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Abstract

A major task of sports analytics is to rank players based on the impact of their actions.
Recent methods have applied reinforcement learning (RL) to assess the value of actions
from a learned action value or Q-function. A fundamental challenge for estimating action
values is that explicit reward signals (goals) are very sparse in many team sports, such as
ice hockey and soccer. This paper combines Q-function learning with inverse reinforcement
learning (IRL) to provide a novel player ranking method. We treat professional play as
expert demonstrations for learning an implicit reward function. Our method alternates
single-agent IRL to learn a reward function for multiple agents; we provide a theoretical
justification for this procedure. Knowledge transfer is used to combine learned rewards
and observed rewards from goals. Empirical evaluation, based on 4.5M play-by-play events
in the National Hockey League (NHL), indicates that player ranking using the learned
rewards achieves high correlations with standard success measures and temporal consistency
throughout a season.

Keywords: Inverse Reinforcement Learning; Markov Games; Player Evaluation; National
Hockey League
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Chapter 1

Introduction and Overview

Sports analytics is a growing research field that provides professional methodology for an-
alyzing sports data in order to facilitate decision making both before and during sports
events. Over the past number of years, the advancements of data acquisition technique and
the availability of powerful computing machine have led to the development of advanced
sports specific algorithms. Statistics has been wildly utilized in sports analytics. Reinforce-
ment learning (RL) is a promising method for sports analytics in recent years. Nowadays,
sports analytics has become the intersection of several disciplines, including statistics, com-
puter science, management, and health science.

There are many areas where sports analytics has been implemented. For instance, one
of the major tasks is player evaluation, which supports drafting, coaching, and trading
decisions and also helps to determine the best strategy for a team. Sports associations also
use sports analysis to evaluate existing rules and the feasibility of introducing new rules to
the game. Sports health mentors use it to evaluate players’ mental and physical conditions.

In this thesis, we focus on the player evaluation task in sports analytics. Ranking players
is becoming more and more important in sports industry. On the one hand, many companies
(e.g. SportsLogiq, STATSports) and online platforms (e.g. nhl.com, whoscored.com) widely
use player statistics to compare the performance of professional players. On the other hand,
sports team managers and coaches are also desired to adopt sports analytic tools to monitor
the quality of their players during matches as well as the entire season. Generally, ranking
players requires researchers to define a relation of order between them with respect to some
measure of their performance in the match. In turn, the most common approach is to
quantify the impact of players’ actions, and then aggregate action values for a player over
the sequence of input matches [24, 13, 3].

Traditional player evaluation methods use statistics to evaluate action impact. For ex-
ample, plus-minus (+/-) is a commonly used basic metric to measure the influence of player
presence to the goals [15]. Some recent works modify the basic plus-minus metric by weight-
ing the goals according to their importance, based on expected win probability, game time
and game frequency [26], or with machine learning and survival models to estimate both
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expected goals and expected points to assess a player’s over all defensive and offensive
influence [10]. However, traditional sports evaluation metrics commonly face two major
problems: 1) Most of the traditional player evaluation metrics focus only on the actions
with immediate impact on goals, such as shots, but fail to consider the impact for actions
that have significant long-term effects. This limitation is more severe for low-scoring games
like ice hockey and soccer. 2) Traditional methods tend to assign fixed values to actions,
regardless of the game context. A reasonable action impact algorithm should assign specific
action value according to playing circumstances.

Several RL models have been proposed to tackle the above issues [23, 25, 13]. A Markov
Game model was proposed in [23] to capture the game context for ice hockey and calculated
a Q-value for each action. For each action, the Q-values estimate the probability that this
action leads to the next goal, given the current game context. Deep reinforcement learning
was adopted in [13] to train a deep Q-network. The difference between two consecutive Q-
values is defined as the action impact. All these RL models use goals as the explicit reward
signals, that is, 1 for scoring a goal and 0 for other actions. But the very sparse reward
still presents two fundamental problems for Q-function learning: 1) Across game contexts,
the Q-values show little variance, which means valuing actions with medium-term effects is
still challenging using sparse reward. 2) Actions closely connected to goals are valued most
highly and hence the performance evaluation is biased towards offensive players. To tackle
the sparse reward issue, in this work, we propose a novel inverse reinforcement learning
method with domain knowledge (IRL-DK) to recover a reward function for game dynamics.

In inverse reinforcement learning (IRL) [20], agents are assumed to act by optimizing an
unobserved internal reward function. The learning task is to estimate the agents’ rewards
from their observed behavior (demonstrations). Sports are different from the general IRL
settings, because some aspects of a player’s reward can be inferred from domain knowledge.
For instance, scoring a goal should have a relatively high reward because it helps the team
to win a game. To benefit from both IRL and our domain knowledge, we introduce IRL-
DK, which adopts knowledge transfer to combine the reward inferred from demonstrations
and the one inferred from our domain knowledge. The final aggregated reward for a team
is used to calculate a team Q-function. As in previous RL work, we use the team specific
Q-function to calculate action impact value and rank players.

We model the team sports game as a Markov Game model ([12], see Chapter 3), where
we treat home team (Home) and away team (Away) as two agents in the game. To learn
team (agent) specific reward, we leverage single-agent IRL for multi-agent Markov Games
through an alternating learning framework. Given observations of two teams A and B, we
first treat team B as part of A’s environment, then learn a reward function for team A in
a single-agent Markov decision process (MDP). The procedure is repeated with the role of
teams A and B reversed. We give a mathematical justification for this procedure in the
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sense that the single-agent MDP value function for one team agrees with its Markov Game
value function. We apply alternation to generic Home and Away teams.

We apply our IRL-DK algorithm to the 2018-19 play-by-play data in the National Hockey
League (NHL). The resulting distribution of top players is mixed among offensive and defen-
sive players rather than concentrated among offensive players. Empirical comparison among
7 player evaluation metrics shows the high correlations with standard success measures and
temporal consistency of our method.

Our main contributions may be summarized as follows.

1. A novel application of IRL to learning reward for teams in professional sports. Our
method is general and can be applied to multi-agent dynamics in other domains.

2. A transfer learning method for combining sparse explicit rewards with learned dense
implicit rewards.

3. An alternating learning procedure for leveraging single-agent IRL: For each agent in
turn, the other agents are treated as part of the environment to define a single-agent
MDP. We justify this procedure theoretically.

Finally, although our work is for sports analytics, the idea of transforming multi-agent
Markov Game to a single agent MDP for evaluation problem and combining domain knowl-
edge for reward learning is also useful for similar problem in other domain.

Thesis Outline. Apart from this Introduction and Overview chapter, there are six
chapters left. Chapter 2 discusses the existing research work on action impact and player
evaluation. Some heuristic idea and similar research work are also discussed in this chapter.
Chapter 3 provides the general definition of Markov Game model and details its learning
process. We give a theoretical justification for the transformation from multi-agent Markov
Game to single-agent Markov Decision Process, which paves the way for our alternating
IRL in Chapter 4. The second part of this chapter specifies the Markov Game model for
ice hockey. The domain rules and the dataset we use are described. Chapter 4 gives the
learning procedure of our inverse reinforcement learning with domain knowledge algorithm.
We use alternating learning to recover team specific reward function for generic Home and
Away teams. Chapter 5 assesses the quality of our recovered reward and policy induced from
this reward function. Chapter 6 shows our downstream application player ranking and the
empirical evaluation results. We summarize the thesis in Chapter 7 and discuss the future
work.
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Chapter 2

Background and Related Work

There exist different types of data for sports analytics, depending on which, different ap-
proaches can be applied. In summary, there are mainly three kind of data available. Box
score data provide total action counts per player and match (e.g., number of goals scored).
Play-by-play data, also known as event data, are logs of discrete action events specifying
various properties of the action (e.g. action type, acting player, time and location. Tracking
data record the location of each player at dense time intervals (e.g. for every broadcast video
frame, or more frequently with stadium cameras). In this thesis, we focus on play-by-play
data, and previous player ranking algorithms based on play-by-play data are discussed in
this chapter.

2.1 Player Evaluation

Most approaches use the total value of a player’s actions to rank players [1]. This reduces
player evaluation to action evaluation problem.

+/- (Plus-Minus) is a commonly applied basic player evaluation metric using goals as
the information only. It measures the influence of a player’s presence on the goal scoring
opportunity for his team. The original version of plus-minus assigns a positive one (+1) to
a player if a goal is scored by the player’s own team when this player is on the pitch, and
assigns a negative one (-1) if the opposite team scores. Several works improved plus-minus
with statistical techniques [5]. Some recent works modify the basic plus-minus metric, by
weighting the goals according to their importance, based on expected win probability, game
time and game frequency [26], or with machine learning and survival models to estimate
both expected goals and expected points to assess a player’s overall defensive and offensive
influence [10].

Expected Goals assigns each shot the value of the probability that the shot leads to a
goal and players are ranked by their total expected goals [16]. The similar method has been
applied to passes recently, where the quality of a player’s pass is quantified by the expected
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scoring probability [2]. A drawback of these ratings is that they evaluate only one type of
action without modeling a player’s overall performance.

