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ABSTRACT 

The fifth generation (5G) of wireless connectivity is a global research effort for 

providing a significant jump in communications capacity. This will improve existing 

services for personal and business communications, navigation, media 

distribution, etc. New applications will include wearable terminals, smarter homes, 

better vehicular safety and other critical infrastructure, and products that are 

currently unimagined. The 5G capabilities include higher reliability and data rates 

with lower latency, realized through new technologies such as (i) massive MIMO 

(multiple input, multiple output) - meaning the use of a large or massively large 

number of antennas, and (ii) higher carrier frequencies – meaning tens to hundreds 

of GHz - in order to have physically smaller antennas. 

The massive MIMO is the most visible and compelling technology for 5G. The idea 

is to use arrays with a massive number of antenna elements for serving mobile 

terminals simultaneously. With 5G a cornerstone goal of current research in 

communications theory, radio-wave propagation, antennas, and electronics, new 

paradigms are being sought in many aspects of communications design and 

implementation. This particularly motivates a study of massive MIMO, with the aim 

of understanding and contributing to the knowledge pool for the communications 

performance expected from 5G. The breadth of technologies is too overwhelming 

to address within a single cover and so the following projects were selected and 

are presented in this thesis as contributions to 5G: 

(i) a signal processing algorithm for massive MIMO antenna selection 

combining, evaluated in a modelled, realistic propagation environment;  

(ii) a design concept for a distributed antenna channel sounder, 

demonstrated for magnitude-only indoor channel sounding; 

(iii) a MIMO test-bed for proof-of-concept demonstration of FPGA-based 

MIMO signal processing algorithms. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation of Thesis 

Mobile communications, developed over the last century, has been a triumph of 

electrical engineering. Currently we are enjoying and marvelling at what is widely 

referred to as the fourth generation (4G) of cellular systems. The next generation 

of wireless communication will support another major growth cycle for mobile users 

and the data sizes and rates associated with their demand. Two 5G technologies 

that are under the spotlight are massive MIMO and millimetre wave 

communication. The mm-wave frequencies allow the sizes of antennas, and in 

particular massive numbers of them in arrays which can be physically smaller than 

using currently deployed frequencies. Antennas, per se, are not investigated here 

- the 5G focus of this thesis is on aspects of massive MIMO communication 

systems which operate on current frequencies below 6GHz. This allows physical 

measurements for a reasonable cost, and comparisons with existing technologies. 

Massive MIMO is a key technology that will enable 5G to significantly increase 

network capacity and spectral efficiency, improving the end-user experience [1]. 

Some of the characteristics of massive MIMO include all-digital signal processing 

and channel hardening. However, the use of analogue processing at the radio 

frequencies will survive in some form because much of that processing is 

inherently analogue. An example is the switches used for preselection of antennas 

in massive MIMO, addressed in Chapter 2. The baseband processing, including 

much of the simultaneous combining of antenna signals that follows preselection, 

will be purely digital. Channel hardening is a recent term for the traditional diversity 

action available from using multiple antennas: the combined signal has a lower 

variance, which approaches zero as the number of antennas approaches infinity.  

Over the last the couple of years, massive MIMO has gone from being a theoretical 

concept for channel hardening to becoming a promising key ingredient for 5G. This 



2 

breath-taking pace of technology development is motivated by the fact that it 

provides a way to increase the capacity and capacity efficiency by “simply” 

upgrading existing base stations. In short, massive MIMO is rapidly approaching 

technical, and even commercial, feasibility. The goal in round numbers is as 

follows: to provide a hundred times higher capacity efficiency without installing a 

hundred more base stations [1]. 

The objective of this thesis has been to seek an understanding of some key 

aspects of massive MIMO technology. (To address all aspects of 5G does not 

seem feasible under a single cover.) To do so, three development projects have 

been undertaken:  

(i) a signal processing algorithm for massive MIMO antenna selection 

combining, evaluated in a modelled, realistic propagation environment;  

(ii) a design concept for a distributed antenna channel sounder, 

demonstrated for magnitude-only indoor channel sounding; 

(iii) a MIMO test-bed for proof-of-concept demonstration of FPGA-based 

MIMO signal processing algorithms. 

These projects are described in subsequent chapters, following this introduction. 

1.2 Background on Massive MIMO and 5G 

Massive MIMO is essentially a scaled-up version of conventional MIMO. This 

scale-up is about an order magnitude compared to current state-of-the-art, in terms 

of capacity, and number of antennas, etc.  This in turn follows the scale-up basis 

of 5G, which is often mentioned in the literature to be a factor of a thousand, 

relative to 4G. Massive MIMO indicates the use of antenna arrays with a few 

hundred antennas, simultaneously serving many tens of terminals in the same 

time-frequency resource. The basic premise behind massive MIMO is to reap all 

the benefits of conventional MIMO, but on a much greater scale [1].  

The question arises as to what is “conventional MIMO”?.  The term MIMO is used 

for any system that uses multiple antennas at either one end or at both ends of a 

link, so this includes traditional antenna diversity, and in fact MIMO and antenna 

diversity can be used interchangeably. For this thesis, the conventional MIMO is 
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taken to be 2-by-2 antennas (two antennas at each end of the link), using Alamouti 

2-by-2 space-time coding. So this is not “full MIMO”, in the sense of an 

orthogonalization of the channels into eigen-channels, which, once the eigen-

channels are established, gives the greatest capacity available in a mathematical 

sense. Deploying eigen-MIMO requires channel knowledge at the transmitter, 

which in turn means that the channel resource, i.e., the very metric being 

maximized, must be consumed in order to sound the channel and then interchange 

the information to the transmitters. For fast-changing channels, the act of getting 

the channel knowledge (or channel state information - CSI) to the transmitters can 

dominate the channel usage and compromise the useful capacity for a practical 

channel situation. For slow-fading channels, the sounding requirements are also 

slow, and require less capacity resource.  Consequently, channel sounding ideas 

suitable for MIMO systems are required. In a communications link, the channel 

sounding can be buried in the signal processing in the form of pilot symbols, and 

so a protocol for interchanging the CSI if that is required at the transmitter, as in 

the case of eigen-MIMO. The CSI is not required at the transmitter in space-time 

coding. There are several space-time codes available, ranging from 2-by-1 to 8-

by-8, and these codes are mostly hand-crafted, although super-computer 

searches continue to seek new ones. The question remains as to how to estimate 

the channels in order to evaluate the operation of a proposed deployment (without 

actually undertaking the deployment of course), and one idea for solving this 

channel sounding problem is investigated as part this thesis (Chapter 3). 

Because massive MIMO is a scaled up version of conventional MIMO, its 

development heavily relies on established MIMO theory [1], [2]. The most 

significant MIMO achievements include the pioneering work, such as that 

presented in [3], where the available mathematical capacity was shown to linearly 

increase with the minimum number of the transmitting or receiving antennas, over 

Gaussian noise and Rayleigh fading links. (In fact this result was also shown by 

J.Winters in an earlier publication) This result, along with the invention of space-

time coding, for example by Alamouti, have transformed the expected capacity 

performance of a link in less than a few of decades. The performance advantage 
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of MIMO is measured by metrics such as diversity gain  [4], [5] and multiplexing 

gain [1] - [6], and of course various capacities (mathematical forms to practicable 

forms), are applicable to massive MIMO as well.  

The following diagram (Figure 1.1) gives an indicative view of the deployment of 

massive MIMO for an outdoor situation. It depicts linear arrays, often comprising 

basic elements spaced by a small electrical distance (normally less than a 

wavelength) which can be mounted on the roof or wall of a building in order to 

illuminate an angular field-of-view of up to a hemisphere. Cylindrical arrays can be 

used for circular coverage. Finally, Figure 1 also depicts distributed antennas – 

where the elements (or subarrays) are spaced by a very large electrical distance - 

in the case of Figure 1.1, around a building roof.  

 

Fig. 1.1. Configurations of massive MIMO system. (Copied from [7]) 

 

Other distributed antenna systems (DAS) have larger separations, compatible with 

traditional macro-diversity, where the antennas are spread out to be different base 

station sites that have independent lognormal, or shadow, fading, for any user in 

the coverage areas. The advantage of DAS is the larger (geographic) coverage 

compared to conventional arrays, and the disadvantage is the need for electrically 

long, low-loss, fast, radio-frequency coherent connections between the spaced 
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antennas. This is the same as the array feed problem (the feed system is typically 

a much higher cost and greater source of loss, than the set of antenna elements 

comprising the array antenna itself) but on an exaggerated spatial scale. 

Therefore, new ideas are required for this feed, and one such idea is developed 

and demonstrated in this thesis (Chapter 4).  

1.3 Literature Summary 

This section gives a short overview of the literature pertinent to the three projects 

of massive MIMO. The following questions are addressed as three projects on 

massive MIMO in this thesis. 

(1) How to select antennas in a massive MIMO communication system? 

The first research problem focuses on developing an antenna selection algorithm 

for massive MIMO. It relates to the “feed problem” mentioned above – namely that 

the feed system is often the dominant cost in an array. In a massive array, the feed 

problem becomes massive. The antennas themselves are relatively inexpensive, 

so if we can reduce the feed costs by simultaneously using only some of the 

massive array, then there may be a hardware advantage. Therefore, a way forward 

is required for choosing those elements for simultaneous signal combination, a 

process that is referred to here as preselection. We present an antenna 

preselection scheme based on capacity maximization for downlink transmission. 

Considerable work has appeared in the literature regarding antenna selection 

algorithms for collocated MIMO. (Strictly speaking, collocated is an incorrect term 

in an antenna context, because the antennas are closely spaced in a conventional 

array, which is different to collated antennas which would also have collocated 

feeds - such as three orthogonal dipoles for three-branch polarization diversity). 

There is little work done on antenna selection in massive MIMO. Prior work on 

antenna selection has focused mostly on collocated MIMO (again using the term 

as used in the literature) [8], [9], [10], [11], [12], [13]. Antenna selection is a 

generalization of selection diversity, where a single antenna, or diversity branch, 

with the maximum instantaneous channel gain, or some other communications 
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quality metric, is used for the selection action. For preselection, we seek to select 

several of the elements of an array, which can then be used for non-selection 

signal combining. The optimum algorithm to select N  of M antennas is 

exhaustively searching over all possible antenna combinations and selecting the 

one that yields maximum capacity. This method is not feasible, in the general case, 

due to the computational complexity. Various algorithms for conventional MIMO 

[8], [9], [10], [11], [12], [13] have been extended to massive MIMO systems, and 

some new analysis have been undertaken for massive MIMO antenna selection, 

eg.,  [13], [14], [15].  

 

(2) How to realize a channel sounder based upon a test-bed system that is 

suitable for Distributed Antenna Systems (DAS)? 

Even though a remarkable amount of research in MIMO systems has been 

conducted over the past two decades, the full potential of MIMO systems is yet to 

be exploited in practical applications. One reason for this is a shortfall of 

understanding of the characteristics of radio channels. Therefore, the radio 

channel characteristics should be investigated more thoroughly, and in fact this is 

always a cornerstone step for configuring and designing a wireless system. 

