fine 

fraction passed from the 2 mm sieve. 
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𝐹𝐶𝐹 𝐷𝑝⁄

(
𝐹𝐶𝐹

𝐷𝑝
 +(1−𝐹𝐶𝐹)) 𝐷𝑏⁄

 =  
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐹𝐶𝐹

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎 𝑆𝑎𝑚𝑝𝑙𝑒 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝐿𝑎𝑏 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠
          (2)  

Since direct measurement of Db for each site was not conducted in this study, an 

indirect measurement method was used by making a RF model for Db using a regional 

subset of the BCSIS data (Sondheim and Suttie, 1983). Four variables were extracted 

from the BCSIS data subset including bulk density, organic carbon content, sand content 

and clay content. Then a RF model was trained using bulk density as a dependent 

variable and organic carbon content, sand content and clay contents as covariates. After 

making the model it was used to estimate Db for our own sites using our dataset. The 

results of the three depths were weight averaged to make only one value for the 0- 30 

cm layer at each site. Lastly, a new variable was defined in the dataset for total coarse 

fragment content, and it was used in RF modelling analysis and map production.   

Clay Content 

Clay content data collected from 233 sites were used in this study including 194 

cLH sites and 39 RC sites. Clay content was measured using the hydrometer method 

(Carter, 1993). The three depth values (0-5, 5-15, 15-30 cm) of clay content for each site 

were weight averaged and one value for each plot was calculated to be used in the 

modelling.  

2.3.5. Environmental Covariates  

A 1 m spatial resolution LiDAR DEM was provided for this project by the BC 

Ministry of Forests, Land and Natural Resource Operations. Before generating other 

covariates, the DEM was passed through an adaptive filter in WhiteBox GIS (Lindsay, 

2015). The adaptive filter algorithm passes a window over all cells and calculates the 

average value centered on each cell. If the difference of the absolute average value and 

the central cell value in that window was more than a threshold, the filter will assign the 

mean value to that cell value (Lindsay, 2015). The filtered DEM was further processed to 

reduce the perturbing effects of the road network on topographic derivatives derived 

from hydrologic flow. Roads were identified from access network datasets that were 

manually checked for completeness and accuracy. Then a 4 m buffer was applied to the 

road lines and the underlying DEM cut, and then gap filled to recreate a smooth slope 

where the ditches and road fill were previously visible in the LiDAR dataset. For the next 
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step,15, 3 m resolution covariates were derived from the pre-processed DEM in SAGA 

GIS. All covariates were upscaled to 3 m, 9 m, 15 m, 27 m, and 30 m resolution grids. 

Then all variables at different resolutions were downscaled to 3 m resolution (Behrens et 

al., 2018). Forty-two varieties of the first 15 variables listed in Table 2.1, plus three 

categorical covariates (#16-18 in Table 2.1) were used to make the models. 

Table 2.1. List of covariates. 
No Variable Name Description 

1 
Full hillshade 
illumination 

Shaded relief or hillshade can be calculated from a DEM. The azimuth angle 
of the hillshade illumination can be adjusted. To increase the influence of this 
variables, hillshade illuminations have been calculated from different angles 
(0, 120 and 240) and the results were averaged to make one variable. 

2 
Diurnal anisotropic 
heating: an 
adjusted aspect 

The highest values are found on sloping hillsides facing southwest. The 
anisotropic adjustment is used to incorporate the fact that hot temperature 
and intense sunshine in the afternoon (i.e. when the sun is west of south) 
causes more plant moisture stress than the site exposures which are still 
relatively cool in the morning (i.e. sun is east of south) 

3 
Digital elevation 
model (DEM) 

A 3D representation of the earth surface created from terrain elevation data 

4 
Standardized 
height 

A measure of relative elevation 

5 
Multiresolution 
index of valley 
bottom flatness 

An identification of valley bottoms from DEM; SAGA GIS uses slope and 
elevation to classify valley bottoms as flat, low areas. 

6 
Multiresolution 
ridge top flatness 

Unlike multiresolution index of valley bottom flatness that is used to identify 
the areas of deposited material, multiresolution ridge top flatness is used to 
identify high flat areas at the range of scales. (Gallant et al., 2000).  

7 Plan curvature 

A type of curvature that emphasizes different aspects of the slope; A 
curvature can be defined as profile, planform and standard. The planform 
curvature (usually called plan curvature) is perpendicular to the direction of 
the maximum slope. 

8 Profile curvature Parallel to the direction of the maximum slope 

9-
10 

Openness positive 
and openness 
negative 

These terms refer to the ‘exposure’ of a point on the earth surface. High 
degrees of positive openness occur on convex topographic highs with high 
exposure to the atmosphere. Concavities on the lower parts of the landscape 
have low values of positive openness (Yokoyama, 2002).  

11 Slope The ratio of vertical change to horizontal change between to distinct points 
12 Slope height The vertical distance from slope toe to crest  

13 
Topographic 
Wetness Index 
(TWI) 

Ln of Local upslope area draining through a certain point per unit contour 
length (α) divided by local slope (tan β) [ ln(α/tanβ)] (Sørensen et al., 2006) 

14 Valley depth Vertical distance from crest of a slope to a channel network base level 

15 
Vegetation canopy 
height model 

Also called canopy height model and is the distance between ground and top 
of the trees. It is obtained from LiDAR data by subtracting digital terrain 
model from digital surface model (Wasser, 2017). 

16 BEC subzone 
A system of ecological classification widely used in British Columbia, Canada 
(Pojar et al., 1987). This is meant to provide the model with information 
similar to many climate variables   
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No Variable Name Description 

17 Geonut 

An index derived from the bedrock geology map to reflect light and dark 
coloured rocks and minerals. Soils developed from dark coloured rocks are 
generally thought to contain more plant nutrients than those from light 
coloured rocks and minerals.   

18 Geotex 

Very similar to geonut, derived from the same bedrock geology dataset. 
Rocks with coarse grains such as igneous intrusive rocks have large size 
mineral grains and are thought to weather to sandy parent materials. This is 
very common in the coast mountains in almost the whole western part of BC, 
Canada. Fine grain size rocks such as basalt and shale tend to produce soils 
with finer texture like in many parts of the interior of BC, Canada. 

2.3.6. Machine Learning Model 

The process of using a ML model can be described as training a statistical model 

using predictor and response variables to make the model and using it to make new 

predictions in a study area (Heung et al. 2016; Witten et al. 2016). In this study, the RF 

model was used, and its output prediction results were validated. RF is a non-parametric 

ML technique in which many trees are trained, and the results are obtained from the 

predictions from an ensemble of trees. The RF algorithm incorporates bagging, where 

numerous trees are constructed independently using a bootstrap sample of the dataset. 

Bagging or bootstrap aggregation is used to reduce the variance of an estimated 

prediction function. The node splitting rules are randomly selected by using a subset of 

independent variables. RF randomizes the partitioning procedure by considering a 

parameter called Mtry which is the number of variables that are tested at each split. In 

this way RF reduces prediction errors, measured from variance reduction resulting from 

averaging. Final predictions are made based on average weights over the ensemble 

(Breiman, 2001; Heung et al., 2016). 

2.3.7. Variable Importance Plots 

RF model made with Caret package (Kuhn, 2019) in RStudio application has a 

built in variable importance score. The function automatically scales the importance of 

variables to be between 0 to 100. The most important variable receives score 100 and 

the least important one receives score 0. The scores can be used as a list or a plot. The 

plot method visualizes the results (Kuhn, 2019). In this study variable importance plots 

were generated for RF models. 
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2.3.8. k-fold Cross Validation 

Model validation shows us the proportion of the variance for a dependent 

variable that can be explained by the independent variables. There are different methods 

of validation in DSM such as random holdback, leave one out cross validation, and k-fold 

cross validation (Malone et al., 2017). In this study we used k-fold cross validation, with k 

= 10.  

k-fold cross validation sometimes is named rotation estimation. In k-fold cross 

validation, the dataset 𝐷 is split into K mutually exclusive subsets of 𝐷1, 𝐷2, … , 𝐷𝑘 which 

are roughly the same size. A model is trained and tested k times, each time 𝑡 ∈

 {1, 2, … , 𝐾}.  The model is trained on 𝐷\𝐷𝑡 and tested on 𝐷𝑡 by calculating the accuracy 

metrics: R2, concordance correlation coefficient and root mean squared error (RMSE). 

The summation of the number of correct classifications divided by the number of 

instances in the dataset will create the cross validation estimate of accuracy. 

𝑎𝑐𝑐𝑐𝑣 =  
1

𝑛
 ∑ 𝛿(𝐼(𝐷\𝐷(𝑖), 𝑣𝑖), 𝑦𝑖)(𝑣𝑖,𝑦𝑖)∈𝐷                    (1) 

In this equation 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} is a dataset. This dataset consists of n labelled 

instances and 𝑥𝑖 = ( 𝑣𝑖  ∈ 𝑉, 𝑦𝑖 ∈ 𝑌). A classifier is a function that maps an unlabelled 

instance to a label using internal data structures. An inducer 𝐼, or an induction algorithm 

such as random forest, builds a classifier from a given dataset. As mentioned previously, 

a classifier C maps an unlabeled instance 𝑣 ∈ 𝑉 to a label 𝑦 ∈ 𝑌. A RF model maps D 

into C. To obtain a complete cross-validation, all ( 
𝑚

𝑚 𝑘⁄ )  possibilities should be 

averaged for selecting 𝑚 𝑘⁄  instances out of m. 𝛿 refers to the cross validation function 

(Kohavi, 2001).   

Three important statistics that are measured by a k-fold cross validation method 

are R2, concordance, and RMSE. R2 is the square sample correlation coefficient 

(Pearson’s) between the observation and their corresponding predictions. Lin’s 

concordance correlation coefficient or simply concordance evaluates the accuracy and 

precision of the relationship. RMSE is the standard deviation of the residuals and is 

called prediction error (Malone et al., 2017).   
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To generate the most unbiased validation results using a 10-fold cross validation, 

a nested 10-fold cross validation approach with 20 repeats was used. In the nested 10-

fold cross validation the best hyperparameter of the RF is selected in the inner loop and 

the trained model with the best hyperparameter is tested 10 times on unseen randomly 

selected subsets of the dataset (Wainer and Cawley, 2018). The validation results of the 

10 times accuracy measurement are saved and the whole process is repeated 20 times. 

All validation results finally are averaged to obtain the most accurate validation metrics.  

2.4. Results and Discussion 

2.4.1. Modelling and Validation 

Training Data in BEC subzones 

Before starting to model, an analysis was conducted to see how training data for 

each soil attribute are distributed in BEC subzones in the study area. For this goal, 

training datapoints in the two BEC subzones were compared using boxplots in Figure 

2.6 and values in Table 2.2. According to Figure 2.6 and Table 2.2, soil thickness data in 

IDFdk1 compared to IDFxh2 have been collected from shallower soils as the lowest 

quartile is 20 cm for IDFdk1 and is 100 cm for IDFxh2 BEC subzones. However, in both 

subzones the median value (200 cm) and highest quartile (250 cm) are the same, 

although there are some potential outliers in IDFxh2 data that show very deep soils in 

IDFxh2 (Figure 2.6 & Table 2.2). The values for very deep soil were not removed from 

the dataset because they represent true determinations of soil thickness and were not 

errors.  