Assessing expected impact for all actions, not only goals or shots, is challenging. One
approach is to define a fixed look-ahead horizon, and train a classifier to predict whether an
action will be followed by a goal within the horizon. For instance, the Total Hockey Rating
(THoR) assesses the value of an action based on whether it is followed by a goal in the next
20 seconds [24]. The Valuing Actions by Estimating Probabilities (VAEP) method evaluates
actions by whether the team scored or conceded a goal within the next k events (actions) [3].
The classifier could either be a traditional machine learning method like decision tree or a
deep neural network.

Another approach to evaluating actions is quantifying the value-above-replacement. The
most common value-above-replacement methods are Wins Above Replacement (WAR) and
Goals Above Replacement (GAR). The contribution of a player is measured by estimating
the difference of team’s scoring/winning chances between the two situations where the
target player is on the field compared to the target player is replaced by a replacement-level
player. In this thesis, we take the replacement-level player to be a statistical league-average
player. In other works, replacement-level represents a player of common skills available for
minimum cost to a team.

2.2 Reinforcement Learning in Sports Analytics

State-of-the-art methods use RL for Q-function learning to assess the probability of scoring
the next goal after a player’s action.

Reinforcement Learning (RL) models event data of the form s0, a0, r0, s1, s1, r1, . . . , st, at, rt:
an action at is chosen at state st, which results in a reward rt and transition to a new state
st+1. At next time stamp, another action at+1 is chosen. In [23], a Markov model is applied
to modeling ice hockey play-by-play data, where actions record the player movements and
states capture the game context. They measured players performance by their expected
Scoring Impact (SI). The expected scoring probabilities of player actions under different
game context are modeled by a Q-function, and the Q-function represents the probability
of scoring the next goal. The Markov model could be solved using dynamic programming
based on the Bellman equation:

Qπ(s, a) =
∑
s′

T (s′|s, a)[r(s, a) + γ
∑
a′

π(s′, a′)Qπ(s′, a′)] (2.1)

where T (·) gives the transition probability. π(s, a) is a policy that specifies the probability of
choosing action a at state s. This recurrence allows us to estimate the Q value at a current
context given an estimate for the next Q values and transition probabilities T . The action
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impact value is defined as the advantage value:

impact(s, a) = Q(s, a)− V (s) (2.2)

where V (s) is calculated as

V π(s) =
∑
a

π(s, a)[r(s, a) + γ
∑
s′

T (s, a, s′)V π(s′)] (2.3)

Instead of explicitly modeling transitions in an MDP, [13] adopted deep Q-network for Q
function learning. Their model computes Q values to measure a player’s expected probability
of scoring the next goal with a temporal difference learning method called Sarsa [27]. The
action impact is defined as the difference between two consecutive Q-values:

impact(st, at) = Q(st+1, at+1)−Q(st, at) (2.4)

2.3 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) is the problem of recovering the environment’s reward
function given observations of the behaviour of an optimally-behaving agent. For example,
either the optimal policy π∗ is known or we have the optimal trajectory sampled from
unknown optimal policy. Once the reward function is recovered, we can then train an agent
to find a policy based on that reward function, and as a result, the original behaviour can be
replicated. IRL is slightly different from imitation learning. IRL recovers a reward function
and learning a policy from the reward, rather than directly learning a policy from behaviour.

One advantage of IRL is that it does not require to directly interact with the environ-
ment, whereas in RL, it usually requires a virtual environment for agents to play with, in
order to train a policy. We may also be able to solve the related problem of transfer learn-
ing, where the abstract goal the agent is trying to achieve is similar, but the specifics of
the environment differ; a policy learned directly from another environment’s optimal policy
will probably not be successful in the new environment [11]. Another advantage is that the
recovered reward can be used to explain the behaviour of an existing agent. For example,
in [18], researchers would like to model the behaviour of bees. However, there is no real
interest in recovering the behaviour of the bees, but instead in modelling their motivations.

2.4 Multi-agent Inverse Reinforcement Learning

Multi-agent IRL is the integration of multi-agent systems and (inverse) reinforcement learn-
ing. Consequently, multi-agent learning is challenging both technically and conceptually, and
demands clear understanding of the problem to be resolved, the criteria for evaluation, and
coherent research agendas. As a result, Multi-agent IRL is much less researched than single-
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agent IRL. [19] considered the task of learning a central controller to coordinate multiple
agents. Our work addresses not a control problem, but a prediction problem, and there is no
central controller, only agents acting independently of each other. [7] investigated a special
case of multi agent, where only two agents play in the game and they share the same reward
function. One agent is human and could teach the other agent, robot, to learn. [29] applied
single-agent IRL to learn an individual reward function for World of Warcraft players. They
do not incorporate explicit zero-sum rewards specified by the game rules. Also, they aim
to model individual motivations, not to value actions and rank players. [31] presented a
method for adversarial IRL that learns both a reward and a policy imitator represented
as a GAN. Similarly, we assume the expert agents are following (approximately) a Nash
equilibrium distribution: each agent is acting optimally given the observed policy of other
agents. [31] further assumed the agents satisfy the conditions of a logistic quantal response
equilibrium. Our focus is learning a reward function to complement the sparse goal signal,
not on imitating policies. We work with a finite state-action space that does not require
a GAN representation for policies. A novel aspect of our work not considered by [31] is
combining learned rewards with observed rewards. Their MA-AIRL method was evaluated
only on relatively small simulated environments, whereas our target application involves
a complex real-world environment with a large amount of data. We leave for future work
extending MA-AIRL with observed goals and scaling it to sports domains.

2.5 Inverse Reinforcement Learning and Knowledge Transfer

Mendez et al. [17] considered reward knowledge transfer among multiple tasks in an on-line
setting. They aimed to accelerate the agent’s ability of learning new tasks and reducing the
amount of demonstrations required via continually building upon knowledge learned from
previously demonstrated tasks. The lifelong function approximation is used to represent
the reward functions for all tasks, which leads continual online transfer between the reward
functions. In contrast, we consider knowledge transfer between two reward functions for
the same task. [30] incorporated a known reward function using pretraining. The reward
approximation network was first trained using supervised learning on human defined reward
function (domain knowledge). Then the model was furthered updated using IRL algorithm.
We also initialize our model with pre-trained parameters consistent with domain knowledge,
but further use a Gaussian kernel regularization during training.
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Chapter 3

Markov Games and Decision
Processes

In this chapter, we first introduce the general Markov Game and then build Markov Game
model for ice hockey. As our general formulation indicates, our approach can be used for
sports in general, although this thesis focuses on ice hockey.

3.1 Markov Game Model

Markov games [12] extend MDPs to game theory [28]. So we first give a brief introduction
of MDP.

Formally, an MDP [8] is defined by a state set S and action set A. A transition function
T : S × A → PD(S) defines the effect of actions over the state of the environment. (The
notation PD(X) denotes the set of probability distributions over a finite set X.) The reward
r : S × A→ R specifies the agent’s task. Usually, there is a discounted factor γ ∈ [0, 1) for
agent’s total return. A policy π is a distribution over actions given states: S × A → [0, 1].
Generally, the agent’s objective is to find a policy mapping its interaction history to a
current choice of action in order to maximize the expected sum of discounted reward

Rt = E{
∞∑
j=0

γjrt+j} (3.1)

where t is the current time stamp and rt+j is the reward received j steps in the future. The
discounted factor γ controls how much the future reward can affect the current optimal
decision. The small value of γ focus on the near-term gain while large value of γ give large
weight to future rewards. The value function for a MDP state is

V π(s) =
∑
a

π(a|s)[r(s, a) + γ
∑
s′

T (s′|a, s)V π(s′)] (3.2)

8



In its general form, a Markov Game [12] can be represented as a tupleG = 〈S,A, r, γ, T 〉,
where S is a finite set of states, A = (A1, . . . ,Ak) is a collection of finite action sets, one for
each agent 1, . . . , k. For each agent, there is a real-valued reward function ri : S ×Ai → R,
and a shared discount factor 0 < γ < 1. The transition function T : S ×A → PD(S) rep-
resents the environmental dynamics. An MDP is a single-agent Markov Game with k = 1.
For each agent i, it attempts to maximize its expected sum of discounted rewards

Ri,t = E{
∞∑
j=0

γjri,t+j} (3.3)

where ri,t+j is the reward received j steps into the future by agent i.
In Markov Game, a policy for agent i is a mapping πi : S → PD(Ai). We assume the

on-policy setting with a fixed policy vector π1, . . . , πk. Note that since an agent’s action
probability is a function of the current game state, the agents’ actions are independent of
each other given the current game state. Focusing on a single agent i, we adopt game theory
notation where −i refers to the vector of the k−1 other agents. For instance, a policy vector
can be decomposed as π = (πi, π−i). Given a policy vector, a Markov Game defines a game
value function for each agent i and state, which we denote by Gπi,π−ii (s). The game value
represents the expected cumulative reward for agent i if the game starts in the state s, and
satisfies the Bellman equation:

G
πi,π−i
i (s) =

∑
ai

∑
a−i

πi(ai|s)π−i(a−i|s)×

[ri(s, ai, a−i) + γ
∑
s′

T (s′|ai, a−i, s)Gπi,π−ii (s′)], (3.4)

where a−i = (a1, . . . , ai−1, ai+1, . . . , ak) is a vector of actions by the agents other than i, and
π−i(a−i|s) is the probability of these independent actions given the policies of the agents
other than i. This Bellman equation has a unique solution [27].

