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Abstract 

In this thesis, we report the studies undertaken in the design and implementation of a 

behavioristic navigation system for social robots with limited sensors to be deployed in 

family homes. The project was completed in four phases. Each phase of the project was 

independently evaluated in virtual or real-time implementation on the NAO humanoid 

robot. 

In the first phase of this research study, we address the problem of indoor room 

classification via several convolutional neural network (CNN) architectures. The main 

objective was to recognize different rooms in a family home. We also propose and 

examine a combination model of CNN and a multi-binary classifier referred to as Error 

Correcting Output Code (ECOC). 

In the second phase, we propose a new dataset referred to as SRIN, which stands for 

Social Robot Indoor Navigation. This dataset consists of 2D colored images for room 

classification (termed SRIN-Room) and doorway detection (termed SRIN-Doorway). The 

main feature of the SRIN dataset is that its images have been purposefully captured for 

short robots (around 0.5-meter tall). The methodology of collecting SRIN was designed 

in a way that facilitated generating more samples in the future regardless of where the 

samples have come from. 

In phase three, we propose a novel algorithm to detect a door and its orientation in 

indoor settings from the view of a social robot equipped with only a monocular camera. 

The proposed system is designed through the integration of several modules, each of 

which serves a special purpose. 

Finally, we report an end-to-end navigation system for social robots in family homes. The 

system combines a reactive-based system and a knowledge-based system with learning 

capabilities in a meaningful manner for social robot applications. 

Keywords:  Social Robots; Behavioristic Navigation; Subsumption Architecture; Deep 

Learning; Reinforcement Learning; Indoor Localization  
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Chapter 1.  
 
Introduction 

1.1. Background and Motivation 

While not privy to the future and in the absence of a crystal ball, we can only 

conjecture how our homes will have evolved in twenty-years. The current evidence, 

though, suggests that the 6G (or higher) technology, Internet of Things (IoT), AI, and 

Robotics will have had an irreversible and profound impact in all aspects of our life 

including our homes. We may have a social robot at home that recognizes every 

member of the family, communicates in natural human language, assists the household 

with their chores, communicates with appliances, orders goods on-line, monitors our 

health and security, acts as a companion, and above all, becomes a member of the 

family with all its implications. Back in 2007, Bill Gates [1] prophesied that there will be 

an autonomous robot in every home. It is unlikely that this prediction will be realized in 

this decade; perhaps 2040 is a more realistic date. 

The central premise of this thesis, irrespective of the actual time for the 

realization of social robots in every home, is that mobility and the ability to roam around 

a house and recognize different rooms and their respective functions must be 

fundamental in social robots. We refer to this process as a navigation strategy. An 

informed reader may suggest that this problem is widely studied within the Simultaneous 

Localization and Mapping (SLAM) and questions the contribution. We agree that the 

problem is widely studied. Let us go through our motivation to study this problem: First, 

there are still many open problems in SLAM including data association and automatic 

landmark assignment. Second, SLAM is formulated within the probabilistic robotics 

paradigm whereby the pose of the robot and the map coordinates environment are 

concurrently estimated via one estimation vector. Third, SLAM is counter-intuitive to 

humans. Consider a scenario that you are in one of the rooms in a house such as a 

kitchen. You do not update iteratively your position in the kitchen, nor you update the 

kitchen map. Fourth, in many SLAM algorithms, the robot is manually driven through an 

environment. Although this latter problem is addressed via autonomous SLAM and 

Exploration strategies, a small percentage of SLAM papers actually deal with this issue. 
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Finally, SLAM in dynamic settings has its own challenges and is the subject of further 

research. To alleviate some of the above shortcomings, the studies in this thesis are 

based on behavioristic robotics and inspired by humans and animals. As a parallel to 

SLAM, we coin the term Sequential Localization and Mapping (SeqLAM). Here, we 

define zones (kitchen, bathroom, etc.); as such, we are not concerned with minute 

details of updating the robot position in a particular zone. Humans and their pets know a 

priori that a home has different zones (kitchen, bathroom, bedroom, etc.). The social 

robot also has this information beforehand. Once, the robot establishes that it is in the 

kitchen, it remembers its location unless it passes through a door. The spatial relation 

(map) of two adjacent locations (kitchen and living room, for instance) is determined 

after the robot recognizes its new location. The idea can be encapsulated in the same 

manner a human (or a domestic pet) moves from one room (zone) to another. We view 

SeqLAM as an alternative approach with certain benefits – predominantly in indoor and 

structured settings.  

The research in social robots has substantially increased in the last decade. The 

social robotics market, including but not limited to domestic, assistance, or 

entertainment, is projected to grow from USD 3.3 billion in 2019 to USD 9.1 billion by 

2024, with a Compound Annual Growth Rate (CAGR) of 22.4% [2]. This estimated 

growth is understandable as it is expected to happen concurrently with other important 

statistics in the world. According to the World Health Organization (WHO), the growing 

number of people aged 65 or older is expected to increase from 524 million in 2010 to 

nearly 1.5 billion in 2050 [3]. Another fact is also by WHO that mental disorders affect a 

person in every four people [4]. We argue that social robots will significantly improve 

health monitoring inside our homes.  

Early generations of social robots are already available and are employed in 

diverse applications, such as eldercare [5], autism [6], supporting children with cancer 

[7], education [8], [9], or entertainment [10], etc. However, there are still many open 

questions that need to be resolved before the realization of a social robot in every home 

becomes practical. Here, we are concerned with two research questions: navigation 

strategies, and low-cost implementations. The former refers to the capability of a social 

robot to explore or navigate in an unknown but structured indoor setting, especially in 

apartments. We will discuss various schemes and state-of-art in robotics navigations in 

chapters 2 and 6. However, suffice to say in this section that we take on the problem by 
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augmenting the well-known Brook’s Subsumption architecture [11], which is a 

classification of behavior-based robotics. Perceiving knowledge and its crude replication 

by machine have been the on-going motivation and obsession for the behaviour-based 

robotics researchers. The subsumption architecture is inherently a hierarchical decision-

making process whereby an input sensor triggers a corresponding action in a bottom-up 

manner. The original subsumption was static and deterministic implying that “it did not 

learn”. By adding a learning module, we have transformed the system into a dynamic 

learning decision-making process. As such, we break the navigation process into a 

collection of simpler behaviors organized in layers such that higher layers subsume the 

lower ones. The learned knowledge is used to revisit places and to facilitate path 

planning in future research such as “go to kitchen and bring a cup of tea”. This part, of 

course, is outside the scope of the thesis.  

Social robots must become affordable to find their place in every home. There 

was a recent survey by Brooking institution through an online U.S. national poll of 2,021 

adult Internet users [12]. It reported that 42% of the users would pay $250 or less, 

whereas 10% said that they would pay between $251 and $500. Correspondingly, 

robotics companies started designing small-sized social robots with limited sensors, in 

which their average cost was around CAD$1000, such as Buddy and Kuri [13]. Except 

for very expensive social robots that provide SLAM and extensive propriety 

firmware/software and equipped with state-of-art vision and depth sensors, the problem 

of navigation for low-cost socials robots has rarely been reported. In this research, we 

focus on robots with “limited” sensors and mainly use monocular vision as the sensory 

input.  

1.2. Research Outline 

The research project was completed in four interrelated phases as shown in 

Figure 1-1. In phase 1, we addressed the problem of indoor room classification via 

several Convolutional Neural Network (CNN) architectures. The main objective was to 

recognize five indoor classes (bathroom, bedroom, dining room, kitchen, and living 

room) from the Places dataset. Then, we proposed and examined a combination model 

of CNN and a multi-binary classifier referred to as error correcting output code (ECOC) 

with the clean data. The proposed models were evaluated in real-time experiments with 

a Nao humanoid robot.  
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In phase 2, we proposed our in-house developed dataset referred to as SRIN, 

which stands for Social Robot Indoor Navigation dataset. This dataset consists of 2D 

colored images for room classification (termed SRIN-Room) and doorway detection 

(termed SRIN-Doorway). SRIN-Rooms has 37,288 raw and processed colored images 

for five main classes: bedrooms, bathrooms, dining rooms, kitchens, and living rooms. 

The SRIN-Doorway contains 21,947 raw and processed colored images for three main 

classes: no-door, open-door and closed door. The main feature of the SRIN dataset is 

that its 2D images have been purposefully captured for short robots (around 0.5-meter 

tall) such as NAO humanoid robots. In this phase, we focused only on using the SRIN-

Room dataset to train a CNN-based model and then tested it on 2D images taken by 

Nao in new environments. 

In phase 3, we focused on addressing doorway detection as a main component 

of any indoor navigation system. Thus, we proposed a (3Ds) system for Doorway 

Detection and Direction. The novelty of this system is to detect a door and extract the 

orientation in indoor settings from the view of a social robot equipped with only a 

monocular camera. The challenge is to achieve this goal with only a 2D image from a 

monocular camera. The proposed system is designed through the integration of several 

modules, each of which serves a special purpose. The detection of the door was 

addressed by training a CNN model on SRIN-Doorway. Whereas, the direction of the 

door (from the robot’s observation) was achieved by three other modules: Depth module, 

Pixel-Selection module, and Pixel2Angle module, respectively.   

In the final phase, we designed an end-to-end indoor navigation system 

exclusively designed for social robots with limited sensors for applications in homes. The 

overall system is a learning-based behavioristic system that combined a reactive system 

based on subsumption architecture and a knowledge system with learning capabilities. 

The robot with this system was able to explore a new home-like environment safely 

while gaining crucial knowledge based on our daily life during navigating. The system 

integrated several modules from previous phases. While at the same time, there were 

new modules designed for completing the system, such as avoiding obstacles via 

reinforcement learning, passing the doorway via Canny edge’s detection, building an 

abstract map called a Directional Semantic Topological Map (DST-Map) within the 

knowledge system, and other predefined layers within the subsumption architecture. The 
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individual module and the overall system were evaluated in a virtual environment using 

Webots simulator [14].  
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Figure 1-1: The design flow of the thesis. 
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1.3. Organization of The Thesis 

Chapter 2 is aimed to provide a selective yet succinct review of literature 

pertinent to social robots, navigation, robotic architectures, learning approaches, 

subsumption architecture, Convolutional Neural Network (CNN) and Reinforcement 

Learning (RL). The studies related to the aforementioned phases will be explained in 

detail in chapters 3 to 6, which include the related research of each phase.   

In chapter 3, we address the problem of indoor room classification via several 

convolutional neural network (CNN) architectures, i.e., VGG16, VGG19, & Inception V3. 

The main objective is to recognize five indoor classes (bathroom, bedroom, dining room, 

kitchen, and living room) from a Places dataset. We also propose and examine a 

combination model of CNN and a multi-binary classifier referred to as error correcting 

output code (ECOC) with a real-time implementation on a NAO humanoid robot. 

In chapter 4, we propose a new dataset referred to as SRIN, which stands for 

Social Robot Indoor Navigation. This dataset consists of 2D colored images for room 

classification (termed SRIN-Room) and doorway detection (termed SRIN-Doorway). The 

main feature of the SRIN dataset is that its images have been purposefully captured for 

short robots (around 0.5-meter tall). The evaluation of the dataset will be reported by 

testing Nao’s 2D images and comparing them with the prediction results of the same 

model with Places dataset [15]. 

Chapter 5 introduces a novel algorithm to detect a door and its orientation in 

indoor settings from the view of a social robot equipped with only a monocular camera. 

The proposed system is designed through the integration of several modules, each of 

which serves a special purpose. We include simulation results and real-time experiments 

to demonstrate the performance of the algorithm. 

In chapter 6, we propose a reactive system that combines a subsumption-based 

architecture with a knowledge system for a social robot with limited sensors that is 

supposed to explore a new apartment (house). Intensive experiments are included to 

evaluate each module of the system and the overall system via simulation and real-time 

experiments. 
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Chapter 7 aims to capture the main ideas and provide a summary of the 

contributions of the thesis and layout tentative suggestions for the future direction of this 

research work. 

1.4. Publications 

At the time of writing this thesis, three journal papers have been published. Also, 

there is one paper that has been submitted to an international journal. These papers are 

listed below:  

1. Othman, Kamal M., and Ahmad B. Rad. "An indoor room classification 
system for social robots via integration of CNN and ECOC." Applied 
Sciences 9.3 (2019): 470. 

2. Kamal M O, Ahmad B R. SRIN: A New Dataset for Social Robot 
Indoor Navigation. Glob J Eng Sci. 4(5): 2020. GJES.MS.ID.000596.  

3. Othman, K.M.; Rad, A.B. A Doorway Detection and Direction (3Ds) 
System for Social Robots via a Monocular Camera. Sensors 2020, 20, 
2477. 

4. Othman, K.M.; Rad, A.B. Sequential Localizing and Mapping: A 
navigation strategy via Enhanced Subsumption Architecture. [In 
Preparation]. 
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Chapter 2.  
 
Literature Review 

Research in social robotics is multifaceted, interdisciplinary, and indeed 

technology dependent. Therefore, an exhaustive literature survey is an ambitious 

undertaking and well beyond the scope of this thesis. Nevertheless, in this chapter, a 

highly selective yet concise survey of related areas that have a direct impact and 

significance to studies reported in this thesis are presented. The central objective of this 

chapter is to set the scene for the reader and provide a context for the chapters ahead. 

Social robots are referred to as a special family of autonomous and intelligent 

robots that are predominantly designed to interact and communicate with humans or 

other robots (agents) within a collaborative environment. Embodiment is an essential 

characteristic of this class of robots so that avatars and virtual agents are generally 

excluded. Social robots are designed for a variety of tasks in a collaborative or service 

setting and could be deployed in homes (to do household chores, act as a companion to 

children and seniors, or serve as a butler), hospitals (as a nurse, administrative 

assistant, etc.), schools (as a teacher), libraries (as a librarian), museums (guides, etc.), 

to name a few. Other key features of such robots are their ability to recognize people, 

objects, communicate through voice, and respond to various human emotions. Social 

robots are designed in all sizes and shapes for a variety of applications but most 

importantly, they are designed to be acceptable to humans. Depending on the ultimate 

application, a social robot can be designed as a pet-like, e.g. AIBO [16], or a humanoid, 

e.g. Nao [17], or a wheeled robot, e.g. Pepper [18], or unmovable robot, e.g. Kasper 

[19]. 

Implicit but an indispensable feature of a social robot is its ability to seamlessly 

move around in the environment for which it is expected to function. Indeed, a social 

robot cannot realistically perform its dedicated tasks, if it is immobile as it is sensible to 

suggest that such skills can hardly be isolated from the crucial ability to explore, 

navigate, or perceive information in the way humans do. Navigation within the above 

context requires the solution to two distinct but interrelated problems: the ability to know 

and update the robot location at any time instant, the capacity to move towards a goal in 
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a safe manner. The former is referred to as the localization problem [20] and requires a 

relatively accurate map of the environment. When the map is available, the problem is 

rather straightforward; however, in scenarios where the map is not a priori known, the 

problem becomes more complex and its solution requires Simultaneous Localization and 

Mapping (SLAM) [21]. The second problem is referred to as path planning and has its 

own challenges including but not limited to target identity (perception, searching, 

recognition, learning), target location (prior map, building a global or local map), and how 

to reach the goal. The required task within the navigation process is that the robot must 

be able to arrive to target safely which is referred to as the obstacle avoidance problem 

[22]. 

Sensors play a significant role in all autonomous robots’ applications including 

but not limited to localization; environment realizations and representation; object or face 

detection and recognition; data association; and communication or interaction with 

people. By the same token, a social robot must be equipped with actuators in order to 

take appropriate actions. The action decision can then be executed through a motion 

controller that either operates at a low-level control of motors or a high-level control of 

behaviors. There are two types of sensors: proprioceptive and exteroceptive sensors 

[23]. The proprioceptive (internal) sensors, such as gyroscope, accelerators or GPS, are 

used to measure the internal states of the robot, e.g. its speed or acceleration. On the 

other hand, the exteroceptive (external) sensors, e.g. sonars, laser, monocular camera, 

stereo camera or Kinect, provide external knowledge of the environment, for example, 

distance to an obstacle, or direction to a target. Sensor readings are always noisy which 

may lead to errors in the measurements; therefore, besides employing appropriate 

filters, sensor fusion techniques have been widely used to alleviate this problem and 

improve the performance [24]. Multi-sensor data fusion can be generally applied for 

creating an environment model or applied within a robotic control system to select 

behaviors [24]. The latter application is partly within the scope of this thesis as multiple 

low-cost sensors were used onboard a social robot with limited sensors. 

Addressing navigation tasks and interconnecting their functions within a robotic 

system is referred to as robotic architecture. There are several approaches to robotic 

architectures for addressing the robotic navigation problem [25]. The traditional 

approach that emerged in the mid-1970s was the deliberative robotic system, which is 

also known as SPA (Sense-Plan-Act). The navigation system under this classification is 



11 

decomposed into sub-functional modules that are sequentially executed. The core of this 

system is the plan function, which depends on the availability of a realistic model (map) 

of the environment; as such, it is referred to as the model-based paradigm. It is goal-

oriented and able to solve difficult tasks; nevertheless, it still has some shortcomings. 

For example, an optimal path planning requires an accurate map, which is a challenging 

proposition in real-time experiments due to inherent uncertainties, and it is intuitively 

against human or animal’s sub-optimal approach of not requiring a detailed map in 

similar scenarios. Furthermore, planning in each step leads to delay in accomplishing 

the required navigation tasks and demands high computation cost. Finally, any error in 

the system, i.e. perception, model, plan, execution, or motion controller modules, affects 

the whole system due to the sequential architecture. A behavior-based paradigm coined 

as a reactive robotic system with a promise of addressing some of the above issues 

emerged in the mid-1980. In this system, plan function is eliminated altogether, and only 

sense and act functions are coupled. That is why this system is known as SA (Sense-

Act) system. This methodology was inspired by animals’ behaviors that are mainly 

governed by stimulus-response coupling. A reactive navigation system is decomposed 

into sub-behaviors, i.e. multiple instances of sense-act couplings that are integrated in 

parallel. Therefore, the main key feature of this paradigm is to execute a series of 

behaviors to enable the robot navigating to a destination with no plan for future nor 

memory for past knowledge. This system has many advantages: it is suitable for 

dynamic environments, it has low computation, as it does not require a model nor a plan 

module, and it is fast. However, it still has shortcomings. First, it is not reliable for 

complex tasks in complex environments as there is no clear final goal within the system, 

i.e. no plan. Second, although it provides flexibility due to independence among 

behaviors, the coordination between behaviors for complex tasks is challenging and 

often tricky. To overcome these limitations, the hybrid robotic system emerged in the 

early 1990s. As the term suggests, this system integrates the deliberative (model-based) 

with the reactive (behavior-based) systems to circumvent the weaknesses of the two 

approaches. The system starts with a model and a plan for a specific mission. Then, a 

set of behaviors is generated to execute the plan. At regular progression steps, the 

planner produces a new plan for the new goal or sub-goal, which in turn used to 

generate a new set of behaviors towards completing the mission. Therefore, the plan 

function is not executed in each step as in the deliberative paradigm. In this thesis, an 

architecture that could broadly be classified as a hybrid system is designed for indoor 
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navigation of social robots. In this research project, we adopted a reactive system and 

further refined it by augmenting a knowledge system to design a novel robotics 

navigation system for indoor environments. 

Since the early 1980’s, a completely different school of thought has emerged and 

dominated research in robotics navigation. Probabilistic robotics aims to address 

uncertainties due to sensors, actuators, and the environment [26]. Probabilistic 

algorithms represent robot and environment information by a probability distribution over 

a space of mathematical estimations. This approach falls between model-based and 

behavior-based systems as it incorporates models for sensor measurements and the 

environment. Therefore, it integrates both model and sensor data in order to control the 

robot based on statistical mathematics. Yet another approach that has gained popularity 

in the last two decades is the Cognitive approaches that are generally inspired by the 

human or primates brain functions. The cognition model involves seven mental states: 

sensing and acquisition, reasoning, attention, recognition, learning, planning, action and 

coordination and their transitions along with cognitive memory, i.e. long-term memory 

and short-term memory [27]. 

Learning feature is an important key in almost all robotic applications. In the last 

three decades, it has been integrated into navigation systems through machine learning 

algorithms. Machine learning [28] is a field of artificial intelligence that studies algorithms 

for learning from experience via extracting patterns from training data. Learning from 

data can be divided into supervised and unsupervised learning. Supervised learning is 

the area of designing algorithms that learn from labelled data. Unsupervised learning, on 

the other hand, is the area of designing algorithms that learn from unlabeled data. There 

is another approach of machine learning called reinforcement learning (RL) that does not 

need data for learning. Instead, it depends on the interaction with the environment and 

learning through a trial-and-error process. Since the main focus of this thesis is on the 

combination of the reactive system (i.e. a collection of behaviors) and the knowledge 

system (i.e. perception tasks), we only considered the supervised and the reinforcement 

learning in this project. 

Figure 2-1 shows an overview of the interwoven research areas related to social 

robotics. The interdisciplinary nature of research in social robotics is evident in this figure 

and the assimilation of engineering, robotics, artificial intelligence, psychology, 
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neuroscience, design and more can readily be inferred. The shaded areas depict the 

specific classifications that fall within the scope of this thesis and are mostly inspired by 

humans or creatures. 

In this chapter, we include an overview of the behavioristic system in section 2.1 

with the intention of providing more details about the adopted behavioristic system 

referred to as the subsumption architecture. Then, section 2.2 introduces the concept of 

deep learning, specifically Convolutional Neural Network (CNN), as supervised learning 

with the most common robotics applications. The chapter is concluded by introducing the 

concept of the map-free approach of Reinforcement Learning (RL) in section 2.3 as well 

as how the RL approaches were employed in the robotics navigation applications. 
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Figure 2-1: Related research areas to the social robots and the scope of this thesis (shaded). 
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2.1. Behavioristic Approach 

2.1.1. From Biological to Robotic Behaviors 

Robotic research is interdisciplinary, and researchers are inspired, learned, and 

engineered findings from other research domains, such as neuroscience (the science of 

nervous system), psychology (the science of mind), and ethology (the science of animal 

behaviors). We adopted behavioristics robotics as the backbone research in this thesis. 

In this section, the main concepts of biological behaviorism are introduced to provide a 

rationale for behavioristic robotics which will be discussed in the next section.  

Behaviorism advocates that learning ensues from interaction with the environment. 

Therefore, human and animal responses are simply molded by environmental stimuli 

[29]. A behavior is defined from behaviorism’s perspective as a basic capability of 

animals to make a decision and take an action based on what they sense in order to 

achieve a specific task [29]. The basic form of behaviors is known as reflexive behavior 

which has a direct relation between stimulus and response without explicit cognition [30]. 

Depending on how a stimulus and response is related, different types of reflexive 

behaviors are formed. For example, lifting the knee immediately when it is tapped by a 

hammer, it is a form of a reflex behavior that its response ends by the end of the 

stimulus. The other example is the tax behavior that the response is a direction towards 

a stimulus as what happens with a baby turtle that moves towards the brightest light 

after hatching. The third example is called fixed action pattern, in which the response 

takes a longer time than the stimulus as we can see it in the behavior of fleeing 

predators [30]. The study of animal behaviors has given more attention as an 

independent discipline after the study of Konrad Lorenz and Niko Tinbergen who are the 

fathers of the ethology. They and other researchers have been observing animal 

activities in their nature from different perspectives. One of the central aspects is 

observing different types of acquiring behaviors: innate behavior, a sequence of innate 

behaviors, innate behavior with memory, and learning set of behaviors. The other aspect 

is observing different ways of controlling behaviors when they are triggered concurrently: 

dominance, such as hungry versus sleepy, and equilibrium, such as feeding versus 

fleeing in squirrel [30]. Motivation [31] is an essential aspect that has attracted 

continuous attention by behaviorists. Studying motivations of behaviors means finding 

an answer as to why a specific animal acts in a particular manner. Behaviorists have 
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been looking for cues that are internal, e.g. hunger, or external signals, e.g. the smell of 

food, that generate specific behaviors without looking for the mental mechanism. 

Studying the interface between the brain and the behaviors through observing the 

mechanism of obtaining and processing information is a rather new sub-discipline called 

neuroethology [32]. In addition, there are different aspects to higher levels such as 

behavior development and animal cognition. Behavior development studies the change 

of behaviors based on either evolution theory or learning via interaction with the 

environment [33]. The latter class of behavior development, i.e. learning via interaction 

with the environment, will be highlighted in 2.3 as it is considered within the proposed 

system. Animal cognition is a scientific area that studies the mental functions including 

learning function, memory, thoughts or environment representation [34]. 

Robotics researchers are inspired by many biological behaviors and have 

attempted to replicate them in different applications. The basic form of behavior, i.e. 

reflexive behavior, can be designed as a sense-act coupling module. A behavior module 

consists of a sense function that perceives and processes data from the sensors, and an 

act function that maps input data to action for controlling the robot’s actuators. The 

motivation for behavior is designed as the releaser function that can be a perception 

function. Other forms of perception functions that modify the behavior module are 

presented as a suppressor and inhibitor functions, respectively. A suppressor function 

prevents the sensor’s input signal to be sent to the sense function, whereas an inhibitor 

function prevents the output signal of the act function to be sent to the actuator. All these 

three perception functions will be highlighted in section 2.1.2 of the adopted behavioristic 

system in this thesis. An innate and sequence of innate behaviors can be designed as a 

pre-programmed behavior, and Finite State Machine (FSM), respectively. The collection 

and combination of a set of behavior modules create a behavior-based robotic system. 

The two well-known behavior-based robotic control systems are the subsumption [11] 

and the motor-schema [35]. The subsumption control system mimics the dominance 

control observation, in which one behavior takes control when many behaviors are 

triggered concurrently. On the other hand, the motor-schema control system simulates 

the equilibrium observation that sums the output of concurrent triggered behaviors. 

Learning behaviors can be addressed through artificial intelligence learning approaches, 

such as deep learning for perception tasks, and reinforcement learning for action tasks. 

They will be discussed in section 2.2 and section 2.3, respectively. 
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2.1.2. Subsumption: An Architecture of Behavioristic Robotics 
System 

Subsumption architecture is the first pure reactive robotic system, which was 

introduced by Brook in his early work on the behavior-based system [11]. He argued 

against explicit modelling of the world and notably stated that “the world is its own best 

model” [36]. This system consists of a set of layers as shown in Figure 2-2, in which 

each layer is responsible for a specific task. These layers are built in parallel where the 

higher layers have more dominance than the lower ones when they are triggered 

concurrently, i.e. competition coordination. Each layer is decomposed into basic 

behaviors or modules. A module is considered as a pre-wired reflexive behavior that 

connects a sense function with an act function in order to perform a specific behavior. 