Comparison of depth to carbonate data collected in the two BEC subzones 

shows that carbonated soils can be found in deeper soils in IDFdk1, and carbonates are 

closer to the surface soil in IDFxh2 as the lowest quartile of the boxplot shows a depth of 

58 cm compared to IDFxh2 that shows 30 cm depth (Figure 2.6 & Table 2.2). 

Comparison of soil pH in the two BEC subzones shows more acidic soils in IDFdk1 

which is in accordance with the results of depth to carbonates in the two BEC subzones. 

In both the lowest quartile and the highest quartile, the soil pH values in IDFdk1 are 

lower with values of 5.14 and 5.96 compared to those related to IDFxh2 that are 5.61 

and 6.31 (Figure 2.6 & Table 2.2). This means that in the IDFdk1, carbonated soil can be 
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found deeper in soils and soil pH is more acidic, and in IDFxh2 carbonated soil can be 

found closer to the soil surface and the soil pH is more basic. Comparison of coarse 

fragment content in the two BEC subzones shows that soils with both less coarse 

fragment content with value of 9.14% and coarser fragment content with value of 

13.88% for lowest and highest quartiles respectively can be found in IDFdk1. Clay 

content comparison in the two BEC subzones shows less clay content in IDFdk1 (Figure 

2.6 & Table 2.2).   

 
Figure 2.6. Comparison of 5 soil properties from training data between the two 

BEC subzones 

 

Table 2.2. Statistics for the training data in the two BEC subzones. 

Soil property  
BEC 
Subzone 

Number 
of Points 
in each 
Subzone 

Data statistics  

Median Mean Min Max  Range 
Lowest 
Quartile 

Highest 
Quartile 

Soil Thickness (cm) 
IDFdk1 190 200 162.8 0 500 500 20 250 

IDFxh2 220 200 194.7 0 800 800 100 250 

Depth to 
Carbonates (cm) 

IDFdk1 61 70 69.9 0 115 115 58 93 

IDFxh2 110 59 58.09 0 145 145 30 80 

Soil pH 
IDFdk1 116 5.51 5.64 4.21 8.65 4.44 5.14 5.96 

IDFxh2 114 5.93 6.06 4.48 8.56 4.08 5.61 6.31 

Coarse Fragment 
Content (%) 

IDFdk1 117 32.25 35.59 0.6 80.7 80.1 24.3 47.33 

IDFxh2 114 36.15 36 0.06 79.35 79.29 29.67 43.98 

Clay Content (%)  
IDFdk1 103 11.5 11.81 2.85 28.83 25.98 9.14 13.88 

IDFxh2 97 14.5 14.94 4.28 30.17 25.89 11.32 18 
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Covariates for BEC subzones and Data Points  

An elevation model of the study area depicted in Figure 2.9; map 1, shows the 

elevation range from 544.8 m to 1454.8 m. The three BEC subzones also are shown on 

all maps (Figure 2.9). The elevation map shows that IDFdk1 BEC subzone is associated 

with high elevations with mean elevation value of 1177 m (Table 2.3), and IDFxh2 is 

associated with mid elevations with mean elevation value of 971 m (Table 2.3 & Figure 

2.7). The lowest elevations can be found in PPxh2 subzone which is 544 m (Table 2.3). 

The distribution of cell values for three other covariates also was investigated (Table 2.3 

& Figure 2.7). Boxplots of slope raster cell values show that steeper slopes can be found 

at lower elevation BEC subzones and the steepest slopes are in PPxh2. The statistics of 

cell values of TWI and negative openness covariates show that there is not a significant 

difference between them in different BEC subzones (Figure 2.7).  

                

 
Figure 2.7. Data distribution of four covariates in the three BEC subzones. 
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Table 2.3. Statistics for four covariates used in modelling. 
  

BEC 
Subzone 

Covariate Statistics 

Covariate Mean Median Min Max Range SD  
Lowest 
Quartile 

Highest 
Quartile  

  IDFdk1 1177 1176 926 1455 529 96 1105 1247 
Elevation(m) IDFxh2 971 977 558 1328 769 130 880 1066 
  PPxh2 688 690 545 822 277 53 651 725 

  IDFdk1 0.26 0.23 0 1.36 1.36 0.17 0.13 0.36 
Slope (Ra) IDFxh2 0.28 0.25 0 1.35 1.35 0.16 0.16 0.38 
  PPxh2 0.3 0.28 0 1.06 1.05 0.15 0.18 0.42 

Wetness index IDFdk1 2.51 2.41 -1.23 10.26 11.5 0.98 1.85 3.06 
 (TWI) IDFxh2 2.54 2.45 -0.99 9.9 10.89 1.03 1.86 3.05 
  PPxh2 2.47 2.32 -0.21 9.72 9.93 1.04 1.74 3.01 

  IDFdk1 1.39 1.4 0.69 1.79 1.1 0.08 1.35 1.45 
Openness negative  IDFxh2 1.41 1.42 0.71 1.68 0.97 0.07 1.37 1.46 
  PPxh2 1.41 1.41 0.95 1.64 0.69 0.06 1.37 1.46 

 

Statistics for 4 important covariates for data points show that the sampling 

coverage was best for soil thickness (Figure 2.8). However, the sampling for depth to 

carbonates is biased and needs improvement. Depth to carbonate points are taken from 

slightly lower elevations overall, with fewer samples on the steep slopes, in slightly lower 

landscape positions, and in drier and more convex areas (Figure 2.8).   

 
Figure 2.8. Boxplots showing values for 4 topographic covariates (elevation, 

slope, TWI, and negative openness) for soil thickness, depth to 
carbonates and soil properties measured in the lab (soil pH, coarse 
fragment content, clay content). 
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The predicted soil maps 

Five soil properties that can be used for improving forest management have been 

mapped in this study area using a RF model and the data collected. They are soil 

thickness, depth to carbonates, soil pH, coarse fragment content and clay content. The 

first map in Figure 2.9 shows the elevation map (made from DEM) and has been added 

for comparison purposes. Moreover, the BEC subzones have been outlined on the maps 

(Figure 2.9).   

 
Figure 2.9. Five maps generated using RF to predict soil properties (soil 

thickness, depth to carbonates, soil pH, coarse fragment, and clay 
content). BEC subzones are outlined on the maps and an elevation 
map is also presented.  

Soil properties for BEC subzones  

Most of the predicted soil properties (soil thickness, depth to carbonates, soil pH 

and clay) tend to follow the BEC subzone pattern, but coarse fragment content does not. 

Most of the shallowest soils are associated with IDFdk1 BEC subzone which covers the 

top of the hills (Figure 2.9). The minimum value of soil thickness in IDFdk1 is 18 cm and 
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the maximum value is 387 cm. The mean value of soil thickness in IDFdk1 is 175 cm 

(Table 2.4). The mean value of soil thickness in IDFdk1 is less than that in IDFxh2 (188 

cm) and PPxh2 (205 cm). In IDFdk1 BEC subzone, 50% of soil thickness values were 

between 140 cm and 216 cm. Fifty percent of cell values in IDFxh2 BEC subzone were 

between 162 cm and 218 cm. The range of values for PPxh2 was between 180 cm and 

236 cm. Therefore, the deepest soil has been found in PPxh2. The relationship between 

soil thickness and elevation raster cell values has an R2 of 6.27% (Figure 2.10). A slight 

negative relationship between soil thickness and elevation indicates that by increasing 

the elevation, soil thickness decreases.  

Depth to carbonates is greatest at higher elevation (Figure 2.9). The average 

depth to carbonates is 69.7 cm in the IDFdk1 subzone. However, in the IDFxh2 and 

PPxh2 subzones the average depths are 63.2 cm and 61.9 cm respectively (Table 2.4 & 

Figure 2.9). Moreover, 50% of cells in the IDFdk1 subzone have depth to carbonates 

ranging from 62 cm to 77.8, whereas the ranges for the IDFxh2 and PPxh2 are 56.4 cm-

70.1 cm and 56.4 cm-67.9 cm, respectively. This means that soil carbonates are closer 

to the soil surface in the PPxh2 subzone (Table 2.4). The relationship between depth to 

carbonate map cell values and the elevation model cell values is depicted in Figure 2.10. 

Table 2.4. Statistics for predicted soil properties for each BEC subzone. 

Soil Property 
BEC 
Subzone 

Map statistics 

Mean Median Min Max Range SD  
Lowest 
Quartile 

Highest 
Quartile  

  IDFdk1 175 190 18 387 369 54 140 216 
Soil Thickness(cm) IDFxh2 188 197 23 375 352 45 162 218 
  PPxh2 205 212 70 329 259 44 180 236 

  IDFdk1 69.7 70.2 22.7 97.9 75.2 10.1 62 77.8 
Depth to  IDFxh2 63.2 63.5 21.3 106.3 84.9 9.3 56.3 70.1 
Carbonates (cm) PPxh2 61.9 63.4 26.9 83.7 56.9 7.7 56.4 67.9 

  IDFdk1 5.72 5.67 5.04 7.68 2.64 0.3 5.52 5.87 
Soil pH IDFxh2 6.07 6.03 5.08 7.68 2.6 0.32 5.88 6.22 
  PPxh2 6.41 6.37 5.79 7.68 1.9 0.31 6.18 6.59 

  IDFdk1 36.9 37.1 13.7 62.8 49 6.3 32.2 41.2 
Coarse Fragment  IDFxh2 37 38.3 14.8 57.4 42.6 5.6 33 41.2 
Content (%) PPxh2 37 38.9 15 51.1 36.1 6.4 32.8 41.9 

  IDFdk1 12.5 12.3 6.1 21.6 15.5 1.7 11.3 13.6 
Clay Content (%) IDFxh2 15 15.1 8.4 23.2 14.8 1.6 14 16 
  PPxh2 16.2 16.1 12.5 21 8 1.1 15.5 16.8 
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Figure 2.10. Scatter plots of cell values of soil property maps vs elevation; the 

plots show high cell density in brown and low cell density in blue. 

The R2 value for the relationship between depth to carbonates and elevation was 

13.36% which is a higher value than that for the relationship between the soil thickness 

and the elevation model (Figure 2.10). The positive relationship between depth to 

carbonates and the elevation in Figure 2.10 indicates that by increasing the elevation, 

the depth to carbonates increases.   

The most acidic soils are found in the IDFdk1 subzone (Figure 2.9) with a mean 

value of 5.72. The mean pH value in IDFxh2 is 6.07 and in PPxh2 is 6.41. The basic 

soils can be found at lower elevations in IDFdk1 and PPxh2, which are the same areas 

with shallower depths to carbonates (Table 2.4). Fifty percent of pH values in the IDFdk1 

subzone are between 5.52 and 5.87 while the same percentage of values in IDFxh2 and 

PPxh2 are in the range of 5.88-6.22 and 6.18-6.59 respectively (Table 2.4). This 

analysis indicates that soil in the IDFdk1 subzone is more acidic. The relationship of the 

soil pH raster and the elevation model cell values shows a relatively strong relationship 

with an R2 of 44.63% (Figure 2.10). The negative relationship means that by increasing 

the elevation the soil pH decreases.  