Several challenges are associated with the development of a distributed channel 

sounder. The basic tool is the two-port Vector Network Analyzer (VNA), which can 

measure a basic channel (the scattering parameter S21 is related to the transfer 

function of a single channel.) The challenge is that a large number of channels 

need to be sounded simultaneously, and most VNAs are two-port only, although 

some 4-port versions are available (with 3-4 receivers for simultaneous 

measurement).  However, the cost of a multiport test set is formidable. The 

alternative is to make a multiplexer, which allows multiple channels to measure in 

sequence. But for changing channels, and a lot of them, the measurement does 

not supply appropriate information because of the non-simultaneous nature of the 

measurements. For example, the instantaneous correlation between different links 

has a significant impact on the performance of distributed MIMO systems. 
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Although the calculation of this correlation is not addressed in this thesis (and is a 

relatively straightforward calculation once sounding data has been obtained), a 

new concept for how to simultaneously sound multiple channels is presented. The 

prior work on channel sounders appears limited to [23], [24], [25], [26], [27], [28], 

[29], [30], [31], [32] [33], [34].  None of these offer the elegance of the presented 

concept, which uses a “regular” two-port VNA plus a set of optical-fibre-based 

delays, to sound channels simultaneously.  With more optical fibre delays, more 

channels be sampled. Our demonstration is limited to 3 channels. The optical 

hardware can be expensive (tens of thousands of dollars), but this is small 

compared to using many-port VNA test sets.  Optical systems are increasingly 

being used with VNAs and radio frequency testing, so the optical component costs 

are plummeting. 

 

(3) How to implement an FPGA based radio-over-fibre (RoF) MIMO-OFDM 

communication system? 

As wireless communication systems are increasingly using multiple antenna 

techniques, not only is the feed problem is coming more to the fore, but the signal 

processing requirements are also increasing. The idea is to use fibre optic 

connections for the feed between distributed antennas, and FPGA-based 

algorithms, and a demonstration is required to identify its utility. 

Due to the wide variety of available MIMO algorithms for different types of MIMO 

systems, with their different complexities and numerical behaviour using fixed-

point implementations, realizing algorithms – typically on FPGAs - is a challenging 

task. This project seeks to understand aspects of the practical signal processing 

engineering by developing a block-based (meaning blocks of multiple symbols) 

algorithmic description composed of coarse-grain (meaning symbol-rate 

processing) functions to found the design process. This project uses a modular 

implementation approach (meaning different FPGA IP-cores), which preserves the 

structure of the MIMO algorithm while maintaining a connection between the 

algorithm, the signal processing flow, and the physical architecture. The idea is to 
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learn about bridging the gap between a theoretical-only understanding of MIMO 

algorithms and their practical implementation on FPGA-based software-defined 

radio (SDR) platforms. FPGAs allow higher processing power compared to other 

platforms such as powerful commodity-type computers (laptops and PCs). Various 

authors have discussed the hardware implementation of MIMO, but most of the 

literature that focuses on FPGA implementations lack complete real-time setup. 

Nevertheless, there are some interesting publications on real-time implementation 

of various MIMO algorithms inside the FPGA for testbeds.  

A summary of published testbeds is as follows. [16] describes the details of the 

“Vienna” MIMO test-bed. The signal processing algorithms are implemented in 

MATLAB (i.e., not in an FPGA). The transmission data is generated stored in PC 

and then transmitted using the RF module connected to the computer. The 

transmit and receive PCs are controlled using a LAN connection. This platform 

supports a 4x4 MIMO capability. [17]  discusses a MIMO test-bed developed at the 

University of Duisburg-Essen, Germany. This test-bed uses the Sundance 

hardware [18] for baseband processing (such as coding/modulation schemes 

including OFDM and CDMA) with RF modules by Amtel Inc. [18]. The GEDOMIS 

(GEneric hardware DemOnstrator for MIMO Systems) in [19], [20], describes a 

complete real-time multi-antenna experimental 4x4 MIMO-OFDM transmission 

system operating in two ISM bands. The system enables evaluation of the physical 

layer baseband algorithms targeting the MIMO systems on the FPGA platform. 

The focus is on the impact of using increasing bandwidth, which scales the 

implementation complexity of the baseband signal processing algorithms. The 

system was successfully demonstrated under realistic channel conditions in static 

scenarios (non-mobile channels). In [21], a low bandwidth FPGA-based MIMO 

test-bed is used to carry out a channel measurement campaign to analyse its 

capacity, and evaluate experimentally a pilot-based channel estimation scheme on 

the FPGA. [22] presents a real-time FPGA prototype for a 4 by 1  MIMO-OFDM 

transceiver in a 20 MHz bandwidth. FPGA implementation and results are reported 

along with measurements that demonstrate the throughput of spatial multiplexing 

with four spatial streams. 
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1.4    Published and Submitted Contributions from this Thesis 

The list of open publication contributions from this work are as follows. 

1. S. Mahboob, R. Ruby, and Victor C.M. Leung., “Transmit antenna selection 

for downlink transmission in a massively distributed antennas system using 

convex optimization”, in Proc. IEEE International Conference on Broadband 

And Wireless Computing, Communication and Applications, pp. 228-233, 

2012. 

2. S. Mahboob, and R.G. Vaughan, “Fiber-Fed distributed antenna system in 

an FPGA software defined radio for 5G demonstration,” IEEE Transactions 

on Circuits and Systems, pp. 1-5, publication date April, 2019. 

3.  S. Mahboob, and R.G. Vaughan, “Antenna selection in a massive MIMO,” 

IEEE Transactions on Circuits and Systems--II, (Submitted, September 

2019). 

5. S. Mahboob, S.B. Ram, R.G. Vaughan, “Vector channel sounder using fiber 

delay lines to separate the channels”, Proc. IEEE International Symposium 

on Antennas and Propagation and USNC-URSI National Radio Science 

Meeting, pp. 1113- 1114, 2017. 

6. R. Ruby, S. Mahboob, and D.G. Michelson, “Optimal configuration of 

distributed MIMO antennas in underground tunnels”, IEEE International 

Symposium on Antennas and Propagation and USNC-URSI National Radio 

Science Meeting, pp. 65-66, 2014. 

7. S. Mahboob, Rukhsana Ruby, David G. Michelson and Victor C.M. Leung., 

“Antenna Selection in Massively Distributed Antenna Systems for Short 

Range Vehicular Networking Infrastructure”, (Poster) Presented at 4th 

Annual Workshop on Developing Next Generation Intelligent Vehicular 

Networks and Applications (DIVA), 2014-Ottawa Canada. 
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8. S. Mahboob, Roberto Rosales, David G. Michelson and Victor C.M. Leung, 

“A Distributed Channel Sounder for Short Range Vehicular Networks in 

Urban Microcells”, (Poster) DIVA, 2014- Ottawa Canada. 

1.5 Organization of Thesis  

The thesis is organized as follows. In Chapter 2, we discuss the antenna 

preselection in a massive MIMO downlink environment. This uses an interior-point 

algorithm from convex optimization theory. In Chapter 3, we present a vector signal 

analyzer (VSA) based distributed channel sounder (DCS), with radio over fibre 

(RoF) connected to remote antenna units (RAUs), also demonstrating 

measurements for (indoor) distributed channel sounding. This measurement 

approach has the potential for massive MIMO channel measurements, and this is 

a unique feature – there is no other technology approach that can undertake this 

measurement (viz., a simultaneous measurement) that is feasibly priced. The 

proposed channel sounder technique was developed and an experiment 

undertaken to prove the concept. In Chapter 4, a radio-over-fibre system is 

developed for a 2 by 2 Alamouti space-time coded MIMO-OFDM system, 

implemented in an FPGA. The motivation is recalled from above as striving to 

understand the hardware level architecture and engineering. A scalable system is 

desirable, meaning that these 2 by 2 modules could be concatenated into a 

massive MIMO system, but scalability is not demonstrated here. The complete 

transmitter and receiver are developed in the FPGA fabric using Verilog, Xilinx 

System Generator and C programming. Chapter 5 summarizes the thesis and 

presents some future directions for research in massive MIMO. 
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CHAPTER 2: ANTENNA PRE-SELECTION ALGORITHM IN A MASSIVE MIMO 
USING CONVEX OPTIMIZATION  

2.1 Overview of Chapter 

The ever-increasing demand for  higher data transmission rates has motivated a 

vast body of research based on Multiple-Input Multiple-Output (MIMO) systems, 

because MIMO systems can increase the system capacity (and capacity 

efficiency) and improve transmission reliability, etc. However, the multiple RF 

chains associated with multiple antennas are costly in terms of the required 

physical size, power, and hardware. Antenna preselection (also referred to simply 

as selection) is a signal processing technique that strives to reduce the system 

complexity and cost of the RF front-ends. This chapter describes the concept of 

antenna preselection in a single-user massive-MIMO system. In this work, convex 

optimization is used to select the optimal number of antennas, to achieve the best 

compromise between the achievable capacity and system complexity. Specifically, 

the interior-point algorithm from optimization theory is utilized.  

MIMO requires a multi antenna setup at the base-station [7]. For example, the LTE 

standard allows only up to 8 antennas at the base-station. It is documented in [35] 

[36] that massive-MIMO can reduce the inter-cell interference between users, 

using the same frequency resource. This happens because as the number of base-

station antennas grow, the channel vectors between the users and the base-

stations become very long random vectors [2], [37], [1] and under “favourable 

propagation conditions” (a misleading description of the situation, but widely used 

in the MIMO signal processing literature), these channel vectors become pairwise 

orthogonal [3]. As reported in [38], [39], under the so-called favourable propagation 

conditions, even a simple linear precoding/detection scheme e.g. zero-forcing and 

matched filtering, becomes nearly optimal. Other attractive features of massive-

MIMO are simple hardware, making it possible to deploy a large number of 

antennas. So far, investigations are based on the theoretical independent and 

identically distributed (i.i.d.) complex Gaussian, i.e. Rayleigh fading channels. With 

increasingly large antenna arrays, the combined signal increasingly looks 
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deterministic [40] because the effects of small-scale fading are averaged out. 

Furthermore, when the number of base-station (BS) antennas grows large, the 

random channel vectors between the users and the BS become pair-wise 

orthogonal [1]. In the limit of an infinite number of antennas, with simply matched 

filter processing at the BS, uncorrelated noise and intra-cell interference disappear 

completely [41].  Massive-MIMO has other advantages as well, e.g., eliminating 

the effect of uncorrelated noise and fast fading. For a massive MIMO, the real 

expense comes from the RF-chain associated with each antenna. The RF-chain 

comprises of low-noise amplifier (LNA), mixer and an analog-to-digital (ADC) and 

digital-to-analog (DAC) convertors. One solution, to reduce the cost, is antenna 

preselection, which can reduce the cost of RF chains and yet preserve most of the 

diversity and multiplexing gains. With a limited number of RF chains and more 

antennas, antenna selection improves the system performance by exploiting the 

spatial selectivity, as the subset of antennas with the best channel conditions is 

selected and switched to RF chains [42] [43].  

2.2 Background on Antenna Selection Algorithms 

Prior work on antenna selection is focused mostly on conventional MIMO (with 

small number of antennas e.g. 2, 4, 8). Antenna selection in MIMO can be 

considered as a generalization of selection diversity [44], where a set of antennas 

with maximum instantaneous channel gains is selected. Antenna selection 

algorithms are categorized based on the selection criteria. Commonly used criteria 

are either maximization of channel capacity or maximization of signal-to-

interference-plus-noise ratio (SINR) at the receiver [45]. In conventional MIMO 

systems, the optimum algorithm to select antennas is exhaustively searching over 

all possible antenna combinations, i.e., calculating determinants for each channel 

instance, and selecting the one that yields maximum capacity. This method is not 

feasible due to computational complexity. The norm-based method (NBM) [46] is 

a suboptimal antenna selection approach that selects the transmit antennas 

corresponding to the columns of channel gain matrix with the largest Euclidean 

norm. Although simple and computationally efficient, NBM incurs capacity-loss as 
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it is sub-optimal. The correlation-based method (CBM) [47] searches columns in 

the channel matrix with the largest correlation and deletes ones with the lowest 

power. A near-optimal antenna selection algorithm based on capacity 

maximization is presented by Gorokhov [48]. It uses matrix inversion as a recursion 

for capacity computation, which increases its complexity. Decremental antenna 

selection approaches are presented in [48] and [10], which begin with a complete 

set of antennas and remove one antenna per iteration. In each step, the antenna 

with the lowest contribution to the capacity is removed. This process is repeated 

until columns are eliminated. The algorithm proposed by Alkhansari [49] gives a 

near optimal antenna selection at reduced complexity. The algorithm starts with an 

empty set and adds antennas iteratively based on its capacity contribution. 