We now show that given a fixed policy vector π−i, from agent i’s perspective, a Markov
Game G = 〈S,A, r, γ, T 〉, is equivalent to a single-agent MDP. We define the marginal
MDP as M(π−i) := 〈S,Ai, r′, γ, T ′〉, where

• r′(s, ai) =
∑
a−i ri(s, ai, a−i) · π−i(a−i|s)

• T ′(s′|ai, s) =
∑
a−i T (s′|ai, a−i, s) · π−i(a−i|s).

Proposition 1. Given a Markov game G and policy vector π−i for the agents other than
i, the values of any policy πi for agent i is the same in G and the marginal MDP M(π−i):

G
πi,π−i
i (s) = V πi(s) (3.5)
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Proof. We show that the Bellman equation for the marginal MDP is the same as for the
Markov game. Since each Bellman equation has a unique value function as a solution, this
implies that the value functions are the same.

V πi(s) =
∑
ai

πi(ai|s)[r′(s, ai) + γ
∑
s′

T ′(s′|ai, s)V πi(s′)]

=
∑
ai

πi(ai|s)[
∑
a−i

r(s, ai, a−i)π−i(a−i|s)

+ γ
∑
s′

∑
a−i

T (s′|ai, a−i, s)π−i(a−i|s)V πi(s′)]

=
∑
ai

∑
a−i

r(s, ai, a−i)πi(ai|s)π−i(a−i|s)

+ γ
∑
s′

∑
ai

∑
a−i

T (s′|ai, a−i, s)πi(ai|s)π−i(a−i|s)

(3.6)

The last equation agrees with the game Bellman equation (3.4).
This transformation is shown in Figure 3.1. To simplify but without loosing generaliza-

tion, we shown a Markov Game with two agents A and B. By fixing B’s policy and treating
B as A’s environment, the Markov Game can be transformed to a MDP, and the value
function for agent A in MDP agrees with the value in Markov Game.

9

Transform Multi-agent Model to Single-agent Model

• Proposition Consider a two-agent Markov Game model     with 
two agent A, B, and a policy       for agent B. There is a single-agent 
MDP       such that for every policy      of agent A, the state value in 
Markov Game to A equals the state value in MDP

• Inituition: Single-agent MDP       treats B as part of A’s 
environment

Markov 
Game 𝐺

MDP M𝐵

AI In Team Sports Workshop

Match
State

Hit: 0.4
Shot: 0.3
Pass: 0.2
….

Figure 3.1: A and B refer to two generic players in a Markov Game. Transform Markov
Game to an equivalent MDP, whose state values are the same for each player.

3.2 Markov Game Model for Ice Hockey

We summarize the rules of hockey and describe the how we build Markov Game model
based on the data we gathered from NHL.

3.2.1 Domain Description: Hockey Rules and Dataset

A NHL game has 60 minutes of ice time, which are split into three periods, each 20 minutes
in duration. There is a 15 minutes break between the periods. The hockey rink is divided
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into three zones by two blue lines. The zone between two blue lines is referred to as neutral
zone. The zone with the team’s own goal is called defensive zone and the zone that the team
is trying to score in is the offensive zone, at the other end of the rink. In order to win the
game, a team should score more goals than its opponent. If the score is tied at the end of
regulation, there is a overtime, where first goal wins. If no goal is scored after the overtime
during the regular season, the game moves into a shootout. During playoffs, overtime is
repeated until a goal is scored.

As hockey being an intense sport, players are usually substituted on the fly after several
minutes on the ice. In even strength situations of hockey game, there are six players in
each side of the team, including five skaters and one goalie. The five skaters play different
roles, including one Center, one Left Wing, one Right Wing, and two Defencemen. An
infringement of rules will cause penalty to a team, which results in sending the offending
player to a penalty box for two, four, or five minutes. This brings about manpower difference
between two teams. The team being penalized is in shorthanded period while the opposing
team is on the powerplay with a manpower advantage.

We utilize a play-by-play dataset constructed by SPORTLOGiQ company (proprietary,
not available on line). This play-by-play data captures information of the NHL game from
October 2018 to April 2019, which contains 4,534,017 events, covering 31 teams, 979 players
and 1,202 games. A breakdown of this dataset is shown in Table 3.1. The data consists of
game events around the puck, including the location and timestamp of a certain event, the
identity of the player in possession and the action taken by this player, and other game
context features (score difference, manpower, period, etc.). Table 3.2 shows an excerpt of
data details. The X and Y coordinates are adjusted to the range [-100, 100] and [-42.5, 42.5]
in feet, where the origin is center ice, the x-axis is along the length of the rink, and the
y-axis is along the width as in Figure 3.2.

Number of Teams 31
Number of Players 979
Number of Games 1,202
Number of Events 4,534,017

Table 3.1: Size of the dataset

3.2.2 NHL Markov Game Setup

Our Markov Game model for ice hockey follows previous work [23]. We treat home team H

and away team A as two agents in the game. At each timestamp, only one agent performs
an action, and the agent not controlling the puck chooses no operation. To fit the Markov
Game settings, at each state of the Markov Game, exactly one agent chooses No-op action.
Each ice hockey game is modeled as a semi-episodic task [27], where games switch from

11



GID PID TID Time X Y GD MP OI P Z Action PO
329 274 11 16.7 38.5 -36.9 0 Even 5 1 OZ Block H
329 155 7 19.5 62.6 -38.4 0 Even 5 1 DZ Lpr A
329 212 11 38.4 -25.3 40.4 0 Even 5 1 DZ Carry H
329 1013 11 45.5 7.3 1.2 0 Even 5 1 NZ Dumpin H
329 273 11 51.4 38.5 -39.4 0 Even 5 1 OZ Lpr H

Table 3.2: An excerpt of NHL play-by-play dataset. GID=GameId, PID=PlayerId,
TID=TeamId, GD=Goal Difference, MP=Manpower, OI=On Ice count, P=Period,
Z=Zone, PO=Possession, OZ=Offensive Zone, DZ=Defensive Zone, NZ=Neutral Zone,
H=Home, A=Away, H/A=Team who performs action, L=Location

Center line Goal lineFace off circle

• Goal

100-100 0

42.5

-42.5

0

•

••

•

X

Y

Figure 3.2: Ice hockey rink. Ice hockey is a fast-paced team sport, where two teams compete
with each other and each team must shoot a puck into their opponent’s net to score goals

episode to episode. Each episode starts either at the beginning of the game or right after a
goal, and ends up with a goal or the end of the game. The transition function is calculated
using the observed frequency T (s, a, s′) = p(s′|s, a) = O(s, a, s′)/O(s, a), where O(·) counts
the occurrence number in our dataset.

Feature Notation Range
Goal Difference GD [-8,8]

ManPower MP [-1,1]
Period P [1,3]

Team Identity H/A [0,1]
Location L [1,6]

Table 3.3: Range of features

Similar to previous Markov models for ice hockey [23, 25], we choose defining features
for states, including game context, team identity (H/A) and location (L). A game context
comprises Goal Difference (GD), ManPower (MP), and Period (P). GD is calculated as the
number of home goals minus the number of away goals, ranging from -8 to 8. MP specifies
shorthanded, even strength, and powerplay. P represents the current period, ranging from 1
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to 3. (We do not consider overtime play.) We divide the hockey rink into 6 regions indexed
by L based on the two blue lines to divide the X axis. The state features with their integer
value range observed is summarized in Table 3.3. We add an absorbing goal state for each
team, with no transition out of it. The dataset records 27 different action types, and home
and away teams share the same action space.
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Chapter 4

IRL with Domain Knowledge

In this chapter, We show our alternating learning procedure to leverage any single-agent
IRL for multi-agent Markov Game based on proposition 1. We choose Maximum Entropy
IRL because it provides an interpretable linear model for a reward function and scales to our
large dataset. We first review the basic method, then discuss how to add domain knowledge
to it.

4.1 Maximum Entropy IRL

The Maximum Entropy (MaxEnt) IRL built on Apprentice Learning (AL) [20] was in-
troduced in [32] to solve the multiplicity issue of the possible reward functions. The basic
idea is to match feature expectations between observed trajectories and optimal trajectories
generated by learned policy based on recovered reward functions. Intuitively, if we compute
the optimal policy for our recovered reward function (we assume the recovered reward is
the same with or very similar to the true reward), we would expect that it generates the
same trajectories as the optimal policy for the true reward function. Standard reinforcement
learning methods are suitable for generating policy from recovered reward similar to the
actual optimal policy.