A visual inspection of the map in Figure 2.9, map 5 shows that the coarse 

fragment content in IDFdk1, especially on the northwest hill is higher than other places 

on the map. However, the mean coarse fragment content in the IDFxh2 subzone is 
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37.04% which is higher than the other subzones (Table 2.4). Fifty percent of coarse 

fragment content values in IDFdk1 are between 32.2% and 41.2% and for the IDFxh2 

and PPxh2 subzones the ranges are 33%-41.2% and 32.8%-41.9% respectively (Table 

2.4). Coarse fragment content has a very weak relationship with elevation (Figure 2.10).  

A visual inspection of the clay percentage map shows that the IDFdk1 subzone 

has lower clay content than the IDFxh2 and PPxh2 subzones (Figure 2.9). The mean 

clay content in IDFdk1 (12.5%), is lower than the clay content in IDFxh2 (15%) and 

PPxh2 (16.2%) (Table 2.4). Fifty percent of clay content values in IDFdk1 are between 

11.3 and 13.6 % and in the IDFxh2 and PPxh2 subzones the ranges are 14%-16% and 

15.5%-16.8% clay respectively. This suggests that the lower the elevation; the higher the 

clay content is (Table 2.4). According to Figure 2.10, the cell values of the clay content 

map shows a relatively strong relationship with elevation with R2 of 23.26%. Since the 

relationship is negative, at increased elevation, the clay content decreases.   

Validation Results 

A nested 10-fold cross validation method with 20 repeats was used to validate 

the RF predictions. The R2 and concordance values for the RF model for soil thickness 

were 0.35 and 0.47 respectively which were the highest validation results amongst all 

models. The second-best validation results were for soil pH with R2 of 0.26 and 

concordance of 0.37 (Table 2.5). The relatively poor validation results for depth to 

carbonates (Table 2.5) may be due to a shortage of training data or a lack of an intrinsic 

relationship between the soil properties and the DEM. Collecting more training data can 

solve the first problem. To investigate the second possible problem the relationship 

between the soil property predictions and the DEM has been sought (Figure 2.10). As 

can be seen in Figure 2.10, predicted depth to carbonates is relatively highly correlated 

with elevation (R2 of 13.36%). This suggests that the poor validation results for depth to 

carbonates may be due to a lack of enough training data for this property.  

Table 2.5. Accuracy metrics for 5 soil property maps produced for the study 
area using RF. 

Dataset     R2  concordance          MSE              RMSE               bias 

Soil Thickness 0.35 0.47 10997.74 103.18 1.58 
Depth to Carbonates 0.07 0.14 898.8 29.98 -0.24 
Soil pH 0.26 0.37 0.47 0.68 0.02 
Coarse Fragment Content 0.11 0.2 213.07 14.48 0.08 
Clay Content 0.13 0.20 21.58 4.58 0.25 
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Covariate Importance 

A total of 45 covariates were used in modelling five soil attributes in this study. 

The importance of variables was different for modelling each soil property (Figure 2.11). 

The most important covariates for modelling soil thickness were open negative and 

parallel curvature. For modelling depth to carbonates, elevation and slope were the most 

important variables. For modelling soil pH, vegetation height model (canopy height 

model), elevation and total wetness index were the most influential variables. For 

modelling coarse fragment content, multiresolution index of valley bottom flatness, slope, 

and multiresolution ridge top flatness were the most important variables. For modelling 

clay content, elevation and topography were the most important variables (Figure 2.11 & 

Tables 2.1 & 2.6).  

As was explained in section 2.3.5 all covariates used in modelling were 

downscaled to 3 m resolution. However, the covariates were originally upscaled to 

different resolutions. Covariates originated from low resolutions such as 9, 27 and 30 m 

are often high in the rankings for importance (Figure 2.11). For example, 9 out of 10 of 

the most important covariates for modelling soil thickness were from 9 m resolution and 

lower. For modelling depth to carbonates, 6 out of 10 important covariates were from 9 

m and lower resolutions. For modelling soil pH, 5 out of 10 covariates were from 9 m and 

lower resolution covariates. Likewise, for coarse fragment content and clay content, 7 

covariates out of 10 were from 9 m and lower resolutions respectively. One possible 

reason for this observation is that much of the fine scale originated covariates may 

contain a lot of noise, and thus the RF model can make better models with covariates 

originated from lower resolutions.  
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Figure 2.11. Importance plots for modelling 5 soil properties using RF 

demonstrated using percentage of importance level. 

Table 2.6. List of covariates and acronyms. 

No. 
Covariate 
Acronym 

Original 
Reso 
(m) 

Covariate Name No. 
Covariate 
Acronym 

Original 
Reso 
(m) 

Covariate Name 

1 X3AH_full 3 
Full hillshade illumination 

24 X3OPEPOS 3 
Openness positive 2 X9AH_full 9 25 X9OPEPOS 9 

3 X27AH_full 27 26 X27OPEPOS 27 
4 X3DAH 3 

Diurnal anisotropic heating 
27 X3OPNEG 3 

Openness negative 
5 X9DAH 9 28 X9OPNEG 9 
6 X27DAH 27 29 X27OPNEG 27 
7 X3ELEV 3 

DEM 
30 X30OPENEG 30 

8 X9ELEV 9 31 X3SLOPE 3 
Slope 9 X27ELEV 27 32 X9SLOPE 9 

10 X9HTSTD 9 
Standardized height 

33 X27SLOPE 27 
11 X27HTSTD 27 34 X3SLHT 3 

Slope height 
12 X3MRVBF 3 

Multiresolution index of 
valley bottom flatness 

35 X9SLHT 9 
13 X9MRVBF 9 36 X3TWI 3 

Topographic wetness 
index 

14 X27MRVBF 27 37 X9TWI 9 
15 X3MRRTF 3 

Multiresolution ridge top 
flatness 

38 X27TWI 27 
16 X9MRRTF 9 39 X3VYDP 3 

Valley depth 17 X27MRRTF 27 40 X9VYDP 9 
18 X3CUPL 3 

Plan curvature 
41 X27VYDP 27 

19 X9CUPL 9 42 X30VGCHM 30 Canopy height model 
20 X27CUPL 27 43 BEC_sz 3 BEC subzone 
21 X3CUPR 3 

Profile curvature 

44 GEONUT 3 Bedrock (darkness) 

22 X9CUPR 9 45 GEOTEX 3 Bedrock(texture) 

23 X27CUPR 27         
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2.4.2. Maps for Forest Management 

Digital soil maps can be used to assess the sensitivity of soils in cutblock sites to 

degradation processes and help forest managers decide how to preserve soil 

productivity and prevent soil-related site degradation. In this study, cutblocks have been 

depicted with respect to predicted soil properties (Figure 2.12). Availability of digital soil 

information provided at the time of authorizing the harvest could assist forest managers 

of these cutblocks to ensure soil preservation and protection. As can be seen in Figure 

2.12; map 1, which shows the relationship between cutblock location and slope, 

cutblocks are mostly positioned in areas of relatively gentle slope within the generally 

steep terrain, although certain portions of cutblocks located at high elevations have 

steep slopes. Also, on the high hills of the northeast side of the study area the soils were 

generally predicted to be very shallow ranging from 0-76 cm, but the cutblocks tend to 

be located in areas with somewhat thicker soils (Figure 2.12; map 2) except for certain 

portions of cutblocks. At the same time, with soils (e.g. clay < 10%) that partially mitigate 

the erosion risks associated with steep slopes and thin soils on the northeast (Figure 

2.12; map 1, 2 & 6), careful management could occur and some harvesting can be 

carried out without significant soil degradation and diminished soil productivity.  

The forest soil displacement hazard refers to the risk of exposing unfavourable 

subsoil such as carbonated soils (Lewis and Carr, 1993) and forcing tree and plant roots 

to grow in them instead of the more favorable topsoil materials. In the southwest of the 

study area and along the edge of the study area highlighted with a square in maps 3 and 

4 of Figure 2.12,  there are cutblocks in which the carbonated soils and those that have 

pH over 6 are close to the surface (Figure 2.12; map 4). In this cutblock although soil is 

deep, and slope is minimal, the unfavorable subsoil condition represents a risk that 

exposure of such materials can lead to reduced plant growth compared to other forest 

locations. High-resolution digital soil maps made for depth to carbonates can easily 

show forest managers where in the forest the unfavorable carbonated soils are expected 

to be close to the soil surface. Therefore, the maps can provide them with an effective 

decision-making tool to ensure sustainable forest management. 

Lastly, there are also some cutblocks in this study area that are at risk of soil 

compaction and puddling hazard. As previously described, soils with coarse fragment 

content  < 70% and clay content > 20% are susceptible to soil compaction and puddling 
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hazard (Lewis and Carr, 1993). On the southern region of the study area (highlighted 

cutblock in Figure 2.12; maps 5 and 6 & Figure 2.13), some soils were predicted to have 

low coarse fragment content and high clay contents; hence, harvesting activity carried 

out under wet soil conditions could lead to an increased risk of soil compaction and 

puddling on these sites.  

Soil hazard assessment maps can be produced to assist forest managers. An 

example of a hazard map is produced in this study (Figure 2.13). The soil compaction 

and puddling hazard map demonstrated in Figure 2.13 shows areas with high level of 

hazardous condition in dark blue. Areas shown in red depict areas with very high 

hazardous condition (Figure 2.13). For this area, there do not appear to be any 

contiguous areas of soils with very high compaction hazards. By considering a 

hazardous threshold value and combining slope gradient, slope complexity, slope 

curvature, depth to bedrock, depth to carbonates and soil chemistry (pH), a 

displacement hazard map can be produced. In the same fashion an erosion hazard 

assessment map also could be produced. To generate a soil erosion hazard assessment 

map, the following data could be used: climate, slope, depth to water restricting layer 

from depth to bedrock (soil thickness), clay content and coarse fragment content.   



45 

 
Figure 2.12. Cutblocks in the study area susceptible to mismanagement and high 

risk of   soil degradation. 
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Figure 2.13. Compaction and puddling hazard assessment map. 

2.4.3. General Discussion and Future Work 

In this study we used RF to model five soil properties and produce digital soil 

maps. Other ML models could be selected such as Cubist decision tree, kNN and SVM. 

We selected RF because it has several advantages compared to most of the modeling 

techniques mentioned above. First, it can model high dimensional non-linear 

relationships. Second, it is resistant to overfitting. Overfitting occurs when a ML model  

fits closely to the training data and the accuracy results are too optimistic; however, the 

performance of the model on an unseen dataset is poor (Hawkins, 2004). Third, RF 

performance is relatively robust with respect to noisy covariates. Fourth, RF implements 

an unbiased measure of the error rate; and fifth, RF can measure variable importance 

(Grimm et al., 2008). Moreover, the results in Chapter 3 confirm the superiority of RF 

models compared to the other three ML models as RF has shown the lowest local 

uncertainty in the 90% PI range. 
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In this study we used a multiscale approach for covariate generation. The reason 

for selecting this method is that we wanted to regionalize soil information as accurately 

as possible and cover all relevant landscape characteristics in our modelling (Behrens et 

al., 2010; McBratney et al., 2003b). The landscape characteristics such as topography, 

rivers, waterbodies and vegetation are soil formation forces and can induce soil 

formation and pedogenesis at different scales (Kerry and Oliver, 2011). This approach 

provides measures of the entire landscape that is called the geomorphic signature (Pike, 

1988) and increases prediction accuracy (Behrens et al., 2014). 

