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Abstract

In fitting functional linear models, including scalar-on-function regression (SoFR) and function-
on-function regression (FoFR), the intrinsically infinite dimension of the problem often de-
mands an limitation to a subspace spanned by a finite number of basis functions. In this
sense, the choice and construction of basis functions matters. We discuss herein certain
supervised choices of basis functions for regression/classification with densely/sparsely ob-
served curves, and give both numerical and theoretical perspectives.

For SoFR, the functional principal component (FPC) regression may fail to provide good
estimation or prediction if the response is highly correlated with some excluded FPCs.
This is not rare since the construction of FPCs never involves the response. We hence
develop regression on functional continuum (FC) basis functions whose framework includes,
as special cases, both FPCs and functional partial least squares (FPLS) basis functions.

Aiming at the binary classification of functional data, we then propose the continuum
centroid classifier (CCC) built upon projections of functional data onto the direction parallel
to FC regression coefficient. One of the two subtypes of CCC (asymptotically) enjoys no
misclassification.

Implementation of FPLS traditionally demands that each predictor curve be recorded as
densely as possible over the entire time span. This prerequisite is sometimes violated by,
e.g., longitudinal studies and missing data problems. We accommodate FPLS for SoFR
to scenarios where curves are sparsely observed. We establish the consistency of proposed
estimators and give confidence intervals for responses.

FPLS is widely used to fit FoFR. Its implementation is far from unique but typically involves
iterative eigen decomposition. We introduce an new route for FoFR based upon Krylov sub-
spaces. The method can be expressed in two equivalent forms: one of them is non-iterative
with explicit forms of estimators and predictions, facilitating the theoretical derivation; the
other one stabilizes numerical outputs. Our route turns out to be less time-consuming than
other methods with competitive accuracy.

Keywords: Functional continuum regression; function-on-function regression; Krylov sub-
space; functional partial least squares; functional principal component; scalar-on-function
regression
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Chapter 1

Introduction

With the development of technology, the demand for functional data analysis (FDA) is
increasing. It is frequent to encounter data that are recorded continuously within a non-
degenerate and compact domain of “time”, e.g., [0, 1]. Formally, consider an L2 process X
whose argument takes values from a “time” domain TX . Write L2(TX) (resp. L2(T2

X)) as
the L2-space on TX (resp. T2

X) with respect to (w.r.t.) the Lebesgue measure. The auto-
covariance operator of X, say VX : L2(TX) → L2(TX), is then given, for all f ∈ L2(TX),
by

VX(f)(·) =
∫
TX

f(s)vX(s, ·)ds, (1.1)

where
vX = vX(s, t) = cov{X(s), X(t)}. (1.2)

As a standard assumption in FDA research, vX ∈ L2(T2
X) implies countably many nonnega-

tive eigenvalues of VX sorted in a decreasing order, say λ1,X ≥ λ2,X ≥ · · · , and corresponding
eigenfunctions φ1,X , φ2,X , . . .. We further require

∑∞
j=1 λj,X < ∞ and abuse the notation

‖ · ‖2 for the L2-norm of each L2-space involved.
The (linear) scalar-on-function regression (SoFR) is an elementary model in FDA, bridg-

ing scalar response Y to functional predictor X. To be specific,

Y = µY +
∫
TX

β(X − µX) + ε, (1.3)

where µX (resp. µY ) is the expectation of X (resp. Y ) and white noise ε has mean zero and
variance σ2

ε . The notation
∫
TX f is short for

∫
TX f(t)dt. To assure identifiability of β, assume

that β belongs to span(φ1, φ2, . . .), where span(·) is the linear space spanned by functions in
the parentheses. People have applied SoFR to several domains including chemometrics (e.g.,
predicting scalars according to near infra-red (NIR) spectroscopy [40]), food manufacturing
(e.g., controlling biscuit quality [1]), geoscience (e.g., investigating climate data from the
United States [7]), medical imaging (e.g., analyzing diffusion tensor imaging (DTI) tractog-
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raphy [37]) and many others. In practice, the interpretability of β is the largest advantage
of SoFR over competitors; refer to [79].

The infinite-dimensional structure of L2-spaces makes data analysis challenging: the
dimension of the parameter space exceeds the number of observed subjects, and hence
dimension-reduction techniques are indispensable in model fitting. To estimate β and to
predict the conditional expectation

η(X∗) = E(Y | X = X∗) = µY +
∫
TX

β(X∗ − µX) (1.4)

for X∗ distributed as X, the standard approach is to express β in terms of a linear combi-
nation of functions w1, . . . , wp truncated from countably many basis functions w1, w2, . . . in
L2(TX). This inspires people to approximate β and η(X∗), respectively, by:

βp = arg min
θ∈span(w1,...,wp)

E
{
Y − µY −

∫
TX

θ(X − µX)
}2
, (1.5)

ηp(X∗) = µY +
∫
TX

βp(X∗ − µX), (1.6)

where βp is the slope of the best approximation (within span(w1, . . . , wp) and in the L2

sense) to Y by a linear function of X; for p = 0, we put β0 = 0 for later convenience,
completing the definition.

Suppose n two-tuples (X1, Y1), . . . , (Xn, Yn) are independently and identically distributed
(iid) as (X,Y ). It is understood that the trajectories in the observed data will have no an-
alytical expression and hence there is no way to compute corresponding integrals exactly.
Nevertheless, numerical techniques are available, e.g., quadrature rules, as long as the set of
points at which each curve is observed is sufficiently dense. Errors would be introduced in
these approximations though they would be bounded (see, e.g., [91] bounding errors asso-
ciated with the trapezoidal rule). Such bounds depend upon the smoothness of underlying
trajectories. Accordingly, interpolations (e.g., various splines) are often involved; refer to,
e.g., [101] for theoretical results on certain penalized splines. Especially in Chapters 2, 3
and 5, we assume curves are observed densely enough and, for convenience, abuse inte-
gral signs for corresponding empirical approximations throughout the entire thesis. Then,
plug-in estimates for (1.5) and (1.6) are respectively expressed as

β̂p = arg min
θ∈span(ŵ1,...,ŵp)

1
n

n∑
i=1

{
Yi − Ȳ −

∫
TX

θ(Xi − X̄)
}2
, (1.7)

η̂p(X∗) = Ȳ +
∫
TX

β̂p(X∗ − X̄), (1.8)

where X̄ = n−1∑n
i=1Xi and Ȳ = n−1∑n

i=1 Yi. Obviously, these estimates vary with the
choice of wj as well as the quality of ŵj . Although this framework is compatible with a

2



basis independent of the data (e.g., polynomial basis, Fourier basis, wavelets, splines, etc.),
it is more reasonable to force it to adapt to data (e.g., the functional principal component
(FPC) and functional partial least squares (FPLS) bases).

When the response Y is changed from scalar to an L2 process defined on another “time”
domain TY , one may resort to (linear) function-on-function regression (FoFR, first proposed
by [75]):

Y (t) = µY (t) +
∫
TX

β(s, t){X(s)− µX(s)}ds+ ε(t)

where coefficient β is now bivariate, defined on TX × TY and µY becomes functional. We
assume the zero-mean Gaussian process ε is uncorrelated with X (i.e., E{X(s), ε(t)} = 0 for
all (s, t) ∈ TX × TY ) with a covariance function vε which is continuous on T2

Y . We rewrite
FoFR in the form

Y (t) = µY (t) + LX(β)(t) + ε(t), (1.9)

defining a random integral operator LX : L2(TX × TY ) → L2(TY ) such that, for each
f ∈ L2(TX × TY ),

LX(f)(·) =
∫
TX
{X(s)− µX(s)}f(s, ·)ds.

Assuming (C.A.4.1) in Section A.4, [44, Theorem 2.3] shows that the true parameter value
β can be defined uniquely through least squares, viz. β = arg min θ∈L2(TX×TY ) E ‖Y − µY −
LX(θ)‖22; in detail, for each (s, t) ∈ TX × TY , we have

β(s, t) =
∞∑

i,j=1

cov(
∫
TX Xφi,X ,

∫
TY Y φj,Y )

λi,X
φi,X(s)φj,Y (t), (1.10)

where λj,Y (resp. φj,Y ) is the jth top eigenvalue (resp. eigenfunction) of VY (defined in com-
plete analogy to VX at (1.1)). Estimation and prediction for FoFR can still be implemented
through projection. Indeed, FPC regression (FPCR) for FoFR approximates β by its orthog-
onal projection on span{fij ∈ L2(IX × IY ) | fij(s, t) = φi,X(s)φj,Y (t), 1 ≤ i ≤ p, 1 ≤ j ≤ q},
or equivalently, drops the tail of the series on the farthest right-hand side of (1.10).

The main body of this thesis comprises our previous works [109, 110, 111, 112] which
are presented independently from each other. Chapter 2 offers a supervised option for wj for
SoFR which results in better accuracy in both estimation and prediction. Applying proposals
in Chapter 2 to binary classification, Chapter 3 reveals the possible improvement of error
rate associated with this strategy. Chapter 4 implements FPLS in the more challenging
context of sparsely observed functional data with measurement errors. Fitting FoFR, a new
route for FPLS is provided by Chapter 5. Possible further work is described in Chapter 6.
For the conciseness, technical details are consigned to appendices.

3



Chapter 2

Functional continuum regression

2.1 Introduction

2.1.1 Functional principal component and functional partial least squares
bases

Recall the framework detailed in Chapter 1. Among all the bases exploited in FDA, the most
prevailing one is the FPC basis i.e., {φ1,X , φ2,X , . . .}, where φj,X is the jth eigenfunction of
VX (1.1), or equivalently, given φk,X for all k ∈ {1, . . . , j − 1}, one has

φj = arg max
w:‖w‖2=1

∫
TX

wVX(w) (2.1)

subject to ∫
TX

wφ1,X = · · · =
∫
TX

wφj−1,X = 0.

Function φj,X (2.1) is estimated by φ̂j , the jth eigenfunction of operator V̂X defined by
substituting

v̂X(s, t) = ĉov{X(s), X(t)} = 1
n

n∑
i=1
{Xi(s)− X̄(s)}{Xi(t)− X̄(t)}

for vX(s, t) (1.2) in the definition of VX (1.1), i.e., for all f ∈ L2(TX),

V̂X(f)(·) =
∫
TX

f(s)v̂X(s, ·)ds. (2.2)

During the past few decades, extensive work has focused on FPC; more details can be
found in a number of monographs (e.g., [48, 76]) and review papers (e.g., [31, 97]). As defined
in (2.1), the construction of the functional principal component basis is “unsupervised”; this
basis does not involve the response Y ; the first few elements of this basis seek to explain
as much of the variation of X as possible, whereas they are not necessarily important in
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representing β. That is, it is possible for one or more members in the abandoned part
{φp+1, φp+2, . . .} to be highly correlated with the response.

Some efforts have already been made to target this well-known defect, including [73], in
which (multivariate) partial least squares (PLS) is extended to the functional domain, i.e.,
FPLS. This technique relies on a basis which is defined in a sequential manner. Namely,
given wk,FPLS for all k ∈ {1, . . . , j − 1},

wj,FPLS = arg max
w:‖w‖2=1

cov2
{
Y − ηj−1,FPLS(X),

∫
TX

Xw

}
(2.3)

subject to ∫
TX

wVX(w1,FPLS) = · · · =
∫
TX

wVX(wj−1,FPLS) = 0.

The empirical counterpart of this parameter is the estimator

ŵj,FPLS = arg max
w:‖w‖2=1

[
1
n

n∑
i=1
{Yi − η̂j−1,FPLS(Xi)}

∫
TX

w(Xi − X̄)
]2

subject to ∫
TX

wV̂X(ŵ1,FPLS) = · · · =
∫
TX

wV̂X(ŵj−1,FPLS) = 0,

where ηj−1,FPLS and η̂j−1,FPLS are respective counterparts of (1.6) and (1.8).
FPLS has since been investigated and developed, e.g., in [2, 28, 78]. PLS and its deriva-

tives are referred to as “fully supervised” and may suffer the “double-dipping” problem:
they employ the covariance between Y and X both for the construction of basis functions
and for further prediction. The resulting findings are possibly vulnerable and sensitive to
small signals; see [52]. By contrast, [69] suggested a linear combination of FPC and FPLS
bases; their proposal lies between unsupervised and fully supervised techniques. Different
from these authors, we borrow the idea of (multivariate) continuum regression [88] and
extend it to learning for functional data.

2.1.2 Continuum regression

In the context of multivariate analysis, continuum regression works for the linear regression
model y = Xβ with response y ∈ Rn×1 and design matrix X ∈ Rn×d; we assume these
are both column-mean-centered. The method projects y onto the linear space spanned by
mutually orthogonal vectors Xw1,α, . . . ,Xwp,α, after successively computing the d-vectors
given by

wj,α = arg max
w:w>w=1

(w>X>y)2(w>X>Xw)α/(1−α)−1, (2.4)

with the constraint that w>k,αX>Xw = 0 for all k ∈ {1, . . . , j − 1}. Here α ∈ [0, 1) and
p (≤ d) are both to be tuned. The most appealing property of continuum regression, as
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proved by [88], is that the framework of continuum regression encompasses ordinary least
squares (OLS) (α = 0), PLS (α = 1/2), and (multivariate) principal component regression
(α → 1). The tuning parameter α actually controls the degree of supervision (i.e., the
extent of involvement of the response), giving more flexibility to the resulting estimator
and prediction.

There have been some further developments of continuum regression. [90] connected it
to the ridge regression. [13] revealed the analytical form of (2.4). [57] combined continuum
regression with the kernel learning to accommodate nonlinear regression. [17] proved the
possible inconsistency of estimators produced by continuum regression, while [18] showed
the consistency of continuum regression in estimating the central (dimensional-reduction)
subspace defined by [20] and [21, pp. 105].

The remainder of this chapter develops our functional approach. Section 2.2 introduces
functional continuum (FC) regression and some special cases. Our consistency results are
presented in Section 2.3, based on which Section 2.4 derives an effective algorithm. Empirical
evidence appears in Section 2.5, where our method is compared with existing ones in terms
of both estimation and prediction. Section 2.6 discusses the pros and cons of FC regression
as well as possible future work. For the sake of brevity, technical details are relegated to
Appendix A.1.

2.2 Functional continuum regression

2.2.1 Functional continuum basis

We begin by defining the (truncated) FC basis denoted by {w1,α, . . . , wp,α}. For a pre-
determined α ∈ [0, 1), we construct the basis in a sequential way. Given w1,α, . . . , wj−1,α,
define

wj,α = arg max
w:‖w‖2=1

Tα(w) (2.5)

subject to ∫
TX

wVX(w1,α) = · · · =
∫
TX

wVX(wj−1,α) = 0, (2.6)

where
Tα = Tα(w) =

{∫
TX

wVX(w)
}α/(1−α)−1

cov2
(
Y,

∫
TX

Xw

)
. (2.7)

The optimization problem (2.5) constrained by (2.6) is exactly a functional counterpart
of (2.4). By controlling α, the degree of supervision, one can recover some well-known special
cases including FPC and FPLS; see Section 2.2.2. Analogous to (1.5) and (1.6) respectively,
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we define the parameters,

βp,α = arg min
θ∈span(w1,α,...,wp,α)

E
{∫

TX
(β − θ)(X∗ − µX)

}2

=
p∑
j=1

{∫
TX

βVX(wj,α)
}{∫

TX
wj,αVX(wj,α)

}−1/2
wj,α

(2.8)

and the ideal predictor

ηp,α(X∗) = µY +
∫
TX

βp,α(X∗ − µX)

= µY +
p∑
j=1

{∫
TX

βVX(wj,α)
}{∫

TX
wj,αVX(wj,α)

}−1/2 ∫
TX

wj,α(X∗ − µX); (2.9)

these give approximations to β in (1.3) and η(X∗) in (1.4).
Having defined wj,α in (2.5), we now give its empirical counterpart ŵj,α which is also

defined recursively. Once the first j−1 empirical components are determined, the next ŵj,α
is taken as the maximizer of the following optimization problem:

maximize
w

T̂α(w) =
{

1
n

n∑
i=1

(Yi − Ȳ )
∫
TX

w(Xi − X̄)
}2 {∫

TX
wV̂X(w)

}α/(1−α)−1

subject to ‖w‖2 = 1 and
∫
TX

wV̂X(ŵ1,α) = · · · =
∫
TX

wV̂X(ŵj−1,α) = 0,
(2.10)

where operator V̂X is defined as in (2.2). Further, βp,α from (2.8) and ηp,α(X∗) from (2.9)
are respectively estimated by

β̂p,α = arg min
θ∈span(ŵ1,α,...,ŵp,α)

1
n

n∑
i=1

{
Yi − Ȳ −

∫
TX

θ(Xi − X̄)
}2

=
p∑
j=1

{∫
TX

βV̂X(ŵj,α)
}{∫

TX
ŵj,αV̂X(ŵj,α)

}−1/2
ŵj,α

=
p∑
j=1

ĉov
(
Y,

∫
TX

Xŵj,α

)
v̂ar−1/2

(∫
TX

Xŵj,α

)
ŵj,α

(2.11)

and
η̂p,α(X∗) = Ȳ +

∫
TX

β̂p,α(X∗ − X̄). (2.12)

Return to the definition of wj,α in (2.5). Though it looks like a natural extension of
(2.4), at least two concerns arise with the non-concavity of objective functions Tα(w) (2.7)
and T̂α(w) in (2.10) and the infinite dimension of L2(TX): one is the existence of wj,α and
ŵj,α which is not trivial at all since neither the unit sphere nor the unit ball in L2(TX) is
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compact; the other is whether or not, for arbitrary α ∈ [0, 1), β can be fully expressed in
terms of a linear combination of members of the FC basis {w1,α, w2,α, . . .}.

Proposition 2.1. Given w1,α, . . . , wj−1,α, the objective function Tα (2.7), subject to con-
ditions (2.6), has a maximizer. So does T̂α in (2.10) with fixed ŵ1,α, . . . , ŵj−1,α.

Proposition 2.2. For arbitrary α ∈ [0, 1), β belongs to span(w1,α, w2,α, . . .), the closure of
span(w1,α, w2,α, . . .).

2.2.2 Special cases

FC regression inherits the inclusion property of continuum regression; i.e., for certain α, FC
regression reduces to some existing methods. First, as α→ 1, the variance term

∫
TX wVX(w)

dominates the objective function Tα (2.7) and the role of cov(Y,
∫
TX Xw) is negligible. We

assert that, in this scenario, FC basis is identical to FPC basis.

Proposition 2.3. If cov(Y,
∫
TX Xφj,X) 6= 0 for all j ∈ {1, . . . , p}, then, with fixed j ∈

{1, . . . , p}, ‖wj,α − φj,X‖2 → 0 as α→ 1.

At the other extreme (α = 0), note that

w1,0 = arg max
w:‖w‖=1

cov2(Y,
∫
TX Xw)∫

TX wVX(w) = arg max
w:‖w‖=1

cov2(Y,
∫
TX Xw)

var(Y ) var(
∫
TX Xw) .

Geometrically, w1,α maximizes the squared cosine of the angle between
∫
TX Xw and Y .

Therefore,
∫
TX Xw1,0 is parallel to the orthogonal projection of Y onto X, meaning that

cov(Y,
∫
TX Xw) must be zero for all w such that

∫
TX wVX(w1,0) = 0. That is to say, the

sequential construction terminates at w1,FC and no subsequent element exists. Obviously,
in this situation, FC regression is equivalent to a functional version of OLS regression.

Another special case lies midway between these two extremes, i.e., α = 1/2. Under
constraints (2.6), we then have

cov
{
Y − ηj−1,1/2(X),

∫
TX

Xw

}
= cov

(
Y,

∫
TX

Xw

)
.

One can see that this case is identical to functional PLS introduced in Section 2.1.1.

2.3 Theoretical properties

2.3.1 Equivalent forms of the functional continuum basis

Considering residuals ofX and Y after the first j−1 steps, we merge the j−1 side-conditions
(2.6) and objective Tα (2.7) together. This reformulation simplifies forthcoming proofs and
facilitates the implementation in Section 2.4 as well.
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Proposition 2.4. Let X(1,α) = X − µX and Y (1,α) = Y − µY . For every integer j ≥ 2,
given wk,α satisfying

∫
TX wk,αVX(wk,α) > 0 for all k ∈ {1, . . . , j − 1}, write

X(j,α) = X − µX −
j−1∑
k=1

∫
TX

wk,α(X − µX)
{∫

TX
wk,αVX(wk,α)

}−1/2
VX(wk,α)

and
Y (j,α) = Y − ηj−1,α(X) =

∫
TX

βX(j,α).

Then, wj,α (2.5) can be found by maximizing T ∗j,α on the unit sphere, i.e.,

wj,α = arg max
w:‖w‖=1

T ∗j,α(w),

where

T ∗j,α(w) = cov2
{
Y (j,α),

∫
TX

X(j,α)w

}{∫
TX

wVX(j,α)(w)
}α/(1−α)−1

=
{∫

TX
βVX(j,α)(w)

}2 {∫
TX

wVX(j,α)(w)
}α/(1−α)−1

.

(2.13)

An empirical counterpart of Proposition 2.4 naturally follows.

Proposition 2.5. Fix an integer i ∈ {1, . . . , n}. Let X̂(1,α)
i = Xi− X̄ and Ŷ (1,α)

i = Yi− Ȳ .
For every integer j ≥ 2, given ŵk,α with

∫
TX ŵk,αV̂X(ŵk,α) > 0 for all k ∈ {1, . . . , j − 1},

write

X̂
(j,α)
i = Xi − X̄ −

j−1∑
k=1

∫
TX

ŵk,α(Xi − X̄)
{∫

TX
ŵk,αV̂X(ŵk,α)

}−1/2
V̂X(ŵk,α)

and
Ŷ

(j,α)
i = Yi − η̂j−1,α(Xi) =

∫
TX

βX̂
(j,α)
i .

Then,
ŵj,α = arg max

w:‖w‖=1
T̂ ∗j,α(w), (2.14)

where

T̂ ∗j,α(w) = ĉov2
{
Ŷ (j,α),

∫
TX

X̂(j,α)w

}{∫
TX

wV̂
X̂(j,α)(w)

}α/(1−α)−1

=
{∫

TX
βV̂

X̂(j,α)(w)
}2 {∫

TX
wV̂

X̂(j,α)(w)
}α/(1−α)−1 (2.15)

with V̂
X̂(j,α) = V̂

X̂(j,α)(s, t) =
∑n
i=1 X̂

(j,α)
i (s)X̂(j,α)

i (t)/n.
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Previously, the FC basis has been defined as a set of maximizers of sequential optimiza-
tion problems. Proposition 2.6 below derives an alternative but more explicit form of these
desired solutions: they are constructed by adjusting the projection of function β on some
directions.

Proposition 2.6. Given α ∈ [0, 1) and w1,α, . . . , wj−1,α. Let λk,X(j,α) denote the kth top
eigenvalue of VX(j,α) with corresponding eigenfunction φ

(j,α)
k . Suppose λ1,X(j,α) has multi-

plicity m ≥ 1, i.e., λ1,X(j,α) = · · · = λm,X(j,α) > λ
(j,α)
m+1,X . If VX(j,α)(β) is not orthogonal to

span{φ(j,α)
1,X , . . . , φ

(j,α)
m,X}, then there exists δ(j,α) ∈ (−1, 0) ∪ (0,∞) such that wj,α is of unit

L2-norm and

wj,α ∝
∞∑
k=1

λk,X(j,α)
∫
TX βφ

(j,α)
k

λk,X(j,α) + λ1,X(j,α)/δ(j,α)φ
(j,α)
k ,

where the three boundary values of δ(j,α), i.e., −1, 0 and ∞, correspond to FPC (δ(j,α) →
−1), FPLS (δ(j,α) → 0) and functional OLS (δ(j,α) →∞), respectively.

2.3.2 Consistency of the empirical functional continuum basis and corre-
sponding estimators

We need one more condition, as follows.
(C.2.1) For each j ∈ {1, . . . , p}, T ∗j,α(w) in (2.13) has a unique maximizer (up to sign

change) on the unit sphere {w ∈ L2(TX) : ‖w‖2 = 1}.
Our main result, Theorem 2.1, demonstrates the consistency of ŵj,α defined in (2.14),

β̂p,α from (2.11) and η̂p,α(X∗) from (2.12) in the case of “fixed p and infinite n”.

Theorem 2.1. Fix α ∈ [0, 1) and integer p. Under (C.2.1), we have, for all j ∈ {1, . . . , p},
‖ŵj,α−wj,α‖2 →p 0 as n→∞. It follows that ‖β̂p,α−βp,α‖2 and |η̂p,α(X∗)−ηp,α(X∗)| both
converge to zero in probability as n→∞, where X∗ is a realization of X and independent
from X1, . . . , Xn.

Remark 2.1. We do not have to impose uniqueness on the maximizer of T̂ ∗j,α(w) in (2.15);
if arg max ‖w‖=1 T̂

∗
j,α(w) is not unique, the proof of Theorem 2.1 is still valid as long as the

resulting ŵj,α is measurable. [51, Lemma 2] provided a route to construct such a measurable
ŵj,α.

2.4 Implementation

We understand that in practice each curve can only be observed at finitely many spots;
that is why the integrals involved generally have to be approximated in numerically, e.g., by
various finite sums. Alternatively, people may choose to recover (or pre-smooth) unknown
curves through penalized splines [96, pp. 98]; when the observation time points are suffi-
ciently dense in TX , the resulting curves are expected to be consistent approximations to
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true underlying ones; see, e.g., [101]. These approximation procedures definitely affect the
accuracy of ŵj,α (2.14) and β̂p,α (2.11), but corresponding discussions are out of the scope
of this work. For convenience, we will keep the integral notations, even in the description
of implementation.

It is feasible to duplicate the idea in [16, 57] to tackle the maximization problem (2.10).
Nevertheless, implementation is more natural and straightforward if we apply the following
identity, an empirical version of Proposition 2.6.

Proposition 2.7. Fix ŵ1,α, . . . , ŵj−1,α. Let λ̂k,X̂(j,α) be the kth largest eigenvalue of V̂
X̂(j,α)

with corresponding eigenfunction φ̂
k,X̂(j,α). Suppose λ̂1,X̂(j,α) = · · · = λ̂

m,X̂(j,α) > λ̂
m+1,X̂(j,α).

If V̂
X̂(j,α)(β) =

∑n
i=1 X̂

(j,α)
i Ŷ

(j,α)
i /n is not orthogonal to span{φ̂1,X̂(j,α) , . . . , φ̂m,X̂(j,α)}, then

there exists δ̂(j,α) ∈ (−1, 0) ∪ (0,∞) such that

ŵj,α =

 ∞∑
k=1

ĉov2{Ŷ (j,α),
∫
TX X̂

(j,α)φ̂
k,X̂(j,α)}

{λ̂
k,X̂(j,α) + λ̂1,X̂(j,α)/δ̂(j,α)}2

−1/2 ∞∑
k=1

ĉov{Ŷ (j,α),
∫
TX X̂

(j,α)φ̂
k,X̂(j,α)}

λ̂
k,X̂(j,α) + λ̂1,X̂(j,α)/δ̂(j,α).

φ̂
k,X̂(j,α) .

(2.16)

Remark 2.2. The infinite series (2.16) reduces to a product of matrices as in [13] if curves
are approximated by linear combinations of splines (or other known functions).

Remark 2.3. When the m top eigenvalues of V̂
X̂(j,α) are equal, we must assume that

V̂
X̂(p,α)(β) is not orthogonal to span{φ̂1,X̂(j,α) , . . . , φ̂m,X̂(j,α)}; otherwise, the ridge-type so-

lution (2.16) may be not a global maximizer. Corresponding examples are artificially con-
structible, yet they are rare in practice (see [13, 52]) especially when ε and X in (1.3) are
both continuously distributed. Actually, if the assumption is not fulfilled, one can always
project X̂(j,α)

i onto the complement of span{φ̂1,X̂(j,α) , . . . , φ̂m,X̂(j,α)} and update X̂(j,α)
i with

the projection.