Algorithms [8] and [49] are categorized as incremental antenna selection 

approaches. [50] and [51] present the antenna selection approaches in multiuser 

scenarios, using the block-diagonalization and dirty-paper coding. Researchers 

have addressed the topic of antenna selection in the massive-MIMO system, e.g. 

[14] [52] [53] [54] [55] [56] [57] [58] [59] have described various antenna selection 

algorithms in massive-MIMO systems. The question of how to perform antenna 

selection to improve energy efficiency is investigated in [60] and [61]. In [60], the 

RF chain selection for configurations both with and without CSI is studied to 

maximize spectral efficiency for a given total power consumption constraint. It is 

shown that for MISO without CSI, the optimal number of RF chains is about half 

the maximum number of RF chains that can be supported by the power budget. In 

[55], a channel capacity metric based on antenna selection is derived, and the 

variance of the mutual information is found to decrease as the number of antennas 

increases. This work also shows that to maximize the energy efficiency, all 

antennas should be used if the circuit power can be ignored compared to the 

transmit power while only a subset of the antennas should be chosen if the circuit 

power is comparable to the transmit power. The implementation of antenna 

preselection for massive MIMO needs new research and development. The 

contribution here is a new reduced-complexity algorithm for antenna preselection 

based on convex optimisation. 
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2.3 Proposed System Model  

Consider the downlink of a massive MIMO system shown in Fig. 2.1. The system 

includes one BS equipped with an array of M antennas that receive data from K  

single antenna users. The users receive their data in the same time-frequency 

resource. The downlink propagation channel is, 

1
2G HD  (2.1)     

 
 

 
Fig. 2.1. System model of Massive MIMO system. 

 

where D  is the large-scale fading (LSF) matrix and H  accounts for the small-

scale fast fading usually modelled by Rayleigh distribution. The LSF matrix is 

diagonal, with elements account for the effects of mean (over the Rayleigh-like 

fading) propagation loss including lognormal shadowing. The lognormal 

shadowing is assumed independent at each antenna and varies slowly with time. 

The fast fading coefficients, i.e., elements of H  are assumed independent and 

identically distributed random variables with a zero mean and unit variance, giving 

the Rayleigh magnitude. The dimensions of H and D  are K M   and M M , 

respectively. The channel matrix G  models independent fast fading, geometric 

attenuation, and log-normal shadow fading. The channel kmg  is, 

1, 2, ,km km kg h m M    (2.2)     

 

where 
kmh  is the fast-fading coefficient from the thm  antenna of the BS to the thk  

user. k  models the distance-based loss and shadow fading which is constant 
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over many Rayleigh-fading coherence time (and many signalling time intervals). 

This assumption is reasonable since the distances between the user and the BS 

is much larger than the distance between the antennas, and the value of k  

changes very slowly over time. H is the K M  matrix of fast-fading coefficients 

between the K  users and the BS, i.e.   kmkm
H h  and D  is a K K  diagonal 

matrix, where   kkk
D  . We assume that the BS has perfect CSI. For simplicity, 

we assume equal power allocation among the users i.e. 
1

P
K

  and select the M  

antennas that maximize the channel capacity.  

2.4 Favourable Propagation in a Massive MIMO 

We assume that the fast fading coefficients i.e. the elements of H  are independent 

and identically distributed (i.i.d) random variables (RVs) with a zero mean and unit 

variance. Then applying the above two conditions on any two columns p  and q  

inside the matrix G . In this case, we have 

1 1
2 2

H H

M K M K

G G H H
D D

M M

D

   
   

   


� �
 

(2.3)     

 

Clearly, if all the fading coefficients are i.i.d. and zero mean, we have 

approximately “favorable propagation”. Recent channel measurements campaigns 

have shown that massive MIMO systems have characteristics that approximate 

the favorable propagation assumption fairly well [4], and therefore provide 

experimental justification for this assumption.  For each use of the channel, the 

massive MIMO transmits a 1M    vector 
fs , and the users receive a vector signal 

f f f fx Gs w  . (2.4)     

 

The term 
fw  is a 1K    noise vector at the receiver, whose components are i.i.d 

zero-mean circularly symmetric complex Gaussian with unit variance. 
f  in (2.4) 
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denotes a signal-to-noise ratio (SNR). The capacity of massive MIMO is 

represented as [2], 

   
 

2

2

log det

log det

H
M K M f

M f

C G I G G

I M D





 

 

�

 

(2.5)     

 

 
In this expression, we assume that the massive-MIMO allocates equal power to all 

the terminals. If the BS assigns different powers to various antennas, the 

expression becomes, 

   2log detM K M fC G I M PD �   

Where P  is a diagonal matrix with power allocations  1 2, , , kp p p  on its diagonal. 

Power allocation is not treated here, so P is taken as an identity matrix. 

2.5 Antenna Selection as a Convex Problem 

If we are to select N   optimal antennas from the M  available ones, the massive 

MIMO capacity in (5) no longer remains a function of G   but instead becomes a 

function of the antennas chosen. We formulate the transmit antenna selection 

problem in massive-MIMO as a linear programming problem, and solve it using the 

interior-point algorithm. Linear programming is a mathematical optimization 

technique to solve a linear objective function, subjected to linear equality and linear 

inequality constraints. Its feasible region is a convex polyhedron. A linear 

programming problem is convex in nature, so any local optimum is the global 

optimum [62].  

It is well known that for any linear objective function, the optimum only occurs at 

one of the corners (vertices) of the feasible polygon region [63] [62]. Define 

 1, ,i i M    as antenna selection variable such that, 

1 ,

0

th

i

i antenna selected

otherwise


  


 

(2.6)     
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Now consider a M M  diagonal matrix   used for antenna selection at the CU, 

which has i  as its diagonal entries. The diagonal matrix   is represented as, 

 

1

2

M M M

 
  
 
  

Δ


 

 

 

(2.7)     

 

 

where Δ i  is defined as in (2.6). Denote F G   as the K M  modified channel-

gain matrix [63]. Using (5), the modified capacity equation for the massive MIMO 

can be rewritten as, 

   
 

2

2

log det

log det

H
M K M f

M f

C G I F F

I M P D





 

  

�
 

 

(2.8)     

 

 

Eqn. (2.8) follows from the fact that HΔ Δ=Δ . The capacity equation in (2.8) is 

concave in i  , where 1, ,i M   [63]. A function    2log det Xf    is concave in 

the entries of X  if X  is a positive definite matrix. The concavity of the function f  

is preserved under the affine transformation.  The optimization problem for antenna 

selection is, 

 

 
   
 

 

2

1

maximize log det

subject to 0,1

Δ

M f

i

M

i
i

C I M P D

trace N





  

 

  

Δ

Δ

 

 

(2.9)     

 

 

Since the variables i  are integer variables, this makes the antennas selection in 

massive MIMO an integer programming problem. We use the concept of linear 

programming relaxation to solve (9) [62].  Linear programming relaxation of the 0/1 

integer program arises by replacing the constraint that each variable must be 0 or 
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1, by a weaker constraint such that each variable is a real number within the 

interval [0, 1], i.e., for each constraint of the form,  0, 1i  of original integer 

program, one instead uses a pair of linear constraints 0 1i   . The relaxation 

technique transforms the integer programming problem into a linear program that 

is solvable in polynomial time [62]. Applying this technique, the antenna selection 

problem in the massive MIMO can be expressed as, 

 
   

 

2

1

maximize log det

subject to 0 1

Δ

M f

i

M

i
i

C I M PD

trace N





  

  

  

Δ

Δ

 

 

 

(2.10)    

 

 

This optimization problem yields a fractional solution, from which the N  largest 

i s are selected and their indices represent the optimal transmit antennas. Since 

 log   is an increasing function, for ease of analysis, we remove the logarithm in 

front of the objective function in (2.10). In addition, by inserting a negative sign on 

the objective function, we have turned our optimization problem into an equivalent 

minimization of the objective function. We have two constraints and therefore 

introduce a Lagrange multiplier   in the objective function to make it an 

unconstrained minimization problem. The unconstrained objective function is 

denoted 

 
1

det
M

M f i
i

F I M PD N 


       
 
  

 

(2.11)     
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where id  is the product of 
f  , M   and the thi  element of the channel gain matrix 

D . The gradient of the objective function is a vector of dimension M . The thi  

element of this vector is, 

    

 

1 1 2 2 1 1

1 1

1 1 1

1

i i i
i

i i

dF
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d

d 

 

 

        


  


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(2.13)     

 

 

The Hessian of the objective function F is a M M  matrix   with all diagonal 

elements zero, given by 
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(2.14)     

 

 
etc. This matrix is a positive semi-definite under the constraint 0 1i    , and thus 

the problem is convex and there exists a global optimal for this problem. We can 

use MATLAB to find the optimal solution to this problem. 

2.6 Complexity Analysis  

The average complexity measured in terms of an average number of floating-point 

operations (flops) is used. Simulations were performed in MATLAB, in which the 

number of flops equals 2 for complex addition and 6 for multiplication. For real 

numbers, both addition and multiplication require 1 flop. We have compared the 

computational complexity of various algorithms. In exhaustive searching (ESA), 

the computational complexity of determinant is 31/ 3 n (complex multiplications 
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and additions) for n n  matrix. There are T R

T R

M M

N N

   
   

   
determinants. The total 

number of complex multiplications and additions required will be  

31/ 3T R

T R

M M
n

N N

   
     

   
where  min ,T Rn N N . This exhaustive search grows 

exponentially with the number of antennas in a massive-MIMO system. This is 

evident from Stirling’s approximation of a factorial [63], 

! 2M MM M e M . (2.15)     

 

In the technique described in [12], the upper bound of receive antenna selection is 

 RN
RO M and for transmit antenna selection  TN

TO M . The upper bound for joint 

transmit and receive antenna selection is  R TN N
R TO M M . Similarly, antenna 

selection algorithm [10] will require T R

T R

M M

N N

   
   

   
determinants and 

31/ 3T R

T R

M M
n

N N

   
     

   
complex additions and multiplications, where 

 min ,T Rn N N . Similarly, fast antenna selection from [44] is bounded by

 2
T TO N M  for the transmit antenna selection. If we use the Karmakar's Interior 

Point Method (Barrier Method) to solve (2.10), the number of Newton steps is 

upper bounded by M   [63]. The total complexity is  3.5O M . The number of 

Newton steps does not increase with increasing M  [62]. This complexity is 
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comparable to the  3O M complexity of [15]. The pseudo-codes of the Barrier 

method is listed in Table 2.1. 