Each behavior can be created, tested, and debugged individually. In the robotics 

navigation context, the system decomposes the navigation problem into vertical task-

achieving behaviors, such as avoid, wander, explore ... etc. Layers are added to the 

system incrementally, and they are built and activated in parallel, but operated 

asynchronously. Let us consider that level 0, e.g. “move around” behavior, is designed, 

implemented and debugged. Then, level 1 is added, e.g. “obstacle avoidance” behavior, 

with keeping the function of level 0. Therefore, the robot can move and detect obstacles 

to be avoided. The main feature of subsumption is that the higher layer can subsume the 

control of the lower layer, which is the origin of the name, when behaviors are triggered 

concurrently. Consequently, the higher layer only controls the robot to the overall goal or 

destination at a specific time. Since interaction between layers might become 

complicated with complex environments and tasks, the goal in subsumption design is to 

keep the connection between layers as least as possible, which is more effective for 

modularity [37]. In short, behaviors in the subsumption system are coordinated and 

executed such that the robot can interact with the environment and select the best 

behavior in a sequential manner until the task is completed with no plan for future or any 

memory of past knowledge. 

Each behavior is designed by mapping a stimulus (input sensory data) into a 

response behavior (actuator output) through connecting its own sense and act functions. 

In addition, a behavior can be modified by its respective inhibitor, suppressor, or releaser 

conditional functions as shown in Figure 2-2. An inhibitor function (𝑆𝐼) is designed to 

inhibit a behavior from controlling the robot even if the sensor data is available. A 
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suppressor function (𝑆𝑆), on the other hand, suppresses the corresponding behavior 

output, and consequently, no output response is generated. A releaser is like a switch 

that turns the module on/off based on a particular sensory input. In a case of sequence 

behaviors, such as finding a refrigerator, opening the door, finding a can, gripping a can, 

moving gripper out of the refrigerator, and closing the door, this type of task can be 

accomplished by a Finite State Machine (FSM). This implies that instead of letting one 

behavior triggering the next behavior, each behavior in this sequence can be activated 

through the environment. For example, if the state of the refrigerator is opened, then 

“find a can” behavior will be activated, or if the state of the gripper is closed, then 

“moving gripper out of refrigerator” will be activated, and so on. Hence, the design and 

the coordination between behaviors essentially depend on the application or the main 

task. 

 

Figure 2-2:  An illustration of Subsumption architecture with Layers and 
possible components. (𝓑: Behavior, SF: Sense Function, AF: Act 

Function, FSM: Finite State Machine, 𝑺𝒊: Inhibitor, 𝑺𝒔: Suppressor, R: 

Releaser, S: Subsumed layer by a higher layer). 

Brooks [36] configured a number of MIT’s robots with the subsumption system, 

Toto, Genphis and Seymour. Subsumption architecture has several advantages 

including low computation as no need for a model and no plan modules; consequently, it 

is fast. However, the pure reactive behaviors in subsumption are not straightforward nor 

reliable for complex tasks in complex environments as there is no clear final goal within 
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the system, i.e. no plan. In addition, there is no explicit learning, no memory, and no 

goal-directed motivation [38]. Although some researchers attempted addressing these 

shortcomings by integrating different algorithms of soft computing with subsumption 

such as fuzzy logic [39], genetic algorithm [40], or neural network [41], further research 

on subsumption lost its momentum; particularly due to emergence and success of 

probabilistic robotics. Integrating learning capability with behaviors can be categorized 

into two main types: learning coordinating behaviors and learning new behaviors [42]. It 

is also sporadic regarding employing reinforcement learning (RL) within behaviors, 

specifically in subsumption architecture. Two early studies were reported by Mahadevan 

& Connell [43] and Mataric [44] using RL. In [43] RL was combined with statistical 

clustering and hamming distance in a box-pushing task within subsumption, whereas in 

[44] RL was applied in a multi-robot domain. Recently, RL has been used with a 

behavior-based system in order to learn how to perform new tasks, and its performance 

has been compared with subsumption in [45]. The design consists of two combined 

phases. First is the imitation phase, which is carried out by using a self-organizing 

decision tree to emulate the behavior of a skilled operator. Second is the composition 

phase, which is accomplished by using Q- learning to combine all behaviors and assign 

learned weights. Then, the outputs of all behaviors from phase one and the learned 

weights from phase two are fused to perform weighted action. In addition, Q-learning 

was applied, and its performance was compared within two different behavior-based 

system: subsumption & motor schema. They were tested on the Lego NXT robot for 

avoiding obstacles [46].  

With the advent of machine learning and particularly deep learning in the last two 

decades, new opportunities arise to enhance the subsumption architecture and alleviate 

its shortcomings. In this thesis, we propose a subsumption-based system that is 

integrated with a knowledge system. We demonstrate its performance to address the 

open problem of exploration in structured indoor settings in Chapter 6. The new system 

has learning capabilities for addressing specific perception and action problems. In the 

next two sections, we review the adopted learning approaches for deep learning and 

reinforcement learning, respectively. 
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2.2. Deep Learning 

Machine learning (ML) is a research area that predominantly deals with 

designing a mathematical algorithm to learn from labelled datasets for supervised 

learning (classification and regression) or from unlabeled datasets for unsupervised 

learning (clustering and dimensionality reduction). There are different ML methods 

including but not limited to Support Vector Machine (SVM), K-Nearest Neighbor (KNN), 

Naïve Bayes (NB), Decision Tree (DT), K-Means (KM), and Artificial Neural Network 

(ANN) [47]. Deep learning (DL) is the mainstream classification of machine learning and 

is viewed as the state-of-art in artificial intelligence. It is essentially evolved from artificial 

neural networks (ANN) dating back to the 1950s [48]. ANN was inspired and a crude 

attempt to model biological neural networks. It gained popularity in the second half of the 

twentieth century and led to impressive solutions for complex nonlinear problems that 

did not fit consistent mathematical models. DL is an ANN architecture with multiple 

levels of hidden layers that is suited to complex pattern recognition problems. Deep 

learning is distinctive among machine learning algorithms as it does not require a careful 

engineering design for extracting features from raw data [49]. The basic form of deep 

learning architecture is the fully connected (FC) network. It consists of multiple hidden 

layers, i.e. deep, in which all neurons in one layer are connected to every neuron in the 

next layer. There are other DL architectures for different preferred applications [50], such 

as Recurrent Neural Network (RNN for natural language processing), Convolutional 

Neural Network (CNN for image recognition), Generative Network (GN for predicting or 

generating output data), or more recently, the so-called Capsule Networks (CapsNet: for 

image recognition) [51]. These DL architectures have different learning processes and 

different connection topology among layers to extract features. Since the focus in this 

thesis is on scene recognition to enhance the navigation process within indoor 

environments, we adopted the CNN architecture for perceptual tasks. We found that 

there is no need to adopt the CapsNet for our project as it mainly addresses the lack of 

rotational invariances in CNN [52], and this is not the case for a scene perceived by a 

mobile robot. Figure 2-3 depicts the relation between CNN with other ML methods in a 

network diagram. The mathematical model of CNN will be explained in the next 

paragraph for understanding its concept and why it is better than the fully connected DL. 
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Figure 2-3: Deep learning approaches within machine learning area. CNN is the 
adopted approach in this thesis.  

CNN was proposed by LeCun [53], who introduced the first CNN architecture 

called LeNet in 1998, after several successful earlier attempts since the 1980s [54], [55]. 

Due to the huge improvements in data collection and computer hardware between the 

1990s and 2012, AlexNet was introduced [56] for addressing the object detection 

problem using the ubiquitous ImageNet to classify 1.2 million images into 1000 different 

classes. Since 2012, many articulate architectures have been proposed that are 

essentially built on the early architecture of LeCun, in order to improve the performance 

on the ImageNet database [57], for example, VGG16 [58], ResNet [59], or Inception [60].  

In order to understand the main characteristics of CNN, let us review the CNN 

structure and its mathematical model. As CNN has been successfully employed for 

image detection and classification, its main objective is to extract features such as 

edges, lines, shapes, or colors, without a careful human prior design. The fundamental 

architectures can be found in LeNet [61] and AlexNet [56]. In general, such networks 

have three main layers in each stage: convolutional, rectified linear unit (ReLu), and 

pooling layers. These layers are known together as ConvNet. The architecture is 
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completed by fully connected (FL) layers for classifying the image from high-level 

features that have been extracted in multi-stages. In addition, the dropout technique [62], 

[63] is used to overcome the overfitting problem by ignoring some neurons in the training 

stage. Figure 2-4 shows the basic architecture of CNN, and the following sub-

paragraphs explain the mathematical model of each main layer: 

 

Figure 2-4: Fundamental components of CNN architecture. 

• Convolutional Layers: 

The main purpose of these layers is to extract features from inputs 𝑥 =

 {𝐿1, 𝐿2, … , 𝐿𝑖}, where 𝑥 is an input image in the first stage while its input features are in 

the middle stages. Every input can be divided into a set of local receptive 

fields {𝐿1, 𝐿2, … , 𝐿𝑖}. There are kernel filters, e.g., 3-by-3 trainable-filters 𝐾 =

 {𝑘1, 𝑘2, … , 𝑘𝑗} that are used to produce feature maps 𝐹𝑀 = {𝐹𝑀1, 𝐹𝑀2, … , 𝐹𝑀𝑗}. The 

size of each kernel filter and each local receptive field is similar, in which they are used 

with the bias for calculating each output cell of 𝐹𝑀𝑗  as follows: 

𝐹𝑀𝑗
𝑖 = 𝑏𝑗 +∑𝑘𝑗 × 𝐿𝑖  

Let us assume for simplicity that the input is a grayscale, i.e. one channel, of size 

5x5 with normalized values of 1 and 0 for white and black, respectively as shown in 

Figure 2-5 (a). Now, let us further assume that we have a kernel of size 3x3 that slides 
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on top of the input by one step starting from the top left corner, i.e. it is called stride. 

Thus, the number of local receptive fields is 9, which is the number of cells of the 

produced feature map. Each cell of the feature map is using the same kernel multiplied 

by all local areas in the input of the previous layer. Accordingly, the size of the feature 

map depends on the size of the input, the size of the kernel and the stride. Optionally, 

zero cells can be added to the border of the input, it is not shown in Figure 2-5 (a), to 

have better coverage for the cells in the edge of input, which leads to a bigger size of a 

feature map if the kernel and stride are same. 

• ReLU: 

As real-time applications are non-linear, the previous layer of linear filters is 

followed by a non-linear operation as an activation layer. There are various types of 

activation functions, e.g. Hyperbolic tangent (tanh), sigmoid, or exponential. Recently, 

the most useful activation function used within CNN architectures is Rectified Linear Unit 

(ReLU) as shown in the below equation and Figure 2-5 (b): 

𝑓(𝐹𝑀) = max (0, 𝐹𝑀) 

• Pooling Layers: 

The role of this layer is to reduce the dimension of all features maps while 

keeping the most important information. It is carried out by taking the average or 

maximum value of every window, e.g. 2x2 size, of features maps, see Figure 2-5 (c). 

• FL Layers: 

This is a regular neural network that uses all high-level features for classifying an 

input image to a specific class based on training a set of images. 
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(a) Convolutional layers 

 

(b) ReLU non-linear function 

 

(c) Pooling layers 

Figure 2-5: Mathematical model illustration for each layer in the ConvNet. 
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The objective of training a CNN architecture is to train and optimize the value of 

kernels and fully connected weights through backpropagation [54] in order to detect or 

classify an image with high accuracy. From the CNN architecture in Figure 2-4 and the 

mathematical illustration of each layer in Figure 2-5, there are four key ideas behind the 

ConvNet architecture [49]: local connections, shared weights, pooling and the use of 

many layers. The first concept, i.e. local connection, is due to the high correlation 

between pixels in the same area. Thus, it is preferable that each cell in the feature map, 

i.e. it is similar to hidden neurons in FL, is produced from a local area, instead of a 

specific pixel, of the previous feature map through a kernel that has weights and bias. 

The second key point of CNN, i.e. shared weights, is that extracting features from input 

should not depend on its pixel location since this feature can be varied from one image 

to another. Thus, the shared weights can detect the same patterns from different parts of 

the input image. Next, the pooling layer or what is known as down-sampling is to 

decrease the size of the features while maintaining the essential information. Finally, 

from the shared weights and pooling, deep ConvNet layers lead to a significant reduction 

of parameters’ number comparing to the regular DL. 

2.2.1. CNN for Robotics Applications 

Since Convolutional Neural Network (CNN) shows an excellent performance in 

computer vision for learning image features, especially supervised learning applications, 

the robotics community has applied the CNN model for robotic perception tasks. This 

section focuses on the recent literature that has adopted CNN for robotic perception 

applications. Perception with CNN in robotics was studied within two main categories: 

objects-based and places-based applications [64]. 

Object-based applications in robotics are considered as the study of addressing 

object detection problems. Object detection is a computer vision and image processing 

area that deals with images and extracts features in order to categorize them into a 

specific class of objects. The task of object detection has been addressed by several 

CNN architectures in many robotics applications as summarized and classified in Table 

2-1. The task of grasping in robotics arms is one of the common robotic applications that 

depend on the object detection task as well as the location of the object. The work in [65] 

addressed detecting and grasping the most exposed object from a stack of objects, 

applied on seven different types of fruits. A simple CNN-based model was designed and 



26 

trained on collected RGB-D images by Kinect that separated from the arm robot. In order 

to achieve the detection and grasping simultaneously, the dataset was labelled by one of 

the seven fruits that it is mostly exposed and associated with pre-grasp points for grasp 

detection. In [66], the objective was to optimize the bounding-box rectangle estimation of 

the object detection in a simulation experiment. This was accomplished through two 

stages: 1) applying a pre-trained Regional Convolutional Neural Network (R-CNN) on a 

raw image for getting the bounding box and 2) Applying the CNN-based model on the 

output of the R-CNN combined with predefined an intent area to optimize the rectangular 

location within the image. The concept of using tools to improve object detection was 

discussed in [67]. The authors aimed to assist a wheelchair with an arm called a Kinova 

Jaco robotic arm to pick an object that was pointed by a user using a laser. The object 

detection and laser point detection were tackled by applying YOLOv3* system (You Only 

Look Once system). Then, the grasping pose of the robot arm in the wheelchair was 

generated based on the object color and the laser depth value. A real-time experiment 

was reported in [68] on WALK-MAN mobile robot to evaluate the tool grasping task in an 

indoor environment. It was achieved by designing a CNN model based on encoder-

decoder architecture and training it on UMD (RGB-D affordance of tool parts) in order to 

extract the affordance part of the tool based on RGB-D input image.  

Robotic grasping was also tackled for farming applications with agricultural 

robots. A simulation work for detecting and generating a bounding box around apples in 

the image within an orchard environment was presented in [69]. This was accomplished 

via the network of single shot multi-box detector (SSD), which was trained on collected 

images by an unmanned ground vehicle called Shrimp that was operating in the apple 

orchards. With the same concept of simulation work of addressing detection problem 

without a real-time implementation of grasping, a network of Faster R-CNN with VGG19 

in [70] was proposed to address the maize seedling detection for a wheeled robot. 

Twenty thousand images of soil, maize and weeds are collected by the wheeled robot 

and used for training and testing the proposed model. On the other hand, real-time 

experiments were conducted on a robotic arm to pick a certain vegetable [71]. Images 

for seven categories of vegetables were collected by two cameras mounted on the arm 

robot, in which these images were used for training and analyzing the performance of 

 

* YOLO is a CNN-based model for predicting multiple bounding boxes with their class probabilities 
[282], [283]. 
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different CNN models: Faster R-CNN, SSD, RFB (Receptive Field Block) Net, YOLOv2 

and YOLOv3.  

Human-Robotic Interaction (HRI) is another important area in robotic applications 

that needs to tackle the object detection problem. The simulation work in [72] 

concentrated on recognizing hand gestures as a classification problem for human-robot 

collaboration. It was achieved through designing and testing the Fast R-CNN model 

using collected RGB images from a Kinect camera. Emotion detection is another 

significant application for HRI as presented in [73], [74]. The first paper provided 

simulation studies by proposing a CNN model based on Inception architecture that was 

trained and evaluated on eight different emotion datasets. The latter paper presented a 

real-time experiment on the Nao humanoid robot by applying a CNN-based model for 

detecting six different emotions based on facial expression in children using several 

existed datasets. Another practical robotic system for the Nao robot was proposed for 

understanding the behaviors of children with autism while playing with toys [75]. The 

objective was to detect a toy that had received the child’s attention as well as to detect 

the child’s hands. The object detector within the system was designed based on the Fast 

R-CNN model and trained with the ADOSet dataset for the purpose of autism diagnosis. 

The practical proposed system started by recording videos by Nao’s camera and then 

annotating video frames with object’s names using the trained Fast R-CNN. Then, 

detecting the toy that got the child’s attention was achieved by combining hand detection 

with a decision tree model.  

Detecting people is an important problem to be addressed for indoor or outdoor 

robotics applications. An integrated system of Aggregate Channels Features (ACF) with 

CNN was proposed [76] in order to detect people for the Human-Aware Robot 

Navigation problem. The CNN network was fine-tuned using the INRIA dataset that is 

considered as a benchmark for pedestrian detection. The CNN model takes generated 

regions from AFC as an input and predicts whether the input region consists of people or 

not. The proposed system was tested with onboard and off-board cameras. Another 

practical project [77] suggested a perception system based on depth information to 

detect people for a robot assistant in hospital environments. The system was designed 

based on combining Fast R-CNN, Kalman Filter and Hidden Markov Model modules to 

detect people, classify their situation category (pedestrian, a person in a wheelchair, 

person in a wheelchair with a person pushing them, person with crutches and person 
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using a walker), tracking them, and estimate the person position and velocity for 

providing the appropriate assistance. The authors introduced a new annotated RGB-D 

dataset for hospital environments collected by Kinect camera on a mobile Festo 

Robotino robot. In [78], the simulation work targeted moving humans for safe 

autonomous robotics navigation. A robotic vision system was proposed to detect moving 

humans and classify their actions based on the CNN model. The system composes of 

an optical flow descriptor, a CNN human detector, a CNN human action detector and a 

local search window detector. Detecting and tracking a single person was tackled by 

showing a real-time implementation on Parrot AR Drone in [79]. The detection task was 

completed by designing and training an SSD CNN model, whereas the tracking task was 

achieved by few simple PID controllers. 

RoboCup Soccer [80] is a robotic competition that deals with several robotics 

problems including object detection. The work in [81] proposed a new dataset that 

created for ball detection in the RoboCup Soccer Standard Platform League by Nao 

camera. This dataset was employed to train and evaluate a CNN-based model called 

XNOR-Net in a simulation scenario. Detecting the robot within the soccer field is another 

object detection problem in the RoboCup that has given attention in some of the robotic 

studies such as the simulation work of [82], [83]. The work in [82] proposed a two-stages 

vision system for detecting other robots. The first stage aimed to preprocess the input 

image in order to extract the region of interest (ROI). Then, the second stage applied 

and compared different CNN-models for classifying three different types of humanoid 

robots within the extracted ROI. The other work [83] focused on analyzing the 

performance of two different CNN-based models, XNOR-Net and SqeezeNet for 

detecting Nao robot with limited computational resources. 

Robotic navigation is a crucial problem that consists of many sub-problems such 

as localization, mapping, SLAM and path planning. The solution to these problems could 

include object detection. In [84], A navigation system that integrates people detector 

module with a SLAM module was proposed using ROS for a Pioneer 3DX robot. The 

robot equipped with an RGB-D camera that was employed for the people detection task 

and a Sick Lms200 sensor laser that was important for the SLAM task. The objective of 

the proposed system was to assist the robot to be able to detect and follow a person. 

That was done by applying the people detection module to find the person’s position and 

applying the SLAM module to find the robot position within a created map, then 
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integrating the position of the person and the robot in the path planning module. Two 

different methods were employed and compared separately for detecting people: 

Histogram of Oriented Gradients (HOG) and a GoolgeNet CNN-model followed by SVM 

classifier. The author claimed that the latter approach was more accurate for people’s 

recognition within their proposed navigation system. A practical experiment was 

presented in [85] in which a mobile robot acquires a 360 image in order to classify the 

navigational direction based on a CNN-based model. The model was trained by a 

collected data of 360 images that manually labelled by specific directions using a 

spherical camera mounted on a mobile robot. The work in [86] aimed to conduct real-

time experiments on a Pioneer P3-DX mobile robot with mounted laser and camera in 

order to track movable objects, e.g. door and people, using R-CNN model within SLAM-

based robotic system. The simulation work in [87] presented a vision system for object 

recognition in an indoor environment. The proposed system combined a CNN trained 

model with prior knowledge of scene and color to enhance the prediction performance. 

However, there were no real experiments in robots although it was intended to address 

the robotic navigation problem. There are several recent works in literature that focus on 

improving the built map by SLAM with adding semantic information through detecting 

objects using different CNN-based models, such as a model based on Fast R-CNN [88], 

YOLO with Kobuki base [89], YOLO with Turtle Bot mobile robot [90], YOLOv3 with 

simulation work on Robot@Home dataset [91] and multi CNN models for creating 3D 

bounding box [92]. In addition, there are some studies that take the advantage of the 

object detection in order to improve the performance of localization, such as integrating 

SSD model with Kalman filter that applied on HUSKY UGV platform [93], and a trained 

Fast R-CNN on a dataset that contains images associated with GPS and compass 

sensors information [94].  

There are other general applications that have addressed the object detection 

problem by CNN models. For example, An Unmanned Aerial Vehicle (UAV) was 

employed to collect a sequence of images (videos) of avalanche debris for the task of 

search and rescue victims [95]. The collected videos were used to train and validate a 

CNN model followed by an SVM classifier that detects the presence or absence of 

objects. The CNN model was combined with preprocessing and post-processing 

modules in order to improve the performance of the victim’s detection. The work in [96] 

suggested a deep recurrent neural network called LSTM (Long-Short Term Memory) for 
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detecting a car generating a descriptive or instructive sentence related to the detected 

car. The task was achieved by combining the CompCar dataset with collected videos to 

train the model. For the cleaning purpose, [97] proposed a cascade machine learning 

system that is able to detect debris in an indoor environment for vacuum robotic 

application. The system consists of the SSD model for classifying the type of debris 

(solid vs liquid) during the training stage. Then, it is followed by SVM during the testing 

stage to classify the hardness of cleaning the detected liquid spills. The experiments 

were only verified by simulation studies through collecting images using the Aver vision 

system and Kinect sensor for evaluating the proposed system. Simple models of CNN 

were also suggested and tested in simulation experiments for detecting clear sky [98], 

and detecting cracks in concrete bridges [99]. Classifying marine objects into sea 

cucumber, sea urchin, and scallop has been addressed and tested on Underwater Robot 

by applying Fast R-CNN [100]. The trained detector was followed by a tracking model 

called kernelized correlation filter to track detected objects. 
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Table 2-1:  Summarizing and classifying selected papers of object detection  
for robotic applications based on CNN architectures since 2016.  
(S: Simulation & R: Real-Time Experiments) 

CNN for object detection in robotics 

Robotic Applications 

 

Deep Learning Architectures 

Grasping / Farming 
 

CNN-based (Basic ConvNet layers) 

S [66],[69],[70] 
 

[65],[74],[76],[78],[85],[87],[92],[95],[98],[99] 

R [65],[67],[68],[71] 
 

SSD 

HRI 
 

[69],[79],[93],[97] 

S [72],[73] 
 

YOLO 

R [74],[75] 
 

[67],[89],[90],[91] 

People detection 
 

R-CNN 

S [78] 
 

[66],[70],[72],[75],[77],[86],[88],[94],[100] 

R [76],[77],[79] 
 

Encoder-Decoder 

RoboCup 
 

[68] 

S [81],[82],[83] 

 

GoogleNet / Inception 

R - 
 

[84] / [73] 

Navigation 
 

XNOR-Net 

S [87],[91],[92] 
 

[81] 

R [84],[85],[86],[88],[89],[90],[93],[94] 
 

LTSM 

Other 
 

[96] 

S [96],[97],[98],[99] 

 

Models Comparison 

R [95],[100] 
 

[71],[82],[83] 

On the other hand, scene recognition is another important research area that has 

been applied to numerous robotics applications including navigation and localization. 

This area is widely studied in literature with different perspectives: features recognition, 

pose estimation, and semantic classification. The simulation study in [101] adopted CNN 

to address the viewpoint changes issue in a road-based application. This was achieved 
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by estimating the depth and generating synthetic views for the current visual scene 

representing lateral camera shift in order to improve the performance of place 

recognition. In [102], the indoor place recognition was enhanced by combining the 

descriptors of two separate CNN models for a given RGB image and a given depth 

image inputs, respectively. The problem was addressed in [103] by training CNN-models 

with triplet embedded systems. Other studies also addressed the pose estimation, such 

as [104]–[106]. The authors in [104] addressed the camera global pose estimation (6 

degrees of freedom) via training a CNN-like model, as a regression function, using 2D 

images for outdoor environments. Whereas, the other two studies focused on solving the 

relative pose from the camera’s location to the scene. The authors in [105] solved place 

recognition by improving the efficiency of a topological map. It focused on selecting the 

best keyframes for every node in the map through a CNN-based model, a sharpness 

model and a matching model. Then, the localization task was achieved by comparing the 

current scene with all keyframes in the map and finding the most similar keyframe to 

estimate the relative pose between the two images. While the authors in [106] proposed 

a place recognition system based on the CNN model using an omnidirectional (360˚) 

camera. The study was aimed to find out the closest place (exemplar) in the predefined 

map (saved exemplars) with the smallest metric distance to the current position, in which 

distance information was used to control the robot to move toward this closest place. 

Semantic classification is another perspective of place-based robotic applications. In 

[107], the room classification problem for household service robots was addressed by 

applying a pre-trained CNN model on a segmented image, i.e. learning through parts. 

Similarly, the same problem was addressed in [108] by combining CNN with NBNN 

(Naïve Bayes Nearest Neighbor). In this thesis, semantic classification and doorway 

detection are considered since they are important tasks for social robots that interact 

meaningfully with humans and navigate autonomously. Therefore, all related research 

will be presented and discussed in the related chapters.  

2.3. Reinforcement Learning 

Reinforcement learning (RL) was proposed by Richard S. Sutton, who is 

considered as the “father” of the RL, in the early 1980s [109]. RL is a class of machine 

learning algorithms that was inspired by learning theory in animal behaviors [110], [111]. 

The main characteristic of RL is that the learning process occurs through the interaction 



33 

between the agent and the environment. Therefore, there is no dataset for learning as 

the other two machine learning classes, i.e. supervised and unsupervised learning. The 

interaction between the agent and environment is achieved when the agent recognizes 

the current state within the environment, then it takes an action in order to transit to 

another state, see Figure 2-6. While the agent gets a positive (rewards) or a negative 

(punishment) feedback when it reaches a good state or a bad state, respectively. 