Proposition 2.7 suggests merely considering w of a ridge-type. It helps to narrow down
the search scope for ŵj,α by reformulating (2.5) as a univariate maximization problem. The
only unknown item in (2.16), δ̂(j,α), is taken as

δ̂(j,α) = arg max
δ∈(−1,0)∪(0,∞)

Qj,α(δ) = arg min
δ∈(−1,0)∪(0,∞)

− lnQj,α(δ),
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where

Qj,α(δ) =

 ∞∑
k=1

ĉov2{Ŷ (j,α),
∫
TX X̂

(j,α)φ̂
k,X̂(j,α)}

λ̂
k,X̂(j,α) + λ̂1,X̂(j,α)/δ

2

×

 ∞∑
k=1

ĉov2{Ŷ (j,α),
∫
TX X̂

(j,α)φ̂
k,X̂(j,α)}

{λ̂
k,X̂(j,α) + λ̂1,X̂(j,α)/δ}2

α/(1−α)

×

 ∞∑
k=1

ĉov2{Ŷ (j,α),
∫
TX X̂

(j,α)φ̂
k,X̂(j,α)}v̂ar{

∫
TX X̂

(j,α)φ̂
k,X̂(j,α)}

{λ̂
k,X̂(j,α) + λ̂1,X̂(j,α)/δ}2

α/(1−α)−1

(2.17)
is obtained by substituting the right-hand side of (2.16) for w in (2.15). The univariate
function lnQj,α depends not only on j and α but also on the observations, which makes it
inconvenient to theoretically investigate this function’s behavior. However, for the specific
datasets to be investigated in Section 2.5, there seems to be no more than one local maximum
within either (−1, 0) or (0,∞); see Figure 2.1. As a result, the maximization in each piece
can be handled by a symbolic computation program.

To reduce computational burden and increase the efficiency of Algorithm 2.1, we com-
pute X̂(j,α)

i and β̂j,α in a recursive way, viz.

X̂
(j,α)
i = X̂

(j−1,α)
i − v̂ar−1/2

(∫
TX

Xŵj−1,α

){∫
TX

ŵj−1,α(Xi − X̄)
}
V̂X(ŵj−1,α),

and
β̂j,α = β̂j−1,α + ĉov

(
Y,

∫
TX

Xŵj,α

)
v̂ar−1/2

(∫
TX

Xŵj,α

)
ŵj,α,

starting with X̂(1,α)
i = Xi − X̄, Ŷ (1,α)

i = Yi − Ȳ and β̂0,α = 0.

2.4.1 Tuning parameters

The result of FC regression relies on the choice of two parameters: α, the continuum pa-
rameter, and p, the number of basis functions included in the model. Favoring a much lower
expense in computation, we tune them through the generalized cross-validation (GCV, [23]):
specifically, for each possible pair (p, α), we define

GCV(p, α) =
n∑
i=1

{Yi − η̂p,α(Xi)}2

(n− p− 1)2 ,

i.e., the GCV criterion with the degrees of freedom (DoF) heuristically taken as p. This is a
compromise when we have no idea on how to estimate DoF associated with FC regression
(due to the intrinsic complexity). This tuning scheme is less time-consuming than cross-
validation.
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Figure 2.1: Plots of lnQ2,0 and lnQ5,0.4 for Tecator™ data (spectra vs. fat). Each pair of
curves (i.e., the top two or bottom two) applies to Tecator™ data (spectra vs. fat) discussed
in Section 2.5.2, with two different sets of values for (p, α). Neither pair of graphs shows
more than one maximizer.

Define the fraction of variance explained (FVE) by

FVE(j0) =
j0∑
j=1

λj,X

/ ∞∑
j=1

λj,X , (2.18)

where λj,X is replaced in practice with its empirical counterpart. Classically the optimal
2-tuple (p, α) is chosen after a fixed search (FS), i.e., minimizing GCV(p, α) over a pre-
configured rectangle mesh grid, say {1, . . . , pmax} × {α1, . . . , αJ}, where J is based on the
computational capacity and pmax is assigned such that the first pmax components explain
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most of the variation, e.g.,

pmax = min{j ∈ Z+ : FVE(j0) ≥ 95%}. (2.19)

This strategy of determining pmax is commonly adopted for FPCR; it is still applicable to
FC regression, since supervised methods tend to include fewer basis functions than FPCR;
see [28, Section 6].

Our recursive implementation implies that the results corresponding to {1, . . . , pmax −
1} × {α1, . . . , αJ} are interim ones needed only in pursuing the outputs for {pmax} ×
{α1, . . . , αJ}, i.e., FS is actually carried out over {pmax}×{α1, . . . , αJ}. [10] argued that FS
is less efficient (in terms of the computational burden) than a random search (RS) which
allows the upper bound of p to vary with the value of α. Specifically, sample J iid two-
tuples uniformly from {1, . . . , pmax}× [0, 1), say {(p1,max, α1), . . . , (pJ,max, αJ)}, and form a
non-rectangular search grid {(p, αj) : 1 ≤ p ≤ pj,max, 1 ≤ j ≤ J}. The cardinality of this
non-rectangular grid is smaller than that of the rectangular one, while (most likely) their
projections on the first (resp. second) dimension are of the identical cardinality pmax (resp.
J); in this case, [10] illustrated that RS would save some time without an enormous sacrifice
in accuracy.

Pseudocodes for our implementation are summarized in Algorithm 2.1. In the following
section, we will employ both FS and RS in tuning parameters for FC regression.

2.5 Numerical illustration

To illustrate the performance of FC regression, the results given by our method (with
both FS and RS) were compared with those from supFPC [69], pFPLS [2], FPLSR- and
FPCRR-REML (both recommended by [78] after a series of comparisons) and smoothed
FPC (smFPC, [76, Section 9.3]). Among these the first four are supervised, while the other
two are categorized as unsupervised.

With the aid of R [74], RStudio™ [81] and the R-package fda [77], we coded all the
methods mentioned in the preceding paragraph except for FPCRR-REML which was imple-
mented using R-function fpcr in [39]. Our source codes are accessible at https://github.

com/ZhiyangGeeZhou/Functional-continuum-regression.

2.5.1 Simulation study

The dataset CanadianWeather in [77] contains the (base 10 logarithm of) precipitation at
35 different locations in Canada averaged over 1960 to 1994. Taking these curves as iid,
we estimated the mean function, top three eigenvalues and corresponding eigenfunctions.
Then we exploited them as true values for, respectively, µX , λ1,X , λ2,X , λ3,X , φ1,X , φ2,X , and
φ3,X in our simulation. Analogous to [69], each sample in our simulation consisted of 100
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Algorithm 2.1 FC regression tuned by GCV
for (p, α) in a finite set do

for i from 1 to n do
if p = 1 then

X̂
(p,α)
i ← Xi − X̄.

Ŷ
(p,α)
i ← Yi − Ȳ .
β̂p−1,α ← 0.

else
X̂

(p,α)
i ← X̂

(p−1,α)
i − c2 · c3 · V̂X(ŵp−1,α).

Ŷ
(p,α)
i ← Ŷ

(p−1,α)
i − η̂p−1,α(Xi).

end if
end for
λ̂
j,X̂(p,α) , φ̂j,X̂(p,α) ← the jth eigenvalue and eigenfunction of V̂

X̂(p,α) .
aj ← ĉov{Ŷ (p,α),

∫
TX X̂

(p,α)φ̂
j,X̂(p,α)}.

bj ← v̂ar{
∫
TX X̂

(p,α)φ̂
j,X̂(p,α)}.

Qp,α(δ)←
{∑∞

j=1
a2
j

λ̂
j,X̂(p,α) +λ̂

1,X̂(p,α)/δ

}2 [∑∞
j=1

a2
j

{λ̂
j,X̂(p,α) +λ̂

1,X̂(p,α)/δ}2

]α/(1−α)

×
[∑∞

j=1
a2
j bj

{λ̂
j,X̂(p,α) +λ̂

1,X̂(p,α)/δ}2

]α/(1−α)−1

.

δ̂(p,α) ← arg min δ∈(−1,0)∪(0,∞)− lnQp,α(δ).

ŵp,α ←
[∑∞

j=1
a2
j

{λ̂
j,X̂(p,α) +λ̂

1,X̂(p,α)/δ̂
(p,α)}2

]−1/2∑∞
j=1

aj
λ̂
j,X̂(p,α) +λ̂

1,X̂(p,α)/δ̂
(p,α) φ̂j,X̂(p,α) .

c1 ← ĉov(Y,
∫
TX Xŵp,α).

c2 ← v̂ar−1/2(
∫
TX Xŵp,α).

c3 ←
∫
TX X̂

(1,α)
i ŵp,α.

β̂p,α ← β̂p−1,α + c1c2ŵp,α.
for i from 1 to n do

η̂p,α(Xi)← Ȳ +
∫
TX X̂

(1,α)
i β̂p,α.

end for
GCV(p, α)← (n− p− 1)−2∑n

i=1{Yi − η̂p,α(Xi)}2.
end for
optimal (p, α)← arg min

(p,α)
GCV(p, α).

iid functional predictors Xi such that

Xi = µX +
3∑
j=1

ξijφj,X

with responses Yi generated as

Yi =
∫
TX

β(Xi − µX) + σεi,
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where ξijλ−1/2
j,X and εi were all assumed to be iid as N (0, 1). We used two levels (2 and 20)

of signal-to-noise-ratio (SNR)

SNR = σ−1var1/2
(∫

TX
βXi

)
= σ−1


3∑
j=1

λj,X

(∫
TX

βφj,X

)2


1/2

.

The choice of coefficient function β must be limited to span(φ1,X , φ2,X , φ3,X); see Remark 2.4
below. Specifically, we considered two sorts of coefficient function:

β = φ1,X (2.20)

and

β = φ3,X . (2.21)

No matter how supervised they are, all the methods were expected to be favored by the
scenario where β = φ1,X ; the other scenario was intended to imitate the target our proposal
is designed for: the true coefficient function is orthogonal to the top few eigenfunctions of
VX .

Remark 2.4. Decompose β to be β = β(1) +β(2) in which β(1) (resp. β(2)) is the projection
of β onto span(φ1,X , φ2,X , φ3,X) (resp. its complement in L2(TX)). Then∫

TX
β(Xi − µX) =

∫
TX

β(1)(Xi − µX)

since Xi − µX ∈ span(φ1,X , φ2,X , φ3,X). In other words, β(2) vanishes when we take the
inner product between β and Xi − µX , making β(2) unidentifiable in the regression model.

For each of the four combinations of β and SNR, we generated 200 samples and applied
all the techniques to each sample. The estimation quality was directly evaluated via the
(point-wise) root mean squared error (RMSE) defined as

RMSE(t) =
[

1
200

200∑
r=1
{β(t)− β̂r(t)}2

]1/2

,

where β̂r(t) was the estimated coefficient function for the rth sample.
As described in Section 2.4.1, there were two strategies in tuning FC regression. To

accomplish RS, we randomly generated a brand new search grid following Section 2.4.1 for
each sample, taking J = 10 and pmax = 2, because of (λ1,X + λ2,X)/(λ1,X + λ2,X + λ3,X) ≈
97%. FS for FC regression searched over a 2× 11 grid, {1, 2} × ({0× 10−1, . . . , 9× 10−1} ∪
{.999}), where the same scope for p, i.e., {1, 2}, was used for all five other methods. In
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the implementation of smFPC, supFPC and pFPLS, smoothing penalty parameters were
chosen from {0} ∪ {100, . . . , 105}. Moreover, as suggested by [69], candidate values of the
“weight” parameter needed by supFPC were taken from {0× 10−1, . . . , 10× 10−1}.

When β = φ1,X and SNR = 20 (Figure 2.2a), all the techniques performed close to each
other. Curves corresponding to FC regression were not the most outstanding ones: they were
slightly worse than pFPLS and smFPC but better than FPLSR-REML and FPCRR-REML
whose RMSE values became dramatically high at both ends of the domain. For any method,
RMSE values were enlarged as the noise increased (or equivalently the SNR decreased); see
Figure 2.2b. Compared with pFPLS and smFPC, FC regression was more sensitive to the
change of SNR, possibly because the tuning of one more parameter introduced more vari-
ability and/or FC regression did not penalize the smoothness of estimated basis functions
or coefficient functions. Another interesting phenomenon was that FC regression with RS
outperformed that with FS under both levels of SNR: the setup of search points was also a
source of bias which was likely to be alleviated by the randomization.

Unsurprisingly, as shown in Figure 2.3, the scenario of β = φ3,X did not favor the
smFPC which was unlikely to involve the third eigenfunction. FC regression outperformed
competitors regardless of SNR; it returned the lowest RMSE uniformly in the whole domain.
When encountering noisier settings, RMSE curves of FC regression were almost overlapped
by those from FPLSR-REML and FPCRR-REML except at the ends of TX ; see Figure 2.3b.
Note that curves for supFPC were not included in either Figure 2.2 or 2.3, as RMSE values
from supFPC were much larger than those from other approaches; it seemed that either
the estimators from [69] were not consistent or they needed a larger sample size to reach a
more satisfying accuracy.

2.5.2 Application to real datasets

For each of following two datasets, we randomly reserved roughly 10% of all the samples of
each dataset for testing and used the remainder for training. We repeated the random split
200 times. To mitigate impacts from different testing sets and facilitate the comparison in
prediction, we defined the relative mean squared prediction error (ReMSPE), which is a
ratio of the prediction error from a competitor to the one from the mean training response:

ReMSPE =
∑
i∈IDtest(Yi − Ŷi)

2∑
i∈IDtest(Yi − Ȳtrain)2 , (2.22)

where IDtest was the index set for testing data, and Ŷi was the prediction corresponding to
Yi. For each approach, we generated a boxplot of the 200 values of ReMSPE. As for the
candidate pool for tuning parameters, we kept all the settings in Section 2.5.1 except the
one for p; we raised its upper bound from 2 to 5 to accommodate the new datasets.
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Figure 2.2: RMSE curves of estimated coefficient functions when β = (2.20). Subfigures
are displayed with identical scales. In the legend of each subfigure, the six linetypes (or
colors), from top to bottom, correspond to FC regression (tuned by RS), FC regression
(tuned by FS), pFPLS, FPLSR-REML, FPCRR-REML and smFPC, respectively. Curves
corresponding to FPLSR-REML and FPCRR-REML almost overlap each other in each
subfigure. supFPC does not perform well in estimation for this case and hence its RMSE
curve is not shown.
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Figure 2.3: RMSE curves of estimated coefficient functions when β = (2.21). Subfigures
are displayed with identical scales. In the legend of each subfigure, the six linetypes (or
colors), from top to bottom, correspond to FC regression (tuned by RS), FC regression
(tuned by FS), pFPLS, FPLSR-REML, FPCRR-REML and smFPC, respectively. Curves
corresponding to FPLSR-REML and FPCRR-REML almost overlap each other in each
subfigure. supFPC does not perform well in estimation for this case and hence its RMSE
curve is not shown.

Medfly data

Investigated in substantial literature (see, e.g., [66, 83]), the Mediterranean fruit fly, or
medfly for short, has become a popular object of study, partly owing to its short lifespan.

18



The medfly data (http://faculty.bscb.cornell.edu/~hooker/FDA2008/medfly.Rdata;
accessed 27-Feb-2019) records lifespans of 50 female flies as well as numbers of eggs laid by
each of them in each of the 26 days. People would like to uncover how lifespan is influenced
by fecundity as time goes on by relating the curves of egg count to lifespans.

Taking the egg count and lifespan as predictor and response respectively, all the seven
methods, no matter whether supervised or unsupervised, performed fairly close to each
other, though FPCRR- and FPLSR-REML appeared slightly better than the other five in
terms of both of the mean and dispersion of ReMSPE values; see Figure 2.4a. More formally,
we carried out (two-sided) paired t-tests for the comparison between RS-tuning and FS-
tuning FC regression as well as the ones between each FC regression and each of other
existing methods, involving 11 comparisons in total. At a significance level of 0.05 with the
Bonferroni correction, there were significant differences in comparisons of FPLSR-REML vs.
FC regression (with RS), FPLSR-REML vs. FC regression (with FS) and FPCRR-REML
vs. FC regression (with FS) (with respective p-values 2.0×10−4, 3.2×10−10 and 3.8×10−7).

Tecator™ data

A Tecator™ Infratec Food and Feed Analyzer recorded NIR absorbance spectra (ranging
from 850 to 1050 nm and divided into 100 channels) of 240 finely chopped pure meat samples
with different fat, moisture and protein contents. The dataset (http://lib.stat.cmu.edu/

datasets/tecator; accessed 04-Aug-2019) contains the absorbance spectra (i.e., the base
10 logarithm of transmittance at each wavelength) and the three contents measured in
percent by analytic chemistry.

We regressed the fat, moisture and protein contents, respectively, on the absorbance
spectra. Roughly, from a graphical viewpoint, Figure 2.4b categorized the seven approaches
into three groups according to their performance: FC regression on the left end, the three in
the middle (including supFPC, pFPLS and FPLSR-REML), and another two on the very
right (i.e., FPCRR-REML and smFPC); supervised strategies were apparently preferred.
This phenomenon did not hold in the cases of moisture (Figure 2.4c) or protein (Figure 2.4d),
but FC regression, especially the one tuned by FS, still took the lead in terms of ReMSPE.
Again, focusing on the 11 comparisons mentioned in Section 2.5.2, paired t-tests could reach
a relatively formal conclusion. At a significance level of 0.05 with the Bonferroni correction,
when the response was fat (resp. moisture), the only insignificantly different comparison
was FC regression (with RS) vs. FC regression (with FS) corresponding to p-value 0.13
(resp. 0.82). In the application to the protein data, even the difference between the two
FC regression techniques became significant (with p-value 2.0 × 10−3), implying a loss in
accuracy when adopting RS instead of FS.

Despite the better performance of FS in tuning FC regression, it cost over 50% more
than the time consumed by RS when applied to Tecator™ data; see the last three columns of
Table 2.1. This trade-off made RS preferred when one was not too sensitive to the accuracy.
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Figure 2.4: Boxplots of ReMSPE values for different methods for real applications. In each
subfigure, the seven boxes, from left to right, correspond to FC regression (tuned by RS), FC
regression (tuned by FS), supFPC, pFPLS, FPLSR-REML, FPCRR-REML and smFPC,
respectively.

2.6 Concluding remarks

Specially designed for scalar-on-function regression models, the framework of FC regression
encompasses the well-known FPCR and FPLS, etc.. We gave various equivalent forms of
FC basis functions which lower the difficulty of optimization in numerical implementation.
Consistency of the estimators was demonstrated for the case of fixed p. Verified in numerical
studies and compared with several existing methods, our strategy was overall competitive
in terms of both estimation and prediction.

The core of our algorithm is to locate the constrained global maximizer of the logarithm
ofQj,α(δ) in (2.17). In Section 2.5, thanks to the simplicity of the curves of lnQj,α, we did not
have to initiate the maximization with multiple start points. Even so, our implementation
was still more involved than competitors when the number of curves becomes larger; see
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Table 2.1: Time consumed (in seconds) in Section 2.5 by different approaches after 200
repeats (running on a desktop with Intel® Core™ i5-7500 CPU @ 2× 3.40 GHz and 8 GB
RAM)

Simulation Medfly Tecator™
β = φ1,X β = φ3,X Fat Moisture Protein

SNR 20 2 20 2
Number of curves 100 50 240
FC regression (with RS) 120 123 125 120 66 814 817 743
FC regression (with FS) 129 124 140 139 101 1363 1340 1238
supFPC 232 240 239 235 31 327 336 328
pFPLS 1030 1016 1017 1009 229 1191 1193 1193
FPLSR-REML 76 72 75 79 21 80 71 74
FPCRR-REML 75 74 73 77 19 69 66 71
smFPC 104 101 101 108 19 110 114 110

Table 2.1. It can always be worse: curves of lnQj,α may be more complex in some real
datasets. In such cases, we have to avoid being trapped in some local maxima by trying
multiple initial values. But this strategy would definitely slow down the implementation of
FC regression. For instance, under the same computing environment, if we try 100 initial
points in each maximization, the time used by FC regression with FS for the Tecator™ data
would be over 30 times as much as the corresponding number posted in Table 2.1. Concerned
about this disadvantage, we introduced RS, which turned out to be an effective way to
improve the most time-consuming cases of the numerical study with little loss in accuracy.
Under certain circumstances (see Figure 2.2), FC regression with RS even achieved a better
performance in estimation because the randomization reduced the bias caused by the pinned
discrete search grid.

Last but not least, FC regression possesses the potential to be further improved and
extended. As mentioned in Section 2.5.1, the accuracy of FC regression could suffer from
no penalty on smoothness. It would be helpful if we introduce one more tuning parameter
to force the resulting estimator to be smoother. With the assistance of RS, the time con-
sumption should be comparable with that of the version without penalty. In addition, with
a generalization analogous to that in [15], it may be possible to handle multiple responses
simultaneously and even a functional response. Another possible direction of research is to
enhance the robustness by replacing variance and covariance terms with robust counter-
parts, just as [84] did for continuum regression.
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Chapter 3

Continuum centroid classifier
for functional data

3.1 Introduction

Recall two-tuples (X1, Y1), . . . , (Xn, Yn) iid as (X,Y ), with scalar Y and functional X de-
fined on, without loss of generality, TX = [0, 1]. When Y takes values from {0, 1}, the
problem becomes a binary functional classification. Potential applications include disease
diagnosis using medical imaging. There has been extensive work on functional data classifi-
cation. [32, 85] defined distances among curves without projecting curves to specific direc-
tions, while many other researchers suggested reducing the instrinsically infinite dimension
at the first step. Typical strategies of the latter form apply multivariate classification tech-
niques to FPC scores

∫
TX Xiφj with φj as in (2.1), including but not limited to linear and

quadratic Bayes classifiers on FPC scores [35], logistic regression on FPC scores [58] and
support vector machines on FPC scores [80].

Our work is mainly motivated by the centroid classifier proposed by [28] (later detailed
in Section 3.1.2) who projected functional data to the direction of either βp,WFPC (3.3) or
βp,FPLS (3.4). In this way, the authors converted the classification problem to the estimation
of the slope function of SoFR (1.3). As mentioned in Chapter 2, βp,WFPC (3.3) and βp,FPLS

(3.4) are either unsupervised or too supervised; our proposal βp,α (2.8) is hence expected
to improve the performance of the previous two directions.

3.1.1 Formalization of the problem

Suppose that (X1, Y1), . . . , (Xn, Yn) are iid copies of (X,Y ), where X is a random function
defined on TX = [0, 1], and Y is the label of X taking values from {0, 1}. In other words,
each Xi is sampled from a mixture of two populations Π0 and Π1 with the indicator Yi =
1(Xi ∈ Π1). Of interest is the binary classification for a newly observed X∗ distributed as
X but independent of X1, . . . , Xn. Denote by µ[k]

X and v[k]
X respectively the sub-mean and
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sub-covariance functions for Πk, k = 0, 1, i.e.,

µ
[k]
X = µ

[k]
X (·) = E{X(·) | Y = k}

and
v

[k]
X = v

[k]
X (s, t) = cov{X(s), X(t) | Y = k}.

Corresponding to v
[k]
X , sub-covariance operator V [k]

X : L2(TX) → L2(TX) is defined such
that, for f ∈ L2(TX),

V [k]
X (f)(·) =

∫
TX

f(s)v[k]
X (s, ·)ds.

V [k]
X possesses a countable number of nonnegative eigenvalues, say λk,1 ≥ λk,2 ≥ · · · > 0,

and corresponding eigenfunctions, say φk,1, φk,2, . . .
Let π0 = Pr(X ∈ Π0) = Pr(Y = 0) ∈ (0, 1). Decomposing functions µX and vX (1.2),

we have µX = π0µ
[0]
X + (1− π0)µ[1]

X and, in view of the law of total covariance,

vX(s, t) = vWX (s, t) + vBX(s, t),

where
vWX (s, t) = π0v

[0]
X (s, t) + (1− π0)v[1]

X (s, t) (3.1)

and
vBX(s, t) = π0(1− π0){µ[1]

X (s)− µ[0]
X (s)}{µ[1]

X (t)− µ[0]
X (t)}

are respectively the within- and between-group covariance functions.

3.1.2 Review of centroid classifier

For the binary classification ofX∗, projecting curves onto the one-dimensional space spanned
by pre-determined ω ∈ L2(TX), i.e., span(ω), [28] exploited the resulting projection in
constructing classifiers. Specifically, they defined a classifier

D(X∗ | ω) =
{∫

TX

ω

‖ω‖2
(X∗ − µ[1]

X )
}2
−
{∫

TX

ω

‖ω‖2
(X∗ − µ[0]

X )
}2

+ 2 ln π0
1− π0

, (3.2)

where ‖ω‖−1
2 |

∫
TX ω(X∗− µ[k]

X )|, the magnitude of the projection of X∗− µ[k]
X onto span(ω),

can be regarded as the distance from X∗ to µ[k]
X . When D(X∗ | ω) is positive, X∗ is thought

to be closer to µ[0]
X and hence assigned to Π0 and otherwise to Π1. Given ω, this principle

is identical to the linear discriminant analysis (LDA) assuming
∫
TX Xω to be normally

distributed conditional on X ∈ Πk with var(
∫
TX Xω | X ∈ Πk) = ‖ω‖22, i.e.,

∫
TX Xω | X ∈

Πk ∼ N (
∫
TX µ

[k]
X ω, ‖ω‖22).
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It remains to determine the direction ω ∈ L2(TX) so as to optimize the misclassification
rate

err{D(X∗ | ω)}

= π0 Pr{D(X∗ | ω) < 0 | X∗ ∈ Π0}+ (1− π0) Pr{D(X∗ | ω) > 0 | X∗ ∈ Π1}.

[28] succeeded in bridging the binary classification problem to SoFR (1.3) by taking ω =
βp,WFPC or βp,FPLS, both of which are derived from (1.5). More specifically,

βp,WFPC = arg min
θ∈span(φW1 ,...,φWp )

E
{
Y − µY −

∫
TX

θ(X − µX)
}2

(3.3)

and

βp,FPLS = arg min
θ∈span(w1,FPLS,...,wp,FPLS)

E
{
Y − µY −

∫
TX

θ(X − µX)
}2
, (3.4)

where φWj is the top jth eigenfunction of vWX (3.1) and wj,FPLS is defined as (2.3). Integer
p is tuned through cross-validation. The resulting classifier D(X∗ | βp,WFPC) (resp. D(X∗ |
βp,FPLS)) is abbreviated here to be PCC (resp. PLCC).

The rest of this chapter is organized as follows. In Section 3.2, we introduce the two
subtypes of our classifier, including both the population and empirical versions, and then
establish the property of (asymptotically) perfect classification. The numerical illustration
in Section 3.3 investigates the performance of our proposal, highlighting the settings in
favor of it. Section 3.4 gives concluding remarks as well as discussions. Technical details are
relegated to Appendix A.2.

3.2 Continuum centroid classifier

The continuum centroid classifier (CCC) is defined by substituting βp,α (2.8) for ω in (3.2)
and, simultaneously, dropping the assumption var(

∫
TX Xω | X ∈ Πk) = ‖ω‖22. In detail,

CCC assigns trajectory X∗ by applying LDA or the quadratic discriminant analysis (QDA)
to the projection of X∗. The method hence has two subtypes, say CCC-L and CCC-Q. The
latter is more general and given by

DQ(X∗ | βp,α) = σ−2
[1] (βp,α)

{∫
TX

βp,α(X∗ − µ[1]
X )
}2
− σ−2

[0] (βp,α)
{∫

TX
βp,α(X∗ − µ[0]

X )
}2

+ 2 ln
π0σ[1](βp,α)

(1− π0)σ[0](βp,α) (3.5)
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with
σ2

[k](ω) = var
(∫

TX
Xω | X ∈ Πk

)
(3.6)

for each k; it reduces to the former one

DL(X∗ | βp,α) =
{∫

TX
βp,α(X∗ − µ[1]

X )
}2
−
{∫

TX
βp,α(X∗ − µ[0]

X )
}2

+ 2σ2(βp,α) ln π0
1− π0

(3.7)

if one believes σ2(ω) = σ2
[0](ω) = σ2

[1](ω). Analogous to (3.2), positive DL(X∗ | βp,α) (or
DQ(X∗ | βp,α)) suggests classifying X∗ to Π0.

Under conditions (C.A.2.1) in Appendix A.2, Proposition 2.2 implies that βp,α and
βp,FPLS have identical limiting behaviours as p diverges. In that case, when π0 = 1/2, CCC-
L is equivalent to PLCC asymptotically. Even if (C.A.2.1) is violated, in theory one can still
expect an asymptotically perfect classification (without misclassification) given by CCC-L,
as long as (C.A.2.2) in Appendix A.2 stands; see Proposition 3.1. It is worth emphasizing
that Proposition 3.1 does not require normality or specific variance structure of the two
subpopulations.