 
TABLE 2.1   

The Barrier method [26] ─  3.5O M   

 
Given strictly feasible    01, , , 0i i M t t    , 1   

(update parameter), 0  (tolerance), repeat the 
following steps: 
 
1. Compute  *

i t  by minimizing    ot f Δ Δ  subject to

1

M

i
i

N


   , starting at i using the Newton method  

2. Update  *:i i t    ( 1, ,i M  ) 

3. If M t  , stop else update :t t   
 
Here, 
            o rf C Δ Δ   

              
1

log 1
M

i i
i




    Δ      

 

 

2.7 Simulation Results  

In this section, the above preselection algorithm (with the interior point method) is 

evaluated firstly for a small number of antennas (M=16, N=4, K=4) to allow 

comparison with existing techniques. We validated the performance of our 

algorithm, with the exhaustive search based solution. The ergodic asymptotic 

capacity is the performance metric, estimated by averaging over 10,000 

independent realizations of the Rayleigh channel gain (there is no lognormal 

shadow component, again to allow comparison with existing results). The results 

in Fig. 2.2, show the optimal result from exhaustive search; the results calculated 
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from the norm-based selection (NBS) method; from the fast algorithm of [8]; and 

from a "random preselection". The random preselection is the same as combining 

M=4 antennas with no preselection, and serves as a check, since results are 

known for purely Rayleigh channels. Fig.2.2 shows that the capacity from our 

method is very close to that of the optimal selection. The NBS method, while having 

a particularly low complexity, performs only marginally better than for the case of 

no selection. The reason is that it tends to select the antennas that have the same 

fading coefficients during different iterations (so it is better suited to slower fading) 

[9]. The exhaustive search requires M
NC N  multiplications and is only feasible here 

because of the small number of antennas (takes about 15 minutes on a current PC 

per iteration, and only 100 results were used for the averaging). The "optimal 

selected" results agrees with those presented in [49], which serves as another 

check. 

 

Fig. 2.2. Comparison of capacity for the method described here to existing 
techniques, for a small number of antennas (K=4, N=4 out of M=16 

antennas). 
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Fig. 2.3. Ergodic Capacity vs. SNR for preselection in massive MIMO 
(M=100, N given in legend, K=4) 

 

Fig. 2.3 is for a larger (massive) antenna system (M=100; N=90, 50, 25; K=4) and 

has Suzuki fading (Rayleigh with lognormal, here with a standard deviation of 8dB 

for the lognormal, with each user having the same lognormal fading for all of the 

antennas of the massive MIMO). The graph serves to indicate the impact of the 

proportion of antennas selected in massive MIMO, under a realistic fading channel. 

The related simulations of [49] do not feature Rayleigh fading, and had an error in 

the lognormal fading. The increasing presence (i.e., increasing standard deviation) 

of the lognormal fading, despite being a zero mean change, reduces the capacity, 

as expected, but the size of the reduction has not been treated before this result. 

For no lognormal fading (i.e., both mean and standard deviation are zero dB) the 

capacity is higher by some 5 bits/sec/Hz, essentially independently of the 

proportional number of antennas selected. For the preselection, an approximate 
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doubling of the proportion (from 25 to 50 out of 100, and then from 50 to 90 out of 

100) also changes this capacity by almost 5 bits/sec/Hz. This is the trade-off 

between the capacity and a saving in the cost of the RF chains. This trade-off is 

convenient to manage through the preselection parameters for any such MIMO 

system, with a range of fading. 

2.8  Conclusion  

In this chapter, the problem of antenna subset selection is approximated by a 

constrained convex relaxation (along with a rounding scheme) that is solved using 

standard low complexity techniques from optimization theory. Simulation results 

show that the performance of the scheme is very close to optimal. The use of 

antenna selection in massive MIMO can reduce the cost of RF chains, with an 

acceptable capacity loss. Simulations show that our approach achieves optimal 

performance (same as exhaustive search algorithm) for antenna selection. 
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CHAPTER 3: DISTRIBUTED ANTENNAS MIMO CHANNEL SOUNDER 

3.1 Overview of Chapter 

Most future wireless links will operate within multipath propagation environments 

and will use multi-element antennas (MEAs) to suppress interference and 

maximize capacity. The design of compact MEAs requires knowledge of the 

propagation environment because the propagation environment and the 

embedded element patterns combine to define the channel. While the MEA design 

is guided by propagation models, the final design should be checked by a physical 

experiment to ensure appropriate statistical performance, such as low correlations 

and similar mean gains. Consequently, multi-channel (vector) channel sounding is 

critical for confirming the operations of compact MEA designs, and even finalizing 

the design, and to be able to estimate the performance of the associated 

communication. This chapter describes a technique for the required vector channel 

sounding using a simple, single-input, single-output channel-sounder. The vector 

channels are separated by inserting different RoF signal delays into the antenna 

ports and then combining the antenna signals as a set of separated-in-time 

responses. The RoF delays must be large relative to the channel delay spreads. 

In the VNA/channel-sounder, the delayed channels can be easily separated with 

basic signal processing, ready for statistical analysis. 

A promising solution to meet the ever-increasing demand for higher capacity 

wireless connectivity is simply to deploy smaller cells and use MEAs. The smaller 

cells mean more re-use of the spectrum. The MEAs allow MIMO communications 

– the suppression of noise-dominating interference and the use of multiple parallel 

channels in each link to support higher capacity efficiencies. In principle, the more 

antenna elements, the greater the capacity efficiency. The capacity can be 

improved by brute-force techniques such as using extra spectrum, i.e., wide-band 

systems. There are many terms for these various developments, such as 

distributed distribution architectures, femto- and pico-cell base-stations/access 

points deployments, mesh networking solutions, cooperative schemes cognitive 

radio, and so on.  In any event, the multiple, parallel channels, or vector channels, 
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require certain well-known characteristics for these advanced communications 

systems to work well. For example, the channels should be uncorrelated, meaning 

that their narrowband fading envelopes are uncorrelated over time evolution and 

that the mean channel gains should be similar.  For marketable products, the 

antennas should be physically compact, and their electrical spacing should be 

minimized. But compactness tends to foster the correlation between the channels. 

Propagation models are used but at the end of the day, the antennas need to be 

checked against real-world propagation conditions to ensure the performance of 

the expected communication. Consequently, the channels need to be sounded in 

real-world experiments using the same antennas [5] [64] [34]. (The antennas and 

propagation environment combine to define the channel.) For other aspects of the 

communications signal processing, other channel parameters are required.  For 

wide-band channels, equalization is required as part of the signal processing, and 

so knowledge of the delay profile and its modelled parameters such as delay 

spread, are required for the design of the communications signal processing. All 

this amounts to the fact that physical channel sounding is still important for 

developing the new, small-cell links, their communications signal processing, and 

their compact MEAs.  

3.2 Background on Channel Sounders 

Diversity antennas were introduced around the mid-20th century to reduce the 

narrowband fading in communications and sensing systems. The basics for 

communications were laid out by Stein [4], and applied to mobile communications, 

including both receive and transmit diversity (later called MIMO) by Jakes [65]. The 

narrow band signal fades represent dead spots in ubiquitous multipath situations, 

and the associated channel dispersion at these fades compound the poor error 

performance from the reduced signal-to-noise ratio.   Spaced, or multiple 

antennas, offered a solution because the diverse channels faded at different 

(uncorrelated) times. The required spacing of similar antenna elements (space 

diversity) was, and still is, typically derived from simplistic propagation models. 

MEAs, where the elements are not necessarily all the same, as in an array, offer 
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more degrees of freedom for decorrelating the channels. Because the designs are 

typically propagation-model-based, physical experiments are needed to verify, or 

produce a final design, for them. The original works on antenna diversity presented 

the improvement as an improved distribution for the SNR. Later, the 

communications literature translated the improved SNR distributions to capacity 

(or capacity efficiency), in bits/s/Hz, e.g. [66], and this brought greater awareness 

of the power of multiple antennas to increase link quality to the large information 

theory and digital communications community. 

Since the diversity pioneering days, communications applications have spread 

quickly. Distributed antennas systems (DAS) – a standard form of diversity – were 

introduced simply to cover dead spots in indoor wireless communications [67], and 

more recent studies [68] have identified other potential advantages. DAS allows 

capacity gain, coverage improvement, and low power consumption [67] [68] [69] 

[70] [71]. DAS also reduces inter-cell interference and hence significantly improves 

performance [72] [73]. FUTON (fiber optic network for distributed, extendible, 

heterogeneous radio architectures and service provisioning) is a proof-of-concept 

in Europe for fiber-based distributed antennas technology [72]. Similarly, China’s 

FuTURE project [74] [75] is another example of the implementation of optic fiber 

based distributed antennas system. From an architectural point-of-view, DAS can 

reduce the cost of the installing system and simplify maintenance because it 

reduces a required number of base stations (BSs) within the service area. DAS 

possess advantages in terms of signal-to-interference-plus-noise ratio (SINR) and 

capacity due to macro-diversity and reduced access distance. 

Even though the quantity of research in MIMO has been remarkable over the past 

several decades, the theoretic potential of MIMO systems is yet to be realized in 

practical communications systems. This is partly due to a lack of understanding of 

characteristics of the channels, particularly in the DAS scenario. Among a large 

variety of different types of MIMO channel models, the geometry based stochastic 

approach [76] [77] is mostly used in the literature due to its convenience for 

simulations of MIMO systems, in particular the spatial and temporal characteristics. 

But the link between the models and the real-world behaviour is not so easy to tie 
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down, at least for compact antenna systems in changing propagation 

environments, i.e., mobile communications. 

Several challenges are associated with the development of distributed channel 

sounders. There is a large body of literature on channel sounders and 

measurements. Representative, recent examples include [78] [79] [80] [25] [33] 

[26] [81]. In [80], multilink (MU-MIMO) channel measurements were conducted 

using a commercially available MEDAV-LUND channel sounder with its 

corresponding receiver; as well as the receiver from Elektrobit. In [33], the authors 

consider whether mobile multilink measurements can be emulated by sequentially 

measuring each point-to-point link, with a single channel sounder. The crucial 

aspect of this approach is whether it is practically feasible to keep the environment 

sufficiently static between sequential measurements. Their results indicate that a 

single channel sounder approach is feasible when the focus is on channel statistics 

e.g. spatial correlation. When channel matrices are of interest, the approach is 

limited. An example of state-of-the-art channel sounder and its results are 

presented in [26], where multilink measurements in an indoor hall environment 

utilizing a scalable MIMO channel sounder at 11 GHz are presented. The results 

indicated that eigen-structures of spatially separated links are highly correlated 

when Rxs share the line-of-sight (LOS) for Tx. Similarly, [26] reviews the 

advantages of using Universal Software Radio Peripheral (USRP) platform for 

channel sounding. The motivation for the distributed channel sounder (DCS) 

becomes necessary to understand the effects of multilink interference. We present 

a low-cost optic-fiber based scalable DCS, using a standard two-port VSA. The 

channel sounder uses radio over fiber (RoF) with remote antenna units (RAUs) as 

distributed nodes to collect data. The nodes are connected to the Zinwave optical 

hub, which provides a signal combination and switches actions. The ballpark price 

of the extra hardware is currently about US$23k, but these costs are reducing fast.  

Channel staticness is assumed for a vector channel measurement campaign, due 

to limitations of channel sounder. Research is currently underway to generalize the 

existing stochastic and geometric approaches to handle vector channels [82]. This 

work is motivated by the ongoing high level of interest in distributed antennas, 
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especially in indoor and short-range vehicular environments, and the fact that 

channel measurements for DAS are still at an early stage [33], with few 

researchers focused on low-cost and scalable DCS. 

