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Abstract 

Robust quantitative tools require large data sets for testing efficacy and accuracy, 

which is especially true when using machine learning and neural networks. However, 

large datasets with corresponding manual annotations are uncommon with state-of-the-

art imaging systems, particularly in the medical field. Ophthalmology is one such field, for 

which recent imaging advances allow clinicians to use multiple imaging modalities to 

diagnose and monitor patients. Optical coherence tomography (OCT) has become an 

integral imaging modality in ophthalmic clinics due to its non-invasive nature and ability 

to acquire micrometer scale sub-surface images of ophthalmic tissue. In this thesis, 

several different techniques to mitigate the need for large annotated datasets when 

translating machine learning tools to an ophthalmic clinic are evaluated. First, the 

concept of transfer learning is assessed through fine-tuning networks trained on a 

different domain (adaptive optics scanning laser ophthalmoscopy) to the domain of 

interest (adaptive optics OCT) to detect cone photoreceptors. Second, both adversarial 

and semi-supervised learning are investigated which allow for unlabelled data to be used 

in the training process. Finally, the more challenging task of diagnostics with limited data 

was investigated using diabetic retinopathy OCT Angiography data and an ensemble of 

networks. Through these investigations, the utility of transfer learning, adversarial and 

semi-supervised learning, and ensembling is shown for small ophthalmic datasets.  

Keywords:  optical coherence tomography; ophthalmology; image processing; 

angiography; machine learning; deep neural networks 
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Chapter 1.  
 
Introduction 

1.1. Overview 

The current renaissance of artificial intelligence, and in particular machine 

learning, is driving great progress and innovation across many fields. We now live in an 

age where computer memory is inexpensive and computer processing speeds are 

continually progressing. Combined with new algorithms and easier access to vast 

amounts of digitized data, these factors have allowed machine learning to be integrated 

into daily life – from finding the best route home, to sorting pictures using facial 

recognition, and even song recommendations tailored to individual taste. Machine 

learning is even being applied to medical applications. 

Many areas within the healthcare industry are now of great interest to those 

researching the power of machine learning: from diagnosis and prognosis to drug 

development and epidemiology. There is significant interest in using this technology to 

reduce costs, improve screening in remote areas without medical specialists and answer 

questions to better understand diseases. With significant potential to transform the 

medical landscape, one area where machine learning is gaining particular traction is 

ophthalmology. 

Vision is one of the five senses, and is one that many people take for granted. 

Two of the most common eye diseases that cause blindness are diabetic retinopathy 

and glaucoma. Simulated examples of the impacts on vision from these diseases are 

shown in Figure 1.1. Diabetic Retinopathy (DR) causes a partial blurring or patchy loss 

of vision as shown in Figure 1.1B. Patients with glaucoma on the other hand, may 

experience loss of peripheral vision, called tunnel vision, as depicted in Figure 1.1C. As 

our population ages, the number of people affected by these diseases is expected to rise 

significantly. The National Eye Institute estimates that the number of people who will 

have DR will nearly double from 7.7 million to 14.6 million and the number of people with 

glaucoma will more than double from 2.7 million to 6.3 million from 2010 to 2050 in the 

United States [1]. This increases the need for better diagnostic tools in which to enable 
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ophthalmologists to detect these diseases earlier and with better confidence. A brief 

overview of retinal anatomy and a more detailed description of DR and glaucoma is 

provided in Chapter 2.1. 

 

Figure 1.11  Representative images of the Indian Ocean seen by someone with A) 
normal vision, B) diabetic retinopathy, and C) glaucoma. 

Over the past two decades, the development of visible and near-infrared retinal 

imaging technology has grown rapidly. One of the dominant imaging modalities is Optical 

Coherence Tomography (OCT), which has revolutionized clinical diagnostic ophthalmic 

imaging. OCT provides a detailed volumetric view of the retina for clinicians to identify 

the structural hallmarks of diseases such as DR and glaucoma. OCT images are used to 

assess the need for treatments (surgical, intravitreal injection, laser, etc.) and afterwards 

to evaluate the results and monitor changes. Additionally, imaging blood flow is also 

important as abnormal circulation is the leading cause of irreversible blindness in 

diseases such as DR. A recently commercialized variant of OCT, OCT Angiography 

(OCTA), allows for detailed visualization of the retinal microvasculature and is becoming 

more prevalent in clinics worldwide. Additionally, adaptive optics OCT, which provides 

better lateral resolution to better visualize cellular structures such as the photoreceptors, 

is also gaining interest from ophthalmologists for its ability to visualize structures in vivo 

which were previously only available in ex vivo tissue through histology. An overview of 

OCT, OCTA and AO-OCT is provided in Chapter 2.2. However, as OCT images are 

inherently only qualitative, there is an unmet need amongst ophthalmic clinicians for 

automatic quantitative analysis.  

Robust quantitative tools require large data sets for testing their efficacy – this is 

especially true for machine learning tools. However, large datasets with manual 

segmentations are uncommon with new and state-of-the-art imaging systems, such as 

the ones developed in BORG. The small data set size of clinical prototypes presents a 
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unique challenge when translating to a clinical setting. As such, the topic of this thesis is 

focused on translational image analysis for newly developed OCT technologies, using 

machine learning.  

1.2. Machine Learning in Ophthalmology 

The unique properties of the eye make it suitable for non-invasive optical 

imaging; however, quantification of pathological features is generally requested by the 

clinicians for diagnosis and monitoring. Quantification and analysis of different 

morphometric properties generally requires segmentation of the features of interest, 

such as the individual light sensitive cells (cone photoreceptors) or the retinal 

microvasculature (capillaries). As manual segmentations are both subjective and 

laborious, automated methods are desired. Although traditional mathematical methods 

work on the specific data for which they were designed, reliance on ad hoc rules and 

specific algorithmic parameters does not allow for alternative imaging conditions, such 

as different resolutions, areas within the retina, and imaging modalities.  

A new alternative approach to medical image segmentation and analysis is using 

machine learning where a model is learned directly from data points. While traditional 

statistical approaches such as regression are forms of machine learning, they require the 

manual extraction of features of interest. Deep neural networks (DNNs) have emerged 

as an excellent machine learning alternative where the network is able to serve as both 

a feature extractor and classifier. A more detailed background of DNNs is presented in 

Chapter 2.3. This allows for a higher degree of adaptability as the same machine 

learning algorithm can be re-purposed by using different training images given a 

sufficiently large training set. Several of these networks have shown high performance 

for many different image analysis tasks, including ophthalmic applications [2].  For 

example, DNNs have been used in retinal fundus images for the segmentation of retinal 

blood vessels [3], and in OCT images for the segmentation of retinal layers [4], [5] and 

microvasculature [6] or lack thereof [7]. Multiple review articles on deep learning in 

ophthalmology are available in the Literature, for example [2], [8], [9]. 

Machine Learning is also a useful tool for classifications, and its primary use in 

the medical field is for diagnostic purposes. Where machine learning diagnostics could 

be of potential benefit in ophthalmology is in screening where traditional approaches 
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require large amounts of manual labour and place a huge financial burden on the 

healthcare systems. Deep learning systems for diagnosing diabetic retinopathy [10]–[13], 

glaucoma [10], [14], age-related macular degeneration [10], [15], [16] and retinopathy of 

prematurity [17] have been created that show excellent diagnostic performance for the 

imaging modality on which they were trained. [2] 

Massive strides in making AI tools available to consumers and clinicians have 

been made in the past couple years. For example, the IDx-DR, which received marketing 

authorization by the U.S. Food and Drug Administration a little over a year ago, is an 

autonomous AI diagnostic system for diabetic retinopathy [18]. It is the first device of its 

kind in ophthalmology, or any field of medicine, and paved the way for future AI-based 

medical technologies to get FDA approval. As such, this is an exciting time to be working 

in the cross-section of AI and ophthalmology as this new industry is still in its infancy and 

there are many unmet needs on which to work. 

1.3. Outline 

The remaining chapters of this thesis are organized as follows. Chapter 2 

presents background information on topics discussed in this thesis including: the 

anatomy of the human eye and on the diseases of interest, the imaging modalities used, 

and machine learning techniques and methods used for overcoming small datasets. 

Chapter 3 details the use of transfer learning for retraining a DNN originally trained on 

confocal AO-SLO images in order to detect cones in AO-OCT images with a different 

field-of-view (FOV). This chapter demonstrates the ability of transfer learning to 

effectively apply knowledge from one domain, with a larger dataset to a similar domain 

where manually labeled data is scarce. Chapter 4 demonstrates the use of a semi-

supervised Generative Adversarial Network (GAN) to segment the peripapillary tissue 

and optic nerve head (ONH). In this chapter, we also provide a method for automatically 

segmenting the termination of the Bruch’s membrane, an important landmark in the 

parameterization of the ONH. In Chapter 5, the focus shifts from segmentation to 

classification and ensemble-based methods are compared for classifying DR with a 

relatively small dataset. Finally, Chapter 6 discusses future research directions to 

advance the analysis of human ophthalmic imaging.  
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1.4. Contributions 

At the early stage of my research career, my work was mainly focused on clinical 

data acquisition of retinal images using prototype OCT instruments and developing 

image processing algorithms using traditional techniques to visualize and quantify the 

data. As our prototype OCT systems were situated in a glaucoma clinic, much of the 

work I did focused around this topic [A2, A7-8, A10, A18]. This is where I was able to 

integrate myself into the clinic to truly understand how our prototype machines either met 

needs that the commercial ones at the Eye Care Center (ECC) did not have (ex. the 

1060nm system was better able to see the choroid [A8, A10]) or fill a need for a 

specialized commercial machine which the ECC did not have (ex. the anterior segment 

system [A7] or OCTA capabilities [A2]). I published a case series on how our novel 

swept-course anterior segment OCT system allowed for visualization of focal fluid in 

overfiltering blebs, leading to better transconjunctival suture placement and patient 

outcomes [A7]. Additionally, and more importantly, this experience allowed me to see 

what image processing techniques were still needed to further meet the needs of the 

clinicians, which fueled my research in OCTA processing. 

Through my work in the glaucoma clinic and mentorship from glaucoma specialist 

Dr. Paul Mackenzie, I was also exposed to the new and exciting research domain of 

OCTA. I worked with a prototype OCT instrument to acquire OCTA images in control and 

patient populations, and led the technical image analysis of ONH OCTA images looking 

closely at the radial peripapillary capillaries (RPCs), the results of which were published 

in a journal paper [A2]. Also using the early OCTA instrument, I performed data 

acquisition myself, as well as trained and managed the clinical data acquisition and 

processing of OCTA data for control subjects [A1], and other diseases [A4, A16, A20]. 

This research was extended to an ex-vivo retinal imaging [A13, A15] application under 

the supervision of Dr. Dao-Yi Yu at the University of Western Australia. 

By working closely with the clinicians mentioned above, as well as retina 

specialist Dr. Eduardo Navajas, two needs became apparent: 1) better quality en face 

OCTA angiograms, and 2) a more automated process for quantifying the data was 

needed for accurate clinical diagnosis. My main first-authored paper from my Master’s 

degree [A11] described and demonstrated the development of an automated method for 

registration and averaging of serially acquired OCTA images. The improved visualization 
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of the capillaries with this tool is continuing to be investigated to enable robust 

quantification and study of minute changes in retinal microvasculature in the future. Also 

at that time, through working with a PhD exchange student, a process for segmenting 

the retinal vasculature in our OCTA data using Deep Neural Networks (DNNs) was 

developed which led to a co-first authored paper [A3]. This was my first introduction to 

machine learning and DNNs.   

In the transition to my PhD research, my focus also transitioned to using DNNs to 

aid in our high resolution imaging with adaptive optics (AO) integrated OCT. I made a 

significant contribution to the translation of the AO-OCT prototype instrument to the 

clinic. In addition to running and managing the training of research assistants for data 

acquisition, I was actively involved in the processing of images and reports of the patient 

images [A5, A6, A9]. Through this experience, I was motivated to start the process of 

developing tools for quantifying the photoreceptors in the AO-OCT images. Due to the 

novel nature of the prototype AO-OCT instrument, there did not exist a large database 

from which to train a network. As such, I investigated a technique called transfer learning 

to mitigate this issue. A dataset from the Literature consisting of images from a different 

imaging modality, AO Scanning Laser Ophthalmoscopy (AOSLO), was used to initially 

train a neural network to segment cones. Then, specific sections of the network (also 

known as layers) were re-trained using our limited amount of AO-OCT training data 

[A12]. The details of this project and its results are provided in Chapter 3 

Through this work, a need to further investigate different techniques to mitigate 

the need for large datasets became evident. A problem facing the machine learning 

community is the need for a vast amount of data for supervised training. As such, I 

investigated two methods as potential solutions to this issue: transfer learning (as 

discussed in the previous paragraph) and semi-supervised generative adversarial 

networks. For the above-mentioned transfer learning project with the AO-OCT 

instrument, although few labeled images were available, a larger data set from a similar 

imaging technique was publically available making transfer learning a good choice. For 

the semi-supervised GAN project however, we possessed a large amount of data from 

my aforementioned work in the glaucoma clinic, but there were few manual 

segmentations for training a neural network. This is an especially common situation with 

OCT datasets where commercial devices have been acquiring data from patients for 

years, but there aren’t enough human resources to go through the data to provide 
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professional level segmentations or classification. A more detailed account of the 

proposed research, targeting semi-supervised learning for the analysis of OCT images 

used in glaucomatous patients, is provided in Chapter 4. 

The diagnostic capability of OCTA as it relates to DR in the Literature has thus 

far focused mainly on manually created parameters based on a priori knowledge of the 

disease pathophysiology. One advantage of deep learning is that it allows the machine 

to extract features for classification, and therefore identify potential information from the 

images that may be discarded otherwise. I evaluated the role of ensemble learning 

techniques with deep learning in classifying diabetic retinopathy in OCTA en face images 

and their corresponding co-registered structural images, described in more detail in 

Chapter 5.  

Although the main contributions as detailed in this thesis pertain to the three 

journal publications that are described in Chapters 3-5, the scope and body of work done 

during my graduate career exceeds this. I am first author or co-first author on 5 papers, 

and a co-author on 17 papers. During my graduate studies I have given 5 podium 

presentations at international conferences. All peer-reviewed journal papers on which I 

am an author are listed in Appendix 1 [A1-A22]. These publications represent my 

contributions to the development and clinical translation of novel imaging instruments, 

the acquisition and analysis of images from patients groups, and ultimately to the deep 

learning research which is the focus of this dissertation. 
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Chapter 2. Background1 

2.1. Ophthalmic Diseases 

2.1.1. Eye Anatomy  

The eye is a complex organ that allows us to perceive and convert light to 

electrical signals that the brain can interpret. Figure 2.1 presents a simple schematic of a 

human eye.  

 

Figure 2.1  Eye diagram [credit: National Eye Institute, National Institutes of 
Health] 

Briefly, light incident on the eye is focused by the cornea and lens onto the retina. 