Therefore, it is a slow and trial-and-error process in which the agent learns from its 

experience. Accordingly, RL can be considered as a semi-supervised approach as it 

takes a feature from supervised learning, which is the rewards feedback, while it takes 

another feature from unsupervised learning, which is no desired output. 

 

Figure 2-6: The concept of RL. 

There are three different RL methods [112]: Dynamic Programming, Monte Carlo 

and Temporal Differences. Dynamic programming method requires a complete and 

accurate model of the environment; thus, it is for a model-based system in which the 

state transition is known. The Monte Carlo is a model-free method, i.e. the state 

transition is unknown, but is not suited for step by step incremental computation. In other 

word, it gives the feedback in the end of each experiment or game (an episode). The last 

method is the Temporal Difference (TD) that works with model-free applications and it is 

a fully incremental computation. In this thesis, the latter method is adopted as it is 

suitable for our project that deals with a behavioristic system for a model-free 

application. The main components to design an RL model in any above-mentioned form 

are: 
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• States: are the representation of perceived data. These representations 

include the final state, e.g. end of a game, or destination, e.g. final location in 

robotics. The number of states might be finite, or infinite based on the problem 

and the way of encoding them. 

• Actions: are the list of movement behaviors that need to be taken to change 

the state. The goal is to select the best action in a certain state that leads to a 

desirable state.  

• Policy: is the procedure of action selection at a certain state. It can be 

executed through a simple function or a lookup table, or it can be a stochastic 

function depending on the problem. 

• Rewards: are the immediate feedback after every transition. If the transition 

was good, then positive feedback (rewards) should be given to the agent. 

However, if the transition was bad, then negative feedback should be given to 

the agent, which needs to change the policy of selecting the action. 

• State value: is the collected rewards in the long term. If this value for a pair of 

(state-action), then it is called Q-value. The main goal of RL is to maximize 

this value to address the decision-making problem. It should be updated after 

every step in TD methods. 

• An episode: is the end of every round of the problem. For example, the end of 

a game when the agent wins / loses is an episode or in robotics, when the 

robot achieves a specific task is an episode. 

There are two popular algorithms of the TD method: Q-learning and SARSA 

(Sense-Act-Reward-Sense-Act). In both algorithms, the objective is to maximize the 

long-term reward 𝑄(𝑠, 𝑎), which represents the long-term reward for the combination of 

all states with all actions. The policy of selecting an action can be either exploiting or 

exploring. Exploiting movement is a 100% greed-move that selecting the best-learned 

action with the highest value of 𝑄(𝑠, 𝑎). Exploring movement, on the other hand, is 𝜖-

greedy-move that selecting a random action. The difference between Q-learning and 

SARSA is in the way of updating the 𝑄(𝑠, 𝑎) in every time step as shown in Figure 2-7. In 

the Q-learning algorithm, the maximum value of the future 𝑄(𝑠′, 𝑎′) will be used to update 

the current value of 𝑄(𝑠, 𝑎) even if the action 𝑎′ has not been selected for the next 

timestep. For that reason, Q-learning is called an off-policy TD control. Whereas, the 

updating equation of the current value of 𝑄(𝑠, 𝑎) in the SARSA algorithm uses 𝑄(𝑠′, 𝑎′) 

where 𝑎′ should be the selected action for the next timestep, which is the reason this 

algorithm is called on-policy TD control. Therefore, they are similar when the policy of 
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selecting the action is exploiting movement, i.e. 100% greedy move. There are several 

areas of RL applications including but not limited to games, e.g. backgammon or chess, 

inventor management, dynamic channels allocation, elevator scheduling, helicopter 

control, robotics e.g. navigation, grasping, or Robocup soccer [113]. The next section 

focuses on the related work of RL within mobile robotic navigation. 

 

 

(a) Q-learning (b) SARSA 

Figure 2-7: Temporal Difference algorithms of RL. 
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2.3.1. RL for Robotic Navigation Applications 

Reinforcement Learning is a promising learning approach for robotics control 

systems as the robot learns and adapts through the interaction with the dynamic 

environment. Therefore, RL is considered as a suitable behavioristic approach since it 

depends on the sense-act process. This section presents examples of robotic 

applications that have adopted RL with a more focus on the navigation area.  

There are several applications within Human-Robot Interaction (HRI) that can be 

achieved by applying the RL approach in order to assist humans. In [114], A simulation 

work of Vocal interaction between robot and human was addressed by proposing the RL 

dialogue system via socially-inspired rewards which is a combination of task-related data 

and human social signals. An assistive HRI system was proposed [115] to help human 

to perform a task with less effort. The control system was integrated by the RL model 

that optimizes the overall system by searching the optimal control parameters.  

Learning from human demonstration is another area within HRI that can be 

addressed with a specific approach called Inverse Reinforcement Learning (IRL) that 

determines the optimized reward function with given measurements of agent behaviors 

over time [116]. Therefore, the HRI-IRL can be applied for other purposes than assisting 

people, such as robotic navigation tasks. The work in [117] used a prior map of the 

environment and given scored trajectories by a human expert to address navigation 

problem in a simulation work by estimating the reward function of the IRL system. The 

simulation work in [118] proposed a solution for faster learning of IRL via failed and 

successful demonstration in the context of navigation problem with known and 

deterministic environment as well as in the context of factory domain. The integration of 

IRL and neural network was applied in a simulation work of [119] to learn the navigation 

task via human demonstration with large state-space, which is an input of waypoints and 

trajectory by a user. Real time experiments on Dary1 robot were presented in [120] to 

address navigation behaviors based on modelling people social behaviors via IRL 

controller. 

There are several other perspectives or tasks of addressing robotic navigation 

based on RL. One of the important tasks is the obstacle avoidance problem. It was 

addressed by integrating RL with neural network in a deterministic simulated 
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environment [121], or with a prior knowledge of a global map for Powerbot wheeled 

robot [122], or integrating spiking neural network [123]. Integrating RL within a robotic 

control system is another important area. For example, [45] used RL with a behavior-

based system in order to learn how to perform new tasks for soccer application in a 

simulation work. The design consists of two combined phases: the imitation phase that is 

carried out by using self-organizing decision tree to emulate the behavior of a skilled 

operator and the composition phase that is accomplished by using Q- learning to 

combine all behaviors and assign learned weights. Then, the outputs of all behaviors 

from the phase one and the learned weights from the phase two are fused to perform 

weighted action. Another example of integrating RL with behaviouristic system is the 

work in [124] that focused on coordinating between behaviors with a prior knowledge of 

the environment and then tested in real experiment with the Pekee robot. The RL was 

used within a hierarchical navigation system [125] as a local planner for the Probabilistic 

Roadmaps (PRMs). 

There are some works focusing on applying RL with the perspective of prior 

knowledge of the environment (known robot/object locations) or a deterministic 

environment (known states-relation, e.g. grid cell map). In [126], a topological map within 

a deterministic grid-world was built and employed to update the value function of RL 

system in order to improve the performance. A model-based reinforcement learning 

system called TEXPLORE was developed in [127] to address navigation problem for 

quadcopter UAV robot within ROS-Gazebo environment. The system used a parallel 

architecture of taking action based on current policy and at the same time updating the 

plan and model to get the new state and reward. Testing Q-learning and SARSA on 

Robotino robot with pre-defined environment was presented in [128]. The simulation 

study in [129] aimed to enhance the performance of go-to-goal task with shortest path 

with providing the location of a target with pre-defined environment. The problem was 

addressed by integrating spiking neural network with RL. SLAM was applied in [130] to 

generate a map and then used it in the RL system for path planning within a dynamic 

environment. In [131], RL was combined with a PID position controller and used for UAV 

navigation problem within a deterministic environment. 

Other robotic navigation applications have also been reported that focus on the 

RL design. For example, XCS-based RL (Extended Classifier System) [132] was 

designed to address motion planning for spherical robot [133]. Fuzzy logic was proposed 
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in [134] to design basic actions that used by the RL to address navigation problem for a 

Pioneer robot in V-rep simulator. A generalized computation graph was proposed in 

[135] for RL instead of a full model based or model free based approach in order to learn 

from few samples in real world, which was applied in a real-world RC car. The design of 

RL can be based on the robot’s design as presented in [136] using 6 sonars mounted on 

the left, front and right of AmigoBot within a spiral maze. 

In this thesis, we focus on the appropriate design of RL within behavioristic 

robotic system. The design of RL is for obstacle avoidance behavior based on only two 

sonars and cautious actions as will be discussed in Chapter 6. 

2.4. Conclusion 

In this chapter, we presented an overview of the most related research areas for 

social robotics. In section 2.1, we discussed the behavioristic approach in robotics that is 

inspired by the behaviour of the living creatures. The section provided an overview of the 

subsumption architecture which is adopted in this research. Then, the convolutional 

neural network (CNN) and its mathematical model were presented in section 2.2 that 

also included CNN’s main applications in robotics. In Section 2.3, we provided another 

learning approach called reinforcement learning (RL). The section began with explaining 

the concept of RL, then it was followed by its applications in robotic navigation. The 

literature review in this chapter was the theoretical foundation of the research reported in 

this thesis. 

  



39 

Chapter 3.  
 
An Indoor Room Classification System for Social 
Robots via Integration of CNN and ECOC* 

3.1. Introduction 

The prospect of a social robot in every home may be realized within the next two 

decades. There are already many researchers in academe and tech industries that are 

actively studying and designing prototypes of such robots. The open research objectives 

are diverse and include but not limited to emotion recognition, perception, pattern 

recognition (face, object, scene, and voice), and navigation. These robots are expected 

to be employed as companions to seniors and children, housekeeping, surveillance, etc. 

[137], [138].  In order to accomplish such tasks, it is essential that the robot seamlessly 

recognizes its own location inside the home − similar to humans who are effortlessly 

aware of their whereabouts at any instant, e.g. kitchen or living room. This knowledge is 

a pretext for many navigation indoor scenarios and facilitates the robot’s movement in 

the house. The study in this chapter is not about designing social robots per say; it 

addresses one of many problems that collectively contribute towards efficient operation 

of such robots; namely knowing its location in the house at any given instant. 

Classification is a core computer vision problem whereby data streams are categorized 

into specific classes in accordance to learning their specific features. The problem has 

been addressed by different supervised machine learning algorithms [28]. The 

Convolutional Neural Network (CNN) [53], [54] is generally regarded as the state-of-the-

art algorithm in deep learning for visual purposes, e.g. face recognition and object 

detection, especially after the pioneering work reported in [56]. This algorithm surpasses 

conventional machine learning algorithms by integrating the feature extraction and 

classification problems without the requirement of careful human design [49]. 

The main objective of this chapter is to identify different household rooms for 

social robotic applications in houses. It is part of designing social robots to be employed 

at such environments. The problem of indoor navigation can be addressed by different 

 

* This chapter is mainly reproduced from paper 1 on section 1.4 (page 8). 
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approaches; here, we propose a CNN solution for real time implementation for such 

social robots. We examine several CNN architectures within a home setting. The latest 

scene dataset called Places [15] is adopted in the study. We downloaded the most 

common five indoor classes for houses (bedrooms, dining rooms, kitchens, living room, 

and bathrooms) from the dataset. However, we noted that each class included a 

sizeable number of irrelevant scenes; we, therefore, reduced the number of samples by 

removing unrelated images from each class. We will then propose a combination 

solution of CNN with multi-binary classifiers, referred to as ECOC [139]. These models 

are evaluated experimentally on a NAO humanoid robot [140].  

The rest of the chapter is organized as follows: Section 3.2 provides a literature 

review of the room classification problem in robotics applications. In section 3.3, we 

introduce the methodology of this study, which is divided into three phases. The 

objective and the process of each phase are explained. In addition, this section gives a 

brief review of the adopted dataset, the adopted CNN architectures and the ECOC 

algorithm. Then, in section 3.4, we present simulation studies and real-time experiments 

with their results for each phase including some discussions. The chapter is concluded 

in section 3.5 by summarizing the study and results. 

3.2. Related Work 

Recognizing different rooms in a home environment based on their specific 

function is an important problem for social robots, and its solution not only facilitates 

seamless movement from one place to another, it is the basis of all other tasks, including 

assistance to humans inside the house or performing various functions in the context of 

the robot’s overall tasks. An interaction with a human might be in the form of “Please go 

to the kitchen and bring a cup of water”. This problem has attracted the attention of 

robotics researchers in the last decade, and several conventional machine learning 

methods have been employed to address room classification in indoor settings. One of 

the early studies reported by Burgard’s group in [141] was to address semantic place 

classification of indoor environments by extracting features from a laser range data using 

AdaBoost algorithm. The experiments were conducted in a real office environment using 

sequential binary classifiers for differentiating between room, corridor, doorway, and 

hallway. It was suggested that the sequential binary AdaBoost classifiers were much 

more accurate than multi-class AdaBoost. The study was further extended in [142] and 
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[143] by extracting features from laser and camera for classifying six different places: 

doorways, a laboratory, a kitchen, a seminar room, and a corridor, as well as examining 

the effect of the Hidden Markov Model on the final classification. The same algorithm, 

i.e., AdaBoost, was trained in [144] using SIFT features of online images for seven 

different rooms. It examined the performance of different number of classes and different 

possible pairs of classes, where the success of the average of binary classifiers was 

77%. 

Robotics researchers also employed the well-known SVM algorithm for the room 

classification problem using different sensors. In [145], laser data was used to build a 

hierarchical model, in which the hierarchy is employed for training and testing SVMs to 

classify 25 living rooms, 6 corridors, 35 bathrooms, and 28 bedrooms. Although this 

study reported an accuracy of 84.38%, laser data generally do not provide rich 

information, and require substantial processing to extract useful features. In contrast, 

vision features are used in other studies in order to train SVMs. In [146], a voting 

technique was used to combine 3D features to GIST 2D features, and these were used 

for training SVMs to classify six indoor places: bathrooms, bedrooms, eating places, 

kitchens, living rooms, and offices. Furthermore, SVM and Random Forests (RF) 

classifiers were used and compared in [147] to classify five places: corridors, 

laboratories, offices, kitchens, and study rooms using RGB-D images from a Kinect 

sensor. Room detection has also been addressed as an unsupervised learning problem 

using unlabeled images. In [148], SIFT features and 3D representation were used to 

extract convex spaces for clustering images based on similarities. In addition, stereo 

imagery was used in [149] for room detection and modeling by fusing 2D features with 

geometry data acquired from pixel-wise stereo for representing 3D scenes. The study 

was completed by modeling walls, rooms, and doorways using many techniques of 

extracting features, depth diffusion, depth segmentation, and clustering in order to detect 

room functionalities. The problem has also been addressed from different perspectives, 

such as the study in [150], in which the authors addressed the context-awareness 

problem for service robots by developing a system that identified 3D objects using online 

information. As we can note from previous research, the main drawback is the huge 

effort required to extract features. This weakness can be overcome by adopting a 

convolutional neural network (CNN) algorithm.  
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Convolutional Neural Network (CNN) is a successful approach of deep learning 

for computer vision application. It has been got an attention after the huge achievements 

of LeNet [53] and AlexNet [56] in the image classification problem. There are two main 

advantages of this algorithm over other machine learning algorithms and the 

conventional fully connected feedforward neural networks. First, CNN extracts and 

learns features from raw images without requiring a careful engineering design for 

extracting features in advance [49]. Second, CNN considers the spatial structure of the 

image by translating inputs to outputs through shared filters [61]. Since the huge 

improvements in data collection and computer hardware between 1990s and 2012, 

AlexNet was introduced [56] for addressing the object detection problem using the 

ubiquitous ImageNet to classify 1.2 million images into 1000 different classes. Since 

2012, many articulate architectures have been proposed that are essentially built on the 

early architecture of LeNet, in order to improve the performance on ImageNet database 

[57]. However, the effective progress that was demonstrated on ImageNet for object 

classification by these pre-trained models has not shown the same success for the 

scene classification problem. Consequently, the first significant dataset for scene-centric 

images, referred to as Places, was proposed in [15]. In general, indoor scene 

classification is challenging due to features’ similarity in different categories. This 

problem has been studied with different learning methods as well as CNN, which so far 

has been employed in few studies. In [151], a solution was proposed by designing a 

model that combined local and global information. The same problem was addressed by 

applying a probabilistic hierarchical model, which associates low-level features to objects 

via an object classifier, and objects to scenes via contextual relations [152]. There are 

also some research studies that have employed CNN for learning robots in indoor 

environments. Ursic et al. [107] addressed the room classification problem for household 

service robots. The performance of a pre-trained hybrid-CNN model was examined in 

[15] on segmented images, i.e., learning through parts, of eight classes from the 

Indoor67 dataset. The result generated 85.16% accuracy using a part-based model, 

which is close to the accuracy of the original hybrid-CNN, 86.45%. However, learning 

through parts gave much better accuracies on deformed images than the original model. 

The authors in [153] took advantage of CNN for scene recognition in laboratory 

environments, with 89.9% accuracy, to enhance the indoor localization performance of a 

multi-sensor fusion system using smartphones. Furthermore, the objective of [154] was 

to find the best retraining approach for a dynamically learning robot in indoor office 
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environments. The paper examined and compared different approaches when adding 

new features from new images into a learned CNN model, considering the accuracy and 

training time. The new added images to the features database were the failed ones that 

were selected and corrected by the user. The authors simulated one of the categories to 

be the new environment. This paper reported that a pre-trained CNN with a KNN 

classifier was the most appropriate approach for real robots, as it gave a reasonable 

accuracy with the shortest training time. All their experiments were executed on the 

VidRILO dataset [155] using only its RGB frames, i.e., excluding the D frame. The 

methodology of this presentation, however, is different from previous studies, as we 

examined several CNN architectures with five categories of indoor scene rooms, i.e., 

bathrooms, bedrooms, dining rooms, kitchens, and living rooms downloaded from the 

Places dataset. In addition, these models were examined after cleaning and reducing 

the number of samples. Furthermore, a combination of CNN and multi-binary classifiers 

method called ECOC was proposed and evaluated in order to improve the real-time 

performance on a Nao humanoid robot. 

Error correcting output code (ECOC) is a decomposition technique that was 

proposed by Dietterich and Bakiri for addressing multiclass learning problems [139]. 

There are a few studies in reported literature that have employed ECOC within CNN 

architecture, but from a different perspective than the employed in the work of this 

chapter. Deng et al. [156] used ECOC in order to address the target code issue by 

replacing the one-hot encoding with Hamming code in the last layer of CNN, which 

helped reduce the number of neurons in that layer. Then, the CNN model and CNN-

ECOC, i.e., CNN with the new target codes, were trained and evaluated separately and 

the results were compared. Additionally, the same problem was solved in [157] using a 

different code algorithm referred to as Hadamard code. ECOC within CNN has also 

been employed in medical applications [158], [159], in which a pre-trained CNN was 

employed only for extracting features, then multi-binary SVM classifiers trained and 

combined with ECOC, referred to as ECOC-SVM. Up to our knowledge, this is the only 

reported work combining and a fine-tuning CNN with ECOC for robotics applications that 

design multi-binary classifiers of CNN and compare the performance with regular CNN 

for multiple classes. 



44 

3.3. Methodology 

The process of this work can be divided into three phases, as shown in Figure 

3-1. Phase 1 was aimed at fine-tuning three different CNN models, i.e., VGG16, VGG19, 

and Inception V3, through transfer learning process on five categories of rooms from the 

Places205 dataset, in order to select the best model for real experiments on the Nao 

robot. In addition, all models were examined in this phase after cleaning the dataset by 

removing all unrelated images to the scenes, and the results were compared before and 

after cleaning the dataset. In phase 2, the goal was to design multi-binary classifiers of 

the selected CNN from phase 1 and combine their results through the ECOC algorithm 

and ECOC-REG. Finally, testing the selected CNN, CNN-ECOC, and CNN-ECOC REG 

through real experiments on a Nao robot, and comparing the results were the goal of 

phase 3. The importance of this phase is to show how these models performed on real 

time experiments with robot’s images, e.g., Nao, in which those images are quite 

different in the level of view from the existed dataset. 

 

Figure 3-1: Process of simulation and real-time experiments for room 
classification problem. 

3.3.1. Phase 1: Training and Validation 

Adopted Scene dataset 

There are several scene datasets proposed in the literature for addressing 

object/scene detection or classification problems. Some of them are small-scale 

datasets such as the 15-scene dataset, UIUC Sports, and CMU 300, and some are 

large-scale datasets such as 80 Million Tiny Image Dataset, PASCAL, ImageNet, 
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LabelMe, SUN, and Places [160]. The dataset can be 3D scene, such as SUNCG [161], 

or it can be images for a particular environment with geo-referenced pose information for 

each image, such as TUM and NavVis [162]. These datasets can be classified into two 

view types: object-centric datasets, e.g., ImageNet, and scene-centric datasets, e.g., 

Places [15]. Places is the latest and largest scene-centric dataset, which is provided by 

MIT Computer Science and Artificial Intelligence Laboratory for the purpose of CNN 

training. It has a repository of around 2.5 million images classified into 205 categories, 

and for this reason it is called the Places205 dataset. This dataset is updated and 

extended with more images classified into 365 categories in [163], which is called 

Places365. 

Since this project is within the scope of household robotics applications, five 

categories of images were selected to be downloaded from Places205 for addressing 

room–scene classification problems for social robots using CNN models. The five 

categories are: bedroom, dining-room, kitchen, living-room, and bathroom, which most, if 

not all, houses have. It should be noted that the corridor category is not available in 

Places205 and Places365 at the time of this work. This category is important in this 

research and will be incorporated in the design once it is available. 11,600 

images/category were used to train the CNN model, where 20% of images were used for 

validation, i.e., 2320 images/category. 

Cleaning dataset 

The Places dataset is regarded to be very important in the field of computer 

vision and deep learning. However, there are some issues with the downloaded images 

for real time robotic applications that affect the learning process. Therefore, we manually 

excluded some images from all five categories, based on criteria that are shown in the 

few examples in Figure 3-2. 
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(a)  (b) (c) 

    

(d) (e) (f) (g) 

Figure 3-2: Examples of removed images from room dataset of Places. (a) Not 
belonged to; (b) no furniture; (c) not wide scene; (d) multi-scenes in 
an image; (e) including texts; (f) fake scene; (g) focusing on people. 

 Table 3-1 shows the percentage of the data that were deemed irrelevant form 

each category. After cleaning the data, we noted that the remaining images for 

bedrooms were the highest and for kitchens were the lowest (Table 3-1). The reader 

might note the high percentage of irrelevant images in each category, which justifies the 

need for cleaning data. 

Table 3-1: Number of images for each class after cleaning. 

Class # images out of 11,600 % of removed images 

Bedrooms 9323 19.6 % 

Dining Rooms 7919 31.7 % 

Kitchens 6611 43.0 % 

Living Rooms 8571 26.1 % 

Bathrooms 8959 22.8 % 
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CNN architectures 

Since our main concern was to recognize only five room classes, we did not 

require huge amounts of data. Additionally, the learned features from pre-trained models 

in literature are relevant to the room classification problem, therefore transfer learning of 

pre-trained models was the best strategy for this work, instead of training a CNN model 

from scratch. Transfer learning can be achieved through two main steps. The first step is 

to proceed room images to non-trainable ConvNet in order to extract features, then use 

these features to train our new classifier, i.e., SoftMax layer. The second step is to 

retrain the whole network, i.e., ConvNet and classifier, with a smaller learning rate, while 

freezing a few layers of the ConvNet. Several CNN models were fine-tuned for this 

project, i.e., VGG16, VGG19 [58], and Inception V3 [60], with different freezing layers to 

be trained through transfer learning process. All these CNN models were followed by a 

similar fully connected (FC) layer. VGG16 and VGG19 architectures are similar to what 

was shown in Figure 2-4. Whereas Inception architecture is shown in Figure 3-3. We 

considered these architectures in this project based on their popularity and performance 

with the limited samples and classes in this project. The main objective of the VGG 

network is to improve the performance by increasing the depth of layers to 16 or 19. 

Whereas, the Inception network focuses on reducing the high computational cost in the 

VGG network by merging 3 × 3 and 5 × 5 filters that are preceded by 1 × 1 filters. 

 

Figure 3-3: Concept of inception architecture. 
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3.3.2. Phase 2: Models Integration 

ECOC Technique 

In practice, a regular CNN classifier via transfer learning for multiple room 

classes may not be sufficient to assist the robot in making the right decision, due to high 

similarities among the rooms and the different views from robots compared to the exist 

dataset. Thus, it is very important to find a way to improve the robot’s best decision, 

even when applying a CNN classifier with high accuracy. We suggest adopting a 

decoding approach to address this problem [164]. The purpose of this technique is to 

improve the practical performance by designing a new classifier that combines multi-

binary classifiers through an algorithm. This approach is also known in literature as 

decomposition [165] or plug-in classification technique (PICT) [166]. There were two 

main reasons for adopting this technique for this project. The first reason was to take 

advantage of higher accuracy with binary classes. The second reason was that 

designing multi-binary classifiers was feasible in the room classification problem, as the 

number of room classes in houses is limited. 

One of the most popular decomposition techniques is error correcting output 

code (ECOC). It was proposed by Dietterich and Bakiri to address multiclass learning 

problems [139]. The main concept of this algorithm is to create a binary matrix code that 

represents multi-binary classifiers of two super groups. Each group consists of many 

classes, in order to alleviate the overall error in order to obtain the right classification. As 

shown in Figure 3-4, the algorithm consists of two stages. The first stage is to create and 

train multi-binary classifiers. It starts with creating a binary matrix code, in which the 

number of rows represents the number of classes and the number of columns 

represents the number of binary models. The data is then classified into two super 

groups based on zeros and ones in respective columns, where all classes with zeros are 

assembled in the first group, and the rest of classes are collected in the second group. 

The last step in this stage is to train all binary classifiers, i.e., the best CNN architecture 

for this problem, based on columns of the matrix using their super groups. The second 

stage is to predict a new image using all trained models. Each model gives a probability 

of predicting one of the super groups. After getting all probabilities of all models, we 

calculate the distance between all predictions p and each row in the matrix code. The 

smallest distance will be considered the correct class of that input image. 
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(a) 

 

(b) 

Figure 3-4: Error correcting output code (ECOC) process for addressing multi 
class learning problems. (a) Stage 1: Process of training all binary 
classifier, and (b) Stage 2: Process of predicting a class of a new 
image. 
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The alternative way to get the overall classification is Regression-ECOC, which is 

using the least squares instead of Euclidean distance. Thus, the correct class will be the 

maximum value of the following equation: 

q̂ = (𝑀𝑀𝑇)−1𝑀p̂ 

3.3.3. Phase 3: Real-Time Implementation 

This phase is the main purpose of this project, which is to test out the 

performance of different models on Nao robot using its monocular camera. The goal is 

that the Nao robot should be able to predict the room class using several trained models 

from phase 1 and 2. Nao will be transferred to several houses in Vancouver, BC, 

Canada for real-time experiments. It is important to mention here that Nao’s height is 

only 573 mm, whereas its top camera is located at the level of 514.29 mm. This short 

height is expected to influence the overall results, which will direct our future work. 