Proposition 3.1. Under condition (C.A.2.2) in Appendix A.2, CCC-L asymptotically leads
to no misclassification as p→∞.

3.2.1 Empirical implementation

In general it is impossible to observe entire trajectories. In this sense, the procedure of
estimating βp,α (2.8) in Chapter 2 is not detailed enough since Algorithm 2.1 is not described
in the matrix form. We improve the specification for discretely observed trajectories in this
section.

For brevity, the Xi are all assumed to be densely digitized on M + 1 equispaced time
points tm = (m − 1)∆t, m = 1, . . . ,M + 1, with ∆t = 1/M . Reformulating the infinite-
dimensional optimization problem (2.5) as a finite-dimensional one, we employ (penalized)
cubic spline smoothing [76, Sections 5.2.4–5.2.5] on each trajectory, i.e., we seek a surrogate
of Xi in the N (= M + 3, as recommended by [76, pp. 86]) dimensional linear space

BSN = span(ψ1, . . . , ψN ) (3.8)

spanned by cubic B-splines ψ1, . . . , ψN ; refer to, e.g., [25, Chapter 4], for more detail on
B-splines. Specifically, the estimator for the ith trajectory is

X̂i = ĉ>i ψ, (3.9)
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where

ψ = ψ(·) = [ψ1(·), . . . , ψN (·)]> (3.10)

and

ĉi = (Ψ>Ψ + θiPen)−1Ψ>Xi, (3.11)

with matrices

Ψ = [ψk(tm)](M+1)×N = [ψ(t1), . . . ,ψ(tM+1)]>, (3.12)

Pen =
[∫

TX
ψ′′l1ψ

′′
l2

]
1≤l1,l2≤N

, (3.13)

Xi = [Xi(t1), . . . , Xi(tM+1)]>,

and smoothing parameter θi > 0. Thanks to the denseness in observation, under regularity
conditions, the smoothing technique is able to recover underlying curves accurately (in the
L2 sense).

Proposition 3.2. Assuming (C.A.2.3) and (C.A.2.4) in the appendix, for each i, ‖X̂i −
Xi‖2 → 0 in probability as M →∞.

Proposition 3.3. Suppose
w̃j,α = max

w:‖w‖2=1
T̃ ∗j,α(w)

is an estimator of wj,α (2.5), where T̃ ∗j,α is obtained by substituting X̂i (3.9) for Xj in the
expression of T̃ ∗j,α (2.15). Then w̃j,α must lie in BSN (3.8).

Start with optimizing T̃ ∗1,α(w). Proposition 3.3 narrows our search from {w : ‖w‖2 =
1, w ∈ L2(TX)} to

{w : w = b>ψ, b>Wb = 1, b ∈ RN×1} = {w : w = b>W−1/2ψ, b>b = 1, b ∈ RN×1}

with invertible and symmetric matrix

W =
[∫

TX
ψl1ψl2

]
1≤l1,l2≤N

. (3.14)

Maximization of T̃ ∗1,α(w) (subject to ‖w‖2 = 1) is reformulated as the N -dimensional opti-
mization problem

max
b∈RN×1

(b>W1/2Ĉ>c Yc)2(b>W1/2Ĉ>c ĈcW1/2b)α/(1−α)−1 (3.15)
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subject to b>b = 1, where, with ĉi (3.11),

Ĉc =
[
ĉ1 −

1
n

n∑
i=1
ĉi, . . . , ĉn −

1
n

n∑
i=1
ĉi

]>

and

Yc =
[
Y1 −

1
n

n∑
i=1

Yi, . . . , Yn −
1
n

n∑
i=1

Yi

]>
.

Note that the solution to (3.15) is necessarily located in the row space of ĈcW1/2, i.e.,
the search region is further restricted to {w : w = b>V>W−1/2ψ, b>b = 1, b ∈ Rr×1},
where r = rank(ĈcW1/2) ≤ min{N,n} and N × r matrix V comes from the thin singular
value decomposition (thin SVD) of ĈcW1/2: ĈcW1/2 is decomposed into URV> with
diagonal invertible r× r square matrix R and semi-orthogonal matrices U and V such that
U>U = V>V = Ir. In this way the N -dimensional optimization (3.15) may be reduced to
be of r dimensions. Write G1 = UR. The estimator for the first FC basis function then
takes the form

w̃1,α = b>1,αV>W−1/2ψ

in which
b1,α = arg max

b∈Rr×1:b>b=1
(b>G>1 Yc)2(b>G>1 G1b)α/(1−α)−1.

Subsequently and successively, for j ≥ 2, given r vectors b1,α, . . . , bj−1,α, we just have
to replace previous G1 with deflated Gj = Pj−1G1, where P0 = In, and Pj−1 = In −
Hj−1(H>j−1Hj−1)−1H>j−1 is the projection matrix associated with the orthogonal comple-
ment of column space of

Hj−1 = ĈcW1/2[Vb1,α, . . . ,Vbj−1,α] = UR[b1,α, . . . , bj−1,α].

Namely, for all j,
w̃j,α = b>j,αV>W−1/2ψ, (3.16)

where

bj,α = arg max
b∈Rr×1:b>b=1

(b>G>j Yc)2(b>G>j Gjb)α/(1−α)−1

=
{
Y >c Gj(G>j Gj + δ−1

j,αζj,αIr)−2G>j Yc
}−1/2

(G>j Gj + δ−1
j,αζj,αIr)−1G>j Yc (3.17)
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is deduced from [13, Proposition 2.1]; and ζj,α is the largest eigenvalue of G>j Gj . The only
unknown item in (3.17), viz. δj,α, is the maximizer of the univariate function

Q̃j,α(δ) =
{
Y >c Gj(G>j Gj + δ−1ζj,αIr)−1G>j Yc

}2

×
{
Y >c Gj(G>j Gj + δ−1ζj,αIr)−2G>j Yc

}α/(α−1)

×
{
Y >c Gj(G>j Gj + δ−1ζj,αIr)−1G>j Gj(G>j Gj + δ−1ζj,αIr)−1G>j Yc

}α/(1−α)−1
.

confined within (−1,∞)\{0}. Here Q̃j,α(δ) is an empirical counterpart of (2.17). We expect
to implement this maximization using an arbitrary computer algebra system.

Fixing p, we proceed to derive an estimator for βp,α (2.8),

β̃p,α = [w̃1,α, . . . , w̃p,α](H>p Hp)−1H>p Yc = ψ>W−1/2V[b1,α, . . . , bp,α](H>p Hp)−1H>p Yc.

Remark 3.1. Despite the possible ambiguity in representing bj,α in (3.17), the consistency
of w̃j,α (3.16) is not affected, as long as (C.A.2.6) in Appendix A.2 is fulfilled; refer to
Remark 2.1.

Like the observed training trajectories Xi’s, the new trajectory to be classified, X∗, is
discretely observed. The complete trajectory has to be estimated by

X̂∗ = ĉ∗>ψ,

where ĉ∗ comes from applying B-spline smoothing to X∗(t1), . . . , X∗(tM ). Let n0 (resp. n1)
denote the number of training trajectories belonging to Π0 (resp. Π1). Estimating mean
functions µ[k]

X by

µ̂
[k]
X = 1

nk

n∑
i=1

X̂i1(Xi ∈ Πk) = 1
nk

n∑
i=1
ĉ>i ψ1(Xi ∈ Πk), (3.18)

the empirical CCC-Q and -L are then given by, respectively,

D̂Q(X̂∗ | β̃p,α) = σ̂−2
[1] (β̃p,α)

{∫
TX

β̃p,α(X̂∗ − µ̂[1]
X )
}2

− σ̂−2
[0] (β̃p,α)

{∫
TX

β̃p,α(X̂∗ − µ̂[0]
X )
}2

+ 2 ln
n0σ̂[1](β̃p,α)
n1σ̂[0](β̃p,α)

, (3.19)

and

D̂L(X̂∗ | β̃p,α) = σ̂−2
pool(β̃p,α)

{∫
TX

β̃p,α(X̂∗ − µ̂[1]
X )
}2

− σ̂−2
pool(β̃p,α)

{∫
TX

β̃p,α(X̂∗ − µ̂[0]
X )
}2

+ 2 ln n0
n1
, (3.20)
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where

σ̂2
pool(ω) = (n− 2)−1

1∑
k=0

n∑
i=1

{∫
TX

ω(X̂i − µ̂[k]
X )
}2

1(Xi ∈ Πk), (3.21)

and

σ̂2
[k](ω) = (nk − 1)−1

n∑
i=1

{∫
TX

ω(X̂i − µ̂[k]
X )
}2

1(Xi ∈ Πk), k = 0, 1. (3.22)

Proposition 3.4. Fix p ∈ Z+ and α ∈ [0, 1) and assume (C.A.2.3)–(C.A.2.6) in Appendix
A.2. Empirical classifier D̂Q(X̂∗ | β̃p,α) (3.19) (resp. D̂L(X̂∗ | β̃p,α) (3.20)) converges to
its population version DQ(X∗ | βp,α) (3.5) (resp. DL(X∗ | βp,α) (3.7)) in probability as n
diverges. Further, if (C.A.2.2) holds too, then

lim
p→∞

lim
n→∞

err{D̂L(X̂∗ | β̃p,α)} = 0.

3.2.2 Tuning parameters

Analogous to Section 2.4.1, the generalized cross-validation (GCV) tuning scheme is em-
ployed here, i.e., minimize (w.r.t. (p, α))

GCV(p, α) =
∑n
i=1

[
Yi − 1{D̂Q(X̂i | β̃p,α) < 0}

]2
(n− p− 2)2

for CCC-Q or

GCV(p, α) =
∑n
i=1

[
Yi − 1{D̂L(X̂i | β̃p,α) < 0}

]2
(n− p− 2)2

for CCC-L, where the digit 2 in parenthesis in the denominator corresponds to the number
of populations. Algorithm 3.1 details the implementation. As illustrated in Section 2.4.1,
using a random nonrectangular grid is accompanied with little loss in prediction accuracy
compared to using a fixed regular search grid. We adjust pmax at (2.19) by concentrating it
on within-group covariance vWX (3.1), viz.

pmax = min

j0 ∈ Z+ :
j0∑
j=1

λ̂Wj

/ ∞∑
j=1

λ̂Wj ≥ 99%

 ,
with λ̂Wj estimating the jth top eigenvalue of vWX at (3.1).
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Algorithm 3.1 CCC tuned via GCV
pmax ← upper bound of number of FC basis functions.
for α in a finite set do

for p from 1 to pmax,α do
if p = 1 then

P← In.
thin SVD of ĈcW1/2: URV>.
G1 ← UR.

else
P← P{In −Gp−1bp−1,α(b>p−1,αG>p−1Gp−1bp−1,α)−1b>p−1,αG>p−1}.

end if
Gp ← PG1.
ζ ← largest eigenvalue of G>p Gp.
L(δ)← (G>p Gp + δ−1ζIr)−1.
Q(δ)← {Y >c GpL(δ)G>p Yc}2{Y >c GpL2(δ)G>p Yc}α/(1−α)

×{Y >c GpL(δ)G>p GpL(δ)G>p Yc}α/(1−α)−1.
δp,α ← arg min δ∈(−1,0)∪(0,∞)− lnQ(δ).
bp,α ← L(δp,α)G>p Yc/{Y >c GpL2(δp,α)G>p Yc}1/2.
ŵp,α ← b>p,αV>W−1/2ψ.
if p = 1 then

β̃p,α ← n−1/2(b>p,αG>p Yc)(b>p,αG>p Gpbp,α)−1/2ŵp,α.
else

β̃p,α ← β̃p−1,α + n−1/2(b>p,αG>p Yc)(b>p,αG>p Gpbp,α)−1/2ŵp,α.
end if
for i from 1 to n do∫

TX β̃p,αX̂i ← n−1/2
{∑p

j=1(b>j,αGjYc)(b>j,αG>j Gjbj,α)−1/2b>j,αV>j
}

W1/2ĉi.

end for∫
TX β̃p,αµ̂

[k]
X ← mean{

∫
TX β̃p,αX̂i1(Xi ∈ Πk) : i = 1, . . . , n}, k = 0, 1.

σ̂2
[k](β̃p,α)← var{

∫
TX β̃p,αX̂i1(Xi ∈ Πk) : i = 1, . . . , n}, k = 0, 1.

σ̂2
pool(β̃p,α)← (n− 2)−1{(n0 − 1)σ̂2

[0](β̃p,α) + (n1 − 1)σ̂2
[1](β̃p,α)}.

for i from 1 to n do
D̂Q(X̂i | β̃p,α)← σ̂−2

[1] (β̃p,α)(
∫
TX β̃p,αX̂i −

∫
TX β̃p,αµ̂

[1]
X )2

−σ̂−2
[0] (β̃p,α)(

∫
TX β̃p,αX̂i −

∫
TX β̃p,αµ̂

[0]
X )2 + 2 ln n0σ̂[1](β̃p,α)

n1σ̂[0](β̃p,α) .

D̂L(X̂i | β̃p,α)← σ̂−2
pool(β̃p,α)(

∫
TX β̃p,αX̂i −

∫
TX β̃p,αµ̂

[1]
X )2

−σ̂−2
pool(β̃p,α)(

∫
TX β̃p,αX̂i −

∫
TX β̃p,αµ̂

[0]
X )2 + 2 ln(n0/n1).

end for
end for
GCV(p, α)←

∑n
i=1[Yi − 1{D̂Q(X̂i | β̃p,α) < 0}]2/(n− p− 2)2

or
∑n
i=1[Yi − 1{D̂L(X̂i | β̃p,α) < 0}]2/(n− p− 2)2.

end for
(popt, αopt)← arg min (p,α) GCV(p, α).
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3.3 Numerical illustration

In spite of theoretical arguments illustrating the asymptotically perfect classification of
CCC-L in specific cases, we were still in need of more evidences to support our propos-
als, especially CCC-Q. Therefore, we resorted to numerical studies so as to compare the
performance of PCC, PLCC and the two CCC classifiers in finite-sample applications. Can-
didate pools for tuning parameters were set up as follows. For CCC classifiers, combi-
nations of tuning parameters came from {(p, αj) : 1 ≤ p ≤ pj,max, 1 ≤ j ≤ 13} with
{α1, . . . , α13} = {0× 10−1, . . . , 9× 10−1, 1− 10−2, . . . , 1− 10−4} and pj,max as constructed
in Section 2.4.1. PLCC and PCC both took {1, . . . , pmax} as the candidate pool for their
p. Boxplots were all created via R-package ggplot2 [99]. There were also tables summariz-
ing statistics of the box plots. Formal comparisons among means were carried out via the
paired t-test (resp. the corrected resampled t-test proposed by [67]) for independent (resp.
resampled) samples involved in the upcoming studies with simulated data (resp. real-world
data).

3.3.1 Simulation study

We generated R = 200 samples, each containing n = 200 curves Xi, i = 1, . . . , 200. In
each sample, we randomly preserved 80% of the curves for training and used the remaining
20% for testing. Each curve was observed at 101 equally spaced points in TX = [0, 1], i.e.,
{i/100 : i = 0, . . . , 100}; curves were generated in an iid way as

Xi =
1∑

k=0

 5∑
j=1

λ
1/2
k,j Zijφkj + µ

[k]
X

1(Xi ∈ Πk).

Without loss of generality, the difference of two mean functions was set to be exactly µ[1]
X , i.e.,

µ
[0]
X (·) ≡ 0. Instead of a 50/50 mixture of Gaussian processes, we considered a challenging

setup: Zij ∼ exp(1) − 1 and π0 = Pr(Xi ∈ Π0) = 80%. Although v
[0]
X and v

[1]
X shared

the identical nonzero eigenvalues (200, 100, 1, 0.2, 0.1), they might differ in eigenfunctions;
specifically, we took the jth-order shifted Legendre polynomial (scaled to have norm one)
[54] as the jth eigenfunction of v[0]

X , j = 1, . . . , 5, viz.

φ0,1(t) =
√

3(2t− 1),

φ0,2(t) =
√

5(6t2 − 6t+ 1),

φ0,3(t) =
√

7(20t3 − 30t2 + 12t− 1),

φ0,4(t) = 3(70t4 − 140t3 + 90t2 − 20t+ 1),
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and

φ0,5(t) =
√

11(252t5 − 630t4 + 560t3 − 210t2 + 30t− 1).

Meanwhile we accounted for two sorts of combinations of µ[1]
X and φ1,j :

µ
[1]
X = ρλ

1/2
1,1 φ1,1 with φ1,j = φ0,j (3.23)

and

µ
[1]
X = ρλ

1/2
1,3 φ1,3 with φ1,j = φ0,5−j . (3.24)

In both scenarios, ρ (= 1, 3, 5, 10) controlled the magnitude of gap between µ
[1]
X and µ

[0]
X

relative to λ1/2
1,j and also the ratio of the between-group variation to the within-group one.

These eight combinations in total of settings would help us clarify the joint impacts of the
direction and magnitude of µ[1]

X − µ
[0]
X on misclassification.

Design (3.23) favored the identification of the direction of µ[1]
X −µ

[0]
X as it was parallel to

the first eigenfunction not only of vX (1.2) but also of vWX (3.1); for each value of ρ, all the
four classifiers performed fairly close to each other. As indicated by Figure 3.1 and the first
four rows of Table 3.1, larger ρ typically meant more separable subpopulations and hence
the overall error rate became lower and lower with increasing ρ. In the case of ρ = 1, the
two data clouds were likely to have substantial overlap, resulting in average error rates of
over 20%; all the classifiers achieved perfect performance when ρ = 5 or 10.

It was a different story in design (3.24) which restricted µ[1]
X − µ

[0]
X to be parallel to φ03,

the least important eigenfunction of

vWX (s, t) = 160.02(φ0,1(s)φ0,1(t) + 80.04φ0,2(s)φ0,2(t)

+ 40.08φ0,5(s)φ0,5(t) + 20.16φ0,4(s)φ0,4(t) + φ0,3(s)φ0,3(t).

In this case, focused only on decomposing vWX , PCC probably failed to extract the correct
direction of µ[1]

X −µ
[0]
X and naturally yielded more misclassification regardless of ρ. Moreover,

v
[1]
X shared the same eigenfunctions with v[0]

X but in a reversed order; they were no longer
equal at all. This setting violated the assumption of CCC-L and PLCC, through these
two classifiers had little problem in recovering φ0,3. Consequently, when ρ = 1, CCC-Q
significantly outperformed the other three classifiers; see Figure 3.2a. When ρ grew to 3,
the difference in sub-covariance did not matter as much as in the case of ρ = 1. That was
why the performance of CCC-L and PLCC was improved. When we further enlarged the
value of ρ, the two groups became clearly identifiable for CCC-L, -Q and PLCC and few
errors were committed by these three classifiers.
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(b) ρ = 3
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(c) ρ = 5
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(d) ρ = 10

Figure 3.1: Boxplots of misclassification percentage (MP, %) for simulation (3.23). In each
panel, the four boxes, from left to right, correspond to classifiers CCC-L, CCC-Q, PLCC
and PCC, respectively and use identical scales.

In summary, supervised options, CCC-L, -Q and PLCC, were more likely to capture the
direction of µ[1]

X − µ
[0]
X . Classifiers holding the equal variance assumption might fail if the

two groups were close to each other and equipped with different sub-covariance functions
(e.g., design (3.24) with ρ = 1); in contrast, under this circumstance, CCC-Q stood out.

3.3.2 Real data application

For each dataset analyzed below, we repeat 200 times a random split with the ratio 8 : 2,
i.e., at each repetition, we train the classifiers with 80% of the data points and test them
on the remaining 20%. Table 3.2 summarizes the means and standard deviations of MP.
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(b) ρ = 3
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(c) ρ = 5
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(d) ρ = 10

Figure 3.2: Boxplots of MP (%) for simulation (3.24). In each panel, the four boxes, from
left to right, correspond to classifiers CCC-L, CCC-Q, PLCC and PCC, respectively. The
four subfigures come with identical scales.

First we revisit the Tecator™ data in Section 2.5.2 by categorizing all meat samples
into two groups: Π1 consisted of meat samples with protein content less than 16% and the
rest constituted Π0. The 240 spectrum curves (or their second order derivative curves as
recommended by [33, Section 7.2.2] and [40]) were regarded as functional covariates in the
study. For both sorts of curves, the two CCC subtypes, especially CCC-Q, showed error rates
considerably lower than those from PLCC and PCC. We speculate that this phenomenon for
PLCC (resp. PCC) was caused by the poor performance of ‖βp,FPLS‖22 (resp. ‖βp,WFPC‖22)
in replacing var(

∫
TX Xβp,FPLS | X ∈ Πk) (resp. var(

∫
TX Xβp,WFPC | X ∈ Πk)).
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Table 3.1: Average MP (%) for simulation studies (with standard deviations in parentheses)
corresponding to different classifiers. Row minimums are underlined.

Design ρ CCC-L CCC-Q PLCC PCC
(3.23) 1 21.71 (6.662) 21.35 (6.351) 25.68 (7.423) 25.79 (7.550)
(3.23) 3 5.906 (4.321) 6.009 (4.211) 6.831 (4.227) 6.812 (4.156)
(3.23) 5 2.159 (2.523) 2.125 (2.486) 2.650 (2.932) 2.688 (2.996)
(3.23) 10 .1495 (.5873) .1492 (.5872) .2188 (.7026) .2125 (.6990)
(3.24) 1 17.30 (6.663) 3.969 (2.937) 19.70 (9.255) 23.98 (14.52)
(3.24) 3 7.487 (4.459) 4.877 (3.749) 9.238 (4.682) 23.61 (14.55)
(3.24) 5 2.337 (2.215) 2.611 (2.675) 3.323 (2.849) 25.41 (15.79)
(3.24) 10 .3496 (.8291) .3684 (.8126) .4250 (.9823) 23.38 (14.78)

Table 3.2: Average MP (%) for real applications (with standard deviations in parentheses)
corresponding to different classifiers. Row minimums are underlined.

CCC-L CCC-Q PLCC PCC
Tecator™ (original) 5.521 (3.254) 4.562 (2.766) 29.57 (6.447) 28.95 (6.756)

Tecator™ (2nd order derivative) 9.288 (3.888) 8.897 (3.838) 29.79 (5.841) 29.79 (5.841)
DTI 14.32 (3.987) 14.33 (4.014) 10.69 (3.276) 10.69 (3.276)

We considered a diffusion tensor imaging (DTI) study in the second example. DTI is a
modern tool in mapping white matter tractography in brains. In tractography, the fractional
anisotropy (FA), a scalar ranging from 0 to 1 and reflecting the fiber density, axonal diameter
and myelination, is measured at a specific spot in the white matter. Along a tract of interest,
FAs form a tract FA profile. A study on these profiles may help people quantify pathological
changes resulted from multiple sclerosis (MS) [38], an immune disorder affecting the central
nervous system [9]. Dataset DTI from R-package classiFunc [64] contains tract FA profiles
for corpus callosum of 382 subjects comprised of healthy people (Π0) and MS patients
(Π1). By classifying these profiles, we tried to judge the status of each subject: healthy or
suffering from MS. As displayed in Table 3.2 and Figure 3.3c, PLCC and PCC appeared
to perform slightly better than CCC subtypes. However, we could not formally reject the
null hypothesis that mean error rates of all the four classifiers reached a tie (according to
the corrected resampled t-test); that is, the four classifiers had misclassification rates of a
similar level.

3.4 Conclusion and discussion

We propose two subtypes of CCC classifiers, CCC-L and -Q, for binary classification of
curves. Theoretically, under certain circumstances, CCC-L enjoys the (asymptotic) zero
misclassification regardless of the distribution assumption, while, in empirical studies, CCC-
Q seems preferred due to a generally more competitive output. Once regularity conditions
are met, our implementation results in empirical classifiers which are consistent for their
theoretical counterparts, for the case of “fixed p and infinite n”.
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(a) Tecator™ (original)
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(b) Tecator™ (2nd order
derivative)
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(c) DTI

Figure 3.3: Boxplots of MP (%) for real applications. The top two panels reflect respective
results with original and second order derivative curves. In each panel, the four boxes, from
left to right, correspond to classifiers CCC-L, CCC-Q, PLCC and PCC, respectively. The
three subfigures are displayed with identical scales.

PLCC is slightly less time-consuming than PCC since the former one does not carry
out SVD. By contrast, the time-consumption of CCC classifiers grows rapidly as the size of
training set increases, which agrees with the discussion in [109, Section 6]. When applied to
simulated datasets (with n = 200), and despite one more hyper-parameter being involved,
CCC classifiers are very competitive in computing time. Unfortunately they become far
more time-consuming when n is around 400 (e.g., in the case of analyzing DTI data); see
Table 3.3.

In the numerical experiments in Section 3.3, we do gain some benefits from the intro-
duction of the supervision controller α. Nevertheless, one cannot be too optimistic; actually,
tuning one more parameter may yield more variation and even bias. Evidence for this pos-
sibility is offered by the unsatisfactory performance of CCC classifiers in the application to
DTI data; more evidence is encountered when we employ these four classifiers to analyze
simulated example 3 in [28], where PLCC overwhelms the other three.

Regarding a further extension to the functional classification with K (≥ 3) classes, one
possible strategy is to carry out binary classifiers repeatedly. To be explicit, for a newcomer
X∗, each time we only consider two distinct labels and then assign either label to it, or
equivalently, throw a vote for either of the two labels. After all (K2 ) binary classifications,
the label that wins the most votes is eventually assigned to X∗.
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Table 3.3: Time consumed (in seconds) by each method in each numerical study in Sec-
tion 3.3 (running on a desktop with R [74], Rstudio [81], Intel® Core™ i5-7500 CPU @
2 × 3.40 GHz and 8 GB RAM). Two CCC subtypes share only one column because they
differ in only a few steps and consume very similar amounts of time. Row minimums are
underlined.

Scenario CCC-L (or -Q) PLCC PCC
Design (3.23) & ρ = 1 205.9 590.6 714.5
Design (3.23) & ρ = 3 204.4 584.5 705.1
Design (3.23) & ρ = 5 205.0 584.6 702.6
Design (3.23) & ρ = 10 204.4 577.9 703.8
Design (3.24) & ρ = 1 252.0 602.1 721.7
Design (3.24) & ρ = 3 252.7 602.1 718.6
Design (3.24) & ρ = 5 251.8 601.1 717.7
Design (3.24) & ρ = 10 253.8 600.4 714.9
Tecator™ (original) 293.7 524.6 631.9

Tecator™ (2nd order derivative) 479.8 557.6 662.8
DTI 1723 663.1 729.6
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Chapter 4

Partial least squares
for sparsely observed curves
with measurement errors

4.1 Introduction

During past decades, numerous efforts have been put on FPC and FPLS; we refer readers
to, e.g., [31], for a general review of both techniques. Nevertheless, most of these works
are designed only for dense settings, i.e., realizations of X are supposed to be (almost)
completely observed, a condition which is not expected to be fulfilled all the time. For
example, in typical clinical trials, medical indications cannot be monitored 24/7; instead,
participants are required to visit the clinic repeatedly on specific dates. Due to costs and
convenience, for each subject, the scheduled visiting frequency is doomed to be sparse. What
is even worse is that subjects are more willing to show up on their own basis with frequencies
lower and more irregular than scheduled. Another apparent instance exists with missing data
problems where a number of recordings may be erased naturally or manually. Meanwhile,
in many practical applications, observed curves and responses are often contaminated by
measurement errors.

Admitting that sparsity in observation as well as errors in measurement are common-
place, we now suppose Xi

iid∼ X are unobservable. Instead the ith trajectory is merely
measured at Li time points Ti1, . . . , TiLi ∈ TX = [0, 1] in a noisy form such that,

X̃i(Ti`) = Xi(Ti`) + σeei`, (4.1)

where σe > 0 and white noises ei` have zero mean and unit variance. We assume that all
the time points and error terms are independent across subjects and from each other. More
precise description is detailed by Appendix A.3. This joint setup of sparsity and error-in-
variable is considered too by existing literature, e.g., [104], [105], [102], and [82].
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Remark 4.1. For each i, Ti1, . . . , TiLi do not need to be ordered increasingly or descend-
ingly. Additionally we suggest not taking X̃i as the sum of Xi and a white noise process,
otherwise more mathematical efforts are needed in definition to ensure rigor; instead (4.1)
suffices for our proposal which utilizes only random variables X̃i(Ti1), . . . , X̃i(TiLi) and never
attempts to approximate integrals involving the entire trajectory X̃i.