The eye is roughly 25mm in diameter, and the retina, located at the back of the eye 

contains cell layers that detect light, perform some processing on the information, and 

                                                

1 This section has been modified from my previously published Master’s thesis [Morgan Heisler, 
"Clinical optical coherence tomography angiography registration and analysis," April, 2017.] 
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transmit electrical signals to the brain via the neurons of the optic nerve. The region 

where the nerve fibre bundles exit the eye is the optic nerve head (ONH) and has 

significance for glaucoma as mentioned in Section 2.1.3, along with the surrounding 

peripapillary region. The rest of the report will focus mainly on the retina, a cross 

sectional diagram of which is shown in Figure 2.2.  

 

Figure 2.2 A portion of the human retina. Transverse histological retinal 
section was stained with toluidine blue (A), and a B-scan image was 
acquired using OCT (B) to illustrate the various retinal layers at the 
eccentricity located 3 mm superior to the optic disk. Colored dashed 
lines demarcate the retinal vascular layers. Orange dashed 
lines indicate the RPC layer; red dashed lines, SVP layer; yellow 
dashed lines, ICP layer; green dashed lines, DCP. Scale bar: 50 μm. 
Image from [19]. 

There are two sources of blood supply to the human retina: the central retinal 

artery (CRA) and the choroidal blood vessels. The inner retina is bounded by the inner 

limiting membrane (ILM) anteriorly and the inner nuclear layer (INL) posteriorly, and it 

gets nourished by blood that travels through the CRA from the optic nerve head. The 

choroidal blood vessels feed the outer retina, particularly the photoreceptors, which are 

arranged in an approximately hexagonal grid in the outer retina. Chapter 3 of this thesis 

investigates the analysis of cone photoreceptors.  

The retinal vasculature emerging from the CRA follows the patterns as shown in 

the retinal fluorescein angiography (FA) image in Figure 2.3, where the vessels radiate 

outward from the ONH and curve towards and around the fovea. These vessels supply 

four layers of capillary networks which are the radial peripapillary capillaries (RPCs), the 

superficial vascular plexus (SVP), intermediate capillary plexus (ICP), and deep capillary 
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plexus (DCP) [20]. The RPCs are the most superficial layer of capillaries lying in the 

inner part of nerve fiber layer (NFL), and feed the superficial nerve fibres surrounding the 

ONH. The SVP, which is supplied by the central retinal artery and composed of various 

vessel types resides in the retinal ganglion cell (RGC) layer. Below this is the ICP, which 

is supplied by vertical anastomoses from the SVP and contains the capillaries 

encapsulated by the anterior boundary of the IPL and anterior half of the INL. Lastly, the 

DCP is also supplied via vertical anastomoses of the SVP and is considered to be the 

vessels contained within the posterior half of the INL and the OPL. These layers are 

shown in cross-sectional images in Figure 2.2. For visualization purposes, these 

networks are sometimes summed together to form the superficial vascular complex 

(SVC), comprised of the SVP and RPC, and the deep vascular complex (DVC), 

comprised of the ICP and DCP [20].  

 

Figure 2.3  Fundus photograph showing fluorescein imaging of the major 
arteries and veins in a human left eye.  

2.1.2. Diabetic Retinopathy 

Diabetic retinopathy (DR) is the most prevalent retinal vascular diseases 

worldwide, affecting a third of people with diabetes [21]. It is a leading cause of adult 

blindness, responsible for 15-17% of cases of blindness in the western world [22]. The 
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pathophysiology of DR is closely related to its deleterious effect on the inner retinal 

microcirculation which includes altered vascular permeability and capillary bed closure 

[23], [24]. Diabetic retinopathy has many different categorization schemes, however one 

of the most clinically useful and commonly used is the 5 stage International Clinical 

Diabetic Retinopathy categorization of no retinopathy, mild, moderate, severe non-

proliferative retinopathy, and proliferative retinopathy [25]. Retinal ischemia secondary to 

capillary non-perfusion has been observed in the early stages of diabetic retinopathy and 

has been correlated to disease severity and progression [26]. Findings such as 

decreasing macular capillary density and enlargement of the perifoveal zone [27] have 

been correlated with the severity of vision loss [28], [29]. Thus, early detection and 

reliable quantification of these microvascular changes may play a role in predicting visual 

morbidity and improve the management of DR. 

2.1.3. Glaucoma 

Glaucoma is a group of optic neuropathies that are the leading cause of 

irreversible blindness worldwide [30] and the second most common cause of blindness 

in the developed world [31]. Symptoms include the gradual loss of peripheral vision 

followed by the loss of central vision if the disease is not detected and properly 

managed. As the peripheral vision loss is gradual and often imperceptible by patients 

until later stages of the disease, permanent damage can occur if proper screening for 

early detection is not done. The pathophysiology of glaucoma is complex and 

characterized by the time-dependent loss of retinal ganglion cells (RGCs) and their 

accompanying axons [32]. Indices that are currently used to quantify and evaluate 

progression of glaucomatous optic neuropathy include visual field testing, nerve fibre 

layer thickness, ganglion cell layer with inner plexiform layer (GCIPL) and ganglion cell 

complex parameter analysis, optic nerve head morphometrics such as Bruch’s 

membrane opening minimum rim width, and measurement of lamina cribrosa thickness 

[33].  

2.1.4. Summary 

Vision threatening diseases, such as diabetic retinopathy and glaucoma, have 

characteristic changes that can be distinguished using ophthalmic imaging techniques. 

In the next section, we discuss some of these techniques. 
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2.2. Retinal Imaging Systems 

Retinal imaging has become a standard of care in ophthalmic clinics. While 

different techniques may be used depending on the pathology, optical coherence 

tomography has become a gold-standard for many ophthalmologists. Variants of this 

imaging modality, such as adaptive optics OCT and OCT angiography, have been able 

to provide clinicians with even more capabilities. A brief overview of the ophthalmic 

imaging techniques used in this thesis is provided here.  

2.2.1. Optical Coherence Tomography 

Optical Coherence Tomography (OCT) is a non invasive, in vivo imaging method 

that uses a low coherence interferometric technique to produce cross-sectional and 

volumetric images. The cross-sectional images, termed B-scans, are comprised of 

several adjacent depth profiles (A-scans). Several adjacent B-scans can be acquired to 

form a 3D volume of the tissue being imaged. Although the penetration depth is on the 

order of millimeters in tissue, the axial resolution is typically between 1-10 microns.  

Swept source OCT has been gaining in popularity recently due to the increase in 

scanning, and therefore acquisition, speeds. These systems use a swept source laser 

typically centered ~1 µm to sweep across different wavelengths and a photodiode 

balanced detector to detect the interference pattern caused by the path mismatch of the 

backreflected light from the reference and sample arms. Through calculating the Fourier 

transform of the interference fringes, the axial location of the light scattered from the 

tissue can be determined. All OCT systems used in this thesis are swept source. 

2.2.2. Adaptive Optics OCT 

When imaging the retina, light must pass through the cornea and lens of the 

subject, which can be afflicted with imperfections resulting in aberrations. These 

aberrations are different for each patient and must be corrected for cellular imaging. One 

such way to do this is Adaptive Optics (AO), whereby an adaptive element in the optical 

imaging system can adjust the light to compensate for imperfections and enable higher 
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lateral resolution. This technique has enabled the imaging of the living retina at a cellular 

resolution, something which was previously only possible using ex vivo methods. 

Recently, AO has been combined with OCT to enable high resolution cross-sectional 

imaging of the human eye. For example, AO-OCT systems can provide high-resolution 

en face images of the photoreceptor mosaic, but with the added benefit of high axial 

resolution which allows for cross-sectional tomography images in which the different 

outer retinal layers can be clearly delineated [34]. The technique used in our lab, termed 

sensorless AO-OCTA, allows for image-based aberration correction and does not 

require the use of a Shack–Hartmann wavefront sensor, which is used in more traditional 

AO techniques. 

2.2.3. Optical Coherence Tomography Angiography 

For the past 30 years, fluorescein angiography has been the gold standard 

modality for assessing retinal vascular diseases [17] but vessel leakage and excessive 

choroidal fluorescence affects the ability of FA to visualize the retinal microcirculation. 

FA is an invasive procedure that requires venipuncture and the administration of 

exogenous contrast agents. The injected dye can cause nausea, vomiting, skin 

discolouration, pruiritis and in rare cases death and anaphylaxis [46]. Moreover, these 

techniques only provide 2D information (en face views of the vasculature). Therefore, 

there is a clinical demand for a non-invasive approach to provide visualization of the 

microvasculature within the retina layers.  

Optical Coherence Tomography Angiography is an emerging imaging modality 

with which the retinal circulation can be visualized by computing the OCT speckle 

difference between adjacent B-scans on a pixel-by-pixel basis. Variants of OCTA 

methods have been described in recent review articles [35]–[38]. The speckle variance 

approach to OCTA has been evaluated against standard invasive techniques such as 

Fluorescein Angiography [39], [40], in which only the superficial capillaries can be 

distinguished due to excessive choroidal fluorescence[41], and ex vivo histological 

analyses [19], [40], [42], [43].  
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2.2.4. Summary 

This section presented a background to OCT, and the adaptive optics and 

angiography variants that are used in this thesis. While the imaging techniques 

mentioned in this section enable high resolution visualization of the retinal layers and 

vasculature, they are qualitative without further analysis. The next section describes 

machine learning methods in the Literature for quantitative analysis, while the remaining 

chapters utilize these topics and provide additional depth. 

2.3. Machine Learning Techniques 

The imaging modalities mentioned in the previous section allow for detailed 

visualization of the retina, however quantification is generally requested by the clinicians 

for diagnosis and monitoring. Machine learning has become an extremely powerful tool 

for the quantification of biomedical images [2], [8], [9] and will be used in this work. 

Therefore, a brief background is provided here.  

2.3.1. Machine Learning Versus Deep Learning 

Machine learning is a subset of artificial intelligence where systems use statistical 

models to improve their performance on a specific task. The algorithm uses input data so 

that it automatically learns and improves from experience without being explicitly 

programmed. Many machine learning algorithms rely on manually extracted features for 

training, such as support vector machines (SVMs) and random forest classifiers.  

Deep learning is a subset of machine learning in which a model learns to perform 

classification tasks directly from the input data (images, video, text, or sound). A DNN is 

a neural network with multiple intermediate layers, often termed ‘hidden’ layers, between 

the input and output layers. There are typically many hidden layers in a deep neural 

network, hence the word “deep”, which allow for gradually more abstract and higher-level 

representation within the network [9]. These models can achieve state-of-the-art 

accuracy and have been shown to outperform classic image processing methods. DNNs 

are trained by using large sets of labeled data, as performance improves as the dataset 

size increases, and neural network architectures that learn features directly from the 
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data without the need for manual feature extraction. The differences are shown below in 

Figure 2.4. 

 

Figure 2.4 Comparing a machine learning approach to categorizing vehicles 
(left) with deep learning (right). Image from [44]. 

2.3.2. Network Architectures 

There are many different network architectures in the literature, and each one 

was created with a specific purpose in mind. The two architectures that we will focus on 

in this body of work are: U-Network (UNET) and Generative Adversarial Networks 

(GANs). A brief description of each is given here. 

U-Net is a fully convolutional network originally developed for biomedical image 

segmentation. It consists of a contraction path and an expansion path. The contraction 

path consists of convolutional and max pooling blocks to extract features then the 

expansion path contains up-convolution and convolution layers to recover the original 

size of the input image. To recover some localization of features lost in the contraction 

path, features are concatenated at the same level connecting the contraction and 

expansion path. [45] 

Generative Adversarial Networks are a type of generative network where two 

networks, a generator and a discriminator, are used to produce data [46]. In this 

framework, the generator tries to maximize the probability of fooling the discriminator into 

marking its outputs as real; whereas, the discriminator provides feedback to guide the 

generator into producing outputs that are more realistic.   

2.3.3. Class Activation Maps 

In traditional machine learning, parameters that are easily understood by 

clinicians are used where their relationship to the disease pathophysiology is (often) 
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known. For example, the area of the foveal avascular zone (FAZ) may increase with 

severity due to increased capillary drop out. However, as deep learning chooses its own 

parameters which are not generally exported as an output, tools such as a class 

activation map (CAM) [47] can be used to show the location most pertinent for the DNN 

classification. A CAM for a particular category indicates the discriminative image regions 

used by the CNN to identify that category. The procedure for generating these maps is 

shown in Figure 2.5 using a global average pooling (GAP) layer. In brief, the last 

convolution layer of the network is followed by a GAP layer then one fully connected 

layer with a softmax activation function that would yield the predicted image category. 

Each output activation map from the convolutional layer corresponds to an assigned 

weight from the GAP layer which is connected to the predicted image category. In order 

to obtain the class activation map, the sum of each weight multiplied by the activation 

map is computed. 

 

Figure 2.5 The procedure for generating CAMs from networks with GAP layers. 
Image from [48]. 

2.3.4. Methods to overcome a small amount of labeled data 

In cases where a large dataset of manually marked images does not exist, the 

construction of a DNN on an inadequate amount of data can have a negative impact on 

performance by causing overfitting. One method of addressing a small dataset is to use 

data from a similar domain, a technique known as transfer learning. Transfer learning 

has proven to be highly effective when faced with domains with limited data. Instead of 
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training a new network, by fixing the weights in certain layers of a network already 

optimized to recognize general structures from a larger dataset, and retraining the 

weights of the non-fixed layers, the model can recognize features with appreciably fewer 

examples. This was the method used in our paper on segmenting cone photoreceptors 

in AO-OCT data [34]. However, for the glaucoma pipeline, a large dataset of similar 

manually marked data is not easy to find, rather we have several data points with 

manual segmentations and a large amount of data without manual demarcations. 

Therefore, another method that may be more appropriate to the dataset we plan to use 

for the glaucoma classification is semi-supervised learning. 

Semi-supervised learning is a technique in which both labeled and unlabeled 

data are used to train a classifier. This type of classifier takes a small portion of labeled 

data and a much larger amount of unlabeled data from the same domain. The goal is to 

combine these sources of data to train a DNN, which would be more accurate than 

training on the small amount of labeled data alone.  

Ensemble methods, whereby multiple weak learners or different neural networks 

are combined, have shown great results when applied to imbalanced or small data sets. 

By aggregating multiple, diverse, and accurate component networks, the variance in the 

data is reduced to achieve greater predictive accuracy. For training component neural 

networks, the most prevalent ensemble approaches are Bootstrap Aggregating 

(Bagging) and Boosting which are algorithms that determine the training sets of 

component networks. Bagging is a method based on bootstrap sampling (sampling with 

replacement) that generates a number of training sets from an original training set and 

trains a component neural network on each sampled dataset. Boosting generates a 

series of component neural networks whose training sets are determined by the 

performance of previous ones. Incorrect predictions are more heavily emphasized in the 

training of later networks. The networks are then combined typically by majority voting, 

which can be used for segmentation networks as well as classification networks. Another 

method of combining multiple networks is stacking, whereby the networks are combined 

by a meta-classifier. This meta-classifier is typically a fully-connected neural network and 

allows for more complex, non-linear combinations of the network features. 
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2.3.5. Summary 

Machine learning is becoming a large part of our daily life, and can aid our 

quantitative analysis of different images. In the next Chapter, I will discuss how we can 

use machine learning to help aid in the analysis of AO images of cone photoreceptors. 
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Chapter 3. Automated Identification of Cone 
Photoreceptors in Adaptive Optics Optical 
Coherence Tomography Images using Transfer 
Learning2 

3.1. Abstract 

Automated measurements of the human cone mosaic requires the identification 

of individual cone photoreceptors. The current gold standard, manual labeling, is a 

tedious process and can’t be done in a clinically useful timeframe. As such, we present 

an automated algorithm for identifying cone photoreceptors in adaptive optics optical 

coherence tomography (AO-OCT) images. Our approach fine-tunes a pre-trained 

convolutional neural network originally trained on AO scanning laser ophthalmoscope 

(AO-SLO) images, to work on previously unseen data from a different imaging modality. 