The goal of producing digital soil maps in this chapter was to help forest 

managers by providing them with useful information about soil. This is a new branch in 

DSM introduced by Carré et al. (2007) and is called digital soil assessment (DSA). Their 

intention of producing digital soil maps was to translate the information gained from DSM 

into something practical and useful that can help foresters assess risks and make spatial 

decision-making surfaces (McBratney et al., 2012). This branch is still very young and is 

still in the framework development phase. To develop an initial framework McBratney et 

al. (2012) discussed that digital soil assessment can be driven by soil scientists or 

stakeholders. Global issues such as food, water and energy security and climate change 

mitigation can motivate stakeholders and soil protection can motivate soil scientists to 

develop DSA methods. Soil scientists can provide useful information about soil for 

stakeholders. This chapter was just a start in developing DSRA maps. This topic will be 

further developed and discussed and new methods will be investigated for mapping soil 

properties that are difficult to be mapped such as soil erosion, unfavorable subsoil layers 

and salinization (Carré et al., 2007). 

2.5. Conclusions 

The first objective of this study was to produce soil digital maps for five soil 

properties that provide valuable information for forest managers. The soil properties that 

have been selected for this study were soil thickness, depth to carbonates, soil pH, 

coarse fragment content and soil clay content. The model that has been used in this 

study was RF. The second objective of this study was to validate the soil property 

predictions using a nested 10-folds cross validation with 20 repeats. The last objective of 

this study was to discuss and illustrate how the digital maps produced in this study can 

help forest managers.  
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Five digital soil maps were produced in the Eagle Hill Forest study area located 

west of Kamloops, BC with the area of 95 km2. The maps produced in this study shows 

that the harvesting sites on the northeast slopes are susceptible to erosion, and more 

care should be considered when forest harvest is authorized on these slopes. Moreover, 

the depth to carbonates digital soil map highlights some cutblocks on the southwest 

corner of the study area with unfavorable subsoil condition in which tree growth may be 

delayed. Forest harvesting protocols should be carefully reviewed in these cutblocks to 

prevent soil displacement and subsoil unfavorable hazard. By looking at digital soil maps 

of coarse fragment content and clay content it is evident that in the south part of the 

study area there is a cutblock in which in some places the clay content is over 20% and 

coarse fragment content is less than 70%. This condition is a sign of puddling and 

compaction hazard in this cutblock that should be considered.   

This study was designed to show how digital soil maps can be produced using 

high-resolution LiDAR data and how they can be used for forest management. In future 

work the improvement of the map validation results will be sought by increasing the 

number of training data points. Making further digital soil maps using high-resolution 

LiDAR data for forest in soils susceptible to hazards and a closer look and comparison 

between cutblocks that are susceptible to mismanagement will be conducted in future 

work as well.  
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Chapter 3.  
 
Quantile Regression as a Generic Approach for 
Estimating Uncertainty for Machine-Learning 
Techniques 

3.1. Abstract 

The word uncertainty in DSM refers to both model error and spatially explicit 

uncertainty. Spatially explicit uncertainty is known as quantification of confidence 

intervals for model output and is called local error. Based on importance of local errors, 

international standards require 90% prediction interval (PI) measurements for 

quantification of uncertainty in DSM. Regarding the limitation of uncertainty quantification 

methods, this study proposes a new framework for uncertainty estimation using QR. The 

objectives of this study are 1) to produce soil attribute maps using 4 ML models for three 

soil properties: soil thickness, depth to carbonates, and soil pH and to validate the 

prediction results; 2) to produce 90% PI maps using the QR method; and 3) to assess 

those uncertainty estimations using metrics such as mean prediction intervals (MPI) and 

prediction interval coverage probability (PICP) analysis. We demonstrated the 

integration of ML and QR using a case study from a dry-forest ecosystem in the 

Kamloops region of British Columbia, Canada. Within the QR framework, model 

residuals from predictions using ML were obtained using a nested cross-validation 

procedure, which were then used as inputs into the QR model. In QR, the conditional 

distribution of a response variable was described as a linear function between the 

predicted and observed values of a soil variable. Uncertainty estimates were provided 

for every pixel in a predicted map and then were evaluated using mean prediction 

intervals (MPI) and prediction interval coverage probability (PICP) analyses. The results 

showed that RF performance was the best among the ML models and quantification of 

uncertainty using QR was accurate for modelling all soil properties in all four ML 

methods. This illustrates the capability of QR in quantification of uncertainty in DSM. 2  

 
2 A version of the following chapter has been submitted to Geoderma under the co-authorship of 
Brandon Heung, Daniel D. Saurette, Margaret G. Schmidt, Chuck E.Bulmer and William Bethel.  
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3.2. Introduction  

Like other kinds of maps, digital soil maps are representations of reality, and 

prediction in DSM is not error free. In other words, we are uncertain about the true 

properties and processes in soil because they are highly variable in space and time 

(Arrouays et al., 2014b; Malone et al., 2017). Some common forms of error are errors in 

measurements, digitization, typing, interpretation, classification, generalization and 

interpolation (Arrouays et al., 2014b). Uncertainty in the output data can be the result of 

bias in modelling, uncertainty in parameters, or even errors in measurements of the input 

data (McBratney et al., 2002). Since these errors can lead to poor decision making that 

may sometimes lead to serious consequences, we should be aware of them and 

quantify them (Arrouays et al., 2014b).  

It is important to consider the difference between model error and spatially 

explicit uncertainty. Model error is called mean square error and is the average squared 

difference between the estimated value and the actual value (Malone et al., 2011; Wang 

and Bovik, 2009). However, pixel-based estimates of uncertainty (i.e. local uncertainty) 

may be generated to provide an understanding of the spatial distribution of uncertainty 

(Feizizadeh et al., 2014; Malone et al., 2011; Vaysse and Lagacherie, 2017). Based on 

the importance of spatially explicit uncertainty quantification in DSM, international 

standards require 90% prediction interval (PI) measurements for quantification of 

uncertainty in DSM (Arrouays et al., 2014a). Nevertheless, measuring uncertainty in 

DSM seldom has been carried out (Minasny and McBratney, 2002; Vaysse and 

Lagacherie, 2017).  

Several uncertainty assessment methods have been used in DSM. Each of the 

uncertainty assessment methods has its own advantages and disadvantages. 

Geostatistical modelling approaches, for example, can produce uncertainty estimations 

using the kriging prediction variance where spatial representations of the prediction 

intervals may be calculated. However, the uncertainty estimations are specific to the 

modelling approach itself and not applicable for ML techniques (Fouedjio and Klump, 

2019; Malone et al., 2017). Moreover, geostatistical techniques are computationally 

intensive (Mckay et al., 2000). When using ML techniques, other studies have used a 

bootstrapping approach (Ackerson et al., 2015; Padarian et al., 2017; Stumpf et al., 

2017; Thomas et al., 2015), where a model is trained on a random subset of the full 



51 

training data and multiple realizations of a soil map are produced through the prediction 

process. By generating these realizations, spatial representations of uncertainty are 

produced by calculating the average MSE from the realizations and summing it with the 

bootstrap prediction variance that is estimated for each pixel (Malone et al., 2017). 

However, computational capabilities may limit the use of this approach when applied to 

large datasets since each map realization needs to be predicted and stored in order to 

estimate the prediction variance.  

Two other methods for measuring uncertainty are, empirical uncertainty 

quantification through data partitioning and cross validation, and empirical uncertainty 

quantification through fuzzy clustering and cross validation (Malone et al., 2017). Both 

these methods determine prediction intervals from the distribution of model errors. Model 

errors are calculated from the deviation between observation and model predictions. The 

prediction limits calculated in both these methods are not spatially uniform, and they are 

a function of the landscape. It means that the accuracy of the prediction depends on the 

areas of the landscape and particular landscape situations (Malone et al., 2017). Some 

uncertainty assessment methods such as Bayesian and Monte Carlo methods deal only 

with certain sources of uncertainty; for example, the Bayesian method only measures 

uncertainty associated with input data while the Monte Carlo method measures 

uncertainty in parameters (Solomatine and Shrestha, 2009).  

ML are computer algorithms that perform a specific task and improve through 

experience. They use dependent variables and environmental data as independent 

variables to predict soil attribute values for the whole study area (Dietterich, 2000; 

Heung et al., 2016). Within the DSM literature, the use of ML techniques has become 

increasingly popular because of their computational power availability (Rossiter, 2018). 

For example, Grimm et al. (2008) used RF to model soil organic carbon for different 

depth intervals on Barro Colorado island. Adhikari et al. (2019) developed a spatially 

explicit prediction model between soil organic carbon observations and 17 covariates 

using Cubist decision trees in Wisconsin, USA. Mancini et al. (2019) used RF, support 

vector machine (SVM), and linear discriminant analysis models to predict parent 

materials from A and B horizon samples in Brazil. Merchant et al. (2018) evaluated 

multiple remotely sensed datasets to map wetlands in the subarctic, boreal cordillera in 

Yukon, Canada. For their analysis they used RF, support vector machine (SVM) and k-

nearest neighbor (kNN) using various data combinations. These are only a few 



52 

examples of the use of ML methods in DSM and numerous studies have used ML 

methods.  

Quantification of uncertainty within a ML framework is quite novel, and many ML 

techniques are not capable of generating localized uncertainty maps (Szatmári and 

Pásztor 2019; Velronesi and Schillaci 2019; Vaysse and Lagacherie 2017). Among all 

ML techniques used in DSM, quantile regression forest (QRF) is one of the ML 

techniques that has a built-in mechanism for uncertainty quantification. QRF 

(Meinshausen, 2006) is an extension of RF (Breiman, 2001) in which for every leaf of 

every decision tree all observations in this leaf are retained, instead of only the average. 

Then QRF models calculate the full conditional distribution, rather than only the 

conditional mean (Fouedjio and Klump, 2019; Meinshausen, 2006).  

To assess uncertainty in the other ML methods, either bootstrapping or 

quantification through data partitioning and cross validation should be used. Regarding 

the bootstrapping limitations, Hengl et al. (2017) mention that although tools for 

modelling uncertainty in ML methods already exist, they are computationally intensive 

and development of other robust statistical frameworks such as quantile regression 

forest in future should be considered. Generating many map realizations is time 

consuming, expensive, and has high memory requirements. Moreover, in bootstrapping, 

by increasing the number of realizations, using the approach described in Malone et al. 

(2017), may result in the artificial decrease of the PI width. In data partitioning and cross 

validation, the residuals are computed after cross validation performance to develop an 

uncertainty map for the ML algorithms. The problem of this method is that it is too 

optimistic because it uses the results of cross validation and is not suitable for 

constructing an uncertainty map. A problem with the results of cross validation is that a 

selection of random points is used and this does not account for spatial autocorrelation 

and assumes samples to be independent (Veronesi and Schillaci, 2019).   