In MaxEnt IRL, each state s is assigned a feature vector f s ∈ Rk, and the reward
function is parameterized as a linear function of a state with reward weights θ ∈ Rk as
rθ(s) = θTf s. The state reward can be interpreted as the expected value over actions of the
MDP reward r(s, a). A trajectory ζ = (s1, a1, s2, a2, ..., at−1, st) is a sequence of state and
action pair. The reward value for a trajectory ζ is simply the cumulative reward of visited
states,

r(ζ) =
∑
sj∈ζ

θTf sj = θTf ζ ,

where f ζ =
∑
sj∈ζ f sj is called the feature count of the trajectory. The observed agents’

feature counts are calculated as f̃ = 1
m

∑
ζ f ζ , where m is the number of trajectories. This

observed feature count f̃ summarizes the behavior of the expert demonstrator (agent). The
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intuition behind the MaxEnt IRL method is that observed feature count implicitly reveal
the preferences of the expert, whom we can expect to manage to visit states they prefer more
often. Therefore the objective of the learning procedure is to find a policy distribution Pπ
over trajectories whose expected feature counts match the expert’s observed feature counts

∑
ζ

Pπ(ζ)f ζ = f̃ .

However, there are many possible policies that satisfy this constraint. Thus, MaxEnt IRL
introduced a method to resolve this ambiguity and to discriminate between different poli-
cies based on the actual reward they accumulate, so that higher reward leads to higher
probability of a trajectory.

Assume that agents act under a maximum entropy [9] policy, the probability of a demon-
strated trajectory ζ increases exponentially with higher rewards. [32, Eq.4] shows that under
mild assumptions, the exponential trajectory probability can be approximated by the ex-
pression

P (ζ|θ, T ) = erζ

Z(θ, T )
∏

st+1,at,st∈ζ
PT (st+1|at, st), (4.1)

where Z(θ, T ) is the partition function and T is the state transition distribution. The policy
π induced by this reward (parameterized by θ) is

π(a|s;θ) =
∑

ζ∈
∑

s,a

P (ζ|θ), (4.2)

where
∑
s,a denotes the set of trajectories where action a is taken at state s.

Given the transition function T , MaxEnt IRL searches for the optimal θ∗ to maximize
the log-likelihood L(θ) of the demonstrations

θ∗ = argmax
θ

L(θ) = argmax
θ

∑
ζ

logP (ζ|θ, T ). (4.3)

The maximum is obtained using gradient ascent; the gradient of L(θ) is the difference
between observed and expected feature counts, which can be expressed in terms of state
visitation frequencies Ds. The frequency of visiting a state given a policy can be computed
with an iterative algorithm

∇L(θ) = f̃ −
∑
ζ

P (ζ|θ, T )f ζ = f̃ −
∑
si

Dsif si . (4.4)
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4.2 MaxEnt IRL with Domain Knowledge

Directly using an IRL algorithm to recover the reward function from game dynamics models
what situations professional players want to be in, that is, their internal reward function
rθ. But the MaxEnt approach fails to learn the importance of goals in a game, mainly
because goals are such rare events in ice hockey. In addition, original MaxEnt IRL is for
single-agent situation, while there are two agents (Home/Away team) in our ice hockey
Markov Game. We first show how to transfer knowledge between the learned reward and
our domain knowledge.

Previous RL methods define the reward function explicitly in terms of goals. The rule
reward function rK (for knowledge) assigns reward 1 for scoring a goal (i.e., getting the
puck into the net) and 0 for other actions. Our knowledge transfer approach combines the
MaxEnt likelihood function with the goal reward function through regularization:

θ∗ = argmax
θ

L(θ) + λk(rθ, rK), (4.5)

where rθ = θTψ, rK = θT
Kψ, ψ = [f s1 , ...,f sn ] ∈ Rk×n is the state feature matrix, λ

is a trade-off parameter, and k is a kernel function that bridges the disparity between
learned and knowledge reward functions. In this paper we use a Gaussian kernel k(xi, xj) =
exp{−||xi − xj ||2/2}. Following [30], we pre-train a parameter vector θK to match our
domain knowledge rK and initialize θ with θK . The gradient for θ is given by

∇θ = f̃ −
∑
si

Dsif si −ψ[λ exp(−1
2 ||rθ − rK ||

2) ◦ (||rθ − rK ||)]T (4.6)

This completes the description of our learning method. We next derive the regularizer (4.5)
from a previous knowledge transfer framework.

Maximum Mean Discrepancy (MMD) [6] is an established framework for transferring
knowledge between two distributions over random variables. Denote by X a random vari-
able from distribution p, and by x the instantiations of X. A reproducing kernel Hilbert
space (RKHS) Hk endowed by a kernel function k(x, x′) is a Hilbert space of functions
f(x)→ R with inner product [6]. The element from this function space, k(x, ·), satisfies the
reproducing property: 〈f(·), k(x, ·)〉H = f(x). The k(x, ·) is regarded as a feature map φ(x)
where k(x, x′) = 〈φ(x), φ(x′)〉H. Similarly, denote by Y a random variable from distribution
q, and by y the instantiations of Y . Formally, MMD defines the following difference measure

dHk(p, q) = sup
f∈Hk

Ex[f(x)]− Ey[f(y)]

= sup
f∈Hk

Ex[〈φ(x), f〉Hk ]− Ey[〈φ(y), f〉Hk ] (4.7)
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The mean embeddings of distribution p and q in Hk, denoted by µk(p) and µk(q), satisfy
Exf(x) = 〈f(x), µk(p)〉Hk and Eyf(y) = 〈f(y), µk(q)〉Hk for all f ∈ Hk. The MMD is
expressed as the distance between two mean embeddings when function space in Hk is rich
enough. The squared formula of MMD is defined as

d2
Hk(p, q) = ||µk(p)− µk(q)||2 (4.8)

In practice, given observations x of X and y of Y , an unbiased estimation of squared MMD
is given by:

d̂2
Hk(X,Y ) = 1

n2
x

nx∑
i=1

nx∑
j=1

k(xi, xj) + 1
n2
y

ny∑
i=1

ny∑
j=1

k(yi, yj)

− 2
nxny

nx∑
i=1

ny∑
j=1

k(xi, yj). (4.9)

Now we show how to get Equation (4.5). Since θ is a function of sample, it denotes a
random variable. As a result, rθ also defines a random variable, which we denote as Rθ with
observation rθ. We also associate with rK a constant random variable RK with observation
rK . The kernel function k is a Gaussian kernel in most knowledge transfer frameworks [14].
We want to maximize the log-likelihood of the observed trajectories as well as to minimize
the MMD between two reward functions during training. The optimal θ∗ is derived by

θ∗ = argmax
θ

L(θ)− αd̂2
Hk(Rθ, RK)

= argmax
θ

L(θ) + 2αk(rθ, rK), (4.10)

where we have used the fact that the first two terms in Equation (4.9) are constant for a
Gaussian kernel. Setting λ = 2α yields Equation (4.5).

Derivative for θ. Now we calculate derivative for θ to get Equation (4.6).

θ∗ = argmaxL(θ) + λk(rθ, rK)

= argmaxL(θ) + λk(θTψ,θT
kψ)

= argmaxL(θ) + λ exp(−||θTψ − θT
Kψ||2/2)

∇θ = f̃ −
∑
si

Dsif si +ψ[λ exp(−1
2 ||θ

Tψ − θT
Kψ||2) ◦ (−||θTψ − θT

Kψ||)]T

= f̃ −
∑
si

Dsif si −ψ[λ exp(−1
2 ||rθ − rK ||

2) ◦ (||rθ − rK ||)]T

(4.11)
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4.3 Alternating MaxEnt IRL

We leverage single-agent MaxEnt IRL for multi-agent reward learning. As shown in Chapter
3, for a Markov Game with multiple agents, we can start from a certain agent’s perspective
and fix other agents’ decisions as part of the environment, then the Markov Game can be
transformed to a single-agent MDP with the state value for this agent being the same with
Markov Game. In our ice hockey case, there are two teams Home and Away. We first treat
Away team as part of Home’s environment, then learn a reward function for Home team
in a single-agent MDP. The procedure is repeated with the role of teams Home and Away
reversed. This alternating learning procedure is shown in Figure 4.1.