Through the main software of Nao, i.e., Naoqi, several methods can be used from 

AlPhotoCapture module for real experiments as explained in the Appendix. 

3.4. Experiments and Results 

All codes of this study were programmed by Python 2, in which the CNN 

architectures were built via Keras API as a high-level building block for deep learning 

and TensorFlow backend for the low-level operations. Training and validating CNN 

models were executed offline through Graham cluster provided by Compute Canada 

Database for concurrent running of several tasks or programs. However, the real time 

experiments were implemented via connecting Nao robot to a laptop with 2GB graphics 

memory through the Wi-Fi. Accordingly, the implementation python code for real-time 

experiments was encoded in Python 2 with Naoqi API, see the Appendix, while applying 

the pretrained model for classifying different scenes captured by Nao’s camera. 

3.4.1. Phase1: Validating Room Classification within CNN Models 
Using Places 

Several CNN models were fine-tuned through transfer learning process for this 

project, i.e., VGG16, VGG19, and Inception V3, with different freezing layers to be 
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trained. All these CNN models were followed by a similar fully connected (FC) layer. FC 

begins with an average pooling layer, then a layer of 1024 neurons with the ReLu 

activation function, and ends with a logistic layer to predict one of the five classes. Keras 

provides a compile method with different optimizers for learning process [167]. In the first 

stage of the fine-tuning, the Adam optimizer was used with a 0.001 learning rate, 

whereas we applied the SGD (stochastic gradient descent) optimizer in the second 

stage with learning rate of 0.0001 and momentum of 0.9. All models were trained for 10 

epochs in each stage with both the original data as well as the cleaned data, and with 

different non-trainable layers. It was noticed that training with more epochs did not 

provide that much improvement in the final accuracy, but it took a very long time in the 

training process. Table 3-2 shows the superior results of all models trained with clean 

data compared to all data. The best result shown from these experiments is VGG19 and 

VGG16 with 0 freezing layers using clean data, which gives an accuracy of 93.61% and 

93.29%, respectively. 

Table 3-2: Comparison of accuracies of fine-tuning different CNN models using 
all data and clean data (the shaded results are the best for the real-
time experiment). 

CNN Models Non-trainable layers 
All Data Clean Data 

Time Accuracy % Time Accuracy % 

VGG16 

15 11:50:40 86.03 8:16:16 89.69 

11 11:50:41 88.09 8:15:38 91.49 

7 11:53:42 88.9 8:18:49 93.22 

0 12:13:55 87.78 8:34:45 93.29 

VGG19 

20 13:11:07 78.69 9:16:00 82.50 

17 13:14:56 86.22 9:18:38 89.65 

0 13:43:40 90.30 9:40:52 93.61 

Inception V3 
299 10:17:29 75.12 7:8:33 78.83 

249 10:17:46 79.11 7:07:50 84.05 

3.4.2. Phase 2: Validating Room Classification within the integration 
of CNN and ECOC 

The best two models in phase 1 were VGG19 and VGG16 with all layers fine-

tuned. Although this work was carried out through one of Compute-Canada Servers 

[168], i.e. Graham, there are many works in robotic applications that can be processed 

using local machines. Therefore, considering the time of training is an important factor 
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for this phase, which has multiple binary classifiers for training. For this reason, the 

selected model to be trained in this phase was the VGG16 with 0 freezing layers, which 

has an accuracy of 93.29% that is quite similar to the best one. The binary classifiers 

can be designed through grouping classes based on an exhausted matrix code, as 

explained in [139]. The following 5 × 15 matrix is the best for this experiment, as it does 

not have any repeated and complimented columns. 

𝑀5X15 = 

[
 
 
 
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0]

 
 
 
 

⟹

[
 
 
 
 
𝑏𝑎𝑡ℎ𝑟𝑜𝑜𝑚
𝑏𝑒𝑑𝑟𝑜𝑜𝑚

𝑑𝑖𝑛𝑖𝑛𝑔 𝑟𝑜𝑜𝑚
𝑘𝑖𝑡𝑐ℎ𝑒𝑛

𝑙𝑖𝑣𝑖𝑛𝑔 𝑟𝑜𝑜𝑚 ]
 
 
 
 

 

 Let us take an example of the classifier in column 3 of matrix M, which has [1 0 0 

1 0] values. The first group of this classifier would be the classes with zero value, i.e., 

bedrooms, dining rooms, and living rooms. The second group is the classes with ones, 

i.e., bathrooms & kitchens. Table 3-3 shows the validation accuracies of all 15-binary 

fine-tuned VGG16 classifiers. The main advantage of the binary classifier is high 

accuracy depending on classification, as it reached 98.5% for this project, and the 

average of all 15 classifiers was 95.37%, which is still higher than the multi-classification 

approach. 

Table 3-3: Accuracies of 15 binary classifiers. 

Binary 
classifiers 

Bath 
vs. All 

2 3 4 5 6 7 
Bed 

vs. All 
9 10 11 

Dining 
vs. All 

13 
Kitchen 
vs. All 

Living 
vs. All 

Average 

Accuracy 
% 

98.50 
93.
62 

97.38 92.01 94.84 93.95 96.06 95.73 95.59 96.10 94.94 95.89 92.76 97.95 95.31 95.37 

Discussion 

One of the most important features that has been studied by researchers is 

deepness, which is significant in most of the known CNN architectures. It is reported that 

the deeper and wider the architecture is designed, the better features will be learned 

[60]. However, this requires a huge dataset, i.e., millions of samples, in order to avoid 

the overfitting issue. Unfortunately, this is not always the case in robotics applications, 

wherein in most applications, the number of classes for a specific robotic problem such 

as room classification is very limited, which means the number of samples might be only 

thousands, i.e., a small dataset. Therefore, the very deep CNN architecture will most 

likely lead to overfitting problem, as happened with ResNet [59] in this work, which is 
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why their results are excluded from these experiments. Although the Inception V3 results 

were not over-fitted, they were less accurate than the architectures with less deepness, 

i.e., VGG16 and VGG19. The reason might be related to the scene-centric type of 

dataset, in which learning hierarchical representations can be difficult with more 

deepness. For this work, we had two ways to address this problem for robotic 

application: either designing a new CNN architecture for a small dataset or adopting an 

existing CNN with less deepness and improving robot’s decision by integrating another 

method. The latter solution was preferable, so we adopted VGG16, i.e., the least 

deepness of all three architectures, and integrated it with ECOC in a way it was 

practicable for real time robotic implementation. One could ask why we adopted CNN 

from the beginning—as discussed before, CNN extracts and learns features from raw 

images without requiring a careful engineering design that shown superiority over 

conventional approaches in computer vision. 

Binary classifier results for ECOC explain the challenge of feature similarities in a 

house’s rooms. Let us discuss the obvious results of ‘class vs. all’ in classifiers number 

1, 8, 12, 14, and 15. The most distinguishable rooms are the bathroom and kitchen, as 

shown in classifiers 1 and 14 respectively. Meanwhile, the other three classes are very 

similar to each other. There are many reasons related to the dataset or the architecture 

of VGG16 that the model is less accurate with these similar rooms than the 

distinguishable ones. The first reason is having some sharable objects in different 

rooms, such as tables or TVs, or the wide variety styles of those rooms such as 

open/closed spaces, or even culture-based styles, e.g., no beds for sleeping. The 

second reason is that the architecture with less deepness will not be able to differentiate 

between objects similar in shape, e.g., rectangular shapes in dining tables, coffee tables, 

and beds from different rooms. Therefore, it is a tradeoff between learning deep features 

and having a small dataset. The results of the third phase will determine the direction of 

the future solution. 

3.4.3. Phase 3: Validating Room Classification on Real-Time 
Implementation Using Nao robot 

The proposed methods were tested and compared practically in five different 

houses using the Nao humanoid robot as shown in Figure 3-5. The goal is that the robot 

should be able to predict the room class using the three different models, i.e., Regular 
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CNN, CNN-ECOC & CNN-ECOC-REG, in which all models return the probability for 

each class. Since rooms in the houses had different sizes, layouts, furniture, etc., Nao 

was positioned in different spots in the rooms, i.e., center, corners, beside the wall or the 

door, during different time of the day under different light conditions. Accordingly, 56 

images were taken by its top camera as follows: 12 bathrooms, 13 bedrooms, 6 dining 

rooms, 13 kitchens, and 12 living rooms, while the robot’s head faced the x direction and 

the top camera covered 60.97° horizontally and 47.64° vertically. Figure 3-6 shows some 

examples of scenes taken by the Nao humanoid robot. An important point to be noted is 

that Nao is very short compared to an average human’s height, and its camera is 

mounted about 514 mm from the floor level. This is quite different from the field of view 

of the images from the adopted dataset. Consequently, the highest (top-1) probabilities 

were negatively affected, especially in the kitchen class. However, the second highest 

(top-2) probabilities show the superiority of CNN-ECOC and CNN-ECOC-REG over the 

regular CNN for prediction of most of the five classes. 

 

Figure 3-5: Nao humanoid robot during experiments. 
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Figure 3-6: Scenes examples taken by Nao humanoid robot*. 

Table 3-4 shows the testing accuracy of the five classes, whereas Table 3-5 

gives confusion matrix for both top-1 and top-2 predictions. Notice that the confusion 

matrix of top-1 tables has all 56 images, however the confusion matrix of top-2 tables 

includes only the number of false predicted images in the top-1 table. The best room 

prediction was the bathroom, where accuracy was 100% with all three models. 

Therefore, the bathroom was considered to be the most distinctive room. All three 

models were similar at predicting bedrooms, in which their top-1 accuracy was 69.2%, 

increasing to 100% in top-2. The distinction in performance between these models is 

shown in the prediction of dining rooms, kitchens, and living rooms. The top-1 

predictions of dining rooms for three models were similar, however, the top-2 prediction 

of CNN-ECOC and CNN-ECOC-REG increased to 100%, which was better than CNN. In 

the living room cases, the CNN and CNN-ECOC-REG gave the best rate of 50% in the 

top-1, however the CNN-ECOC and CNN-ECOC-REG were able to increase up to 

91.7% and 100% in their top-2 predictions, respectively. Although the kitchen top-1 

prediction was the worst in all models, it surprisingly showed a huge improvement in top-

2 prediction for CNN-ECOC and CNN-ECOC-REG compared to CNN. Overall, the three 

models performed similarly in the top-1 prediction, however the multi-binary classifier 

 

* All Captured images by Nao were saved and added to the same project in this link: 
https://github.com/KamalOthman/SRIN-Dataset.git 

https://github.com/KamalOthman/SRIN-Dataset.git
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solutions, i.e., CNN-ECOC and CNN-ECOC-REG, gave much better performance in the 

top-2 results in contrast to the CNN for multi-classification. 

Table 3-4: Testing accuracies of all models with top-1 (T1) and top-2 (T2) for all 
five classes. 
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Table 3-5: Confusion matrix of testing images with top-1 & top-2 for five 
classes. 

 

Discussion 

After obtaining results of the multi-binary classifiers in Table 3-3, we expected to 

get the best results with the most distinguishable rooms, i.e., bathrooms & kitchens, on 

phase 3. The results were as expected with bathrooms, but not with kitchens. The 
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reason is the short height of Nao, which captured scenes that are totally different from 

what was learnt from the dataset. In the kitchen case, the robot captured the cabinets 

and drawers rather than capturing the top view of stoves or other appliances. Thus, the 

robot’s first prediction was mostly bathrooms instead of kitchens. The ideal solution is to 

have our own dataset for social robots in the height range of 0.5–1.0 m, which will be 

proposed and discussed in the next chapter. 

3.5. Conclusion 

This chapter focused on addressing the room classification problem for social 

robots. The CNN deep learning approach was adopted for this purpose because of its 

superiority in pattern recognition applications [169]. Several CNN architectures were 

examined, fine-tuned and trained on five room classifications via Places dataset. We 

concluded that VGG16 was the best model, with 93.29% of validation accuracy after 

cleaning the dataset by excluding all mislabeled images. In addition, we proposed and 

examined a combination of CNN with ECOC, a multi-binary classifier approach, in order 

to address the error in practical prediction. The validation accuracy reached 98.5% in 

one of the binary classifiers and 95.37% in the average of all binary classifiers. The CNN 

and the combination model of CNN and ECOC in both forms, i.e., CNN-ECOC and 

CNN-ECOC-REG, were evaluated practically on a NAO humanoid robot. The results 

show the superiority of the combination model over the regular CNN. 

During the course of this part of the research, we discovered that the existing 

datasets are not quite suitable for medium-sized (short) social robots with limited 

sensors. Hence, we embarked on the possibility of designing a new dataset for such 

robots. The process will be explained in the next chapter. 
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Chapter 4.  
 
SRIN: A New Dataset for Social Robot Indoor 
Navigation* 

4.1. Introduction 

Providing a seamless and reliable solution to indoor navigation is a central 

research problem in robotics as resolving this challenge is a precursor for success of 

many activities of a social robot. Indeed, achieving the ultimate objective of having a 

social robot in every home depends on a reliable solution to this problem. Social robots 

will be part of the family as pets are. They interact and assist in chores and will keep 

company for minors and seniors. Within this context, they must be able to flawlessly 

roam around the home and be able to identify different locations and their functionalities 

in a house. In the previous chapter, we presented a CNN-based model (Convolutional 

Neural Network) that demonstrated promising results with respect to room classification 

in an indoor setting. As training a CNN-model requires a significant number of samples, 

there are many models trained on popular computer visions datasets, such as ImageNet 

[170] and Places [163]. However, adopting pre-trained CNN models that learned 

features from computer vision datasets to be tested in real-time experiments on social 

robots, e.g. Nao humanoid robot [171] was not overwhelmingly successful [172]. We 

suggest that a dedicated dataset as opposed to general datasets such as ImageNet or 

Places could drastically improve the performance in real-time experiments. 

Thus, the objective of this chapter is to report a new dataset called SRIN, which 

stands for Social Robot Indoor Navigation, for room classification and doorway detection 

applications in indoor environments – particularly in homes. This dataset has its unique 

feature for social robots with medium size and height, such as Nao humanoid robot, 

shown in Figure 4-1 which indicates the height of the robot with respect to the door 

handle. SRIN is a 2D RGB images dataset that consists over 75000 raw and augmented 

images for several rooms and doorways, i.e. SRIN-Rooms and SRIN-Doorway datasets, 

respectively. The distinct feature of the dataset is that all collected images were captured 

 

* This chapter is mainly reproduced from paper 2 in section 1.4 (page 8). 
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at the height of 0.5 m, which will be practically a useful dataset for social robots with 

medium size. 

The rest of the chapter is organized as follows: Section 4.2 introduces related 

studies and presents different examples of robotics datasets as well as different 

examples of social robots with medium size. Next, we introduce the process of collecting 

SRIN dataset in section 4.3. We include some experiments and results in section 4.4 

that demonstrates the superiority of SRIN to train CNN-model for robotics application 

and compare them with the results in the previous chapter. We conclude the chapter 

with additional remarks in section 4.5. 

 

Figure 4-1: Nao robot's height with respect to the door handle. 

4.2. Related work 

By and large, the performance of indoor robotic navigation tasks that employ 

general computer vision datasets has been rather poor [173], [174]. To circumvent this 

shortcoming, robotics researchers have started developing their own dataset based on 

the robot’s platform and its onboard sensors. We suggest that creating a robot-specific 

dataset improves the performance of navigation tasks. In [175], a dataset was acquired 

from a specific environment (only two locations of labs) using Pioneer and Virtual Me 

robots in which the camera is mounted in the height of 88 cm and 117 cm, respectively. 

Although it is reported that 100-500 images per class for 17 classes were collected, the 

variety of the images was limited for the two main locations. The dataset of 

Houses-Environments Images for Short Social Robots (HEISSR) Dataset 

(Informal instructions) 

1. Objective 
We are aiming to collect indoor environment images in houses for applications for social robots 

with short height, e.g. NAO humanoid robot is 0.5 m. We assume that the short height robots are 

in range 0.3m - 0.7m. 

2. Platform 
As you can see in the image below, the robot’s camera is almost in the half height of the door hand. 

 

 

3. Instructions 
Since it is difficult to take Nao robot in a big number of houses, we are going to ask participants 

to take images using their personal cameras or smartphones with one significant condition, images 

have to be taken in a height of this range 0.4 m – 0.6m. See the examples below: 

 

Your pose How the image looks like? Accepted? 

  

NO, it is not the robot’s 

height 

 

  

YES, it is almost the robot’s 

height 

  

 

3.1. Images class 

We are aiming to collect two separate datasets for houses environments: 

≈ " . $	&  

≈ ' 	&  

Top camera 
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Robot@Home [173] is a collection of 83 time-stamped observations obtained from a 

mobile robot equipped with 4 RGB-D cameras and a 2D laser for robotics mapping 

applications in indoor domestic environments. Autonomous Robot Indoor Dataset, ARID 

[174], is an object-centric dataset that was collected by RGB-D camera on a customized 

Pioneer mobile robot, in which the camera was mounted at a height of over 1m. The 

main objective of that study was to test and compare previous CNN performances to 

recognize 51 objects using more than 6000 RGB-D image scenes. Another dataset 

referred to as AdobeIndoorNav [176] was collected for Deep Reinforcement Learning 

(DRL) robotics applications from 24 scenes. Each scene consisted of 3D reconstruction 

point cloud, 360 panoramic view from grid locations, and 4 different images in 4 different 

directions using sensors mounted on a Turtlebot mobile robot. 

An affordable social robot in every home is one of the robotics researchers 

dreams in the near future. Such a robot most likely has a limited number of sensors, 

such as a monocular camera instead of a stereo camera or expensive 3D sensors. Such 

domestic social robots are probably medium sized and are the same height as domestic 

pets. There are already several types of mobile robots with a reasonable size in the 

market, i.e. less than 1 m. Among such robots are those with the average height of ~ 0.6 

m, such as Nao by Aldebaran [171], QRio by Sony [177], [178], Zeno by Hanson 

Robotics [179], [180], Manava by Diwakar Vaish in the labs of A-SET Training & 

Research Institutes [181], and DARwIn-OP by Dinnes Hong in Robotics and 

Mechanisms Laboratory [182], [183]. There are also other class of robots which are a bit 

shorter, i.e. the average of 0.4 m, such as HOVIS [184] and Surena-Mini [185], or a bit 

taller, i.e. the average of 0.8 m, such as Poppy [186]. However, there is no suitable 

dataset for this kind of robots that can be used to address houses’ environments 

navigation tasks such as recognizing room classes. Furthermore, testing a pure learned 

CNN-based model that trained on an existing computer vision dataset, such as Places 

dataset, with a medium-sized robot like Nao, gives an undesirable performance as 

shown in [172]. Therefore, we propose a new scene-centric dataset called SRIN, which 

stands for Social Robot Indoor Navigation dataset. This dataset has been collected to be 

employed for indoor navigation tasks on Nao humanoid robot or any other robot with a 

similar height. 
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4.3. Collecting Dataset and Methodology  

The main feature of the RGB images of SRIN dataset is that all raw images were 

taken at a height of 0.5 m above ground from several houses in Vancouver, BC. In order 

to generalize our work for any social robot similar to Nao as well as to simplify the 

process of increasing dataset in future without depending on taking Nao to different 

houses, it was preferable to start taking images by personal cameras restricted to the 

condition of the 0.5 m height. These images were used to train and validate a CNN-

based model, then the trained model was tested on Nao robot in new environments. 

SRIN dataset contains +75000 of the raw and augmented images for several rooms and 

doorways, i.e. SRIN-Rooms and SRIN-Doorway datasets. The procedure of collecting 

and increasing this dataset has been done through three main steps as shown in Figure 

4-2: 

1. Over 500 raw images of five rooms classes (bedroom, bathroom, 
dining room, kitchen and living room) and three doorway classes 
(open-door, closed door or no-door) were captured from seven 
different houses. 

a. From each room, 5-8 images were collected with different scenes 
from different angles. 

b. In front of each door, 5-9 images were collected with different 
scenes from different distances and angles. 

c. If the room had a window, then more images were taken during 
the day, based on the sun light, and the night, based on the 
house’s lights. 

d. All raw images were resized to a resolution of 256 × 256. 

2. Each image was flipped and changed with Gaussian noise separately 
using OpenCV libraries. Therefore, the number of images was tripled.  

3. An aggressive augmentation process using Keras API [167] was 
applied on all images, creating the new dataset. This augmentation 
includes a random combination of rotation, width shift, height shift, 
shear range, zoom range and channel shift range. 
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Figure 4-2: Collecting Process of SRIN Dataset. 

SRIN dataset has several unique characteristics among which are: images are 

captured from the view of short robots as opposed to humans’ view; and the dataset 

allows other researchers add images from indoor homes of different countries, cultures, 

etc. The criteria are also basic as it required only RGB images from different layouts 

form different rooms in a home. Figure 4-3 provides clarification of how the SRIN’s 

content has been further processed by showing a raw image and its associated 

processed and augmented images per category. 
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SRIN-Rooms Samples SRIN-Doorway Samples 

Bed Bath Din Kit Liv No-door Open door Closed door 

Raw data samples 
(resized) 

 

 
 

       

Processed 
samples 

flipped 

 

 
 

       

Added 
noise 

 

 
 

       

Augmented samples 

 

 
 

       

Figure 4-3: Scene samples from SRIN dataset for each category*. 

 

* All samples and python codes can be downloaded from the author’s GitHub page via this link: https://github.com/KamalOthman/SRIN-Dataset.git 

https://github.com/KamalOthman/SRIN-Dataset.git
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4.4. Experiments & Results 

In this section, we present the superiority of training the CNN-based model using 

SRIN dataset, i.e. let’s call it CNN-SRIN, over Places dataset for indoor robotic 

applications. We present the validation accuracy, then test the trained model on real-

time experiments with Nao robot. For appropriate validation and comparison, we applied 

the same CNN training process, via the concept of transfer learning as shown in Figure 

4-4 and explained in detail in [172], with only SRIN-Rooms dataset for training the 

model. Then both CNN-SRIN results and CNN with places results in [172] have been 

compared with each other. The number of room samples in SRIN-Room dataset was 

37288 images divided as follow: [bathrooms: 7538, bedrooms: 7634, dining rooms: 

7561, kitchen: 7185, living rooms: 7370]. 20% of images of each class have been used 

for validation. Thus, the total images for training were 29832 samples, while 7456 

samples were employed for validation. 

 

Figure 4-4: The concept of transfer learning of CNN. ConvNet: any pre-trained 
Convolutional Network & FC: Fully Connected Network. 

As mentioned in [172], training the CNN model using places dataset for room 

classification problem was accomplished through two stages, see Figure 4-4. First stage 

was the training of the classifier part, i.e. fully connected network, while the feature 

extractor part, i.e. VGG16, was frozen, which implies that all their weights were non-

trainable. The average of validation accuracy of this stage could not increase beyond 
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87%. In order to improve the performance, we added the second stage whereby the 

whole model was trained, i.e. both the feature extractor and the classifier parts. The 

validation accuracy reached to 93.29% after around 8:35 hours of training process on 

Graham cluster provided by Compute Canada Database [168]. Interestingly, training 

CNN-SRIN reached a validation accuracy of 97.3% after 1:32 hours of applying only the 

first stage of CNN transfer learning that is shown in Figure 4-4. Therefore, there was no 

need to go through the second stage. 

As real-time experiments with Nao was our main concern, we tested the trained 

CNN-SRIN model on the same Nao images from [172]. Figure 3-6 from Section 3.4.3 

shows some examples of Nao images that were used for real-time experiments. Table 

4-1 shows the comparison results of rooms predictions on Nao images for both trained 

models, i.e. CNN with places dataset and CNN-SRIN. All results are shown as a 

confusion matrix for each class. Each model gives the top-1 and top-2 predictions, in 

which the top-2 is the results of the false prediction from top-1 results. As it is obvious in 

the results of all confusion matrices of Table 4-1, the overall correct prediction from top-1 

and top-2 of CNN-SRIN outperformed the CNN model with Places. Results of four room 

classes in CNN-SRIN attained 100% correct prediction in top-2 results. We believe that 

with increasing the SRIN dataset in future, the prediction of top-1 for real-time 

experiments on Nao shall be improved as well. 

Table 4-1: Comparison Results: confusion matrix of each class with top1 & 
top2 predictions for both models (CNN with places & CNN-SRIN) on 
a Nao robot. 

CNN-Room Classification with Places dataset (from Table 3-5) 

  
# 

images 
Bath Bed Din Kit Liv %  

# 
false 

Bath Bed Din Kit Liv % 
Overall 

% 

TOP1 

Bath 12 12     100 

TOP2 

0      - 100 

Bed 13 4 9    69.2 4  4    100 100 

Din 6 2  4   66.7 2  1 1   50.0 83.3 

Kit 13 10   2 1 15.4 11 1 4  6  54.5 61.5 

Liv 12 4 2   6 50.0 6  2 1  3 50.0 75 

CNN-Room Classification with SRIN dataset 

  
# 

images 
Bath Bed Din Kit Liv %  

# 
false 

Bath Bed Din Kit Liv % 
Overall 

% 

TOP1 

Bath 12 12     100 

TOP2 

0      - 100 

Bed 13  12   1 92.3 1  1    100 100 

Din 6   2  4 33.3 4   4   100 100 

Kit 13 6 1 1 3 2 23.1 10  1 1 5 3 50 61.5 

Liv 12 1 6   5 41.7 7     7 100 100 
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Discussion 

As this work was concerned about the practical performance on a medium-sized 

mobile robot, i.e. Nao, Table 4-1 provided the promising practical results of SRIN 

dataset. Let us discuss the CNN-SRIN results based on the type of rooms. The 

“bathroom” is the most class with its unique features in its scenes in which the CNN-

Room models (with Places and SRIN) predict 100% correctly in top1. Similarly, the 

“bedroom” is considered as a unique class that both CNN-models were able to get the 

100 % correct predictions in top2. However, CNN-SRIN was much better in top1 results 

as it predicts 92.3% comparing to the 69.2% of CNN with Places. Next, despite the low 

percentage of CNN-SRIN prediction for the “dining room” and “living room” in top1, both 

classes were reached up to 100% in top2 results which is considered a huge 

improvement compared to their results of CNN with Places. The most arguable class is 

the “kitchen”. As discussed in section 3.4.3 of the previous chapter, the robot captured 

the cabinets and drawers rather than capturing the top view of stoves or other 

appliances. Thus, first predictions of CNN with Places were mostly bathrooms instead of 

kitchens. However, we consider this case was improved with CNN-SRIN from two 

perspectives. The first perspective is that the top1 percentage raised from 15.4% to 

23.1% although they are quite low. The second perspective is that the number of the first 

predictions as “bathroom” were less than CNN with places, which means the CNN-SRIN 

model learned different features. While, both models were reached the same percentage 

in the top2 results, the questions now are how can practically top1 results be improved 

and how can the robot make a decision based on top1 results? First, we believe that 

with increasing the SRIN dataset in future, the prediction of top-1 for real-time 

experiments on Nao shall be improved as well. Second, as what we noticed with most of 

the “dining room” predictions that their probabilities of CNN-SRIN as “living room” very 

close to their probabilities as “dining room”. In this case, a threshold between top1 and 

top2 probabilities’ values can be assigned to make the right decision as well as capturing 

different views while navigating to maximize the correct prediction. 