Considering the shortcomings of uncertainty estimation methods and ML 

limitations in quantifying uncertainty, a knowledge gap is apparent with regards to ML 

uncertainty estimations. Geostatistical techniques produce uncertainty estimations using 

kriging prediction variance; bootstrapping is computationally intensive especially for big 

datasets; QRF works when we use RF only; and finally, data partitioning and cross 

validation does not account for autocorrelation and is too optimistic.   
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Given the limitations of existing approaches, this study proposes a new 

framework for uncertainty estimation using QR and demonstrates its flexibility and 

integration with ML techniques. QR is an approach that has originated from the field of 

quantitative economics but has been extended to other applications. QR is a linear 

statistical method that is used to estimate quantile conditional functions, of prediction 

and distribution. The estimation is based on causal relationships in the dataset. It uses 

data observation and ML prediction output and calculates the residuals. Residuals are 

the difference between observed and prediction values. QR finds a linear relationship 

between observation and prediction values of the quantile requested (Koenker and 

Hallock, 2001). Within the soil science literature (outside of DSM), QR has been used for 

estimating the uncertainty of models used for modelling nitrate contamination of 

groundwater using different ML techniques (Rahmati et al., 2019). In terms of the DSM 

literature however, relatively few studies have explored this approach with the exception 

of Lombardo et al. (2018), which demonstrated the coupling of a generalized linear 

model approach with QR for predicting SOC; however, such couplings may be 

potentially extended to other ML techniques as part of a generic framework.  

Hence, the objectives of this study are 1) to develop a framework for producing 

local estimates of uncertainty by coupling ML models with quantile regression. 2) to 

demonstrate the coupling using a variety of ML techniques for a case study: a dry-forest 

ecosystem in the Kamloops region of British Columbia, Canada, and 3) to evaluate the 

uncertainty estimations using metrics such as MPI and PICP. 

3.3. Methods   

3.3.1. Study Area, Soil Sampling and Data Acquisition 

The study area is the Eagle Hill Forest located west of Kamloops, BC, on the 

north side of Kamloops Lake (Figure 3.1). A detailed description of the study area can be 

found in section 2.3.1 of Chapter 2. Different sampling methods were used to sample 

these soil properties. The sampling methods and data acquisition have been described 

in section 2.3.3 of Chapter 2. 
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Figure 3.1. Study area and sampling points. 

3.3.2. Dependent Variables and Covariates 

In this study three soil properties have been modelled: soil thickness, depth to 

carbonates, and soil pH (Figure 3.1). Soil thickness, depth to carbonates, and soil pH, 

data were collected at 410, 171, and 230 sites respectively (Figure 3.1). Forty-five 

covariates at 3 m resolution were used. Description of dependent variables and 

covariates can be found in sections 2.3.4 and 2.3.5.    

3.3.3. Machine Learning Models 

The process of using a ML model can be described as training a statistical model 

using predictor and response variables to make the model and using it to make new 

predictions in a study area (Heung et al. 2016; Witten et al. 2016). In this study, four ML 

models were used, and their output prediction results were validated. Then, the 

performance of the models was assessed and compared using the QR uncertainty 

quantification method. The ML models used in this study are RF, Cubist decision tree, 

kNN, and SVM. A detailed description of the ML methods used in this study can be 

found in Chapter 1; section 1.1.3.      
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3.3.4. Model Validation  

Model validation shows us the proportion of the variance for a dependent 

variable that can be explained by the independent variables. In this study we used 

multiple replicates of k-fold cross validation. By applying the iterative k-fold cross 

validation, R2 and concordance metrics were calculated in each iteration and the final 

results were averaged. Accuracy metrics measured in this study are R2, concordance, 

and RMSE.  R2 is the square of sample correlation coefficient (Pearson’s) between the 

observation and their corresponding predictions. Lin’s concordance correlation 

coefficient or simply concordance evaluates the accuracy and precision of the 

relationship. RMSE is the standard deviation of the residuals and is called prediction 

error (Malone et al., 2017).   

3.3.5. Uncertainty 

QR method  

QR was first introduced by Koenker and Bassett (1978)  originally in the field of 

quantitative economics but its use has since been extended to other applications. Within 

the soil science literature (outside of DSM), QR has been used for estimating the 

uncertainty of models used for modelling nitrate contamination of groundwater using 

different ML techniques (Rahmati et al., 2019). In terms of the DSM literature however, 

relatively few studies have explored this approach with the exception of Lombardo et al. 

(2018), who demonstrated the coupling of a generalized linear model approach with QR 

for predicting soil organic carbon (SOC); however, such couplings may be potentially 

extended to other ML techniques as part of a generic framework.  

When applying QR for uncertainty estimation we assume that there is a linear 

relationship between a soil variable’s observed value and its model predicted value. QR 

consists of a set of linear regression models, where the response variable is the selected 

quantile of the variable’s conditional distribution. Within the hydrological modelling 

literature (Dogulu et al., 2015a; Lopez et al., 2014; Rahmati et al., 2019), QR is applied 

as a post-processing technique whereby the prediction of the response variable is 

dissociated from the uncertainty estimation process. Because of this dissociation, there 

is the added flexibility in the choice of the predictive model and uncertainty estimation 

may be generated using model residuals. QR estimates the value for a soil property for 
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any quantile that is needed (Koenker and Hallock, 2001) which may then be used to 

calculate prediction intervals (e.g. 90%) using the upper (95%) and lower (5%) quantile 

maps. Here, a brief description of QR is provided; however, detailed descriptions may be 

found in Lopez et al. (2014). 

Similar to Lopez et al. (2014), Dogulu et al. (2015) and Rahmati et al. (2019), for 

each quantile (𝜏), QR assumes a linear relationship between observed values (𝑥) and 

predicted values (𝑦): 

𝑦 =  𝛼𝜏 𝑥 +  𝑏𝜏                                                (2) 

Where,  𝑎𝜏  is the slope and  𝑏𝜏  is the intercept of the linear regression. Here, 𝑎𝜏   

and 𝑏𝜏  are both determined by minimizing the sum of residuals in the following loss 

function: 

𝑚𝑖𝑛 ∑ 𝜌𝜏(𝑦𝑗 − (𝛼𝜏𝑥𝑗 + 𝑏𝜏))
𝐽
𝑗=1                          (3) 

Where, 𝑦𝑗 and 𝑥𝑗 are 𝑗𝑡ℎ paired samples (i.e. soil measurements), with a total of 

J samples, and 𝜌τis the QR function for the 𝜏-th quantile: 

𝜌𝜏(𝜀𝑗)  =  {
(𝜏 − 1). 𝜀𝑗          𝜀𝑗 ≤ 0 

𝜏. 𝜀𝑗                 𝜀𝑗 > 0
                     (4) 

Where, the model residuals,  𝜀𝑗  are the difference between the observed and 

predicted values, acquired from Equation 2, for the 𝜏-th quantile. The QR function is 

applied for the residual, 𝜀𝑗, in Equation 4 for the desired quantile 𝜏 (Dogulu et al., 2015a; 

Lopez et al., 2014; Rahmati et al., 2019). 

QR limitations 

The quantile crossing problem and the assumption of linear model for a non-

linear data distribution are two limitations of QR. The crossing problem may occur when 

the predicted soil value for a lower percentile is greater than that of its corresponding 

higher percentile. For example, a predicted 95th percentile of the response variable may 

become smaller than the 90th percentile which is impossible (Bondell et al., 2010). To 

avoid the crossing problem He (1997) suggested forcing proper ordering of percentile 

curves if we use nonlinear QR method. Koenker (1984) considered parallel quantile 



57 

planes for linear models. Cole (1988) and Cole and Green (1992) suggested a suitable 

transformation that would yield normality of the response variable to fully determine the 

quantile functions.  

This approach assumes that there is a linear relationship between the predicted 

and observed values and therefore a linear QR function is applied. However, in some 

cases, there may not be a linear relationship and hence, the QR uncertainty estimations 

have the potential to produce non-realistic uncertainty estimates (Lopez et al., 2014): To 

solve this problem Van Steenbergen et al. (2012) applied linear model to different parts 

of the predictor and  were able to achieve more reliable results. Koenker (2005) has 

referred to this problem as a faulty notion and has suggested the segmenting of the 

response variable into subsets.  

Prediction Interval Coverage Probability (PICP) and Mean Prediction 
Intervals (MPI) 

PICP graphs, called accuracy plots, are used to assess the performance of QR in 

terms of uncertainty quantification by evaluating the encapsulation of observation values 

into an associated prediction interval. For a particular confidence level (CL), we should 

expect that the same percentage of observations, equal to the associated CL, is 

encapsulated by the PI. For example, it is expected that about 90% of observations fall 

within the 90% PI. This percentage is defined as the Prediction Interval Coverage 

Probability (PICP). Therefore, to assess the sensitivity of QR uncertainty quantification, 

PIs at a number of CLs are defined and then the PICP is assessed. Ideally, the observed 

fractions are equal to the expected fraction and a 1:1 relationship should be found 

(Malone et al., 2017). If observation fractions are lower than the prediction, then the 

uncertainty has been underestimated, and if observation fractions are higher than the 

prediction, then the uncertainty has been overestimated (Szatmári and Pásztor, 2019). 

PICP can be calculated by equation 5. 

𝑃𝐼𝐶𝑃 =
1

𝑛
∑ 𝐶, 𝐶 = {

1, 𝑃𝐿𝑡
𝑙𝑜𝑤𝑒𝑟 ≤ 𝑦𝑡 ≤ 𝑃𝐿𝑡

𝑢𝑝𝑝𝑒𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑛

𝑡=1                       (5)  

In equation 5, 𝑦𝑡 is the observed value, 𝑃𝐿𝑡
𝑙𝑜𝑤𝑒𝑟 is the lower limit and 𝑃𝐿𝑡

𝑢𝑝𝑝𝑒𝑟is 

the upper limit (Rahmati et al., 2019).  
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MPI shows the average of the widths of the prediction intervals. MPI can be used 

to quantify the level of predicted uncertainty. A wider PI represents a higher uncertainty 

of modelling prediction, and a narrower PI represents a lower uncertainty of the model 

used (Ding et al., 2018; Rahmati et al., 2019). MPI can be calculated using equation 6.  

𝑀𝑃𝐼 =
1

𝑛
∑ (𝑃𝐿𝜏

𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑖𝑡
− 𝑛

𝜏=1  𝑃𝐿𝜏
𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡)                                           (6) 

In this equation  𝑃𝐿𝑡
𝑢𝑝𝑝𝑒𝑟is the upper limit and 𝑃𝐿𝑡

𝑙𝑜𝑤𝑒𝑟 is the lower limit of the PI. 

Between two models with the same PICP, the model with the lower MPI is regarded as 

the better model (Muthusamy et al., 2016).  

3.3.6. Integration of QR for DSM 

The proposed framework consists of two phases: (1) testing the predictive model 

and uncertainty estimates (Figure 3.2) and (2) generating digital soil maps and 

uncertainty maps (Figure 3.3).  

Testing the Predictive Model and Uncertainty Estimations 

In Phase 1, the objective is to ascertain the accuracy of the ML model using 

goodness-of-fit metrics and to quantitatively evaluate the uncertainty estimates using 

PICP (Equation 5) and MPI (Equation 6) graphs. Here, the process consists of seven 

steps, where the only input is a matrix that consists of the observed soil attribute value 

and the corresponding covariate values for each sample location (Figure 3.2). This is 

acquired by spatially intersecting the geographical position of each sample point with a 

suite of environmental covariates representing the SCORPAN factors (McBratney et al., 

2003a). 