3.3 System Model of Proposed Channel Sounder 

The main modules of the DCS are a signal spectrum analyser, fiber-optic cables 

and MATLAB scripts to control instrument and analyze the data. The spectrum 

analyzer supports multiple wireless standards, fast data-rate processing and 

calculates power delay profile (PDP) with high accuracy due to a high sampling 

rate. The RAUs are connected to a central optical hub, using variable delay lines 

implemented using RoF cables, to avoid overlapping of the impulse response from 

individual RAUs. The optic-fiber is better than coaxial cable, because it is more 

compact, cheaper, and has more linearity. The band is 136-2700MHz. Figure 3.1 

shows the VSA and RAUs used in the DCS. Our approach is simple, i.e. transmit 

a known PN signal sequence  s t . The received signal  r t  at the VSA is then, 

         
   

* *
1 1 1 1 2 2 2 2

*
3 3 3 3
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r t h t T s t T dT h t T s t T dT

h t T s t T dT n t

    

 

 



 

(3.1)     

 

where    *
1 1 1 1,h t T s t T dT ,    *

2 2 2 2,h t T s t T dT  and    *
3 3 3 3,h t T s t T dT  are 

the convolutions of transmitted signal and impulse response of the channels RAU-

1, RAU-2 and RAU-3 respectively, placed at various locations in an indoor 

environment. The proposed DCS uses a stepping correlator during MATLAB 

based processing [83]. We captured the signals received by the three distributed 

antennas; and pass them through a cross-correlator to recover the simultaneously 

measured power delay profiles. We used a VSG-based pseudo-random bit 

sequence (PRBS) transmitter to generate the probing signal. Using the VSA gives 

the luxury of saving frames to a memory and then transferring the data to hard disk 

later, to process the received signals offline.  
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Fig. 3.1. Proposed distributed channel sounder. 

3.4 Experimental Setup 

3.4.1 System Level Analysis of Scheme 

We modulated the PN sequence using vector signal generator (VSG). The 

generated signal was transmitted from the Tx to three RAUs (multi-nodes) 

simultaneously. The RAUs work like a distributed receiver connected to the central 

hub. The RAUs are spaced apart, to make sure there is no inter-link correlation. 

The raw data is collected using the acquisition module inside the VSA. The VSA 

collects the received signal and sends it to the PC, where it is stored on the hard-

disk for post-processing. We implemented MATLAB based scripts to automate 

storage, and for data analysis. A separate PC is available, with a graphical user 

interface (GUI) to let the user interact with the optical hub and manually select 

RAUs. The configurations of our channel sounder are listed in Table 3.1. We used 

Agilent VSG to transmit a PN9 PRBS signal with bandwidth between 1 MHz and 

80 MHz, in unoccupied bands between 850 MHz and 6 GHz. As listed in Table 

3.1, the PN9 sequence comprises of 511 bits, and 1 frame length is 11.3 s . We 

transmitted 18 frames of length 205.3 s  and averaged them at the receiver. The 

data rate (chip-rate) is 44.8 Mbps. For the entire experiment, we kept the 

transmission power at 25 dBm. On the receiver side, the Nyquist frequency is used 
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for sampling i.e. 2 x 44.8 MHz. This implies that minimum delay that can be 

measured (delay resolution) is 1/ (2x 44.8 MHz) sec. We used three fiber-optic 

rolls, each measuring 100 m. Therefore,  

 

delay generated by a 100-m roll =  0.5 s  (3.2)     

 

 
 
 

Table 3.1. Specifications of DCS. 

 

3.4.2 Limitations 

One of the limitations of proposed DCS is that noise level increases during 

correlation if more signals are combined at the combiner. Secondly, the number of 

antennas supported by this system is limited by the total delay line. Thirdly, the 

RAUs must be separated no less than average channel impulse response (CIR) 

i.e., signal strength and channel must be differently experienced at each antenna. 

Fourth, in this experiment, we have assumed a single transmitter and three RAUs. 

We can extend this approach, to a multiuser environment by using another VSG 
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with an orthogonal PN sequence. The orthogonal PN sequences can be easily de-

correlated at the VSA. 

3.5 Experimental Setup 

To test the proposed DCS, we carried out an indoor experiment. This was a typical 

P2MP (point to multipoint) experiment configuration. We assumed that both the Tx 

and Rx are static. The RoF delay for RAU 1, RAU 2 and RAU 3 are 0.3 s , 0.6 s  

and 0.9 s respectively. The three fiber units are combined at the central optical 

hub. We analyzed and plotted the results using MATLAB. Figure 3.2 gives the 

overlaid power delay profile over a 10-time length. We have kept the transmit 

power low as 20 dBm. The floor level in the PDP is -42 dBm. Figure 3.3 gives the 

averaged power delay profile for a 10-time length. The presence of three distant 

correlation peaks corresponding to the three PDPs is visible in the plot. Figure 3.4 

shows the gear of proposed DCS. Figure 3.4(a)  is the transmit planar antenna; 

Figure 3.4(b) is the Zinwave optical hub, fitted with optical-to-electric converters on 

the front, and a GigE Ethernet cable connected to a laptop for manual 

configuration. Figure 3.4(c) is the RAU laying on the table and connected to a 

vertical antenna. This antenna can transmit and receive, though we used it for the 

reception. Figure 3.4(d) shows the VSA, mounted on a cart with an external laptop, 

with MATLAB scripts for post-processing. 

 

Index of refraction of fibre is 1.4682 at 1550nm, and speed of light through 

fibre=204190477 m/s, which is not the same as speed of light though space. We 

calculate the corresponding time took for the light waves to traverse the fiber optics 

of different lengths, i.e. 

 
100m/204,190,477m/s=0.5us 

200m/204,190,477m/s=1us 

400m/204,190,477m/s=2us 
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Table 3.2. RAUs and their corresponding optical delays. 
 

 

 
Fig. 3.2 Overlay plots of power delay profile. 

 

 
Fig. 3.3. Averaged power delay profile. 

 

3.6 Conclusion 

Vector channel-sounding is an expensive task, traditionally because each channel 

requires its own VNA ports. If the multiple channels can be separated in time, then 



34 

a standard two-port measurement will suffice for vector channel sounding. Such a 

technique is to interleave all the different channels by delaying them by different 

amounts and use basic signal processing to separate the channels for subsequent 

statistical processing. The use of optic fiber delays has been presented, along with 

the results (magnitude, or power delay profile, so not the complex channels) from 

physical measurements of a demonstration system. The extra equipment required 

is the optical fibers, their interconnections between the antennas and the VNA, and 

the signal combination is relatively inexpensive relative to a multiport VNA. 

 
             (a) 

 
(b) 

 
            (c) 

 
                 (d) 

Fig. 3.4. Measurement gear for DCS, (a) transmit antenna (b) optic-fiber 
combiner and hub (c) remote antenna unit (RAU) (d) VSA with a laptop 
for post-processing 
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CHAPTER 4: FIBER-FED DISTRIBUTED ANTENNA SYSTEM IN AN FPGA 
SOFTWARE DEFINED RADIO FOR 5G DEMONSTRATION 

4.1 Overview of Chapter 

In this chapter, we describe the implementation of STBC-OFDM on Virtex-6 

software defined radio (SDR) with experimental measurements. The 

implementation of high-speed 4G LTE and FuTURE wireless network in a real-

time environment demands ever-increasing hardware processing capability. The 

field programmable gate array (FPGA) has the potential to solve this problem since 

it provides reconfigurable logic with high parallelism and low-power solutions, 

unlike other alternatives e.g. DSP processors, ASIC and general-purpose 

processor in the market. Our STBC-OFDM design makes use of DSP48E slices 

for computationally intensive mathematical routines and Xilinx Microblaze soft-

processors for real-time data exchange (RTDX) with the host computer. Our 

design works in the ISM band and supports a system bandwidth of 20 MHz. We 

present a high-level Xilinx System Generator design of physical layer algorithms 

for STBC-OFDM. For real-time implementation, the receiver is equipped with time-

offset synchronization and frequency-offset estimation modules. In this chapter, 

real-time indoor measurements are performed in the 2.5 GHz ISM-band. Our 

MIMO test-bed consists of a modular hardware platform consisting of SDR and 

radio front-end transceiver modules. The centralized SDR test-bed allows options 

for both real-time and offline baseband processing. The FPGA resources 

consumed on FPGA during real-time MIMO-OFDM implementation are presented. 

Some measurement results are presented. In this work, we present in detail the 

implementation of a real-time SDR-based 2×2 STBC-OFDM system that 
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constitutes the cornerstone of our efforts to achieve a powerful, reconfigurable, 

and modular fiber based test bed. 

4.2 Background on FPGA based testbeds 

As the future broadband wireless communication systems are constantly expected 

to provide ever higher communication data-rates (~1Gbps for low mobility users 

and 300 Mbps for mobile terminals). It has already been well established [3] [64] 

[84] that multiple-input multiple output (MIMO) scheme can provide this high data-

rate demand since MIMO can increase link capacity using additional spatial 

degree-of-freedom. MIMO also provides benefits like extended coverage, reduced 

interference, and reliable communication by using advanced smart antennas 

features such as spatial multiplexing, space-time block coding (STBC) and 

beamforming. Combined with OFDM modulation, MIMO is the enabler of modern 

wireless broadband communication techniques. The OFDM is a form of wideband 

modulation that provides a “frequency diversity” effect. The data stream is 

transformed into a series of (smaller capacity rate) parallel streams, and these are 

in turn allocated to a series sub-channels that populate the wideband channel. The 

subchannels have a bandwidth which is smaller than the channel’s coherence 

bandwidth. The effects of inter-symbol interference are reduced by using a guard-

time in the data packets, which is akin to a guard band in frequency division 

multiplexing. Recently, MIMO-OFDM has also been extended to fiber connected 

distributed antennas architectures; as a promising technique to meet the ever 

increasing demand for the faster rates [71] [85] [86]. The massive parallelism and 

pipelining required for intensive baseband signal processing in a real-time MIMO-
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OFDM test-bed makes FPGA platforms appropriate candidate for implementing 

next-generation broadband fibre connected DAS. This means that FPGA based 

signal processing systems are becoming a practical choice for the researchers and 

engineers to approach 5G capacity goals. This chapter implements a physical 

layer design of an STBC-OFDM transceiver on a software-defined radio (SDR) 

equipped with Virtex-6 FPGA. The goal is to better understand the implementation 

challenges of the MIMO-OFDM technology on FPGAs. We also developed a fibre- 

based MIMO-OFDM testbed for real-time evaluation of our design. 

4.3  System Model of Proposed Testbed 

The STBC-OFDM system is equipped with two to transmit and receive antennas. 

The system operates in a frequency-selective Rayleigh fading indoor environment. 