We now slightly modify the definition of the FPLS basis from (2.3). For brevity in nota-
tion, the modified FPLS basis in this chapter remains denoted by {w1, w2, . . .}. Introducing
the cross-covariance function, vXY , such that

vXY = vXY (·) = cov{Y,X(·)}, (4.2)

an implementation of FPLS ([28, Appendix A.2]) starts with X [1] = X−µX , Y [1] = Y −µY
and

w1 = arg max
‖w‖2=1

cov2
(
Y [1],

∫
TX

X [1]w

)
= ‖vXY ‖−1

2 vXY . (4.3)

It then constructs subsequent basis functions in a successive way: given the first j− 1 basis
functions w1, . . . , wj−1, assuming v[j]

XY 6≡ 0, we define

wj = arg max
‖w‖2=1

cov2
(
Y [j],

∫
TX

X [j]w

)
=
∥∥∥v[j]
XY

∥∥∥−1

2
v

[j]
XY , (4.4)

where superscript [j] corresponds to the jth least-squares deflation. That is to say,

X [j] = X [j](·) = X [j−1](·)

−
(∫

TX
X [j−1]wj−1

)
var−1

(∫
TX

X [j−1]wj−1

)
cov

{
X [j−1](·),

∫
TX

X [j−1]wj−1

}
, (4.5)

Y [j] = Y [j−1]

−
(∫

TX
X [j−1]wj−1

)
var−1

(∫
TX

X [j−1]wj−1

)
cov

(
Y [j−1],

∫
TX

X [j−1]wj−1

)
, (4.6)

and
v

[j]
XY = v

[j]
XY (·) = cov

{
Y [j], X [j](·)

}
. (4.7)

Remark 4.2. As a functional counterpart of Proposition 1.1 in [14], the orthogonality of
basis functions, or equivalently, the identity

∫
TX wj1wj2 = 0 if j1 ≥ 2 and j1 > j2, follows

from the above algorithm. This property is verified by noting that, from (4.5) and (4.6)
(both defined through least squares), the random variable

∫
TX

X [j1]wj2 =
∫
TX

X [j2]wj2

−
j1−1∑
j=j2

(∫
TX

X [j]wj

)
var−1

(∫
TX

X [j]wj

)
cov

(∫
TX

X [j]wj2 ,
∫
TX

X [j]wj

)
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is located in span(
∫
TX X

[j2]wj2 , . . . ,
∫
TX X

[j1−1]wj1−1) whose orthogonal complement con-
tains Y [j1]. In this way, (4.4) and (4.7) jointly imply that, as long as v[j1]

XY 6≡ 0,∫
TX

wj1wj2 =
∥∥∥v[j1]
XY

∥∥∥−1

2

∫
TX

v
[j1]
XY wj2 =

∥∥∥v[j1]
XY

∥∥∥−1

2
cov

(
Y [j1],

∫
TX

X [j1]wj2

)
= 0.

Remark 4.3. Alternatively, wj (4.4) is the maximizer of cov2
(
Y,
∫
TX Xw

)
subject to

‖w‖2 = 1 and
∫
TX ww1,FPLS = · · · =

∫
TX wwj−1,FPLS = 0. That is, it differs from wj,FPLS

(2.3) only in the constraints: the former one is constrained by the ordinary orthogonality
while the latter one requires orthogonality w.r.t. vX (1.2).

[50, 104, 105] succeeded in extending (classical) FPC (with dense observation) to the
challenging setting in this chapter. Among their proposals, the particular proposal from
[104, 105] is abbreviated as PACE. Compared with FPC, FPLS is more adaptive to data,
leading to a more parsimonious basis as well as more interpretability [79]; however, to
the best of our knowledge, FPLS has few extension applicable to the sparsity setting. In
this work, we attempt to fill in this blank by developing a new technique named Partial
LEAst Square for Sparsity (PLEASS), aiming at handling both sparse observations and
measurement errors simultaneously.

The remainder of this chapter is organized as follows. Section 4.2 describes the imple-
mentation procedure for PLEASS. In Section 4.3 we present asymptotic results including
not only the consistency of estimators but also confidence intervals for predictions. Sec-
tion 4.4 applies PACE and PLEASS to both simulated and real datasets and compares
their resulting performances. This is followed by concluding remarks in Section 4.5.

4.2 Methodology

4.2.1 Estimation and prediction

As is guaranteed by [28, Theorem 3.2], the true slope β must be located in the closure of
span(w1, w2, . . .); it is hence the limit (as p diverges and in the L2 sense) of βp (1.5). With
wj defined in (4.4), βp in (1.5) and ηp(X∗) in (1.6) become

βp = c>p Λ−1
p [w1, . . . , wp]> (4.8)

and

ηp(X∗) = µY + c>p Λ−1
p [ξ∗1 , . . . , ξ∗p ]>, (4.9)

respectively, where

cp =
[∫

TX
w1VX(β), . . . ,

∫
TX

wpVX(β)
]>

= [‖vXY ‖2, 0, . . . , 0]>, (4.10)
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Λp =
[∫

TX
wj1VX(wj2)

]
1≤j1,j2≤p

,

and the so-called jth FPLS score

ξ∗j =
∫
TX

wj(X∗ − µX). (4.11)

The farthest right-hand side of (4.10) is derived from identity (4.3) and Remark 4.2.
The first phase of PLEASS is to find estimators for µX at (1.3), vA at (1.2), vC at

(4.2), and σ2
e at (4.1), respectively, say, µ̂X , v̂A, v̂C and σ̂2

e . Existing methods for the re-
construction of variance and covariance structure from sparse observations roughly fall into
three categories: a) spline smoothing (e.g., a fast covariance estimation (FACE) by [102]),
b) kernel smoothing (e.g., LLS in [104, 105, 59]; and modified kernel smoothing in [71]),
and c) maximum likelihood (ML, e.g., restricted ML in [50, 72]; and quasi-ML in [108]).
Typically, the third category requires initial values obtained from some method in the first
two categories and hence is more time-consuming. In the numerical study (Section 4.4), we
adopt both LLS (with details relegated to Appendix A.3.1) and FACE. Our reason for this
choice is two-fold: LLS (of nice asymptotic properties [42]) is also exploited by PACE and
hence leads to a more fair comparison between PLEASS and PACE; FACE runs faster and
outputs competitive accuracy.

Remark 4.4. In theory, the framework of PLEASS is flexible as to how to estimate µX ,
vA, vC , and σ2

e , as long as ‖µ̂X−µX‖∞, ‖v̂A−vA‖∞, ‖v̂C−vC‖∞, and |σ̂2
e−σ2

e | all converge
to zero as n diverges (with ‖·‖∞ denoting the L∞-norm). It is even more flexible in practice
and permits whatever way of recovery preferred by users. Technical conditions in Appendix
A.3.2 vary with your final choice. Also, theoretical results in upcoming Section 4.3 are
merely demos corresponding to LLS but are adaptable to other approaches.

Implied by [28, Property (3.4)], the first p FPLS basis functions actually span the func-
tional Krylov subspace of L2(TX), i.e.,

span(w1, . . . , wp) = span{VX(β), . . . ,VpX(β)} = span{vXY ,VX(vXY ), . . . ,Vp−1
X (vXY )},

(4.12)
where VjX is the jth power of operator VX (1.2) and estimated by V̂jX such that, for all
f ∈ L2(TX),

V̂jX(f)(·) =
∫
TX
V̂j−1
X (f)(·)v̂X(t, ·)dt. (4.13)

Combined with the orthogonality in (Remark 4.2), identity (4.12) inspires us to estimate
wj (4.4) by sequentially orthonormalizating j functions v̂XY , V̂X(v̂XY ), . . . , V̂j−1

X (v̂XY ), i.e.,
subtracting projections onto previous functions and then scaling the remaining part to one
in terms of L2-norm. In particular, ŵ1 = v̂XY /‖v̂XY ‖2 and, for j ≥ 2, ŵj is succesively
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Algorithm 4.1 Modified Gram-Schmidt orthonormalization in estimating wj
for j in 1, . . . , p do

ŵ
[1]
j ← V̂

j−1
X (v̂XY )

if j ≥ 2 then
for i in 1, . . . , j − 1 do

ŵ
[i+1]
j ← ŵ

[i]
j − ŵi

∫
TX ŵ

[i]
j ŵi

end for
end if
ŵj ← ŵ

[j]
j /‖ŵ

[j]
j ‖2

end for

given by

ŵj =
V̂j−1
X (v̂XY )−

∑j−1
k=1 ŵk

∫
TX ŵkV̂

j−1
X (v̂XY )∥∥∥V̂j−1

X (v̂XY )−
∑j−1
k=1 ŵk

∫
TX ŵkV̂

j−1
X (v̂XY )

∥∥∥
2

. (4.14)

Alternatively, the modified Gram-Schmidit procedure (Algorithm 4.1) gives mathematically
equivalent but numerically more stable estimators for wj ; see, e.g., [56, pp. 102]. Plugging
both

ĉp = [‖v̂XY ‖2, 0, . . . , 0]> (4.15)

and

Λ̂p =
[∫

TX
ŵj1V̂X(ŵj2)

]
1≤j1,j2≤p

, (4.16)

into βp (4.8), we then have

β̂p = ĉ>p Λ̂−1
p [ŵ1, . . . , ŵp]>. (4.17)

This estimator converges to the true β as n and p diverge at specific rates (as described in
Theorem 4.1).

Denote by X̃∗ the noisy counterpart of X∗. Predicting η(X∗) (1.4) is separate from
estimating β; since X̃∗ is tainted by noise terms and only measured at L∗ ∼ L (as restricted
by (C.A.3.1) in Section A.3.2) time points, for now it is not practical to numerically com-
pute the integral

∫
TX β̂pX̃

∗. Taking a detour through conditional expectation, we target
predicting not η(X∗) but instead η̃∞(X∗) (4.20), a surrogate for η(X∗) (1.4). Specifically,
write

X̃∗ =
[
X̃∗(T ∗1 ), . . . , X̃∗(T ∗L∗)

]>
,

µ∗X = E(X̃∗) = [µX(T ∗1 ), . . . , µX(T ∗L∗)]
> ,
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Σ
X̃∗

=
[
vX(T ∗l1 , T

∗
l2)
]
1≤l1,l2≤L∗ + σ2

eIL∗ ,

and, for j ∈ {1, . . . , p},

h∗j = [VX(wj)(T ∗1 ), . . . ,VX(wj)(T ∗L∗)]
> ,

with L∗ × L∗ identity matrix IL∗ . Given L∗, T ∗1 , . . . , T ∗L∗ , and using

cov


X̃∗

ξ∗1
...
ξ∗p

 =


Σ
X̃∗

h∗1 · · · h∗p

h∗>1
... Λp

h∗>p

 ,

it is well known that, for ξ∗j given in (4.11), the best linear unbiased predictor is

ξ̃∗j = E(ξ∗j | X̃∗, L∗, T ∗1 , . . . , T ∗L∗) = h∗>j Σ−1
X̃∗

(X̃∗ − µ∗X) (4.18)

It is best see, e.g., [43, Theorem 1]. Indeed, if ξ∗1 , . . . , ξ∗p and X̃∗ are jointly Gaussian then
(4.18) is the best predictor, linear or otherwise, in terms of minimizing E{ξ∗j − f(X̃∗)}2

w.r.t. Lebesgue measurable functions f on RL∗ . Thus, if we introduce the L∗ × p matrix
Hp = [h∗1, . . . ,h∗p], then a reasonable surrogate for ηp(X∗) (1.6) is

η̃p(X∗) = µY + c>p Λ−1
p [ξ̃∗1 , . . . , ξ̃∗p ]> = µY + c>p Λ−1

p H>p Σ−1
X̃∗

(X̃∗ − µ∗X). (4.19)

Conditioning on L∗, T ∗1 , . . . , T ∗L∗ , ξ̃∗j (4.18) is the (orthogonal) projection of ξ∗j (4.11) onto
span{X̃∗(T ∗1 ), . . . , X̃∗(T ∗L∗)}. Accordingly, limp→∞ c

>
p Λ−1

p H>p Σ−1
X̃∗

(X̃∗−µ∗X) exists as a pro-
jection of η(X∗)− µX and so does

η̃∞(X∗) := lim
p→∞

η̃p(X∗). (4.20)

For η(X∗) (1.4), a plug-in prediction

η̂p(X∗) = 1
n

n∑
i=1

Yi + ĉ>p Λ̂−1
p Ĥ>p Σ̂−1

X̃∗
(X̃∗ − µ̂∗X) (4.21)

follows by replacing Σ
X̃∗

, µ∗X , Hj and Λp involved in (4.19) with their respective empirical
counterparts. These counterparts are

Σ̂
X̃∗

=
[
v̂X(T ∗l1 , T

∗
l2)
]
1≤l1,l2≤L∗ + σ̂2

eIL∗ , (4.22)

µ̂∗X = [µ̂X(T ∗1 ), . . . , µ̂X(T ∗L∗)]
> , (4.23)

Ĥp =
[
V̂X(ŵj)(T ∗l )

]
1≤l≤L∗,1≤j≤p

, (4.24)
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and Λ̂p from (4.16).
It remains to construct a confidence interval (CI) for η(X∗) (1.4). From the viewpoint

of projection again,

cov([ξ∗1 − ξ̃∗1 , . . . , ξ∗p − ξ̃∗p ]> | L∗, T ∗1 , . . . , T ∗L∗)

= cov([ξ∗1 , . . . , ξ∗p ]> | L∗, T ∗1 , . . . , T ∗L∗)− cov([ξ̃∗1 , . . . , ξ̃∗p ]> | L∗, T ∗1 , . . . , T ∗L∗)

= Λp −H>p Σ−1
X̃∗

Hp.

Under the Gaussian assumption (specifically condition (C.4.1) in Corollary 4.2.1), η̂p(X∗)−
η(X∗) turns out to be asymptotically (conditionally) normal, as long as c>p Λ−1

p (Λp −
H>p Σ−1

X̃∗
Hp)Λ−1

p cp converges to a positive number as p goes to infinity (see the detailed
condition (C.4.2) in Corollary 4.2.1). An asymptotic (1− α) CI for η(X∗) is then

η̂p(X∗)± Φ−1
α/2

{
ĉ>p Λ̂−1

p (Λ̂p − Ĥ>p Σ̂−1
X̃∗

Ĥp)Λ̂−1
p ĉp

}1/2
,

with the (1− α/2) standard normal quantile Φ−1
α/2.

4.2.2 Selection of number of basis functions

As for the tuning target, it is doable to adapt the generalized cross-validation (GCV) at
Section 2.4.1 to the context over here. But the (leave-one-out) cross-validation (CV) sounds
more reasonable: we are unclear on how to estimate the degrees of freedom (DoF) associated
with PLEASS prediction at (4.21); its intrinsic complexity results in no natural extension
of DoF computation for (multivariate) PLS [55]. Specifically, we here choose p ∈ [0, pmax]
by minimizing

CV(p) = n−1
n∑
i=1
{Yi − η̂(−i)

p (Xi)}2

in which η̂
(−i)
p (Xi) predicts the ith response with all the other subjects kept for training.

As for pmax, the definition at (2.19) works here, because it is one default rule in truncating
the Karhunen-Loève series and, as numerically illustrated by [28, Section 6], FPLS needs
fewer terms than FPC to reach the same accuracy. Another candidate for pmax is provided
by [27, Section 3], i.e., pmax = n/2, which is acceptable for a small or moderate n.

4.3 Asymptotic properties

Our theoretical results are derived from Conditions (C.A.3.1)–(C.A.3.14) in Appendix A.3.2.
The first six of these detail the assumptions of model (4.1) while and the remaining assump-
tions are set up for consistency of LLS in Appendix A.3.1. For arbitrarily fixed integer p, the
consistency of β̂p (1.7) is deduced immediately from Lemmas A.3 and A.4 in Appendix A.3.2
and follow the line of proof of [109, Theorem 1]. Unfortunately, this argument does not ap-
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Algorithm 4.2 PLEASS tuned through GCV
Obtain µ̂X , v̂X , v̂XY and σ̂2

e following A.3.1.
for j in 1, . . . , pmax − 1 do
V̂jX(v̂XY )(·)←

∫
TX v̂X(·, t)V̂j−1

X (v̂XY )(t)dt.
end for
Extract ŵj from v̂XY , V̂X(v̂XY ), . . . , V̂pmax−1

X (v̂XY ) following Algorithm 4.1.
β̂0 ← 0.
η̂0(X∗)← n−1∑n

i=1 Yi.
for p in 1, . . . , pmax do

β̂p ← ĉ>p Λ̂−1
p [ŵ1, . . . , ŵp]> with ĉp (4.15) and Λ̂p (4.16).

η̂p(X∗)← n−1∑n
i=1 Yi + ĉ>p Λ̂−1

p Ĥ>p Σ̂−1
X̃∗

(X̃∗ − µ̂∗X)
with Σ̂

X̃∗
(4.22), µ̂∗X (4.23) and Ĥp (4.24).

end for
popt ← arg min 0≤p≤pmax GCV(p).

CI for η(X∗)← η̂popt(X∗)± Φ−1
α/2

{
ĉ>poptΛ̂

−1
popt(Λ̂popt − Ĥ>poptΣ̂

−1
X̃∗

Ĥpopt)Λ̂−1
popt ĉpopt

}1/2
.

ply to the scenario with p diverging with n, since the sequential construction (4.14) tends
to induce a bias accumulated with the increase of p. As a consequence, it is indispensable
to impose a sufficiently slow divergence rate on p, e.g., as stated in (C.A.3.15).

Theorem 4.1. Assume that (C.A.3.1)–(C.A.3.15) in Appendix A.3.1 all hold. As n goes
to infinity, ‖β̂p − β‖2 →p 0. If ‖βp − β‖∞ →p 0 and condition (C.A.3.15) is replaced with
the stronger assumption (C.A.3.16) then this L2 convergence result can be strengthened to
a uniform version, namely, ‖β̂p − β‖∞ →p 0.

Analogous to PACE, given X∗, our PLEASS does not result in a consistent prediction:
E{η̂p(X∗)− η(X∗)} converges to zero but η̂p(X∗)− η(X∗) does not; the limit of η̂p(X∗) in
(4.21) is η̃∞(X∗) in (4.20) instead.

Theorem 4.2. Under assumptions (C.A.3.1)–(C.A.3.15), as n goes to infinity, η̂p(X∗) −
η̃∞(X∗) converges to zero (unconditionally) in probability.

In spite of the fact that PLEASS does not yield the desired consistent prediction for
η(X∗), Theorem 4.2 implies that η̂p(X∗)−η(X∗) is asymptotically distributed as η̃∞(X∗)−
η(X∗). An asymptotic (1− α) CI for η(X∗) is therefore available. In particular, the result
for Gaussian cases is presented in Corollary 4.2.1.

Corollary 4.2.1. In addition to assumptions (C.A.3.1)–(C.A.3.15), we assume two more:
(C.4.1) FPLS scores

∫
TX wj(X − µX) and measurement errors ei` are jointly Gaussian.

(C.4.2) c>p Λ−1
p (Λp −H>p Σ−1

X̃∗
Hp)Λ−1

p cp → ω > 0 as p goes to infinity.
Then,

η̂p(X∗)− η(X∗)√
ĉ>p Λ̂−1

p (Λ̂p − Ĥ>p Σ̂−1
X̃∗

Ĥp)Λ̂−1
p ĉp

→d N (0, 1).
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4.4 Numerical illustration

PLEASS is compared here with PACE in terms of finite-sample numerical performance. As
mentioned in Section 4.2.1, both LLS and FACE (implemented respectively via R pack-
ages fdapace [24] and face [103]) were utilized to estimate population quantities µX
at (1.3), vX at (1.2), vC at (4.2), and σ2

e at (4.1). Resulting combinations, viz. PLE-
ASS+LLS, PACE+LLS, PLEASS+FACE and PACE+FACE, are abbreviated as PLE-
ASS.L, PACE.L, PLEASS.F and PACE.F, respectively. Corresponding code trunks are
accessible at https://github.com/ZhiyangGeeZhou/PLEASS.

4.4.1 Simulation study

Each sample consisted of n = 300 iid paired realizations of (X,Y ) with X and Y both of
zero mean. The X was set up as a Gaussian process, i.e., λ−1/2

j,X ρj were all iid as standard
normal with the jth FPC score ρj =

∫
TX φj,X(X − µX). Error terms ei` were also standard

normal. We took 100, 90, 80, 10, 9, 8, 1, 0.9, and 0.8 as the top nine eigenvalues of operator
VX at (1.1); all the rest were 0. Correspondingly, the top nine eigenfunctions were taken
to be (normalized) shifted Legendre polynomials [45, pp. 773–774] of order 1 to 9, say
P1, . . . , P9; unit-normed and mutually orthogonal on [0, 1], they were generated through
R-package orthopolynom [70]. The slope function β was given by one of the following cases:

β = P1 + P2 + P3, (4.25)

β = P4 + P5 + P6, (4.26)

β = P7 + P8 + P9. (4.27)

Two sorts of signal-to-noise-ratio (SNR) were defined, i.e., SNRX = (
∑∞
j=1 λj,X)1/2/σe and

SNRY = sd(
∫
TX βX)/σε. For simplicity, we took SNRX = SNRY (= 3 or 10). To embody

the sparsity assumptions, in each sample, Xi was observed only at Li (
iid∼ Unif{3, 4, 5, 6})

points uniformly selected from [0, 1]. In total there were six combinations of settings. 200
iid samples were generated for each of them. We randomly reserved 20% of the subjects
in each sample for testing and used the remainder for training. After running through all
samples, we computed 200 values of relative integrated squared estimation error (ReISEE)

ReISEE = ‖β‖−2
2 ‖β − β̂p‖

2
2. (4.28)

Since neither PACE nor PLEASS leads to consistent predictions, it is better to evaluate the
prediction quality via the coverage percentage (CP) of CIs constructed for testing subjects,
viz.

CP =
∑
i∈Itest

1

{
η(Xi) ∈ ĈIi

}/
#IDtest,
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Figure 4.1: Boxplots of ReISEE values under different simulated settings: SNR value varies
with column, while rows differ in β. In each subfigure, from left to right, the four boxes
respectively correspond to PLEASS.L, PLEASS.F, PACE.L, and PACE.F.

where ĈIi is the asymptotic (95%) CI for η(Xi), and Itest is the index set for testing portion
with cardinality #IDtest.
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When β was constructed from eigenfunctions corresponding to large or moderate eigen-
values (viz. β at (4.25) or (4.26)), PLEASS performed better in term of ReISEE; see the
first two rows of Figure 4.1. Particularly, at the second row of Figure 4.1, ReISEE values of
PLEASS were mostly lower than one, while PACE boxes was trapped at one. An ReISEE
box sticking around one implied estimates concentrated around the most trivial β̂ = 0, i.e.,
the corresponding method failed to output non-trivial estimates. This failure was caused by
zero inner products between v̂XY and estimated basis functions; this happened frequently
if β was mainly associated with a small portion of total variation (of VA) that was likely
to be smoothed out in recovering vX and vXY . Such was exactly the case for PACE in the
scenario (4.26) and for both PACE and PLEASS with β at (4.27).

As seen in Figure 4.2, CP boxes belonging to PACE stayed at a low level, especially
for scenarios (4.26) and (4.27). This phenomenon was consistent with the performance of
PACE in estimating β under corresponding settings. In contrast, PLEASS was more likely
to output CP values closer to the stated level (95%), though we must admit that their
coverage was still far from satisfactory especially with β at (4.26) and (4.27). Looking into
those η(Xi) not covered by ĈIi, we noticed that the majority of missed η(Xi) fell at the
right-hand side of ĈIi. A possible cause of miss-covering lay in the bias of estimates for means
of X and Y ; a larger size of training set might be helpful. Moreover, although SNR had
little impact on estimation (compare the two columns of Figure 4.1), CP values appeared
to be higher with a smaller SNR (compare the two columns of Figure 4.2): η(Xi) did not
vary with SNR, while larger σ̂2

e (resulting from smaller SNR) widened ĈIi and enhanced
the coverage of ĈIi.

4.4.2 Application to real data

We then applied PLEASS to two real datasets. The first came from a clinical trial, whereas
the second was densely observed but recorded with numerous missing values.

Primary Biliary Cholangitis data. Initially shared by [93], dataset pbcseq (accessible
in R-package survival created by [92]) was collected in a randomized placebo con-
trolled trial of D-penicillamine, a drug designed for primary biliary cholangitis (PBC,
also known as primary biliary cirrhosis). PBC is a chronic disease in which bile ducts
in the liver are slowly destroyed; it can cause more serious problems including liver
cancer. All the participants of the clinical trial were supposed to revisit the Mayo
Clinic at six months, one year, and annually after their initial diagnoses. However,
participants’ visiting frequencies, with an average of 6, varied among patients, rang-
ing from 1 to 16 and leading to sparse and irregular recordings. Although the clinical
trial lasted from January 1974 through May 1984, to satisfy the prerequisites of LLS,
we included only measurements within the first 3000 days and removed subjects with
fewer than two visits. At each visit, several body indices were measured and recorded,
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Figure 4.2: Boxplots of coverage percentage under different simulated settings: SNR value
varies with column, while rows differ in β. In each subfigure, from left to right, the four
boxes respectively correspond to PLEASS.L, PLEASS.F, PACE.L, and PACE.F.

including serum albumin (SerAlbu, in mg/dL) and prothrombin time (ProTime, in
seconds) whose relationship was studied by [105]. We also focused on this pair of indi-
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cators and attempted to model a linear connection between participants’ last ProTime
measurements (response) and their SerAlbu profiles (predictor).

Diffusion tensor imaging (DTI) data. As mentioned in Section 3.3.2, the fractional
anisotropy (FA) is measured at a specific spot in the white matter, ranging from 0 to
1 and reflecting the fiber density, axonal diameter and myelination. Along a tract of
interest, these values form an FA tract profile. Collected at Johns Hopkins University
and the Kennedy-Krieger Institute, dataset DTI (in R-package refund [39]) contains
FA tract profiles for corpus callosum measured via DTI. Though these trajectories
were not sparsely measured, a few of them had missing records which we were able to
handle using PACE and PLEASS without presmoothing or interpolation. We linked
the FA tract profile (our predictor) to the corresponding Paced Auditory Serial Ad-
dition Test (PASAT, see [94] for more on PASAT) score (our response). The PASAt
score is a standard assessment of the capacity for and rate of information processing.
This study explored a potential linkage between a modern medical imaging technique
and a classical diagnosis on brain function. Moreover, to ensure independence among
trajectories, we kept only the latest profile for each participant and excluded those
curves with no PASAT score.

For each real dataset, 200 (independent) random splits were carried out. As we did in
the simulation, (roughtly) 80% of subjects in each split were put into the training set and
the remainder was kept for testing. In these cases there was no way to calculate ReISEE or
CP values; the comparison between PACE and PLEASS was hence carried out in terms of
ReMSPE at (2.22), viz. for each method and each split,

ReMSPE =
∑
i∈IDtest(Yi − Ŷi)

2∑
i∈IDtest(Yi − Ȳtrain)2 ,

where Ŷi is the prediction for the ith subject, and Ȳtrain is the sample mean of testing re-
sponses. ReMSPE values for PBC and DTI cases were collected and summarized into boxes;
see Figure 4.3. In both applications, PLEASS was demonstrated to be more competitive
than PACE, enjoying lower medians and smaller dispersion of ReMSPE values. Analogous
to the previous simulation study, Figure 4.3 shows that FACE performs close to LLS when
used with PLEASS. As a result, PLEASS.F might be preferred if a low time consumption
were particularly appreciated.

4.5 Concluding remarks

The main contributions of our work are summarized as follows. First, we propose PLEASS,
a variant of FPLS modified for scenarios in which functional predictors are only observed
at sparse time points. Secondly, we show that PLEASS is applicable to SoFR coupled
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Figure 4.3: Boxplots of ReMSPE values for real data analysis. In each subfigure, from left
to right, the four boxes respectively correspond to PLEASS.L, PLEASS.F, PACE.L, and
PACE.F.

with measurement errors, a setting more complex than the one in Delaigle and Hall [28].
Third, not only do we give estimators and predictions via PLEASS, but also we construct
CIs for mean responses. Assuming that p diverges as a function of n, consistency of our
estimator is among the few asymptotic results available for FPLS and its variants. Fourth,
we numerically illustrate the advantage of PLEASS in specific scenarios.

