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Abstract: A set of multivalent polyhydroxylated acetami-
doazepanes based on ethylene glycol, glucoside, or cyclo-

dextrin scaffolds was prepared. The compounds were as-
sessed against plant, mammalian, and therapeutically rele-

vant hexosaminidases. Multimerization was shown to im-
prove the inhibitory potency with synergy, and to fine
tune the selectivity profile between related hexosamini-

dases.

Introduction

exo-N-Acetyl-b-glucosaminidases are found in diverse organ-

isms ranging from bacteria to humans. These enzymes catalyze
the removal of terminal N-acetylglucosamine residues (GlcNAc)
from a wide range of glycoconjugates and saccharides.

Humans express three exo-N-acetyl-b-glucosaminidases,[1]

namely the isoenzymes b-hexosaminidase A (HexA) and b-hex-

osaminidase B (HexB), as well as O-GlcNAcase (OGA), and con-
siderable attention has been given to these enzymes because
of their involvement in various diseases. HexA and HexB share
high sequence similarity and belong to glycoside hydrolase

(GH) family 20 (GH20) of the CAzy classification system.[2] Herit-
able deficiencies in HexA activity cause GM2-ganglioside to ac-
cumulate in the nervous system, resulting in lethal neurodege-
nerative disorders known as Tay-Sachs and Sandhoff diseases.[3]

O-GlcNAcase (OGA) belongs to GH family 84 (GH84) and re-

moves O-GlcNAc residues from particular hydroxyls of serine
and threonine residues of nuclear and cytoplasmic proteins.[4]

O-GlcNAc has been implicated in a range of cellular processes

and inhibitors of OGA have been proposed as a potential ther-
apeutic strategy to treat neurodegenerative diseases.[5, 6] Al-

though of nonhuman origin, NagZ, a fourth functionally relat-
ed exo-N-acetyl-b-glucosaminidase from family 3 (GH3), has

also been implicated in human diseases. NagZ is involved in
the highly conserved Gram-negative peptidoglycan cell wall re-

cycling pathway. NagZ releases GlcNAc from the cytosolic

GlcNAc-1,6-anhydroMurNAcpeptide peptidoglycan recycling in-
termediates to yield 1,6-anhydroMurNAcpeptides that act as

signalling molecules to promote resistance of Gram-negative
bacteria to a wide range of b-lactam antibiotics. Noteworthy

GH3 enzymes, including NagZ,[7] use a catalytic mechanism
that differs from that used by GH20[8] and GH84[9] enzymes,
which use substrate-assisted catalysis. Furthermore, significant

differences in the active site structures of all of these enzymes
have been noted. These various differences have enabled the

generation of selective inhibitors of each enzyme. Accordingly,
specific inhibitors have been designed, including potent bicy-
clic derivatives such as Thiamet-G 1 that mimic the oxazolini-
um-like transition state of the substrate-assisted mechanism.[10]

Similarly, modification of the acetamido group has resulted in
potent hexosaminidase inhibitors derived from PUGNAc 2,
nagstatin 3,[11] and DNJNAc 4,[12] and these have also been re-
ported to yield selective NagZ inhibitors (Figure 1). Further-
more, the N-alkylation of DNJNAc 4 with elaborated pharmaco-

phores have afforded potent HexA and B (HexAB) inhibitors.[13]

Other structural modifications on GlcNAc mimics have been re-

cently explored to target hexosaminidases.[14–18]

An alternative promising approach has recently emerged for
developing potent and selective inhibitors of glycosidases and

glycosyltransferases. Carbohydrate-binding proteins, lectins,

Figure 1. Structure of potent hexosaminidase inhibitors.
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are generally multimeric and interact in a multivalent manner
with their sugar ligands, which enables high avidity despite

their generally weak affinity for monomeric ligands.[19] This
highly synergistic multivalent effect inspired the development

of synthetic glycoclusters bearing multiple copies of sugar epi-
topes on a single scaffold,[20, 21] leading to affinity enhance-

ments of several orders of magnitude over the corresponding
monovalent binding interaction.[22, 23] Although this so-called
“glycocluster effect” was coined more than twenty years

ago,[24] this concept only progressed recently from carbohy-
drate-binding lectins to carbohydrate-processing enzymes.[25–28]

In 2009, conducting a systematic evaluation of multivalent imi-
nosugars based on the deoxymannojirimycin (DMJ) moiety

against commercial glycosidases,[29] we observed a significant
multivalent effect on the a-mannosidase from jack bean

(JbMan). Since then, higher avidities have been reached by

using multivalent DNJ constructs with higher valency,[30–32] and
much effort was dedicated to unravel the JbMan binding

mode.[33–35] The concept was then extended to other targets,
including biologically relevant classes of glycosidases and gly-

cosyltransferases.[36, 37] Interestingly, the initial ligand specificity
of lectin and glycosidases may also fade out with multivalency,

as recently probed with multivalent constructs based on carbo-

hydrates and iminosugars that bind/inhibit the mismatching
proteins.[38, 39] Here, we assess the potential sensitivity of vari-

ous hexosaminidases of biological interest to the effect of mul-
tivalent inhibitor clusters.