The system assumes a quasi-static channel (i.e. the channel is assumed to be 

constant during the packet duration). We have used the multipath MIMO channel 

model as described in [19]. Suppose that the channel impulse response can be 

approximately recorded with L time-instances, then the fading-channel between 

thp   transmitter and thq receiver antennas can be modelled by a discrete baseband 

 1
th

M  order FIR-filter; with filter taps  qpg l  where  0, , 1l M  . The taps are 

assumed i.i.d zero-mean complex Gaussian random variables with a variance 

 1

2
P l  per dimension. Suppose that  qpg l is the  ,

th
q p  element of the matrix

 G l , then the discrete-time MIMO baseband signal model is given by [19],  

       
1

0

M

l

r G l u l v  




    
(4.1) 

 

We used the orthogonal frequency division multiplexing (OFDM) as a downlink 

transmission scheme. OFDM is a block modulation technique, where a block of N  
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symbols is transmitted in parallel using N sub-carriers. The time duration of an 

OFDM symbol is N  times larger than that of a single-carrier system. OFDM 

modulation is implemented as an inverse discrete Fourier transform (IDFT) on a 

block of N  symbols. To mitigate the effects of inter-symbol interference (ISI) 

caused by the channel time-spread, each block of N  IDFT coefficients is preceded 

by a cyclic prefix (CP) or a guard interval consisting of  G  samples, such that the 

length of the CP is at least equal to the channel.  OFDM is an effective strategy for 

dealing with frequency-selective channels [45] [87]. When the sub-channel 

bandwidth is sufficiently narrow, the frequency response across each sub-channel 

is approximately flat avoiding the need for complicated time-domain equalization. 

These flat-fading sub-channels provide an effective platform on which space-time 

algorithms developed for a flat-fading channel can be applied.  

4.4 Transmitter Model in VLSI  

The 20MHz baseband transmitter requires a high bandwidth of SDR [88]. The fully 

pipelined Xilinx Finite Impulse Response (FIR) IP cores are utilized to accomplish 

the wideband FIR filters at the baseband level. The transmitter operates in packet 

mode with a preamble of four symbols. The initial two OFDM symbols are 

dedicated to blocking boundary detection and coarse carrier frequency offset 

(CFO) estimation [89]. The following two OFDM symbols are used in 2×2 MIMO 

channel matrix estimation. Continuous pilots are embedded at specific subcarriers 

for CFO tracking, as well as to estimate and correct phase noise [90]. The overall 

packet length is maintained shorter than the coherence time of the channel. 
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Fig. 4.1. Block diagram of the transmitter. 

 

The block diagram of the transmitter is shown in Figure 4.1. It is briefly described 

in the following. The QPSK modulator maps the bits coming from scrambler to 

constellation-points, and the subcarrier mapper allocates the symbols to 

corresponding subcarriers [20] [91]. The MIMO algorithms are then applied on per 

OFDM subcarrier basis and are like single carrier algorithms. The FFT encodes 

the block frame for OFDM transmission. We have used the Xilinx FFT IP-core that 

implements a computationally efficient method for calculating DFT. The core 

provides an optional cyclic prefix insertion for digital communications systems and 

can compute the FFT up to 2048 points. The cyclic prefix serves two purposes, 

1−as guard interval; it eliminates the inter-symbol interference from the previous 

symbol, and 2−As a repetition of end of the symbol, it allows the linear convolution 

of a frequency selective multipath channel to be modelled as circular convolution, 

which in turn may be transformed to the frequency domain using DFT [21] [92] 

[93]. This approach allows for simple frequency-domain processing such as 

channel estimation and equalization. The baseband signal is then up-converted to 

an intermediate frequency (IF). Utilizing an IF avoids the problems of DC offset, 

carrier leakage, I/Q imbalance [91]. The digital up-convertor (DUC), as shown in 
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Figure 4.2, translates one or more channels of data from baseband to passband. 

It achieves this operation using interpolation to increase the sampling rate, filtering 

to provide the spectral shaping and rejection of the interpolation images, and 

mixing to shift the signal spectrum to the desired carrier frequency.  

To encode the data, we use the Alamouti space-time block coding (STBC) 

technique [85]. STBC improves signal quality at the receiver by means of simple 

processing across two transmit antennas, without any feedback from the receiver. 

The diversity order obtained equals to the maximal-ratio combining receiver. STBC 

requires no bandwidth expansion, as redundancy is applied in space across 

multiple antennas. At a given symbol period, two signals are simultaneously 

transmitted from the two antennas. STBC is applied to MIMO-OFDM by regarding 

each sub-channel as a virtual antenna [93] [94] [95]. STBC-OFDM can then exploit 

space diversity; however, the potential multipath diversity offered by multipath is 

not used. As mentioned before, OFDM converts a wideband channel into parallel 

narrowband sub-channels. OFDM enables STBC in real life. In STBC-OFDM, time 

index used in STBC is replaced by the tone index of OFDM. Also, since STBC 

requires a channel to remain constant over consecutive symbol periods in STBC-

OFDM context, the channel must remain constant over consecutive tones. The 

implemented STBC-OFDM transmitter using MATLAB and Xilinx System 

Generator is shown in Figure 4.3. 
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Fig. 4.2. DUC model for Virtex-6 FPGA. 

 
Table 4.1: Encoding and transmission sequence for STBC-OFDM. 

 subcarrier 
k 

subcarrier k+1 

 
A 1s  2s  

 
B 1s  *

2s  

 
C 2s  *

1s  

 

 
Fig. 4.3. Model of STBC module for Virtex-6 FPGA. 

 

Table 4.1 describes the STBC scheme as it is applied to multiple carriers in OFDM. 

Figure 4.4 shows the BER vs. SNR plot to confirm the idea that 2×2 STBC-OFDM 
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provides the same diversity order as 4×1 MRC. The OFDM for the single 

transmitter and receiver link is also shown for comparison. 

 
Fig. 4.4. Performance comparison for MIMO-OFDM, OFDM, and MRC over 

frequency selective Rayleigh block-fading channel. 

 

4.5 Receiver Model in VLSI  

The block diagram of the receiver is shown in Figure 4.5. The main modules of 

STBC-OFDM receiver, (1). digital down conversion, (2). carrier frequency offset 

estimation, (3). channel estimation and equalization and (4). STBC-OFDM 

decoder.  

4.5.1 Digital down converter 

The digital down converter (DDC) down-converts the intermediate frequency (IF) 

signal to digital baseband. The digital down converter (DDC) implements three 
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functions namely, channel frequency translation, I/Q components extraction, and 

signal decimation. Finally, an output decimator delivers the complex 

representation of the digitized signal [96]. The Figure 4.6 shows the Xilinx design. 

 

 

Fig. 4.5. Simplified block diagram of the receiver 

4.5.2 Frame synchronization 

Wireless communication usually occurs in packets (i.e. series of short bursts). A 

key requirement for MIMO transmission involves the detection of transmitted 

bursts and timing and frequency synchronization [88]. Receivers generally 

synchronize by calculating the autocorrelation function of the preamble placed at 

the beginning of the signal. We have implemented the Schmidl and Cox algorithm 

[89] [94] for estimating the joint time-offset and frequency synchronization. This 

algorithm uses the delay correlation approach as it involves providing two identical 

preamble frames. The frame synchronization first detects the beginning of the data 

period, and accordingly the position of the OFDM symbol to apply the FFT. 
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Second, it estimates CFO that will be used to finely tune the digital direct 

synthesizer (DDS) described in section 4.1. The frequency offset is caused by the 

difference in oscillator frequencies at transmitter and receiver. The carrier 

frequency offset tracking needs scattered pilots to estimate the CFO. The amount 

of angular rotation from one OFDM block to the next is proportional to the CFO. 

Figure 4.7 shows the System Generator model for timing offset and frequency 

synchronization blocks. Figure 4.8 shows a theoretical BER vs. SNR plot for 

various frequency offsets. It is concluded that if CFO is larger than a few 

subcarriers, the receiver will not be able to demodulate the signal properly.  

 

Fig. 4.6. DDC model for Virtex-6 FPGA. 

 

The timing metric  M d   for this module is expressed [25] by Equation (2.3).  P d  

determines the correlation of the signal. The timing metric is normalized by the 

maximum power received in the signal. 
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(4.3) 

4.5.3 Channel Estimation 

We describe briefly the channel estimation process that was implemented inside 

the receiver. We used a pilot-aided channel estimation process that uses the least-

squares method to estimate the channel [97]. We implemented the algorithm using 

the C++ algorithm embedded inside the Microblaze processor and interfaced it 

with our remaining System Generator design. Before discussing the MIMO channel 

estimation process, let us first describe SISO-OFDM channel estimation. We 

modified that algorithm for the multiple antennas scenarios. MIMO-OFDM channel 

estimation works on the same underlined procedure. In the SISO-OFDM system, 

data is transmitted in frames of N  tones each, with additional P tones added for 

cyclic prefixing [98]. 



46 

 
Fig. 4.7. Model of coarse CFO estimation and block boundary detection 

module. 

 

 

Fig. 4.8. BER increases with varying frequency offset. 

 

There are various channel estimation algorithms for MIMO available in the 
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literature. We used the frequency domain channel estimation technique, and least-

squares to estimate the channel. Before discussing the process of MIMO channel 

estimation, we first describe the SISO-OFDM channel estimation. In an OFDM 

system, the data are transmitted in blocks, say of size N  tones each, with 

additional P  tones added for the cyclic prefixing purposes [99]. Specifically, 

consider a block of data of size N , 

      1 , 2 , , 0s col s N s N s     (4.4) 

 

Before transmission, this block of data is transformed by the inverse DFT matrix 

i.e. s  is transformed in to 
*s F s  , where F  is a unitary DFT matrix of size N  

defined by, 

21 j ik

N
ik

F e
N



    
 

(4.5) 

 

Then the cyclic prefix of length P  is added to the transformed data so that the 

transmitted sequence ends up being, 

           1 , 2 , , 0 , 1 , 2 , ,
transformed block of size N cyclic prefix of size P

col s N s N s s N s N s N P
       
  

 
 

 (4.6) 

 

with the rightmost sample transmitted at time instant 1, and the leftmost sample 

transmitted at a time instant N P . At the receiver, these  N P  samples are 

observed in the presence of the additive noise and collected into vector, 

             1 , 2 , , , 1 , , 2 , 1 , 0
last N received samples first P received samples

col y N P y N P y P y P y y y
       
  

 
 

 (4.7) 

 

The first P  received samples are discarded, while the remaining N  received 

samples are collected into a 1N   vector y . To recover the transmitted signals, the 

channel taps are needed (i.e.  is needed). Different training schemes can be used 

to enable the receiver to estimate the channel, and consequently . The most 



48 

common training scheme is to allocate some of the tones i.e., some of the   s i  in 

an OFDM symbol, to the known training data. The channel taps are then estimated 

as described in [87]. Assuming an M -tap FIR model for the channel with impulse 

response sequence, 

 

      0 , 1 , , 1h col h h h M   (4.8) 

 

The transform-domain equation of received signal as follows, 

y H s v   (4.9) 

 

where H is the channel Toeplitz matrix and v  denotes the measurement noise in 

the transformed domain. Since H  has a circulant structure, it can be diagonalized 

by the DFT matrix. Let *FHF  be the diagonalized channel, and multiply the 

above equation by F from the left. Then the time-domain signal we obtain is, 

y s v    (4.10) 

 

where time-domain vector quantities  , ,y s v  are defined by, 

y F y , y F s , v F v  (4.11) 

 

Let   be a column-vector with entries of   i.e.  diag   . Then, 

 

1*

10
M

N M

h
F 

 

 
  

  
 

(4.12) 

 

i.e.   is the inverse DFT of channel impulse response with its length extended to

N .  To recover the transmitted signal, the channel taps are needed (i.e.   is 

needed). Different training schemes can be used to enable the receiver to estimate 

the channel, and consequently . The most common training scheme is to allocate 
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some of the tones in an OFDM symbol to known training data. The channel taps 

are then estimated as follows. The system model y s v    can be rewritten as 

follows, 

 

 
 
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1
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s N

s N
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(4.13) 

 

Let  1 2, , Lk k k denote the indices of  L L M elements of s that are used as training 

tones and are therefore known. We collect these transmitted training tones which 

are also known and hence deterministic quantities and the corresponding received 

data into two vectors. 