To generate estimates of model accuracy, PICP, and MPI, a nested cross-

validation procedure is applied, consisting of an ‘outer loop’ and an ‘inner loop’. The 

‘inner loop’ (Steps 2-5) calibrates and selects the predictive model with the optimal 

combination of model hyperparameters using the validation data. The ‘outer loop’ (Steps 

1-7) assesses the ML model’s accuracy and estimates the uncertainty. In Step 1, the 

matrix with the soil-environmental data is randomly partitioned into 𝑘𝑜𝑢𝑡𝑒𝑟  folds, whereby 

𝑘𝑜𝑢𝑡𝑒𝑟 − 1  folds are used as the input data to the ‘inner loop’. The remaining fold is 

reserved for testing the predictive model. 
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In Step 2, the 𝑘𝑜𝑢𝑡𝑒𝑟 − 1  training fold is further partitioned into 𝑘𝑖𝑛𝑛𝑒𝑟 folds, whereby 

𝑘𝑖𝑛𝑛𝑒𝑟 − 1  folds are used to build the predictive model. Here, the predictive models are 

fitted (Step 3) using different combinations of hyperparameters (e.g. mtry for RF and 

sigma and cost for SVM) and the model is predicted on the validation data, which then 

allows the calculation of the model’s accuracy. The accuracy values are used to select 

the optimal hyperparameter values (Step 4). This process is reiterated 𝑘𝑖𝑛𝑛𝑒𝑟  times so 

that each fold is used to validate the model once and the optimized model is selected in 

Step 5. It is important to note that the optimized model is calibrated using all the data in 

the inner loop (i.e. non-partitioned). Lastly, residual distribution (i.e. observed vs. 

predicted) values are retained from each validation fold and combined. Steps 2-5 may 

be carried out entirely using the caret package (Kuhn, 2018) in the R statistical language 

(Kleinman and Horton, 2015), which includes the model parameterization and selection 

functions. 

Step 5 will produce a matrix of the residual distribution for the validation data 

(inner loop), which is compiled from each validation fold. This matrix is then used to fit 

the QR function in the quantreg package (Koenker, 2019) in Step 6. Because an 

independent test fold was retained in Step 1, it is now possible in Step 7 to produce an 

estimate of model accuracy by predicting the optimized model on the test data and 

generating the residual distribution for the test fold (outer loop). Secondly, the fitted QR 

model is applied to the test fold at the desired percentiles from which the PICP and MPI 

are later calculated. To complete the ‘outer loop’, the model testing process is also 

reiterated 𝑘𝑜𝑢𝑡𝑒𝑟 times so that each test fold is used to test the model once and generate 

the percentiles for each sample location. In Step 7, a matrix consisting of the residual 

distribution values and their percentile values are retained from each test fold and 

combined. This final matrix is used to calculate goodness-of-fit statistics (e.g. Lin’s 

concordance correlation coefficient (CCC), root mean square error); calculate PICP for a 

range of confidence levels using Equation 5 and generate the corresponding PICP plot; 

and calculate the MPI using Equation 6.  

To assess the reliability of the accuracy, PICP, and MPI metrics, Phase 1 may be 

repeated over multiple iterations so the mean of the metrics may be reported as well as 

their standard deviations. To generate the final uncertainty estimation maps using QR, 

the residual distribution values for the test data are all compiled (including the repeats) 

and used as the input to Step 9 in Phase 2. 



60 

Generating Digital Soil Maps and Uncertainty Maps 

To follow standard DSM production practices in Phase 2, the final digital soil 

maps and uncertainty maps are produced using all soil sample locations (Figure 3.3). In 

Step 8, the soil-environmental matrix is used to calibrate the predictive model and 

hyperparameter values are selected using cross-validation in the caret package. The 

optimized model is then used to make the spatial predictions using the covariate stack to 

generate the final maps in Step 9 using the raster package (Hijmans, 2019). To generate 

the uncertainty maps, the residual distribution values for the test data from Step 7 are 

used to fit the QR function (Step 10), which is then applied to the final maps produced in 

Step 9 to generate the upper and lower limit percentile maps as well as the PI map. Step 

11 uses the quantreg and caret packages. 
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Figure 3.2. Generic framework for evaluating accuracy and uncertainty 

estimations of digital soil maps using ML and QR. 
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Figure 3.3. Generic framework for producing digital soil maps and uncertainty 

maps using ML and QR. 

3.4. Results and Discussion 

3.4.1. Modelling and Validation  

In this study, 4 ML methods were used to predict 3 soil properties. The four ML 

models were RF, Cubist decision tree, k nearest neighbors (kNN) and support vector 

machine (SVM). The soil properties used for modelling were soil thickness, depth to 

carbonates and soil pH. The validation method used to validate the prediction results, as 

described in section 3.3.4 and 3.3.6, was a nested 10-fold cross validation with 20 

repeats.  

Maps Produced Using Different ML Models 

A total of 12 maps were produced using the 4 ML models and the 3 soil 

properties using a 10-fold cross validation method with the optimized hyperparameter 
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values (Figure 3.4). As can be seen for all 3 soil properties in Figure 3.4 and Table 3.2, 

Cubist decision tree prediction range of values in the maps are larger than the other ML 

methods. If Figure 3.4 is compared with the elevation map (Figure 3.1), it can be seen 

that on the top of the hills the soil is shallow and depth to carbonates shown in the maps 

is deep. Depth to carbonates on the top of the hills is conceptual, and it means that if 

there were deep soils in that area, the depth to carbonates would be that deep. In the 

soil pH maps, acidic soils have been shown in red and are generally found at the higher 

elevations. Visual inspection of the maps in Figure 3.4 confirms that in this study area 

deeper soils are at lower elevations. Moreover, carbonated soils are found at lower 

elevations and basic soils are also at the lower elevations. 

Statistics for soil predictions were calculated (Table 3.2). In Table 3.2 negative 

values have been predicted using the SVM method when predicting soil thickness. The 

negative values are likely a result of SVM extrapolating values beyond the range of the 

training data. Similarly, the Cubist model extrapolated large positive numbers for soil 

thickness and depth to carbonates. In both cases, extreme values were very limited in 

distribution. Furthermore, we chose to not bind the predicted values to the range of 

values found in the training data to ensure that QR estimated the quantile values from 

the actual predicted values. 
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Figure 3.4. Maps of soil thickness, depth to carbonates, and soil pH generated 

using 4 ML models. 

Validation Results 

To validate the prediction results for the 3 soil properties and 4 ML models, a 10-

fold nested cross validation method with 20 repeats, described in section 3.3.4 and 

3.3.6, was used. Validation results were collected for prediction of soil thickness, depth 

to carbonates and soil pH using the 4 ML models (Table 3.1). The results in Table 3.1 

show that RF had the highest R2 and concordance and the lowest root mean squared 

error (RMSE) in modelling soil thickness.  The R2 and concordance for modelling soil 

thickness using RF were 0.35 and 0.47 respectively and RMSE was 103.19. The lowest 

validation results for the same soil property were found for kNN for which R2 is 0.30 and 

concordance is 0.37. The highest error rate was found for kNN for modelling soil 

thickness (Table 3.1).  

For depth to carbonates, kNN had the highest R2 (0.13). The lowest R2 results 

were found for Cubist decision tree in which R2 was 0.05. However, modelling depth to 

carbonates using Cubist decision tree generated the highest concordance value which is 

0.16. All the other three models generated the same concordance value which was 0.14. 
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RMSE results for modelling depth to carbonates were very close in all models; however, 

the lowest RMSE was found for kNN which was 29.44 (Table 3.1).  

The validation results of modelling soil pH using the 4 ML models show that the 

highest R2 and concordance and the lowest RMSE were found for RF. For RF modelling 

soil pH, R2 is 0.26 and concordance is 0.37. The RMSE value for modelling soil pH using 

RF was 0.68. The lowest validation results and the highest RMSE result for modelling 

soil pH were found for kNN. The R2 for modelling soil pH in kNN is 0.18 and 

concordance is 0.16. The RMSE value for modelling soil pH using kNN model was 0.73 

(Table 3.1). 

Table 3.1. Validation results (R2, concordance and RMSE) of ML models for 3 
soil properties. 

  
Model Validation  

Soil Thickness Depth to Carbonates Soil pH 

  R2 Con RMSE R2 Con    RMSE R2 Con RMSE 

RF 0.35 0.47 103.19 0.07 0.14 29.98 0.26 0.37 0.68 

Cubist 0.31 0.49 106.15 0.05 0.16 30.56 0.2 0.34 0.72 

kNN 0.3 0.37 108.36 0.13 0.14 29.44 0.18 0.16 0.73 

SVM 0.32 0.48 105.36 0.08 0.14 29.76 0.22 0.34 0.7 

3.4.2. QR 90% Prediction Interval (PI) Maps 

Ninety (90%) percent PI range maps are known as uncertainty maps. The 

process for generating 90% PI maps was described in section 3.3.6. The importance of 

90% PI maps is that they show how certain or uncertain a modelling method has been in 

its prediction at different locations on the map. In the uncertainty maps produced in this 

study (Figure 3.5) the highest uncertainty in all models has been depicted in red. It is 

important to mention that these uncertainty maps only show the level of uncertainty in 

modelling and the map cell values show this attribute.  

According to uncertainty maps in Figure 3.5, different models have shown 

different levels of uncertainty for soil properties. For modelling soil thickness, all models 

have shown some levels of uncertainty in their prediction at lower elevations (Figure 

3.1). For modelling depth to carbonates however, the Cubist decision tree model had the 

highest uncertainty at lower elevations while for the other ML methods the uncertainty 
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has been shown to be greater at higher elevations. For modelling soil pH uncertainty in 

all four model predictions was shown at lower elevations.  

 
Figure 3.5. 90% prediction interval uncertainty maps generated using QR 

method for 3 soil properties (soil thickness, depth to carbonates, 
soil pH) for each of 4 ML models 

Moreover, descriptive statistics of 90% PI maps show that the mean uncertainty 

values between the ML methods were similar. However, the range and variability in 

uncertainty values differed considerably (Table 3.2), which led to the differences in the 

appearance of the maps.   
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Table 3.2. Descriptive statiatics for soil prediction and 90% prediction interval 
maps 

Soil Property Depth Model 
Soil Prediction Maps 90% Prediction Interval Maps  

Min Max Range Mean SD Min Max Range Mean SD 

Soil Thickness (cm)   

RF 10.5 474.4 463.9 182.1 50.3 104 710.8 606.8 328.5 65.8 

Cubist 0 543.6 543.6 183.9 61.8 151.1 696.1 545 335.5 61.9 

kNN 21.3 291.8 270.5 195.2 36 -1.3 525.6 526.9 337.4 70.2 

SVM -38.9 343 381.9 167 57.8 99 535 436 334.1 65.9 

Depth to Carbonates 
(cm) 

  

RF 19 111.4 92.4 66.4 10.2 79.8 119.3 39.5 100 4.4 

Cubist 32.3 180 147.7 71.2 20.4 82.1 103 20.9 97.5 2.9 

kNN 33.8 98.8 65 62.1 7.7 95.4 97.3 1.9 96.3 0.3 

SVM 0.1 144.9 144.8 63.9 5.4 31.5 181.4 149.9 97.5 5.6 

Soil pH 0-30 cm 

RF 4.9 7.8 2.9 5.9 0.4 1.5 4.1 2.6 2.4 0.3 

Cubist 4.7 9.3 4.6 5.8 0.5 1.4 4.4 3 2.4 0.3 

kNN 5.3 6.5 1.2 5.8 0.2 1.5 3.5 2 2.3 0.3 

SVM 4.8 7.5 2.7 5.8 0.4 1.6 3.8 2.2 2.4 0.3 

3.4.3. QR crossing problem  

In this study a small crossing problem occurred producing 90% PI map for soil 

thickness prediction using kNN. In the 90% PI map produced for kNN modeling soil 

thickness the minimum value is negative (Table 3.2). By generating the scatterplot of 

observed versus predicted values and delineating 5%, 50% and 95% quantile lines using 

QR, it can be seen that the left tail of the regression lines cross each other that causes 

the negative values in 90% PI maps (Figure 3.6).    
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Figure 3.6. Scatterplot of predicted and observed values for soil thickness with 

linear regressions showing 5, 50 and 95% quantile predictions using 
kNN. 