Estimators for the variance and covariance structure could be further revised. When
estimating the value at a specific point, LLS borrows strength from a neighbourhood whose
bandwidth turns out to impact PLEASS to a certain extent. Competitors of LLS are more
or less haunted too by the challenging bandwidth selection problem whose solution remains
an open question. The data-driven selection adopted by Appendix A.3.1 may not be optimal
in practice or perhaps not even close to optimal. If trajectories are no longer independent
of each other, the proposal of [71] is more competitive. One more limitation concerns the
nature of the missingness: sparse observations (and missing values) are assumed independent
of trajectories and measurement errors, as in (C.A.3.3). Once the missingness is permitted to
be correlated with unobserved time points, we speculate that, after necessary modifications,
estimates of the ML type would be still promising in estimating components of covariance
structure.

In contrast with PLEASS, which is for now concentrated on SoFR only, PACE is more
versatile: aside from handling even FoFR, PACE is capable as well of recovering predictor
trajectories. By merging PLEASS into the framework of [110], we are working to adapt it
to FoFR. We believe it would offer ancillary information when curves correlated to to-be-
reconstructed ones are observed.
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Chapter 5

Partial least squares for
function-on-function regression via
Krylov subspaces

5.1 Introduction

Sometimes one would like to model the relationship between two stochastic curves. To
exemplify this type of interest, two instances are listed as below. As a fundamental model
in FDA, FoFR at (1.9) may be helpful to corresponding scientific explorations.

Diffusion tensor imaging (DTI) data (dataset DTI in R package classiFunc [64], in-
volved too in Section 3.3.2). DTI is powerful for characterizing microstructural changes
for neuropathology [4]. One widely used DTI measure is called the fractional anisotropy
(FA). An FA tract profile consists of FA values (ranging between zero and one) along
a tract of interest in the brain. Originally collected at the Johns Hopkins University
and the Kennedy-Krieger Institute, FA tract profiles for the corpus callosum (CCA)
and the right corticospinal tract (RCST) for 142 individuals are included in dataset
DTI in R package refund [39] (involved too in Section 4.4.2). Imputing missing values
among them, [64] created DTI in classiFunc. There are already investigations on as-
sociations between these CCA and RCST trajectories available in the literature; see,
e.g., [49].

Boys’ gait (BG) data (dataset gait in R package fda [77]). This dataset records hip and
knee angles in degrees for 39 walking boys. For each individual, through a 20-point
movement cycle, these angles form two curves. Then BG may be partially reflected
by the relationship between hip and knee curves.

Excellent contributions have been made to the investigation of FoFR. In general, due to
the intrinsically infinite dimension, people have to consider an approximation to β within
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certain subspaces of L2(TX ×TY ). Traditionally, these subspaces are constructed from pre-
determined functions, e.g., splines and Fourier basis functions. But a more prevailing option
may be data-driven: FPCR approximates β by

βp,q,FPCR(s, t) =
p∑
i=1

q∑
j=1

cov(
∫
TX Xφi,X ,

∫
TY Y φj,Y )

λi,X
φi,X(s)φj,Y (t); (5.1)

see, e.g., [105, Eq. 5]. Accompanied with a penalized estimation, [60] and [89] limit their
discussions of coefficient estimators to reproducing kernel Hilbert spaces. The Tikhonov (viz.
ridge-type) regularization in [8] yields a remedy for ill-posed β when not all λi,X are non-
zero. Distinct from these works, our consideration is based on a subspace of L2(TX × TY )
named after (Alexei) Krylov, viz.

KSp(VX , β) = span{V iX(β) | 1 ≤ i ≤ p}, (5.2)

where V1
X (resp. V0

X) is indeed operator VX (resp. identity operator I), while operator
V iX : L2(TX×TY )→ L2(TX×TY ), i ≥ 1, is defined recursively as, for each f ∈ L2(TX×TY )
and each (s, t) ∈ TX × TY ,

V iX(f)(s, t) = (VX ◦ V i−1
X )(f)(s, t)

= VX{V i−1
X (f)}(s, t)

=
∫
TX

vX(s, u){V i−1
X (f)(u, t)}du.

Noting that V iX(β) = V i−1
X (vXY ) (with vXY (s, t) = cov{X(s), Y (t)}) for all i ∈ Z+, the

(p-dimensional) Krylov subspace at (5.2) incorporates both X and Y and hence overcomes
the lack of supervision of the truncated eigenspaces used in FPCR.

Definition (5.2) is a natural generalization of (4.12); it also expands the Krylov sub-
space method previously defined for (multivariate) PLS. In the multivariate context, PLS is
a terminology shared by a series of algorithms yielding supervised (i.e., related-to-response)
basis functions; [12, Section 2.2] briefs several well-known examples of them, including the
nonlinear iterative PLS (NIPALS, [100]) and the statistically inspired modification of PLS
(SIMPLS, [26]). For single-vector-response, these two lead to outputs identical to that from
the Krylov subspace method; but they are known to yield different results when the response
is of more than one vectors; see [22, Section 7.2]. Likewise, their respective functional coun-
terparts are equivalent to each other for scalar-response but become diverse again for FoFR.
We refer readers to [11] for a straightforward extension of NIPALS and SIMPLS for FoFR.
Shooting at the same model, SigComp [61] embeds penalties into NIPALS. It is Proposi-
tion 5.1 that drives us to pick up the Krylov subspace method as our route.
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Proposition 5.1. Under (C.A.4.1), β belongs to KS∞(VX , β) = span{V iX(β) | i ≥ 1}, with
the overline representing closure.

Remark 5.1. It is worth noting that Proposition 5.1 is not a corollary of [28, Theorem 3.2];
the latter implies only an identity weaker than Proposition 5.1: namely, fixing an arbitrary
t0 ∈ TY , the univariate function β(·, t0) belongs to span{V iX(β)(·, t0) | i ≥ 1}.

As an extension of the alternative PLS (APLS, [28], designed for the scalar-on-function
regression), our proposal is abbreviated as fAPLS, with letter “f” emphasizing its application
to FoFR. The remaining portion of this chapter is organized as follows. Section 4.2 details
two equivalent expressions of fAPLS estimators, facilitating the empirical implementation
and theoretical derivation, respectively. In Section 5.3 fAPLS is compared with competitors
in applications to both simulated and authentic datasets. The framework of fAPLS has the
potential to be extended to more complex settings, e.g., correlated subjects and non-linear
modelling; we include promising directions in Chapter 6. More assumptions and proofs are
relegated to Appendix A.4 for conciseness.

5.2 Method

We propose to project β to (5.2) and to utilize the least squares solution

βp,fAPLS = arg min
θ∈KSp(VX ,β)

E ‖Y − µY − LX(θ)‖22 = [VX(β), . . . ,VpX(β)]H−1
p αp, (5.3)

whereHp = [hij ]1≤i,j≤p and αp = [α1, . . . , αp]> denote p×p and p×1 matrices, respectively,
with

hij =
∫
TY

{∫
TX

∫
TX

vX(s, u)V iX(β)(s, t)VjX(β)(u, t)dsdu
}

dt

=
∫
TY

∫
TX
V iX(β)(s, t)Vj+1

X (β)(s, t)dsdt, (5.4)

αi =
∫
TY

{∫
TX

∫
TX

vX(s, u)V iX(β)(s, t)β(u, t)dsdu
}

dt

=
∫
TY

∫
TX
VX(β)(s, t)V iX(β)(s, t)dsdt.

Proposition 5.1 justifies (5.3) by entailing that limp→∞ ‖βp,fAPLS−β‖2 = 0, which is crucial
for the consistency of our estimators described later.

It is natural to estimate vX(s, t) and vXY (s, t) (= VX(β)(s,t)), respectively, by

v̂X(s, t) = 1
n

n∑
i=1

Xcent
i (s)Xcent

i (t) (5.5)

V̂X(β)(s, t) = v̂XY (s, t) = 1
n

n∑
i=1

Xcent
i (s)Y cent

i (t) (5.6)
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in which Xcent
i = Xi− X̄ and Y cent

i = Yi− Ȳ , with X̄ = n−1∑n
i=1Xi and Ȳ = n−1∑n

i=1 Yi.
Given V̂ iX(β), one can estimate V i+1

X (β)(s, t) by

V̂ i+1
X (β)(s, t) =

∫
TX

v̂X(s, u)V̂ iX(β)(u, t)du. (5.7)

Plugging (5.5), (5.6) and (5.7) all into (5.3), an estimator for β results:

β̂p,fAPLS = [V̂X(β), . . . , V̂pX(β)]Ĥ−1
p α̂p, (5.8)

where Ĥp = [ĥij ]1≤i,j≤p and α̂p = [α̂1, . . . , α̂p]> have respective components given by

ĥij =
∫
TY

∫
TX
V̂ iX(β)(s, t)V̂j+1

X (β)(s, t)dsdt, (5.9)

α̂i =
∫
TY

∫
TX
V̂X(β)(s, t)V̂ iX(β)(s, t)dsdt.

Finally, given a new trajectory X0 ∼ X and aa point t ∈ TY ,

η(X0)(t) = E{Y (t) | X = X0} = µY (t) + LX0(β)(t) (5.10)

is predicted by

η̂p,fAPLS(X0)(t) = Ȳ (t) +
∫
TX

Xcent
0 (s)β̂p,fAPLS(s, t)ds. (5.11)

The matrix Ĥ at (5.8) would be invertible if we were able to work in exact arithmetic.
But this is not the case for finite precision arithmetic: as p increases, the linear system
of V̂X(β), . . . , V̂pX(β) may become close to singular. To overcome this numerical difficulty,
as suggested by [28, Section 4.2], we orthonormalize V̂X(β), . . . , V̂pX(β) (w.r.t. v̂X) into
ŵ1, . . . , ŵp (see Algorithm 5.1 or [56, pp. 102]) and reformulate the optimization problem
at (5.3) into the empirical version:

max
[c1,...,cp]>∈Rp

1
n

n∑
i=1

∫
TY

Yi(t)− Ȳ (t)−
p∑
j=1

cj

∫
TX

Xcent
i (s)ŵj(s, t)ds


2

dt. (5.12)

We then reach a numerically stabilized estimator for β:

β̃p,fAPLS = [ŵ1, . . . , ŵp][γ̂1, . . . , γ̂p]> =
p∑
i=1

γ̂iŵi, (5.13)

where [γ̂1, . . . , γ̂p]> is the maximizer of (5.12), with

γ̂i =
∫
TY

∫
TX

v̂XY (s, t)ŵi(s, t)dsdt.

55



Algorithm 5.1 Modified Gram-Schmidt orthonormalization w.r.t. v̂X
for i in 1, . . . , p do

ŵ
[1]
i ← V̂ iX(β).

if i ≥ 2 then
for j in 1, . . . , i− 1 do

ŵ
[j+1]
i ← ŵ

[j]
i −

{∫
TY
∫
TX
∫
TX v̂X(s, u)ŵ[j]

i (s, t)ŵj(u, t)dsdudt
}
ŵj .

end for
end if
ŵi ←

{∫
TY
∫
TX
∫
TX v̂X(s, u)ŵ[i]

i (s, t)ŵ[i]
i (u, t)dsdudt

}−1/2
ŵ

[i]
i .

end for

A prediction for η(X0) at (5.10), alternative to η̂p,fAPLS(X0) at (5.11), is thus given by

η̃p,fAPLS(X0)(t) = Ȳ (t) +
∫
TX

Xcent
0 (s)β̃p,fAPLS(s, t)ds. (5.14)

It is worth emphasizing that, in exact arithmetic, β̂p,fAPLS at (5.8) (resp. η̂p,fAPLS at
(5.11)) is identical to β̃p,fAPLS at (5.13) (resp. η̃p,fAPLS at (5.14)), because {V̂ iX(β) | 1 ≤ i ≤
p} and {ŵi | 1 ≤ i ≤ p} literally span the same space. Nevertheless, in practice β̃p,fAPLS and
η̃p,fAPLS stand out due to their numerical stability for finite precision arithmetic, whereas the
more explicit expressions of β̂p,fAPLS and η̂p,fAPLS make themselves preferred in theoretical
derivations.

There is one hyper-parameter to tune. We use the generalized cross-validation (GCV)
again; in particular, p is chosen within [1, pmax] as the minimizer of

GCV(p) = (n− p− 1)−2
n∑
i=1

∫
TY
{Yi(t)− η̃p,fAPLS(Xi)(t)}2dt,

where pmax depends upon FVE at (2.18) such that FVE(pmax) barely exceeds a pre-
determined close-to-one threshold, e.g., 99% in Section 5.3.

5.2.1 Asymptotic properties

Under regularity conditions, Proposition 5.2 (resp. Proposition 5.3) verifies the consistency
in L2 and/or supremum metric (in probability) of β̂p,fAPLS (resp. η̂p,fAPLS(X0)). In these
results, we allow p to diverge as a function of n, but its rate is capped to be at most O(

√
n)

if ‖vX‖2 < 1 and even slower otherwise. More discussion of the technical assumptions may
be found at the beginning of Appendix A.4.

Proposition 5.2. Assuming (C.A.4.1)–(C.A.4.5), as n diverges, ‖β̂p,fAPLS−β‖2 = op(1). If
we strengthen (C.A.4.5) to (C.A.4.6), then the convergence becomes uniform, i.e., ‖β̂p,fAPLS−
β‖∞ = op(1), with ‖ · ‖∞ denoting the supremum norm.
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Proposition 5.3. Given X0 ∼ X, conditions (C.A.4.1)–(C.A.4.5) suffice to imply conver-
gence to 0 (in probability) of ‖η̂p,fAPLS(X0)−η(X0)‖2 (i.e., ‖η̂p,fAPLS(X0)−η(X0)‖2 = op(1)),
while the uniform version (viz. ‖η̂p,fAPLS(X0) − η(X0)‖∞ = op(1)) is entailed jointly by
(C.A.4.1)–(C.A.4.4) and (C.A.4.6)–(C.A.4.7).

5.3 Numerical study

Our proposal fAPLS was compared with competitors in terms of ReISEE at (4.28), viz.

ReISEE = ‖β − β̂‖
2
2

‖β‖22
,

and/or relative integrated squared prediction error (ReISPE)

ReISPE =
∑
i∈IDtest ‖Yi − Ŷi‖

2
2∑

i∈IDtest ‖Yi − Ȳtrain‖22
,

where β̂ estimates β and Ŷi predicts Yi, 1 ≤ i ≤ n; here we denote by IDtest the index set
for testing. Subsequent comparisons involved other FPLS routes for FoFR, including Sig-
Comp [61] and (functional) NIPALS and SIMPLS [11]. We referred to their original source
codes posted respectively at R package FRegSigCom [62] and GitHub (https://github.

com/hanshang/FPLSR; accessed on June 12, 2020). Code trunks for our implementation are
currently available at GitHub too (https://github.com/ZhiyangGeeZhou/fAPLS; accessed
on June 12, 2020).

5.3.1 Simulation

Each of the 200 toy samples consisted of n (= 300) independent and identically distributed
(iid) pairs of trajectories (with 80% used for training). For simplicity, assume µX = µY = 0.
We took 100, 10 and 1 as the top three eigenvalues of VX , whereas λi,X = 0 for all i ≥ 4.
Correspondingly, the first three eigenfunctions of VX were respectively set to be (normalized)
shifted Legendre polynomials of order 2 to 4 [45, pp. 773–774] (these were also involved in
Section 3.3.1), say P2, P3 and P4, viz.

φ1,X(t) = P2(t) =
√

5(6t2 − 6t+ 1),

φ2,X(t) = P3(t) =
√

7(20t3 − 30t2 + 12t− 1),

φ3,X(t) = P4(t) = 3(70t4 − 140t3 + 90t2 − 20t+ 1).

As is known, these polynomials are of unit norm and mutually orthogonal on [0, 1] (this set
is both TX and TY in our simulation). Two sorts of slope functions were respectively given
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(b) β = (5.15), SNR = 1 & ρ = 0.9.
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(c) β = (5.15), SNR = 5 & ρ = 0.1.
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(d) β = (5.15), SNR = 5 & ρ = 0.9.

Figure 5.1: Boxplots of ReISEE values for simulation with β at (5.15). The four boxes in
each subfigure, from left to right, correspond to fAPLS, SigComp, NIPALS and SIMPLS,
respectively. All the plots come with the identical scale.

by

β(s, t) = P2(s)P2(t), (5.15)

β(s, t) = P4(s)P4(t). (5.16)

For our zero-mean Gaussian process ε, we chose the covariance function rε = rε(s, t) =
σ2ρ|s−t|, with ρ controlling the autocorrelation of ε and σ determined by the value of signal-
to-noise ratio (SNR = σ−1

√
var(‖Y ‖22)). Different values of ρ (resp. SNR) were involved:

0.1 and 0.9 (resp. 1 and 5). In total there were eight combinations of (β,SNR, ρ).
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(a) β = (5.15), SNR = 1 & ρ = 0.1.

0.00

0.25

0.50

0.75

1.00

fAPLS SigComp NIPALS SIMPLS

Re
IS

PE

(b) β = (5.15), SNR = 1 & ρ = 0.9.
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(d) β = (5.15), SNR = 5 & ρ = 0.9.

Figure 5.2: Boxplots of ReISPE values for simulation with β at (5.15). The four boxes in
each subfigure, from left to right, correspond to fAPLS, SigComp, NIPALS and SIMPLS,
respectively. All the plots come with the identical scale.

A common point shared by Figures 5.1–5.4 was that the two plots of the same row differ
little. That is, ρ, the degree of autocorrelation of error process, had little impact on estima-
tion or prediction. This phenomenon was consistent with observations in the multivariate
context. Fixing levels of β and ρ, as SNR became larger, each approach led to relatively
higher accuracy (or equivalently, lower values of ReISEE and ReISPE). Profiting from the
smoothness penalty, SigComp was the most accurate strategy under almost all the settings;
in general the prediction and estimation accuracy of fAPLS was comparable to that of NI-
PALS and SIMPLS. In particular, when the signal was absolutely strong (viz. β at (5.15)),
fAPLS produced satisfactory estimators (see Figure 5.1) and was fully competitive in terms
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(b) β = (5.16), SNR = 1 & ρ = 0.9.
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(d) β = (5.16), SNR = 5 & ρ = 0.9.

Figure 5.3: Boxplots of ReISEE values for simulation with β at (5.16). The four boxes in
each subfigure, from left to right, correspond to fAPLS, SigComp, NIPALS and SIMPLS,
respectively. All the plots come with the identical scale.

of prediction (see Figure 5.2). Encountering the weakest (both absolutely and relatively)
signal (viz. β at (5.16) and SNR = 1), fAPLS performed the worst: its estimation error
was the most fluctuating (see Figures 5.3a and 5.3b), though in this case fAPLS prediction
errors were still comparable with those given by NIPALS and SIMPLS (see Figures 5.4a
and 5.4b).

The biggest advantage of fAPLS was on the running time: under all the eight simulation
settings, it ran much faster than the other three (see Table 5.1). This phenomenon was
not surprising, because, compared with the other three competing routes, fAPLS involves
neither eigendecomposition nor choosing a tuning parameter for a penalty.
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(b) β = (5.16), SNR = 1 & ρ = 0.9.
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(d) β = (5.16), SNR = 5 & ρ = 0.9.

Figure 5.4: Boxplots of ReISPE values for simulation with β at (5.16). The four boxes in
each subfigure, from left to right, correspond to fAPLS, SigComp, NIPALS and SIMPLS,
respectively. All the plots come with the identical scale.

5.3.2 Application

We now revisit the two datasets described in Section 5.1. For DTI (resp. BG) data, we took
CCA FA tract profiles (resp. hip angle curves) as predictors and RCST FA tract profiles
(resp. knee angle curves) as responses. For each dataset, we repeated the random split for
200 times: taking roughly 20% of all the data points for testing and using the remainder
for training. After analyzing these training subsets, corresponding to each approach, we
generated 200 ReISPE values.

Outputs for DTI data from the four approaches were fairly close to each other in terms
of ReISPE (see Figure 5.5a), while BG data seemed in favor of SIMPLS (see Figure 5.5b).
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Figure 5.5: Boxplots of ReISPE values for two applications. The plots have identical scales.

We guess the relatively small sample size (= 39) of BG data was a cause deteriorating
fAPLS predictions.

There was a lack of dominant eigenvalues of VX for DTI data. As a consequence, pmax

became as high as 23, slowing down the implementation of fAPLS. That is, as is seen
in Table 5.1 that, compared with other cases, DTI dataset consumed much more time in
running fAPLS.

5.4 Concluding remarks

When fitting FoFR, we suggest fAPLS, a route of FPLS via Krylov subspaces. The fAPLS
estimator has a concise and explicit expression. Meanwhile, we introduce an alternative
and equivalent form of it, which stabilizes numerical outputs. fAPLS is competitive with
existing FPLS routes in terms of estimation and prediction errors and is less computationally
involved.

Up to this point we have avoided applications to geodata. Spatial correlation (i.e.,
if Xi and Xj , i 6= j are no longer mutually independent) can lead to inconsistency of
PLS estimators; see Singer et al. [86, Theorem 1] for the multivariate context with single-
vector-response. A naive correction, transplanted from Singer et al. [86, Section 4.1], is
to instead implement the regression on transformed observations (X∗i , Y ∗i ), i = 1, . . . , n,
such that, for all (s, t) ∈ TX ×TY , [X∗1 (s), . . . , X∗n(s)]> = V

−1/2
X (s)[X1(s), . . . , Xn(s)]> and

[Y ∗1 (t), . . . , Y ∗n (t)]> = V
−1/2
Y (t)[Y1(t), . . . , Yn(t)]>, with n×nmatrices VX(s) = [cov{Xi(s), Xj(s)}]

and VY (t) = [cov{Yi(t), Yj(t)}]. But it is even challenging to recover VX and VY sufficiently
accurately without specifying the dependence structure, since there is only one observation
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Table 5.1: Time consumed (in seconds) by 200 repeats in numerical studies (running on a
laptop with Intel® Core™ i5-5200U CPU @2×2.20 GHz and 8 GB RAM)

β∗(s, t) = P2(s)P2(t)
SNR = 1 SNR = 5

ρ = 0.1 ρ = 0.9 ρ = 0.1 ρ = 0.9
fAPLS 6.0 6.1 6.1 6.2
SigComp 363.4 372.7 365.2 373.2
NIPALS 197.6 199.1 195.0 197.6
SIMPLS 183.2 187.9 181.2 188.2

β∗(s, t) = P4(s)P4(t)
SNR = 1 SNR = 5

ρ = 0.1 ρ = 0.9 ρ = 0.1 ρ = 0.9
fAPLS 6.0 6.1 6.1 6.2
SigComp 363.4 372.7 365.2 373.2
NIPALS 197.6 199.1 195.0 197.6
SIMPLS 183.2 187.9 181.2 188.2

Application
DTI BG

fAPLS 94.1 2.5
SigComp 837.2 14.1
NIPALS 835.2 35.3
SIMPLS 125.5 20.0

for each i. Alternatively and more practically, one can target at correcting naive V̂X and
r̂XY for dependent subjects; Paul and Peng [71] offers a solution along these lines.

fAPLS has a heuristic extension to multiple functional covariates, i.e., associated with
each realization Yi ∼ Y , there are m > 1 functional covariates, say Xij ∼ X·j , 1 ≤ j ≤ m,
and correspondingly m coefficient functions β∗(j), 1 ≤ j ≤ m. In particular,

Yi(t) = µY (t) +
m∑
i=1
LXij (β∗(j)) + εi(t),

where Yi and Xij are assumed to be independent across all i. Following the idea of (5.3),
an ad hoc estimator for true (β∗(1), . . . , β∗(m)) is thus

(β̂(1)
fAPLS, . . . , β̂

(m)
fAPLS) = arg min

β(j)∈KSp(V̂X·jX·j ,β∗(j)), 1≤j≤m

1
m

m∑
i=1

∫
TY{

Yi(t)− Ȳi(t)−
m∑
j=1

∫
TX·j

(Xij − X̄·j)(s)β(j)(s, t)ds
}2

dt,

with X̄·j = m−1∑m
j=1Xij and domains TX·j varying with j. Of course, it becomes necessary

to introduce penalties once the above minimizer is not uniquely defined.

63



Chapter 6

Future perspectives

In this dissertation, approximations to β in fitting SoFR and FoFR are always taken from
linear spaces spanned by certain basis functions. It is also feasible to assume that the slope
function resides in other sorts of spaces, e.g., as in [106, 60, 89], a reproducing kernel Hilbert
space (RKHS) induced by a positive semi-definite bivariate kernel, say κ(·, ·). Typically
κ(·, ·) is made of Bernoulli polynomials [29]. A more data-driven option for κ(·, ·) may lead
to better performance.

Indeed it is promising to consider a model slightly more general than linear ones, say
the single index model [87]:

Y = f

(∫
T
Xβ

)
+ error, (6.1)

where underlying f(·) is allowed to be any smooth real-valued function defined on R. Pioneer
works like [68] could be of great help in extending FPLS for (6.1). [33, Eq. (1.1)] further
generalizes (6.1) to the nonparametric scalar-on-function regression:

Y = m(X) + error

with unspecified non-linear operator m : L2(TX) → R. The functional Nadaraya-Watson
(FNW) estimator [79] for m(·) involves a pre-defined semi-metric, say d(·, ·), virtually defin-
ing the similarity among paired predictor curves. Existing candidates for d(·, ·) include the
ones based on FPC, FPLS basis functions or the ensemble of FPC and FPLS via stacking
[36]. Another strategy for estimating m(·) is to restrict it to an RKHS, resulting in esti-
mators with closed forms [79]. Both FNW and RKHS approaches have the potential to be
improved by manipulating the extent of supervision.

Our proposals apply to more complex models including the (functional) generalized
linear models and proportional hazard (PH) models. Inherited from Marx [65], the basic
idea is to maximize likelihood via iteratively reweighted LS (IRLS, Green [41]) and then
to embed methods for linear models into each step of IRLS. Successful recent applications
of this strategy include [3, 98]: [3] classified curves by fitting logistic regression models; the
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joint modeling in [98] consisted of a functional linear mixed-effects model and a PH model,
incorporating APLS with IRLS.
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Appendix A

Technical details

A.1 Technical details for Chapter 2

Definition A.1. Before moving further, we recall a few mathematical terms.

(D.A.1.1) Weak convergence. A sequence {xn} in L2(TX) is said to weakly converge to
x∗ ∈ L2(TX) if limn→∞

∫
TX xnu =

∫
TX x

∗u holding for each u ∈ L2(TX).

(D.A.1.2) Weak sequential closedness. A subset C ⊆ L2(TX) is said to be weakly sequen-
tially closed if each weakly convergent sequence in C converges weakly to an
element in C.

(D.A.1.3) Weak sequential upper semi-continuity. A real-valued function f defined on
L2(TX) is weakly sequentially upper semi-continuous if f(x∗) ≥ limn→∞ f(xn)
holds for every sequence {xn} converging weakly to x∗.

(D.A.1.4) Weak sequential compactness. A subset C ⊆ L2(TX) is weakly sequentially
compact in L2(TX) if C is weakly sequentially closed and each sequence {xn} in
C has a weakly convergent subsequence.

Lemma A.1 is the cornerstone of our proof of the existence of wj,α and ŵj,α. Lemma A.2,
essential in proving Theorem 2.1, establishes the convergence of empirical T̂ ∗j,α in (2.15) to
its theoretical counterpart T ∗j,α in (2.13).

Lemma A.1. Suppose C ⊆ L2(TX) is a bounded and weakly sequentially closed set (D.A.1.2).
Suppose f : C → R is weakly sequentially upper semi-continuous (D.A.1.3). Then f has a
maximizer on C.

Proof of Lemma A.1. Firstly prove that f0 = supx∈C f(x) < ∞. To the contrary, suppose
that f0 =∞. Then there is a sequence xn in C such that f(xn) ≥ n for each n ∈ {1, 2, . . .}.
Since C is bounded and weakly sequentially closed (D.A.1.2), we may apply Alaoglu’s the-
orem (see, e.g., [6, Theorem A.56]) to see that C is weakly sequentially compact (D.A.1.4),
i.e., xn must have a subsequence xnk weakly converging (D.A.1.1) to x∗ ∈ C. Due to the
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weakly sequential upper semi-continuity (D.A.1.3) of f , we have

f(x∗) ≥ lim
k→∞

f(xnk) ≥ lim
k→∞

nk =∞.