On average, the automated method correctly identified 94% of manually labeled cones 

when compared to manual raters, from twenty different AO-OCT images acquired from 

five normal subjects. Voronoi analysis confirmed the general hexagonal-packing 

structure of the cone mosaic as well as the general cone density variability across 

portions of the retina. The consistency of our measurements demonstrates the high 

reliability and practical utility of having an automated solution to this problem. 

3.2. Background 

Adaptive optics (AO) techniques have been used to facilitate the visualization of the 

retinal photoreceptor mosaic in ocular imaging systems by improving the lateral 

resolution [49]–[51]. AO techniques have been combined with scanning light 

ophthalmoscope (AO-SLO) [52], flood illumination ophthalmoscopy (AO-FIO) [53], [54] 

and optical coherence tomography (AO-OCT) [55]. Similar to AO-SLO and AO-FIO, AO-

OCT systems can provide high-resolution en face images of the photoreceptor mosaic in 

                                                

2 This work has been published in Biomedical Optics Express. [Morgan Heisler, Myeong Jin Ju, 
Mahadev Bhalla, Nathan Schuck, Arman Athwal, Eduardo V. Navajas, Mirza Faisal Beg, and 
Marinko V. Sarunic, "Automated identification of cone photoreceptors in adaptive optics optical 
coherence tomography images using transfer learning," Biomed. Opt. Express 9, 5353-5367 
(2018)] 
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which the cones appear as bright circles surrounded by dark regions [56]–[58], but with 

the added benefit of high axial resolution which allows for cross-sectional tomography 

images in which the different outer retinal layers can be clearly delineated. 

High-resolution images acquired using AO-assisted imaging systems have been used to 

investigate various changes in the appearance of the photoreceptor mosaic in both 

normal eyes [59]–[62] and eyes with degenerative retinal diseases, such as cone-rod 

dystrophy [63]–[65], retinitis pigmentosa [66]–[68] and occult macular dystrophy [69], 

[70]. Although these images can be qualitatively useful, quantitative analysis of different 

morphometric properties of the mosaic is generally preferred and requires identification 

of individual cones. 

As manual segmentations are both subjective and laborious, several automated 

methods for detecting cones in AO images using a variety of traditional image 

processing techniques such as local intensity maxima detection [71]–[74], graph-theory 

and dynamic programming (GTDP) [75], and estimation of cone spatial frequency [76]–

[78] have been developed. Although these mathematical methods work for the specific 

data for which they were designed, reliance on ad hoc rules and specific algorithmic 

parameters does not allow for alternative imaging conditions, such as different 

resolutions, areas within the retina, and imaging modalities. 

A new alternative approach is using deep convolution neural networks (CNNs) where 

features of interest are learned directly from data. This allows for a higher degree of 

adaptability as the same machine learning algorithm can be re-purposed by using 

different training images given a sufficiently large training set [79]. Several of these 

networks have shown high performance for many different image analysis tasks, 

including ophthalmic applications [80]. For example, CNNs have been used for the 

segmentation of retinal blood vessels [81], [82], and detection of diabetic retinopathy [10] 

in retinal fundus images, and classification of pathology [83] or segmentation of retinal 

layers [84] and microvasculature [6] in optical coherence tomography (OCT) images. 

More recently, a CNN using a large dataset of manually marked images for training, has 

been developed to identify cones in AO-SLO images [85]. 

Using supervised deep learning approaches for quantification of the photoreceptors 

requires manually marked images. Unfortunately, a large dataset of manually marked 
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images from an AO-OCT system does not currently exist and the construction of a model 

on an inadequate amount of data can have a negative impact on performance by 

causing overfitting. One method of addressing a small dataset is to use data from a 

similar domain, a technique known as transfer learning. Transfer learning has proven to 

be highly effective when faced with domains with limited data [86], [87]. Instead of 

training a new network, by fixing the weights in certain layers of a network already 

optimized to recognize general structures from a larger dataset, and retraining the 

weights of the non-fixed layers, the model can recognize features with appreciably fewer 

examples [88]. In this study, we present an effective transfer learning algorithm for 

retraining a CNN originally trained on manually segmented confocal AO-SLO images in 

order to detect cones in AO-OCT images with a different field-of-view (FOV). Three 

different transfer learning techniques were applied and compared against manual raters. 

3.3. Materials and Methods 

3.3.1. AO-OCT Dataset 

All AO-OCT subject recruitment and imaging was performed at the Eye Care 

Centre of Vancouver General Hospital. The project protocol was approved by the 

Research Ethics Boards at the University of British Columbia and Vancouver General 

Hospital, and the experiment was performed in accordance with the tenets of the 

Declaration of Helsinki. Written informed consent was obtained by all subjects. The 

1060nm, 200 kHz swept source AO-OCT system used in this study is similar to a 

previously described prototype [57], but a fixed collimator was used in place of a variable 

collimator. The axial resolution defined by the -6 dB width was measured to be 8.5µm in 

air (corresponding to a resolution of 6.2µm in tissue (n = 1.38)), and the transverse 

resolution with a 5.18mm beam diameter incident on the cornea was estimated to be 

3.6µm assuming a 22.2mm focal length of the eye and refractive index of 1.33 for water 

at 1.06µm. Images were acquired with the system focus placed at the photoreceptor 

layer using GPU-based real-time OCT B-scan images. Wavefront distortion correction 

was realized by optimizing the shape of a deformable mirror in the system using a 

Sensorless AO (SAO) technique. 

Four different locations (centered at ~3:5°, ~5°, ~6:5°, and ~8°) temporal to the 

fovea were imaged in five subjects. For each retinal location, five AO-OCT volumes 
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(1.25° x 1.25° FOV) were acquired with 200 x 200 sampling density in a second. From 

the acquired volumes, a single volume with the least motion artifact was chosen and 

used for the rest of the analysis. Each AO-OCT image was resized to 400 x 400 pixels 

using bicubic interpolation to allow for the ’non-cone’ space to be at least 1 pixel. An 

example of the data acquired from one subject is shown in Figure 3.1. 

 

Figure 3.1  Data acquired from a 26 year old female control subject at retinal 
eccentricities of (a-d) ~3.5°, ~5°, ~6.5°, and ~8° respectively. Scalebar 
50 µm. 

The center of each cone photoreceptor was manually segmented using a Wacom 

Intuos 4 tablet and free image processing software [GNU image manipulation program 

(GIMP)] in all 20 AO-OCT images. One manual rater (Rater A) segmented data from 



23 

three subjects (12 images) and another manual rater (Rater B) segmented the data from 

the remaining two subjects (8 images). For analysis of inter-rater agreement, two AO-

OCT images from a normal subject not included in retraining the network were 

segmented by both raters and compared to the CNN output. 

3.3.2. AO-SLO Dataset 

The AO-SLO dataset used to implement the initial conditions for the convolutional 

neural network was obtained from Ref. [85], and consisted of 840 confocal AO-SLO 

images acquired at 0.65° from the center of fixation, as well as the corresponding 

manual segmentations for the center of each cone. Each of the images within this 

dataset were extracted from a 0.96° x 0.96° FOV image, resulting in a FOV ranging from 

~0.20° x 0.20° to ~0:25° x 0.25° from 21 subjects (including 20 normal subjects and 1 

subject with deuteranopia) [38]. 

3.3.3. Data Pre-processing 

The image acquisition protocols and processing strategies of the AO-SLO and 

AO-OCT systems are quite different. In particular, the data from the AO-OCT system has 

a 5-6.25 times larger FOV. Therefore, data augmentation was performed on the AO-SLO 

data used for training the base network in order to improve the similarity between the two 

datasets. The data was sub-sampled at a rate of 1.5, 2, 2.5 and 3 to be a closer 

representation of the resolutions used for AO-OCT imaging. 

Image patches were then extracted to use as inputs for training the network. As the 

manual segmentation protocol did not include non-cone locations, these were extracted 

using the protocol in [85], [89]. In brief, a Voronoi diagram was constructed using the 

manually labeled cones as the center of each Voronoi cell. The boundaries were then 

assumed to be non-cone pixels, and a single point along each boundary was randomly 

chosen and placed in the non-cone set. A 33x33 window was then placed over each 

cone and non-cone location and used as input to the network. Locations closer than 16 

pixels to the edge were discarded and not used. Because the image on the whole was 

imbalanced (there were far fewer pixels categorized as cone locations than non-cone 

locations) we welcomed the imbalance in the network and did not attempt to correct for 

this. 
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3.3.4. Network Training Methods 

The convolutional neural network used in this experiment is a slightly modified 

Cifar network taken from the AO-SLO cone segmentation paper [85]. The details of the 

network architecture are given in Table 3-1. Inputs to this network are 33x33x1 feature 

maps centered on a cone or non-cone pixel with the corresponding binary label. The 

final fully connected layer provides a score for each class (cone and non-cone), which 

are input into a soft-max layer that outputs the probability of the original center pixel 

belonging to each class. 

Table 3-1. CNN Architecture 

Layer Type Input Size Filter Size Stride 

1 Convolutional 33×33×1 5×5×32 1 

2 Batch 
Normalization 

33×33×32 - - 

3 Max Pooling 33×33×32 3×3 2 

4 ReLu Activation 16×16×32 - - 

5 Convolutional 16×16×32 5×5×32 1 

6 Batch 
Normalization 

16×16×32 - - 

7 ReLu Activation 16×16×32 - - 

8 Average Pooling 16×16×32 3×3 2 

9 Convolutional 8×8×32 5×5×32 1 

10 Batch 
Normalization 

8×8×64 - - 

11 ReLu Activation 8×8×64 - - 

12 Average Pooling 8×8×64 3×3 2 

13 Fully Connected 4×4×64 4×4×64 - 

14 Batch 
Normalization 

1×1×64 - - 

15 ReLu Activation 1×1×64 - - 

16 Fully Connected 1×1×64 1×1×64 - 

17 Soft Max 1×1×2 - - 
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A similar network was also used in [90] to incorporate confocal AO-SLO and split 

detector AO-SLO image pairs. In brief, separate paths were used for layers 1-15 for the 

confocal and the split detector images, after which a concatenation layer combined the 

two 1 x 1 x 64 vectors output from the confocal and split detector paths into a single 1 x 

1 x 128 vector that was fed into the rest of the network. 

The experiments reported in this paper use two different methods to modify the 

AO-SLO network to segment cone photorecepters in AO-OCT images: transfer learning 

and fine-tuning. In both methods, certain layers of the base network trained on AO-SLO 

data were set to be non-trainable and the rest of the layers were then retrained using the 

AO-OCT data. In the first experiment, transfer learning was used so that only the 

classifier would be retrained and the first 15 layers of the base network were set to be 

non-trainable. The other two experiments used fine-tuning, where the base network was 

frozen before the second and third convolutional layers (layer 5 and 9, respectively) and 

the remaining trainable weights were subsequently retrained using the AO-OCT data. 

There was an average of 35,494 cone AO-OCT patches and 82,867 non-cone AO-OCT 

patches used on average for fine-tuning, and 336,280 AO-SLO patches used for the 

initial training. The batch size for training the base network was set to 100, and the 

maximum number of epochs was set to be 50 with an early stopping parameter set to 

when the validation loss hadn’t decreased in 4 epochs. For the transfer learning 

techniques, the batch size was decreased to 32. The learning rate was 0.001 and the 

weight decay was set at 0.0001 for both initial training and fine tuning. In general, the 

learning rate for fine-tuning should have been lower to preserve learned features, but 

this learning rate produced the best results. Binary cross-entropy was used as the loss 

function for all networks. 

Five-fold cross-validation on all manually segmented AO-OCT images was 

performed. The 20 original images were divided into 5 sets, so that all images from the 

same subject were placed into the same set. Images from four of the subjects were used 

to train the network, and images from the remaining subject were used to test the 

network. This procedure was repeated five times with a different test subject each time. 
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The CNN based detection method was implemented in TensorFlow and the 

Keras API [91] using Python 3.5.4. We ran the algorithm on a desktop PC with an i7-

6700K CPU at 4.0 GHz, 16 GB of RAM, and a GeForce GTX 780 Ti X GPU. The 

average run time for segmenting a new image after training was 20 seconds. 

3.3.5. Performance Evaluation Methods 

A number of quantitative metrics were used to determine the effectiveness of the 

convolutional neural network. Probability maps were generated by extracting 33x33 pixel 

patches from each pixel location in the image as inputs to the trained network. The 

outputs of the network, the probabilities that each pixel was centered on a cone, were 

then arranged to generate a probability map the same size as the original image. These 

probability maps were binarized using Otsu’s method [45] and the centroid of any 4-

connected components were taken to be the centers of cones. Any pixels within half the 

input size (16 pixels) to the edge of the input image were discarded from analysis. Within 

this implementation, True Positive (TP) results will indicate that the data was located 

within 0.5 of the median spacing between manually marked cones to a manually marked 

cone, False Positive (FP) results will indicate that the automatically detected cones were 

not matched to a manually detected cone, and False Negative (FN) results will indicate 

that manually marked cones did not automatically match detected cones. Given these 

definitions, Dice’s coefficient, Sensitivity, and False Discovery Rate are defined in 

Equations (1-3) respectively. 