4.5. Conclusion 

This chapter presented a new Social Robot Indoor Navigation dataset called 

SRIN. It consisted of 2D colored images for both rooms and doorways, i.e. SRIN-Rooms 

& SRIN-Doorways, respectively. SRIN is a useful dataset for medium-sized social robots 
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in indoor environments, specifically houses. SRIN was validated through training a CNN-

based model using SRIN-Rooms dataset, and then tested on the Nao’s images for real-

time experiments validation. The novelty of this work was illustrated when the validation 

accuracy of CNN-SRIN for room classification reached to 97.3% in a relatively short 

time. This was a huge improvement compared to training the same architecture with 

Places dataset, shown in the previous chapter, that reached 93.29% of validation 

accuracy after a long time. In addition, the significance of this work was also shown 

through the comparison of the performance of two models on real-time experiments for 

Nao. It showed a big improvement in predicting bedrooms and slightly different 

performance of other classes in Top1. However, it reached 100% in the Top2 of the 

correct predictions for four classes out of five. We believe that with increasing the SRIN 

dataset in the future, the prediction of top-1 for real-time experiments on Nao shall be 

improved as well.  

In this and the previous chapter, we proposed two different solutions for social 

robots to determine their own whereabouts inside a house based on an ability to classify 

each room. In the next chapter, we will focus on addressing another crucial component 

for indoor navigation. We will propose a visual-based system for addressing the doorway 

detection and direction via only a monocular camera. 
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Chapter 5.  
 
Doorway Detection and Direction (3Ds) System for 
Social Robots via a Monocular Camera* 

5.1. Introduction  

Navigating in indoor environments inevitably requires detection and crossing 

doors that are regarded as integral parts of any indoor setting, particularly in human 

habitats (homes). Whereas this task does not require much effort for humans and their 

pets, it is a challenge for social and other autonomous robots. As such, it is desired that 

social robots have the same skill and are able to move around a house seamlessly and 

know their own whereabouts based on an ability to classify each room and its 

functionality, as reported in Chapter 3 and Chapter 4, respectively. Indoor navigation is 

inherently multifaceted and includes several tasks including but not limited to 

localization, mapping, SLAM, path planning, object, and scene recognition. However, the 

capacity to detect doors and their orientation are critical in any navigation system and 

are the main subject of this chapter; though the related problem of passing through a 

door is not within the scope of this study in this chapter. This research question has 

attracted attention by many researchers on robotics and as we shall discuss in section 

5.2, the detection and navigation through a doorway are mostly addressed via sensor 

fusion techniques, deployment of rather expensive built-in sensor(s) on-board the robot, 

or augmenting the environment by appropriate and dedicated sensors or Quick 

Response (QR) Codes.  

The motivation for this study in this chapter is the following question: can this 

problem also be solved practically via a monocular camera? Therefore, the objective of 

the study in this chapter is to design a system just for detecting and directing a social 

robot towards a doorway using only a monocular camera that captures only a 2D image. 

The proposed system is one of the components of an end-to-end navigation strategy 

inspired by Behavioristic Robotics, in particular the ubiquitous Brook’s Subsumption 

architecture [11] for social robots with limited sensors. This methodology is based on the 

 

* This chapter is mainly reproduced from paper 3 in section 1.4 (page 8). 
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Sense-Perception-Act theme that is essentially a discrete decision-making process as 

opposed to methods generally categorized under iterative processes. The two 

methodologies are fundamentally different and can be viewed as alternative approaches. 

Depending on specific applications, one or the other is preferable. We argue that for 

indoor navigation, which is generally regarded as partially known structured 

environments, the former approach has certain operational advantages including 

comparable computational cost and robustness. In addition, it is argued that the 

behavioristic approaches present a balance between the accuracy versus functionality. 

The complete navigation system will be discussed in the next chapter, whereas the 

focus here is to address the subtask of detecting a doorway direction within the context 

of indoor navigation. 

The rest of the chapter is organized as follows: in section 5.2, we present related 

studies for door detection and navigation through it. Then, the proposed system with 

some details of each module will be discussed in section 5.3. We will then include and 

discuss some experiments in section 5.4. We conclude the chapter with tentative 

conclusions and outline the contributions. 

5.2. Related Research 

A door is a significant obstacle hindering smooth indoor robotics navigation. 

Consequently, a social robot can move around rooms only if it is capable of detecting 

and passing through the door safely. There are several approaches that have addressed 

the problem of doorway detection. Solutions based on probabilistic methods were 

reported in [187], [188]. In [187], the authors focused on the mapping problem by 

employing the Expectation-Maximization (EM) algorithm to segment typical corridor 

environments into doors and walls using camera and laser sensors mounted on a 

pioneer robot. They assumed that all doors in the corridor had the same shape and 

color, which were the main extracted features from the vision system. The main task of 

the laser was to detect dynamic objects in the corridor (doors being open or closed). The 

authors in [188] extracted features from camera and sonars and applied a graphical 

Bayesian network to differentiate doors from walls. Both papers focused on typical 

corridor environments. The problem was also addressed in [189] by designing an image-

based geometric model. The model detected doors by connecting corners and edges, 

then differentiating them from shelves or other similar shape objects by extracting the 
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concave and convex information. Although it was not explicitly mentioned that this study 

considered hallway environments, but one can infer that the door was a concave object 

with respect to the wall in the hallway, or outside the rooms. Alternative methods based 

on 3D point cloud data to detect and differentiate doors from walls using RANSAC 

(Random Sample Consensus) estimator were reported in [190], [191]. Sensor fusion is 

another approach to address doorway detection as reported in [192]. The paper 

suggested a sequential process that fused laser data with images to detect doors in 

corridor environments. It started with applying the X-histogram method on the laser scan 

data to detect walls. Then, it combined the wall detection laser data with an image to 

identify the region of interest (ROI). Subsequently, the ROI was combined with the 

integral image to calculate the vertical lines in the walls using Haar-like features to detect 

the doors in the corridor environments. Machine learning (ML) has also been applied to 

solve this problem. A conventional machine learning method known as Adaboost was 

employed in [193]. The authors implemented that algorithm on a Pioneer2DX robot to 

extract weak features from the camera, i.e. color, knob, frame, gap and texture, and from 

the laser, i.e. door width and concavity in order to use them in a strong classifier. The 

key objective of this method was to make sure that the extraction of features was 

accurate. Another promising method in machine learning is Convolutional Neural 

Networks (CNN) for images and Region CNN (R-CNN) for object detection that was 

proposed in [194], [195], respectively. The first paper [194] used 20 door images with the 

same features. By applying different image processing, the images were increased up to 

20500 images, where the positive samples were 2500 and the negative samples were 

18000. Note that there is a big difference between the two samples. They applied a 

simple CNN with 3 stages structure to learn door detection in a typical environment. The 

validation accuracy reached up to 73.1% for the 856 positive samples. The latter paper 

[195] addressed a different problem of cabin doors detection. It was completed via 

applying R-CNN on 11 videos. The algorithm started with the prediction of an area of the 

door, then it applied a mathematical morphology approach to detect if that area was a 

door or not by extracting a handle and footplate. 

Furthermore, several studies took advantage of detecting the door as an 

important feature for the navigation process. In [196], the authors proposed a system to 

address the exploration problem in an indoor environment for a Pioneer3 robot using its 

stereo camera. First, it detected the door using the image-geometric approach. Then, 
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both the Dynamic Window Approach (DWA) and A* algorithms were applied to address 

the obstacle avoidance and path planning problems, respectively. The probabilistic 

method is among the common approaches for addressing navigation problems by 

considering the advantage of door detection [197], [198]. The authors in [197] mainly 

focused on controlling the manipulator of the PR2 mobile robot to open the door as well 

as to plug itself into a standard socket. However, their related work was in detecting 

doors using conventional vision methods and moving the base of the PR2 robot by 

designing a deliberative robotic control system that combined a probabilistic localization, 

3D obstacle detection, and path planning with a given 2D occupancy grid map. Whereas 

the authors in [198] applied probabilistic methods on laser data for door detection to 

improve the localization and mapping performance in corridor environments. In contrast, 

the ubiquitous statistical machine learning algorithm of the Gaussian Mixture Model 

(GMM) was applied to a semi-autonomous wheelchair in the Gazebo simulator [199]. A 

nonlinear adaptive controller was proposed in [200] to help a big four-wheeled robot to 

cross the door after applying a sensor-based approach to detect it using a Kinect 

camera. Similarly, passing the door in a corridor environment for a wheelchair with 3 

cameras was the objective of the algorithm reported in [201]. The problem was 

addressed by applying an image geometric-based method for detecting doors and 

designing a Lyapunov-based controller based on visual features for following the corridor 

and passing through the door. 

It is important that we also point out to some other studies in computer vision that 

have broadly addressed the depth estimation problem via a monocular camera, although 

not particularly employed for doorway detection. The study in [202] described an 

algebraic representation based on the image geometry and using the vanishing point 

and line to extract 3D measurements from 2D images. The extracted measurements 

were the distance between parallel planes from a reference plane (e.g. the ground 

plane), the area and length ratio of a plane parallel to the reference plane, and the 

Cartesian location of the camera (x, y, z). Alternatively, the Structure-from-Motion 

technique (SfM) is a well-known approach to address 3D reconstruction from multiple 2D 

images as discussed in several studies, such as [203]–[205]. SfM was adopted in these 

studies was to address the feature detection and matching among the input sequence of 

images; thus, the camera parameters were recovered. Then, the incremental SfM with 

the integration of the Multi-View Stereo technique was applied to reconstruct the 3D 
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information. Other studies such as [206], [207] adopted supervised learning approaches 

based on datasets of 2D images with corresponding depth maps. The first study [206] 

used collected images with corresponding laser dataset to train a probabilistic 

supervised model that depends on the appropriate extraction of local and global 

features. Also, the authors studied the performance of using the monocular cues for the 

stereovision system. On the other hand, the latter study [207] used two different RGB-D 

datasets for training a proposed encoder-decoder architecture. The authors presented 

the success of their network as compared with other studies in the field of depth 

estimation from 2D images. From a different perspective, a framework was proposed in 

[208] that integrated the Adaboost method of machine learning and dynamic optimization 

to estimate 3D structure from 2D images of an outdoor environment. There are 

alternative solutions based on image processing techniques for the depth recovery 

challenge such as using a sharpening filter [209], using defocus cues [210], or 

computing salient regions and image compressing based on blur cues (focus/defocus) 

[211]. 

In contrast to the aforementioned studies, this project focuses on three main 

objectives. The first goal is to address the doorway detection for indoor environments 

based on a CNN-like model which provides a better performance and higher accuracy 

than [194], which adopted the same CNN approach. The main motivation to adopt the 

CNN approach over other machine learning methods was that it does not require a 

careful a priori human design. The second goal of this work is to calculate the relative 

angle direction of the robot with respect to the doorway from a 2D image. The angle 

direction is an important information for controlling the robot towards the target. 

Therefore, a global or explicit Cartesian position, as well as distance information towards 

the doorway are excluded; although they might provide crucial cues for other robotic 

applications. Also, our study focuses on the discrete decision of the sense-perception-

act theme, which is unlike other visual servo techniques, such as [201], that address the 

navigation problem continuously with the integration of a conventional controller. The 

third goal is to compute the angle direction from only a still 2D image via a monocular 

camera, which can be inferred through estimating the depth information. Therefore, we 

have adopted the model from [207], for estimating the depth values from a 2D still image 

with no need for additional image preprocessing, over other computer vision methods, 

such as machine learning methods that depend on careful engineered designs, and SfM 
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that needs a sequence of 2D images. Besides, the work in [207] is considered as one of 

the state-of-the-art studies in the field of estimating depth information from 2D images as 

the author presented the success of their network compared with other studies in the 

research area. Accordingly, we propose a Doorway Detection and Direction 3Ds-system 

for social robots with limited sensors (monocular camera). This system can detect an 

open door and then can direct the robot toward the doorway based only on a 2D image 

that is captured by a monocular camera. The system combines several modules with 

different approaches: learning-based, pixel-based and triangular-based methods. 

5.3. Proposed System and Methodology  

The key concept of the proposed system is based on the Sense-Perception-

Action architecture, see Figure 5-1. Accordingly, the proposed 3Ds-system for detecting 

a doorway and directing a social robot towards it is shown in Figure 5-2. It consists of 

several modules to enable a social robot equipped with only a monocular camera, i.e. 

Nao robot, to provide an appropriate angle toward the doorway from its current location. 

The algorithm is initiated by acquiring a 2D image using the top camera of Nao. This 

image is then passed to the CNN-SRIN Doorway module to classify the image as either 

an open door or a no-door scene. SRIN is a dataset for indoor settings specifically 

designed for short robots such as Nao. If the image is classified as an open-door scene, 

the depth module is triggered to construct a depth map using the captured 2D image. 

Next, the Pixel-Selection module is applied to the depth map to determine the best pixel 

that represents the doorway location. Finally, the selected pixel is passed to the 

Pixel2Angle module that converts the depth value of that pixel into an appropriate angle 

which will be used to guide the robot towards the door. The Pixel2Angle module is 

triggered only if there is no obstacle between the robot and the doorway, which can be 

detected via a vertical correlation in the Pixel-Selection module. 
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Figure 5-1: A block diagram of Sense-Perception-Action control architecture. 

 

Figure 5-2: Our proposed robotic system for doorway detection and direction 
(3Ds-system). 

The following sub-sections will explain the function of each module in more 

detail. As the algorithm is meant for social robots, we present these modules for the Nao 

humanoid robot. The same algorithm can be readily applied to any (social) robot 

equipped only with a monocular camera.  

5.3.1. 2D image from Nao monocular camera 

The Nao humanoid robot has two monocular cameras that are mounted vertically 

on its face. Since there is no overlap between them, the system is not considered as a 

stereo camera set, i.e. there is no direct depth information or direct way to extract the 

depth values. For this project, we employ the top camera to extract a 2D image, which is 
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set up with a size of 640 × 480. The specifications of the camera are crucial for 

achieving the purpose of this project successfully, specifically the horizontal Field of 

View, 𝐹𝑜𝑉𝑤  = 60.9°, and the vertical Field of View, 𝐹𝑜𝑉ℎ = 47.6° as shown in Figure 5-3. 

As our goal is to control the direction of the Nao robot, then the 𝐹𝑜𝑉𝑤 will be used in the 

calculation of the Pixel2Angle module. 

  

(a) Horizontal FoV (b) Vertical FoV 

Figure 5-3: Field of View of Nao robot cameras [171]. 

5.3.2. CNN-SRIN Doorway Module 

The aim of this module is to detect whether or not the scene in front of the robot 

is a door. We achieve this goal by training a CNN model via the transfer learning 

process as shown in Figure 4-4 from last chapter using our collected SRIN dataset. 

Thus, we call this model CNN-SRIN throughout the chapter. There are two classes of 

SRIN dataset for doorway used for training CNN model: no-door and open-door, in 

which this module will be useful for any indoor robotic visual navigation system. Within 

the proposed 3Ds system, the following module will be triggered if the robot detects an 

open-door with CNN-SRIN. 

5.3.3. Depth Module 

The objective of this module is to estimate a depth map from a 2D image 

extracted from Nao’s monocular camera. Estimating depth information from 2D-colored 

images is among open research problems in computer vision. We have adopted the 

trained Depth Dense network from [207], which is considered as state-of-the-art in this 

area. The Depth Dense network is designed based on the encoder-decoder architecture 
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as shown in Figure 5-4. The encoder part is a pre-trained CNN architecture, specifically 

DenseNet 169, which has layers for extracting features through the down-sampling 

process. The decoder part has layers for constructing the estimated depth information 

through the up-sampling process. Every layer in the decoder was fed by the output of a 

specific layer in the encoder, i.e. this concept is referred to as skip connection. The 

network was trained while keeping the encoder part frozen, i.e. transfer learning 

process, using two different RGB-D datasets: NYU Depth-v2 [212] and KITTI [213]. Both 

datasets provide RGB images as inputs, whereas the depth map is the respective 

output. The authors [207] presented the success of their network compared with other 

work in the field of estimating depth information from 2D images. For that reason, this 

trained model has been adopted to test and estimate 2D images from Nao within a 

robotic application. The Nao 2D image is fed to the Depth Dense Network in size of 

640 × 480, where the network will estimate the depth information of size 320 × 240. All 

depth map pixels carry a value from 0 to 1, in which the value 1 is the deepest distance. 

 

Figure 5-4: Depth-Dense Network [207]. The figure is modified for the 
explanation purpose. 

5.3.4. Pixel-Selection Module 

This module is designed with a premise that the pixel with the deepest value is 

associated with the doorway. Therefore, the simple way to select a pixel related to the 

doorway is the maximum depth value from the depth map; let us call them Max-Pixel & 

Max-Depth. However, the Max-Pixel is not the best one for the robot direction as it might 

be very close to the edge of the door, or it might be close to the top corners of the room 

as will be shown later in images 1 and 4 of Table 5-3, respectively. For this reason, we 
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need to find the Best-Pixel for the robot direction based on the horizontal correlation in 

the lower half of the image. This can be obtained by comparing every two adjacent 

pixels starting from the Max-Pixel in both directions, i.e. right by incrementing the width 

and left by decrementing the width. If the difference of the depth values is less than a 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  0.01 𝑢𝑛𝑖𝑡, then we move to the next pixel that is next to the current pixel. 

The proposed algorithm keeps comparing every two adjacent pixels from the right and 

left until the difference of depth is greater than a threshold value from both directions. 

This implies that the most likely pixel is related to the edges of the door. Then, the Best-

Pixel is the mid pixel between the last right and left correlated pixels. This Best-Pixel will 

be passed on to the Pixel2Angle module. 

In many cases, the robot can detect a door while there is an obstacle between 

the robot and the door. Therefore, we need to find a Trigger-Pixel to make sure that 

there is no obstacle in the way to the door, and then to trigger the next module. This can 

be performed by applying the idea of pixel correlation vertically to the depth map through 

the bottom direction only, i.e. incrementing the height value from the Max-Pixel, with a 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  0.045 𝑢𝑛𝑖𝑡. If the height of the last correlated bottom pixel is over 200, then 

this will trigger the next module to find the proper angle. Otherwise, it is implied that 

there is an obstacle in the way towards the door. In that scenario, there is no need to 

calculate the angle in the Pixel2Angle module. Figure 5-5 illustrates the concept of pixel 

correlation and selection from the 2D depth map. 

 

Figure 5-5: Illustration of correlation and selection of the best pixel. 
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5.3.5. Pixel2Angle Module 

After selecting the Best-Pixel toward the doorway and making sure that the 

door’s pixel is located on the trigger area of the depth map, i.e. no obstacle in the way to 

the door, then we apply the Pixel2Angle module for calculating the proper and 

approximate angle direction toward the door. It is a simple, but effective triangular 

algorithm applied to the selected pixel. As our goal is that Nao turns left (+ 𝜃) or right 

(− 𝜃), then the calculation will be focusing on the horizontal pixel values, although the 

vertical calculation can be processed similarly for other applications. Figure 5-6 presents 

an idea of how this module works and how the target’s angle is calculated. As illustrated 

in Figure 5-6a, the robot center view is represented as the center pixel in the depth 

image, the depth value of the selected pixel is the perpendicular distance between the 

target and the robot location. Therefore, the real horizontal distance X between the robot 

and the target is represented as the number of pixels from the selected pixel 𝑃𝑖𝑥𝑒𝑙𝑏𝑒𝑠𝑡 

and the center pixel 𝑃𝑖𝑥𝑒𝑙𝑐𝑒𝑛𝑡𝑒𝑟 in the depth map. First, we need to find the horizontal 

length 𝑥 between the selected pixel 𝑃𝑖𝑥𝑒𝑙𝑏𝑒𝑠𝑡  and the center pixel 𝑃𝑖𝑥𝑒𝑙𝑐𝑒𝑛𝑡𝑒𝑟 from the 

depth map. Then, we need to calculate the angular size of each pixel 𝛼𝑝𝑖𝑥𝑒𝑙  in the depth 

map by dividing the Field of View (FoV) by the size of the depth image. The horizontal 

Field of View of Nao is 𝐹𝑜𝑉𝑤  = 60.9°, whereas the width of the depth map from the 

Depth module is 320 pixels. Thus, each pixel in the depth image has 0.19° angular size. 

After that, it is easy to calculate the desired angle 𝜃𝑤 between Nao and the target 

direction toward the door by multiplying the angular size 𝛼𝑝𝑖𝑥𝑒𝑙  by the horizontal length 𝑥. 

This angle will be passed to Nao as a negative value if the 𝑃𝑖𝑥𝑒𝑙𝑏𝑒𝑠𝑡  is in the right half of 

the depth map; otherwise, it is positive. For other applications that deal with distances, if 

the unit of the depth map is known, e.g. depth in meter, then it worth it to calculate the 

distance to the target, i.e. the door in our application. First, we calculate the real 

horizontal distance X by multiplying the Tangent of the desired angle 𝜃ℎ by the depth 

value Z. Then, we can find the distance using the Pythagorean equation. Figure 5-6b 

gives the mathematical algorithm of this module. 
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(a) Pixel2Angle module illustration 

 

(b) Pixel2Angle module calculation 

Figure 5-6: Pixel2angle module for Nao robot. 

5.4. Experiments and Results 

All modules in the proposed system were programmed in Python 2 except the 

Depth module which was programmed in Python 3 by the author. Therefore, a python 

module called subprocess was used for managing and combining different modules from 
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different python virtual environments. The overall system was evaluated using a laptop 

with a 2GB memory size of the GPU for simulation experiments with pre-captured 

images by Nao as well as for real-time experiments via connecting real Nao robot with 

the laptop through Wi-Fi. 

The results of all modules of this project are presented into two stages: the 

doorway detection stage and the angle extraction based on depth and pixel selection. In 

the first stage, the system detects the doorway via CNN-SRIN model. The second stage 

presents the results of other modules on some selected images from the first stage. 

Afterward, we present real experiments with a Nao robot in a new environment in order 

to validate the overall performance of the 3Ds-system. 

5.4.1. Stage 1: CNN-SRIN for Doorway Detection 

The design of CNN-SRIN architecture consists of a features extractor via VGG16 

and an image classifier via Fully Connected (FC) network using Keras API [167]. In this 

project, the first stage of transfer learning concept shown in Figure 4-4 was only applied 

to the CNN-SRIN architecture, for which VGG16 was frozen while FC was trainable. FC 

began with an average pooling layer, then a layer of 1024 neurons with the Rectified 

Linear Unit (ReLU) activation function. The model was terminated with a logistic layer to 

predict one of the two classes: no-door vs open-door. In this stage, the learning rate was 

0.001 and Adam optimizer ran for 10 epochs. The no-door class consisted of 7062 

images, whereas the open-door class included 7432 images. We trained the CNN-SRIN 

model for doorway detection on the Graham cluster provided by Compute Canada 

Database [168] for several epochs, 10, 20 and 30, respectively. The validation accuracy 

reached 95.79% after 36 minutes for the 10 epochs. Whereas it increased up to 97.96% 

after 1:10 hour of training for 20 epochs, and 97.51% after 1:46 hour of training for 30 

epochs. Accordingly, the trained model with 20 epochs was adopted to be tested on new 

images collected by Nao humanoid robot since the model has the highest validation 

accuracy within a reasonable period of time on the Graham cluster. We randomly 

selected twelve related images, i.e. six images for each class, from the Nao’s point of 

view. Table 5-1 shows all images with their predictions. The model successfully 

predicted five images out of six with the correct class for each category, i.e. a total of 10 

correct predictions as shown in Table 5-2. These results validated that this module within 

the 3Ds-system will be a good trigger for the next module. 
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Table 5-1: CNN-SRIN doorway prediction results on Nao. Shaded results are 
the false prediction. 

No-door Open-door 

Nao image 
CNN-SRIN 
Prediction 

Nao images 
CNN-SRIN 
Prediction 

 

No-door 

 

Open-door 

 

Open-door 

 

No-door 

 

No-door 

 

Open-door 

 

No-door 

 

Open-door 

 

No-door 

 

Open-door 

 

No-door 

 

Open-door 
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Table 5-2: Confusion Matrix. (TN: True Negative, TP: True Positive, FP: False 
Positive, FN: False Negative). 

12 images 
Prediction 

No-door Open-door 

Actual 
No-door = 6 TN=5 FP=1 

Open-door = 6 FN=1 TP=5 

Percentage % 83.3 / 16.7 83.3 / 16.7 

5.4.2. Stage 2: Angle Extraction from 2D Images Based on Depth Map 
and Pixel Selection 

The next modules of the 3Ds-system were tested on several real-time images 

from the previous module in order to get a practical proof of the successful performance. 

The expected outputs of the angles are in the range of [-30˚, 30˚] as the Nao’s horizontal 

𝐹𝑜𝑉𝑤  = 60.9°. We selected the six open-door images of Nao robot as well as the image 

of no-door with the false-positive prediction. All results of these modules are presented 

in Table 5-3. This table presents every Nao’s 2D image with its CNN-SRIN trigger status. 

If the status is “Yes”, then the rest of the other modules’ results are presented. The 

depth module provides a depth colored image, in which the yellowish pixels are 

considered as far distances to a specific target, whereas the dark pixels represent very 

close objects. Then, the pixel selection module results are provided as follows: 

maximum depth value with its pixel, best-selected pixel with its depth value, and the 

vertical trigger status with its pixel. All depth values are rounded to two decimal points in 

this table for simplification. The last column of this table shows the calculated angle 

value from the last module if it is triggered by the previous module, otherwise, it gives a 

not applicable “n/a” value which means the robot does not receive any signal. The 

positive angle value means the robot turns left, whereas the negative value is for turning 

right. 