This contradicts the assumption that f is real-valued.

Next, there always exists a sequence xn such that limn→∞ f(xn) = f0. Find a weakly
convergent (D.A.1.1) subsequence xnk with limit x∗ ∈ C. Thus,

f0 = sup
x∈C

f(x) ≥ f(x∗) ≥ lim
k→∞

f(xnk) = lim
n→∞

f(xn) = f0.

The sandwich rule indicates that x∗ ∈ C is a maximizer of f on C and completes this
proof.

Remark A.1. Although the assumption of Lemma A.1 can be further relaxed, Lemma A.1
suffices for our needs in this paper. For a more general version, please refer to Theorem 5.3
and Remark 5.4 in an unpublished 2013 technical report by Prof. Alen Alexanderian (https:
//aalexan3.math.ncsu.edu/articles/hilbert.pdf; accessed 21-Sep-2019).

Lemma A.2. Recall T ∗j,α(w) in (2.13) and T̂ ∗j,α(w) in (2.15). If ‖ŵk,α−wk,α‖2 converges to
zero in probability as n diverges for all k ∈ {1, . . . , j−1}, then T̂ ∗j,α(w) converges to T ∗j,α(w)
in probability uniformly over the unit ball, i.e., for all ε > 0,

lim
n→∞

Pr
{

sup
w:‖w‖2≤1

|T̂ ∗j,α(w)− T ∗j,α(w)| < ε

}
= 1.

Proof of Lemma A.2. The proof consists of three phases. First follow Eq. (5.1) in [28] to
conclude that, as n→∞,

V̂X(j,α)(β)→p VX(j,α)(β) and v̂X(j,α) →p vX(j,α) ,

both in the L2 sense. Moreover, for all ε > 0, there exists δ > 0 such that{∫
TX

∫
TX
{v̂X(j,α) − v̂X̂(j,α)}2 > ε

}
⊆
{∫

TX
{X(j,α) − X̂(j,α)}2 > δ

}
and {∫

TX
{V̂

X̂(j,α)(β)− V̂X(j,α)(β)}2 > ε

}
⊆
{∫

TX
{X(j,α) − X̂(j,α)}2 > δ

}
.

The Continuous Mapping Theorem guarantees the convergence to zero in probability of
‖X̂(j,α) −X(j,α)‖2 and further yields that, in the L2 sense,

V̂
X̂(j,α)(β)→p VX(j,α)(β) and v̂

X̂(j,α) →p vX(j,α) .

Recall V̂
X̂(j,α)(s, t) = n−1∑n

i=1 X̂
(j,α)
i (s)X̂(j,α)

i (t) and V̂
X̂(j,α)(β) = n−1∑n

i=1 X̂
(j,α)
i Ŷ

(j,α)
i .

For convenience, write

fj,α = fj,α(w) =
∫
TX

wVX(j,α)(β) and gj,α = gj,α(w) =
∫
TX

wVX(j,α)(w)
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and their empirical counterparts

f̂j,α = f̂j,α(w) =
∫
TX

wV̂
X̂(j,α)(β) and ĝj,α = ĝj,α(w) =

∫
TX

wV̂
X̂(j,α)(w).

By the Cauchy–Schwarz inequality, as n→∞,

sup
w:‖w‖2≤1

|fj,α(w)− f̂j,α(w)| = sup
w:‖w‖2≤1

∣∣∣∣∫
TX

w{VX(j,α)(β)− V̂
X̂(j,α)(β)}

∣∣∣∣
≤ ‖VX(j,α)(β)− V̂

X̂(j,α)(β)‖2 →p 0,
(A.1)

and

sup
w:‖w‖2≤1

|gj,α(w)− ĝj,α(w)| = sup
w:‖w‖2≤1

∣∣∣∣∫
TX

w{VX(j,α)(w)− V̂
X̂(j,α)(w)}

∣∣∣∣
≤ ‖vX(j,α) − v̂X̂(j,α)‖2 →p 0.

(A.2)

Next we deduce a continuous mapping theorem specific for uniform convergence in prob-
ability. Suppose m is a continuous R2 → R function. For arbitrary ε > 0, there are
wn,ε ∈ {w : ‖w‖2 ≤ 1} and δ > 0 such that{

sup
w:‖w‖2≤1

|m{fj,α(w), gj,α(w)} −m{f̂j,α(w), ĝj,α(w)}| > ε

}

⊆
{
|m{fj,α(wn,ε), gj,α(wn,ε)} −m{f̂j,α(wn,ε), ĝj,α(wn,ε)}| > ε

}
⊆
{
|fj,α(wn,ε)− f̂j,α(wn,ε)|2 + |gj,α(wn,ε)− ĝj,α(wn,ε)|2 > δ2/2

}
⊆
{
|fj,α(wn,ε)− f̂j,α(wn,ε)| > δ/2

}
∪ {|gj,α(wn,ε)− ĝj,α(wn,ε)| > δ/2}

⊆
{

sup
w:‖w‖2≤1

|fj,α(w)− f̂j,α(w)| > δ/2
}⋃{

sup
w:‖w‖2≤1

|gj,α(w)− ĝj,α(w)| > δ/2
}
,

which further indicates that

lim
n→∞

Pr
{

sup
w:‖w‖2≤1

|m{fj(w), gj,α(w)} −m{f̂j(w), ĝj,α(w)}| > ε

}
= 0.

Lemma A.2 follows from the identities T̂ ∗j,α = f̂2
j,αĝ

α/(1−α)−1
j,α and T ∗j,α = f2

j,αg
α/(1−α)−1
j,α .

Proof of Proposition 2.1. Denote the unit sphere and unit ball in L2(TX) by

S = {w ∈ L2(TX) : ‖w‖2 = 1} and B = {w ∈ L2(TX) : ‖w‖2 ≤ 1},

respectively. Write

W⊥j−1,α =
{
w ∈ L2(TX) :

∫
TX

wVX(w1,α) = · · · =
∫
TX

wVX(wj−1,α) = 0
}
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and
Ŵ⊥j−1,α =

{
w ∈ L2(TX) :

∫
TX

wVX(ŵ1,α) = · · · =
∫
TX

wVX(ŵj−1,α) = 0
}
.

Clearly, W⊥j−1,α∩B is weakly sequentially closed and bounded and Tα(w) is weakly sequen-
tially upper semi-continuous when restricted toW⊥j−1,α∩B. According to Lemma A.1, Tα(w)
has a maximizer within W⊥j−1,α ∩ B. This maximizer, say w∗, must locate in W⊥j−1,α ∩ S,
otherwise we can construct w′ = w∗/‖w∗‖2 with Tα(w′) = ‖w∗‖2α/(α−1)

2 Tα(w∗) > Tα(w∗).
Likewise, T̂α(w) has a maximizer in Ŵ⊥j−1,α ∩ S, too.

Proof of Proposition 2.2. Consider two special cases: when α = 0, as stated in Section 2.2.2,
we have β ∝ w1,0; for α = 1/2, combine Eqs. (3.4) and (3.11) in [28].

For any integer j ≥ 2 and α ∈ (0, 1/2) ∪ (1/2, 1), let

f = f(w) = cov
(
Y,

∫
TX

Xw

)
=
∫
TX

wVX(β),

g = g(w) =
∫
TX

wVX(w),

h = h(w) = ‖w‖22,

and, for all k ∈ {1, . . . , j − 1},

ek = ek(w) = 2
∫
TX

wVX(wk,α).

Then Tα = f2gα/(1−α)−1. The Lagrange multiplier rule for Banach spaces, as stated, e.g.,
in [107, pp. 270–271], ensures that there are real numbers δ1, . . . , δj , for each w ∈ L2(TX),

f(wj,α)gα/(1−α)−2(wj,α) [2g(wj,α) Df(wj,α)(w) + {α/(1− α)− 1}f(wj,α) Dg(wj,α)(w)]

= δj Dh(wj,α)(w) +
j−1∑
k=1

δk Dek(wk,α)(w), (A.3)

where Df(wj,α), Dg(wj,α), Dh(wj,α), and Dek(wk,α), all surjections from L2(TX) to R, are
the first-order (Fréchet) derivatives of f , g, h, and ek evaluated at wk,α, respectively; in
particular, for w ∈ L2(TX),

Df(wj,α)(w) =
∫
TX

wVX(β),

Dg(wj,α)(w) = 2
∫
TX

wVX(wj,α),

Dh(wj,α)(w) = 2
∫
TX

wwj,α,

and, for all k ∈ {1, . . . , j − 1},

Dek(wk,α)(w) = 2
∫
TX

wVX(wk,α).
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Since w at (A.3) is arbitrary, we see that

f(wj,α)gα/(1−α)−2(wj,α) [2g(wj,α)VX(β) + {α/(1− α)− 1} f(wj,α)VX(wj,α)]

= δjwj,α +
j−1∑
k=1

δkVX(wk,α). (A.4)

Cases with {α/(1 − α) − 1}f2(wj,α)gα/(1−α)−1(wj,α) = 0 and γj = 0 are both eliminated:
the former one corresponds to the uninteresting minimum of Tα, while the latter one leads
to the unconstrained maximizer of Tα which actually never falls on the unit sphere. By
Fredholm’s theorems (see, e.g., [34, 53]), solve the integral equation (A.4) to get

wj,α = Uj,α

γjβ +
j−1∑
k=1

γkwk,α

 ,
where Uj,α : L2(TX)→ L2(TX) takes w to {(VX + γ0I)−1 ◦ VX}(w), with γ0 = γ0(j, α) ∈ R
and identity operator I, and where γ1, . . . , γj accommodate j side-conditions (2.6). It follows
that, with Kj,α = Uj,α ◦ · · · ◦ U1,α,

span(w1,α, . . . , wj,α) = span{K1,α(β), . . . ,Kj,α(β)},

because, for each k ∈ {1, . . . , j}, wk,α (resp. Kk,α(β)) belongs to span{K1,α(β), . . . ,Kj,α(β)}
(resp. span(w1,α, . . . , wj,α)).

Finally, we verify that β ∈ span{K1,α(β),K2,α(β), . . .}. Introduce the orthogonal projection
operator Pp that takes w ∈ L2(TX) to

∑p
j=1 φj,X

∫
TX wφj,X . Write βp,FPC = Pp(β). Now,

the identity[{
λ1,X

λ1,X + γ0(1, α) I − (Pp ◦ U1,α)
}
◦ · · · ◦

{
λp,X

λp,X + γ0(p, α) I − (Pp ◦ Up,α)
}]

(βp,FPC) = 0

implies that

βp,FPC ∈ span{(Pp ◦K1,α)(βp,FPC), . . . , (Pp ◦Kp,α)(βp,FPC)}.

In view of (Pp ◦Kj,α)(βp,FPC) = (Pp ◦Kj,α)(β) for all j ∈ {1, . . . , p}, after taking limits in
the L2 sense as p→∞ on both sides of the following formula

βp,FPC ∈
{
Pp(w) : w ∈ span{K1,α(β),K2,α(β), . . .}

}
,

we conclude the proof.

Proof of Proposition 2.3. For simplicity, we assume no tie among eigenvalues of operator
VX . Then ∫

TX
φj,XVX(φj′) =

{
λj,X if j = j′,

0 if j 6= j′.

We now prove the proposition by mathematical induction.
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For any w (6= φ1,X) on S with
∫
TX wVX(w) > 0, there exists α0 > 2/3 such that, for all

α ∈ (α0, 1),

0 <
{∫

TX
wVX(w)/λ1,X

}α/(1−α)−1
<

cov2{Y − µY ,
∫
TX Xφ1,X}

cov2{Y − µY ,
∫
TX Xw}

,

because 0 <
∫
TX wVX(w)/λ1,X < 1 and cov2{Y − µY ,

∫
TX Xφ1,X} > 0. It follows that

Tα(φ1,X)/Tα(w) > 1 for all α ∈ (α0, 1) and hence ‖w1,α − φ1,X‖2 → 0 as α→ 1.

Suppose we have wk,α = φk for all k ∈ {1, . . . , j − 1} and j ≥ 2. For w (6= φp,X) satisfying
constraints (2.6) and

∫
TX wVX(w) > 0, along with sufficiently large α, the inequality

0 <
{∫

TX
wVX(w)/λj,X

}α/(1−α)−1
<

cov2(Y,
∫
TX X)

cov2(Y,
∫
TX Xw) ,

always holds. Thus, as α → 1, φj,X = arg max w Tj,α(w) subject to (2.6) and hence wj,α =
φj,X .

Proof of Proposition 2.4. Define S and W⊥j−1,α as in the proof of Proposition 2.1. Appar-
ently, Tα(w) = T ∗j,α(w) for all w ∈W⊥j−1,α. That is, wj,α is also the solution to

maximize
w

T ∗j,α(w)

subjectto ‖w‖2 = 1 and
∫
TX

wVX(w1,α) = · · · =
∫
TX

wVX(wj−1,α) = 0. (A.5)

For any w ∈ S, construct w∗ ∈ S proportional to

w −
j−1∑
k=1

∫
TX wVX(wk,α)∫

TX wk,αVX(wk,α) wk,α.

Due to ∥∥∥∥∥∥w −
j−1∑
k=1

∫
TX wVX(wk,α)∫

TX wk,αVX(wk,α) wk,α

∥∥∥∥∥∥
2

≤ 1

and α/(α− 1) < 0 (excluding the trivial case α = 0), it is easy to verify that w∗ ∈ W⊥j−1,α
and

T ∗j,α(w∗) = T ∗j,α(w)

∥∥∥∥∥∥w −
p−1∑
j=1

∫
TX wVX(wj,α)∫

TX wj,αVX(wj,α) wj,α

∥∥∥∥∥∥
2α/(α−1)

2

≥ T ∗j,α(w).

This inequality becomes an equality only when w ∈ W⊥j−1,α; in other words, it suffices to
drop side-conditions (A.5) when maximizing T ∗j,α(w) subject to ‖w‖2 = 1.

Proof of Proposition 2.5. Replace population values in the proof of Proposition 2.4 with
their empirical counterparts.
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Proof of Proposition 2.6. Let h = h(w) = ‖w‖22, gj,α = gj,α(w) =
∫
TX wVX(j,α)(w), and

fj,α = fj,α(w) = cov
{
Y (j,α),

∫
TX

X(j,α)w

}
=
∫
TX

wVX(j,α)(β).

Then Tj,α = f2
j,αg

α/(1−α)−1
j,α and wj,α (2.5) must be a solution to the constrained optimization

problem

maximize
w

f2
j,α(w)

subject to gj,α(w) = g0 and h(w) = 1

for certain g0 ∈ (0, λ1,X(j,α) ], where λk,X(j,α) is the kth largest eigenvalue of operator VX(j,α)

with corresponding eigenfunction φk,X(j,α) .

Check the case with g0 = λ1,X(j,α) > 0 (i.e., the functional principal component basis).
Provided that λ1,X(j,α) has multiplicity = m ≥ 1, we can write

wj,α = a1φ1,X(j,α) + · · ·+ amφm,X(j,α) ,

where a1, . . . , am ∈ [−1, 1] and a2
1 + · · · + a2

m = 1. The Cauchy–Schwarz inequality implies
that the maximum of

f2
j,α(w) =

{
m∑
k=1

ak

∫
TX

φk,X(j,α)VX(j,α)(β)
}2

=
(

m∑
k=1

ajλk,X(j,α)

∫
TX

βφk,X(j,α)

)2

is achieved if and only if m-vector

(a1, . . . , am) ∝
(
λ1,X(j,α)

∫
TX

βφ1,X(j,α) , . . . , λm,X(j,α)

∫
TX

βφm,X(j,α)

)
.

Therefore, as δ(j,α) → −1,

wj,α ∝
∞∑
k=1

λk,X(j,α)
∫
TX βφk,X(j,α)

λk,X(j,α) + λ1,X(j,α)/δ(j,α) φk,X(j,α) .

Unless g0 = λ1,X(j,α) > 0, apply the Lagrange multiplier rule for Banach spaces as in the
proof of Proposition 2.2 and arrive at identity

fj,α(wj,α)VX(j,α)(β) = δ1VX(j,α)(wj,α) + δ2wj,α,

with δ1, δ2 ∈ R, where δ2 must be nonzero as the the maximizer of T ∗j,α never falls on the
unit sphere. Also, we rule out the case of fj,α(wj,α) = 0 corresponding to the uninteresting
minimum of T ∗j,α.

If δ1 = 0, the functional continuum basis reduces to functional PLS basis and wj,α ∝
VX(j,α)(β). When δ(j,α) is close enough to 0, λ1,X(j,α)/δ(j,α) becomes dominant over λk,X(j,α)

for all k ∈ Z+, i.e., λk,X(j,α) + λ1,X(j,α)/δ(j,α) and λk′,X(j,α) + λ1,X(j,α)/δ(j,α) approach each
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other for k 6= k′. Accordingly, as δ(j,α) → 0,

wj,α ∝
∞∑
k=1

λk,X(j,α)φk,X(j,α)

∫
TX

βφk,X(j,α) ∝
∞∑
k=1

λk,X(j,α)
∫
TX βφk,X(j,α)

λk,X(j,α) + λ1,X(j,α)/δ(j,α) φk,X(j,α) .

In the case with nonzero δ1, solving the following inhomogeneous Fredholm integral equation
w.r.t. wj,α,

fj,α(wj,α)VX(j,α)(β)/δ1 = δ2wj,α/δ1 + VX(j,α)(wj,α),

we also obtain the solution

wj,α ∝

{VX(j,α) +
λ1,X(j,α)

δ(j,α) I

}−1

◦ VX(j,α)

 (β) =
∞∑
k=1

λk,X(j,α)
∫
TX βφk,X(j,α)

λk,X(j,α) + λ1,X(j,α)/δ(j,α) φk,X(j,α) ,

where δ(j,α) = δ1λ1,X(j,α)/δ2. The existence and uniqueness of this solution is guaranteed by
Fredholm’s theorems [53] which hold here because vX(j,α) ∈ L2(T2

X).

The last phase of this proof is to ascertain that δ(j,α) /∈ (−∞,−1). Without loss of generality,
assume that

∫
TX φk,X(j,α)VX(j,α)(β) ≥ 0 for all k, otherwise we can use −φk,X(j,α) instead.

The identity
∑∞
k=1 λk,X(j,α) <∞ further indicates that, if δ(j,α) ∈ (−∞,−1), then there must

exist k0 such that λk0,X(j,α) + λ1,X(j,α)/δ(j,α) is negative. Under this circumstance, changing
the sign of it will increase f2

j,α(wj,α) without altering gj,α(wj,α) or violating the unit norm
constraint. This contradicts the definition of wj,α and hence completes the proof.

Proof of Theorem 2.1. We resort to an argument similar to the proof adopted by [5, Theo-
rem 4.1.1] and extend it from the finite-dimensional setting to the functional context. The
unit ball B is as defined in the proof of Proposition 2.1. Start with j = 1. Let N1,δ be a
neighborhood in L2(TX) containing w1,α, namely, for δ ∈ (0, 2),

N1,δ = {w ∈ L2(TX) : ‖w − w1,α‖2 < δ}.

Verify that B\N1,δ is weakly sequentially closed and bounded and T ∗1,α(w) is weakly sequen-
tially upper semi-continuous within B \N1,δ. Then Lemma A.1 guarantees the existence of
maxw∈B\N1,δ T

∗
1,α(w).

Write
ε = T ∗1,α(wj,α)− max

w∈B\N1,δ
T ∗1,α(w) > 0

and observe that{
sup

w:‖w‖2=1
|T̂ ∗1,α(w)− T ∗1,α(w)| < ε

2

}

⊆
{
T ∗1,α(ŵp,α) > T̂ ∗1,α(ŵ1,α)− ε

2

}
∪
{
T̂ ∗1,α(wp,α) > T ∗1,α(w1,α)− ε

2

}
⊆
{
T ∗1,α(ŵ1,α) > T̂ ∗1,α(w1,α)− ε

2

}
∪
{
T̂ ∗1,α(w1,α) > T ∗1,α(w1,α)− ε

2

}
⊆
{
T ∗1,α(ŵ1,α) > T ∗1,α(w1,α)− ε

}
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⊆ {ŵ1,α ∈ N1,δ} .

By Lemma A.2, limn→∞ Pr(ŵ1,α ∈ N1,δ) = 1. Considering the arbitrariness of δ, we conclude
that ‖ŵ1,α − w1,α‖2 converges to zero in probability as n diverges. If the convergence of
ŵ1,α, . . . , ŵj−1,α holds, the prerequisite of Lemma A.2 is fulfilled. Mimicking the argument
for j = 1, we deduce the convergence to zero in probability of ‖ŵj,α −wj,α‖2 as n→∞ for
arbitrarily given j.

As for β̂p,α in (2.11) and η̂p,α(X0) in (2.12), their convergence can be proved after we combine
identities (A.1) and (A.2) with the convergence of ŵj,α and employ the continuous mapping
theorem for convergence in probability.

Proof of Proposition 2.7. Follow the same argument as in the proof for Proposition 2.6 but
substitute empirical items for the population counterparts. Meanwhile, take the following
identity into consideration:

λ̂
k,X̂(j,α)

∫
TX

βφ̂
k,X̂(j,α) =

∫
TX

βV̂
X̂(j,α)

(
φ̂
k,X̂(j,α)

)
= ĉov

{∫
TX

X̂(j,α)β,
∫
TX

X̂(j,α)φ̂
k,X̂(j,α)

}
= ĉov

{
Ŷ (j,α),

∫
TX

X̂(j,α)φ̂
k,X̂(j,α)

}
.

This completes the argument.

A.2 Technical details for Chapter 3

We use the following conditions in the theoretical part of Chapter 3.

(C.A.2.1) The true relationship between Y = 1(X ∈ Π1) and X is linear, i.e., there is
β ∈ L2(TX) such that SoFR (1.3) holds.

(C.A.2.2) {
∫
TX βp,α(µ[1]

X − µ
[0]
X )}2/ var{

∫
TX βp,α(X − µ[k]

X ) | X ∈ Πk} diverges as p→∞ for
each α and k.

(C.A.2.3) Realizations of X are twice continuously differentiable and ‖X ′‖2 is bounded
almost surely.

(C.A.2.4) τ1, . . . , τN are eigenvalues of Pen−1/2WPen−1/2 such that τ1 = τ2 = 0, τ3 ≥
· · · ≥ τN , and C1(l − 2)−4 ≤ τl ≤ C2(l − 2)−4 for l ≥ 3, with neither C1 nor C2
depending on l or N .

(C.A.2.5) M → ∞ and M−1 max(θ∗, θ1, . . . , θn) → 0 as n → ∞, where θ∗ > 0 is the
smoothing parameter involved in recovering X∗.

(C.A.2.6) For all j (≤ p ≤ rank(ĈcW1/2)), Tj,α(w) has a unique maximizer (up to sign) in
{w ∈ L2(TX) : ‖w‖2 = 1}.
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Under (C.A.2.1) with π0 = 1/2, CCC-L and PLCC are equivalent to each other, because
βp,FPLS (3.4) and βp,α (2.8) share the same limit as p → ∞. It is not necessary to hold
(C.A.2.1) for the (asymptotically) perfect classification for CCC-L. Condition (C.A.2.2) im-
plies that, after projected to the direction of βp,α, as p diverges, the within-group covariance
becomes more and more ignorable when compared with the between-group one, i.e., the two
groups become more and more separable. It is analogous to assumption (4.4)(d) in [27] and
assures us of the (asymptotic) perfect classification of CCC-L. Assumptions (C.A.2.3) and
(C.A.2.4) jointly guarantee that the smoothed curves converge to the true ones as observa-
tions become denser and denser; although the latter one has been proved by [95, Eq. 4] for
natural splines, we have little knowledge on whether it still holds for B-splines and hence
have to assume it following [23, Eq. A4.3.1]. If we have extra regularity conditions (C.A.2.5)
and (C.A.2.6) (identical to (C.2.1)), the proposed empirical implementation in Section 3.2.1
turns out to be consistent in probability.

Proof of Proposition 3.1. Write γp,α =
∫
TX βp,α(µ[1]

X − µ
[0]
X ) and R[k]

p,α =
∫
TX βp,α(X∗ − µ[k]

X ).
Recalling (3.6), σ2

[k](βp,α) = var(R[k]
p,α | X ∈ Πk), k = 0, 1. Thus,

Pr{DL(X∗ | βp,α) < 0 | X∗ ∈ Π0}

= Pr
{

(R[0]
p,α − γp,α)2 − (R[0]

p,α)2 < 2σ2
[0](βp,α) ln 1− π0

π0

∣∣∣∣X∗ ∈ Π0

}

= Pr
[

R
[0]
p,α

σ[0](βp,α) >
γ2
p,α + 2σ2

[0](βp,α) ln{π0/(1− π0)}
2γσ[0](βp,α)

∣∣∣∣∣X∗ ∈ Π0

]

≤
4σ2

[0](βp,α)/γ2
p,α[

1 + 2γ−2
p,ασ2

[0](βp,α) ln{π0/(1− π0)}
]2 ,

where the upper bound is derived from Chebyshev’s inequality and the identity that ran-
dom variable R[0]

p,α/σ[0](βp,α) (conditional on the event X∗ ∈ Π0) is of zero mean and unit
variance. Similarly, we deduce that

Pr{DL(X∗ | βp,α) > 0 | X∗ ∈ Π1} ≤
4σ2

[1](βp,α)/γ2
p,α[

1 + 2γ−2
p,ασ2

[0](βp,α) ln{(1− π0)/π0}
]2 .

Eventually, as p diverges, the zero-convergence of

err{DL(X∗ | βp,α)}
= π0 Pr{DL(X∗ | βp,α) < 0 | X∗ ∈ Π0}+ (1− π0) Pr{DL(X∗ | βp,α) > 0 | X∗ ∈ Π1}

results from (C.A.2.2) (i.e., σ2
[k](βp,α)/γ2

p,α → 0 as p diverges for each α and k).

Proof of Proposition 3.2. Recall ∆t = |TX |/M and matrices ψ (3.10), ĉi (3.11), Ψ (3.12),
W (3.14) and Pen (3.13), all defined in Section 3.2.1. Introduce operator PBSN such that,
for each f ∈ L2(TX), PBSN f is the orthogonal projection of f onto BSN (3.8), i.e.,

PBSN f =
[∫

TX
fψ1, . . . ,

∫
TX

fψN

]
W−1ψ.
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For each i, specifically, PBSNXi = c>i ψ with

ci = W−1
[∫

TX
Xiψ1, . . . ,

∫
TX

XiψN

]>
.

We chop ‖X̂i −Xi‖2 into two segments: ‖PBSNXi −Xi‖2 and ‖X̂i −PBSNXi‖2. Combined
with [63, Theorem 16], condition (C.A.2.3) implies

‖PBSNXi −Xi‖2 = Op(∆t) = Op(M−1) as M →∞.

Further, condition (C.A.2.3) allows us to follow [19, Theorem 5] to verify that, as M →∞,
‖W−∆tΨ>Ψ‖2F = O(M−2), ‖W−∆tΨ>Ψ−∆tθiPen‖2F = O(1), and∥∥∥∥∥

[∫
TX

Xiψ1, . . . ,
∫
TX

XiψN

]>
−∆tX>i Ψ

∥∥∥∥∥
2

F

= Op(M−3),

where ‖ · ‖F denotes the Frobenius norm. Let τ1, . . . , τN be eigenvalues of

Z = Pen−1/2WPen−1/2

with corresponding eigenvectors e1, . . . , eN . Noting that limN→∞maxl1,l2 |
∫
TX ψl1ψl2 | and

limN→∞maxl1,l2 |
∫
TX ψ

′′
l1
ψ′′l2 | are both finite, the squared second trunk

‖X̂i − PBSNXi‖22
= (ĉ>i − c>i )W(ĉi − ci)

=
{

∆tX>i Ψ(∆tΨ>Ψ + ∆tθiPen)−1 − c>i
}

W
{

(∆tΨ>Ψ + ∆tθiPen)−1∆tΨ>Xi − ci
}

= c>i Pen1/2
{
Z (Z + ∆tθiIN )−1 − IN

}
Z
{

(Z + ∆tθiIN )−1Z− IN
}

Pen1/2ci + op(1)

= (∆t)2θ2
i c
>
i Pen1/2 (Z + ∆tθiIN )−1 Z (Z + ∆tθiIN )−1 Pen1/2ci + op(1)

=
N∑
l=1

τl

(θ−1
i ∆t−1τl + 1)2 (c>i Pen1/2el)2 + op(1)

≤ ∆tθi
N1−1∑
l=1

τl(c>i Pen1/2el)2 +
N∑

l=N1

τl(c>i Pen1/2el)2 + op(1)

= op(1) as M →∞,

where N1 ∈ Z+ is so defined that τN1 = max{τN , (∆tθi)1/2} and diverges as M →∞ owing
to (C.A.2.4).