𝐷𝑖𝑐𝑒′𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃
 

(1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

𝐹𝑎𝑙𝑠𝑒 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 

(3) 

3.3.6. Cone Mosaic Analysis Methods 

Voronoi diagrams were automatically constructed from each automated cone 

mosaic to calculate density, area, and proportion of hexagonal Voronoi domains, which 

are indicators of the regularity of the cone packing arrangement [92]–[94]. To analyze 

the regularity of the cone mosaics, the images were grouped together by their retinal 
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eccentricities where Area 1 was closest to the fovea (~3.5°), and Area 4 was furthest 

(~8°). Cone density was defined as the ratio of the number of bound Voronoi cells in an 

image to the summed area of the bound Voronoi cells. To calculate the proportion of 6-

sided Voronoi domains, the number of Voronoi cells with six sides was divided by the 

total number of bound Voronoi cells within an image. The number of neighbours was 

calculated as the mean number of sides of all bound Voronoi cells in an image. Similarly, 

the Voronoi cell area was calculated as the mean area of the bound Voronoi cells in an 

image. An example summary of this analysis is shown in Figure 3.2 along with the 

original AO-OCT image. The Voronoi boundary map (green) and the automated centres 

of each cone (magenta) are shown in Figure 3.2B, the number of neighbours map where 

each Voronoi cell is shaded depending on the number of neighbours is shown in Figure 

3.2C and the Voronoi cell area map where each Voronoi cell is shaded based on the cell 

area is shown in Figure 3.2D. 
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Figure 3.2  An original AO-OCT image taken at ~6:5_ retinal eccentricity is 
displayed in (a), and the center of the cones (magenta) and Voronoi 
map (green) is overlaid onto the image in (b). In (c) the Voronoi cells 
are shaded based on the number of neighbours, and in (d) the cells 
are shaded based on their area. Scalebar 50 µm. 
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3.4. Results 

3.4.1. Performance Evaluation 

The performances of the automated algorithms in comparison to manual grading 

are summarized in Table 3-2, including training on a network with randomly initialized 

weights. For the case of the randomly initialized weights, only AO-OCT images were 

used to train the network. The results from all four methods are within the standard 

deviations across all three quantitative measurements. A trend of over-segmenting in the 

methods which retrained more weights (Fine- Tuning Layer 5 and Layer 9) can be seen 

in the lower resultant sensitivities and slightly better false discovery rates. These 

numbers are slightly worse than the original network trained only on confocal AO-SLO 

data, where the sensitivity was 0.989 ± 0.012, the false discovery rate was 0.008 ± 

0.014, and the Dice’s Coefficient was 0.990 ± 0.010 [38]. 

Table 3-2. Average performance of the automated methods with respect to manual 
marking 

 Sensitivity False Discovery Rate Dice’s Coefficient 

Transfer Learning 0.940 ± 0.041 0.079 ± 0.037 0.929 ± 0.018 

Fine-Tuning (Layer 5) 0.936 ± 0.046 0.062 ± 0.038 0.935 ± 0.017 

Fine-Tuning (Layer 9) 0.936 ± 0.049 0.073 ± 0.043 0.930 ± 0.018 

Random Initialization 0.942 ± 0.034 0.093 ± 0.038 0.923 ± 0.017 

 

Figure 3 displays the results of the automated algorithms in comparison to 

manual grading for one of the AO-OCT datasets. In the marked images, a green point 

indicates an automatically detected cone that was matched to a manually marked cone 

(true positive), a yellow point indicates a cone missed by the automatic algorithm (false 

negative), and a red point indicates an automatic marking with no corresponding 

manually marked cone (false positive). From the images we can see that the methods 

performed quite well and that the methods that retrained more weights in the network 

produced more automated cone locations, resulting in fewer missed cones (hence less 

yellow locations) and more red locations, than the transfer learning method which only 

retrained the classifier. 
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Figure 3.3  Comparison of automated results in (a) an AO-OCT image from the 
(b) transfer learning, (c) fine-tuning (Layer 5) and (d) fine-tuning 
(Layer 9) methods. In the marked images, a green point indicates an 
automatically detected cone that was matched to a manually marked 
cone (true positive), a yellowpoint indicates a cone missed by the 
automatic algorithm (false negative), and a red point indicates an 
automatic marking with no corresponding manually marked cone 
(false positive). Scalebar 50 µm. 

3.4.2. Inter-rater Agreement 

As previously mentioned in Section 3.3.1, two AO-OCT images from a normal 

subject not included in training the network were segmented by both raters for inter-rater 

analysis. For the AO-SLO images in [85], the manual rater segmentation quality was 
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high because the FOV was small, the images highly sampled, and the cones hence had 

a high contrast. The AO-OCT images used in this report had a larger FOV, and hence a 

lower sampling density. Consequently, the contrast of the cones was poorer, leading to 

minor disagreement in segmentation even between the manual graders. The inter-rater 

performance can be seen in Figure 3.4 along with the original AO-OCT image and a 

comparison of Rater A to the CNN output. As can be seen in Figure 3.4b,e, Rater B 

found more cones than Rater A did in the majority of the image area, with the exception 

of areas in the blood vessel shadow where they were markedly more conservative. 

Similarly, the CNN found more cones than Rater A and in fact was more similar to Rater 

B as shown in Table 3-3. All inter-rater measurements are within the standard deviation 

of the automated results, suggesting that the automated segmentation is comparable to 

that of a human rater. 

 

Figure 3.4  Comparison of manual results in two AO-OCT images (a) and (e) to a 
second rater (b,f) and the CNN (c-d,g-h). In the manually marked 
comparison images (b,f), a green point indicates a cone marked by 
Rater A that was matched to a cone marked by Rater B (true 
positive), a yellow point indicates a cone missed by Rater B (false 
negative), and a red point indicates a marking by Rater B with no 
corresponding cone marked by Rater A (false positive). In the 
comparison images to the CNN (c-d,g-h), a green point indicates a 
cone marked by a Rater that was matched to a cone marked by the 
CNN (true positive), a yellow point indicates a cone missed by the 
CNN (false negative), and a red point indicates a marking by the CNN 
with no corresponding cone marked by the Rater (false positive). 
Scalebar 50 µm. 
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Table 3-3. Average performance of both raters and the automated methods with 
respect to manual marking 

 Sensitivity False Discovery Rate Dice’s Coefficient 

Inter-rater 0.978 ± 0.007 0.109 ± 0.043 0.932 ± 0.027 

CNN to Rater A 0.998 ± 0.002 0.177 ± 0.066 0.902 ± 0.039 

CNN to Rater B 0.997 ± 0.001 0.099 ± 0.033 0.946 ± 0.018 

 

3.4.3. Cone Mosaic Analysis 

From the performance evaluation of the three different transfer learning methods, 

we chose the results from the Fine-Tuning (Layer 5) method to further analyze as it had 

the highest Dice’s Coefficient. The results are summarized in Table 3-4 for all cone 

analysis parameters. The proportion of hexagonal cells and mean number of neighbours 

remained relatively constant over the areas imaged, while a general trend of the mosaic 

becoming less dense further from the fovea can be observed. 

Table 3-4. Cone Mosaic Measurements by Area 

 Area 1 (~3.5°) Area 2 (~5°) Area 3 (~6.5°) Area 4 (~8°) 
Automated Results     

Cone Density 
(cones/mm2(×1000)) 

15.49 ± 1.02 13.15 ± 0.88 11.95 ± 0.53 10.96 ± 0.39 

Percent 6-Sided (%) 47.71 ± 2.56 47.42 ± 3.30 48.40 ± 1.36 46.89 ± 1.33 
Number of Neighbors 5.87 ± 0.34 5.89 ± 0.33 5.87 ± 0.34 5.87 ± 0.36 
Voronoi Cell Area (μm2) 52.50 ± 11.22 61.91 ± 12.82 67.94 ± 13.84 73.98 ± 14.72 
Manual Results     

Cone Density 
(cones/mm2(×1000)) 

16.12 ± 1.31 12.86 ± 0.88 11.77 ± 0.89 10.71 ± 1.09 

Percent 6-Sided (%) 47.39 ± 1.58 44.01 ± 1.35 45.87 ± 1.71 43.77 ± 0.92 
Number of Neighbors 5.87 ± 0.35 5.86 ± 0.35 5.86 ± 0.32 5.85 ± 0.36 
Voronoi Cell Area (μm2) 50.66 ± 18.05 63.34 ± 18.02 69.20 ± 21.61 76.54 ± 23.80 

 

3.5. Discussion 

In this work, we investigated the use of transfer learning techniques using an 

automatic CNN based method for detecting cone photoreceptors in AO-OCT images. 

Using manually marked images from a confocal AO-SLO system to initialize the weights 

of our network, we have demonstrated retraining a CNN to extract features of interest 

and classify cones in previously unseen images from an AO-OCT imaging system. We 

tested our method on images of various retinal eccentricities and showed that our 
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method had good agreement with the current gold standard of manual marking. In 

addition, we used various morphometric cone mosaic measurements to show 

quantitative agreement with measurements from AO-SLO systems. 

As shown in Table 3-2, performance of the CNN based algorithms were 

comparable to the current gold standard of manual grading which suggests that the 

automated segmentation is comparable to that of a human rater. This is highly 

encouraging, because traditional methods of photoreceptor cone segmentation heavily 

utilize modality and FOV specific ad hoc rules, which limit their application to other 

imaging protocols and require further algorithm modification and development for new 

imaging protocols. All that was needed to adapt the algorithm from confocal AO-SLO to 

AO-OCT was the corresponding training dataset. As we can see from the Table, the 

results from only using AO-OCT images and random weight initialization are comparable 

to using fine-tuning and transfer learning methods. We postulate that this is due to the 

large number of AO-OCT training data (118,361 patches) and that for a CNN, 

recognizing simple shapes like high contrast cones is a relatively straightforward task. As 

such, Figure 3.5 shows how the number of training patches affects the performance of 

the different CNN algorithms. Random initialization performed poorly for 1000 patches, 

was close to the transfer learning methods at 2000 patches, but ultimately fit within the 

standard deviation at 3000 patches and above, whereas the transfer learning methods 

were stable from 1000 patches. This has important implications as we look to use CNNs 

for pathological images where the signal-to-noise ratio is lower and there are much fewer 

datasets from which to train. 
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Figure 3.5  How the number of training patches affects the performance of the 
different CNN algorithms. Random weight initialization (Random) is 
comparable to the Transfer Learning (TFL), Fine-Tuning Layer 5 
(FT5), and Fine-Tuning Layer 9 (FT9) methods at 3,000 training 
patches. 

Additionally, the algorithm’s output measurements are congruent with AO-SLO 

data from the Literature [95]. The proportion of hexagonal cells remained relatively 

constant over the areas imaged, which is consistent with the Literature although the 

overall values are slightly lower than reported for AO-SLO data (52.6 ± 6.56 at 3.5° and 

50.9 ± 7.32 at 8°) [95]. Similarly, the mean number of neighbours also remained 

relatively constant over the areas imaged, which is consistent with the Literature 

although the overall values are slightly lower than reported for AO-SLO data (52.6 ± 6.56 

at 3.5° and 50.9 ± 7.32 at 8°) [95]. The general trend of the mosaic becoming less dense 

further from the fovea was also observed and is shown in Figure 3.6 which compares our 

cone density measurements to measurements found in the Literature [96]–[98] for 

histology and AO-SLO data. Datapoints from Ref. [96] were extracted from the figures in 

the paper. As shown, our data follows the general trend for the eccentricities imaged. 
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Figure 3.6  Comparison of cone density measurements from the Literature to 
the cone density measurements from the AO-OCT system. The gold 
standard of histology [49] is shown with a trendline, as well as 
measurements from two AO-SLO systems [50, 51]. 

There is a trend towards overestimating cones in the algorithms where more 

layers were frozen with the AO-SLO initialized weights (Fine-Tuning (Layer 9) and 

Transfer Learning) as shown in the higher false discovery rate in Table 3-2 although the 

true positive rate was better. This is also reflected in Figure 3.3, where the Fine-Tuning 

(Layer 5) results show less false positive cones. The majority of false positives was in 

regions below blood vessels. This could be improved by including more training data 

specifically around regions of vessels. This could either be done by acquiring more data 

around blood vessels, or using data augmentation techniques to modify the current 

dataset. Alternatively, the CNN could be combined with other pre-processing steps, such 

as blood vessel segmentation (for example, using OCTA as shown in Figure 3.7) to 

identify and remove the regions below vessels from the quantitative analysis. Moreover, 

poor inter-observer agreement can negatively affect the performance of learning based 

methods such as CNN. Utilization of datasets graded by multiple observers, for example 

both Rater A and Rater B, could further improve performance. 
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There is also space for improvement in all of the proposed algorithms mentioned 

in this work. The network architecture was chosen as it was the one published with the 

open-source confocal AO-SLO dataset, and was not optimized for the AO-OCT data. 

Additionally, the hyper-parameters were empirically chosen to provide good performance 

for both the fine-tuning and transfer learning methods. It is possible these parameters 

could be further optimized to provide better performance. Additionally, applying further 

custom pre-processing and post-processing steps such as multi-acquisition registration 

and averaging [99] may improve the results presented here. 

Previously demonstrated in the Literature was confocal AO-SLO to split aperture 

AO-SLO; although different, there were similarities in field of view. In this report, transfer 

to a completely different imaging modality was demonstrated. Furthermore, the 

differences in scale of the PRs across retinal eccentricities while maintaining good 

sensitivity and false discovery rate is a significant achievement and demonstration of 

CNN usefulness. In general, for the cone photoreceptor mosaic, the features have a 

relatively well defined underlying structure, and a regularity for which CNNs are well 

suited. This implies that this transfer learning technique could be used to analyze images 

from commercial flood fundus photoreceptor images as well. There exists potential for 

CNNs to help unite images from different modalities with or without AO enabled imaging 

techniques for understanding photoreceptor changes in disease. 

An example of this kind of multi modality imaging is shown in Figure 3.7 where 

structural OCT, OCTA and AO-OCT were used. Though the individual AO-OCT images 

used in this report are currently considered to be large field of view when imaging 

photoreceptors, being able to view wide field structural images is necessary for locating 

areas of interest. As the data diversity in this study is low, further studies looking at 

various pathologies using wide field structural OCT cross sections and OCTA to observe 

microvasculature changes and locate smaller regions of interest to then image with the 

higher resolution AO-OCT, using the CNN for quantification of the cone mosaic and 

vasculature [6], would be pertinent for proving clinical utility. 



37 

 



38 

Figure 3.7 Results from a 22 year old male subject. Colocalization of the Areas 
1 and 2 to a (a) widefield OCT B-scan [scalebar 100 µm] and (b) 
widefield AO-OCTA en face view [scalebar 100 µm] are shown. The 
original AO-OCT images from Areas 1-4 are shown in (c-f) [scalebar 
50 µm], automated segmentation results and the Voronoi diagrams 
are in (g-j), the Voronoi cells in (k-n) are shaded based on the 
number of neighbours, and in (o-r) the cells are shaded based on 
their area. 

3.6. Conclusion 

CNNs provide the opportunity to adapt to changing conditions without having to 

adjust ad hoc rules, but instead retraining the network on a sufficiently large database. In 

this paper, we experimentally demonstrated three different transfer learning methods to 

identify the cones in a small set of AO-OCT images using a base network trained on AO-

SLO images which all obtained results similar to that of a manual rater. Using the results 

from the Fine-Tuning (Layer 5) method, we calculated four different cone mosaic 

parameters which were similar to results found in AO-SLO images showing the utility of 

our method. 