Results and Discussion

We have contributed to the development of a new class of
seven-membered iminosugars, the polyhydroxylated azepanes,

that inhibit glycosidases in a competitive manner.[40, 41] Intro-

duction of a NHAc group on the azepane ring as in AzeNAc 5
led to potent and broadly effective inhibitors of hexosamini-

dases,[42] including OGA[43] and NagZ[44] (Figure 1). AzeNAc 5
was exploited here to synthesize a set of multivalent iminosu-

gar clusters with varied valencies that are based on the trihy-
droxylated acetamidoazepane moiety. Copper-catalyzed azide

alkyne cyclization (CuAAc) was used as a robust methodology
to construct the multivalent entities. The azido-functionalized

azepane 6 was first designed (Scheme 1) as a protected epi-

tope to be grafted onto alkynyl-armed scaffolds.
Starting from acetamido azepane 8, which is available in five

steps from known azidolactol 7,[42] N-alkylation with 1-azido-9-
bromononane 9[45] in EtOAc/H2O in the presence of K2CO3 fur-

nished azepane 10 in 85 % yield. For ease of deprotection, this
derivative was then debenzylated using BCl3 in CH2Cl2 at

@78 8C and subsequently per-O-acetylated (Ac2O, pyr) to pro-

duce azepane 6. The CuAAc protocol was first implemented
with 6 and propargyl alcohol 11 to form protected cycloadduct

15 with 90 % yield (Scheme 1). This protocol was successfully
repeated with previously described alkyne-derived ethylene

glycol 12,[46] methyl glucoside 13,[47] and g-cyclodextrin 14[33] to
form the corresponding di-, tetra-, and octavalent cycloadducts

16–18. Acetates were removed under ZemplHn conditions to

furnish monovalent 19 alongside multivalent iminosugar clus-
ters 20–22 in quantitative yields.

In preliminary screening, compounds 19–22 were assayed as
inhibitors of three hexosaminidases isolated from jack bean,

bovine kidney, and HL60 (Table 1). The relative potency (Rp) of
the multivalent derivatives can be obtained by dividing the

measured IC50 values by the value obtained for monovalent

reference 19. Dividing the Rp by the valency (n) of the cluster
enables one to estimate if the enhancements in binding are

truly synergistic or only statistical. A true multivalent effect is

Scheme 1. Synthesis of the mono- 19 and multivalent azepanes 20–22.



observed if Rp/n is higher than 1. The Rp/n and IC50 values of
compounds 19–22 that we obtained are presented in Table 1.

All the multivalent azepanes proved more potent than mono-
valent reference 19, with IC50 values in the submicromolar

range. Importantly, all compounds showed significant Rp/n

values, which indicates the sensitivity of the three hexosamini-
dases towards multivalent inhibitors. A higher Rp/n was ob-

tained with the low valency compound 20 showing 90-fold im-
proved inhibition compared to 19 (27 vs. 0.3 mm), meaning

that each azepane on 20 is 45-fold more potent than 19 on its
own.

Multivalency also offers an opportunity to tune selectivity

toward hexosaminidases. As an example, monomer 19 is equi-
potent towards HL60 and jack bean hexosaminidase (27 vs.

43 mm), whereas dimer 20 is 33-fold more selective for HL60
(9.3 vs. 0.3 mm). Thus, and as previously observed with other

glycosidases,[29, 33] multivalency can be used to discriminate be-
tween related hexosaminidases.

These promising preliminary data encouraged us to assess

the inhibitory activity of compounds 19–22 against relevant
human hexosaminidases hOGA, HexAB, and bacterial NagZ

(Table 2). PUGNAc was included in the assay as a potent con-
trol inhibitor of the three hexosaminidases. We first deter-

mined the mode of hOGA inhibition by 19–22 and found that
compounds 19 and 20 displayed unambiguous evidence for

competitive inhibition as expected. In contrast, the tetra- and

octavalent compounds 21 and 22 displayed mixed-model in-
hibition (see Figure S1 in the Supporting Information for Line-

weaver–Burke plots). Future investigations are required to
define the molecular mechanism that governs the observed
mixed-model inhibition of hOGA by these multivalent inhibi-
tors but this effect may stem from a combination of the geom-
etry of the inhibitor cluster and the dimeric structure of

OGA.[48]

Multivalent iminosugars 20–22 showed low, moderate, and
strong multivalent effects against NagZ, hOGA, and HexAB, re-

spectively. The most significant effect was obtained with
HexAB with Rp/n values of 131, 32, and 75 observed for com-

pounds 20, 21, and 22 with increasing valency of 2, 4, and 8,
respectively. Previously, several studies have found that higher

valency does not necessarily correlate with improved multiva-
lent binding avidity for targeted carbohydrate-binding or car-

bohydrate-processing proteins.[49, 50] To improve potency, fine

tuning of the spatial distribution of the azepane ligands
through altering the scaffold may be a more effective strategy
than simply increasing multivalency.