      1 1, , ,t L Ls col s k s k s k   (4.14) 

 

      1 1, , ,t L Ly col y k P y k P y k P     (4.15) 

 
Let Q denote a M L submatrix of F i.e.  
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(4.16) 

 

and let tS be the corresponding L L  sub-matrix of S i.e.  t tS diag s . Then, 
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
*

1
t t t

ML M

y S Q h v


 
 

(4.17) 

 

where tv   is corresponding noise vector,       1 1, , ,t L Lv col v k P v k P v k P    . We 

can now recover h by solving the least-squares problem as [100], 

 

1* * *ˆ
t t t th QS S Q QS y


     

(4.18) 

As tS  is diagonal, and assuming that the training data satisfy   2
1s i  ;  so 

*
t tS S I , 

then the above least-squares expression simplifies to, 
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(4.19) 

 

The estimation of   is, therefore. 

  *
ˆ

ˆˆ
0

h
diag diag F

  
          

(4.20) 

 

In order to extend the above procedure to the STBC-OFDM, the training-pattern is 

coded across dimensions other than frequency e.g. time (OFDM symbols) and 

space (transmit antennas).  The orthogonal training sequence is usually assigned 

to each antenna individually. Afterward the same training sequence is used for 

each subcarrier transmitted from its respective antenna. At the receiver, 

orthogonality of the training sequences is used to distinguish between various 

antennas and use the channel estimation procedure. 
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4.5.4 STBC-OFDM decoder 

Once the channel is estimated, the STBC-OFDM symbols can be recovered. The 

received OFDM symbols in two time-intervals are given as [101], 

00 01 00 01 00 010 1

10 11 10 11 10 111 0

Y Y Z ZX X

Y Y Z ZX X





        
                

(4.21) 

 

where 00 , 01 , 10  and 11 are diagonal matrices whose elements are DFTs of 

respective channel impulse-responses 00h , 01h , 10h and 11h . Assuming channel 

estimates available at receiver; then least-square estimator gives the transmitted 

OFDM symbols,  

 

00 01 00 010

2 2
10 1110 111 00 11

ˆ ˆˆ 1
ˆ ˆˆ ˆ ˆ

Y YX

Y YX





      
     

           
 

(4.22) 

 

Figure 4.9 gives a Xilinx System Generator model of the Alamouti matrix 

computation inside the hardware. 

 

 
Fig. 4.9. Model of weight matrix computation module. 
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4.6 Real-Time MIMO Implementation 

A real-time STBC MIMO-OFDM system is built, to verify the working of MIMO in 

the real propagation environment. The STBC-OFDM system operates in the 2.5 

GHz ISM band and transmits a broadband signal with 20 MHz bandwidth. Most of 

the previous implementation approaches that enable rapid prototyping are based 

on offline signal processing. These offline methods lack insights in implementation 

complexity and limitations that characterize a real-time MIMO-OFDM system. Also, 

offline MIMO systems are not suitable to implement adaptive real-time systems for 

high-speed MIMO networks. 

4.6.1 Software-defined radio technology 

Software-defined radio (SDR) devices include both software and hardware that 

can be dynamically reconfigured to enable communication between a wide variety 

of changing communications standards, protocols, and radio links. The main 

concept behind the SDR is that different transceiver functions are executed as 

software programs running on suitable processors (e.g. DSP boards, FPGAs, 

GPUs). The SDR platform guarantees full compatibility among different wireless 

technologies. The use of SDR enables wireless communication system to 

configure itself to multiple wireless standards without changing the hardware. 

Various MIMO test-beds based on SDRs are available for implementation of novel 

signal processing algorithms. A typical software defined radio hardware test-bed 

includes hardware components e.g., RF frontend, baseband components and 

software development tools [102]. While theoretical results show the performance 

gains of MIMO wireless communication under idealistic assumptions, a suitable 

hardware implementation is necessary for validating these gains in a realistic 

scenario. The leading SDR manufacturers are Nallatech, Lyrtech, Sundance, ICS, 

Ettus Research and Beecube. The commonly used software development tools 

are Mathworks tool-suite, Code Composer Studio (CCS), and FPGA programming 

tools like Xilinx ISE, Xilinx System Generator and Altera DSP Builder. MIMO 

platforms at various research institutes include GEDOMIS, TU-WIEN, WARP, 
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UCLA, UCLA2, Montreal, BEECUBE, Wind-Flex MIMO, etc. The RF front-end is 

the most distinguishing property amongst the mentioned MIMO test beds. The 

frontends of most MIMO platforms work in the ISM bands (2.4 GHz or 5 GHz). 

GEDOMIS uses Lyrtech hardware platform and can operate in both bands. The 

UCLA test bed works on the 5 GHz frequency band, while UCLA2 works on 2.4 

GHz band. TUWIEN and WARP work in the 2.4 GHz band. The bandwidths of the 

RF frontends vary from less than 5 MHz to 40 MHz. The MIMO SDRs can also be 

distinguished based on their processing capability. The real-time signal processing 

in SDR platforms is usually carried out using a combination of FPGAs, DSPs or 

both. The following SDRs do not contain the DSP processor in their platform, e.g. 

WARP, Lyrtech Perseus, UCLA, TU-WIEN. The remaining SDRs use either a 

Texas Instruments fixed-point DSP processor e.g., C62xx, C64xx or a floating 

point C67xx DSP processor. Regarding the FPGAs, most SDRs use Xilinx’s Virtex 

or Spartan series. The MIMO SDRs are also equipped with onboard RAM for 

storing and processing signals. Table 4.2 gives a comparison of the technical 

features of various test-beds. The availability of high-speed signal processing on 

SDR will allow the implementation of new signal processing techniques at a 

reduced cost. 

 

Table 4.2. Summary of technical features of current MIMO test-beds. 

 

4.6.2 STBC-OFDM broadband test-bed architecture 

We present salient features of STBC-OFDM testbed. Figure 4.10 shows our 

system architecture. 

GEDOMIS TUWIEN UCLA UCLA2 Montreal Rice WARP BEECUBE UBC
Tx × Rx 4×4 4×4 1×1 4×4 4×4 2×2 – 2×2

Carrier VME PCI PCI VME RAID PCI PCI/USB PCI uTCA

Baseband PC/DSP/FPGA PC/DSP/FPGA PC PC/DSP/FPGA PC FPGA FPGA FPGA/DSP

DSP 4×C6203 2×C6416 – 4×C6701 – – — C6455

FPGA 6×Spartan II 2x Virtex II 2×Virtex II – 2× Virtex II 6× Virtex II – SXT 315/475 Virtex 6 SXT 475

Buffers – Yes Yes Yes Yes – Yes Yes

DAC 16 bit, 320 MHz 14bit, 200 MSPS 16 bit, 100 MHz 12 bit/ 200 MHz 14 bit/ 65 MSPS – 12bit/ 5GSPS 16bit/ 1 GSPS

ADC 12 bit, 80MHz 14 bit, 100 MSPS 14 bit, 50 Mhz 12 bit/ 105 MHz 12 bit/ 65 MSPS – 10bit/5GSPS 14bit/ 250MSPS

BW 2.4 GHz 40 MHz 20 MHz – 20 MHz 3.5 MHz 20 MHz – 80 MHz

BW 5 GHz 40 MHz – 25 MHz – – – – 80MHz
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Fig. 4.10. System architecture of testbed. 

The Lyrtech SDR contains the powerful Virtex-6 FPGA. It has support for modular 

add-on FMC-based I/O cards. The Virtex- 6 FPGA offers a tradeoff between high-

performance logic and massive digital signal processing power. Figure 4.11 shows 

the Perseus SDR that can be directly inserted in the μTCA chassis; while Figure 

4.12 shows the FPGA design flow chart.  

 
Fig. 4.11. software defined radio [102]. 

 
To design a sophisticated real-time system like STBC-OFDM on FPGA device 

requires handling multiple technical issues, from setting-up, configuring and 

calibrating the system to successfully validating the entire low-level design. We 

followed an iterative development-flow throughout the process. Simulations were 

carried out for various transceiver algorithms in the MATLAB environment. 

Afterward, the SIMULINK environment was used to architect the model-based 

design flow. Successful synthesis and place-and-route were performed to proceed 

with testing and verification in the indoor lab environment. We performed 
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debugging of the FPGA design using Xilinx Chipscope. 

 

 

Fig. 4.12. Software integration in SDR. 

 

We used the WiMAX ISM band RF transceiver in our experiments.  

4.7 Experimental Measurements 

We setup an indoor laboratory measurement of the developed system. The 

channel is assumed to be multipath and quasi-static for frame duration. There is 

no wired connection between the transmitting and receiving end. The 

specifications of the SDR allowed us to ignore negligible signal impairments such 

as in-phase and quadrature imbalances [103]. The design was converted from a 

MATLAB Simulink model to the VHDL code, using the Xilinx ISE design suite. The 

VHDL code was successfully synthesis and mapped for Virtex-6 FPGA under area 

optimization constraint. All timing and place & route constraints are successfully 

met. The resource utilization on the FPGA is shown in Table 4.3. Various parts of 

the receiver processing-chain are debugged in MATLAB using the Xilinx 

Chipscope. Xilinx ChipScope Pro tool inserts logic analyzer, system analyzer, and 

virtual I/O low-profile software cores directly into the design allowing the view to an 

internal signal or node, including embedded hard or soft processors. Figure 4.13 

shows the receiver constellation from the beginning of time. The constellation gets 

better at the end of the training period when the receiver is synchronized. The 
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quality of the constellation is assessed at the receiver by calculating the EVM, 

which is found approximately 10%. Various other measurements are captured from 

the MIMO test-bed, which will be presented in future work. We have presented the 

parameters of our experiment in Table 4.4. 

 
Table 4.3: Xilinx Resource Estimator for STBC-OFDM design. 

 
Resource (function) Number of items  

Slices 23656 / 74,400 
Flip-flops 23641 / 595,200 
BRAMs 3869/ 38,304 

LUTs 21418 / 476,160 
I/O Blocks 326 / 840 

DSP48s 237 / 2,016 

 
Table 4.4: Summary of system parameters 

 
 

Parameter Value 
Power of FPGA design only <50mW 

Symbol rate 20 MSPs 
System bandwidth 20 MHz 

Intermediate frequency 20 MHz 
No. of subcarriers (FFT) 64 
Number of data carriers 48 
Number of pilot tones 4 

Unused subcarriers 12 
OFDM symbol duration 32 µs 
Length of cyclic prefix 8 symbols 

Carrier frequency 2.5 GHz 
ADC quantization (default) 14 bits 
DAC quantization (default) 16 bits 
ADC sampling frequency 250 MSPS 
DAC sampling frequency 1 GSPS 
The clock speed of SDR 200 MHz 
Word length/binary point  16/10 

Detectable signal level -94 dBm 

 

 
Fig. 4.13. Constellation captured at the receiver. 
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4.8 Conclusion 

We have presented a real-time modular implementation of STBC-OFDM on a 

reconfigurable SDR MIMO testbed. MATLAB simulations and hardware 

development demonstrated the functionality of our system design. The system 

supports a 20 MHz bandwidth, a feature in LTE MIMO communication, and works 

in the ISM band. Our design is modular, portable and scalable for bigger scale. We 

described in detail the broadband STBC-MIMO test-bed. We described the 

software development environment and design methodology followed to program 

STBC-OFDM on the FPGA. Portion of the received data is captured and displayed 

in Simulink using the RTDX. We have presented preliminary indoor laboratory 

measurements of our system. Our results confirm working of STBC-OFDM in the 

20 MHz bandwidth. 
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CHAPTER 5:  SUMMARY OF THESIS AND FUTURE DIRECTIONS 

Massive MIMO is the currently most compelling sub-6 GHz wireless access 

technology for 5G. It is a multi-user MIMO (multiple-input multiple output) 

technology that can provide uniformly good service to wireless terminals in high-

mobility environments. The key concept is to equip base stations with arrays of 

many antennas, which are used to serve many terminals simultaneously, in the 

same time-frequency resource. This thesis tackles three fundamental problems 

and their solutions. We started with the antenna selection algorithm for the massive 

MIMO in Chapter 2, followed by a fibre based massive MIMO testbed based upon 

the MIMO-OFDM. In the end, we have developed a scalable channel sounder that 

can be deployed in 5G distributed environments.  