3.6.1. Contributions 

The details of the methods were conceived and designed by myself. I acquired 

the data for all subjects except one (as it was myself), as well as processed all the 

images. All machine learning scripts were written by me, but I did use MATLAB scripts 

from the open source repository and from Dr. Myeong Jin Ju for the performance 

evaluation and Voronoi analysis, respectively. Additionally, I wrote the manuscript which 

was subsequently published. 
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Chapter 4. Semi-Supervised Deep Learning Based 
3D Analysis of the Peripapillary Region 

4.1. Abstract 

Optical coherence tomography (OCT) has become an essential tool in the evaluation of 

glaucoma, typically through analyzing retinal nerve fiber layer changes in circumpapillary 

scans. Three-dimensional OCT volumes enable a much more thorough analysis of the 

optic nerve head (ONH) region, which may be the site of initial glaucomatous optic nerve 

damage. Automated analysis of this region is of great interest, though large anatomical 

variations and the termination of layers make the requisite peripapillary layer and Bruch’s 

membrane opening (BMO) segmentation a challenging task. Several machine learning-

based segmentation methods have been proposed for retinal layer segmentation, and a 

few for the ONH region, but they typically depend on either heavily averaged or pre-

processed B-scans or a large amount of annotated data, which is a tedious task and 

resource-intensive. We evaluated a semi-supervised adversarial deep learning method 

for segmenting peripapillary retinal layers in OCT B-scans to take advantage of 

unlabeled data. We show that the use of a Generative Adversarial Network and 

unlabeled data can improve the performance of segmentation. Additionally, we use a 

Faster R-CNN architecture to automatically segment the BMO. The proposed methods 

are then used for the 3D morphometric analysis of both control and glaucomatous ONH 

volumes to demonstrate the potential for clinical utility. 

4.2. Introduction 

Glaucoma is a leading cause of irreversible blindness worldwide [30] and the 

second most common cause of blindness in the developed world [31]. It is characterized 

by the degeneration of retinal ganglion cells and the loss of their axons [32], which 

manifests as narrowing of the neuroretinal rim and structural remodeling of the optic 

nerve head (ONH)[100]. Current clinical indices for evaluating the progression of 

glaucomatous optic neuropathy include assessment of the cup-to disc ratio and 

neuroretinal rim area in fundus photographs, visual field testing, and retinal nerve fiber 

layer (RNFL) analysis using optical coherence (OCT) images. Although optical 

coherence tomography (OCT) is mainly used for sectoral analysis of the RNFL tissue 
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thickness through circumpapillary scans, recent advances in OCT imaging have enabled 

the acquisition of high-resolution 3D images from which morphometric measurements 

and new biomarkers based on anatomical landmarks can be derived. One such 

landmark, the Bruch’s Membrane Opening (BMO), which has been shown to be more 

reliable than disc margin-based rim evaluation of fundus photography[100]–[102]. As 

such, its segmentation has become a crucial step to enable the detection of ONH shape 

parameters. 

Several traditional processing tools have been employed to automatically 

segment the ONH layers and extract ONH morphological parameters [4], [103]–[106]. 

The high degree of variability in the appearance of this region, such as the large range of 

peripapillary tissue thickness and surface regularity due to the region’s dense 

vasculature, age and disease severity, makes accurate modeling particularly 

challenging. Additionally, the ONH cup can be shallow or deep greatly changing the 

shape of the prelaminar neural tissue. These factors, in addition to complications arising 

from typical OCT imaging conditions, such as different fields of view or shadowing 

artifacts, can yield traditional algorithms clinically unviable without the dependence on 

several ad hoc parameters to account for different imaging cases. In our previous works 

using volumetric images of the ONH and graph-cut segmentation [107]–[112], extensive 

manual corrections of the automated layer segmentations were sometimes necessary 

before quantification, especially in high myope, pathological, or poor quality images.  

Recently, deep learning has emerged as a potential solution to previously 

inflexible retinal segmentation methods. Several studies have shown the successful 

segmentation of retinal layers from macular OCT images[113]–[118] as well as ONH 

OCT images[119]–[121]. Of note, Fang et al.[84] used a patch-based convolutional 

neural network to provide an initial segmentation which is refined using a graph based 

approach. More recently, Roy et al.[114] designed a fully convolutional network, 

ReLayNet, to segment retinal layers and macular edema in retinal OCT images. Both 

methods were applied and tested only on macula scans. Devalla et al.[119], recently 

improved upon their previous patch-based ONH segmentation method[120], by using a 

modified U-Net achieving great results on the limited dataset. However, these methods 

were only validated on 200 B-scans (including the paper’s Appendix) through the center 

of the ONH and not extended to the extraction of 3D parameters in the acquired OCT 

volume. More recently Zang et al. [121] presented a method by which a U-Net based 
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neural network and graph search were combined to delineate the boundary of the optic 

disc as well as the retinal boundaries. This method was tested on both control and 

glaucomatous OCT volumes and achieved good results when trained on 10,000+ scans. 

In this study, we present a Generative Adversarial Network (GAN) based method 

for segmenting the peripapillary retinal layers. Although amassing a large amount of 

OCT images is typically not difficult in a clinical setting, attaining the corresponding 

manual annotations can be tedious and resource intensive, therefore having a large 

number of scans without annotations is not helpful in fully supervised methods. Through 

the use of semi-supervised (SS) learning, we demonstrate methods to train a network 

with little annotated training data while taking advantage of unlabelled scans. 

Additionally, as the BMO must be segmented in order to extract quantitative parameters, 

we present results using a Faster R-CNN for automatically segmenting the BMO.  

4.3. Materials and Methods 

The use of the data for this study was approved from the ethics review boards of 

Simon Fraser University (SFU) and from the University of British Columbia (UBC). The 

study was conducted in accordance with the guidelines of the Declaration of Helsinki, 

and informed consent form was obtained from each participant.   

4.3.1. Database Demographics 

All volumes in this study were previously acquired for our group’s previous 

studies[107], [109], [122]–[124]. A total of 63 subjects (122 eyes) were used for this 

study: twenty-one healthy controls (42 eyes, mean age ± standard deviation = 33.95 ± 

11.37 years), and forty-two patients with glaucoma (80 eyes, mean age = 65.59 ± 8.91 

years). A total of 326 OCT volumes were used in this study. A diagnosis of open-angle 

glaucoma was made clinically by a fellowship-trained glaucoma specialist based on 

conventional examination including dilated stereoscopic examination of the optic nerve, 

analysis of stereo disc photography, and typical reproducible Humphrey SITA-Standard 

white on white visual field abnormality. In addition, severity of glaucomatous visual field 

loss was quantified by visual field mean deviation (MD) values.  
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As the purpose and parameters was different for each of the previous studies 

from which this data set was generated, the availability of manually corrected 

segmentations was different for each volume and ranged from no segmentations, only 

layer segmentations, only BMO segmentations, and both layer and BMO segmentations. 

A breakdown of the participants’ demographics for each dataset is shown in Table 4-5.  

Table 4-5. Dataset Demographics for the varying levels of segmentation 

Peripapillary Layer Segmentation Dataset Controls Glaucomatous 
Number of subjects (eyes) 13 (25) 16 (30) 

Number of volumes 128 69 
Number of B-scans 46,287 26,354 

Age (± std) 36.80 ± 6.42 68.10 ± 8.44 
Axial Length (± std) 24.02 ± 1.08 25.70 ± 2.03 

VF MD (± std) -0.92 ± 0.48 -9.95 ± 8.62 
Male: Female 6:7 9:7 

BMO Segmentation Dataset   

Number of subjects (eyes) 16 (30) 34 (65) 
Number of volumes 145 136 

Number of Radial frames 11,600 10,880 
Age (± std) 32.30 ± 9.12 63.69 ± 13.71 

Axial Length (± std) 24.87 ± 1.24 25.58 ± 1.65 
VF MD (± std) -1.00 ± 0.77 -9.68 ± 8.97 
Male: Female 8:8 19:15 

Unlabeled Dataset   

Number of subjects (eyes) 4 (8) 13 (22) 
Number of volumes 8 22 
Number of B-scans 2,662 6,796 

Age (± std) 44.75 ± 16.31 58.41 ± 13.82 
Axial Length (± std) 25.02 ± 1.34 24.91 ± 1.36 

VF MD (± std) -1.28 ± 0.65 -12.30 ± 10.16 
Male: Female 1:3 7:8 

 

4.3.2. OCT Volume Acquisition & Processing 

Details on the OCT system used in this study has been previously published 

[122]. In brief, a custom-built swept-source OCT system with a center wavelength of 1.06 

µm and 100 kHz sweeping frequency was used to image the ONH region. The acquired 

three-dimensional (3D) images consisted of 400 B-scans, each with 400 A-scans, and 

1024 pixels per A-scan. The imaged region in physical space spanned an axial depth of 

2.8 mm and a square area of 5 × 5 to 8 × 8 mm2 dependent on the axial length of the 
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eye and scan angle. Resulting voxel dimensions were 2.7 μm in the axial direction and 

ranged from 12.5 to 20 μm in the lateral direction.  

Axial displacement caused by involuntary axial eye motion during image 

acquisition was corrected using cross-correlation between adjacent frames, which were 

subsequently cropped to be 640 pixels. Each B-scan used for input to the network was 

averaged with the preceding and following 5 B-scans. Additionally, three-dimensional 

bounded variation smoothing was applied to the volumes used for BMO segmentation in 

order to reduce the effect of speckle while preserving and enhancing edges.  

4.3.3. Ground Truth Labels 

Automated layer segmentations of the Inner limiting membrane (ILM), the 

posterior boundary of nerve fiber layer (NFL), Bruch's membrane (BM), Bruch's 

membrane opening, and the choroid–sclera boundary (CS boundary) were generated in 

3D using a graph-cut algorithm [108], [125]. The automated segmentation result was 

examined and corrected by trained research engineers in Amira (version 5.2; Visage 

Imaging, San Diego, CA, USA) or ITK-SNAP (version 3.2).  

The BMO, defined as the termination point of the high-reflectance BM/retinal 

pigment epithelium (RPE) complex, was segmented on 80 radial slices extracted from 

the smoothed volume, intersecting at the approximate center of the BMO and spaced at 

a constant angle of 2.25°. The ONH is a relatively radially symmetric structure, and 

radial slices provide a more consistent cross-sectional view of the BMO compared to the 

raster scan pattern in which the volumes were acquired. For input into the BMO 

Segmentation Network, the BMO was considered to be the 50x50 pixel area centered on 

the manual BMO segmentation point. 

4.3.4. Layer Segmentation Network 

Architecture 
A Pix2Pix GAN[126] based approach was used with the layer segmentation. For the 

generator network, we used a U-NET based segmentation network[45] which is 

comprised of a contracting and expanding path connected by skip connections as 

denoted in Figure 4.1. The contracting path contains 4 blocks consisting of a 2D 

convolutional layer (3x3), dropout layer, 2D convolutional layer (3x3) and max pooling 
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layer. Similarly, the expanding path also contained 4 blocks consisting of a 2D transpose 

convolutional layer (2x2, stride 2x2) concatenated with the corresponding layer from the 

contracting path, a 2D convolutional layer (3x3), dropout layer, and 2D convolutional 

layer (3x3). To compare the effect of semi-supervised learning on a standard U-Net and 

on a GANS, the output layer was slightly different for each network. For the U-Net 

implementation, the output layer was implemented as a 1×1 convolution layer with 5 

filters corresponding to the number of regions segmented and a sigmoid activation. 

Sigmoid was used over softmax as it produced better segmentation performance. Pixel-

wise classifications were made based on the highest probability. For the GANs 

implementation, to make the output layer differentiable it was implemented as a 1×1 

convolution layer with 1 filter, where the output is integer encoded to the number of 

regions segmented and a linear activation.  

The discriminator model is implemented as a PatchGAN [126]. The output of the network 

is a single feature map of manual/automated predictions corresponding to a patch size 

of 16x16 on the original image that is then averaged to give a single score.  

 

Figure 4.1  Network architecture for adversarial layer segmentation of ONH 
peripapillary layers. 
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Training 
 
Data was augmented with random horizontal flips, cropping from 0 to 10%, linear 

contrast stretching from 0.75 to 1, and rotations from -20 to +20 degrees. The Adam 

optimizer with a learning rate of 1e-4 was used and the loss function was categorical 

crossentropy. Additionally, a batch size of 1 was used and the maximum epochs was set 

to 50 with a callback set to stop training if the validation loss hadn’t improved in 5 

epochs. To test the effects of semi-supervised learning on the layer segmentation, the 

GAN was first trained in a fully supervised fashion on the available labeled dataset. 

Subsequently, the network was fine-tuned using a 10:1 split of labeled and unlabeled 

data. When training the network using the unlabeled data, only the generator weights 

were updated and the predicted output of the network was rounded to the nearest 

integer before being used as the pseudo-label. The standard U-Net without adversarial 

learning was not trained with pseudo-labels as it did not converge.  

4.3.5. Bruch’s Membrane Opening Segmentation Network 

Architecture 

The architecture for this network was based on the Faster R-CNN [127] 

architecture. A ResNet 50 backbone was used, and the ImageNet pretrained weights 

were loaded. The output feature map was then used as an input for a region proposal 

network (RPN). Each point on the feature map is considered an anchor, and as the OCT 

radial frames were approximately the same size and all ground truth inputs were square, 

we only used a 1:1 ratio anchor of size 50x50. The RPN consisted of a 3x3 convolutional 

layer connected to two 1x1 convolutional layer output channels for classification and 

box-regression.  

After regions have been proposed, region of interest (ROI) pooling is performed. 

The output is then fed through three 3x3 convolutional layers, averaged with a 7x7 filter 

and flattened. The final step is a softmax function for classification and linear regression 

to fix the boxes’ location. A high-level overview of this network is shown in Figure 4.2.  
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Figure 4.2  High level overview of Faster-RCNN architecture used for BMO 
detection. The yellow boxes on the rightmost image represent the 
bounding boxes detected for the BMO, where the center of the box 
corresponds to the BMO. 

 

Training 

For training, all anchors are separated into BMO and non-BMO patches based on 

the Intersection over Union (IoU). Anchors that overlap a manual segmentation box with 

an IoU larger than 0.5 are considered BMO and anchors with an IoU less than 0.1 are 

considered non-BMO. A mini batch was chosen to be 256 of these anchors, equally split 

between BMO and non-BMO classes. Non-maximum suppression is applied to ensure 

there is no overlapping for the proposed regions.  

The Adam optimizer with a learning rate of 1e-5 was used to train the RPN and 

classifier layers (labelled FC Layers in Figure 4.2). The loss function was defined as the 

addition of the losses for the classification and bounding box regression. The 

classification loss was the log loss over the BMO and non-BMO classes. The box 

regression loss was the smooth L1 loss for the coordinates. Three-fold cross-validation 

was performed on this dataset. Effort was made to keep the three different training sets 

equal in glaucoma/control ratio while maintaining separation of subjects in the training 

set to ensure that they were not in the test set. 

4.3.6. Clinical Parameters 

Four boundaries were extracted using the layer segmentation network: the inner 

limiting membrane (ILM), posterior boundary of the NFL, posterior boundary of the BM 



47 

and Choroid-Sclera (CS) boundary. To extract these boundaries, the segmentations for 

each B-scan in a volume were grouped into a volume. The largest 3D connected 

component corresponding to each tissue was assigned to that tissue and holes within 

the connected component were filled by the corresponding tissue. The boundaries were 

taken to be the first pixel in the axial direction for each tissue. Three shape 

characteristics were measured using these extracted layers and BMO points as 

previously described[112]: NFL thickness, choroidal thickness, and BMO area.  