The overall results show the success of the proposed system for detecting and 

navigating the robot toward a door in the indoor environments. It can be seen in image 1 

& 3-5, that the 3Ds-system successfully detects the doorway and estimates proper angle 

to direct Nao. The interesting results are shown in the shaded results, which need to be 

discussed further. The system was able to detect an obstacle between the robot and the 
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doorway when the pixel-based module applied, as shown in image 2. Therefore, it did 

not send any angular value to Nao. Although the 3Ds-system could not detect a door in 

image 6, this does not affect the overall performance as there is an obstacle in front of 

the robot, which will be detected by pixel module and no angular value will be expected 

to be sent to Nao. The last tested image, i.e. image 7, showed the false positive 

prediction of the CNN-SRIN trigger module. Since it predicted that there was a door, the 

other module was triggered and obtained its results. The angular value of image 7 leads 

the Nao robot to the free space direction, which is considered relatively as a good action 

within a navigation system that would lead to the doorway. This is certainly not 

conclusive evidence as it is possible to fail in other cases. 
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Table 5-3: Real-time experiment results: Depth to angel values for controlling 
Nao robot. 

Nao 2D image 
CNN-
SRIN 

Trigger 

Depth Map 
240X320 

Max 
pixel 

Max 
depth 

Best 
Pixel 

Best 
Depth 

Vertical 
trigger 

Angle 
in 

degree 

1 

 

Yes 

 

[185, 
194] 

0.24 
[185, 
255] 

0.23 
True 

[238,255] 
- 18.1 

2 

 

Yes 

 

[145, 
157] 

0.46 
[145, 
201] 

0.40 
False 

[185,201] 
n/a 

3 

 

Yes 

 

[ 120, 
130] 

0.50 
[120, 
135] 

0.50 
True 

[238,135] 
4.8 

4 

 

Yes 

 

[ 183, 
73] 

0.37 
[183, 
42] 

0.32 
True 

[238,42] 
22.5 

5 

 

Yes 

 

[166, 
41] 

0.52 
[166, 
39] 

0.52 
True 

[238,39] 
23.0 

6 

 

No 

(false) 
- - - - - - - 

7 

 

Yes 

(false) 
 

[188, 
0] 

0.27 [188,19] 0.23 
True 

[238,19] 
26.8 

5.4.3. Validating the Overall performance of 3Ds-System in Real-Time 
Experiments with Nao humanoid robot 

As this work focuses on the door detection and direction, we evaluated the 

process by testing the 3Ds-system in real-time experiments with Nao in a new indoor 

environment. These experiments were carried out at Autonomous Intelligent System 

Laboratory (AISL) at Simon Fraser University (SFU). For practical purposes, it is 

important to mention that the Depth module is implemented on python 3 version, 
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whereas Naoqi API works with python 2 version. Therefore, different modules in the 

3Ds-system should be managed and combined via a python module called subprocess 

that includes Popen constructor for executing a child program with its suitable python 

virtual environment in a new process. The goal of these experiments is to show that Nao 

is able to detect the doorway and direct itself towards the doorway properly with a 

correct angle value. Simultaneously, it is able to detect an obstacle in the way to the 

door and prohibit applying the angle direction. We considered three different scenarios 

for this evaluated experiment: Nao is in front of the doorway from different distances and 

angles, Nao is not in front of the door, and Nao is in front of the door while an obstacle is 

in the way to the door, see some examples in Figure 5-7. The process of implementing 

all modules of the proposed system altogether is shown as a pseudocode in Figure 5-8. 

   

a) Doorway b) No door c) Doorway with an obstacle 

Figure 5-7: Examples of three different scenarios for evaluating 3Ds-system 
with Nao in real-time experiments. 
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Pseudocode 

 

Figure 5-8: Pseudocode of implementing the Doorway Detection and Direction 
system. 

Table 5-4 provides the results of several real-time experiments with the Nao 

humanoid robot. It shows the validation results of the three aforementioned scenarios. 

As we can see, there are Nao’s perceptions before and after the “Turn” behavior. Nao 

decides to turn based on the acquired output from each module in the 3Ds-system. 

These results show the success of our proposed system in practice. 
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Table 5-4: Results of real-time experiments with Nao at AISL in SFU, BC. 

Scenario Experiment 
Input Modules outputs Turning action 

Nao perception 
Nao 

decision 
Depth perception 

Important 
values 

Nao perception 
after turning 

Doorway 

1 

 

Open 
door 

 

Best pixel = 
[143, 246] 
Z = 0.54 
Vertical 

trigger: True 
θ
= −16.37° 

Turn Right 
 

2 

 

Open 
door 

 

Best pixel = 
[152, 283] 
Z = 0.78 
Vertical 

trigger: True 

θ
= −23.41° 

Turn Right 
 

3 

 

Open 
door 

 

Best pixel = 
[182, 36] 
Z = 0.58 
Vertical 

trigger: True 
θ
=  23.60° 
Turn Left 

 

4 

 

Open 
door 

 

Best pixel = 
[177, 291] 
Z = 0.64 
Vertical 

trigger: True 

θ
= −24.93° 

Turn Right 
 

No door 

5 

 

No door Prohibiting other modules 

6 

 

No door Prohibiting other modules 

Door 
with an 

obstacle 

7 

 

Open 
door 

 

Best pixel = 
[131, 237] 
Z = 0.41 
Vertical 

trigger: False 

θ =  None 
No Turn  

Prohibiting to turn 
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Discussion 

The number of experiments in section 5.4.3 may appear to be inconclusive. We 

included only 6 experiments for different scenarios as the other attempts within the 

accessed area were almost similar to what is reported. Besides, we can consider the 

experiments on Nao’s images from section 5.4.2 as an extra validation since the angle 

outputs are the values that are supposed to be passed to the robot to turn, which is 

similar to what presented in section 5.4.3. However, implementing further experiments in 

different environments, such as schools or community centers, in the future are 

potentially useful validation steps but not within the scope of this chapter. In addition, 

more images will be useful to be collected in future by Nao, or any similar social robot. 

We encourage the Nao robot’s community to assist and provide more indoor 

environment’s images to improve the validation performance of the doorway detection in 

section 5.4.1. Table 5-5 presents a comparative evaluation of the proposed algorithm 

versus related methods outlined in section 5.2. We acknowledge that this comparison is 

subjective and inferred from the source papers. Nevertheless, the main features of each 

algorithm including respective computational resources as well as their relative 

robustness are listed. 
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Table 5-5: Qualitative comparison of related algorithms. 

Objectives Papers 
Main 

methods 
Hardware / Data 

type 
Required 

information 

Computational 
cost / 

Robustness 
Environments 

Output 
information 

Extracting 
depth from 
a 2D image 

[202] 
Image 

geometry 
Simulation work / 

2D still image 

Vanishing 
point & line, 
reference 

plane 

High / High Static Dimensions 

[203]–
[205] 

SfM 

Simulation work / 
2D sequenced & 

overlapped 
images 

N/A High / High Static 

Feature detection 
& matching for 

3D 
reconstruction 

[206]–
[208] 

CNN-based 
Supervised 

learning 

Simulation work / 
2D images with 

associated depth 
Dataset High / High Dynamic 

predicting depth 
values 

Only door 
detection 

[187] 
(EM) 

probabilistic 

Camera & Laser 
/ Images & laser 
polar readings 

Pre-map Medium / Medium Static / Corridor 

Segmentation 
with assumption 
of only dynamic 

door 

[188] 
Graphical 
Bayesian 
network 

Camera & 
Sonars / Images 

& sonar polar 
readings 

N/A Medium / Medium Static / Corridor 

Differentiating 
doors from walls 

to build GVG-
map 

[189] 
Image 

geometry 
Camera / 2D still 

image 
N/A Medium / Medium Static/ Corridor 

Extracting the 
concave and 

convex 
information 

[191] 
RANSAC & 

ACF 
detector 

Project Tango 
Tablet / 3D 

points cloud data 
Dataset High / High Static 

Differentiating 
doors from walls 

[192] 
Sensor 
fusion 

Camera & Laser 
/ sequenced 

images & Laser 
polar readings 

N/A High / High Static 

Detecting the 
wall and then 

extracting door 
edges 

[193] 
Adaboost 

supervised 
learning 

Camera & Laser 
/ Images & Laser 

polar readings 

Extracted 
features & 

dataset 
High / Medium Static 

Accuracy of 
extracting 

features of doors 

[194], 
[195] 

CNN-based 
supervised 
learning / 

image 
processing 

Camera / 
[Images], 
[Videos] 

Dataset High / Medium 
Static closed 

door 

Discrete door 
direction / 

extracting certain 
features 

Door 
detection 

& 
navigation 

[196] 
Image 

geometry + 
DWA & A* 

Stereo Camera / 
Overlapped 

images 
Pre-map High / Medium Static 

Obstacle 
avoidance & path 

planning 

[197] 

Image 
processing + 
Probabilistic 

method 

Stereo Camera 
& Laser / 3D 
data points 

Pre-map Medium / Medium Static 
Demonstration of 
opening doors by 

manipulator 

[198] 
Probabilistic 

method 

Laser / 
Continuous laser 

readings 
Pre-map Medium / Medium 

Static with 
assumption of 
moving doors 

Enhancing the 
map with an 
explicit Door 

Representation 

[200], 
[201] 

Sensor-
based + 

conventional 
controller 

Kinect / 3D 
overlapped 

images 

Extracted 
features 

High / High Static 
Passing through 

door 

This 
study 

CNN-based 
+ reactive 
approach 

Camera / 2D still 
images 

Dataset & 
FoV 

High / Medium 
Dynamic / Any 

indoor 
environment 

Extracting angle 
direction toward 

the door 
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5.5. Conclusion 

In this chapter, we proposed a doorway detection algorithm that will ultimately be 

used in indoor navigation for social robots with limited sensors. We designed a robotic 

system referred to as the 3Ds-system, which stands for Doorway Detection and 

Direction system that was applied and tested on a Nao humanoid robot. The goal of the 

proposed system was to control the Nao direction towards the doorway based on a 2D 

image from a monocular camera. The system takes a 2D colored image and provides an 

angular value in degrees via a combination of several modules. CNN-SRIN doorway 

module for detecting a doorway was applied on Nao images after getting a validating 

accuracy of 97.96%. Then, the Depth module, Pixel-Selection module and Pixel2Angle 

module were applied on the input of 2D images for directing Nao towards the doorway. 

The practical results were promising, and they demonstrated the success of the 

proposed system for Nao. The proposed system can be applied to any other similar 

social robot, by acquiring the proper angle direction toward the door. The overall system 

has been validated by implementing the 3Ds-system on Nao within a new environment, 

specifically in AISL at SFU Canada. We suggest that the proposed system is very useful 

in robotic navigation applications for medium-sized robots with limited sensors, such as 

a monocular camera, in structured indoor environments. 

At this stage, we were able to design several significant modules for the indoor 

navigation task in houses based on a monocular camera and implemented on a Nao 

robot. The first two modules were for classifying the room location and doorway 

detection. The third module is for extracting the angle direction towards the doorway 

from the robot’s perspective. We will adopt these modules for the indoor navigation 

system. In Chapter 6, we will present a design and a test of a learning-based 

behavioristic system that consists of several modules for addressing localization and 

mapping problems for social robots in houses. 
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Chapter 6.  
 
Sequential Localizing and Mapping: A navigation 
strategy via Enhanced Subsumption Architecture* 

6.1. Introduction 

Designing a robotic navigation system with limited sensors that is capable of 

exploring an indoor environment while the robot concurrently updates its pose and 

generates/updates its map is still an open research area. As outlined in Chapter 2, this 

problem has been studied within the context of probabilistic and behavioristic paradigms, 

respectively. Whereas, the former was studied extensively with varying degrees of 

success; the latter has been gaining attention in the last decade through advancements 

of deep learning and availability of algorithms inspired by the natural world. We have 

adopted the general behavioristic architecture (Sense-Act system) in this research. It 

could be argued that the problem is more challenging than a purely deliberative design 

that depends on prior planning and an accurate map. Also, the conventional 

behavioristic design often acts blindly and does not explicitly include a learning module 

that is essential for the robot to function in a purposeful manner. To circumvent this 

shortcoming, we propose an end-to-end behavioristic robotic system that not only guides 

a social robot to explore an indoor environment without any prior knowledge but also 

builds a local map and registers its location within that map. We coin the term Sequential 

Localization and Mapping (SeqLAM) not to be confused with the widely popular 

probabilistic Simultaneous Localization and Mapping (SLAM) algorithm [21]. The 

proposed system consists of several layers based on Brook’s subsumption architecture 

[11], in which each layer is responsible for a specific task. The goal of the system is to 

enable a social robot to navigate an indoor environment safely and purposively, to avoid 

obstacles, to go to a specific location within the environment, and to build a map for 

future visits. The purposive capability of the system is manifested through an integrated 

knowledge-based system that provides the robot’s location and builds an abstract map 

sequentially. In contrast to SLAM that employs an explicit incremental coordinate-based 

location (pose), a zone-based location is identified in SeqLAM. As for the abstract map, 

 

* This chapter is mainly reproduced from paper 4 in section 1.4 (page 8). 
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we employ a Directional Semantic Topological Map (DST-Map) that takes advantages of 

different zones and the spatial relationships between the zones.   

We will go through the detailed components of the proposed system in this 

chapter. However, we need to set the scene and provide context for the design. Here, 

the term indoor environment is specific and is reserved for human habitats, i.e. an 

apartment. As it will be shown later, the zones are referred to five classes (bathroom, 

bedroom, dining room, kitchen, and living room) that are generally present in an 

apartment. The proposed design can be readily extended to other indoor settings such 

as a hospital, a library, an office, etc. To demonstrate its performance, the system is 

implemented and tested virtually on the Nao humanoid robot within a house 

environment. 

The rest of the chapter is organized as follows: in section 6.2, we present related 

studies of performing exploration and SLAM with a focus on reactive systems integrated 

with knowledge systems. Then, the proposed system and the design of each module will 

be explained in section 6.3. We will then include and discuss experiments for individual 

modules and the overall system in section 6.4. The chapter concludes with a summary 

and further remarks on the overall system in section 6.5. 

6.2. Related Research 

Consider a scenario whereby a social robot is required to safely explore and 

learn in a new environment; in the context of this study, a new apartment. In robotics 

literature, this task is broadly referred to as robotics exploration which includes 

wandering in an unknown environment with the purpose of gaining information of that 

environment (building a map) using mainly exteroceptive sensors. This problem has 

been addressed by different approaches, including but not limited to geometric or 

frontier-based methods (maintaining boundaries) [214], [215], information-theoretic or 

probabilistic methods (minimizing uncertainty) [216]–[218], and data-driven or learning-

based methods (predicting a map via trained network on a dataset of partial maps) [219], 

[220]. Simultaneous Localization and Mapping (SLAM) is considered as the main 

process to accomplish this task. SLAM is defined as a robotics navigation process 

through which a robot builds a map of an unknown environment while simultaneously 

estimates its pose within the created map. SLAM is essentially a probability-based 
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technique as it deals with an inherently uncertain and noisy environment. Several 

probabilistic techniques could be employed in a SLAM algorithm such as Kalman Filter 

(KF), Particle Filter (PF) or Expectation-Maximization (EM) [221], [222]. 

In parallel, bio-inspired SLAM approaches have also been studied. Such 

algorithms are distinguished by designs that are motivated by nature to address the 

robotic navigation problems via developing and validating a biological design, e.g. 

RatSLAM and BatSLAM. The RatSLAM [223], [224] is a visual-based structure that was 

inspired by the connection of different types of cells in the rat’s hippocampus. The 

structure is a fixed-weights network for pose cells. The BatSLAM [225], on the other 

hand, has basically the same structure as the RatSLAM, however, it is based on 

biomimetic sonars instead of a monocular camera. 

Designing a high-level* control architecture as an end-to-end system is an 

important solution for robotic navigation tasks, such as exploration and SLAM. There are 

several types of robotic architectures that were discussed in Chapter 2. Since a map 

does not generally exist a priori, behavior-based architectures, i.e. reactive method, can 

be considered as an alternative solution. One of the key behavior-based architectures is 

the ubiquitous subsumption architecture that was proposed by Brook [11]. The main 

characteristic of this methodology is to eliminate the plan function from the navigation 

system while the system decouples the sense and the act functions in the form of 

distinct behaviors. The subsumption architecture falls under the behavioristic psychology 

that generally claims a behavior is triggered by the environment as opposed to cognitive 

psychology that argues mental representations play a causal role in behavior [226]. As 

such, the original architecture did not explicitly learn from experience. We argue that 

while adhering to the overall architecture, we can enhance it by embedding learning and 

incorporating learned knowledge in decision making while navigating. Accordingly, in this 

chapter, we focus on studying these issues by developing an integrated indoor 

navigation system via an enhanced subsumption architecture. This perspective has 

been studied by other researchers, albeit quite different from the design herein. One of 

the early studies was by Arkin [227] who presented a hybrid architecture that combined 

two independent levels of planning and action, which were based on the potential field 

 

* It is different from the low-level control systems that make sure the motors for moving are stable 
or not oscillated [284].  
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method [228]. He also discussed the definition and the importance of maintaining 

knowledge within a robotic system in his celebrated textbook “Behavior-Based Robotics” 

[29]. Similarly, the same concept was adopted in several studies with different methods. 

In [229], a hybrid deliberative-reactive architecture was proposed in which behaviors of 

the reactive system were designed based on fuzzy logic, while the path planning was 

addressed based on a prior given map of a static environment. In [230], the authors 

presented a hybrid navigation system (deliberative and reactive) with incomplete 

knowledge, i.e. known positions of some static obstacles. The deliberative part was 

designed based on a binary gird map with the A* algorithm to generate a global path. 

While the reactive part was designed based on the DH-bug algorithm. It was tested via 

simulation studies on a Pioneer robot with laser and sonar sensors. Furthermore, the 

studies in [231], [232] suggested a cognitive method for planning level and a learner 

method for the reactive level. The authors used a minefield simulator to evaluate the 

performance of the BDI-FALCON hybrid system for an autonomous vehicle with five 

sonar sensors. The FALCON is the low-level reinforcement learner, while the BDI 

(Belief-Desire-Intention) is the high-level planner using prior data. The FALCON system 

took the action when there was no available plan. Once the plan was created, then the 

FALCON system was suppressed, and the action was executed by the BDI system. 

These aforementioned studies demonstrated designs based on a deliberative system 

that generally required an accurate map which they could use it independently with the 

behavioristic domain. 

Alternatively, Mataric [233] designed an architecture that integrated a map 

representation with a reactive system, which was tested on a mobile robot equipped with 

a ring of sonars and a compass within an office environment. The main three levels of 

the architecture were: subsumption for navigation, wall detection (left, right corridor), and 

map building (topological) that consisted of nodes with four attributes, including metric 

information. In [234], Case-Based Reasoning (CBR) was suggested to address the 

knowledge for a reactive system within a static environment. The concept of CBR is to 

solve a current problem by retrieving past experiences. The created cases, i.e. pairs of 

sense-act, in the study consisted of sonars readings, robot direction, and goal direction, 

while the output was the heading direction. Conversely, the study in [235] focused only 

on the learning ability within a reactive system. It suggested a combination of two 

independent systems: a reactive system based on potential field method, and a learning 
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system based on Reinforcement Learning (RL). The RL component was integrated to 

coordinate layers in the reactive system that enhanced the robot’s movement toward the 

goal within an unknown non-convex environment. Also, the reactive navigation was 

addressed in simulation trials [236] by designing two simple behaviors (avoid obstacle 

and go to goal) within actor-critic architecture for a wheeled robot in a static 

environment. The reactive system was combined with a trajectory generator and a 

tracking control system in a hierarchical theme. In addition, planning a trajectory for 

reactive navigation was solved in [237] based on the law of electromagnetism that leads 

the arm robot to a desired predefined position while avoiding unknown obstacles. From 

these studies, the static environments are the main assumption of the reactive systems 

by combining different types of knowledge/learning or focusing on the trajectory problem 

based on a partially known environment. 

Within the probabilistic approaches, studies that integrated SLAM with various 

robotic control systems have been also reported. Visual SLAM was used for a 

deliberative control system in [238]. The author presented a theoretical control 

architecture for outdoor navigation using only a single camera. The proposed system 

starts with two visual modules: structure from motion and visual SLAM. The first module 

took a sequence of 2D images of the same scene from different viewpoints to get depth 

information, i.e. reconstruct a 3D map. The depth information was passed to “Avoid 

Obstacle” behavior. The other module performed SLAM via images followed by a path 

planner that provided waypoints to be used for “Go to Goal” behavior. The outputs of 

these two behaviors were fused as a final command control. In contrast, the author [239] 

combined the probabilistic SLAM module with behavior-based motion module within a 

control system to address the exploration problem for an aerial robot. The SLAM module 

provided the estimated robot position, whereas the motion module provided the desired 

position. Both values were passed to a space-state model (low-level) controller to 

minimize the error. In addition, the authors in [240] aimed to improve the performance of 

a reactive system by integrating probabilistic SLAM to address a biohazard search 

mission in an unknown environment. The SLAM algorithm was a probabilistic approach 

called GMapping that built a metric grid map based on particle filter and localized the 

robot position within the map. Whereas, the reactive system consisted of a collection of 

behaviors that were connected based on the form of a finite state machine (FSM) or a 

finite state automaton (FSA). Behaviors in the reactive system were triggered by the 
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spatial memory of SLAM instead of the stimulus inputs. All their experiments were 

executed on a Pioneer 3 wheeled robot with laser for performing SLAM and camera for 

detecting the target within a limited and static environment. As we noticed from these 

studies, probabilistic SLAM for a static environment, which is mainly for uncertainty 

issue, was added to the system. However, the uncertainty in position and mapping, and 

the static environment are not viable assumptions in real settings.   

In contrast to the aforementioned studies, we focus on designing a robotic 

exploration system that integrates learning and knowledge capability to a reactive 

system for social robots with limited sensors. Thus, the assumption of static 

environments is relaxed. Besides, the knowledge system will be designed for addressing 

localization and mapping in an abstract manner. Accordingly, we design a behavioristic 

system based on subsumption architecture that controls a social robot. Throughout the 

thesis, we have focused on robots with limited sensors, particularly those equipped with 

a monocular camera. We design a knowledge system that builds a Directional Semantic 

Topological Map (DST-Map) incrementally, which is accessed by all layers in the 

subsumption system. Therefore, behaviors in layers can be triggered based on the direct 

stimulus from sensors as well as the gained information in the DST-Map. Thus, the 

proposed system will build a map and sequentially localize the robot within the 

abstracted created map during the exploration process. We refer to it as a sequential 

localization and mapping (SeqLAM) that does not localize incrementally but identifies 

itself in a predefined zone. In addition, an appropriate reinforcement learning module is 

designed for adaptive behavior while exploring using only two sonars. All designed 

modules and the overall system are implemented and tested on the Nao humanoid robot 

within a house environment using Webots simulator [14]. 

With the proposed behavioristic system, associated issues to the exploration and 

SLAM with classical techniques will be addressed or improved. For example, the 

semantic information within the DST-Map helps SLAM via recognizing the scene and 

classifying the room’s type that gives a meaningful localization and mapping. 

Consequently, other robotic applications will be improved because of the meaningful 

task such as the interaction between humans and robots or switching the planning 

function from a path issue to a task issue, e.g. robot needs to go to the bedroom. 

Furthermore, The DST-Map implicitly addresses the associated issues to SLAM: high 

dimensionality and data association [221], [222]. The former issue is addressed within 
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our proposed system as the nodes in the DST-Map represents the high-level locations 

instead of objects or free space locations. Whereas, the latter issue is addressed 

through matching the connection between nodes within the created DST-Map. If there 

are multiple connected rooms, e.g. two different bedrooms are connected to two different 

bathrooms, then it is flexible to add a new module to the system for image matching. In 

contrast to the most SLAM studies that focused on addressing localization and mapping 

while controlling the robot was executed manually, this work addressing the control part 

via a collection of behaviors that is useful during any interaction between humans and 

robots. 

6.3. Methodology and Proposed System 

The proposed system is a hierarchical design inspired by the behavioristic 

paradigm of subsumption architecture augmented with a knowledge system. The 

behavioristic system is essentially multi-layered whereby each layer is dedicated and 

responsible for a specific task, see Figure 6-1. In principle, the first layer (exploration 

task) is continuously active during the entire navigation task. The second layer 

(purposive task) takes the control and subsumes the exploration function. Similarly, 

whenever a higher layer is triggered then the lower layers will be subsumed as explained 

in Chapter 2, section 2.1.2. However, the decision of the control layer does not only rely 

upon on the stimulus functions but also on the information from the knowledge system. 

The learning-based knowledge system is responsible for building a Directional Semantic 

Topological Map (DST-Map) that depends on the zone-based location and the related 

direction via a monocular camera. Most layers in the behavioristic system have 

bidirectional access to the knowledge system. 

The detailed design with all layers, perception and action interconnected 

modules is shown in Figure 6-1. The first layer is always activated for exploring the 

environment and finding the purpose of the navigation task. It has only action modules 

with no perception modules: “Turn” and “Move Straight” behaviors. This implies that 

these action modules are not functions of any sensor’s data, therefore, this layer is 

always activated unless the higher layers subsume its control. The perception and action 

modules in the second layer are designed to control the robot to move towards the sub-

goal, for instance the doorway, in a safe manner (purposive task). Therefore, this layer 

has two perception modules: “Obstacle Detection” module that is stimulated by sonar 
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sensor, and “Direction Detection” module that is triggered by the knowledge system. 

Whereas, the action modules of this layer that control the robot are either “Go Toward 

Doorway”, “Avoid Obstacle” or the weighted summation of both behaviors based on the 

perception modules outputs. Next, the achievement task in the third layer is responsible 

to make sure that the robot reaches the final goal assigned by a companion. Thus, the 

“Command Detection” module can be designed using the speaker to detect the 

companion’s command, such as “Come to the living room”, as well as comparing the 

commands with the current information in the knowledge system. If the robot reached 

the goal, then the navigation’s process will be ended by the action “Sitting down”. 

However, if the robot’s battery level drops to a certain level in any time during the 

navigation process, then the protective task in the fourth layer will be triggered and 

subsumes all other layers. Thus, the “Charging” action will take the control, which is 

basically in this work considered as a robot’s request to be charged. It can be more 

complicated module by designing an autonomous “Charging” module with more global 

information of the socket’s location or by local information of the socket’s detection in 

every room, which are out of the scope.  

 

Figure 6-1: Learning-based behavioristic system for homes. 

 Let us go through the list of assumptions made in developing this system. First, 

we have not included corridors within the five type of zones (rooms) in the CNN model 

with labelled images (see Chapter 3). Second, we assume the practical predictions of 
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classifying the room (see Chapter 4) and detecting the doorway (see Chapter 5) are 

always true positive within the navigation task. Third, we have assumed that the shape 

of all rooms is rectangular, and the connection between rooms is through one of the four 

directions (𝑒𝑎𝑠𝑡: 0°, 𝑤𝑒𝑠𝑡: 180°, 𝑛𝑜𝑟𝑡ℎ: 90°, 𝑠𝑜𝑢𝑡ℎ:−90°). Fourth, as the “command 

detection” cannot be tested with the simulator, the goal will be assigned by the user. We 

believe that future work in this area is needed to design a system that relaxes these 

assumptions. In the following sub-sections, we explain the design of each module in 

more details. 