Proof of Proposition 3.3. Recall PBSN defined in the proof of Proposition 3.2. Writing
w̃j,α = PBSN w̃j,α+(I −PBSN )w̃j,α, with identity operator I, one has 0 < ‖PBSN w̃j,α‖2 ≤ 1
and

∫
TX X̂iPBSN w̃j,α =

∫
TX X̂iw̃j,α since X̂i ∈ BSN for all i. If 0 < ‖PBSN w̃j,α‖2 < 1 (i.e.,

(I − PBSN )w̃j,α > 0), then ‖PBSN w̃j,α‖
−1
2 PBSN w̃j,α satisfies that

T̃ ∗j,α

(
PBSN w̃j,α
‖PBSN w̃j,α‖2

)
= ‖PBSN w̃j,α‖

2α/(α−1)
2 T̃ ∗j,α(w̃j,α) > T̃ ∗j,α(w̃j,α),
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which violates the definition of w̃j,α. and reaches a contradiction. This contradiction implies
that (I − PBSN )w̃j,α must be 0.

Proof of Proposition 3.4. Under conditions (C.A.2.3)–(C.A.2.6), fixing p, Proposition 3.2
and Theorem 2.1 assure us of the zero-convergence (in probability) of ‖β̃p,α − βp,α‖2 as n
diverges. As Proposition 3.2 applies to X∗, the convergence of empirical classifiers follows.

A.3 Technical details for Chapter 4

A.3.1 A glance at the local linear smoother

Let κ = κ(·) be a function on R satisfying (C.A.3.8)–(C.A.3.10) in A.3.2; examples include
the symmetric Beta family [30, Eq. 2.5] that takes the Epanechnikov kernel κ(t) = .75(1−
t2)1(|t| ≤ 1) as a special case. LLS actually falls into the framework of weighted least squares
(WLS, [30, pp. 58–59]). Given integersM andm (with values specified in the following cases
(A.3.i)–(A.3.iv)), matrices 1M (viz. the M -vector of ones), u (viz. an M -vector), T (viz. an
M ×m matrix) and W (viz. an M ×M non-negative definite matrix), one solves

min
a0,a

(u− a01M −Ta)>W(u− a01M −Ta)

for a0 ∈ R and m-vector a = [a1, . . . , am]>. The actual estimate uses only the WLS solution
for a0 given by

â0 = (1>MW1/2P⊥W1/2TW1/21M )+1>MW1/2P⊥W1/2TW1/2u

= [1>M{W−WT(T>WT)+T>W}1M ]+1>M{W−WT(T>WT)+T>W}u (A.6)

in which the superscript “+” denotes the Moore-Penrose generalized inverse and

P⊥W1/2T = I−W1/2T(T>WT)+T>W1/2.

In particular, four different combinations of u, T and W yield estimates of the four targets
of interest, respectively:

(A.3.i) Given t ∈ TX , estimate µX(t) by µ̂X(t) = â0 (A.6) with
∑

1≤i≤n Li-vectors

u =
[
X̃1(T11), . . . , X̃1(T1L1), . . . , X̃n(Tn1), . . . , X̃n(TnLn)

]>
and

T = [t− T11, . . . , t− T1L1 , . . . , t− Tn1, . . . , t− TnLn ]>

and
∑

1≤i≤n Li ×
∑

1≤i≤n Li matrix

W = diag
{
κ

(
t− T11
hµX

)
, . . . , κ

(
t− T1L1

hµX

)
, . . . , κ

(
t− Tn1
hµX

)
, . . . , κ

(
t− TnLn
hµX

)}
.
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(A.3.ii) Write Ȳ = n−1∑
1≤i≤n Yi. For arbitrary t ∈ T, v̂C(t) = â0 − Ȳ · µ̂X(t), where â0

follows (A.6) with
∑

1≤i≤n Li-vectors

u =
[
{X̃1(T11)− µ̂X(T11)}(Y1 − Ȳ ), . . . , {X̃1(T1L1)− µ̂X(T1L1)}(Y1 − Ȳ ), . . . ,

{X̃n(Tn1)− µ̂X(Tn1)}(Yn − Ȳ ), . . . , {X̃n(TnLn)− µ̂X(TnLn)}(Yn − Ȳ )
]>

and T = [t− T11, . . . , t− T1L1 , . . . , t− Tn1, . . . , t− TnLn ]> as well as
∑

1≤i≤n Li ×∑
1≤i≤n Li matrix

W = diag
{
κ

(
t− T11
hvXY

)
, . . . , κ

(
t− T1L1

hvXY

)
, . . . , κ

(
t− Tn1
hvXY

)
, . . . , κ

(
t− TnLn
hvXY

)}
.

(A.3.iii) Fix s, t ∈ TX . Then v̂A(s, t) = â0 − µ̂X(s)µ̂X(t), where â0 is fitted as (A.6) with∑
1≤i≤n Li(Li − 1)-vector

u =
[
. . . , X̃i(Ti`)X̃i(Ti1), . . . , X̃i(Ti`)X̃i(Ti,`−1),

X̃i(Ti`)X̃i(Ti,`+1), . . . , X̃i(Ti`)X̃i(TiLi) . . .
]>
,

∑
1≤i≤n Li(Li − 1)× 2 matrix

T =
[
. . . s− Ti` · · · s− Ti` s− Ti` · · · s− Ti` · · ·
· · · t− Ti1 · · · t− Ti,`−1 t− Ti,`+1 · · · t− TiLi · · ·

]>

and
∑

1≤i≤n Li(Li − 1)×
∑

1≤i≤n Li(Li − 1) matrix

W = diag
{
. . . , κ

(
s− Ti`
hvX

)
κ

(
t− Ti1
hvX

)
, . . . , κ

(
s− Ti`
hvX

)
κ

(
t− Ti,`−1
hvX

)
,

κ

(
s− Ti`
hvX

)
κ

(
t− Ti,`+1
hvX

)
, . . . , κ

(
s− Ti`
hvX

)
κ

(
t− TiLi
hvX

)
, . . .

}
.

(A.3.iv) Rotate the two tuple (Ti`1 , Ti`2) to become[
T#
i`1

T#
i`2

]
=
[ √

2/2
√

2/2
−
√

2/2
√

2/2

] [
Ti`1
Ti`2

]
.

For arbitrarily fixed t ∈ TX , ṽ(t) = â0 − µ̂2
X(t), where â0 follows (A.6) with∑

1≤i≤n Li-vector

u =
[
X̃2

1 (T#
11) . . . X̃2

1 (T#
1L1

) . . . X̃2
n(T#

n1) . . . X̃2
n(T#

nLn
)
]>
,
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∑
1≤i≤n Li × 2 matrix

T =
[

−T#
11 · · · −T#

1Li · · · −T#
n1 · · · −T#

nLi

t/
√

2− T#
11 · · · t/

√
2− T#

1L1
· · · t/

√
2− T#

n1 · · · t/
√

2− T#
nLn

]>

and
∑

1≤i≤n Li ×
∑

1≤i≤n Li matrix

W = diag
{
κ

(
t/
√

2− T#
11

hσe

)
, . . . , κ

(
t/
√

2− T#
1L1

hσe

)
, . . . ,

κ

(
t/
√

2− T#
n1

hσe

)
, . . . , κ

(
t/
√

2− T#
nLn

hσe

)}
.

Then, as suggested in [104, 105], σ2
e is estimated by averaging ṽ(t) − v̂X(t, t) over

a truncated subinterval of TX = [0, 1], say T∗X = [1/4, 3/4], i.e.,

σ̂2
e = 2

∫
T∗X
{ṽ(t)− v̂X(t, t)}dt.

Bandwidths hµX , hvXY , hvX and hσe are all tuned through GCV, i.e., they are chosen to
minimize

u>W1/2P⊥W1/2[1M ,T]W
1/2u

{
∑n
i=1 Li − tr(PW1/2[1M ,T])}2

= u>{W−W[1M ,T]([1M ,T]>W[1M ,T])+[1M ,T]>W}u
{
∑n
i=1 Li − tr(PW1/2[1M ,T])}2

with their respective corresponding values of u, T and W. [30, Eq. 4.3] suggested a rule of
thumb for the bandwidth, i.e., a crude guess of bandwidth.

A.3.2 Assumptions, lemmas, and proofs

Recall that trajectories are observed at time points Ti`
iid∼ T , the numbers of observations are

Li
iid∼ L, predictor trajectories are Xi

iid∼ X, scalar responses are Yi
iid∼ Y and measurement

errors are ei`
iid∼ e and εi`

iid∼ ε. Write f1, f2 and f3 as respective pdfs of Ti`, (Ti`, X̃i(Ti`))
and (Ti`1 , Ti`2 , X̃i(Ti`1), X̃i(Ti`2)) in which X̃i(Ti`) = Xi(Ti`) + σeei` are noisy observations.
Regularity conditions (C.A.3.1)–(C.A.3.7) are imposed on the above random variables and
pdfs. Some other restrictions are necessary for hyper-parameters in LLS: specifically, kernel
function κ is assumed to fulfill (C.A.3.8)–(C.A.3.10); taking bandwidths hµX , hvX , hσe and
hvXY as functions of n, (C.A.3.11)–(C.A.3.14) require proper convergence rates of them
as n diverges. Condition (C.A.3.15) (resp. (C.A.3.16)) ensures the consistency of PLEASS
estimators in the L2 (resp. L∞) sense. These conditions limit the highest divergence rate
of p = p(n): as n diverges, p is chosen to diverge not faster than O(ζ−1

2 ) = O(n1/2h2
vX

),
where ζ2 is defined as in (C.A.3.12). This restriction on p is fairly close to the setting in
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[28, Theorem 5.3], where the discussion is limited to the case of ‖vX‖2 < 1 (reachable by
changing the scale on which Xi is measured). In detail we suppose:

(C.A.3.1) E(L) <∞ and Pr(L ≥ 2) > 0.

(C.A.3.2) µX and vXY are both continuous on TX . vX is continuous on T2
X . Hence ‖µX‖∞,

‖vXY ‖∞ and ‖vX‖∞ are all finite.

(C.A.3.3) Xi, Ti1, . . . , TiLi and ei1, . . . , eiLi are all independent of Li in the sense that, given
Li = `, Xi, Ti1, . . . , Ti` and ei1, . . . , ei` are all independent and the conditional
laws are those of X, T , and e.

(C.A.3.4) E{X(T )− µX(T ) + eσe}4 <∞.

(C.A.3.5) (d2/dt2)f1 exists and is continuous on TX with pdf f1 supported on TX .

(C.A.3.6) (d2/dt2)f2 exists and is uniformly continuous on TX × R.

(C.A.3.7) {d2/(dt1dt2)}f3, (d2/dt21)f3 and (d2/dt22)f3 all exist and are uniformly continu-
ous on T2

X × R2.

(C.A.3.8) Kernel function κ in Appendix A.3.1 is symmetric (w.r.t. the y axis) and non-
negative on R such that

∫
R κ(t)dt = 1,

∫
R t

2κ(t)dt <∞, and
∫
R κ

2(t)dt <∞.

(C.A.3.9) Kernel function κ is compactly supported, i.e., it has a bounded support.

(C.A.3.10) The Fourier transform of κ is absolutely integrable, i.e.,
∫
R |
∫
R e
−istκ(s)ds|dt <

∞.

(C.A.3.11) hµX → 0, nh4
µX
→∞, nh6

µX
= O(1), and ζ1 = n−1/2h−1

µX
= o(1), as n→∞.

(C.A.3.12) hvX → 0, nh6
vX
→∞, nh8

vX
= O(1), and ζ2 = n−1/2h−2

vX
= o(1), as n→∞.

(C.A.3.13) hσe → 0, nh4
σe → ∞, nh6

σe = O(1), and ζ3 = n−1/2(h−2
vX

+ h−1
σe ) = o(1), as

n→∞.

(C.A.3.14) hvXY → 0, nh4
vXY
→∞, nh6

vXY
= O(1), and ζ4 = n−1/2(h−1

µX
+ h−1

vXY
) = o(1), as

n→∞.

(C.A.3.15) As n → ∞, p = p(n) = O(ζ−1
2 ). Additional requirements on p vary with the

magnitude of ‖vX‖2; they also depend on τp, the smallest eigenvalue of Dp at
(A.11).

• If ‖vX‖2 ≥ 1, then the two terms τ−1
p p‖vX‖2p2 ζ4 max(1, τ−1

p p‖vX‖2p2 ) and
τ−1
p p2‖vX‖2p2 ζ2 max(1, τ−1

p p‖vX‖2p2 ) are both of order o(1);
• if ‖vX‖2 < 1, then τ−2

p max(ζ2, ζ4) and τ−1
p max(ζ2, ζ4) are both of order

o(1).

(C.A.3.16) Condition (C.A.3.15) holds with the L2-norm ‖·‖2 replaced by the infinity norm
‖ · ‖∞.

Among the above conditions, the first fourteen are inherited from [104, 105]. So is Lemma A.3
that states the convergence rate of estimators through LLS in Appendix A.3.1.
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Lemma A.3. Under assumptions (C.A.3.1)–(C.A.3.14), as n→∞,

‖µ̂X − µX‖∞ = Op(ζ1) = op(1),
‖v̂X − vX‖∞ = Op(ζ2) = op(1),
|σ̂2
e − σ2

e | = Op(ζ3) = op(1),

and

‖v̂XY − vXY ‖∞ = Op(ζ4) = op(1), (A.7)

where ζ1, ζ2, ζ3 and ζ4 are respectively defined in (C.A.3.11)–(C.A.3.14).

Proof of Lemma A.3. Synthesize [104, Theorem 1 and Corollary 1] and [105, Lemma A.1].

Lemma A.4. Assume (C.A.3.1)–(C.A.3.14) and that there is a C > 0 such that for all n
we have p ∈ [1, Cζ−1

2 ]. Then, for each ε > 0, there are positive constants C1 and C2 and an
integer n0 > 0 such that, for each n > n0,

Pr

 p⋂
j=1
{‖VjX(β)− V̂jX(β)‖2 ≤ C1‖vX‖j−1

2 ζ4 + C2(j − 1)‖vX‖j−1
2 ζ2}

 ≥ 1− ε,

and

Pr

 p⋂
j=1
{‖VjX(β)− V̂jX(β)‖∞ ≤ C1‖vX‖j−1

∞ ζ4 + C2(j − 1)‖vX‖j−1
∞ ζ2}

 ≥ 1− ε.

Proof of Lemma A.4. Recall definitions of VX at (1.1) and V̂X at (2.2). Since VX(β) = vXY
and V̂X(β) = v̂XY , Lemma A.4 reduces to (A.7) when j = 1. For integer j ≥ 2 and each
t ∈ TX , the inequality that

|V̂jX(β)(t)− VjX(β)(t)|
= |V̂X{V̂j−1

X (β)− Vj−1
X (β)}(t) + (V̂X − VX){Vj−1

X (β)}(t)|

≤ ‖V̂j−1
X (β)− Vj−1

X (β)‖2
{∫

TX
v̂2
X(s, t)ds

}1/2

+ ‖Vj−1
X (β)‖2

[∫
TX
{v̂X(s, t)− vX(s, t)}2ds

]1/2
(Cauchy-Schwarz)

implies that

‖VjX(β)− V̂jX(β)‖2 ≤ ‖v̂X‖2‖Vj−1
X (β)− V̂j−1

X (β)‖2 + ‖Vj−1
X (β)‖2‖vX − v̂X‖2,

‖VjX(β)− V̂jX(β)‖∞ ≤ ‖v̂X‖∞‖Vj−1
X (β)− V̂j−1

X (β)‖∞ + ‖Vj−1
X (β)‖2‖vX − v̂X‖∞.

On iteration these two inequalities give that, respectively,

‖VjX(β)− V̂jX(β)‖2
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≤ ‖v̂X‖j−1
2 ‖VX(β)− V̂X(β)‖2 + ‖vX − v̂X‖2

j−1∑
k=1
‖VkX(β)‖2‖v̂X‖j−k−1

2 , (A.8)

‖VjX(β)− V̂jX(β)‖∞

≤ ‖v̂X‖j−1
∞ ‖VX(β)− V̂X(β)‖∞ + ‖vX − v̂X‖∞

j−1∑
k=1
‖VkX(β)‖2‖v̂X‖j−k−1

∞ . (A.9)

For each ε > 0, there is n0 > 0 such that, for all n > n0, we have

1− ε/2 ≤ Pr(‖v̂X − vX‖2 ≤ C0ζ2) ≤ Pr(‖v̂X‖2 ≤ ‖vX‖2 + C0ζ2),
1− ε/2 ≤ Pr(‖v̂X − vX‖∞ ≤ C0ζ2) ≤ Pr(‖v̂X‖∞ ≤ ‖vX‖∞ + C0ζ2),
1− ε/2 ≤ Pr(‖v̂XY − vXY ‖2 ≤ C0ζ4),
1− ε/2 ≤ Pr(‖v̂XY − vXY ‖∞ ≤ C0ζ4),

with constant C0 > 0, by Lemma A.3. It follows from (A.8) that

1− ε ≤ Pr
[ p⋂
j=1

{
‖VjX(β)− V̂jX(β)‖2 ≤ (‖vX‖2 + C0ζ2)j−1C0ζ4

+ C0ζ2

j−1∑
k=1
‖vX‖k2‖β‖2(‖vX‖2 + C0ζ2)j−k−1

}]

≤ Pr
[ p⋂
j=1

{
‖VjX(β)− V̂jX(β)‖2 ≤ C0(1 + C0ζ2/‖vX‖2)j−1‖vX‖j−1

2 ζ4

+ C0‖β‖2ζ2‖vX‖j−1
2

j−1∑
k=1

(1 + C0ζ2/‖vX‖2)j−k−1
}]

≤ Pr
[ p⋂
j=1

{
‖VjX(β)− V̂jX(β)‖2 ≤ C1‖vX‖j−1

2 ζ4 + C2(j − 1)‖vX‖j−1
2 ζ2

}]
,

(if p ≤ Cζ−1
2 with arbitrarily fixed C > 0)

where C1 = C0 exp(CC0/‖vX‖2) ≥ C0 exp(CC0/‖vX‖∞) and C2 = ‖β‖2C1. It is worth
noting that we have assumed that the range of p is constrained in [1, Cζ−1

2 ]; the quantity
(1 + C0ζ2/‖vX‖2)p may not be bounded if p diverges too fast. Similarly, inequality (A.9)
implies that, for 1 ≤ p ≤ Cζ−1

2 ,

Pr

 p⋂
j=1
{‖VjX(β)− V̂jX(β)‖∞ ≤ C1‖vX‖j−1

∞ ζ4 + C2(j − 1)‖vX‖j−1
∞ ζ2}

 ≥ 1− ε.

Proof of Theorem 4.1. Ascribed to [28, Eq. (3.6)], the following alternative expression of βp
at (4.9) dramatically facilitates our further moves:

βp = βp(·) = [VX(β)(·), . . . ,VpX(β)(·)]D−1
p αp, (A.10)
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where

Dp = [dj1,j2 ]1≤j1,j2≤p, (A.11)
αp = [α1, . . . , αp]>, (A.12)

with

dj1,j2 =
∫
TX
Vj1+1
X (β)Vj2X (β) =

∫
TX
Vj1X (β)Vj2+1

X (β),

αj =
∫
TX
VX(β)VjX(β) =

∫
TX

vXY VjX(β).

As is known, D−1
p and αp are bounded, respectively, as

‖D−1
p ‖2 = τ−1

p (A.13)

and

‖αp‖2 =

 p∑
j=1

{∫
T
vXY VjX(β)

}2
1/2

≤

 p∑
j=1
‖vXY ‖22‖V

j
X(β)‖22

1/2

(Cauchy-Schwarz)

=
{
O(p1/2‖vX‖p2) if ‖vX‖2 ≥ 1
O(1) if ‖vX‖2 < 1.

(A.14)

Accordingly, rewrite β̂p at (4.17) as

β̂p = β̂p(·) = [V̂X(β)(·), . . . , V̂pX(β)(·)]D̂−1
p α̂p (A.15)

in which D̂p = [d̂j1,j2 ]1≤j1,j2≤p and α̂p = [α̂1, . . . , α̂p]> are respective empirical counterparts
of Dp at (A.11) and αp at (A.12), with

d̂j1,j2 =
∫
TX
V̂j1+1
X (β)V̂j2X (β),

α̂j =
∫
TX
V̂X(β)V̂jX(β) =

∫
TX

v̂XY V̂jX(β).

Observe that, by the Cauchy-Schwarz inequality,

|αj − α̂j | =
∣∣∣∣∫

TX
(vXY − v̂XY )VjX(β)

∣∣∣∣+ ∣∣∣∣∫
TX

v̂XY {V̂jX(β)− VjX(β)}
∣∣∣∣

≤ ‖β‖2‖vX‖j2‖v̂XY − vXY ‖2 + ‖v̂XY ‖2‖V̂jX(β)− VjX(β)‖2.

For every ε > 0 and 1 ≤ p ≤ Cζ−1
2 , there is n0 > 0 such that, ∀n > n0,

1− ε ≤ Pr

 p⋂
j=1
{|αj − α̂j | ≤ C3‖vX‖j−1

2 ζ4 + C4(j − 1)‖vX‖j−1
2 ζ2}

 , (Lemmas A.3–A.4)

91



with constants C3, C4 > 0. Analogously, writing ∆jk = d̂jk − djk, the Cauchy-Schwarz
inequality implies that

|∆jk| ≤ ‖V̂j+1
X (β)− Vj+1

X (β)‖2‖V̂kX(β)‖2 + ‖V̂kX(β)− VkX(β)‖2‖Vj+1
X (β)‖2

≤ ‖V̂j+1
X (β)− Vj+1

X (β)‖2‖v̂X‖k2‖β‖2 + ‖V̂kX(β)− VkX(β)‖2‖vX‖j+1
2 ‖β‖2,

and further, by Lemmas A.3 and A.4, as long as 1 ≤ p ≤ Cζ−1
2 ,

1− ε ≤ Pr
[ p⋂
j,k=1
{|∆jk| ≤ ‖V̂j+1

X (β)− Vj+1
X (β)‖2(‖vX‖2 + C0ζ

−1
2 )k‖β‖2

+ ‖V̂kX(β)− VkX(β)‖2‖vX‖j+1
2 ‖β‖2}

]

≤ Pr
[ p⋂
j,k=1
{|∆jk| ≤ C5‖vX‖j+k2 ζ4 + C6 max(j, k − 1)‖vX‖j+k2 ζ2}

]
,

where C5 and C6 are positive constants. Thus, if ∆p = [∆jk]p×p = D̂p −Dp, then

‖∆p‖22 ≤
∑

1≤j,k≤p
∆2
jk

= Op

ζ2
4

∑
1≤j,k≤p

‖vX‖2j+2k
2

+Op

ζ2
2

∑
1≤j,k≤p

max{j2, (k − 1)2}‖vX‖2j+2k
2


=
{
Op(p2‖vX‖4p2 ζ

2
4 ) +Op(p4‖vX‖4p2 ζ

2
2 ) if ‖vX‖2 ≥ 1

Op(ζ2
4 ) +Op(ζ2

2 ) if ‖vX‖2 < 1.
(A.16)

In a similar manner, one proves that

‖α̂p −αp‖22 =
∑

1≤j≤p
|α̂j − αj |2

= Op

C1ζ
2
4
∑

1≤j≤p
‖vX‖2j−2

2

+Op

ζ2
2
∑

1≤j≤p
(j − 1)2‖vX‖2j−2

2


=
{
Op(p‖vX‖2p2 ζ

2
4 ) +Op(p3‖vX‖2p2 ζ

2
2 ) if ‖vX‖2 ≥ 1

Op(ζ2
4 ) +Op(ζ2

2 ) if ‖vX‖2 < 1.
(A.17)

Denote by τp the smallest eigenvalue of Dp. Notice that, for p = p(n) = O(ζ−1
2 ),

‖D−1
p ∆p‖2
≤ τ−1

p ‖∆p‖2

=
{
Op(τ−1

p p‖vX‖2p2 ζ4) +Op(τ−1
p p2‖vX‖2p2 ζ2) if ‖vX‖2 ≥ 1

Op(τ−1
p ζ4) +Op(τ−1

p ζ2) if ‖vX‖2 < 1.
(by (A.13) and (A.16))
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Provided that (C.A.3.15) holds, for sufficiently large n, one has τ−1
p ‖∆p‖2 < γ, for some

γ ∈ (0, 1). In this case, [28, Eq. (7.18)] argues that, as n goes to infinity,

D̂−1
p = {I−D−1

p ∆p +Op(τ−2
p ‖∆p‖22)}D−1

p ,

which can be rewritten as

‖D̂−1
p −D−1

p ‖2
= ‖{Op(τ−2

p ‖∆p‖22)−D−1
p ∆p}D−1

p ‖2

=
{
τ−1
p ‖Op(τ−2

p p2‖vX‖4p2 ζ
2
4 ) +Op(τ−2

p p4‖vX‖4p2 ζ
2
2 )−D−1

p ∆p‖2 if ‖vX‖2 ≥ 1
τ−1
p ‖Op(τ−2

p ζ2
4 ) +Op(τ−2

p ζ2
2 )−D−1

p ∆p‖2 if ‖vX‖2 < 1
(by (A.16))

=
{
Op(τ−2

p p‖vX‖2p2 ζ4) +Op(τ−2
p p2‖vX‖2p2 ζ2) if ‖vX‖2 ≥ 1

Op(τ−2
p ζ4) +Op(τ−2

p ζ2) if ‖vX‖2 < 1.
(by (C.A.3.15))

(A.18)

Combining (A.13), (A.14), (A.17) and (A.18), one obtains

‖D̂−1
p α̂p −D−1

p αp‖2
≤ ‖D̂−1

p −D−1
p ‖2‖αp‖2 + ‖D̂−1

p ‖2‖α̂p −αp‖2

=


Op(τ−2

p p3/2‖vX‖3p2 ζ4) + Op(τ−2
p p5/2‖vX‖3p2 ζ2)

+ Op(τ−1
p p1/2‖vX‖p2ζ4) +Op(τ−1

p p3/2‖vX‖p2ζ2) if ‖vX‖2 ≥ 1
Op(τ−2

p ζ4) +Op(τ−2
p ζ2) +Op(τ−1

p ζ4) +Op(τ−1
p ζ2) if ‖vX‖2 < 1.

(A.19)

Next, for each t ∈ TX , we have

|β̂p(t)− βp(t)|2

=
∣∣∣[V̂X(β)(t), . . . , V̂pX(β)(t)]D̂−1

p α̂p − [VX(β)(t), . . . ,VpX(β)(t)]D−1
p αp

∣∣∣2
≤

∣∣∣∣∣∣∣‖D̂−1
p α̂p −D−1

p αp‖2

 p∑
j=1
{V̂jX(β)(t)}2

1/2

+ ‖D−1
p αp‖2

 p∑
j=1
{V̂jX(β)(t)− VjX(β)(t)}2

1/2
∣∣∣∣∣∣∣
2

≤ 2‖D̂−1
p α̂p −D−1

p αp‖22

 p∑
j=1
{V̂jX(β)(t)}2

+ 2‖D−1
p αp‖22

 p∑
j=1
{V̂jX(β)(t)− VjX(β)(t)}2

 .
Thus ‖β̂p − βp‖2 is bounded as below:

‖β̂p − βp‖22 ≤ 2‖D̂−1
p α̂p −D−1

p αp‖22
p∑
j=1
‖VjX(β)‖22 + 2‖D−1

p αp‖22
p∑
j=1
‖VjX(β)− V̂jX(β)‖22

≤ 2‖D̂−1
p α̂p −D−1

p αp‖22
p∑
j=1
‖VjX(β)‖22 (A.20)

+ 2τ−2
p ‖αp‖22

p∑
j=1
‖V̂jX(β)− VjX(β)‖22. (A.21)
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Owing to (A.19),

(A.20) =


Op(τ−4

p p4‖vX‖8p2 ζ
2
4 ) +Op(τ−4

p p6‖vX‖8p2 ζ
2
2 )

+ Op(τ−2
p p2‖vX‖4p2 ζ

2
4 ) +Op(τ−2

p p4‖vX‖4p2 ζ
2
2 ) if ‖vX‖2 ≥ 1

Op(τ−4
p ζ2

4 ) +Op(τ−4
p ζ2

2 ) +Op(τ−2
p ζ2

4 ) +Op(τ−2
p ζ2

2 ) if ‖vX‖2 < 1;

the rate of (A.21) is given by (A.14) and Lemma A.4 jointly, i.e.,

(A.21) =
{
Op(τ−2

p p2‖vX‖4p2 ζ
2
4 ) +Op(τ−2

p p4‖vX‖4p2 ζ
2
2 ) if ‖vX‖2 ≥ 1

Op(τ−2
p ζ2

4 ) +Op(τ−2
p ζ2

2 ) if ‖vX‖2 < 1.