Nerve fiber layer thickness was measured at each pixel of the posterior RNFL 

surface as the closest distance to the ILM surface. Similarly, choroidal thickness was 

measured at each pixel of the posterior choroid boundary (CS boundary) as the closest 

distance to the BM surface. For statistical analysis, the thickness measurements were 

averaged over an elliptical annulus, inwardly bounded at 0.75 mm from BMO and 

outwardly bounded at 1.75 mm from BMO. This provided a level of anatomical 

consistency in averaging measurements over multiple eyes with different image and 

BMO sizes.  

To quantify the BMO shape, segmented points on the radial frames were first 

transformed back to the volume scans. Erroneous points were then eliminated by 

removing any segmentations more than one standard deviation away from the mean 

axial position of the segmented BMO points. An ellipse was then fitted to the segmented 

BMO points by first finding the best-fit plane using principal component analysis (PCA) 

and fitting an ellipse to the projection of the BMO points on the plane by least-squares 

criterion. Bruch's membrane opening area was calculated from the fitted ellipse. 

4.3.7. Analysis 

The Dice similarity coefficient was used to measure the spatial overlap between 

the manual and automated layer segmentation. It is defined between 0 and 1, where 0 

represents no overlap and 1 represents complete overlap. The Dice similarity coefficient 

was calculated for each tissue as follows 

𝐷𝑖𝑐𝑒(𝑋, 𝑌) =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
, 

(4) 
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where X denotes the set of pixels corresponding to the tissue in the manual 

segmentation, while Y denotes the set of pixels corresponding to the tissue in the 

automatically segmented image.  

Mean Average Precision (mAP) was used to measure the accuracy of the BMO 

detection network. Average precision was calculated as  

𝐴𝑃 = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

, (5) 

where Pn and Rn are the precision and recall at the nth threshold. A prediction was 

considered positive if the IoU ≥ 0.5. 

Clinical parameters for the volumes which had both BMO and layer manual 

segmentations were presented in a table including the mean and standard deviation for 

both manual and automated measurements. Paired, two-tailed Student’s t-Tests were 

run to compare the means of the parameters. Bland-Altman plots were also used to 

evaluate the agreement between manual and automated methods. The differences 

between manual and automated measures were plotted against the average of both 

measures. The mean and standard deviation (SD) of the differences, mean of the 

absolute differences and 95% confidence intervals (± 1.96 SD) were calculated. 

Statistical significance was set at P<0.05 for all the tests performed. 

4.4. Results 

4.4.1. Layer Segmentation 

To test the effects of pseudo labelling and adversarial training, the networks were 

trained with 800 and 8000 B-scans from 22 volumes (7 subjects, 9 eyes). The 

corresponding validation set was 200 and 2,000 B-scans respectively, from 4 volumes (2 

subjects, 2 eyes), to total 1,000 and 10,000 B-scans used for training and validation 

purposes. In order to compare the effects of the different architecture and training 

schemes, no post-processing was done on the network outputs. The mean DICE 

coefficients are reported in Table 4-6. A total of 57,319 B-scans were used for testing 

purposes. As shown the semi-supervised (SS) Pix2Pix GAN has a higher Dice value for 
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the regions inside the retina and choroid. The Dice values were slightly worse for the 

vitreous and scleral regions in this scheme, but this was mainly due to fluctuations in 

noise in these regions and were simple to remove in the post-processing steps 

described in Section Clinical Parameters 4.3.6. Therefore, the SS Pix2Pix GAN was 

chosen for parameterization in Section 4.4.3.  

Table 4-6. Mean DICE Coefficient for 57,319 B-scans before post-processing. The 
SS Pix2Pix GAN refers to the semi-supervised approach. Bolded 
values represent the best Dice Coefficient for that region out of all 
methods. 

 Vitreous-
ILM ILM-RNFL 

RNFL-
BM BM-CS Boundary 

CS Boundary - 
End 

U-Net      

1,000 labels 0.9291 0.7049 0.7903 0.6181 0.9359 

10,000 labels 0.9694 0.8799 0.9319 0.8828 0.9644 

Pix2Pix GAN      

1,000 labels 0.9696 0.8816 0.9296 0.8629 0.9614 

10,000 labels 0.9730 0.8918 0.9338 0.8799 0.9641 

SS Pix2Pix GAN      

1,000 labels 0.9621 0.8865 0.9308 0.8711 0.9594 

10,000 labels 0.9701 0.8958 0.9394 0.8840 0.9626 

 

4.4.2. BMO Segmentation 

The mAP for the BMO segmentation network was 0.8547 for glaucomatous 

(n=21,596 manual BMO points) and 0.9567 for control subjects (n=23,052 manual BMO 

points). Qualitatively, the network performed quite well. Example B-scans showing BMO 

segmentations of both control and glaucomatous subjects are shown in Figure 4.3. 
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Figure 4.3  Examples of BMO segmentations on control (A,B) and 
glaucomatous subjects (C,D,E). Ground truth labels are shown in 
green, with automated segmentations in yellow.  

4.4.3. Parameters 

The clinical parameters extracted from the datasets are shown in Table 4-7. 

There was no statistical significance between the manual and automated measurements 

for the BMO Area, though both thickness measurements showed significantly thinner 

measurements. However, the coefficient of determination was above 0.97 showing 

excellent correlation. 

Table 4-7. Mean values for the clinical parameters using both manual and 
automated methods. 

 Mean Manual (±std) Mean Automated (±std) P-value R2 

NFL Thickness (n=102) 82.65±16.06 µm 80.27±14.89 µm < 0.05 0.971 

Choroid Thickness 
(n=102) 

147.26±57.41 µm 140.68±55.75 µm < 0.05 0.980 

BMO Area (n=281) 2.62±1.26 mm2 2.64±1.24 mm2 0.14 0.980 

 

Example BMO segmentations with corresponding ground truth segmentations are 

overlaid on the sum-voxel, en face view of the OCT volumes in Figure 4.4. Manual 

segmentations (purple dots), the fit ellipse (green circle) and fit ellipse center (green star) 

as well as the automated segmentations (yellow dots), the fit ellipse (blue circle) and fit 

ellipse center (blue star) are shown for a control (A), high-myope control (B) and 

glaucomatous (C) subject.  
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Figure 4.4  Examples of manual and automated BMO segmentations. Manual 
segmentations (purple dots), the fit ellipse (green circle) and fit 
ellipse center (green star) as well as the automated segmentations 
(yellow dots), the fit ellipse (blue circle) and fit ellipse center (blue 
star) are shown for a control (A), high myope control (B) and 
glaucomatous (C) subject.  

Example automated RNFL and choroidal thickness measurements from the semi-

supervised pix-to-pix GAN method are overlaid on the sum-voxel, en face view of the 

OCT volumes in Figure 4.5. Qualitatively, the RNFL thickness maps follow the 

characteristic pattern expected in the control eyes, whereas the glaucomatous eye 

(Figure 4.5.C) exhibits a much thinner RNFL, which is congruent with the 

pathophysiology of glaucoma. Additionally, the choroid is a highly vascular layer and 

large differences in thickness can be seen in all three eyes with no apparent pattern. 
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Figure 4.5  Example images of the RNFL (A-C) and corresponding choroidal 
thickness (D-F) for a young control (A,D), myopic control (B,E) and 
glaucomatous (C,F) eye. Thickness measurements are inwardly 
bounded 0.25mm from the best fit BMO ellipse and outwardly 
bounded at 1.25mm from the best fit BMO ellipse. 

Scatter plots showing the Pearson’s correlation coefficient for glaucomatous and control 

data points are shown in Figure 4.6. All clinical parameters showed good correlation 

between those extracted from automated and manual segmentations. 

 

Figure 4.6  Scatter plots for the BMO area (top), mean NFL thickness (middle,) 
and mean choroid thickness (bottom).  

Bland-Altman plots for the clinical parameters further confirm the high reliability of the 

automated measurements and are shown in Figure 4.7. 
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Figure 4.7  Bland-Altman Plots for the clinical parameters extracted from the 
datasets. 

4.5. Discussion 

Training neural networks to segment diseased data generally requires a large 

amount of manually annotated ground truth images for fully supervised learning. 

Although a general U-Net architecture did show good performance when trained on 

1000 B-scans (the equivalent of 2.5 OCT volumes), significantly better performance was 

shown for both adversarial training and fine-tuning using pseudo-labels when using a 

small dataset. This is particularly useful for medical imaging modalities, as curating 

expertly segmented scans is a finite and highly limited resource. Importantly, the results 

demonstrate that the benefits to the semi-supervised approaches with 10x more data is 

only an improvement of 1-2% in performance. 

Fine-tuning the network using pseudo-labelling generally improved the Dice 

scores for the regions of interest; however, it should be noted that the regions above the 

ILM and below the choroid-scleral boundary did get slightly worse after pseudo-labelling 

as indicated in Table 4-6. This may be due to the reinforcement of poor segmentations 

during the pseudo-labelling training, particularly in regions of noise such as above the 

ILM and below the choroid-sclera boundary. As these errors generally present 

themselves as smaller pockets fully encased by the correctly segmented region, they are 

easily filtered out during the post-processing steps described in Section 4.3.6. 

It is important to address that although the Dice Similarity Coefficient reported 

above for the peripapillary layers was satisfactory, it did not reach as high as other 

papers have reported for similar layer segmentation. This may be due to several factors. 

First, the variation in the anatomical shape and retinal layers in the region near the ONH 

is much higher than in the macula. Additionally, the manual segmentations provided for 
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layer segmentation were completed for studies that did not consider the region inside the 

BMO. Therefore, manual raters were told not to correct inside the optic cup as it was not 

used for parameterization, leading to Dice scores inside the optic cup to be significantly 

lower. As such, the clinical measurements provide a better idea of the accuracy of the 

networks. 

The clinical thickness parameters extracted from the automatically segmented 

volumes were shown to be slightly thinner than the manually segmented volumes. There 

was however, excellent correlation with the ground truth parameters, suggesting this was 

a small systematic difference. Additionally, through the bland-altman analysis, we see 

that the majority of datapoints fall within the limits of agreement. Although the thickness 

values were averaged to calculate a single score for ease of comparison, further 3D 

analysis could be done using these automated segmentations. 

We were also able to show how a Faster R-CNN could be used to detect the 

BMO in radial OCT scans. From both the mAP and coefficient of determination values, 

BMO segmentation was shown to be better on control data than on glaucomatous data. 

The reason for this may be due to the larger number of control radial frames for training 

or the poorer quality of the glaucomatous dataset. However, most of the erroneous BMO 

segmentations were easily eliminated during post-processing (Section 4.3.6) leading to 

no significant difference in the BMO area parameter when comparing manual and 

automated methods as seen in Table 4-7, with good correlation for both glaucoma (R2 = 

0.9353) and control eyes (R2 = 0.9885) as shown in Figure 4.6. 

Future works using this pipeline may also include looking at the 3D BMO 

minimum rim width (BMO-MRW), a parameter that has been shown to be useful in 

discriminating preperimetric and perimetric glaucoma [128]. Additionally, the methods 

described in this paper are readily translatable to more of the retinal layers which may 

also be of interest to clinicians, such as the ganglion cell layer. Furthermore, though the 

parameters were extracted from 3D volumes, the layer segmentations were still done on 

2D scans. Future work could be done to extend the work into 3D segmentations[129], 

allowing the network to take advantage of the volumetric nature of the images.  
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4.6. Conclusion 

In this study, we presented a Generative Adversarial Network based method for 

segmenting the peripapillary ONH layers which outperformed the vanilla U-Net. Through 

the use of pseudo-labelling, B-scans that did not have a corresponding manual 

segmentation were still able to be used and provided a further increase in performance. 

A Faster R-CNN was also used to segment the BMO from the volumes, allowing for 

comparison of volumetric parameters. The BMO area was shown to have no statistically 

significant difference, while the thickness parameters were slightly under segmented but 

highly correlated.  

4.6.1. Contributions 

The details of the application of this architecture were conceived and designed by 

myself. Additionally, the idea to use and implement a Faster RCNN for the BMO 

segmentation was mine after previous attempts of other networks course projects with 

Mr. Julian Lo. The data used for this work was acquired for other studies, the majority of 

which I was a co-author as I either acquired and processed the data or managed the 

acquisition and processing of the data. Additionally, I wrote the manuscript which has 

been submitted for publication. 



56 

Chapter 5. Ensemble Deep Learning for Diabetic 
Retinopathy Detection Using Optical Coherence 
Tomography Angiography3 

5.1. Abstract 

To evaluate the role of ensemble learning techniques with deep learning in 

classifying diabetic retinopathy (DR) in optical coherence tomography angiography 

(OCTA) images and their corresponding co-registered structural images. Four hundred 

and sixty-three volumes from 380 eyes were acquired using the 3x3mm OCTA protocol 

on the Zeiss Plex Elite system. En face images of the superficial and deep capillary 

plexus were exported from both the OCT and OCTA data. Component neural networks 

were constructed using single data-types and fine-tuned using VGG19, ResNet50, and 

DenseNet architectures pre-trained on ImageNet weights. These networks were then 

ensembled using majority soft voting and stacking techniques. Results were compared 

to a classifier using manually engineered features. Class activation maps (CAMs) were 

created using the original CAM algorithm and Grad-CAM. The networks trained with the 

VGG19 architecture outperformed the networks trained on deeper architectures. 

Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved 

accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods 

respectively. Both ensemble methods outperformed the highest single data-type network 

and the network trained on hand-crafted features. Grad-CAM was shown to more 

accurately highlight areas of disease. Ensemble learning increases the predictive 

accuracy of CNNs for classifying referable DR on OCTA datasets. As the diagnostic 

accuracy of OCTA images is shown to be greater than the manually extracted features 

currently used in Literature, the proposed methods may be beneficial towards 

developing clinically valuable solutions for DR diagnoses. 

                                                

3 This work has been submitted to Translational Vision Science & Technology. [Morgan Heisler, 
Sonja Karst, Julian Lo, Zaid Mammo, Timothy Yu, Simon Warner, David Maberley, Mirza Faisal 
Beg, Eduardo V. Navajas, and Marinko V. Sarunic, " Ensemble Deep Learning for Diabetic 
Retinopathy Detection Using Optical Coherence Tomography Angiography," TVST (2020)] 
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5.2. Background 

Diabetic retinopathy (DR) is a leading cause of blindness in the working age 

population[130] and of an estimated 285 million people worldwide with diabetes mellitus, 

over one third have signs of DR[21]. As patients with DR may be asymptomatic, even in 

late stages of the disease, it is recommended that any patient diagnosed with diabetes 

be screened regularly for signs of DR to palliate visual loss[24]. Retinal 

microvasculopathy such as microaneurysms and capillary occlusion and nonperfusion, is 

generally observed first[131], [132] followed by secondary inner retinal 

degeneration[133], [134]. Optical Coherence Tomography Angiography (OCTA) is an 

emerging technology that is able to provide both vascular information for detecting signs 

of microvasculopathy and structural information through its inherently co-registered OCT 

volumes to detect neurodegeneration. The majority of publications investigating the 

diagnostic capability of OCTA as it relates to DR focus on manually created parameters 

based on a priori knowledge of the disease pathophysiology. Such morphometric and 

functional parameters can be quite useful in classifying diseased and non-diseased 

retinas and techniques using manually engineered features are considered traditional 

machine learning. However, in recent years a trend in Deep Learning has been to 

identify where potential information from the images that may be discarded (or not 

readily observed by human perception) otherwise can be detected and used for 

classification with Convolutional Neural Networks (CNNs). 