• Treat B as A’s environment, learn reward for A using single-agent IRL
• Repeat the procedure with the role of teams A and B reversed

8

Alternating IRL

AI In Team Sports Workshop

Fix B’s 
policy

Markov 
Game 𝐺 Markov 

Game 𝐺

Fix A’s 
policy

MaxEnt IRL

MaxEnt IRL

Figure 4.1: Alternating IRL for Markov Game to learn reward for different agents

Notice that our work uses IRL for describing agent behaviour, whereas most other IRL
work has the control objective of building optimal agents. Previous work assumes that expert
agents are following a Nash equilibrium distribution, which defines optimality in Markov
Games [31]. Our optimality assumption is related but fundamentally different: Let π̂A,π̂B be
two policies for agents A and B estimated directly from the data that represent the agents’
observed behaviour. Let r̂A and r̂B be two internal reward functions inferred from the data,
where πrAA and πrBB are the inferred policies that optimize the agents’ respective inferred
reward functions. Our assumption is that agents optimize against the observed policies of
other agents (i.e., π̂A and π̂B form an approximate Nash equilibrium). Previous control
work computes policies such that agents optimize against the inferred optimal policies of
other agents (i.e., πr̂AA and πr̂BB form an approximate Nash equilibrium). For describing a
real-world domain like sports, our assumption is more realistic because i) teams have direct
access only to the observed behavior of other teams, not to others’ internal strategies (πr̂),
and ii) when an opponent’s observed behavior π̂ falls shorts of their optimal strategy πr̂,
successful teams take advantage of it.
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Under the assumption of Nash equilibrium, we can transform the two agents Markov
Game to a single agent MDP by fixing one agent’s policy and treating that agent as another
one’s environment (cf. Chapter 3.1). Then the reward for different agents can be learned in
an alternating approach.
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Chapter 5

Evaluating the Learned Reward
and Policy

In this chapter, we report different properties of the IRL-DK learned reward function from
the ice hockey data.

5.1 Metrics

We first introduce the metrics used to evaluate the policy induced from the recovered
reward. We compare the demonstrated trajectories with the probabilistic distribution over
trajectories generated by our algorithm using two different metrics: negative log-likelihood
(NLL) and modified Hausdorff Distance (MHD). the first is probabilistic and evaluates how
likely the demonstrated trajectories are under the predicted distribution, and the second
performs a more deterministic evaluation by estimating the spatial distances between the
demonstrated trajectories and trajectories generated by our policy distribution.

The negative log-likelihood:

NLL(ζ) = − log
∏
t

P (st+1|st, at)× π(at|st) (5.1)

is the log-likelihood of a trajectory ζ under a policy π(a|s). In our example, the trajectory
ζ is the actual observed (demonstrated) trajectory. This metric measures the probability of
drawing the demonstrated trajectory from the learned policy over all possible trajectories.

The modified Hausdorff Distance:

MHD({ζd}, {ζg}) = max(h({ζd}, {ζg}), h({ζg}, {ζd}))

h({ζ}, {ζ̂}) = 1
|{ζ}|

∑
ζi∈{ζ}

min
ζ̂j∈{ζ̂}

||ζi − ζ̂j ||
(5.2)

is a physical measure of the distance between two set of trajectories. When the set size is
one, it is actually the Euclidean distance. As in MaxEnt IRL, the choice of action has no

20



effect on the total return of a trajectory, we represent the trajectory as a sequence of state
when calculating HMD to simplify the problem. We sample the same number of trajectories
generated by our policy as the number of demonstrated trajectory to compute the MHD.

5.2 Reward Density

Since our goal is to complement the sparse observed rewards with a dense reward signal that
covers many situations, we would want the variance of learned rewards to be substantially
higher than that of goal rewards. Recall that in previous RL-based methods, the reward
function is very sparse as the reward is only defined on goals and ice hockey is a low-scoring
game. Also, as a result of the sparse reward, the Q values from previous RL models show
little variance among state and actions pairs.

Table 5.1 verifies that this is the case: the standard deviation (STD) of learned rewards
is an order of magnitude higher, and the STD of the Q-function derived from the learned
rewards is two orders of magnitude higher than that of the Q-function derived from goal
rewards. The computation of the Q-values for IRL-DK is discussed in Section 6.1.1. For
the goal reward function, we used the Q-values provided by [13], the state-of-the-art RL
method for the goal reward.

Items Mean STD
Rule reward function (goals) 0.0000 0.0383
IRL-DK learned reward function 0.7964 0.1281
Q-values from goals (GIM) 0.4222 0.0963
Q-values from IRL-DK 5.1863 1.2207

Table 5.1: IRL-DK produces a dense reward signal with substantially higher variance than
sparse explicit goal rewards.

Both our learned dense reward and induced dense Q values indicate that our method
can capture more meaningful information from game context compared with using the rule
based spares reward only.

We also shows the box plot in Figure 5.1 for rewards over states where the Goal Difference
(GD) feature has different values. It is shown that states whose absolute GD (|GD|) value
is smaller have larger reward. This consistent with the common sense that both agents in
the game want to minimize the GD in order to win the game.

5.3 Policy Evaluation

To further evaluate how well the reward function recovered by our model rationalizes play-
ers’ motivation and behavior, we solve the MDPs for the learned two reward functions
to obtain two policies πθH and πθA for the home and away teams respectively. Then we
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compare the demonstrated trajectories with the probabilistic distribution over trajectories
generated by the policies, using two common metrics: negative log-likelihood (NLL) and
modified Hausdorff Distance (MHD) [30]. The definitions of NLL and MHD are introduced
in Section 5.1.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Goal Difference

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Re
wa

rd

Figure 5.1: Rewards vary with game context

NLL calculates how likely the demonstrations are under policy π, and MHD is a spatial
measure of the distance between demonstrated and generated trajectories. Table 5.2 shows
the average results for both Home/Away teams. The policies optimal for the IRL reward
with domain knowledge outperform their counterparts on both metrics.

Methods NLL HMD
Rule reward function (goals) 185.0 13.37
IRL learned reward function 53.9 9.71
IRL-DK learned reward function 49.5 7.77

Table 5.2: Evaluation of trajectory likelihoods under optimal policies derived from different
reward functions. lower numbers indicate better approximations of expert behavior. For
definitions see the text.

This experiment shows our policy induced by learned reward could reflect players’ mo-
tivations more accurately. This also indicate that out recovered reward function is closer to
the ground truth reward than the sparse one.
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5.4 Learning Performance

To show the advantage of combining domain knowledge with MaxEnt IRL, we compare
the learning process of MaxEnt IRL with and without domain knowledge during training.
Figure 5.2 shows the average gradient changes for IRL and IRL-DK respectively.
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Figure 5.2: Average of gradients during training for IRL and IRL-DK

Both IRL and IRL-DK use the same Markov Game model described in Chapter 3 and
the same learning rate. From the gradient changes, we can see that using MaxEnt IRL only
is very unstable with oscillating gradients and fails to completely converge. Combining IRL
with domain knowledge leads to a smoother training and faster convergence.
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Chapter 6

NHL Player Ranking Experiments

In this chapter, we assess our Alternating IRL with domain knowledge in a downstream
application, player ranking. Player ranking is one of the most important tasks in sports
analytics. Players are evaluated by their observed performance over a set of games. Our
player ranking approach is summarize in Figure 6.1. We first build a Markov Game model
on our NHL dataset, then learn team specific reward functions for Home and Away team
using our alternating learning framework. After recovering the reward, the MDPs could be
solved to compute the value function and Q function. Finally, the action impact is defined
and players are ranked by their total action impact values.

• Value/Q function: estimates expected total future reward given 
current match state

• Use learned reward to calculate value function and Q function for 
each team (Routley and Schulte, 2015)

• Use value and Q function to assess action impact (Routley and Schulte, 2015; Liu 

and Schulte, 2018)
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Figure 6.1: System Flow for Player Ranking

6.1 Player Ranking

We first define the action impact values and then give examples of player ranking.

6.1.1 Action Impact Values

Action impact, which quantifies the difference made by an action, has been used for player
evaluation [23, 25, 13]. We adopt action impact values as a function of game context (Markov
state) from [23]. For the home team H , the impact is defined by

impactH (s, a) ≡ Qπ
θ
H
∗H (s, a)− V πθ

H
∗H (s), (6.1)

where H is the team executing the action a, and the policy πθH is obtained by solving the
single-agent MDP for the home team given the learned reward (cf. Section 5). Impact for
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the away team is defined similarly. Here, V∗(·) is calculated as

V∗(s) = max
a

[r(s, a) + γ
∑
s′

T (s, a, s′)V∗(s′)] (6.2)

After getting the optimal value function, the optimal Q∗(·) function is calculated as

Q∗(s, a) = r(s, a) + γ
∑
s′

T (s, a, s′)V∗(s′) (6.3)

This action impact function, commonly known as the advantage value in reinforcement
learning, measures how much an action improves over the average action. The value of a
state is defined as the expected total reward given a policy, and the Q-function and value
function can be calculated using the Bellman equation [27], which has been discussed in
Chapter 3.
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Figure 6.2: IRL-DK Action Impact Values vary with game context

Figure 6.2 shows a box plot for action impact values over all the states in the Markov
Game. As the Q values used to calculate impact are relevant to the state frequency, to draw
the box plot, we do not include the impact values whose state frequency is less than 0.05%.
It is shown that the action impact values vary over states for different actions. The median
value of goal impact is higher than that of other actions. However, as our method belongs
to model-based RL, the probability of taking goal action is pretty low. It could be the case
the Q value is similar to or smaller than state values for goal action, which leads to small
or even negative goal action impact.
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We compare the action impact with Goal Impact Metric (GIM). Figure 6.3 shows the
box plot of GIM action impact for the same season. The medium impact value for most
actions is near to zero and the impact of goal is much larger than that of other actions,
which explains the top players given by GIM are most offensive players (Section 6.1.2), as
offensive players score more goals than defensive players. We also notice that the medium
impact value for shot is lower than other actions, which means GIM may fail to learn the
importance of shot.