6.3.1. Subsumption-Based System 

The objective of this part is to design a collection of behaviors and interconnect 

them properly within four main layers as follow: 

Layer 1 - Exploration Task 

Turn Module: 

This module consists three predefined turning angles {90°, 180°,−90} in an order 

that are related to all other possible directions in a room from any current direction. We 

assume all rooms are broadly rectangular shape. The robot is supposed to detect the 

doorway in one of these directions, and the associated direction with the doorway will be 

passed to the knowledge system. The reason of this particular order is to minimize the 

number of turning. Let us assume that the robot enters in a new room, which implies a 

doorway is behind the robot, as illustrated in Figure 6-2. The first direction that the robot 

tries to detect another doorway is the front, which is considered as 0° angle. If there is 

no doorway, then the robot selects the option of 90° (turn left). If there is still no doorway, 

then the robot turns to the other direction by applying 180° from the last direction. By 

now, the robot detects all three directions of this new room with only two moves. The last 

angle −90° (turning right) will be applied when there is no other doorway in the room and 

the robot is supposed to turn back to the previous doorway. The global direction will be 

passed to the knowledge system for the direction between nodes in the DST-Map. 
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Figure 6-2: Illustration of robot's direction while exploring. 

Move-Straight Module: 

This module aims to change the scene in front of the robot by changing the 

position. It is triggered by either the “Turn” module in the same layer or the “Topo-Room” 

module in the knowledge system. “Turn” module triggers this module when the robot 

examines all directions but cannot detect a doorway. This is most likely due to the 

doorway being out of the robot’s view from its current position. Then, this module 

controls the robot to move straight through the best free space of the four directions 

based on the sonar values in order to change the view and improve the chance of 

detecting the doorway from a new spot. Therefore, the sonar values will be always 

passed to this module. The “Topo-Room” module triggers this module when the 

knowledge system gives a positive sign for passing the doorway, then it moves straight 

to make sure it is completely outside the previous room. 

Layer 2 - Purposive Task 

Obstacle Detection & Avoid Obstacles Modules: (RL System Based on Sonars and 
Cautious Actions) 

The key feature of this module is to design an adaptive behavior with a learning 

capability. The ultimate goal is to design an appropriate RL model (states, actions and 

rewards) based on limited sensors on Nao, only two sonars. Each sonar provides a 

distance to an obstacle. We classify any distance into three classes {very close distance, 

close distance, far distance}. Therefore, we can get nine different states as shown in 

Figure 6-3. As we can see that the best state is [2,2] where the robot has a good 
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distance from obstacles from the front, whereas the worst is [0,0] where the robot is very 

close to obstacles from both sonars. 

Sl&Sr

= {
2, 1.5m < far distance ≤ 2m
1, 0.8m < close distance ≤ 1.5m
0, very close distance ≤ 0.8m

 

States Sl Sr 
1 0 0 

2 0 1 

3 0 2 

4 1 0 
5 1 1 

6 1 2 

7 2 0 

8 2 1 

9 2 2 
 

 
(a) Three classes of sonar distances (b) RL-OAB states 

Figure 6-3: State's design of RL for an obstacle avoidance module. 

 The reward function is designed based on the above defined states, see Figure 

6-4. We divide the reward system into state’s rewards 𝑅𝑠 and transition rewards 𝑅𝑡. 𝑅𝑠 

provide a positive or a negative reward based on the new state after taking a specific 

action. Whereas, 𝑅𝑡 is a measure of how good or bad the transition is; thus, it is 

calculated based on the difference of the old and new states. For example, if the robot 

was in state [0,1] and it moves to state [0,2], then the 𝑅𝑠 = −1 in both states. However, 

since the transition is good, the robot gains positive reward for that transition 𝑅𝑡 =

𝑠𝑢𝑚([0,2]) − 𝑠𝑢𝑚([0,1]) = +1. Then, the total reward will be the summation of the 𝑅𝑠 

and 𝑅𝑡. Every episode is terminated either when the robot is able to move more than 500 

seconds, or when it falls down which is associated with a final negative reward, i.e. r = -

5. The time of 500 seconds was selected based on several experiments, and it was 

found that it is a suitable time for an episode. 

 

𝑅𝑠 =

{
 
 

 
 
−2, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 = [0,0]

−1, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 ℎ𝑎𝑠 {0}

0, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 = [1,1]

1, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 = [2,1]𝑜𝑟[1,2]

2, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 = [2,2]

 𝑅𝑡 = 𝑠𝑢𝑚(𝑠𝑡𝑎𝑡𝑒𝑛𝑒𝑤) − 𝑠𝑢𝑚(𝑠𝑡𝑎𝑡𝑒𝑜𝑙𝑑) 

 
(a) States rewards for RL-OAB. (b) Transition rewards for RL-OAB. 

Figure 6-4: Reward's design of RL for an obstacle avoidance module. 
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 The last important part of the RL system is the action function. The main four 

actions in the obstacle avoidance behavior are {Go Forward=GF, Turn Left=TL, Turn 

Right=TR, Turn Back=TB}. In order to avoid assigning predefined angles and distances 

for each action, we design an action function that takes in to account the two sonars 

values to determine the distance and angle of each possible action. In other word, the 

exact values of distance and angle vary in every step for each action. This is achieved 

by calculating four different direction vectors, in which each one belongs to a specific 

action. Figure 6-5 shows different examples. 

 

(a) Far-Far State 

 

(b) Very Close-Close State 

Figure 6-5: Action's design of RL for an obstacle avoidance module. 
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In order to avoid any dangerous action during the RL process, we suggest 

cautious actions by weighing each direction vector based on its current state. Let us 

assume that the robot is in the [2,2] state, which means the robot is far from obstacles 

from both sonars as shown in the example of Figure 6-5 (a). If the robot selected the TB 

action, which has a large magnitude of distance, then it is better this value has a low 

weight with this state as the robot does not know what obstacles are in the back. 

Therefore, each direction vector can be weighted by one of the three values 𝑊 = {𝑤1 =

0.8,𝑤2 = 0.5,𝑤3 = 0.2}. The cautious action process and the associated weights are 

shown in Figure 6-6, while the effect of weights on the action vectors is shown in Figure 

6-7. 

  

(a) Associated weights with states (b) The process of calculating a cautious action 

Figure 6-6: The design of cautious actions. 
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(a) Four directions before weighing. 

 

(b) Four directions after weighing. 

Figure 6-7: The impact of cautious action with RL system. 

Direction Detection & Go Towards Doorway Modules: 

The “Direction Detection” perception module is triggered by the provided 

information from the knowledge system. If the doorway detection attribute in “Topo-

Room” map is positive, then this module will be activated for running the system as 

explained in Chapter 5. As this system is able to detect if the deepest information is not 

related to the doorway, then the doorway detecting within the knowledge system will be 

updated. However, if the deepest information is related to the doorway, the calculated 
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angle will be passed to the “Go Toward Doorway” action module to turn and translate the 

robot toward the doorway.  

Move Smoothly Module: 

In cases where the robot should move to the detected direction of the doorway 

where there is an obstacle in the way, designing a smooth move is important. This action 

module is the weighted summation of the output from the preceding action modules, i.e. 

“Avoid Obstacle” and “Go Toward Doorway”. Let us call the action from “Avoid 

Obstacle”, “Go Toward Doorway” and “Move Smooth” as 𝑎𝑜, 𝑎𝑔 and 𝑎𝑠, respectively, in 

which each action consists of angle and translation values. When the robot is very close 

to the obstacle, then the “Avoid Obstacle” action takes the full or the higher control. 

Whereas, if there is no obstacle or they are far enough, then the “Go Toward Doorway” 

action takes the higher weight. This is executed by applying the following weighted 

summation function: 

𝑎𝑠 = 𝑤 ∗ 𝑎𝑜 + (1 −𝑤) ∗ 𝑎𝑔 

Layer 3 and 4: Achievement and Protective Tasks 

For an end-to-end system, modules in these two layers are designed using the 

pre-defined functions from the Naoqi API, see the Appendix. The achievement task is to 

end the navigation process via following a voice command made by a companion using 

Nao’s speaker. The “Command Detection” perception module can be designed by 

detecting one of the five room classes from room classification component as presented 

in Chapter 3. By comparing the command and the information in the knowledge system, 

the “Sitting Down” action module will be run as an indication of completing the navigation 

process. Similarly, the protective task is important to keep the robot protected from 

falling if the battery is out of charge. The battery level is checked all the time during the 

process of navigation. If the level is low, e.g. less than 20%, then the system applies the 

“Charging” action module. As this function is not mainly a part of navigation in this 

project, so we keep this module simple by applying a request function that the robot asks 

to be charged.  
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6.3.2. Knowledge-Based System 

The behavior-based approach for the navigation system was inspired by the 

concept of behaviorism, which speculates that behaviors are triggered by the 

environment. In contrast, having mental representations that play a causal role in 

behaviors was the assumption stated by cognitive psychology [226]. Accordingly, we 

modify the subsumption-based system by integrating a knowledge-based system that is 

a crucial part in the learning phase. We adopt the topological-based mapping approach 

for achieving the knowledge part of the system. Topological map [241] is a graphical 

representation of the environment that consists of nodes and edges. Nodes represent 

different places while edges are the connection between relative positions of these 

places. 

Room Localization & Doorway Detection Modules: (CNN-Based Models) 

The knowledge-based system aims to create a Directional Semantic Topological 

Map via designing a module called “Topo-Room”, which will be explained below. 

Therefore, the system has to begin with “Room Localization” and “Doorway Detection” 

perception modules that successfully designed and tested using CNN model as 

explained in detail in Chapter 3 & Chapter 4, and Chapter 5, respectively. “Room 

Localization” provides the semantic feature, whereas “Doorway Detection” provides the 

directional feature to the topological map. 

Doorway Passing Module: (Canny Edge Detection & Hough Transform) 

When the robot identifies the room’s type and detects the doorway, then there is 

no need to keep applying them again while the robot wanders in the same room. Thus, 

this is the key role of integrating a knowledge system with the behavior-based navigation 

system. When the robot moves to a new room, then it needs to capture a new image for 

adding new knowledge to the “Topo-Room”. Therefore, we design a “Passing Doorway” 

perception module based on the Canny edge detection [242] and the Hough transform 

[243], as an indicator that the robot left the current room and arrived at a new room. The 

key idea is to extract the two edges of the doorway from a 2D image towards the 

doorway. The distance in pixels between the two edges will be increased while the robot 

gets closer to the door. When the two edges are out of the robot’s view, then it is most 

likely that there are new edges will be detected with a smaller distance than the previous 
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one, as will be shown in section 6.4.1. Figure 6-8 shows the practical process of getting 

doorway edges. 

 

Figure 6-8: Doorway’s edges detection for “Passing Doorway” module. 

Topo-Room Module: (A Directional Semantic Topological Map) 

The “Topo-Room” module is a Directional Semantic Topological Map (DST-Map). 

It is semantic as each node associated with a specific class of room that is provided by 

“Room Localization” perception module. In addition, “Topo-Room” is directional because 

the relative position is based on the four directions {East, West, North, South} that can 

be extracted by “Doorway Detection” perception module and the predefined angles in 

the first layer (exploration task). The objective of this module is to build an abstract map 

for the house environment. The abstract map is a high-level representation that saves 

the connection between rooms. Thus, the created map is a collection of nodes that 

represent rooms, and these nodes are connected by edges that represent the direction 

towards the doorway. There are eight attributes associated with each node, as shown in 

Figure 6-9. They are as follow:  

 

Figure 6-9: Main attributes or information within each node in the TDS-Map. 
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• The first two attributes are the type with a predefined color and the size. They 

are extracted from the “Room Localization” module, in which the type is the 

prediction of the room class and the size is the prediction’s probability. 

• The node’s position, i.e. the third attribute, is assigned based on one of the 

four directions (𝑒𝑎𝑠𝑡: 0°, 𝑤𝑒𝑠𝑡: 180°, 𝑛𝑜𝑟𝑡ℎ: 90°, 𝑠𝑜𝑢𝑡ℎ:−90°) as the key is to 

find the relation direction between nodes. Thus, we assume that all nodes’ 

positions depend on the position of the first node. In other word, we assume 

that the first node for the first classified room is positioned in the (0,0) of the 

map, and the direction of its doorway is always in the 𝑒𝑎𝑠𝑡: 0°. Then, the 

position of the next room depends on the position of the previous room and 

the global direction of the doorway by applying these two equations: 

𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒𝑥 = 𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑥 + cos(𝑝𝑟𝑒𝑑𝑜𝑜𝑟𝑎𝑛𝑔𝑙𝑒) 

𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒𝑦 = 𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑦 + sin(𝑝𝑟𝑒𝑑𝑜𝑜𝑟𝑎𝑛𝑔𝑙𝑒) 

• Each node is associated with a saved scene image as the fourth attribute for 

future needs, such as appearance association or matching. 

• The other attributes are related to the doorway within the room, which are 

extracted from “Door Detection” perception module. Doorway status gives 

information about doorway detection as positive or negative. If it is positive, 

then the image will be saved as the sixth attribute, i.e. doorway image. The 

seventh attribute is for depth status that give information about the execution 

of “Doorway Direction”. If the module is executed by calculating the depth and 

direction toward the doorway, then its status is positive. Finally, the attribute of 

passing doorway status gives positive or negative information based on the 

“Passing Doorway” module, while it saves the distance between the two edges 

every time that is needed. If its status is positive, then the process of gaining 

new information and creating a new node will start again.  

The important attribute related to the edges is a bidirectional angle from the four 

directions between two classified rooms. The flowchart in Figure 6-10 shows the map 

building process of the “Topo-Room” module within the knowledge-based system. The 

expected DST-Map is an abstract map that contains nodes of rooms with their positions 
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in the map space, and the edges between nodes that show the angular relation between 

two relative nodes, as shown in the illustrated example of Figure 6-11. 

 

Figure 6-10: Flowchart of creating and updating the Directional Semantic 
Topological Map (DST-Map). 

 

Figure 6-11: An illustration of the expected DTS-Map (right) for a simple layout 
(left). 
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6.3.3. Implementation Setup 

All modules were programmed by python language using a Laptop with a 64-bit 

Linux operating system with 8GB RAM. It has a Graphic Process Unit of Quadro K620M 

with 2GB total memory. As the system was implemented on a small memory size of 

GPU, all modules were executed in a sequential manner. Therefore, Figure 6-12 shows 

the pseudocode of implementing all modules together within the system. 

Pseudocode 

 

Figure 6-12: Pseudocode of implementing the overall system sequentially. 
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6.4. Experiments and Results 

We have created an apartment model* with Nao humanoid robot using Webots 

simulator [14] for executing all virtual-time experiments, see Figure 6-13. 

 

Figure 6-13: An apartment virtual model with Nao robot using the Webots 
simulator. 

6.4.1. Evaluation of Individual Modules 

The previous chapters presented the individual evaluation and successful results 

of the “Room Localization” and “Doorway Detection” within the knowledge system, and 

the “Direction Detection” within the layer of the purposive task. The evaluation of the 

other important modules is shown in this section. 

Evaluating RL system for obstacle avoidance module 

All experiments have been executed within the virtual environment with a 

learning rate 𝛼 = 0.2, and a discount factor 𝛾 = 0.8. In order to ensure having a good 

learning process, an 𝜖-greedy added to the RL process thus the robot will not be stuck in 

certain areas, and it can face all states situation as well as learn the best associated 

 

* The apartment model can be found in the official webpage of Webots in this link: 
https://www.cyberbotics.com/doc/guide/samples-environments#complete_apartment-wbt  

https://www.cyberbotics.com/doc/guide/samples-environments#complete_apartment-wbt
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behavior. We suggest a gradual ascent 𝜖-greedy for every 10-time steps. Every step is 

considered as an action that is taken by the robot during the process. A gradual ascent 

𝜖-greedy combines the exploring and exploiting movements in every episode. So, we 

started with 60% of 𝜖-greedy in the first 10-time steps in which the robot starts with 

exploring movements in the first 4 steps. Then, the 𝜖-greedy is increased to 70% in 

which the robot explores in the first 3 steps of the second 10-time steps. Therefore, the 

robot increases the exploiting movement and decreases the exploring movement every 

10-time steps until reaching 50-time steps when the robot moves with fully exploiting 

based on what have been learned during the RL process. Since the objective of this 

experiment is that the robot keeps avoiding obstacles as long as it can, then time of 

wandering is the key factor of evaluating the performance of this experiment. Each 

episode is ended either when the time of wandering is reached 500 seconds or when 

Nao falls down. The process of RL is terminated when Nao is able to wander without 

falling for three consecutive episodes. Thus, Nao is able to move about 1500 seconds, 

i.e. over 25 minutes.  

Figure 6-14 shows the RL results by presenting the wandering time and learning 

improvement of Q-values in every episode for both Q-learning, Figure 6-14 (a), and 

SARSA, Figure 6-14 (b), methods with gradual 𝜖-greedy. Nao was able to wander 

around the living room for three consecutive episodes without colliding obstacles after 14 

episodes using Q-learning method as shown in Figure 6-14 (a.1), while it learned much 

faster using SARSA method as shown in Figure 6-14 (b.1). Furthermore, the 

improvements of the best Q-value for each state in the RL system shows that SARSA 

model was more stable than the Q-learning model as shown in Figure 6-14 (a.2 and 

b.2). Therefore, the trained model of SARSA was adopted for the overall system’s 

evaluation. 
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a.1) Wandering time in all episodes. 

 

a.2) Best Q-values improvement 

(a) Q-learning with 60% gradual 𝜖-greedy 
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b.1) Wandering time in all episodes. 

 

b.2) Best Q-values improvement 

(b) SARSA with 60% gradual 𝜖-greedy 

Figure 6-14: RL training results for both methods: a) Q-learning and b) SARSA. 
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Evaluating doorway edges for “Passing Doorway” module 

This module was tested with a simple real-time experiment with Nao robot to 

evaluate the concept of passing the doorway based on detecting edges. Figure 6-15 

shows a sequence of images while Nao moves toward the doorway in the AISL lab at 

SFU. As we can see that the distance between the two detected edges of the doorway is 

increasing when the robot gets closer to the door, see Figure 6-15 (a)-(c). Whereas the 

distance becomes smaller when the robot passed the doorway as shown Figure 6-15 

(d). 

 
edge_dis = 162.5 

 

 
edge_dis = 227 

 

 
edge_dis = 347.5 

 

 
edge_dis = 114 

(a) directing 
towards doorway 

 
(b) Moving 

towards doorway 
 

(c) Getting closer 
to the doorway 

 
(d) Passing 
the doorway 

Figure 6-15: Doorway edges detection for "Passing Doorway" module. 

6.4.2. Evaluation of the Overall System 

Several experiments with different scenarios are presented below for a virtual 

evaluation of the overall system using a Webots model [14]. The objective of these 

scenarios is to show that the robot is able to move between two different rooms, 

specifically the kitchen and the living room, safely. Thus, it maintains information of two 

connected rooms within the knowledge system, i.e. two connected nodes with an edge. 

This can be extended for exploring other rooms. Therefore, the results will not show the 

mapping part. All results for all scenarios are presented in two parts: a) The actions’ 

decision making based on the behavior and knowledge systems in every step, and b) 

the doorway perception’s output for both depth and edge detecting during the 

exploration process. 

Scenario 1 – Moving between two rooms with no obstacles 

The demonstration of this scenario is to test the robot ability to move from the 

kitchen to the living room while no obstacles in the way. We try to test the robot ability to 
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recognize the current room and find the right direction of the doorway to connect the two 

subsequent rooms within the map. Also, the robot is tested to decide when it passed the 

room to start a new room recognition and updated the map. The detailed perceptions 

and actions of the system for this scenario are shown in Figure 6-16. The robot started 

from a position close to the doorway, which is in the left side of robot, in the kitchen while 

there was know any other obstacles. The robot was able to predict the kitchen with a 

highest probability of 79.4% compared to other classes, while the status of doorway 

detection was “no-door”. Therefore, the first layer (exploration) was activated, and the 

robot turned by 90˚ to the left. Now, the robot was able to detect the doorway and 

change its status in the DST-Map, thus the “Direction Detection” was activated and 

calculated a small angle between the robot and the doorway. During the experiments, 

we considered any calculated angles from depth information within the range of [-

10˚,10˚] as small values, so the robot did not need to turn that small values. Hence, the 

robot almost directed to the doorway, the “Passing-Doorway” module detected the 

doorway edges and calculated the distance. After that, the second layer (purposive) was 

activated, in which the “Go Toward Doorway” took the all weight of the smooth 

movement. Then, the system compared the new edge distance, which was zero as only 

one edge was detected, with the previous saved distance in the knowledge system. 

Since it was smaller, the status of the “Passing Doorway” attribute within the DST-Map 

was changed, and the “Move Straight” action in the first layer (exploration) was activated 

to make sure a full pass to the new room. Subsequently, gaining new knowledge started 

again by classifying the new room as a living room with 93.7%. 
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Steps 1 2 3 4 

Webots 
screenshots 

    

Zoom in to 
Nao robot 

    

Scenes from 
top camera 

    

Description 

a.1) The start position 
within kitchen. 

a.2) Activating the 
“Turn” action from 
exploration task. 

a.3) Activating the “Go 
Toward Doorway” 
action from the 
purposive task with a 
full weight. 

a.4) Activation of “Move 
Straight” action from 
exploration task after 
passing the doorway. 

(a) Subsumption decision making based on local data and maintained knowledge. 
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Depth evaluation Edges’ evaluation 

   

   

b.1) Output of “Direction Detection” 
in purposive task with angle output = 
-4.1˚ 

b.2) Edges within ROI & the scene 
with two end-edges before passing 
the doorway. 
edge_dis = 468. 

b.3) Passing detection since only 
one line was detected. 

(b) Some Perception results within exploration process. 

Figure 6-16: Evaluating the overall system in scenario 1. 

Scenario 2 – Moving between two rooms with a different direction 

The difference in this scenario is that the direction of the doorway is in the right 

side of the robot. The advantage of angle directions order in the exploration task can be 

showed in this scenario. Similar to the first scenario, the robot is tested to recognize 

current room and find the right direction of the doorway as well as it is tested to pass the 

room and start a new room recognition with updating the map information. We tried in 

this scenario to start the experiment from the opposite room, i.e. living room, as shown in 

the detailed results of Figure 6-17. The first obtained information by the knowledge 

system was classifying the room correctly with a 96.4% prediction’s probability. The 

exploration task was activated twice with turning the robot by 90˚ and 180˚ consecutively 

until detecting the doorway. Once the doorway was detected and its corresponding 

attribute was updated in the knowledge system, the depth information was calculated 

with a small value. Consequently, the doorway edges were found with a large distance 

between edges, which it indicates that the robot is very close to the door and ready to 

pass it. As there were no obstacles, the “Go Toward Doorway” action in the purposive 
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task was activated and took the all weight of “Smooth Move”. Once the “Passing 

Doorway” status updated in the knowledge system, the robot started gaining a new 

knowledge and building a new node of kitchen room with 83.3% prediction’s probability.  
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Steps 1 2 3 4 

Webots 
screenshots 

 

2.1

 

2.2

 

  

Zoom in to 
Nao robot 

 

2.1 

 

2.2 

 

  

Scenes from 
top camera 

 

2.1

 

2.2

 

  

Description a.1) The start position 
within Living room. 

a.2) Sequence of 
activating the “Turn” 
action from exploration 
task. 

a.3) Activating the “Go 
Toward Doorway” 
action from the 
purposive task with a 
full weight. 

a.4) Activating the 
“Move Straight” action 
from exploration task 
for full passing. 

(a) Subsumption decision making based on local data and maintained knowledge. 
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Depth evaluation Edges’ evaluation 

   

   

b.1) Output of “Direction Detection” 
in purposive task with angle output = 
-9.135˚ 

b.2) Edges within ROI & the scene 
with two end-edges before passing 
the doorway.  
edge_dis = 516. 

b.3) Passing detection since edges 
were not detected. 

(b) Some Perception results within exploration process. 

Figure 6-17: Evaluating the overall system in scenario 2. 

Scenario 3 – Moving between two rooms with obstacles and a final goal 

Including the objectives from last scenarios, the objective of this scenario is also 

to test obstacles avoidance and moving smoothly towards the doorway as shown in 

Figure 6-18 by adding extra objects around the starting position. Also, the final target is 

assigned from the beginning to test the performance of the achievement task. The robot 

started from the kitchen and its goal to go to the living room as a final targeted room. We 

designed the system to activate the weighted “Avoiding Obstacle” action if one of the 

sonars less than 1m within the “Move Smoothly” action, while a full weighted “Avoiding 

Obstacle” if one of the sonars is less than 0.4m. So, the robot started by gaining 

information about 96.3% prediction of the kitchen. Then, the exploration task was 

activated, and the robot turned by 90˚ to the left direction. Now, many perceptual 

modules were activated sequentially to acquire doorway-related information, i.e. 

doorway detection, doorway direction, and doorway edges as explained in the previous 
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scenarios. We noticed that during the robot’s actions from the purposive task, the sonar 

readings were not less than 1m. Therefore, the robot kept moving toward the doorway. 

The doorway edges were detected, and their distances were calculated three time 

consecutively. Once the edges’ distance became smaller than the previous save 

distance, the status of “Passing Doorway” was updated to positive. Now instead of 

activating “Move Straight” action form the exploration task for a full pass through the 

doorway, the system activated the “Avoid Obstacle” action within the purposive task via 

RL since the sonars values were (left=0.38m and right=2.5m). When the robot 

completely moved away from the obstacle, which was the door edges in this experiment, 

gaining a new information started by classifying the new room as a living room with 

97.3%. Since the classified room matched the target room, the “Sitting Down” action was 

activated as an indication of ending the process. 
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Steps 1 2 3 4 5 

Webots 
screenshots 

  

3.1 

 

3.2 

 

3.3 

 

4.1 

 

4.2 
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Steps 1 2 3 4 5 

Zoom in to 
Nao robot 

  

3.1 

 

3.2 

 

3.3 

 

4.1 

 

4.2 
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Steps 1 2 3 4 5 

Scenes from 
top camera 

  

3.1 

 

3.2 

 

3.3 

 

4.1 

 

4.2 

 

 

Description a.1) The start position within 
Kitchen with adding table’s 
obstacle. 

a.2) Activating the “Turn” 
action from exploration task. 

a.3) Sequence of activating 
the “Go Toward Doorway” 
action from the purposive task 
with a full weight. 

a.4) Activation of “Move 
Straight” action from 
exploration task after passing 
the doorway. Then a full 
weight of avoiding obstacles 
was activated before gaining 
new knowledge. 

a.5) Activation of the “Sitting 
Down” action as an end of the 
exploration process. 