Convolutional Neural Networks learn through stochastic optimization, hence they 

are inherently limited in performance due to the high variance in predictions that results 

from sensitivity to small fluctuations in the training set leading to overfitting[135]. As 

such, large datasets are generally desired. Although large diabetic retinopathy 

databases (DRIVE[136], STARE[137], etc.) are publically available, they are comprised 

of fundus photographs, an imaging modality that does not have the ability of OCT/OCTA 

images to provide depth resolved images of the various retinal layers. An alternative 

approach to reducing the variance is to combine multiple, diverse, and accurate models 

to achieve greater predictive accuracy[138]. This is termed ensembling, and in general, a 

neural network ensemble is constructed in two steps: training a number of component 

neural networks and then combining the component predictions[139]. For training 

component neural networks, the most prevalent ensemble approaches are Bootstrap 
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Aggregating (Bagging) and Boosting which are algorithms that determine the training 

sets of component networks. Bagging[140] is a method based on bootstrap 

sampling[141] (sampling with replacement) that generates a number of training sets from 

an original training set and trains a component neural network on each sampled dataset. 

Boosting[142]–[144] generates a series of component neural networks whose training 

sets are determined by the performance of previous ones. Incorrect predictions are more 

heavily emphasized in the training of later networks. The networks are then combined 

typically by majority voting, which can be used for segmentation networks[145] as well 

as classification networks. Another method of combining multiple networks is stacking, 

whereby the networks are combined by a meta-classifier. This meta-classifier is typically 

a fully-connected neural network and allows for more complex, non-linear combinations 

of the network features. 

In healthcare applications, identifying the underlying features through which the 

algorithm classifies disease, in addition to the quantitative algorithmic performance, is 

important to promote physician acceptance[2]. As such, methods to visualize the areas 

of images most responsible for the CNNs classification are gaining popularity. Class 

Activation Maps (CAMs)[146] are a common method where a heat map is generated by 

projecting the class specific weights of the output classification layer back to the feature 

maps of the last convolutional layer, thereby highlighting important regions for predicting 

a particular class. This method has been used in ophthalmic application previously to 

confirm CNN decision was based off the anterior chamber angle in categorizing angle 

closure[147],  areas of OCT B-scans associated with various diagnoses[148], [149] and 

areas of segmentation error[150], and area of OCT en face images associated with the 

diagnosis of glaucoma[151]. There exists several variants of this method that build off of 

the original CAM paper[146], including: Grad-Cam[47], Guided Grad-Cam[47], Guided 

Grad-Cam++[152], and GAIN[153]. 

In this paper we use ensemble learning techniques together with CNNs to 

classify referable DR, using OCT and OCTA images. The results of the deep learning 

algorithms will be compared to manually extracted features. Additionally, we will show 

how CAMs can be used to aid in the interpretation of the CNN classification.  
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5.3. Materials and Methods 

5.3.1. Patients 

This study adhered to the tenets of the Declaration of Helsinki and was approved 

by the Research Ethics Boards of the University of British Columbia and Simon Fraser 

University. Patients with diabetes mellitus type 1 or 2, and any diabetic retinopathy 

severity level, as well as controls were included in the study. Patients were excluded if 

they had substantial media opacity which would preclude successful imaging, active 

inflammation, structural damage to the center of the macula, substantial non-diabetic 

intraocular pathologies, or any intraocular surgery with the exception of cataract surgery. 

A total of 380 eyes were examined from 242 subjects. 224 eyes were classified as non-

referable DR, and the other 156 were classified as having referable DR by a trained 

ophthalmologist using fundus photography. Referable DR was classified as having more 

than mild non-proliferative DR or any stage DR with diabetic macular edema[18]. The 

mean age of patients with referable and non-referable DR was 59.3 ± 11.7 years and 

58.8 ± 17.4 years, respectively.  

5.3.2. Optical Coherence Tomography Data  

Patients were imaged using the Zeiss PlexEite 9000 (Zeiss Meditec. Inc, 

Germany) with an A-scan rate of 100Khz. OCT angiography was computed using the 

OCT- microangiography complex algorithm (OMAG). Data was acquired as a 3x3mm 

volume centered on the foveal avascular zone (FAZ). A sampling rate of 300x300 was 

used which corresponds to a distance of 10 microns between scanning locations. Each 

B-scan location was scanned a total of 4 times. The A scan depth is reported as 3mm in 

tissue with an optical axial resolution of 6.3 μm and a transverse resolution of 20 μm. 

Scans were only included in the study if the system specified signal strength was 7 or 

higher. Figure 5.1 shows representative OCT and OCTA en face images for a severe 

NPDR subject. 
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Figure 5.1  Comparison of clinical features seen on both OCT and OCTA en face 
images of a proliferative DR patient. Dilated 
capillaries/microaneurysms (blue circles) are clearly visible in the 
superficial and deep capillary plexus of both OCT and OCTA images. 
Areas of capillary dropout (outlined in yellow) are more clearly seen 
in OCTA images, though the deep structural OCT image also shows 
areas of lower intensities in the larger area of nonperfusion. 

5.3.3. Manual Feature Extraction 

En face OCTA images were extracted from the superficial and deep vascular 

complexes and projection artifacts were removed using the in-built system software 

before being exported. Images were then segmented using a separate vessel 

segmentation DNN[154] in order to calculate the handcrafted features. Methods for 

feature extraction have been previously reported[155]–[157], but are explained here in 

brief for completeness. Seven FAZ morphometric parameters were calculated from the 

vessel segmentation network results: area, perimeter, acircularity index, maximum and 

minimum diameter, axis ratio and eccentricity. The FAZ was found as the largest 

connected non-vessel area. The centroid for this area was then used to determine the 

perimeter, and maximum and minimum diameter. Acircularity index was defined as the 

ratio of the perimeter of the FAZ to the perimeter of a circle with equal area. Axis ratio 
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was the ratio of the maximum FAZ diameter to the minimum FAZ diameter, and 

eccentricity was calculated as the eccentricity of the ellipse made by the minimum and 

maximum diameters.  

Five vascular parameters were also extracted from the superficial vessel 

segmentation network results: whole image density, inner density, central density, 

skeleton density and fractal dimension. Before quantification, the vessel segmentation 

network result was binarized using a threshold of 0.5. Whole image density was then 

calculated as the proportion of measured area occupied by pixels which were classified 

by the algorithm as a vessel. Central density was calculated as the density within the 

center 1mm circle, and inner density as the density in the ring between 1mm and 3mm 

from the center.  

5.3.4. Diagnostic Network Architectures 

Three different CNN architectures were used in this paper: VGG19, ResNet50, 

and DenseNet. Each network was loaded with the pre-trained weights on the ImageNet 

dataset and truncated at the deepest convolutional layer. A global average pooling 

(GAP) layer was then appended followed by a dense layer with two outputs. 

For inputs, each base was trained with four different single data-type en face 

images extracted from the OCTA and OCT volumes. From the OCTA, both en face 

superficial and deep plexus images were extracted. Similarly, from the structural OCT 

volume, both en face superficial and deep plexus images were extracted. 

The various networks were then combined to be of the configurations in Figures 

5.2 and 5.3 in order to evaluate voting and stacking. For voting as in Figure 5.2, we 

implemented a majority soft voting scheme by averaging out the probabilities calculated 

by individual networks. While voting is the most common aggregation method in 

classification tasks, it only considers linear relationships among classifiers. Stacking as 

in Figure 5.3, is another ensemble technique where the meta-classifier is able to learn 

complex associations. As ensemble networks perform best when the networks are 

diverse and accurate, the best performing trained network for each input type was 

chosen for this architecture. The input to the meta-classifier was the concatenation of 

last convolutional layer of each chosen component network. This was followed by a GAP 
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layer, a dense layer with 1024 nodes and relu activation, a dense layer with 512 nodes 

and relu activation, and a final dense layer with 2 nodes for classification. The weights of 

all the trained convolutional bases were frozen while the meta-classifier was trained. 

To compare the diagnostic capability of a feature agnostic CNN to the manually 

extracted features, the twelve manual features were also fed into a classifier. The 

classifier comprised of a multi-layer perceptron with two hidden layers of 12 and 6 

nodes, respectively and one binary output for referable DR or non-referable DR. A 

threshold of 50% was applied to the output probabilities to determine the classification. 

 

Figure 5.2  Example of the majority voting ensemble method for combining 
classification results from multiple component networks. The 
component networks were previously trained on superficial and 
deep plexus en face images of OCT and OCTA volumes separately.   
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Figure 5.3  Example of the Stacking Ensemble Method for combining 
classification results from multiple component networks. The 
component networks were previously trained on superficial and 
deep plexus en face images of OCT and OCTA volumes separately 
and the weights were frozen while the meta-classifier was trained.  

5.3.5. Experimental Settings 

The CNN based detection method was implemented in Keras using the 

Tensorflow backend and Python 3.5.4. We ran the algorithm on a desktop PC with an i7-

6700K CPU at 4.0 GHz, 16 GB of RAM, and a GeForce GTX 1060 GPU. 5-fold cross 

validation was performed on each configuration, where the data was split 60% for 

training, 20% for validation and 20% for test. Care was taken to ensure eyes from the 

same subject were only included in one of either the training, validation or testing 

datasets. Initially all weights in the convolutional layer base were frozen and just the two 

new layers comprising of the classier were trained. This was done for 10 epochs, with a 

learning rate of 0.00001, batch size of 8, and two callback functions set to only save the 

best network and to stop training if the validation loss hadn’t improved after 5 epochs. 

Then, all weights were unfrozen and the network was retrained for 20 epochs with the 

same callbacks and learning rate. As suggested in the Literature[148], training from 

scratch on OCT images may be preferable as many of the low-level filters in networks 
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pre-trained on natural images are tuned to colors and OCT images are monochromatic. 

However, retraining the entire network pre-initialized on ImageNet provided us with 

better performance than training from uninitialized weights, likely due to our significantly 

smaller dataset. Data augmentation techniques were also used with random rotations ([-

5°, +5°]), zoom (≤ 20%), height and width shift (≤ 10%) and both horizontal and vertical 

flipping set. In response to the unbalanced classes used for training, class weights were 

also assigned to the loss function to mitigate any undue bias towards the class with more 

training data.  

5.3.6. Model Visualization 

In this paper, we will compare two class activation maps: the original class 

activation map[146] and a variant termed Grad-Cam[47]. Class activation maps were 

used to help visualize the areas of the image which were most helpful in determining the 

classification. The original CAM method did this by modifying the network architecture to 

add a global average pooling layer, followed by a dense layer to the convolutional 

network base. Then, then CAM was calculated as a weighted sum of the feature maps 

per class. Grad-CAM performs a similar function by using the gradients of any class, 

flowing into the final convolutional layer to produce the localization map. For our purpose 

we have chosen to only propagate positive gradients for positive activations[158].  

5.4. Results 

5.4.1. Manual Features 

The mean values of the manually extracted features are shown in Table 5-1. 

Fifteen volumes were removed from the manual feature analysis due to poor 

segmentation resulting in inaccurate parameterization. Two-tailed t-tests indicate that all 

the manually extracted features in the dataset are statistically different between means, 

except the axis ratio. As such, all features except axis ratio were included in the manual 

feature classifier. 
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Table 5-8. Mean Values of Manually Extracted Parameters 

  Non-Referable DR (± std) Referable DR (± std) p-value 

FAZ Parameters    

Area (mm2) 1.340 (0.825) 1.915 (1.204)  p < 0.01 

Perimeter (mm) 7.591 (5.070) 10.199 (5.741)  p < 0.01 

Acircularity Index 1.835 (0.661) 2.072 (0.665)  p < 0.01 

Minimum Diameter (mm) 0.997 (0.242) 1.088 (0.293)  p < 0.01 

Maximum Diameter (mm) 1.545 (0.341) 1.867 (0.534)  p < 0.01 

Axis Ratio 1.654 (0.822) 1.762 (0.429)  p = 0.11 

Eccentricity 0.562 (0.152) 0.625 (0.147) p < 0.01 

Vascular Parameters    

Vessel Density 0.449 (0.041) 0.384 (0.044)  p < 0.01 

Inner Density 0.463 (0.042) 0.395 (0.046)  p < 0.01 

Central Density 0.261 (0.062) 0.207 (0.065)  p < 0.01 

Skeleton Density 0.062 (0.007) 0.051 (0.007)  p < 0.01 

Fractal Dimension 1.883 (0.014) 1.861 (0.017)  p < 0.01 
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5.4.2. Diagnostic Network Results 

Table 5-2 shows the accuracy of the single input networks. Interestingly, the 

VGG19 networks achieve the best accuracy for all four inputs. Additionally, the 

superficial structural images achieve the worst performance when compared to the other 

input image types. Conversely, the deep structural images achieve the highest accuracy 

out of all the single networks when using the VGG19 architecture. 

Table 5-9. Accuracy of Single Input Networks 

 Deep Structural (± 

std) 

Superficial 

Structural (± std) 

Deep Vascular (± 

std) 

Superficial 

Vascular (± std) 

VGG19 87.45 (2.98) 77.57 (2.57) 85.56 (2.33) 85.76 (2.86) 

ResNet50 77.76 (5.72) 67.81 (6.46) 79.25 (3.76) 76.92 (5.18) 

DenseNet 71.70 (1.83) 64.51 (4.35) 76.07 (5.54) 81.70 (5.68) 

 

Table 5-3 reports the accuracy, sensitivity and specificity of the ensembled 

networks as well as the network classifier the manual features. Both ensemble methods 

achieved higher accuracy than the manual feature classifier. 

Table 5-10. Comparison of Ensembled Networks to Manual Feature Classifier 

 Majority Voting  Stacking  Manual Features 

Accuracy 92.00  (1.92) 89.86 (2.55) 83.10 (4.89) 

Sensitivity 90.41 (6.23) 87.38 (5.85) 69.26 (9.02) 

Specificity 93.33 (5.18) 92.09 (5.16) 78.42 (6.32) 
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Table 5-4 reports the accuracy, sensitivity and specificity of a 3-channel input 

ensemble network and 3-channel input VGG19 network. As the superficial structural 

images showed the lowest diagnostic accuracy in the single networks, and we used 

networks including pre-trained ImageNet weights which require a 3-channel input, the 

networks in these results did not include the superficial structural images. Additionally, 

as majority voting outperformed the stacking method this was chosen for comparison to 

a standard single VGG19 network. 