Assist Block Carry Check Icing Offside Pass Shot Goal
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Figure 6.3: GIM Action Impact Values

6.1.2 Player Rankings

Following [13], the ranking score for a player is the sum of this player’s total action impact
values

Scorei =
∑
s,a

niD(s, a)× impactteami
(s, a), (6.4)

where D denotes our dataset, i is the playerId, niD(s, a) is the occurrence number that player
i performed action a at state s observed from D, and teami is the team of player i. The
total impact is not normalized for time-on-ice (TOI), because TOI correlates with player
strength. Dividing the ranking score by TOI therefore reduces the score differences among
players. Note that impact values can be both positive and negative, so the total impact
reflects the net value of a player’s actions, rather than the total number of the actions.

Different from [23, 13] where all the players are evaluated together, we evaluate offensive
players (Center, Left Wing, Right Wing) and defensive players (Defenceman, Goalie) sep-
arately with the following considerations. First, previous RL methods with sparse reward
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rank offensive players higher than defensive players in most cases. Second, these two types
of players play different roles in a team under diverse strategies leading to distinct behavior.

Name Assists Goals Points Team IRL Imp Salary
Anze Kopitar 38 22 60 LA 14,407.5 11,000,000

Aleksander Barkov 61 35 96 FLA 14,386.6 6,900,000
Dylan Larkin 41 32 73 DET 14,018.2 7,000,000

Nathan Mackinnon 58 41 99 COL 13,836.6 6,750,000
Leon Draisaitl 55 50 105 EDM 13,739.9 9,000,000
Mark Scheifele 46 38 84 WPG 13,639.4 6,750,000
Jonthan Toews 46 35 81 CHI 13,357.3 9,800,000
Connor McDavid 75 41 116 EDM 13,309.6 14,000,000

Jack Eichel 54 28 82 BUF 13,288.8 10,000,000
Ryan O’Reilly 53 30 83 CAR 13,025.3 6,000,000

Table 6.1: 2018-19 Top-10 offensive players

Tables 6.1 and 6.2 list the top-10 highest impacts offensive and defensive players by our
algorithm. All these players are NHL stars according to recent NHL 2019-20 top players
news. Our ranking can be used to identify promising players. For instance, Miro Heiskane
just began his career in 2017 and drew salaries below other top ranking players but is
nominated as a top-50 defenceman by NHL [22]. Our ranking does not have apparent bias
towards offensive players compared with two recent RL methods, Score Impact (SI) [23]
and Goal Impact Metric (GIM) [13]. For instance, comparing the top-50 players, for the SI
metric they are are all offensive players, for GIM all but one are offensive player, whereas
our method contains 32 defencemen.

Name Assists Goals Points Team IRL Imp Salary
Drew Doughty 37 8 45 LA 15,229.4 12,000,000
Brent Burns 67 16 83 SJ 15,173.9 10,000,000
Roman Josi 41 15 56 NSH 14,356.7 4,000,000
John Carlson 57 13 70 WSH 14,279.2 12,000,000
Morgan Rielly 52 20 72 TOR 14,047.6 5,000,000
Ryan Suter 40 7 47 MIN 13,930.9 9,000,000

Mark Giordano 57 17 74 CGY 13,887.5 6,750,000
Duncan Keith 34 6 40 CHI 13,833.5 3,500,000
Erik Gustafsson 43 17 60 CHI 13,816.4 1,800,000
Miro Heiskane 21 12 33 DAL 13,678.3 925,000

Table 6.2: 2018-19 Top-10 defensive players

6.2 Empirical Evaluation

Similar to clustering problems, there is no ground truth for player evaluation. To assess
player evaluation metrics, we follow previous work [23, 25, 13] and compute their correlation

27



with commonly used statistic measurements like Assists, Goals, Points, as these statistics
are generally regarded as important measures of a player’s ability to impact a game.

We compare our method with the following player evaluation metrics. Plus-minus (+/-)
is a commonly used basic metric to measure the influence of player presence to the goals
[15]. Valuing Actions by Estimating Probabilities (VAEP) defines the impact of an action
as its offensive score plus defensive score [3]. These two scores are defined as the differ-
ences between two consecutive scoring and conceding probabilities. Because our dataset
was too large to be processed by the VAEP authors’ code, we replaced the gradient-boosted
tree of the original implementation by a neural network classifier. Win-Above-Replacement
(WAR) estimates the difference of team’s winning chance if a target player is replaced by
an average player [4]. Expected Goal (EG) weights each shot by its chance of leading to
a goal [16]. Scoring Impact (SI) is most related to our method, also based on a discrete
Markov Game model but with the sparse goal reward [23, 25]. Goal Impact Metric (GIM)
uses a deep Q-network with goal reward to predict Q-values and defines the difference be-
tween two consecutive Q-values as action impact [13]. We also adopt the maximum entropy
IRL without domain knowledge as a baseline.

6.2.1 Season Totals: Correlations with Standard Success Measures

The following experiment computes the correlations with success measures over the entire
2018-19 season. The NHL official website (www.nhl.com/stats/player) provides 14 standard
success measures, including Assists, Goals, Points, Game Play (GP), Game Wining Goal
(GWG), Short-handed Goal (SHG), Power-play Goal (PPG), Shots (S), Short-handed Point
(SHP), Power-play Point (PPP), Face-off Win Percentage (FOW), Points per game (P/GP),
Shifts per game (SFT/GP), and Penalty Minute (PIM). The correlation is calculated over
all the offensive or defensive players. We first generate players’ total season values, then
extract the corresponding success measures statistics for all the players. The correlation
is computed between these two value lists, and the python function numpy.corrcoef() is
utilized. The results for offensive and defensive players are shown in Tables 6.3 and 6.4.

Our method achieves the highest correlation in 10 out of 14 success measures except for
goal and three goal related items (GWG, SHG, and PPG). For these measures, only SI shows
a higher correlation, because it use the very sparse goal reward and is highly dominated by
goal action. For GWG, our results are comparable to SI for both offensive and defensive
player measures. For SHG and PPG, it achieves the second best results or comparable to the
second best. The traditional plus-minus correlates poorly with all success measures. VAEP
only achieves little correlation with success measures because their model is a classifier built
on data with few positive labels and tends to assign similar impact value to all actions. EG
is only the fourth best metric, because it only takes shots into account. IRL-DK achieves
higher correlations than GIM, the most recent method, for every success measure except for
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Methods Assists GP Goals GWG SHG PPG S
+/- 0.269 0.086 0.282 0.278 0.118 0.124 0.156

VAEP 0.215 0.185 0.215 0.089 -0.074 0.160 0.239
WAR 0.591 0.322 0.742 0.571 0.179 0.610 0.576
EG 0.656 0.629 0.633 0.489 0.099 0.391 0.737
SI 0.717 0.633 0.975 0.665 0.249 0.770 0.860

GIM 0.757 0.772 0.781 0.518 0.147 0.477 0.795
IRL 0.855 0.872 0.812 0.587 0.123 0.513 0.901

IRL-DK 0.882 0.887 0.824 0.607 0.125 0.537 0.907

Methods Points SHP PPP FOW P/GP SFT/GP PIM
+/- 0.285 0.179 0.157 0.012 0.306 0.109 0.100

VAEP 0.235 -0.076 0.185 0.021 0.204 0.129 0.172
WAR 0.692 0.147 0.605 0.040 0.699 0.396 0.145
EG 0.694 0.183 0.508 0.254 0.644 0.713 0.355
SI 0.869 0.204 0.708 0.135 0.728 0.639 0.361

GIM 0.818 0.151 0.561 0.289 0.705 0.751 0.372
IRL 0.891 0.207 0.696 0.294 0.741 0.818 0.437

IRL-DK 0.908 0.213 0.734 0.298 0.769 0.820 0.446

Table 6.3: Correlation with success measures (offensive). The line separates RL-based meth-
ods from others.

SHG. The difference is especially pronounced for defencemen and non-goal related measures
(e.g. Points), due to GIM’s goal bias.

6.2.2 Round-by-Round Correlations: Predicting Future Performance from
Past Performance

A sport season normally consists of several rounds. A team or player will finish n competi-
tions at the end of round n. We compute the correlation between player values at the end of
round n and three main success measures, Assists, Goals, and Points, over the whole sport
season. That is, we compute players’ total values only based on the first n round data of
the season. Then we extract the corresponding statistics (Assists, Goals, Points) for all the
players and compute the correlation between these two value lists. Here, we also use the
python function numpy.corrcoef().

This experiment assesses the predictive power of different metrics, which allow us to
infer the future performance of players. We also compute the auto-correlation for different
metrics between players’ round values and final season values. Auto-correlation evaluates the
temporal consistency of a metric [21]. Since most players’ strengths are stable throughout
a season, a good player metric should show temporal consistency.