Results obtained with multivalent derivatives 20–22 on the
isoenzyme HexAB are particularly striking. Indeed, the multiva-
lent presentation of the seven-membered iminosugar was

shown to convert the micromolar inhibitor 19 (IC50 4.2 mm)

into nanomolar inhibitors 20 (IC50 16 nm), 21 (IC50 33 nm), and
22 (IC50 7 nm). Monovalent iminosugars bearing hydrophobic

aglycons were previously shown to enhance HexaB affinity and
selectivity.[13] However, such an impact on the enhanced affinity

should be limited here compared to a multivalent effect as
a long hydrophobic tail is already present on the monovalent

reference 19.

Notably, the three multivalent compounds 20–22 surpass
the inhibitory activity of PUGNAc towards HexAB. The develop-

ment of glycosidase inhibitors is generally hampered by un-
wanted inhibition of related enzymes. PUGNAc inhibits HexAB

and NagZ to the same extent (37 vs. 30 nm). Monovalent com-
pound 19 is significantly less potent than PUGNAc but showed

a 25-fold higher inhibitory activity for HexAB over NagZ (4.2 vs.

106 mm). This selectivity trend was dramatically enhanced with
the multivalent compounds, as illustrated by octavalent deriva-

tive 22 being 1430-fold more selective toward HexAB over
NagZ. A greater multivalent enhancement effect was observed

for hOGA and HexAB, which are both expected to be dimeric
in solution. In contrast, the monomeric NagZ displayed re-

duced Rp/n values for the multivalent inhibitor panel (Table 2).

In the hOGA crystallographic dimer (PDB ID: 5M7R), the dis-
tance between the catalytic D175 CA atom in the two chains is

41 a with the two active sites juxtaposed on opposite sides of
the dimer. Similarly, in the human beta-hexosaminidase A crys-
tallographic heterodimer structure (PDB ID: 2GJX), the distance
between the equivalent catalytic Glu (E323 alpha subunit and
E355 beta subunit) is 48 a with the two active sites oriented

on the same face of the dimer. The maximal distance between
the azepane motifs (estimated to 26 a for the dimer 20) being
too short to span this large distance, a chelate binding mode
can be ruled out. The multivalent effects observed are most
likely due to additional binding of the azepanes in enzyme
subsites, or to an aggregative process.

Conclusion

In conclusion, we developed a set of multivalent polyhydroxyl-
ated acetamidoazepane clusters based on hydrophilic and bio-

compatible scaffolds. Multivalent inhibitory effects were ob-
served for the first time on plant, mammalian, and therapeuti-

Table 1. Inhibitory activities of 19–22 against plant and mammalian hex-
osaminidases.

IC50 [mm] Hexosaminidases (Rp/n)
Cmpd Val. Jack

bean
Bovine
kidney

HL60

19 1 43 20 27
20 2 9.3 (2) 0.5 (20) 0.3 (45)
21 4 1 (11) 0.6 (8) 0.4 (17)
22 8 0.3 (18) 0.5 (5) 0.3 (11)

Table 2. Inhibitory activities of PUGNAc and iminosugars 19–22 against
relevant human and bacterial hexosaminidases.

IC50 [mm] Hexosaminidases (Rp/n)
Cmpd Val hOGA NagZ HexAB

PUGNAc 1 0.24 (–) 0.030 (–) 0.037 (–)
19 1 4.2 (1) 106 (1) 4.2 (1)
20 2 0.14 (15) 29 (1.8) 0.016 (131)
21 4 0.43 (2.4) 17 (1.6) 0.033 (32)
22 8 0.32 (1.6) 10 (1.3) 0.007 (75)

Standard deviation from triplicate reactions, errors bars are less than 10 %
in most cases (see the Supporting Information, Figures S2–S4).



cally relevant hexosaminidase targets. The strategy proved ef-
fective in designing nanomolar inhibitors of HexAB with a high

selectivity profile and without the need of intensive structure–
activity relationship studies. These results further expand the

scope of multivalent iminosugars able to interfere with glycosi-
dase activity.
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Chem. 2004, 2, 1492 – 1499.

[41] H. Li, Y. Zhang, P. Vogel, P. Sinaÿ, Y. Bl8riot, Chem. Commun. 2007, 183 –
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