3.4.4. Mean Prediction Interval (MPI) results 

Mean prediction interval (MPI) (Equation 6) is an indicator that is used to 

measure the quality of model performance. The lower the value of MPI, the better the 

model prediction performance is in terms of uncertainty. Every pair of the 20 quantiles on 

opposite sides, such as 5% and 95% quantiles that make a 90% PI, specified a range of 

each PI. The PIs used in this study were: 5%, 10%, 20%, 40%, 60%, 80%, 90%, 95%, 

97.5%, and 99%. Upper quantile and lower quantile values were collected in different 

columns of the table produced in step 7 of phase 1 (Figure 3.2). To generate the MPI, 

the lower quantiles were subtracted from the upper quantiles and the total results of 

subtractions were averaged (equation 6) (Table 3.3).   

In this section MPIs produced from different model outputs using QR were 

compared to determine the best model performance for modelling each soil property. 

The comparison in Table 3.2 and Figure 3.7 between MPIs of the four model outputs 

show that the performance of RF at 90% CL has been better than the other models for 
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modelling soil thickness (Figure 3.6: a). For modelling depth to carbonates, comparison 

of MPI values in Table 3.2 and Figure 3.7(b) shows that RF outperformed the other 

models at 90% CL and over. In the MPIs of the soil pH model, RF also outperformed the 

other models at 90% CL and over (Table 3.3 & Figure 3.7:c). Therefore, if we consider 

90% confidence level as an indicator of model performance in modelling all three soil 

properties, RF is better than the other models because MPI values of the RF model 

predictions at 90% PI are less than for the other models. 

Table 3.3. Mean prediction interval results for soil thickness, depth to 
carbonates and soil pH. 

Dataset Model 

Mean Prediction Intervals (MPI) for the Different Confidence Levels 

5% 10% 20% 40% 60% 80% 90% 95% 97.50% 99% 

  RF 9.26 18.52 38.73 83.73 142.70 236.44 330.31 404.21 458.12 556.86 
Soil  Cubist 9.29 19.02 40.18 88.23 150.59 246.64 336.89 419.73 462.91 553.52 
Thickness kNN 8.27 16.74 35.19 91.9 162.98 251.08 331.48 401.30 471.54 573.24 
  SVM 8.62 17.34 36.67 89.82 157.25 247.67 333.34 401.28 479.29 612.68 

  RF 3.4 7.21 14.42 32.89 56.48 80.09 95.96 101.61 105.13 112.46 
Depth to  Cubist 3.45 6.89 15 33.86 57.58 81.30 99.09 111.24 120.57 135.59 
Carbonates kNN 3.65 7.44 16.02 33.58 57.10 82.26 99.76 116.78 124.95 139.12 
  SVM 3.64 7.35 15.62 33.17 56.71 81.06 99.13 116.48 125.83 138.07 

  RF 0.06 0.12 0.25 0.54 0.91 1.59 2.33 2.86 3.4 4.11 
Soil pH Cubist 0.06 0.12 0.25 0.6 0.98 1.67 2.4 2.98 3.58 4.14 
  kNN 0.06 0.14 0.27 0.56 0..94 1.76 2.37 3.02 3.73 4.12 
  SVM 0.06 0.12 0.24 0.53 0.91 1.71 2.38 2.98 3.66 4.12 

 

 
Figure 3.7. Mean prediction intervals for soil thickness (a), depth to carbonates 

(b), and soil pH (c). Error bars were generated using 20 repeats of 
nested cross-validation. 



70 

3.4.5. Prediction Interval Coverage Percentage (PICP) 

PICP graphs are used to assess the performance of QR in terms of uncertainty 

quantification while MPIs assess the performance of models. In other words, PICPs tell 

us how accurate the QR uncertainty quantification has been by encapsulating 

observation data into 10 PI ranges. The process of producing 20 quantiles using QR 

methods was explained in section 3.3.6. To generate a 90% PI range, 95% quantile and 

5% quantile predictions were collected in a table in step 7 (Figure 3.2) to estimate the 

upper limit and lower limit of the 90% PI range. Following that, the observation values 

associated with model predictions of training folds in step 1 of Figure 3.2 for all 10 folds 

were placed into the PI ranges and the number of the values that fell in each range were 

counted. Then the average of counted values was calculated by dividing it by the 

number of the rows. The final counting results averaged were collected in a table as one 

row. In the next repeat of the whole process of phase 1 in Figure 3.2, a new row was 

added to the PICP counting table until a total of 20 rows for 20 repeats of phase 1 

(Figure 3.2) made the PICP table (Table 3.4). Table 3.4 is an example of a PICP table in 

which the observation values encapsulated into PI ranges are counted, averaged and 

collected for modelling soil thickness using a RF model. For the next step, each row of 

the table was plotted on a graph and compared with a 1:1 relationship line in a PICP 

graph (Figure 3.8).      
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Table 3.4. Prediction interval coverage probability table with 20 rows and 10 
prediction intervals. 

 

In PICP graphs there are two important factors. The first factor is the closeness 

of the points to a 1:1 relationship on the graphs. The closer the points to the bisector 

line, the more accurate the quantification of uncertainty. On the other hand, if the points 

are far from the 1:1 line on the graphs, it will mean that the quantification of uncertainty 

was less accurate. Moreover, the distance from the bisector line shows the level of 

overestimation or underestimation of the uncertainty method whether the number of 

observation fractions are over or under the bisector line respectively. The second factor 

is the length of the boxplots. Boxplots are used in the graphs of Figure 3.8 to show the 

distribution of PICP values in 20 replicates for each PI range. Since 20 replicates of 

PICPs were plotted on each PICP graph, for each replicate there might have been some 

variation in uncertainty quantification. This variation is known as error range. The shorter 

the error range, the more stable and accurate the uncertainty quantification.  

Assessment of QR uncertainty quantification was conducted for 4 ML models 

predicting 3 soil properties: soil thickness, depth to carbonates and soil pH. The PICP 
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graphs of soil thickness predictions for all models are almost the same. The PICP 

graphs for depth to carbonates and soil pH depict similar results. The PICP graphs 

counting observation in the PIs of 3 different soil properties are very accurate and in all 

cases the boxplots are very close to the bisector line.  

As can be seen in Figure 3.8, the best uncertainty quantification using QR 

belongs to the soil thickness dataset in which the boxplots are close to the bisector line 

and the length of boxplots is very short. The second most accurate assessment of 

uncertainty quantification according to Figure 3.8 belongs to soil pH. The lengths of 

boxplots are small in the soil pH PICP graph; however, the length of boxplots shows that 

the variation in the 20 PICP replicates is more than soil thickness. The least accurate 

uncertainty quantification belongs to depth to carbonates in which the length of boxplots 

is longer than for soil thickness and soil pH PICPs. The main reason for these results is 

likely the lower number of datapoints for the depth to carbonates dataset compared to 

soil thickness and soil pH. The closeness of points to the bisector line infers that the 

quantification of uncertainty in all models using QR method is accurate, and QR is 

capable of measuring the uncertainty accurately.   



73 

 
Figure 3.8. Prediction interval coverage probability plots using quantile 

regression and machine learning for the study area. Boxplots were 
generated using 20 repeats of nested cross-validation.  

3.4.6. General Discussion and Future Work  

The resulting PICP plots were optimal, where the confidence level and PICP 

showed a 1:1 relationship regardless of soil attribute, and machine learner. Although we 

followed the standard approach for assessing uncertainty estimates in the ML, QR, and 
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DSM literature (e.g. Ding et al., 2018; Malone et al., 2011; Muthusamy et al., 2016; 

Shrestha and Solomatine, 2006) by using PICP and MPI, recent studies such as 

Szatmári and Pásztor (2019) have suggested the use of the G statistic, which quantifies 

how close the PICP values are to their associated confidence levels.  

Although it is recognized that the use of opportunistic sampling may not seem 

like an optimal approach by some, we do not anticipate this to be an issue when the core 

objective is to test an approach for estimating uncertainty. Future research may 

investigate the use of different sampling approaches and combinations of environmental 

covariates to minimize the uncertainty estimations while maximizing accuracy. 

In modelling soil thickness using the kNN method, we raised a potential issue 

related to QR generating negative estimates of uncertainty and we had attributed it to 

crossing QR lines (Bondell et al., 2010), which may be related to the distribution of soil 

attribute values and the model residuals. Furthermore, we also recognize that the 

assumption of a linear relationship between the observed and predicted values may be a 

weakness of this approach; however, nonparametric quantile curves could be a potential 

solution (Bondell et al., 2010). These issues warrant further investigation as applied to a 

DSM context. 

Given that this is the first implementation of the QR approach for DSM, there are 

several areas for future research. First, the generalizability of the approach should be 

further investigated for other study areas, soil properties, spatial scales, and machine 

learners. Although this study specifically tested the integration of QR and ML, ML may 

be substituted with other types of predictive models such as a purely geostatistical 

model (e.g. ordinary kriging) or a hybrid model (e.g. regression-kriging), given that the 

main inputs for QR are the model residuals. Such a comparison would be useful 

especially since kriging approaches provide an alternative for uncertainty estimation 

using the kriging variance.  

In terms of existing ML-based approaches for uncertainty estimation, a 

comparison between the QR and bootstrapping approaches would be warranted. For 

example, Szatmári and Pásztor (2019) compared the uncertainty estimates produced 

from the kriging variance from universal kriging and RF regression kriging, with 

sequential Gaussian simulation (SGS), QRF, and bootstrapping of RF regression 
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kriging. There, it was shown that QRF and SGS were more optimal in estimating 

uncertainty; however, they also indicated that QRF and SGS were computationally 

demanding.  

It is also necessary to note that our integration of RF and QR is fundamentally 

different from the QRF approach. In QRF, all predictions made at the terminal node 

across all individual trees are retained. Following this, the residual distribution produced 

by the individual trees for each terminal node is then used to calculate and predict the 

quantiles (Meinshausen, 2006). Although QRF is the primary example of a ML technique 

that generates uncertainty estimates in the DSM literature (e.g. Rudiyanto et al., 2018; 

Szatmári and Pásztor, 2019; Vaysse and Lagacherie, 2017), other types of ML 

techniques such as quantile regression neural networks (Cannon, 2011) could be tested 

and compared in future work. 

A potential issue with the bootstrapping approach (Malone et al., 2017) is that 

increasing the number of bootstrap predictions would lead to a decrease in the 

prediction variance and thereby cause the narrowing of the prediction interval maps. 

Through a comparative study, if QR yields similar or better results than bootstrapping, 

this framework will overcome the major computational demands of bootstrapping, which 

requires the spatial prediction of each model iteration. Although we did not carry out a 

direct comparison with bootstrapping with respect to computational time, our personal 

experience was that the computationally demanding part of the bootstrapping process 

was in generating multiple (e.g. 100) realizations of a soil property map (i.e. applying a 

model to a covariate stack) and having to store each realization. In this proposed 

framework, only one realization of a soil property map is generated, as well as one 

realization of each quantile map (e.g. 95% and 5%). The uncertainty maps are 

generated by applying the QR function, fitted using only the residual distribution from the 

observed sites, and applied to the predicted soil map; and hence, not requiring multiple 

map realizations to be generated. 