In this way we deduce

‖β̂p − βp‖22 =


Op(τ−4

p p4‖vX‖8p2 ζ
2
4 ) +Op(τ−4

p p6‖vX‖8p2 ζ
2
2 )

+ Op(τ−2
p p2‖vX‖4p2 ζ

2
4 ) +Op(τ−2

p p4‖vX‖4p2 ζ
2
2 ) if ‖vX‖2 ≥ 1

Op(τ−4
p ζ2

4 ) +Op(τ−4
p ζ2

2 ) +Op(τ−2
p ζ2

4 ) +Op(τ−2
p ζ2

2 ) if ‖vX‖2 < 1.
(A.22)

Condition (C.A.3.15) then implies that both (A.20) and (A.21) converge to 0 in probability.
The consistency of PLEASS estimators in the L2 sense follows, from the L2 convergence of
βp to β [28, Theorem 3.2].

Finally, we bound the estimation error in the supremum metric:

‖β̂p − βp‖2∞
=
∥∥∥[V̂X(β), . . . , V̂pX(β)](D̂−1

p α̂p −D−1
p αp) + [V̂X(β)− VX(β), . . . , V̂pX(β)− VpX(β)]D−1

p αp
∥∥∥
∞

≤

‖D̂−1
p α̂p −D−1

p αp‖2


p∑
j=1
‖V̂jX(β)‖2∞


1/2

+ ‖D−1
p αp‖2


p∑
j=1
‖V̂jX(β)− VjX(β)‖2∞


1/2


2

≤ 2‖D̂−1
p α̂p −D−1

p αp‖22
p∑
j=1
‖VjX(β)‖2∞ + 2τ−2

p ‖αp‖22
p∑
j=1
‖VjX(β)− V̂jX(β)‖2∞

≤ 2‖D̂−1
p α̂p −D−1

p αp‖22
p∑
j=1
‖VjX(β)‖2∞ (different from (A.20) only in the metric)

+ 2τ−2
p ‖αp‖22

p∑
j=1
‖V̂jX(β)− VjX(β)‖2∞ (different from (A.21) only in the metric)

=


Op(τ−4

p p4‖vX‖8p∞ζ2
4 ) +Op(τ−4

p p6‖vX‖8p∞ζ2
2 )

+ Op(τ−2
p p2‖vX‖4p∞ζ2

4 ) +Op(τ−2
p p4‖vX‖4p∞ζ2

2 ) if ‖vX‖∞ ≥ 1
Op(τ−4

p ζ2
4 ) +Op(τ−4

p ζ2
2 ) +Op(τ−2

p ζ2
4 ) +Op(τ−2

p ζ2
2 ) if ‖vX‖∞ < 1.

That is, the upper bound for ‖β̂p − βp‖∞ can be obtained from (A.22) by replacing ‖vX‖2
with ‖vX‖∞. Condition (C.A.3.16) completes the proof for the zero-convergence of ‖β̂p −
β‖∞, as long as we assume ‖βp − β‖∞ → 0 as p→∞.
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Proof of Theorem 4.2. Recall βp (at (4.8) and (A.10)) and β̂p (at (4.17) and (A.15)). Intro-
duce sp = [VX(w1), . . . ,VX(wp)]> and its empirical counterpart ŝp = [V̂X(ŵ1), . . . , V̂X(ŵp)]>.
Note the identities c>p Λ−1

p H>p = VX(βp) and ĉ>p Λ̂−1
p Ĥ>p = V̂X(β̂p). Thus, (C.A.3.1)–

(C.A.3.15) jointly ensure that, for arbitrarily given L∗, T ∗1 , . . . , TL∗ ,

‖HpΛ−1
p cp − ĤpΛ̂−1

p ĉp‖22
≤ L∗‖s>p Λ−1

p cp − ŝ>p Λ̂−1
p ĉp‖2∞

= L∗ sup
t∈TX

∣∣∣∣∫
TX

vX(s, t){βp(s)− β̂p(s)}ds+
∫
TX

(vX − v̂X)(s, t)β̂p(s)ds
∣∣∣∣2

≤ L∗ sup
t∈TX

∣∣∣∣∣
{∫

TX
v2
X(s, t)ds

}1/2
‖βp − β̂p‖2 +

{∫
TX

(vX − v̂X)2(s, t)ds
}1/2

‖β̂p‖2

∣∣∣∣∣
2

≤ L∗(‖vX‖∞‖βp − β̂p‖2 + ‖vX − v̂X‖∞‖β̂p‖2)2

→p 0. (by Lemma A.3 and Theorem 4.1)

The convergence to 0 (in probability and conditional on L∗ and T ∗1 , . . . , TL∗) of η̂p(X∗) −
η̃∞(X∗) (with η̂p(X∗) at (1.8) and η̃∞(X∗) at (4.20)) follows from Lemma A.3 and the
continuous mapping and Slutsky’s theorems. Since L∗ and T ∗1 , . . . , TL∗ are arbitrary, the
dominated convergence theorem enables us to drop the conditioning. This completes the
proof of Theorem 4.2.

Proof of Corollary 4.2.1. Recall ηp(X∗) at (4.9), η̃p(X∗) at (4.19) and η̃∞(X∗) at (4.20).
As discussed in the last paragraph of Section 4.2.1, [ξ̃∗1 − ξ∗1 , . . . , ξ̃∗p − ξ∗p ]> ∼ N (0,Λp −
H>p Σ−1

X̃∗
Hp). It follows that η̃p(X∗)− ηp(X∗) ∼ N{0, c>p Λ−1

p (Λp −H>p Σ−1
X̃∗

Hp)Λ−1
p cp} and

further η̂p(X∗)− ηp(X∗) converges (in distribution) to N (0, ω) as n→∞, by Theorem 4.2.
The Slutsky’s theorem completes the proof.

A.4 Technical details for Chapter 5

(C.A.4.1)
∑∞
i,j=1 λ

−2
i,X

{∫
TY
∫
TX φi,X(s)vXY (s, t)φj,Y (t)dsdt

}2
< ∞ and β belongs to the

range of VX , say range(VX).

(C.A.4.2) E(‖X‖42) <∞ for all t ∈ TY .

(C.A.4.3) Let TX = [0, 1]. Both ‖ξX‖∞,2 and ‖ψX‖∞,2 are of order Op(1) as n→∞, with
ξX and ψX defined in the statement of Lemma A.5 and ‖ · ‖∞,2 defined such that
‖f‖∞,2 = sups∈TX{

∫
TX f

2(s, t)dt}1/2 for f ∈ L2(T2
X).

(C.A.4.4) As n → ∞, p = p(n) = O(n1/2). Meanwhile, ‖Ĥp −Hp‖2/τp ≤ ρ for certain
ρ ∈ (0, 1) when n is sufficiently large. (Here τp is the smallest eigenvalue of Hp.
Here ‖ · ‖2 is abused for the matrix norm induced by the Euclidean norm, i.e.,
for arbitrary A ∈ Rp×q and b ∈ Rq×1 ‖A‖2 = supb:‖b‖2=1 ‖Ab‖2 is actually the
largest eigenvalue of A. It reduces to the Euclidean norm for vectors.)
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(C.A.4.5) Additional requirements on p vary with the magnitude of ‖vX‖2; they also depend
on τp, the smallest eigenvalue of Hp.

• If ‖vX‖2 ≥ 1, then, as n → ∞, n−1τ−2
p p4‖vX‖4p2 max(1, τ−2

p p2‖vX‖4p2 ) and
n−1τ−3

p p5‖vX‖6p2 are both of order o(1);
• if ‖vX‖2 < 1, then (nτ4

p )−1 = o(1) as n diverges.

(C.A.4.6) Keep everything in (C.A.4.5) but substitute ‖vX‖∞ for ‖vX‖2. Meanwhile, re-
quire that ‖βp,fAPLS − β‖∞ = o(1) as p diverges, viz. an enhanced version of
Proposition 5.1.

(C.A.4.7) Stochastic process Y is “eventually totally bounded in mean” (defined as [46,
Eq. 5–7]); i.e., in our context,

• E(‖Y ‖∞) <∞;
• for each ε > 0, there is a finite cover of T, say Co(T), for each set A ∈ Co(T),

such that infn∈Z+ n−1 E{sups,t∈A |Y (s)− Y (t)|} < ε.

Introduced by [44], (C.A.4.1) is set up to guarantee the uniqueness and identifiability of
β in FoFR (1.9). It is also adopted by [105]. Assumptions (C.A.4.2)–(C.A.4.4) are prereq-
uisites for L2-convergence results in [28]. One may feel unclear about the technical condi-
tions stated in (C.A.4.5) for the scenario of ‖vX‖2 ≥ 1: virtually a special case for is that
n−1 max(τ−4

p , τ−6
p , τ−8

p ) = o(1) and p = O(ln lnn). Apparently, p is more restricted when
‖vX‖2 ≥ 1 than in the case of ‖vX‖2 < 1 (for the latter case p is allowed to diverge at the
rate of O(n1/2)); that is why [28] suggested changing the scale on which X is measured.
(C.A.4.6) is an upgrade of (C.A.4.5), handling the uniform convergence (in probability). At
last, we add (C.A.4.7) as a prerequisite of the uniform law of large numbers for {Yi | i ≥ 1}.

Lemma A.5. For each (s, u, t) ∈ T2
X × TY ,

v̂X(s, t) = vX(s, t) + n−1/2ξX(s, t) + n−1ψX(s, t),
v̂XY (s, t) = vXY (s, t) + n−1/2ξXY (s, t) + n−1ψXY (s, t) (A.23)

where, with identity operator I : R→ R,

ξX(s, t) = 1√
n

n∑
i=1

(I − E)[{Xi(s)− µX(s)}{Xi(t)− µX(t)}],

ψX(s, t) = −n{X̄(s)− µX(s)}{X̄(t)− µX(t)},

ξXY (s, t) = 1√
n

n∑
i=1

(I − E)[{Xi(s)− µX(s)}{Yi(t)− µY (t)}],

ψXY (s, t) = −n{X̄(s)− µX(s)}{Ȳ (t)− µY (t)},

and ‖ξX‖2, ‖ψX‖2, ‖ξXY ‖2 and ‖ψXY ‖2 all equal Op(1) as n diverges.

Proof of Lemma A.5. It is an immediate implication of [28, Eq. 5.1].
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Lemma A.6. Assume (C.A.4.1) and (C.A.4.2) and that there is C > 0 such that, for all
n, we have p ≤ Cn−1/2. Then, for each ε > 0, there are positive C1, C2 and n0 such that,
for each n > n0,

Pr
[ p⋂
i=1

{
‖V̂ iX(β)− V iX(β)‖2 ≤ n−1/2‖vX‖i−1

2 {C1 + C2(i− 1)}
}]
≥ 1− ε.

Assuming one more condition (C.A.4.3),

Pr
[ p⋂
i=1

{
‖V̂ iX(β)− V iX(β)‖∞ ≤ n−1/2‖vX‖i−1

∞ {C1 + C2(i− 1)}
}]
≥ 1− ε.

Proof of Lemma A.6. Since VX(β) = vXY and V̂X(β) = v̂XY , Lemma A.6 is simply implied
by Lemma A.5 when p = 1. For integer i ≥ 2 and each (s, t) ∈ TX × TY ,

|V̂ iX(β)(s, t)− V iX(β)(s, t)|
= |V̂X{V̂ i−1

X (β)− V i−1
X (β)}(s, t) + (V̂X − VX){V i−1

X (β)}(s, t)|

≤
{∫

TX
v̂2
X(s, u)du

}1/2 [∫
TX
{V̂ i−1

X (β)− V i−1
X (β)}(u, t)du

]1/2

+
[∫

TX
{v̂X(s, u)− vX(s, u)}2du

]1/2 {∫
TX
V i−1
X (β)(u, t)du

}1/2
.

It implies that, by the triangle inequality,

‖V̂ iX(β)− V iX(β)‖2 ≤ ‖v̂X‖2‖V̂ i−1
X (β)− V i−1

X (β)‖2 + ‖v̂X − vX‖2‖V i−1
X (β)‖2.

On iteration it gives that

‖V̂ iX(β)− V iX(β)‖2

≤ ‖v̂X‖i−1
2 ‖V̂X(β)− VX(β)‖2 + ‖v̂X − vX‖2

i−1∑
j=1
‖v̂X‖i−j−1

2 ‖VjX(β)‖2. (A.24)

For each ε > 0, there is n0 > 0 such that, for all n > n0, we have

1− ε/2 ≤ Pr(‖v̂X − vX‖2 ≤ C0n
−1/2) ≤ Pr(‖v̂X‖2 ≤ ‖vX‖2 + C0n

−1/2)

and
1− ε/2 ≤ Pr(‖v̂XY − vXY ‖2 ≤ C0n

−1/2),

with constant C0 > 0, by Lemma A.5. It follows (A.24) that

1− ε ≤ Pr
[ p⋂
i=1

[
‖(V̂ iX − V iX)(β)‖2 ≤ C0n

−1/2
{

(‖vX‖2 + C0n
−1/2)i−1

+
i−1∑
j=1
‖vX‖j2‖β‖2(‖vX‖2 + C0n

−1/2)i−j−1
}]]
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≤ Pr
[ p⋂
i=1

[
‖(V̂ iX − V iX)(β)‖2 ≤ C0n

−1/2‖vX‖i−1
2

{
(1 + C0n

−1/2/‖vX‖2)i−1

+ ‖β‖2
i−1∑
j=1

(1 + C0n
−1/2/‖vX‖2)i−j−1

}]]

≤ Pr
[ p⋂
i=1

{
‖V̂ iX(β)− V iX(β)‖2

≤ n−1/2‖vX‖i−1
2 {C1 + C2(i− 1)}

}]
, (since p ≤ Cn1/2)

where C1 = C0 exp(CC0/‖vX‖2) and C2 = ‖β‖2C1.

Suppose (C.A.4.3) holds. Similar to (A.24),

‖V̂ iX(β)− V iX(β)‖∞ ≤ ‖v̂X‖i−1
∞ ‖V̂X(β)− VX(β)‖∞

+ ‖v̂X − vX‖∞
i−1∑
j=1
‖v̂X‖i−j−1

∞ ‖VjX(β)‖∞

≤ ‖v̂X‖i−1
∞ ‖V̂X(β)− VX(β)‖∞

+ ‖v̂X − vX‖∞
i−1∑
j=1
‖v̂X‖i−j−1

∞ ‖vX‖j∞‖β‖∞.

Mimicking the argument above for the L2 sense, one obtains that

Pr
[ p⋂
i=1

{
‖V̂ iX(β)− V iX(β)‖∞ ≤ n−1/2‖vX‖i−1

∞ {C1 + C2(i− 1)}
}]
≥ 1− ε,

with, at this time, C1 = C0 exp(CC0/‖vX‖∞) and C2 = ‖β‖∞C1. The finiteness of ‖β‖∞
originates from the continuity of eigenfunctions φi,X ’s and φi,Y ’s (refer to the Mercer’s
theorem).

Proof of Proposition 5.1. Recall βp,q,FPCR at (5.1) and introduce βp,∞,FPCR ∈ L2(TX×TY )
such that

βp,∞,FPCR(s, t) = lim
q→∞

βp,q,FPCR(s, t) =
p∑
i=1

φi,X(s)
λi,X

∫
TX

φi,X(u)vXY (u, t)du.

It follows that

VX(βp,∞,FPCR)(s, t) =
p∑
i=1

φi,X(s)
∫
TX

φi,X(u)vXY (u, t)du.

Now
[(λ1,XI − VX) ◦ · · · ◦ (λp,XI − VX)](βp,∞,FPCR) = 0
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in which the left-hand side equals
∑p
i=0 aiV iX(βp,∞,FPCR) with a0 =

∏p
i=1 λi,X > 0. There-

fore,

βp,∞,FPCR = −
p∑
i=1

ai
a0
V iX(βp,∞,FPCR).

Denote by Pp : range(VX) → range(VX) the operator that projects elements in range(VX)
to span{fij ∈ L2(TX × TY ) | fij(s, t) = φi,X(s)φj,Y (t), 1 ≤ i ≤ p, j ≥ 1}. Thus βp,∞,FPCR =
Pp(β). Since V iX(βp,∞,FPCR) = Pp[V iX(β)], one has

Pp

[
β +

p∑
i=1

ai
a0
V iX(β)

]
= 0,

implying that, for all p,

Pp(β) ∈ {Pp(f) | f ∈ KS∞(VX , β)}.

Taking limits as p → ∞ on both sides of the above formula, we obtain β ∈ KS∞(VX , β)
and accomplish the proof.

Proof of Proposition 5.2. Recall βp,fAPLS (5.3) and β̂p,fAPLS (5.8) and notations in defining
them. The Cauchy-Schwarz inequality implies that

|ĥij − hij | ≤ ‖V̂ iX(β)− V iX(β)‖2‖V̂j+1
X (β)‖2 + ‖V̂j+1

X (β)− Vj+1
X (β)‖2‖V iX(β)‖2

≤ ‖V̂ iX(β)− V iX(β)‖2‖v̂X‖j+1
2 ‖β‖2 + ‖V̂j+1

X (β)− Vj+1
X (β)‖2‖vX‖i2‖β‖2.

By Lemmas A.5 and A.6, for each ε > 0 and p ≤ Cn1/2, there are positive n0, C3 and C4
such that, for all n > n0,

1− ε ≤ Pr
[ p⋂
i,j=1

{
|ĥij − hij | ≤‖V̂ iX(β)− V iX(β)‖2(‖vX‖2 + C0n

−1/2)j+1‖β‖2

+ ‖V̂j+1
X (β)− Vj+1

X (β)‖2‖vX‖i2‖β‖2
}]

≤ Pr
[ p⋂
i,j=1

{
|ĥij − hij | ≤ n−1/2‖vX‖i+j2 {C3 max(i, j) + C4}

}]
.

Thus

‖Ĥp −Hp‖22 ≤
p∑

j,k=1
|ĥij − hij |2

= Op

n−1
p∑

i,j=1
‖vX‖2i+2j

2

+Op

n−1
p∑

i,j=1
max(i2, j2)‖vX‖2i+2j

2


=
{
Op(n−1p2‖vX‖4p2 ) +Op(n−1p4‖vX‖4p2 ) if ‖vX‖2 ≥ 1
Op(n−1) if ‖vX‖2 < 1
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=
{
Op(n−1p4‖vX‖4p2 ) if ‖vX‖2 ≥ 1
Op(n−1) if ‖vX‖2 < 1.

(A.25)

It is analogous to (A.25) to deduce that

‖α̂p −αp‖22 =
p∑
j=1
|α̂j − αj |2 =

{
Op(n−1p3‖vX‖2p2 ) if ‖vX‖2 ≥ 1
Op(n−1) if ‖vX‖2 < 1.

(A.26)

Denote by τp the smallest eigenvalue of Hp. Noting that ‖H−1
p ‖2 = τ−1

p , for p ≤ Cn1/2,

‖(Ĥp −Hp)H−1
p ‖2 ≤ τ−1

p ‖Ĥp −Hp‖2 =
{
Op(n−1/2τ−1

p p2‖vX‖2p2 ) if ‖vX‖2 ≥ 1
Op(n−1/2τ−1

p ) if ‖vX‖2 < 1.

Introduce random matrix Mp ∈ Rp×p such that

I −H−1
p (Ĥp −Hp) +Mp = {I +H−1

p (Ĥp −Hp)}−1,

i.e.,
Mp = {I +H−1

p (Ĥp −Hp)}−1H−1
p (Ĥp −Hp)H−1

p (Ĥp −Hp).

Therefore,

‖Mp‖2 ≤ ‖I +H−1(Ĥp −Hp)‖−1
2 ‖H

−1(Ĥp −Hp)‖22 ≤ (1− ρ)−1τ−2
p ‖Ĥp −Hp‖22,

provided that τ−1
p ‖Ĥp −Hp‖2 ≤ ρ < 1 (refer to (C.A.4.4)). Revealed by the identity that

Ĥ−1
p = {I +H−1

p (Ĥp −Hp)}−1H−1
p ,

‖Ĥ−1
p −H−1

p ‖2
≤ {‖H−1

p (Ĥp −Hp)‖2 + ‖Mp‖2}‖H−1
p ‖2

=
{
Op(n−1/2τ−2

p p2‖vX‖2p2 ) +Op(n−1τ−3
p p4‖vX‖4p2 ) if ‖vX‖2 ≥ 1

Op(n−1/2τ−2
p ) +Op(n−1τ−3

p ) if ‖vX‖2 < 1.
(A.27)

Combining (A.26), (A.27) and the identity that

‖αp‖2 =
[ p∑
i=1

{∫
TY

∫
TX

vXY (s, t)V iX(β)(s, t)dsdt
}2
]1/2

≤
[ p∑
i=1
‖vXY ‖22‖V iX(β)‖22

]1/2

=
{
O(p1/2‖vX‖p2) if ‖vX‖2 ≥ 1
O(1) if ‖vX‖2 < 1,

(A.28)

we reach that

‖Ĥ−1
p α̂p −H−1

p αp‖2
≤ ‖Ĥ−1

p ‖2‖α̂p −αp‖2 + ‖Ĥ−1
p −H−1

p ‖2‖αp‖2
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=


Op(n−1/2τ−1

p p3/2‖vX‖p2)
+ Op(n−1/2τ−2

p p5/2‖vX‖3p2 ) +Op(n−1τ−3
p p9/2‖vX‖5p2 ) if ‖vX‖2 ≥ 1

Op(n−1/2τ−1
p ) +Op(n−1/2τ−2

p ) +Op(n−1τ−3
p ) if ‖vX‖2 < 1

=


Op(n−1/2τ−1

p p3/2‖vX‖p2)
+ Op(n−1/2τ−2

p p5/2‖vX‖3p2 ) +Op(n−1τ−3
p p9/2‖vX‖5p2 ) if ‖vX‖2 ≥ 1

Op(n−1/2τ−2
p ) +Op(n−1τ−3

p ) (since τp ≤ hii = O(1)) if ‖vX‖2 < 1.
(A.29)

For each (s, t) ∈ TX × TY ,

|β̂p,fAPLS(s, t)− βp,fAPLS(s, t)|2

=
∣∣∣∣∣[V̂X(β)(s, t), . . . , V̂pX(β)(s, t)]Ĥ−1

p α̂p

− [VX(β)(s, t), . . . ,VpX(β)(s, t)]H−1
p αp

∣∣∣∣∣
2

≤
∣∣∣∣∣‖Ĥ−1

p α̂p −H−1
p αp‖2

[ p∑
i=1
{V̂ iX(β)(s, t)}2

]1/2

+ ‖H−1
p αp‖2

[ p∑
i=1

[{V̂ iX − V iX}(β)(s, t)]2
]1/2 ∣∣∣∣∣

2

≤ 2‖Ĥ−1
p α̂p −H−1

p αp‖22

[ p∑
i=1
{V̂ iX(β)(s, t)}2

]

+ 2‖H−1
p αp‖22

[ p∑
i=1
{V̂ iX(β)(s, t)− V iX(β)(s, t)}2

]
.

Thus ‖β̂p,fAPLS − βp,fAPLS‖2 is bounded as below:

‖β̂p,fAPLS − βp,fAPLS‖22

≤ 2‖Ĥ−1
p α̂p −H−1

p αp‖22
p∑
i=1
‖V iX(β)‖22 + 2‖H−1

p αp‖22
p∑
i=1
‖V iX(β)− V̂ iX(β)‖22

≤ 2‖Ĥ−1
p α̂p −H−1

p αp‖22
p∑
i=1
‖V iX(β)‖22 (A.30)

+ 2τ−2
p ‖αp‖22

p∑
i=1
‖V̂ iX(β)− V iX(β)‖22, (A.31)

where, owing to (A.29),

(A.30) =


Op(n−1τ−2

p p4‖vX‖4p2 )
+ Op(n−1τ−4

p p6‖vX‖8p2 ) +Op(n−2τ−6
p p10‖vX‖12p

2 ) if ‖vX‖2 ≥ 1
Op(n−1τ−4

p ) +Op(n−2τ−6
p ) if ‖vX‖2 < 1;
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the order of (A.31) is jointly given by (A.28) and Lemma A.6, i.e.,

(A.31) =
{
O(n−1τ−2

p p4‖vX‖4p2 ) if ‖vX‖2 ≥ 1
Op(n−1τ−2

p ) if ‖vX‖2 < 1.

In this way we deduce

‖β̂p,fAPLS − βp,fAPLS‖22

=


Op(n−1τ−2

p p4‖vX‖4p2 )
+ Op(n−1τ−4

p p6‖vX‖8p2 ) +Op(n−2τ−6
p p10‖vX‖12p

2 ) if ‖vX‖2 ≥ 1
Op(n−1τ−4

p ) +Op(n−2τ−6
p ) if ‖vX‖2 < 1.

(A.32)

A set of necessary conditions for the zero-convergence (in probability) of (A.32) is contained
in (C.A.4.5). Once they are fulfilled, we conclude the L2 convergence (in probability) of
β̂p,fAPLS to β following Proposition 5.1.

We complete the proof by bounding the estimating error in the supremum metric:

‖β̂p,fAPLS − βp,fAPLS‖2∞

=
∥∥∥[V̂X(β), . . . , V̂pX(β)]Ĥ−1

p α̂p − [VX(β), . . . ,VpX(β)]H−1
p αp

∥∥∥2

∞

≤ 2‖Ĥ−1
p α̂p −H−1

p αp‖22
p∑
i=1
‖V iX(β)‖2∞ + 2‖H−1

p αp‖22
p∑
i=1
‖V iX(β)− V̂ iX(β)‖2∞

≤ 2‖Ĥ−1
p α̂p −H−1

p αp‖22
p∑
i=1
‖V iX(β)‖2∞ (compare (A.30))

+ 2τ−2
p ‖αp‖22

p∑
i=1
‖V̂ iX(β)− V iX(β)‖2∞, (compare (A.31))

=


Op(n−1τ−2

p p4‖vX‖4p∞)
+ Op(n−1τ−4

p p6‖vX‖8p∞) +Op(n−2τ−6
p p10‖vX‖12p

∞ ) if ‖vX‖∞ ≥ 1
Op(n−1τ−4

p ) +Op(n−2τ−6
p ) if ‖vX‖∞ < 1,

converging to zero (in probability) with the satisfaction of (C.A.4.6). The zero-convergence
(in probability) of ‖β̂p,fAPLS − β‖∞ follows if we assume that ‖βp,fAPLS − β‖∞ → 0 as p
diverges.

Proof of Proposition 5.3. Notice that

‖η̂p,fAPLS(X0)− η(X0)‖2 ≤ ‖Ȳ − µY ‖2 + ‖X̄ − µX‖2‖β‖2 + ‖X0 − X̄‖2‖β̂p,fAPLS − β‖2,
‖η̂p,fAPLS(X0)− η(X0)‖∞ ≤ ‖Ȳ − µY ‖∞ + ‖X̄ − µX‖2‖β‖∞ + ‖X0 − X̄‖2‖β̂p,fAPLS − β‖∞.

The finite trace of VX (resp. VY ), viz.
∑∞
i=1 λi,X = E(‖X − µX‖22) <∞ (resp.

∑∞
i=1 λi,Y =

E(‖Y −µY ‖22) <∞), entails that ‖X̄−µX‖2 = oa.s.(1) (resp. ‖Ȳ −µY ‖2 = oa.s.(1)); see [47,
Eq 2.1.3]. The proof is completed once we verify the zero-convergence (in probability and
under (C.A.4.7)) of ‖Ȳ − µY ‖∞ following [46, Theorem 2].
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