Table 5-11. Comparison of 3 Channel Input Networks 

 Majority Voting  VGG-19 

Accuracy 90.71 (1.65) 87.70 (3.41) 

Sensitivity 93.32 (5.34) 94.20 (3.13) 

Specificity 87.74 (4.88) 80.53 (6.60) 

5.4.3. Model Visualization 

A comparison of representative CAM and Grad-CAM visualizations are shown in 

Figure 5.4 for the case of a subject with DR. As shown, the Grad-CAM image is better 

able to focus on features associated with the diseased regions. The vessel thickening 

above the FAZ, and region of capillary dropout to the left of the FAZ are shown to be 

more predictive of disease than the relatively normal looking vasculature more 

peripherally. An additional diabetic patient (severe DR) is shown in Figure 5.5 along with 

the Grad-Cam images for the superficial and deep plexus of both structural OCT and 

OCTA images. These images highlight that for each input image, the networks are 

searching for distinctly different features for classification. In the structural images 

(Figure A-B), the most attention is given to regions of fluid and the hard exudates 

surrounding that region. For the OCTA images, the region of greatest influence is 
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centered on the larger microaneuryms in the images. Conversely, for the control images 

shown in Figure 5.6, the whole parafoveal zone is shown to be influential.  

 

 

 

Figure 5.4  A deep plexus en face image of a DR subject (A) and the 
corresponding heat maps using the original CAM method (B) and 
Grad-CAM (C). As shown by the smaller, more focal regions of 
warmer colors, the Grad-CAM image is able to localize on areas of 
disease better than the original CAM method. The vessel thickening 
above the FAZ, and region of capillary dropout to the left of the FAZ 
are shown to be more predictive of disease than the relatively 
normal looking vasculature more peripherally. 

 

Figure 5.5  Grad-CAMs for the superficial structural image (A), deep structural 
image (B), superficial angiography image (C) and deep vasculature 
image (D) of a Severe DR patient. Hard exudates and regions of fluid 
are highlighted in the structural images. Microaneurysms and 
regions of capillary dropout are highlighted in the vascular images. 
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Figure 5.6  Grad-CAMs for the superficial structural image (A), deep structural 
image (B), superficial angiography image (C) and deep vasculature 
image (D) of a Control patient. Regions of higher uniform intensity in 
the structural images, and regions of normal vasculature tend to 
have a greater effect on the classification. 

In cases of misclassification, the Grad-CAMs resembled the typical pattern of the 

incorrect classification. For a referable NPDR patient, as in Figure 5.7, the Grad-CAMs 

show the non-referable characteristic pattern of a brighter parafoveal zone with the FAZ 

being less influential. For a case of mild non-referable DR, more focal regions of 

potential vessel dropout on the temporal side of the fovea are shown to be of high 

importance for the images which were misclassified as referable DR (Figure 5.8 F-H). 

 

Figure 5.7  The superficial structural image (A), deep structural image (B), 
superficial angiography image (C) and deep vasculature image (D) of 
a referable NPDR patient which was misclassified as non-referable 
DR and the corresponding Grad-CAMs (E-H). The typical non-
referable DR pattern of a brighter parafoveal region is observed in all 
Grad-CAMs. 
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Figure 5.8  The superficial structural image (A), deep structural image (B), 
superficial angiography image (C) and deep vasculature image (D) of 
a non-referable mild DR patient which was misclassified as referable 
DR and the corresponding Grad-CAMs (E-H). Focal regions of 
potential vessel dropout on the temporal side of the fovea are shown 
to be of high importance in the images which were misclassified as 
referable DR (F-H), whereas the superficial structural image shows 
the characteristic parafoveal pattern as it was the only image 
correctly classified. 

5.5. Discussion 

As retinal imaging systems continue to improve, so does our ability to see 

hallmark features of DR. Optical coherence tomography angiography allows clinicians to 

view depth-resolved sections of the retina for both structural clues, as well as vascular. 

As a result, OCTA may enable accurate detection of DR if the right features are used for 

classification. In this paper, we compare the classification accuracy of features 

automatically learned from single plexus en face images, combinations of these learned 

features, and hand-crafted features. Insight to the features learned by the CNN are 

highlighted through CAM heat maps. 

It was shown in Tables 5.2 and 5.3 that a combination of diverse component 

networks provided a higher accuracy than single component networks alone. Both 

majority voting and stacking techniques yielded higher accuracies. For the component 

networks, which were trained on en face images from a single plexus, the shallower 
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network of VGG19 performed better on this task than the deeper state-of-the-art 

networks. While there is some precedent for this[159], it is expected that the ResNet or 

DenseNet architectures would perform better with more data. Although pre-trained 

ResNet18 ImageNet weights are not currently available for use with keras, this 

architecture may perform more similarly or better than the VGG19 architecture. The 

superficial structural images had the worst performance, which may be due to their 

relatively homogenous appearance, even in diseased states. This lack of texture can 

make it difficult for CNNs to learn features. Additionally, the deep structural images 

appear to achieve accuracies on par or better than the vascular images, suggesting that 

OCT structural information should also be taken into account while analyzing OCTA 

volumes.  

There exists strong evidence in the Literature that hand-crafted features 

extracted from OCT and OCTA images are able to differentiate between grades of 

DR[160]–[162]. One study[163] that looked at combining hand-crafted features from both 

the superficial and deep plexus resulted in an overall accuracy, sensitivity and specificity 

of 94.3, 97.9, and 87.0, when classifying between controls and mild DR patients. This 

paper extracted parameters for the vessel density, blood vessel calibre and width of the 

FAZ and used an SVM for the classifier. Another recent paper[164] uses both deep 

learning and manually extracted features to detect DR in OCT. For their network, they 

combined both handcrafted features and learned features to differentiate between 

grades 0 and 1 DR with an accuracy, sensitivity and specificity of 0.92, 0.90 and 0.95, 

respectively. It is important to note that with manually extracted features there is the 

ability for errors to propagate where errors which arise during the segmentation and 

parameterization phase to affect the classification. Future work could use an ensemble 

of both hand-crafted features and learned features to enhance performance. 

To compare whether ensemble techniques achieved better performance than a 

standard CNN, the three grayscale images with the highest diagnostic accuracy in Table 

5.2 were chosen to create an RGB image as input for a VGG-19 network. When 

compared to an ensemble network with the same inputs, the ensemble network 

achieved a higher accuracy and specificity as shown in Table 5.4. Additionally, although 

the superficial structural image had a significantly worse diagnostic accuracy on its own, 

the fact that the 4 channel input ensemble network outperformed the 3 channel input 
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shows that it still holds important information for the classification of DR and should be 

considered in future works.  

The Class Activation Maps, and Grad-CAM in particular, showed good 

localization of the biomarkers associated with DR, thereby increasing the interpretability 

of the CNN results. In correctly classified referable DR images, areas of hard exudates, 

DME, microaneurysms and capillary dropout show higher activation. The interpretability, 

and subsequent physician trust in the networks, could also be increased by utilizing 

Grad-CAM in the choice of layers in which to ensemble as done in a recent paper by Liu 

et al[165]. Grad-CAMs were created for each feature layer in networks trained to detect 

pseudo-progression of glioblastoma multiform, and a team of three specialists chose the 

most discriminating layer from each network with which to ensemble. This technique 

could be used in future work to increase both algorithm performance and physician 

uptake of the innovation.  

While this study demonstrates the ability of CNNs to classify DR in OCTA with 

high accuracy there are notable limitations. First, the use of ensemble learning methods 

greatly increases the computational cost as it requires the training of multiple networks. 

This increases both training time as well as the data size of the final model, though this 

could be partially alleviated through training the component networks in parallel. Another 

limitation includes the restricted dataset size, however this limitation was mitigated 

through the use of fine-tuning, data augmentation, and class-weighting of the loss 

function. The authors note that improved performance could be achieved through a 

larger dataset. Furthermore, the dataset only included images with a signal strength of 7 

or above, which is sometimes infeasible in patients with pathology. The dataset also 

consists of images from only one machine, thereby potentially limiting the network’s 

performance on other OCTA machines. Additionally, as only one clinician was used for 

grading and disagreement between clinicians can sometimes occur, inaccurate 

diagnoses may have impacted the results. Future work could endeavor to further stratify 

the DR classification.  

5.6. Conclusion 

To the best of the authors’ knowledge, this is the first paper to classify DR using 

OCTA en face images, as opposed to manually extracted features. There is still ongoing 
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research as to how to fully utilize the data rich volumes while producing results for 

clinicians which are clinic-friendly and not overwhelming due to data overload. By 

utilizing the whole en-face image as opposed to several manually extracted features 

which attempt to capture relevant information, the DNN can use more information to 

decide what is truly relevant. As such, the diagnostic accuracy of en face images for this 

application is higher than manually extracted features, which we believe has significant 

clinical impact as OCTA continues to rise in popularity among clinicians. 

5.6.1. Contributions 

This study was done in close collaboration with our clinical counterparts, 

especially Dr. Sonja Karst and Dr. Eduardo Navajas who provided invaluable expertise 

when designing the experiment. I was involved in this study from the start, where we 

initially used Zeiss AngioPlex data from another clinic, which I extracted from the clinical 

imaging machine and curated. The details of the methods, including the use of ensemble 

learning, were conceived and designed by myself. I wrote the code to extract the 

majority of the manual parameters once segmented by a blood vessel segmentation 

network. All machine learning scripts were written by me, but I did supervise Mr. Timothy 

Yu in his exploration of optimizing hyperparameters and network architectures for the 

manual parameter network. Additionally, I wrote the manuscript which was submitted to 

Translational Vision Science & Technology and has been accepted for publication. 
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Chapter 6. Conclusions 

6.1. Summary 

The main purpose of this thesis is to investigate translational image analysis, from an 

engineering laboratory to clinical application, for newly developed OCT technologies 

using machine learning. The small size of data sets acquired with clinical prototype 

imaging instruments presents a unique challenge when translating to a clinical setting, 

especially when using deep learning which typically requires a vast amount of labeled 

data for supervised training. The works described in Chapters 3-5, describe the 

evaluation of several different techniques to mitigate the need for large annotated 

datasets.  

First, the basic concepts of the pertinent eye anatomy, ophthalmic imaging 

techniques, and machine learning were described. An extensive overview of all the 

potential subtopics for each category is beyond the scope of a thesis, but the relevant 

information as it pertains to this thesis was described. Multiple review articles on deep 

learning in ophthalmology are available in the Literature, for example [2], [8], [9]. 

The first study looked into the concept of transfer learning through fine-tuning 

networks trained from a different domain (adaptive optics scanning laser 

ophthalmoscopy) to the domain of interest (adaptive optics OCT) to detect cone 

photoreceptors. Through this study we were able to show that transfer learning with a 

smaller dataset performed comparably to a network trained solely on the data of interest 

with a much larger dataset. As the field moved away from patch-based segmentation 

networks to fully convolutional neural networks with the wide-spread adoption of U-Net, 

so did we with our next investigations, applying transfer learning where applicable. 

Using volumes of the optic nerve head, we were able to show that adversarial 

learning and pseudo-labelling advanced the performance of a vanilla U-Net for the 

retinal layers. These techniques are important for clinical imaging analysis, as it is 

typically more difficult (resource intensive) to obtain high quality annotations than it is to 

obtain the images themselves. With the pseudo-labelling technique we were able to still 

use all the acquired images, even without manual segmentations. Along with a Faster R-

CNN approach to segment the Bruch’s membrane opening, we were able to apply these 
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techniques to the 3D OCT volumes and show good correlation between automated and 

manual clinical parameters.  

Finally, the more challenging task of diagnostics with limited data was 

investigated using diabetic retinopathy OCTA data. OCTA volumes are inherently 

extremely data rich as they are not only 3D volumes themselves but are processed from 

3D OCT intensity images, which also provide features of interest when studying diabetic 

retinopathy. As such, ways to use all the information contained in these volumes is of 

high interest. Through ensembling networks for four extracted en face images, we were 

able to use a relatively small amount of data to diagnose referable and non-referable 

diabetic retinopathy.  

In summary, the major contributions of this work are (1) the translation of 

machine learning / deep learning based tools to the clinic and (2) the development and 

demonstration of approaches using transfer learning and semi-supervised learning to 

reduce the amount of clinical data required for training artificial neural networks. 

6.2. Future Work 

While several deep learning techniques were investigated for the translation of state-of-

the-art OCT systems to the clinic, there exist several topics that can be considered for 

future work. 

The results presented in Chapter 3 for the automatic segmentation of retinal 

cones was applied to control (non-diseased) image data. A first and natural extension of 

the cone counting algorithm is to apply it to pathological data. Figure 6.1 shows a 

representive en face image acquired from a patient with Acute Zonal Occult Outer 

Retinopathy (AZOOR). When compared to the cone mosaic of the control subjects in 

Chapter 3, there are obvious regions where the homogeneity of the mosaic is disturbed. 

Although an AZOOR patient is shown as an example, there exist several pathologies 

which affect the photoreceptor layer such as age-related macular degeneration, 

Stargardt's disease, retinitis pigmentosa, and achromotopsia. Our unique position of 

having an AO-OCT system in a retinal specialist’s clinic puts us at an advantageous spot 

to investigate DNN methods for the analysis of pathological datasets. Future technical 

work for this project could also be to update the patch-based method to a fully-
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convolutional network, like the one described by Hamwood et al. [166], thereby allowing 

the analysis of an image with just one inference. 

 

Figure 6.1 En face image of a patient with Acute Zonal Occult Outer 
Retinopathy (AZOOR). Patches of typical cones are interspersed 
with patches of pathological areas. 

Additionally, extending on the theme of research presented in Chapter 5, there 

are several other ways one could approach the diagnosis of diabetic retinopathy using 

OCTA. For example, it is hypothesized that early changes in diabetic retinopathy occur 

in the deep capillary plexus of the retinal periphery. As such, using wider fields of view 

may be of benefit. Furthermore, class activation maps are a great start to aiding in the 

clinical translation of Deep Learning technology, though they may be insufficient. 

Therefore, another approach may be to use segmentation and identification networks 

such as Mask R-CNN to detect the same clinical landmarks clinicians use for fundus 

images (cotton-wool spots, venous beading, intraretinal microvascular abnormalities, 

micro aneurysms, etc.) but in OCT/OCTA volumes. This would enable to same criteria to 

be used for classification and may ease the adoption of such technology into the clinic. 

This would be a challenging technical task however as some features such as micro 

aneurysms have been shown to be undetectable by manual raters in OCTA images, and 

may be even more difficult to detect in larger fields of view if high resolution is not 

maintained.  

Furthermore, as the tools and techniques discussed in this thesis worked towards 

solving the limited data case, it should be acknowledged that as these instruments 

continue to collect more data other questions can begin to be addressed. One in 
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particular is how the data and deep learning tools can be used for prognostics. As 

longitudinal image data for individual patients, along with pertinent demographic and 

progression details are curated, we should start to see a rise in studies looking to predict 

which patients will progress faster than others, or which patients will respond to certain 

treatments. These questions cannot currently be answered with limited datasets 

however, and may also require further improvements to the current hardware. 

The examples of future work thus far have been relatively small steps from the 

current state of the work in the field. Looking further into the future, machine learning 

truly has the potential to aid in much more than the segmentation of image features or 

even the diagnosis of diabetic retinopathy. As the algorithms and hardware continue to 

improve, one could imagine a world where every imaging system comes equipped with 

its own suite of AI tools that not only aid in the diagnosis of diseases, but also aid in the 

individualized treatment plan and prognosis of patients.  
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