We focus on the four machine learning methods VAEP, SI, GIM, and IRL-DK. Figure 6.4
shows round-by-round correlation with Assists, Goals, Points, and the auto-correlation be-
tween round values and season total for offensive players. (Results for defensive players are
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Methods Assists GP Goals GWG SHG PPG S
+/- 0.173 0.132 0.144 0.177 0.235 -0.116 0.113

VAEP 0.054 -0.045 0.005 0.010 0.384 0.071 -0.016
WAR 0.204 0.028 0.365 0.275 0.097 0.246 0.186
EG 0.589 0.688 0.507 0.321 0.327 0.306 0.679
SI 0.607 0.488 0.934 0.449 0.491 0.457 0.709

GIM 0.702 0.862 0.596 0.263 0.130 0.170 0.764
IRL 0.809 0.941 0.686 0.415 0.268 0.347 0.908

IRL-DK 0.852 0.959 0.701 0.439 0.289 0.360 0.920

Methods Points SHP PPP FOW P/GP SFT/GP PIM
+/- 0.175 0.107 -0.05 0.095 0.169 0.067 0.072

VAEP 0.042 0.065 -0.003 0.101 0.064 -0.036 -0.031
WAR 0.252 0.128 0.266 0.174 0.279 0.006 -0.089
EG 0.611 0.278 0.399 0.118 0.503 0.694 0.360
SI 0.720 0.174 0.488 0.103 0.521 0.499 0.272

GIM 0.730 0.085 0.358 0.140 0.471 0.706 0.438
IRL 0.841 0.281 0.549 0.182 0.557 0.776 0.549

IRL-DK 0.865 0.307 0.571 0.185 0.574 0.778 0.570

Table 6.4: Correlation with success measures (defensive)

similar.) IRL-DK is the most stable model measured by auto-correlation, and is the best at
predicting success measures, even at the very beginning of the season.

To further evaluate the temporal consistency of our method, we also calculate the cross-
season correlation between players ranking scores for three different seasons, following [21].
The model is trained on 19-20, 18-19, 17-18 NHL season separately and players are ranked
based on their performances in these season games. The correlation result is shown in Ta-
ble 6.5. The player rankings between two consecutive seasons correlate well with each other
(above 0.75), which indicates that our rankings are temporally consistent even across sea-
sons. Moreover, this means that our approach can be used to predict the future performance
of a player in the next season from his performance in the current one.

Season 19-20 18-19 17-18
19-20 - 0.840 0.752
18-19 0.840 - 0.827
17-18 0.752 0.827 -

Table 6.5: IRL-DK cross-season player ranking correlation

6.3 Top players given by other metrics

Here we also show the top players given by other metrics, including SI, GIM, and VAEP.
Tables 6.6 and 6.7 list the top-10 highest impacts offensive and defensive players by

SI. Tables 6.8 and 6.9 list the top-10 highest impacts offensive and defensive players by

30



0 20 40 60
Round

0.1

0.3

0.5

0.7

0.9

C
or

re
la

tio
n 

w
ith

 A
ss

is
ts

VAEP
SI
GIM
IRLDK

0 20 40 60
Round

0.1

0.3

0.5

0.7

0.9

C
or

re
la

tio
n 

w
ith

 G
oa

ls

VAEP
SI
GIM
IRLDK

0 20 40 60
Round

0.1

0.3

0.5

0.7

0.9

C
or

re
la

tio
n 

w
ith

 P
oi

nt
s

VAEP
SI
GIM
IRLDK

0 20 40 60
Round

0.2

0.4

0.6

0.8

1.0

A
ut

o
C

or
re

la
tio

n

VAEP
SI
GIM
IRLDK

Figure 6.4: Correlations between round-by-round metrics and season totals for offensive
players
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GIM. The top-50 players given by VAEP [3] contains 38 offensive players and 12 defensive
players. Tables 6.10 and 6.11 list the top-10 highest impacts offensive and defensive players
by VAEP. All the rankings are based on the 2018-19 season.

Name Assists Goals Points Team Salary
Alex Ovechkin 38 51 89 WSH 10,000,000
John Tavares 41 47 88 TOR 15,900,000
Leon Draisaitl 55 50 105 EDM 9,000,000
Cam Atkinson 28 41 69 CBJ 7,375,000
Alex Debrincat 35 41 76 CHI 800,000
Steven Stamkos 53 45 98 TBL 9,500,000
Jake Guentzel 36 40 76 PIT 7,000,000
Brayden Point 51 41 92 TBL 5,250,000
Patrick Kane 66 44 110 CHI 9,800,000

David Pastrnak 43 38 81 BOS 6,800,000

Table 6.6: SI Top-10 offensive players

Name Assists Goals Points Team Salary
Morgan Rielly 52 20 72 TOR 5,000,000

Dougie Hamilton 21 18 39 CAR 6,000,000
Kris Letang 40 16 56 PIT 7,250,000

Mark Giordano 57 17 74 CGY 6,750,000
Jared Spurgeon 29 14 43 MIN 5,500,000
Matt Dumba 10 12 22 MIN 7,400,000
Shea Weber 19 14 33 MTL 6,000,000

Erik Gustafsson 43 17 60 CHI 1,800,000
Alex Pietrangelo 28 13 41 STL 7,500,000

Roman Josi 41 15 56 NSH 4,000,000

Table 6.7: SI Top-10 defensive players

Name Assists Goals Points Team Salary
Sidney Crosby 65 35 100 PIT 9,000,000
Mark Scheifele 46 38 84 WPG 6,750,000
Leon Draisaitl 55 50 105 EDM 9,000,000
Jonathan Toews 46 35 81 CHI 9,800,000
Anze Kopitar 38 22 60 LA 11,000,000

Aleksander Barkov 61 35 96 FLA 6,900,000
John Tavares 41 47 88 TOR 15,900,000
Sean Couturier 43 33 76 PHI 4,500,000

Nicklas Backstrom 52 22 74 WSH 8,000,000
Connor McDavid 75 41 116 EDM 14,000,000

Table 6.8: GIM Top-10 offensive players

We refer to the ranking of the top 50 center, left wing, right wing, and defenceman given
by NHL. The player names and rankings are shown in Appendix C.

All the top 10 offensive players from SI, GIM, and IRL-DK appear in the NHL rankings
(including center, left wing, and right wing). 7 out of 10 top 10 offensive players from VAEP
appears in NHL rankings. For defenceman, 8 out of 10 players by SI appear in NHL rankings.
7 out of 10 players by IRL-DK appear. Only 4 out of 10 players by GIM and VAEP appear
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Name Assists Goals Points Team Salary
Drew Doughty 37 8 45 LA 12,000,000
Jaccob Slavin 23 8 31 CAR 5,500,000
Samuel Girard 23 4 27 COL 700,000
T.J. Brodie 25 9 34 CGY 4,837,500

Michael Matheson 19 8 27 FLA 3,500,000
Thomas Chabot 41 14 55 OTT 832,500
Shea Theodore 25 12 37 VGK 5,200,000
Dmitry Orlov 26 3 29 WSH 6,500,000
Ivan Provorov 19 7 26 PHI 6,750,000
Morgan Rielly 52 20 72 TOR 5,000,000

Table 6.9: GIM Top-10 defensive players

Name Assists Goals Points Team Salary
Jack Eichel 54 28 82 BUF 10,000,000
Ryan Getzlaf 34 14 48 ANA 8,275,000

Mika Zibanejad 44 30 74 NYR 5,350,000
Sidney Crosby 65 35 100 PIT 9,000,000
Brock Nelson 28 25 53 NYI 8,000,000
Lars Eller 23 13 36 WSH 4,000,000

Zach Aston-Reese 9 8 17 PIT 1,000,000
Chris Kreider 24 28 52 NYR 4,000,000

Nikita Kucherov 87 41 128 TBL 12,000,000
Leon Draisaitl 55 50 105 EDM 9,000,000

Table 6.10: VAEP Top-10 offensive players

in NHL rankings. While the NHL rankings do not provide a ground truth, the small overlap
between the defensive rankings for GIM and VAEP with the NHL provides evidence that
IRL-DK is more fair to defensive players. The SI defensive players also show good overlap
but on an absolute scale, SI ranks defencemen much lower than forwards.
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Name Assists Goals Points Team Salary
Jonas Brodin 14 4 18 MIN 5,750,000
Jaccob Slavin 23 8 31 CAR 5,500,000
Mark Giordano 57 17 74 CGY 6,750,000
Jake Gardiner 27 3 30 TOR 3,650,000
Jordie Benn 17 5 22 NYR 2,400,000

Anton Stralman 15 2 17 TBL 5,500,000
Ryan Suter 40 7 47 MIN 9,000,000

Trevor Van Riemsdyk 11 3 14 CAR 2,500,000
Esa Lindell 21 11 32 PHI 7,000,000

Duncan Keith 34 6 40 ARI 3,500,000

Table 6.11: VAEP Top-10 defensive players
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Chapter 7