 

There are still a large number of issues and challenges to be investigated in 

massive MIMO. Some possible research directions are as follows. 

1. User selection (scheduling) 

Massive multi-input and multi-output (MIMO) systems, typically using hundreds of 

base station (BS) antennas to serve tens of users, are widely recognized as a core 

technique for designing 5G cellular networks [38] [104] [105] [106] [107]. However, 

given the large number of BS antennas, MIMO systems encounter a dramatic 

increase in hardware costs and power consumption because each antenna 

element and radio frequency (RF) chain consists of an RF amplifier and high-

resolution data converters, which are the primary power consumers at the BS. 
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Many techniques, such as spatial modulation and hybrid precoding, reduce 

hardware cost and the energy consumption of the RF chains. Also, the number of 

users that can be simultaneously served by the BS is limited by the number of 

selected BS antennas (or the limited RF chains). In this case, users must be 

scheduled when the number of users is higher than that of the selected BS 

antennas due to the varying nature of wireless channels. High system performance 

can be achieved by selecting users with the best channel quality.   

2. Unfavourable propagation 

Favourable propagation is defined as mutual orthogonality among the vector-

valued channels to the terminals and is one of the key properties of the radio 

channel that is exploited in Massive MIMO. However, there is less research in this 

area. Massive MIMO works under favourable propagation environments. However, 

in practice, there may be propagation environments where the channels are not 

favourable. For example, in propagation, environments where the numbers of the 

scatterers are small compared to the numbers of users, or the channels from 

different users to the BS share some common scatterers, the channel is not 

favourable. One possibility to tackle this problem is to distribute the BS antennas 

over a large area. 

3. Distributed Massive MIMO 

Current research has focused on collocated BS test beds. However, there are 

significant advantages to massive MIMO systems with non-centralized BSs. 

Increased spatial diversity is achieved by distributing antennas or remote radio 

heads, potentially enhancing MIMO's benefits. It is difficult to fit more than 100 
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antennas into a single array. Distributed Massive MIMO enables more convenient 

antenna placement, such as spreading them among multiple buildings. 

4. Alternative 5G architectures 

It would be good to be able to combine Massive MIMO with practical current 

systems like LTE. In addition, Massive MIMO, small-cells, and mm-wave 

technology are promising candidates for 5G wireless systems. A good research 

direction is to design new systems with a combination of these technologies. 

4. Intelligent Massive MIMO 

With the ever-increasing use of machine intelligence, machine learning (ML) can 

be used to improve the performance of existing algorithms, achieve close-to-

optimal performance with reduced complexity of implementation [108]. ML will also 

play an important role in the digital signal processing of the BS baseband 

processor. For example, deep neural networks could enhance multi-user detection 

with low-precision ADCs as well as digital pre-distortion for the power amplifiers of 

the BS [106] [109]. 
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Appendices 

Appendix 1: Suzuki fading distribution and antenna selection 

Antenna preselection is discussed in Chapter 2. In order to characterise the radio 

channel in the urban conditions, the Suzuki distribution was proposed in [110], 

following the proposals of Suzuki several decades ago. The Suzuki distribution 

describes the scenario when there is a single dominant propagation path with a 

diffuse set of paths. All the multipath signals have roughly the same delay but 

different phases. The dominant signal is assumed to have a lognormal strength, 

since it undergoes multiplicative scattering, while the diffuse distribution is 

modelled as Rayleigh. The probability density function (PDF) of the Suzuki 

envelope is long-established, and recently given by [110] as, 
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It is seen that the Suzuki process is obtained by the multiplication of Rayleigh 

process with the lognormal process. We simulated the antenna preselection 

algorithm for various values of the lognormal fading gains in Fig.A1.1 below. The 

simulated channel is Suzuki fading channel as in the previous sections. We 

observe that the capacity of the massive MIMO channel decreases as the 

lognormal gain increases. The capacity drops by 5 bps/Hz for 8 dB shadow fading 

gain, compared to the no log-normal fading (i.e. only Rayleigh fading is present). 

We compared the result of 0 dB Suzuki fading with the Rayleigh-only antenna 

selection algorithm in the Fig.A1.2 to check if the two results coincide with each 

other. The 0 dB Suzuki fading indeed coincides with the optimal antenna selection 

algorithm (using exhaustive search) in the Rayleigh-only fading channel. 
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Fig. A1.1. Effect of lognormal fading on Channel capacity 

 

Fig. A1.2. Comparison of 0dB Suzuki fading to Rayleigh only antenna selection. 

 

Appendix 2: Error vector magnitude 

The error vector magnitude (EVM) is used in Chapter 4. It represents a measure 

of the deviation of the received symbols from their corresponding ideal position in 

the constellation plot. The deviation is taken as the Euclidian distance between the 
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ideal symbol coordinate and the actual received symbol. In general, the EVM is 

averaged over an ensemble of the symbol trajectories and can be defined 

numerically as 
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EVM provides a measure of the ratio of the error vector to the reference vector. In 

a perfect system, free of noise and nonlinearities, the measured vector and 

reference vector would be identical and EVM would be zero. The SNR and EVM 

of a modulated signal share an inverse relationship. Numerically this relationship 

can be expressed as 

1
EVM

SNR L



 

where L is the coding gain. STBC provides a two-dimensional spatiotemporal 

encoding to provide diversity gain, without giving any coding gain. Therefore, by 

measuring the EVM over the desired input signal range, one can readily estimate 

the SER performance. 

 

 

 

Appendix 3: What is “favourable propagation” in massive MIMO ? 

“Favourable propagation” (recall from the Introductory Chapter that this is a 

misleading term, because it reduces the capacity enormously relative to say, line-

of-sight propagation) is defined in parts of the communications literature (such as 
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[1]) as mutual orthogonality of vector-valued channels from the base-station to the 

terminals. This is the key property exploited in simplifying the capacity formulation 

for massive MIMO. For a large MIMO, under “favourable propagation” conditions, 

the column-vectors of the propagation matrix are asymptotically orthogonal, 
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With this in place, linear processing can achieve optimal performance (which is 

why it is called “favourable”). More explicitly, on the uplink, with a simple linear 

detector such as the matched filter, noise and interference can be cancelled out. 

On the downlink, with linear beamforming techniques, the base station can 

simultaneously beam-form multiple data streams to multiple terminals without 

causing mutual interference [1]. To have the favourable propagation, the radio 

channels   , 1kg k K  are considered pairwise orthogonal if, 
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The above equation is assumed, and it can indeed can be achieved approximately 

in practice with properly designed and deployed antennas. According to the law of 

large numbers, when the number of antennas M grows too large, and k j , then.  

1
0,H

k ig g M
M

  . For this case, we say that the channel is asymptotically 

favourable.  

 

Appendix 4: Derivation of optimization equation for massive MIMO 

If the channel is known at the transmitter, the optimum transmit strategy is dirty 

paper coding, for which the capacity is, e.g.,  
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in which qD  (cf., D  ) is a K K  real diagonal matrix whose 
thk  element is kq , 

representing the transmitted signal power to the kth user.  So this formulation 

fosters optimization of the power allocation (to different users) problem, although 

power allocation is not pursued further here. This form is known to be a linear 

programming problem with polynomial time complexity and a global optimum.  

   det detM KI AB I BA   , is  

*
2log det d

K q

K
C I D D HH

N 
   

 
                    

 

The preselection variable, 1, ,i i M  K , is 

 

1 ,

0

th

i

i antenna selected

otherwise


  


                          

and assembling these as 
1 2

{Δ ,Δ , ..Δ }
M

DiagΔ , with H =Δ Δ Δ  and  
1

Δ
M

i
i

N


 , makes 

(2) into 

  *
2log det d

K q

K
C I D D H H

N 
   

 
Δ Δ                

 
We have maintained the power allocation term in (4), but for the preselection 

problem, this can be dropped (or alternatively stated, the same power is allocated 

for now to all the users) by using /q KD I K . Equation (4) is known to be convex in

i . The maximization of the capacity can be stated as the optimization problem: 
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 
 

 

 
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2

1
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d
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trace N
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Δ

Δ Δ

           

 
This is NP-hard because the i are binary integer variables, but relaxation allows 

solution in polynomial time. (Linear programming relaxation of the 0-1 integer 

program is by replacing the constraint that each variable must be 0 or 1, by a 

weaker constraint such that each variable is within an interval 0 to 1.) So for each 

constraint,  0, 1i   , a pair of linear constraints, viz., ˆ0 1i   , is used instead. 

The optimization problem is now,  

 
 

 

 

*
2

1

maximize log det

subject to 0,1

Δ .

d
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i
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i
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C I D H H
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trace N






   
 

  

  

Δ

Δ Δ

 

Our algorithm, based on the Barrier method, is  3.O M  for practical purposes, as 

listed in Table 1. This polynomial time complexity is feasible to solve, including in 

real-time using a current GPU. We used the MATLAB® Parallel Computing Toolbox 

which provides Nvidia GPU functions (called CUDA® library) to accelerate the 

computing. 

Algorithm Complexity 
Exhaustive search M

NC N  
Fast algorithm  2 2O M K  

Gorrokhov algorithm  O NMK  
NBS algorithm  O NM  

Presented method  3.5O M  
Presented method 

(favorable propagation 
condition) 

 O M  

 
Table . Antenna selection algorithm complexity in MIMO 
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With M>>K, the column-vectors of the channel matrix approach being mutually 

orthogonal (see Appendix 3 above), 

 

1/2 1/2
H H

M K M K

GG H H
D D

M M

D

 



   
   

   


? ?  

The capacity of a massive MIMO downlink channel simplifies to (cf above, with Dq 

dropped), 
 

 

𝐶ெ≫௄ ൌ   logଶ detቀ𝐼௄  ൅   𝜌ௗ  𝐷ఉ
ଵ ଶ⁄ 𝐺 𝐺ு  𝐷ఉ

ଵ ଶ⁄ ቁ  

                                 ൎ  logଶ det൫𝐼௄ ൅   𝜌ௗ  𝑀𝐷ఉ൯  

                                    ൎ   ෍ logଶ ሺ1 ൅   𝑀𝜌ௗ  𝛽௞ሻ  

௄

௞ୀଵ                                

 

There are two main interior point methods of linear programming: the primal 

Newton Barrier Method and the primal-dual Interior Point Method. The former has 

complexity  6O n and the latter has complexity  3.5O n .  The primal Newton barrier 

method requires the initial value to satisfy the primal constraints while the primal-

dual interior method requires both primal and dual constraints to be satisfied. The 

latter is seen as one promising competitor for simplex methods. 
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