(a) Subsumption decision making based on local data and maintained knowledge. 
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Depth evaluation Edges’ evaluation 

 

1 

 
2 

 

 

 

1 

 
2 

 

 

b.1) Output of “Direction Detection” 
in purposive task with angle output = 
-2.66˚ 

b.2) Sequence of Edges within ROI 
& the scene with two end-edges 
before passing the doorway. 
edge_dis = 164 & 305, respectively. 

b.3) Passing detection since 
edge_dis = 213 is smaller than 
previous value. 

(b) Some Perception results within exploration process. 

Figure 6-18: Evaluating the overall system in scenario 3. 

Discussion 

The proposed system is flexible as each module can be designed, tested and 

modified individually and within the overall system. The virtual experiment results are 

promising and demonstrate that the system can be adopted and modified for any social 
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robot with limited sensors for domestic applications. In this section, we discuss some of 

the limitation or areas for improving results. The RL for “Avoiding obstacle” worked very 

well during the training stage within the area of the living room. However, as this room 

was specious; in order to get a better validation, the RL could be applied and tested in a 

congested room to improve its Q-values. Also, the depth images with their calculated 

angles from scenario 1 & 2 were not the best expected angles to keep the robot’s 

direction exactly in the middle of the doorway. This might be due to the inaccuracies in 

simulator’s view as the result from the real-time experiments from the previous chapters 

were much better and accurate. Thus, we ignored the small values in the virtual 

experiments and let the robot moved straight towards the doorway. In addition, adding a 

class of corridors for the room classification project is important for future work in order 

to extend the exploration process between more rooms. Thus, building the topological 

map will be more meaningful. Finally, this system can be tested and modified in real-time 

experiments in several houses.  

Although extensive simulation runs with Webots were conducted; the real-time 

experiment with NAO could not be completed as this part of the project was completed 

in May 2020 when there was lockdown due to COVID-19 and access to the laboratory 

was not possible. Having said that, we suggest that the real-time experiments with NAO 

will produce similar results as Webots since this software uses the same NAOqi API as 

the actual NAO humanoid robot.   

Therefore, the proposed system is an alternative solution for addressing 

localization and mapping sequentially for indoor environment, specifically homes. We 

coined the term Sequential Localization and Mapping (SeqLAM), and provided a 

qualitative comparison to the widely popular probabilistic Simultaneous Localization and 

Mapping (SLAM) algorithm as shown in Table 6-1. 
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Table 6-1: Qualitative comparison between classic SLAM and SeqLAM. 

Features SLAM SeqLAM 

Philosophy Probabilistic Behavioristic 

A priori knowledge Assigning Landmarks Zone based (in homes) 

Update information 
Incremental robot’s pose and 

map 
Identifying zones, then 

generating a map sequentially 

Map Accurate Sketch / spatial relationship 

Pose Accurate Not applicable 

Dynamic settings Numerous challenges Moderate 

Computation load High Moderate 

Comparison to human reasoning Counter-intuitive Intuitive 

Generality Outdoor / Indoor Indoor 

Data Association Significant challenge 
Can be incorporated via image 

matching 

Human intervention 
Robot is mostly driven manually 

(except for autonomous 
exploration) 

Autonomous 

Application 
Universal (but needs to be tailor 

made) 

Only homes (can be tailor made 
for other indoor settings, e.g. 

hospitals) 

6.5. Conclusion 

This chapter presented an end-to-end navigation system for social robots with 

limited sensors designed exclusively for homes. The design combined a subsumption-

based system and knowledge-based system. The subsumption system consisted of a 

collection of behaviors arranged in layers, in which each layer was responsible for a 

specific task and got activated based on the sensor data. Whereas, the knowledge 

system consisted of several visual-learning modules to gain information about the 

environment to build a high-level meaningful map as well as to access all layers in 

subsumption and trigger the appropriate action. Some modules were evaluated 

individually in virtual or real-time implementation with the Nao robot. For example, an RL 

model was designed properly with two different approaches, Q-learning and SARSA, for 

obstacle avoidance as an adaptive behavior using only two sonars, and the model was 
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evaluated virtually by observing the time of exploration and number of epochs. The 

model with the SARSA approach learned faster than the Q-learning. “Passing Doorway” 

was the other module that was evaluated individually in this chapter. It was tested in a 

simple real-time experiment to evaluate the concept and to be adopted with the overall 

system. On the other hand, the overall system was tested virtually using Webots 

simulator with different scenarios. Although there were some restrictions and 

assumptions, the performance of all scenarios is acceptable. 
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Chapter 7.  
 
Contributions and Future Work 

7.1.  Contributions 

The aim of this section is to capture the main findings and contributions reported 

in the previous chapters. We would like to modestly claim the following contributions: 

• Addressing the room classification problem for social robots is the first 

contribution. The CNN deep learning approach was adopted for this purpose 

because of its superiority in the areas of pattern recognition. Several CNN 

architectures were examined by fine-tuning them on five rooms classes of the 

Places dataset, in order to find out the best model for real-life experiments. It 

was found that VGG16 is the best model to be adopted, with 93.29% of 

validation accuracy after cleaning the dataset by excluding all mislabeled 

images. In addition, we proposed and examined a combination of CNN with 

ECOC, a multi-binary classifier approach, in order to address the error in 

practical prediction. The validation accuracy reached 98.5% in one of the 

binary classifiers and 95.37% in the average of all binary classifiers. The CNN 

model and the combination models of CNN and ECOC in both forms, i.e., 

CNN-ECOC and CNN-ECOC-REG, were evaluated practically on the Nao 

humanoid robot. The results show the superiority of the combination model 

over the regular CNN. 

• The second contribution is the proposal of a new Social Robot Indoor 

Navigation dataset called SRIN. It consists of 2D colored images for both 

rooms and doorways, i.e. SRIN-Rooms & SRIN-Doorways, respectively. SRIN 

is a useful dataset for medium-sized social robots in indoor environments, 

specifically houses. SRIN has been validated through training a CNN-based 

model using SRIN-Rooms dataset, and then tested on Nao’s images for real-

time experiments validation. The novelty of this work was illustrated when the 

validation accuracy of CNN-SRIN for room classification reached to 97.3% in a 

relatively short time. This was a huge improvement compared to training the 

same architecture with the Places dataset that reached 93.29% of validation 
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accuracy after a long time. In addition, the significance of this work was also 

shown through the comparison of the performance of two models on real-time 

experiments for Nao. It shows a big improvement in predicting bedrooms and 

slightly different performance of other classes in Top1. However, it reached 

100% in the Top2 of the correct predictions for four classes out of five. We 

believe that with increasing the SRIN dataset in the future, the prediction of 

top-1 for real-time experiments on Nao shall be improved as well. 

• Addressing doorway detection is the third contribution as an important feature 

for any indoor navigation system. We proposed a robotic system called the 

3Ds-system, which stands for Doorway Detection and Direction system that 

was applied and tested on a Nao humanoid robot. The goal of the proposed 

system was to control the Nao direction towards the doorway based on a 2D 

image from a monocular camera. The system takes a 2D colored image and 

provides an angular value in degrees via a combination of several modules. 

CNN-SRIN doorway module for detecting a doorway was applied on Nao 

images after getting a validating accuracy of 97.96%. Then, the Depth module, 

Pixel-Selection module and Pixel2Angle module were applied on the input of 

2D images for directing Nao towards the doorway. The practical results are 

promising and demonstrate the success of the proposed system for Nao. The 

proposed system can be applied to any other similar social robot, by acquiring 

the proper angle direction toward the door. The overall system has been 

validated by implementing the 3Ds-system on Nao within a new environment, 

specifically in AISL at SFU Canada. We suggest that the proposed system is 

very useful in robotic navigation applications for medium-sized robots with 

limited sensors, such as a monocular camera, in structured indoor 

environments. 

• The last contribution is the design of an end-to-end navigation system for 

social robots with limited sensors within apartments’ environments. The design 

combined a subsumption-based system and knowledge-based system. The 

subsumption system consisted of a collection of behaviors arranged in layers, 

in which each layer was responsible for a specific task and got activated 

based on the sensor data. Whereas, the knowledge system consisted of 

several visual-learning modules to gain information about the environment to 
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build a high-level meaningful map as well as to access all layers in 

subsumption and trigger the appropriate action. Some modules were 

evaluated individually in virtual or real-time implementation with the Nao robot. 

For example, an RL model was designed properly with two different 

approaches, Q-learning and SARSA, for obstacle avoidance as an adaptive 

behavior using only two sonars, and the model was evaluated virtually by 

observing the time of exploration and number of epochs. The model with the 

SARSA approach learned faster than the Q-learning. “Passing Doorway” was 

the other module that was evaluated individually. It was tested in a simple 

real-time experiment to evaluate the concept and to be adopted with the 

overall system. On the other hand, the overall system was tested virtually 

using Webots simulator with different scenarios. Although there were some 

restrictions and assumptions, the performance of all scenarios demonstrated 

promising practical results. Like any other research, the next chapter for me is 

to continue research in this fascinating area.  

7.2. Future Work 

Our main objective in this research program was to study a behavior-based 

navigation system for social robots with limited sensors at homes. Tackling the 

navigation problem is considered a crucial task for social robotics and other autonomous 

robotics applications. The following discussion presents some thoughts and 

recommendations for future research in this area: 

• Although CNN-like models show promising results for classification and 

detection applications, they still require a huge dataset. However, there are 

many robotic applications with a small dataset. In this work, for example, we 

had to increase the SRIN dataset samples by applying image augmentation to 

train the model and avoiding the overfitting issue. We think that it is useful for 

future work to design a better algorithm that learns from a small dataset. This 

will be practical to train the model online using the robot’s processors with a 

low computational cost. Studying this problem will create intuitive and general 

intelligence as people who do not need a huge data for classification or 

detection tasks, e.g. room classification. 
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• We did not include corridors that link different rooms. It is important to add 

corridor as a specific class to be learned. 

• We focused on social robots with limited sensors, e.g. a monocular camera. 

However, the progress in the field of visual sensors improves rapidly while 

drastically reducing the cost. Thus, it is recommended for future work to 

employ visual depth sensors within the proposed system for a more robust 

navigation process including incorporating object detection (relevant to each 

room). 

• As a social robot at home could serve as a companion to humans, it is 

important to address the task planning issue. It deals with the reasoning 

actions to reach a goal, in which it is opposed to the motion planning that 

depends on the configuration space [244]. The task planning can be designed 

and integrated to our proposed system, in which it takes the advantage of the 

saved information in the directional semantic topological map (DST-Map) as 

well as the collection of behaviors in the subsumption layers. 

• In the age of the Internet of Things (IoT), merging IoT with robotic 

technologies will be an interesting area for research. This is known as the 

Internet of Robotic Things (IoRT) [245]. Accordingly, the navigation process 

can be studied by designing a robotic system that communicates and 

transmits data with other machines in the environment, i.e. machine to 

machine (M2M) communication, for more robust performance. 

2020 will be registered in history as the year that the social and economic 

systems received a huge shock due to Coronavirus Pandemic (COVID-19). At the time 

of writing this chapter, like millions of people around the world, I have been working from 

home due to menace caused by this naked-eye invisible beast. As of today, the number 

of fatalities is 343,097 and over 5,383,900 people around the world are infected. only 

within almost four months* [246]. Governments, around the world, have activated an 

extraordinary set of measures including travel restriction and strict quarantine directives 

for weeks that might be extended for months. Although outside the scope of this thesis, 

 

* These numbers of cases were taken on May 23, 2020. However, the number has been increasing 
unexpectedly. 
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we suggest that specially designed social robots will contribute as robotics nurses and 

physicians at homes and at hospitals. I am keen to continue my research in the health 

sector at the next stage of my career.   
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Appendix.   
 
Platform & Simulator 

Nao is a humanoid robot that was designed by a French robotic company called 

Aldebaran in 2005 [247]. It is a human-like, a medium-sized and a fully programmable 

bipedal robot that attracted the robotics community for education and research. In 2006, 

Nao had been selected for the Robocup competition replacing AIBO robot, the dog-

shape. In 2008, Robocup received 80 Nao platforms for the competition. Nao has spread 

rapidly. For instance, it is used as a research platform in more than 450 universities. In 

addition, over 200 secondary schools worldwide were equipped with Nao robots in 2012 

[248]. In 2015, the Aldebaran company was owned by Softbank and renamed as 

Softbank Robotics. There are many versions that have been improved through the years 

until launching the 6th Version in 2018 [17]. In this chapter, a brief overview of Nao will 

be introduced by focusing on the hardware, software, adopted simulator and Nao 

research area. 

Nao Humanoid Robot – Hardware  

Nao is a human-like, a medium-sized with a height of 58 cm, and a fully 

programmable to perform many tasks autonomously. The adopted version for validating 

this work is Nao V4 (H25), i.e. twenty-five degrees of freedom (D.O.F). Twenty-five 

D.O.F means that the robot consists of 25 different motors for controlling different 

actuators. They are distributed into two legs, two hands with arms, pelvis and head as 

shown in Figure 1. 
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Figure 1: Nao's 25 actuators [247]. 

 It is equipped with many proprioceptive and exteroceptive sensors. 

Proprioceptive sensors acquire internal information of the robot, while exteroceptive 

sensors acquire external information of the environment. Figure 2 shows different types 

of sensors in the standard version of Nao. The detailed specification of two sonar and 

2D cameras will be explained since these are the employed sensors in our projects. 

 

Figure 2: Nao main sensors. 
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Sonar: 

Sonar or ultrasonic sensor is one of the most common sensors in robotics. It 

operates by emitting a cone of ultrasound to an obstacle and receiving a reflected echo 

signal from that obstacle in order to measure the distance to it. This distance is 

computed by using time-of-flight (TOF) of the sound signal and the known speed of 

sound, therefore sonars are regarded as a time-of-flight ranging sensor. Ultrasonic 

sensors are employed in robotics for three different objectives: obstacle avoidance, 

sonar mapping and object recognition based on a sequence of echoes [249]. Even 

though sonars are regarded as a popular sensor in robotic due to its low cost, low power 

consumption, low computational effort and its light-weight, it still has many limitations 

and disadvantages [249]. One of these limitations is that sonars sometimes do not 

receive a reflected sound from an uneven surface, which causes a deflection of the 

signal. Another limitation is the multiple reflections, which means that the reflected echo 

hits another obstacle and then is received late by sonars to measure longer and 

incorrect distances. In addition, objects with soft material, e.g. pillows, absorb the signal 

from sonars; thus, sonars are not able to detect them [249]. 

Nao robot consists of two sonars, in which each has an emitter and receiver that 

are located in the chest of Nao. They are able to detect and measure the distance to 

obstacles in meters within the ultrasound range, which is the range of 0.25 m to 2.55 m 

and an effective cone 60°. The existence of two sonars gives a capability for Nao robot 

to detect obstacles in a wider range instead of using one sonar with the same range of 

the two sonars that may lead to poor information. 

Camera: 

The vision system in robotics is the most powerful sense, as it has been 

developed to mimic human eyes in many robotic applications. It gives users a sufficient 

amount of data about the environment and allows an intelligent interaction in a dynamic 

environment. The vision system in robotics can be classified into stereo-based and 

monocular-based techniques. Stereo-based techniques acquire a clear computation of 

depth of objects in a 3D environment by overlapping images from two cameras, but they 

require a high cost at runtime. Monocular-based techniques, in contrast, use only one 

camera to deal with 2D images, which means it cannot provide immediate information of 
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depth. Nonetheless, Monocular-based techniques have advantages of low cost at 

runtime [250]. 

The vision system of the Nao humanoid robot consists of two identical cameras. 

The first one is mounted on Nao’s forehead in order to scan the horizon, while the 

second one is mounted on the Nao’s mouth in order to scan close entities on the floor, 

see Figure 5-3 in Chapter 5. Therefore, the vision system on Nao is considered a 

monocular-based system although it has two cameras since there is no data that can 

overlap between them. The two cameras give a 640x480 resolution at 30 frames per 

second (fps). 

Nao Humanoid Robot – Software  

Nao is a fully programmable humanoid robot. It is designed to be accessible 

when used by programmers at various levels from unskilled to experts, and to be stress- 

free for learning the robotics fundamentals by students at different levels both at schools 

and universities. To develop functions that control the robot properly, the user needs to 

know and understand all compatible software with the Nao humanoid robot, and how 

they are correlated to each other. Nao consists of three related software: in-robot 

software, out-robot software and programming tools. In-robot software refers to software 

that runs in the robot’s motherboard to accomplish autonomous behaviors. The main 

software that stores all modules is called Naoqi, which runs under the robot operating 

system called OpenNao. On the other hand, out-robot software means that all well-

matched software with Nao installed in computers, such as Aldebaran’s software 

(Choregraphe & Monitor) or third-party software (e.g. Webots). Finally, programming 

tools point to the ability of users to create their own code, which is achievable by coding 

in Choregraphe and/or using available SDKs (Software Development Kits) in at least 8 

languages with the identical API’s modules. See Figure 3. 
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Figure 3: Software interaction within Nao robot [251]. 

There are many preprogrammed modules with their functions within Naoqi API 

that were useful for the practical experiments in our project. Table 1 shows the 

predefined functions used within the python programs of our work. 

Table 1: Useful predefined functions from the Naoqi API for our project. 

Objectives Modules Functions Descriptions 

Motion 
ALMotion 

wakeup() 
Nao wakes up and its 
motors set on. 

setStiffnesses() 
Sets the stiffness of 
Nao’s joints. 

moveTo() 
Nao moves to the given 
translation and 
direction.  

ALRobotPosture goToPosture() 
Nao goes to the 
predefined posture. 

Audio ALTextToSpeech say() 
Nao says the specified 
string. 

Vision and Sensor 

ALVideoDevice getImagesRemote() 
Retrieves the latest 
images from the video 
source. 

ALPhotoCapture takePicture() 
Take one picture with a 
given resolution. 

ALVideoDevice  & 
ALSonar 

subscribe() 
Launching sensors in a 
hardware level. 

Core ALMemory getData()  Retrieving data. 
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Figure 3-7. NAO's software's interaction. 

In the next subsections, I mainly present these key features of NAO’s software in 

some of details based on [63] . 

3.3.1. NAOqi framework 

NAOqi is considered as a brain of NAO humanoid robots. It is the core 

embedded software in NAO that is used to control NAO and develop its functions. The 

most important feature of NAOqi is the possibility of developing NAO’s functions under 

different operating systems, i.e. Windows, Linux or Mac, and with coding in different 

programming languages. Thus, it is very flexible to be employed by various users.  

NAOqi is the warehouse of all modules APIs. It comes with many preprogramed 

modules for various functions, e.g. motion, audio, vision, etc., and each module contains 

a list of methods and/or events. For instance, NAOqi has a module named 

ALTextToSpeech, which belongs to the audio functions of the robot. This module has a 

 

NAOqi 

Coregraphe 

NAOqi 

New Modules New Codes 

Python SDK C++ SDK Python SDK Other languages 

SDK 
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Webots Simulator 

Since using simulators in robotics is very important for developers to test their 

work safely before any real-time experiments, we adopted Webots for testing our work. 

Webots is a development environment for robotics that is led by Cyberbotics company 

and became an open-source simulator in 2018 [14]. Several types of robotic platforms 

and sensors can be simulated in Webots. The main reason for adopting Webots over 

other robotics simulators is that during the time we have started our work with Nao, i.e. 

when it was owned by Aldebaran, the two companies cooperated to release a special 

light version of Webots called “Webots for Nao”. This version supported the Naoqi 

simulator, in which the user using Naoqi API instead of Webots APIs while testing the 

program within Webots virtual environments. Unfortunately, this cooperation was over in 

the last few years. In order to avoid the big changes in our codes, we addressed this 

problem by interfacing Webots with the Naoqi simulator within Linux operating system 

adopting the work in [252]. There is another reason for sticking with Webots is that we 

created a new virtual environment model for Nao within an apartment as shown in Figure 

6-13 in Chapter 6. This model was launched for the public in Webots version R2019 b.  

Nao’s Research Areas 

The Nao robot is one of the humanoid robots in the market that has sufficient 

sensors and actuators with a relatively low-cost. For that reason, it has been spread out 

in the world, in which there are nearly 13,000 robots since 2006 have been used in 

different sectors, especially in research and education [140]. There are several research 

areas that adopted a Nao robot for virtual and real experiments. Mobile robot navigation 

is one of the central problems in robotics research, in which Nao has been employed for 

addressing different subproblems of navigation. The odometry and single-camera of Nao 

have been used to address the localization problem of navigation [253], [254], whereas 

the same problem has been solved by detecting a 2D bar code [255]. Mapping is 

another problem of robotic navigation that addressed by Nao through the nearest 

neighbour algorithm [256], cognitive model [257] and image processing for extracting 

and distinguishing between walls and floors [258]. Furthermore, localization and 

mapping have been addressed simultaneously, i.e. it is called SLAM, and applied on 

Nao by adopting a probabilistic approach [251], [259], or a bio-inspired approach [260]. 
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Another basic navigation task is an obstacle avoidance that considered for Nao by 

designing a fuzzy logic controller [261], [262]. Integrating Nao with other platforms or 

devices and fuse their sensors is another approach of addressing the navigation 

problem, such as integrating Google-Glass [263], a car-like platform [264], or an external 

laser scanner [265]. The other crucial research area is object recognition using Nao’s 

camera. Recognizing a QR code or Nao Mark is an example of this research area that 

can be used for specific task detection such as open-door detection [266]. The other 

example is the face recognition as shown in [267] that applied simultaneous recurrent 

network for Nao. Object detection and localization have been addressed on Nao in [268] 

through an image processing method and a monocular vision ranging method. Whereas 

the spectrum segmentation algorithm was applied for object detection based on color in 

[269]. Studying Nao kinematics is an important research area especially for object 

grasping [270]–[272]. Many researchers have been focusing on adopting the 

beforementioned approaches specifically for the robotic soccer competition in the 

RoboCup [80], such as [273], [274]. 

Interestingly, education is the largest market for Nao as it is a really good 

platform that attracts students in order to teach robotics or other science areas. 

Therefore, the area of Human-Robotic Interaction HRI is one of the important fields for 

Nao applications, thanks to the look of Nao. One of the common applications is the 

interaction with children having a disease such as diabetes [275] or autism [276]. 

Another application of interaction is that Nao assists and accompanies elder people. 

[277] suggested an architecture that integrates Nao with other health sensors that 

measure needed body parameters. There are also different forms of interaction with a 

human, such as a non-verbal communication [278], recognizing emotions while 

interacting [279], spoken interaction [280] or tactile communication for emotion 

recognition [281]. Since Nao might be the first robot to enter into our houses [247], our 

project focused on implementing the proposed behavioristic system for navigation on the 

Nao robot. 

 


	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1.   Introduction
	1.1. Background and Motivation
	1.2. Research Outline
	1.3. Organization of The Thesis
	1.4. Publications

	Chapter 2.   Literature Review
	2.1. Behavioristic Approach
	2.1.1. From Biological to Robotic Behaviors
	2.1.2. Subsumption: An Architecture of Behavioristic Robotics System

	2.2. Deep Learning
	2.2.1. CNN for Robotics Applications

	2.3. Reinforcement Learning
	2.3.1. RL for Robotic Navigation Applications

	2.4. Conclusion

	Chapter 3.   An Indoor Room Classification System for Social Robots via Integration of CNN and ECOC
	3.1. Introduction
	3.2. Related Work
	3.3. Methodology
	3.3.1. Phase 1: Training and Validation
	Adopted Scene dataset
	Cleaning dataset

	CNN architectures

	3.3.2. Phase 2: Models Integration
	ECOC Technique

	3.3.3. Phase 3: Real-Time Implementation

	3.4. Experiments and Results
	3.4.1. Phase1: Validating Room Classification within CNN Models Using Places
	3.4.2. Phase 2: Validating Room Classification within the integration of CNN and ECOC
	Discussion

	3.4.3. Phase 3: Validating Room Classification on Real-Time Implementation Using Nao robot
	Discussion


	3.5. Conclusion

	Chapter 4.   SRIN: A New Dataset for Social Robot Indoor Navigation
	4.1. Introduction
	4.2. Related work
	4.3. Collecting Dataset and Methodology
	4.4. Experiments & Results
	Discussion

	4.5. Conclusion

	Chapter 5.   Doorway Detection and Direction (3Ds) System for Social Robots via a Monocular Camera
	5.1. Introduction
	5.2. Related Research
	5.3. Proposed System and Methodology
	5.3.1. 2D image from Nao monocular camera
	5.3.2. CNN-SRIN Doorway Module
	5.3.3. Depth Module
	5.3.4. Pixel-Selection Module
	5.3.5. Pixel2Angle Module

	5.4. Experiments and Results
	5.4.1. Stage 1: CNN-SRIN for Doorway Detection
	5.4.2. Stage 2: Angle Extraction from 2D Images Based on Depth Map and Pixel Selection
	5.4.3. Validating the Overall performance of 3Ds-System in Real-Time Experiments with Nao humanoid robot
	Discussion


	5.5. Conclusion

	Chapter 6.   Sequential Localizing and Mapping: A navigation strategy via Enhanced Subsumption Architecture
	6.1. Introduction
	6.2. Related Research
	6.3. Methodology and Proposed System
	6.3.1. Subsumption-Based System
	Layer 1 - Exploration Task
	Turn Module:
	Move-Straight Module:

	Layer 2 - Purposive Task
	Obstacle Detection & Avoid Obstacles Modules: (RL System Based on Sonars and Cautious Actions)

	Direction Detection & Go Towards Doorway Modules:
	Move Smoothly Module:

	Layer 3 and 4: Achievement and Protective Tasks

	6.3.2. Knowledge-Based System
	Room Localization & Doorway Detection Modules: (CNN-Based Models)
	Doorway Passing Module: (Canny Edge Detection & Hough Transform)
	Topo-Room Module: (A Directional Semantic Topological Map)

	6.3.3. Implementation Setup

	6.4. Experiments and Results
	6.4.1. Evaluation of Individual Modules
	Evaluating RL system for obstacle avoidance module
	Evaluating doorway edges for “Passing Doorway” module

	6.4.2. Evaluation of the Overall System
	Scenario 1 – Moving between two rooms with no obstacles
	Scenario 2 – Moving between two rooms with a different direction
	Scenario 3 – Moving between two rooms with obstacles and a final goal
	Discussion


	6.5. Conclusion

	Chapter 7.   Contributions and Future Work
	7.1.  Contributions
	7.2. Future Work

	References
	Appendix.    Platform & Simulator
	Nao Humanoid Robot – Hardware
	Sonar:
	Camera:

	Nao Humanoid Robot – Software
	Webots Simulator
	Nao’s Research Areas