Conclusion

We investigated multi-agent inverse reinforcement learning for professional ice hockey game
analytics, a novel application area for AI. Our aim was to recover reward for complex
game dynamics, which addresses the sparse reward issue for RL models. We introduced a
transfer learning based regularization approach to incorporate domain knowledge in IRL.
Based on the recovered reward function and calculated Q-values, we computed a context-
aware player performance metric that provides a comprehensive evaluation for both offensive
and defensive players in NHL by taking all their actions into account. In experiments our
method shows no obvious bias for any player position, achieves highest correlation with most
standard success measures among competing methods, and is most temporally consistent.
While we have focused on ice hockey for concreteness, the IRL with domain knowledge
method can be easily applied to a Markov Game model for any similar team sport. For
future work, we can try to model the sports game as a partially observed Markov Game.
Another important direction for future work is to learn reward functions at different levels,
for instance, for individual teams and players.
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Appendix A

Code

Our main code can be retrieved from github. https://github.com/miyunluo/IRL-icehockey

39



Appendix B

Box plot

Figure B.1 shows a box plot for action Q values over all the states given by our method
(IRL-DK). The Q value for goal action is lower than other actions because our model is a
model-based method. Goal is a rare action appears in our dateset and can only lead to the
end state in our Markov Game model. The Q values here do not represent the importance
of actions.
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Figure B.1: IRL-DK Action Q Values

We also give the box plot for Q values from GIM shows in Figure B.2.
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Figure B.2: GIM Action Q Values
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Appendix C

19-20 Top 50 rankings by NHL

This ranking information is obtained from NHL official website. C represents center, LW
and RW for left wing and right wing.

Fantasy center top 50 rankings for 2019-20 includes: 1. Connor McDavid, C, 2. Nathan
MacKinnon, C, 3. Sidney Crosby, C, 4. Auston Matthews, C, 5. Aleksander Barkov, C,
6. Tyler Seguin, C, 7. Steven Stamkos, C, 8. John Tavares, C, 9. Elias Pettersson, C, 10.
Evgeni Malkin, C, 11. Patrice Bergeron, C, 12. Mark Scheifele, C, 13. Sebastian Aho, C, 14.
Jack Eichel, C, 15. Brayden Point, C, 16. Evgeny Kuznetsov, C, 17. Nicklas Backstrom, C,
18. Sean Monahan, C, 19. Mika Zibanejad, C, 20. Tomas Hertl, C/LW, 21. Logan Couture,
C, 22. Matt Duchene, C, 23. Dylan Larkin, C, 24. Mathew Barzal, C, 25. Sean Couturier,
C, 26. Jonathan Toews, C, 27. Ryan O’Reilly, C, 28. Jack Hughes, C, 29. Ryan Nugent-
Hopkins, C/LW, 30. Brayden Schenn, C/LW, 31. Max Domi, C/LW, 32. Dylan Strome, C,
33. Anze Kopitar, C, 34. Roope Hintz, C/LW, 35. Nico Hischier, C, 36. Paul Stastny, C, 37.
Bo Horvat, C, 38. Vincent Trocheck, C, 39. Nazem Kadri, C, 40. Pierre-Luc Dubois, C, 41.
William Karlsson, C, 42. Ryan Johansen, C, 43. Nick Schmaltz, C/LW, 44. Ryan Getzlaf,
C, 45. David Krejci, C, 46. Andreas Athanasiou, C/LW, 47. Anthony Cirelli, C, 48. Cody
Glass, C, 49. Eric Staal, C, 50. Kevin Hayes, C.

Fantasy left wing top 50 rankings for 2019-20 includes : 1. Alex Ovechkin, LW, 2. Brad
Marchand, LW, 3. Leon Draisaitl, C/LW, 4. Johnny Gaudreau, LW, 5. Artemi Panarin,
LW, 6. Taylor Hall, LW, 7. Claude Giroux, C/LW/RW, 8. Gabriel Landeskog, C/LW, 9.
Alex DeBrincat, LW/RW, 10. Jake Guentzel, LW/RW, 11. Matthew Tkachuk, LW, 12.
Jonathan Huberdeau, LW, 13. Filip Forsberg, LW, 14. Jamie Benn, C/LW, 15. Timo Meier,
LW/RW, 16. Max Pacioretty, LW, 17. Jonathan Marchessault, C/LW, 18. Teuvo Teravainen,
LW/RW, 19. Clayton Keller, LW/RW, 20. Kyle Connor, LW, 21. Jeff Skinner, C/LW, 22.
Mike Hoffman, LW/RW, 23. Evander Kane, LW, 24. Brady Tkachuk, LW, 25. Rickard
Rakell, LW/RW, 26. James van Riemsdyk, LW, 27. Nikolaj Ehlers, LW/RW, 28. Nikita
Gusev, LW, 29. Alex Galchenyuk, C/LW, 30. J.T. Miller, LW/RW, 31. Mikael Granlund,
LW/RW, 32. Chris Kreider, LW, 33. Jaden Schwartz, LW, 34. Anders Lee, LW, 35. Nino
Niederreiter, LW/RW, 36. Jake DeBrusk, LW/RW, 37. Zach Parise, LW, 38. Jakub Vrana,
LW, 39. Andreas Johnsson, LW/RW, 40. Tyler Bertuzzi, LW/RW, 41. Max Comtois, LW,
42. Victor Olofsson, LW/RW, 43. Gustav Nyquist, LW/RW, 44. Marcus Johansson, LW,
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45. Tomas Tatar, LW/RW, 46. Jason Zucker, LW/RW, 47. Jonathan Drouin, C/LW, 48.
Alexandre Texier, C/LW, 49. Andre Burakovsky, LW/RW, 50. Ondrej Palat, LW.

Fantasy right wing top 50 rankings for 2019-20 include: 1. Nikita Kucherov, RW, 2. Patrick
Kane, RW, 3. David Pastrnak, RW, 4. Mitchell Marner, RW, 5. Mikko Rantanen, RW,
6. Blake Wheeler, RW, 7. Vladimir Tarasenko, RW, 8. Patrik Laine, LW/RW, 9. Mark
Stone, RW, 10. Alexander Radulov, RW, 11. Phil Kessel, RW, 12. Brock Boeser, RW, 13.
Joe Pavelski, C/RW, 14. Jakub Voracek, RW, 15. Viktor Arvidsson, LW/RW, 16. William
Nylander, C/RW, 17. Evgenii Dadonov, LW/RW, 18. Kaapo Kakko, RW, 19. Tom Wilson,
RW, 20. Elias Lindholm, C/RW, 21. Cam Atkinson, RW, 22. Brendan Gallagher, RW, 23.
Kyle Palmieri, RW, 24. T.J. Oshie, RW, 25. Andrei Svechnikov, LW/RW, 26. Anthony
Mantha, LW/RW, 27. Sam Reinhart, C/RW, 28. Jordan Eberle, RW, 29. Mats Zuccarello,
RW, 30. Reilly Smith, RW, 31. Patric Hornqvist, RW, 32. Dustin Brown, RW, 33. Kevin
Labanc, LW/RW, 34. Kasperi Kapanen, RW, 35. David Perron, LW/RW, 36. Ondrej Kase,
RW, 37. Pavel Buchnevich, RW, 38. Ryan Donato, LW/RW, 39. Yanni Gourde, LW/RW,
40. Josh Anderson, RW, 41. Travis Konecny, RW, 42. Tyler Johnson, LW/RW, 43. Jakob
Silfverberg, RW, 44. Wayne Simmonds, RW, 45. James Neal, LW/RW, 46. Tyler Toffoli,
RW, 47. Drake Batherson, C/RW, 48. Robert Thomas, C/RW, 49. Josh Bailey, LW/RW,
50. Dominik Kahun, LW/RW.

Fantasy defenseman top 50 rankings for 2019-20 includes: 1. John Carlson, 2. Victor Hed-
man, 3. Cale Makar, 4. Roman Josi, 5. Alex Pietrangelo, 6. Torey Krug, 7. Kris Letang,
8. Dougie Hamilton, 9. Shea Theodore, 10. Quinn Hughes, 11. Morgan Rielly, 12. Zach
Werenski, 13. Seth Jones, 14. Tyson Barrie, 15. Ivan Provorov, 16. Charlie McAvoy, 17.
John Klingberg, 18. Neal Pionk, 19. Miro Heiskanen, 20. Tony DeAngelo, 21. Ryan Ellis,
22. Mark Giordano, 23. Oscar Klefbom, 24. Keith Yandle, 25. Shea Weber, 26. Mikhail Ser-
gachev, 27. Ryan Suter, 28. Jeff Petry, 29. Matt Niskanen, 30. Colton Parayko, 31. Oliver
Ekman-Larsson, 32. Adam Fox, 33. Alexander Edler, 34. Aaron Ekblad, 35. Jaccob Slavin,
36. Ryan Graves, 37. Alec Martinez, 38. Jake Muzzin, 39. Duncan Keith, 40. Jared Spur-
geon, 41. Jakob Chychrun, 42. Vince Dunn, 43. Darnell Nurse, 44. Jacob Trouba, 45. Mattias
Ekholm, 46. Alex Goligoski, 47. Ryan Pulock, 48. Josh Morrissey, 49. Sami Vatanen, 50.
Kevin Shattenkirk.
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