This solution would be particularly valuable when applied over large spatial 

extents (e.g. national and global mapping initiatives), when using ultra-high-resolution 

datasets (e.g. LiDAR), and when there are other Big Data challenges to overcome. For 

example, the most recent global-scale mapping effort was the SoilGrids250m (Hengl et 

al., 2017), whereby the authors avoided the modelling of uncertainty for continuous soil 
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variables and have indicated that QRF was a computationally intensive process—

especially with increasing data volumes. By May 4, 2020, SoilGrids250m was updated to 

include uncertainty estimations using QRF. 

3.5. Conclusion  

The first objective of this study was to generate attribute maps using four ML 

models: RF, Cubist decision tree, kNN and SVM, modelling three soil properties: soil 

thickness, depth to carbonates and soil pH, and to validate the prediction results using k-

fold cross validation method. The second objective of this study was to produce 90% PI 

maps using QR method. The third goal of this study was to assess model performance 

and uncertainty estimation using MPIs and PICPs. The case studies that have been 

used to demonstrate the integration of ML methods and QR, was located in a dry-forest 

ecosystem in the Kamloops region of British Columbia, Canada.  

In the study area in Kamloops, the soil attribute maps generated for soil 

thickness showed the deepest soils in the lower elevations in all four maps. Moreover, 

depth to carbonates was shown to be close to the soil surface at lower elevations in all 

four maps. For soil pH the most basic soils also are located at lower elevations. The 

model validation results using a 10-fold nested cross validation method with 20 repeats 

were shown to be the highest for RF modelling soil thickness and soil pH. For modelling 

depth to carbonates the highest validation results belonged to kNN.  

In the 90% PI maps it is evident that different ML methods show different levels 

of uncertainty modelling the three soil properties. The quality of model prediction was 

measured using MPIs at 90% prediction levels. The MPI results showed that RF was the 

most certain ML method modelling all three soil properties. The quantification of 

uncertainty also was assessed in this study using PICP graphs. The results showed that 

quantification of uncertainty using QR was the most accurate for the soil thickness 

dataset. According to the obtained results the best model made in this study was RF 

modelling soil thickness because of high validation results, and low MPI value compared 

to the other ML methods. Moreover, quantification of uncertainty was the most accurate 

for soil thickness using the QR method.    
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The results including 90% PI maps, assessment of model performance and 

quantification of uncertainty using PICPs, have been used to demonstrate the capability 

of the QR method in quantification of uncertainty regardless of ML methods used in 

digital soil mapping. Further study will be designed to improve the mapping and 

uncertainty quantification by increasing the numbers of datapoints. Increasing the 

number of datapoints should improve the model prediction quality which in turn will 

improve the QR prediction results. Moreover, the quality of uncertainty quantification 

using QR can be compared with the other uncertainty quantification methods such as 

bootstrapping and QRF to illustrate the performance of the QR method in measuring 

uncertainty.  
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Chapter 4.  
 
Thesis Conclusions 

The goal of sustainable forest management is to ensure that forest resources will 

continue to exist for the benefit of current and future generations (Szaro et al., 2000). 

Successful forest management practices depend on enhancement of forest productivity 

which is in turn directly related to forest soil productivity (Ayma-Romay and Bown, 2019; 

Schoenholtz et al., 2000). Burger and Kelting (1999) have suggested a10-step soil 

quality monitoring approach and in step 7 they suggested evaluating the soil quality by 

using geostatistical techniques or some other type of spatial extrapolation to produce soil 

quality maps. Early soil maps referred to as conventional soil maps, were expensive to 

produce and they suffered from limited accuracy and precision. Moreover, they were at 

small scale and were not suitable for local use purposes (Yang et al., 2011; Zhu et al., 

2001). In late 20th century a new subdiscipline of soil science was born called DSM  

(Brevik et al., 2016; McBratney et al., 2003a; Minasny and McBratney, 2016).  

In DSM,  a quantitative model relates field soil observations and environmental 

variables to make new predictions for all mapping areas (Minasny and McBratney, 

2016). Most environmental variables are derived from digital elevation models (DEM) 

(Cavazzi et al., 2013). The best DEMs can be derived from LiDAR data because they 

are accurate products, and they have high-resolutions that make them suitable for forest 

management (Haneberg et al., 2009; Liu, 2008). The numerical models can be ML 

methods. MLs are statistical algorithms that a computer uses to perform a specific task 

without explicit instruction (Dietterich, 2000; Heung et al., 2016). Examples of ML 

methods are RF, Cubist decision tree and multi linear regression (Heung et al., 2016). 

Since foresters require accurate maps, the errors in digital soil maps should be 

assessed. According to international standards for producing digital soil maps the 

uncertainty of the final product of DSM should be quantified with a 90% PI map 

(Arrouays et al., 2014a). QR is a new novel approach in DSM that can be used for all ML 

methods to quantify uncertainty in digital soil maps (Koenker and Bassett, 1978; 

Rahmati et al., 2019).   
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In the first component (Chapter 2) of this thesis, RF was used to map soil 

thickness, depth to carbonates, soil pH, coarse fragment content, and clay content, 

using LiDAR derived covariates. Then the prediction results were validated using a 

nested 10-fold cross validation with 20 repeats. Lastly, how these maps can be useful for 

forest management was discussed. The mapping results of the five soil properties 

showed that the patterns of digital soil maps are associated with BEC subzones. The 

validation results showed the best results for soil thickness with concordance of 0.47, 

and the worst validation results for depth to carbonates with concordance of 0.13. In the 

results section of Chapter 2 it was discussed that digital soil maps can be used as useful 

tools to preserve productive forest soils. In that chapter it was discussed that clear 

cutting in some cutblocks has exposed soil to erosion hazard, displacement and 

exposed to unfavorable hazard, and puddling and compaction hazard, and digital soil 

maps can help select better places or management protocols for forest harvesting.  

In the second component (Chapter 3) of this thesis, different ML methods 

including RF, Cubist, kNN and SVM were used to map three soil properties: soil 

thickness, depth to carbonates and soil pH. Then the prediction results were validated 

using a nested 10-fold cross validation with 20 repeats. Following that, 90% PI maps 

were produced for each of those property maps using a QR method. Lastly, the 

uncertainty estimations and model performance were assessed using metrics such as 

PICP and MPI. The mapping results for soil thickness in all ML methods showed deeper 

soils at lower elevations. The maps produced for depth to carbonates also showed more 

carbonated soils at lower elevations. The soil pH maps showed soils with lower pH at 

higher elevations. The validation results in different models for one soil property were 

different. For modelling soil thickness the best validation results belonged to RF with 

concordance of 0.47 and the lowest validation results belonged to kNN with 

concordance of 0.37. The validation results for modelling depth to carbonates showed 

the highest results for Cubist model with concordance of 0.16 although R2 was lowest for 

the Cubist model. The validation results for soil pH was the highest for RF with 

concordance of 0.37 and the lowest for kNN with concordance of 0.16.  

The 90% PI maps produced using the QR method demonstrated uncertainties in 

the study area. Uncertainty in soil thickness predictions for all models showed the 

highest values at lower elevations. Uncertainty in depth to carbonate predictions showed 

the highest values at higher elevations except Cubist decision tree. Uncertainty in soil 
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pH predictions showed the highest values at lower elevations. The performance of the 

models was checked using MPIs using QR method and showed that RF had the best 

performance for 90% PI. The results of assessment of QR uncertainty quantification 

using PICPs were promising and in all cases showed a bisector relationship between 

observed and predicted values. The results suggest that QR can be used as a powerful 

method to quantify uncertainty in all ML models. The QR method described in this 

research has potential to provide a computationally efficient approach for estimating 

local uncertainty that may have applications for a variety of different spatial modelling 

applications.   

4.1. Challenges in this Research and Future Research  

Challenges in this research included challenges in sampling, modelling and 

uncertainty measurements. Challenges in sampling related to the logistics of sampling in 

the forest. Since the forest was remote, two trucks with radios were necessary due to 

safety concerns. Forest roads were narrow, sometimes steep and some were blocked 

with fallen tree trunks that needed to be removed to reach sampling locations. Hiking 5 

hours per day to reach some sampling locations was quite common since roads were 

often not passable. Some sampling sites were located on extremely steep slopes. 

Environmental conditions in the forest were quite variable and a sunny day could turn to 

hail in less than an hour. Bugs were abundant and sampling soils with their presence 

was almost impossible. These factors increased the time required to collect samples and 

therefore reduced the number of sites where observations could be made within the 

project budget.  

Challenges in modelling were mostly related to data selection and preprocessing. 

Creating environmental variables needed a lot of analyses and preparation. Noisy LiDAR 

data was necessary to be passed through WhiteBox filtering tools and roads needed to 

be fuzzed out to reduce the perturbing effects of the road network on topographic 

derivatives derived from hydrologic flow. Roads were identified from access network 

datasets that were manually checked for completeness and accuracy. Then a 4m buffer 

was applied to the road lines and the underlying DEM cut, and then gap filled to recreate 

a smooth slope where the ditches and road fill were previously visible in the LiDAR 

dataset. The continuous covariates needed to be scaled and centered and categorical 

covariates needed to be encoded before using them in kNN and SVM models. Encoding 
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is used to turn the categorical variables into numerical variables that can be used in 

modelling (Graves, 2017).  

Challenges in uncertainty measurements were mostly related to incorporation 

and connection between validation measurement and uncertainty quantification at the 

same looping process. Although uncertainty quantification using QR is quite easy, in 

order to calculate uncertainty assessment metrics, we needed to collect prediction 

results from the model that was run for 10 iterations of 10-fold cross validation, 20 times. 

The validation results were collected and averaged in separate tables for 200 times (20 

repeats X10 iterations) of running 10-fold cross validation and uncertainty quantile 

results were collected for each of 20 repeats to calculate 20 PICPs. All quantile 

prediction results were used to measure MPIs. The other challenge was with regard to 

uncertainty map production. Since the QR package is a statistical package and not a 

spatial analysis package, it does not have a built-in method for producing uncertainty 

maps. The first approach was to reclassify the property maps and then we came up with 

a novel method to recalculate the map property values using the new 5% and 95% QR 

line equations created by QR.    

In our future work we plan to improve the sampling method by collecting much 

more data in sampling sites for one variable only and without spending a lot of time on 

lab analysis. More samples will be collected for some of the current property maps with 

low validation results such as depth to carbonates. We plan to attempt to use the QR 

method in different stages of sampling to reduce the sampling costs by going to the 

locations in which the models show the highest uncertainty. More digital soil maps for 

other soil properties such as sand content, organic carbon content, total nitrogen 

content, and forest floor will be produced for the same study area. Interpretive maps for 

other soil degradation hazards such as soil erosion and soil displacement will be 

produced. We also plan to conduct a comparison between the QR method and other 

uncertainty quantification methods such as quantile regression forest to assess the 

uncertainty quantification in both methods using PICPs and other statistical tests. One 

statistical approach would be to study the distribution of residuals in confidence levels 

produced by QR.   
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